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Abstract

While Domain Adaptation has been actively researched in the past years, most of
them focus on Single Source Domain Adaptation. Most often, we have multiple
datasets available which share a common feature space. As such, it is possible
to learn feature representation across multiple sources which can lead to higher
accuracies on Target Domain. We choose to work on unsupervised Domain
Adaptation, wherein, it attempts to generalize a model learnt using multiple source
domains to the Target Domain. The sources could have varying data distributions.

Inspired by Wasserstein GANs and Wasserstein Distance Guided Representation
Learning for Domain Adaptation, we extend it for Domain Adaptation in Multiple
Source Setting. To this end, we propose the Multi-Wasserstein Distance Based
Neural Network (MWDNN). We also show an effective way to include weights for
the different sources, which more often leads to a higher testing accuracies over
the Target Dataset. We conduct extensive experiments over real world Datasets to
demonstrate that the proposedMWDNNoutperforms the state-of-the-art baselines.
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Chapter 1

Introduction

The success of Deep Learning based Models is partially attributed to rich datasets
having large enough samples with abundant annotations.(Krizhevsky et al., 2012;
Hinton et al., 2012; Russakovsky et al., 2015) Domain Adaptation caters to the
scenario where sufficient labeled data is unavailable in the Target Domain as
generating new datasets is prohibitively expensive. Domain Adaptation attempts
to transfer knowledge from the source domains to the Target domain under presence
of covariate shifts. Recently, Deep Learning BasedModels have shown to perform
significantly well for Domain Adaptation. (Glorot et al., 2011; Donahue et al.,
2014; Yosinski et al., 2014; Bousmalis et al., 2016; Long et al., 2015; Ganin et
al., 2016). However, few deal with multi-source scenarios. Furthermore, naive
application of multi-source approaches is not guaranteed to improve upon learning
good feature representation for good performance on Target Domain. Inclusion of
multiple source may lead to worse performance on the Target Domain sometimes.
(Han Zhao et al., 2017) To this end, we propose the Multi-Source Wasserstein
Distance based Domain Adaptation. We also show an effective way to give
weights to sources to overcome the above problem.

Adversarial based approaches for Unsupervised Domain Adaptation is gaining
popularity in recent years. It builds upon the Generative Adversarial Network
(GANs) (Goodfellow et al. 2014), which play a minimax game between two
adversarial networks: the discriminator is trained to distinguish real data from
the generated data, while the generator learns to generate high-quality data to
fool the discriminator. It is intuitive to employ this minimax game for domain
adaptation to make the source and target feature representations indistinguishable.
Adversarial Approaches (Ganin et al. 2016; Tzeng et al. 2017; Han Zhao et
al. 2017), use a domain classifier to reduce domain discrepancy through an
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2 CHAPTER 1. INTRODUCTION

adversarial objective w.r.t domain classifier. But domain classifier suffers from the
Vanishing Gradient Problem (Jian Shen et al., 2018). Once the domain classifier is
sufficiently trained, it provides no further information for the feature extractor. This
may lead to sub-optimal training. As shown by (Jian Shen et al. 2018; Arjovsky,
Chintala, and Bottou 2017), A more reasonable solution would be to replace
the domain discrepancy measure with Wasserstein distance, which provides more
stable gradients even if two distributions are distant.

In this paper, we analyze the Generalization Bound for Multi-Wasserstein Dis-
tance based Neural Network (MWDNN). Our theoretical results build upon (Han
Zhao et al., 2017) and (Jian Shen et al., 2018). Inspired by (Han Zhao et al.,
2017), we generalize the bound for WDGRL for multiple source domains. Exper-
iments on common Domain Adaptation Benchmarks demonstrate the superiority
of MWDNN over other baselines, thus validating the effectiveness of the same.



Chapter 2

Related Works

The problem of effectively adapting a model from one domain to other can have
different approaches for solution based on the problem setting. Depending on
the availability of labels, domain adaptation may be classified into supervised,
unsupervised and semi-supervised (Mei Wang, Weihong Deng 2018).

On basis of the feature space, DA may be categorized into homogeneous if the
feature space of the source and target distributions are same and heterogeneous
if they are different. Based on the solving approaches of DA it can be broadly
classified into three categories namely Discrepancy Based (E. Tzeng, J. Hoffman
2015 etc.), Adversarial Based (E. Tzeng, J. Hoffman 2017 etc.) and Reconstruction
Based (Z. Yi, H. Zhang, 2017 etc.).

Given a source domain with ground truth and a target domain without labels, the
main problem statement of Unsupervised Domain Adaptation is to learn a model
that performs well on target distribution. As the source and target domains have
different distributions, the main aim is to reduce the domain shift between the two
domains. Various metrics are used to define and reduce the distance between the
domains likeH∆H divergence (Ben-David et al., 2010), K-L divergence, CORAL
(Sun, Feng, and Saenko 2016) and Wasserstein distance (Jian Shen et al., 2018;
Arjovsky, Chintala, and Bottou 2017). In this paper, we prove the superiority of
Wasserstein distance in multi-source domain adaptation over other divergences.

Generative Adversarial Network (GANs) can also be used for domain adaptation
as they have a common problem of solving a mini-max game.

3



4 CHAPTER 2. RELATED WORKS

Various GAN based methods are used for domain adaptation tasks and the main
idea for using Wasserstein Distance for domain adaptation in (Jian Shen et al.,
2018) came from the Wasserstein GAN itself (Arjovsky, Chintala, and Bottou
2017). Wasserstein Distance has also been very popular for solving problems of
Optimal Transport (Courty, Flamary, and Tuia 2014; Courty et al. 2017).



Chapter 3

Theoretical Analysis

3.1 Generalization Bound for Multi-Source
Wasserstein Distance

We first introduce the notations used in the paper.

Notations. LetX represent the input space, and a labeling function f : X → [0, 1],
that holds for all the k domains, where domain represents a distributions D on X .
A Hypothesis class H is the set of predictor functions, ∀h ∈ H, h : X → [0, 1].

The error of a hypothesis h w.r.t labeling function f is defined as: εS(h, f) =

Ex∼DS
[|h(x) − f(x)|]. We use the shorthand εS(h) = εS(h, f). It is similarly

defined for the target domain as well.

Let {DSi
}ki=1 and DT be k source domains and the target domain, respectively.

We also use {µsi}ki=1 and µt to represent the corresponding distributions of the
domains on X .

The Wasserstein metric is a distance measure between probability distributions on
a given metric space (M,ρ), where ρ(x, y) is a distance function for two instances
x and y in the setM . The p-th Wasserstein distance between two Borel probability
measures P and Q is defined as:

Wp(P,Q) =
(

inf
µ∈Γ(P,Q)

∫
ρ(x, y)pdµ(x, y)

) 1
p

where P,Q ∈ {P :
∫
ρ(x, y)pdP(x) <∞,∀y ∈M} are two probability measures

on M with finite p-th moment, and Γ(P,Q) is the set of all measures onM ×M
with marginals P and Q.

5



6 CHAPTER 3. THEORETICAL ANALYSIS

Kantorovich-Rubinstein theorem shows when M is separable, first Wasserstein
Distance can be defined as (Villani 2008):

W1(P,Q) = sup
||f ||L≤1

Ex∼P[f(x)]− Ex∼Q[f(x)] (3.1)

where ‖f‖L = sup |f(x)− f(y)|/ρ(x, y) represents the Lipschitz semi-norm.

Definition 3.1. We re-define theWasserstein Distance Function to find the distance
between DT and a set of source domains {DSi

}ki=1 as follows:

W (DT ; {DSi
}ki=1) := max

i∈[k]
W (DT ;DSi

) = max
i∈[k]

sup
||f ||L≤1

Ex∼µt [f(x)]− Ex∼µsi [f(x)]

Let h∗ be the optimal hypothesis that achieves the minimum combined risk, λ:

λ := εT (h∗) + max
i∈[k]

εSi
(h∗)

We now proceed to show that the error in Target Domain is bounded by the
error across source Domain, whilst using the Wasserstein Metric. The Proofs are
provided in the Appendix.

Lemma 3.1. (Jian Shen, Yanru Qu, Weinan Zhang and Yong Yu 2018) Assume
∀h ∈ H, h is K-Lipschitz continous for some K. Then the following holds:

εT (h, h′) ≤ εS(h, h′) + 2KW1(µt, µs)

Theorem 3.2.

εT (h) ≤ max
i∈[k]

εSi
(h) + 2KW (DT ; {DSi

}ki=1) + λ (3.2)

Remark. The Above theorem shows a Generalization Bound over the True distri-
bution. However, most of the times, we do not have access to the True distributions
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and correspondingly the True Error over the Source Domains. Hence, we proceed
to show a bound over the Empirical Distribution.

Theorem 3.3. (Han Zhao et al. 2018) Let {DSi
}ki=1 be k source distributions

over X . Let H be a hypothesis class where V C dim (H) = d. If {D̂Si
}ki=1 are

the empirical distributions of {DSi
}ki=1 generated withm i.i.d samples from each

domain, then, for ε > 0, we have:

Pr
(

sup
h∈H

∣∣∣max
i∈[k]

εSi
(h)−max

i∈[k]
ε̂Si

(h)
∣∣∣ ≥ ε

)
≤ 2k

(em
d

)d
exp (−2mε2)

Lemma 3.4. ((Bolley, Guillin, and Villani 2007), Theorem 2.1; (Redko, Habrard,
and Sebban 2016), Theorem 1) Let µ be a probability measure in Rd satisfying
T1(λ) inequality. Let µ̂ = 1

N

∑N
i=1 δxi be its associated empirical measure defined

on a sample of independent variables {xi}Ni=1 drawn from µ. Then for any d′ > d

and λ′ < λ there exists some constant N0 depending on d′ and some square
exponential moment of µ such that for any ε > 0 and N ≥ N0 max(ε−(d′+2), 1)

P[W1(µ, µ̂) > ε] ≤ exp(−λ
′

2
Nε2)

where d′, λ′ can be calculated explicitly.
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Combining Above Theorems and Lemma, we have the following Theorem:

Theorem 3.5. Under the Assumption of Lemma 3.4, Let DT and {DSi
}ki=1 be the

target distributions and k source distributions over X . Let H be the hypothesis
class where V C dim(H) = d. If D̂T and {D̂Si

}ki=1 are the empirical distributions
of DT and {DSi

}ki=1 generated withm i.i.d. samples from each domain. then, for
0 < δ < 1, with probability of atleast 1− δ, we have:

εT (h) ≤ max
i∈[k]

ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 2KW (D̂T ; {D̂Si

}ki=1)

+4K

√
2

λ′
log

(
1

δ

)
·
(√

1

m

)
+ λ

(3.3)

Remark. The Above Theorem shows the Worst Case Generalization Bound of
Domain Adaptation using the Wasserstein Metric. The First Term measures the
worst Case Accuracy over the Source Domains, whilst the third term measures the
distance between the source and the target. For a successfulDomainAdaptation, we
hope tominimize both the Source Training Error, whilst decreasing theWasserstein
Distance among the source and Target as well. As described in (Han Zhao et al.,
2017), the bound depends on the worst case source Domain. As such natively
incorporating a source is not a good idea. We hope to tackle the problem in the
next part, by giving weights to the sources.
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3.2 Average Case Generalization Bound

We extend the definitions from Def 3.1 to include a convex combination α of the
k sources.

Definition 3.2. Let α ∈ Rk such that α ≥ 0 and
∑

i∈[k] αi = 1. Define
Wα(DT ; {DSi

}ki=1) as follows:

Wα(DT ; {DSi
}ki=1) :=

∑
i∈[k]

αi ·W (DT ;DSi
) =

∑
i∈[k]

αi · sup
||f ||L≤1

Ex∼µt [f(x)]− Ex∼µsi [f(x)]

Let h∗α be the optimal hypothesis that achieves the minimum combined risk, λα:

λα := εT (h∗) +
∑
i∈[k]

αi · εSi
(h∗)

Theorem 3.6.

εT (h) ≤
∑
i∈[k]

αi · εSi
(h) + 2KWα(DT ; {DSi

}ki=1) + λα (3.4)

Theorem 3.7. (Han Zhao et al. 2018) Let {DSi
}ki=1 be k source distributions

over X . Let H be a hypothesis class where V C dim (H) = d. If {D̂Si
}ki=1 are

the empirical distributions of {DSi
}ki=1 generated withm i.i.d samples from each

domain, then, for ε > 0, we have:

Pr
(

sup
h∈H

∣∣∣∑
i∈[k]

αi · εSi
(h)−

∑
i∈[k]

αi · ε̂Si
(h)
∣∣∣ ≥ ε

)
≤ 2k

(em
d

)d
exp (−2mε2)
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Theorem 3.8. Under the Assumption of Lemma 3.4, Let DT and {DSi
}ki=1 be the

target distributions and k source distributions over X . Let H be the hypothesis
class where V C dim(H) = d. If D̂T and {D̂Si

}ki=1 are the empirical distributions
of DT and {DSi

}ki=1 generated withm i.i.d. samples from each domain. then, for
α ∈ Rk, α ≥ 0,

∑
i∈[k] αi = 1, for 0 < δ < 1, with probability of atleast 1− δ, we

have:

εT (h) ≤
∑
i∈[k]

αi · ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 2KWα(D̂T ; {D̂Si

}ki=1)

+4K

(√
2

λ′
log

(
1

δ

)
·
(√

1

m

))
+ λα

(3.5)

Since theWassersteinDistance between the source i and target represents a distance
between the two distributions, we choose to set the weights in proportion to their
Wasserstein Distances. Setting

αi ∝ 1− W (D̂T ; D̂Si
)∑

j∈[k] W (D̂T ; D̂Sj
)

(3.6)

It gives higher weights to the source with the least Wasserstein Distance. We
discuss the implications of our choice of weights in Chapter 5.



Chapter 4

Multi-source Wasserstein Distance
based Neural Network

Next, we describe the basic architecture used to optimize the generalization bound.

Consider, we are given labeled samples from k source domains, each containing
m instance-label pairs, along withm unlabeled instances from target domain. The
Hypothesis class H is dependent on the choice of architecture, i.e. no. of layers,
nodes in each layer etc. Deciding the architecture of the Neural Network, fixes the
Hypothesis Class H , which in turn fixes the square root terms and combined risk
error λa. We can only hope to minimize the weighted source training error and the
Wasserstein distance between the source domains and target domain. We choose
to work on the average generalization bound since the worst case generalization
bound minimizes error for only one source at a time. (Han Zhao et al., 2017)
showed that the soft-MDAN performed better than the hard version.

The Goal is to learn a transferable classifier over H that minimizes εT (h) =

Ex∼DT
[|h(x)− f(x)|] = Prx∼DT

[f(x) 6= h(x)], h ∈ H .

The Architecture can be broken into roughly three parts : 1) Feature Extractor 2)
Label Classifier and 3) Domain Discriminator. Key Point to be noted in a domain
adaptation setting is that the extracted features are indistinguishable across the
domains yet informative enough to perform classification accurately.

Every Domain Discriminator independently calculates the Wasserstein Metric be-
tweenDSi

andDT . Let’s denote feature extractor, label classifier, and domain dis-
criminator by the corresponding functions fg, fc, fw with corresponding network
parameters θg, θc, θw. For every domain discriminator, the loss can be represented
as :

11
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Source
D
ata

{
S
i }
ki=

1

TargetD
ata

T

Feature Extractor

Classifier

Classification
Loss

W
1 (D

S
1 ,
D
T

)
W

1 (D
S
2 ,
D
T

)
W

1 (D
S
k ,
D
T

)

Wasserstein Distance

Figure 4.1: MWDNN Architecture
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Lwdi =
1

m

∑
x∼DSi

fwi
(fg(x))− 1

m

∑
x∼DT

fwi
(fg(x))

Common Activation Functions used in Neural Network like Sigmoid, ReLU, tanh
etc. are Lipschitz continuous. As shown by (Jian Shen et al., 2018) and (Gulrajani
et al. 2017), a reasonable way to enforce the Lipschitz constraint is via gradient
penalty. The gradient penalty is defined as

Lgradi(ĥ) = (‖Oĥfwi
ˆ(h)‖2 − 1)2

where the feature representation ĥ are defined not only at the source and target
but along random points along the straight line between source and target repre-
sentations. The Wasserstein distance can be estimated by solving the following
objective:

max
θwi

{Lwdi − γLgradi}

Representing the classification Loss by Lci for every source domain, the final loss
function which minimizes the average generalization bound can be written as :

min
θg ,θc

{∑
i∈[k]

αi

(
Lci + λ ·max

θw
(Lwdi − γLgradi)

)}

where, λ controls the balance between discriminative and transferable feature
learning, whereas balancing coefficient γ should be set to 0, during minimizing
phase.
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Algorithm 1Multi-Source Wasserstein Distance based Domain Adaptation
Require: source instance-label pair {Xsi}ki=1; target instance X t; coefficient

λ, γ, η = 0.7; domain critic learning rate β1; classifier & feature extractor
learning rate β2; batch sizem

1: Initialize random weights θg, θc, {θwi
}ki=1

2: for t = 1 to∞ do
3: Sample batch {S(t)

i }ki=1 and T (t) from {D̂Si
}ki=1 and D̂T

4: for i = 1 to k do
5: for j = 1 to n do
6: hsi ← fg(x

si), ht ← fg(x
t)

7: Sample h as random points along straight line hsi and ht
8: ĥ← {hsi , ht, h}
9: θwi

← θwi
+ β1Oθwi

[Lwdi(x
si , xt)− γLgradi(ĥ)]

10: end for
11: end for
12: for i = 1 to k do
13: αi = ηw

(
1− W (D̂T ;D̂Si

)∑
j∈[k]W (D̂T ;D̂Sj

)

)(t)

+(1−η)w
(

1− W (D̂T ;D̂Si
)∑

j∈[k]W (D̂T ;D̂Sj
)

)(t−1)

14: end for
15: θc = θc − β2Oθc

[∑
i∈[k] αi · Lc(xsi , ysi)

]
16: θg = θg − β2Oθg

[∑
i∈[k] αi · [Lc(xsi , ysi) + Lwdi(x

si , xt)]
]

17: end for

The above algorithm can be implemented with a standard back-propagation based
algorithm. w is a normalizing function that makes the sum of weights to 1.
We used a sigmoid like function here which gives higher weights to sources with
lowerWasserstein Distances, while penalizing the rest. The steep slopewas used to
harshly penalize some sources while minimizing the penalty in sources with lower
Wasserstein Distance. Exponential Average was used to minimize the fluctuations
inweights due to fluctuatingWassersteinDistances as approximated by theDomain
Critic. The Wasserstein Distance Approximated by Neural Network fluctuates in
practice, which leads to a fluctuations in weights as well.



Chapter 5

Comparison to other Multi-Source
Approaches

Most of the Domain Adaptation in the literature focus mostly on single source
setting. As such, few multi-sources approaches exist. The closest is the MDAN
(Han Zhao et al., 2017), which extends the DANN (Ganin et al., 2016) to multiple
sources. However as stated in (Jian Shen et al., 2018), the binary classifier
used in DANN, suffers from vanishing Gradient Problem. Once it correctly
begins to correctly classify the source and target, it provides no further useful
information during training. However, Wasserstein Distance continues to provide
stable gradients, thus avoiding the gradient vanishing problem.

We choose to work with the average case generalization bound as it presents a
tighter bound than the worst case. The theoretical bound grows as O(

√
log k).

One thing that differentiates this method from previous approaches is the choice
of weights. Earlier works (Han Zhao et al., 2017 etc.) try to find domain invariant
feature representations, i.e. they try to find a common subspace of features amongst
all domains. When multiple sources are to be considered, the choice of sources are
crucial. Inclusion of a poor choice of source can negatively affect the performance
on target domain. In our domain Adaptation setting, we are motivated to find the
best performing model over the Target Domain. Hence, it is intuitive to filter out
sources that can potentially affect the training negatively. In other words, instead
of finding the common subspace, we try to find a subspace that is potentially better
for the Target Domain.

15



16 CHAPTER 5. COMPARISON TO OTHER APPROACHES

It is reflected on our choice of weights

αi ∝ 1− W (D̂T ; D̂Si
)∑

j∈[k] W (D̂T ; D̂Sj
)

Compare this to the weights assigned in theMDANModel (Han Zhao et al., 2017):

αi =
εi∑
j∈[k] εj

The choice of weights is latter assigns higher weights to sources with higher error.
This approach is good when finding the common subspace, but does not guarantee
the best performance over the Target Domain. In particular, it will continuously
assign a higher weight to a poor choice of source. In contrast, our approach assigns
the least weight to sources with highest error. It tries to align with sources which
are common to the Target Domain. The continuous and exponential averaging
of weights prevents abrupt changes in weights as well as leaves room for other
sources to be assigned a higher weight should the distributions become similar
later on during training.

We note that in some cases, our choice of weights may be so low that it effectively
leads to a Single Source Domain Adaptation. However, in all cases, our choices
perform better than previous approaches.



Chapter 6

Experimental Results

In this section, we prove our mathematical findings by testing on three standard
domain adaptation datasets. We propose two variants of Multi-SourceWasserstein
Distance algorithm, one unweighted and other with weights namely MSWD and
w-MSWD respectively. The first is Amazon Review dataset which is a text based
dataset and widely used for sentiment analysis. The second is Office-Caltech
dataset (Gong et al., 2012) which is an image dataset and has 10 overlapping
categories from Office and Caltech dataset. We worked on processed features on
both the datasets. Last is the Digits Dataset namely, MNIST (LeCun et al., 1998),
MNIST-M (Ganin et al., 2016), SVHN (Netzer et al., 2011), Synth-Digits (Ganin
et al., 2016). The codes are implemented in Tensorflow 2.0 and Python 3.7.4.

6.1 Amazon Review

The dataset contains classes namely books, electronics, dvd and kitchen appliances.
For each of the domains we have 2000 labelled and 4000 unlabelled reviews.
We have compared our proposed approach of MSWD to various multi-source
approaches as well as single source approaches. In multi-source we compared to
MDAN (Han Zhao et al., 2017) and mSDA (Chen et al., 2012). For single source
approaches we like B-DANN (Han Zhao et al., 2017; Ganin et al., 2016) and SWD
(Jian Shen et al., 2018) we have taken the best case domain transfer accuracy for
all domains.

We see that our method outperforms the compared approaches by a significant
margin and w-MSWD gives best results.

17
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Train/Test mSDA B-DANN MDAN SWD-Best MSWD w-MSWD
D+E+K/B 76.98 76.50 78.63 80.81 81.32 81.926
B+E+K/D 78.61 77.32 80.65 83.15 84.30 84.412
B+D+K/E 81.98 83.81 85.34 86.83 86.48 87.267
B+D+E/K 84.26 84.33 86.26 88.16 88.81 88.966
Average 80.46 80.49 82.72 84.74 85.23 85.643

Table 6.1: Accuracy comparison on Amazon Review Dataset

Figure 6.1: Wasserstein Distance :
Kitchen

Figure 6.2: Wasserstein Distance :
Books

Figure 6.3: Wasserstein Distance : Elec-
tronics

Figure : Wasserstein Distance Loss : Target (DVD)

We note that Books and DVD are closely related, so are Kitchen and Electronics.
While the Target is DVD, we note that Books has the least Wasserstein Distance
as well, followed by Electronics then Kitchen.
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The weights that were automatically assigned to the sources were Books ∼ 0.7,
Electronics ∼ 0.2, Kitchen ∼ 0.1. The steep slope of sigmoid like function in
w, was used to increase the gap in the weights that would have been assigned
otherwise.

6.2 Office-Caltech

The Office-Caltech dataset is a relatively small size dataset as compared to the
amazon review dataset and contains 10 overlapping categories of the Office and
Caltech datasets. The results on this data are in accordance with the findings of
(Jian Shen et al., 2018) that using wasserstein distance as a metric on even less
data points is much more stable than the compared approaches.

Train/Test Source-only M-DAN SWD-Best MSWD w-MSWD
C+D+W/A 92.35 93.27 93.67 93.06 93.93
A+D+W/C 84.55 87.80 90.24 90.95 91.06
A+C+W/D 98.25 100 100 100 100
A+C+D/W 88 98.95 97.89 98.68 98.95
Average 90.79 95.00 95.45 95.67 95.98

Table 6.2: Accuracy comparison on Office-Caltech Dataset

We note that Webcam and DSLR are highly correlated. This is also verified by
their individual source-only training. As such our algorithm gives higher weights
to Webcam and DSLR pair. But, as training progresses, the wasserstein distance
decreases across all sources. At later stages, the weights assigned become almost
equal for all the sources. This also shows that our algorithm doesn’t completely
neglect the other sources.
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6.3 Digits Dataset

Next, we test on the Digits Dataset namely, MNIST (Mt), MNIST-M (Mm), SVHN
(Sv), Synth-Digits (Sy).

Train/Test Best-Single Source B-DANN MDAN w-MSWD
Mt+Sv+Sy/Mm 51.90 59.11 68.72 94.12
Mm+Sv+Sy/Mt 96.43 96.70 97.99 98.35
Mt+Mm+Sy/Sv 81.41 81.82 81.60 82.76

Average 76.58 79.21 82.77 91.74

Table 6.3: Accuracy comparison on Digits Dataset

Proceeding on a similar line, MNIST and MNIST-M are more related than others.
In fact, MNIST-M is generated from MNIST itself. And Indeed, our algorithm
does give higher weightage to Mt-Mm Source/Target pair.

We note that during Mt-Mm Source/Target Pair, the weights assigned to SVHN
and Synth-Digits become as low as ∼ 0.1 or less, thus significantly focusing on
a single domain rather than finding domain invariant features across all sources.
But even so, the testing accuracies over the Target Domain remain higher.



Chapter 7

Conclusion

The theoretical analysis as well as the experimental results on the three datasets
prove the superiority of our proposed method in multi-source setting over both:-

• state of the art multi source methods like M-DAN

• best case single source domain adaptation methods

Also, our method is stable and invariant of the number of data-points as it performs
equally well on small size as well as large size datasets, apart from being compu-
tationally inexpensive unlike CORAL and MMD. The choice of weights is unlike
previous approaches, which focused more on finding invariant representations
rather than focusing over the Target Domain.
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Appendix

Generalization Bound for Multi-Source Wasserstein Distance

This section presents the proofs of the various Theorem.

Definition 3.1. We re-define theWasserstein Distance Function to find the distance
between DT and a set of source domains {DSi

}ki=1 as follows:

W (DT ; {DSi
}ki=1) := max

i∈[k]
W (DT ;DSi

) = max
i∈[k]

sup
||f ||L≤1

Ex∼µt [f(x)]− Ex∼µsi [f(x)]

Let h∗ be the optimal hypothesis that achieves the minimum combined risk, λ:

λ := εT (h∗) + max
i∈[k]

εSi
(h∗)

Lemma 3.1. (Jian Shen, Yanru Qu, Weinan Zhang and Yong Yu 2018) Assume
∀h ∈ H, h is K-Lipschitz continous for some K. Then the following holds:

εT (h, h′) ≤ εS(h, h′) + 2KW1(µt, µs)

27
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Theorem 3.2.

εT (h) ≤ max
i∈[k]

εSi
(h) + 2KW (DT ; {DSi

}ki=1) + λ

Proof.

εT (h) ≤ εT (h∗) + εT (h, h∗)

= εT (h∗) + εT (h, h∗)−max
i∈[k]

εSi
(h, h∗) + max

i∈[k]
εSi

(h, h∗)

≤ εT (h∗) + |εT (h, h∗)−max
i∈[k]

εSi
(h, h∗)|+ max

i∈[k]
εSi

(h, h∗)

≤ εT (h∗) + 2KW (DT ; {DSi
}ki=1) + max

i∈[k]
εSi

(h, h∗)

≤ εT (h∗) + 2KW (DT ; {DSi
}ki=1) + max

i∈[k]
εSi

(h) + max
i∈[k]

εSi
(h∗)

= max
i∈[k]

εSi
(h) + 2KW (DT ; {DSi

}ki=1) + λ
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Theorem 3.3. (Han Zhao et al. 2018) Let {DSi
}ki=1 be k source distributions

over X . Let H be a hypothesis class where V C dim (H) = d. If {D̂Si
}ki=1 are

the empirical distributions of {DSi
}ki=1 generated withm i.i.d samples from each

domain, then, for ε > 0, we have:

Pr
(

sup
h∈H

∣∣∣max
i∈[k]

εSi
(h)−max

i∈[k]
ε̂Si

(h)
∣∣∣ ≥ ε

)
≤ 2k

(em
d

)d
exp (−2mε2)

Proof.

Pr
(

sup
h∈H

∣∣∣max
i∈[k]

εSi
(h)−max

i∈[k]
ε̂Si

(h)
∣∣∣ ≥ ε

)
≤Pr

(
sup
h∈H

max
i∈[k]

∣∣∣εSi
(h)− ε̂Si

(h)
∣∣∣ ≥ ε

)
= Pr

(
max
i∈[k]

sup
h∈H

∣∣∣εSi
(h)− ε̂Si

(h)
∣∣∣ ≥ ε

)
≤

k∑
i=1

Pr
(

sup
h∈H

∣∣∣εSi
(h)− ε̂Si

(h)
∣∣∣ ≥ ε

)
≤k · ΠH(m) Pr (|εSi

(h)− ε̂Si
(h)| ≥ ε)

≤k · ΠH(m) · 2 exp (−2mε2)

≤2k
(em
d

)d
exp (−2mε2)
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Lemma 3.4. ((Bolley, Guillin, and Villani 2007), Theorem 2.1; (Redko, Habrard,
and Sebban 2016), Theorem 1) Let µ be a probability measure in Rd satisfying
T1(λ) inequality. Let µ̂ = 1

N

∑N
i=1 δxi be its associated empirical measure defined

on a sample of independent variables {xi}Ni=1 drawn from µ. Then for any d′ > d

and λ′ < λ there exists some constant N0 depending on d′ and some square
exponential moment of µ such that for any ε > 0 and N ≥ N0 max(ε−(d′+2), 1)

P[W1(µ, µ̂) > ε] ≤ exp(−λ
′

2
Nε2)

where d′, λ′ can be calculated explicitly.
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Theorem 3.5. Under the Assumption of Lemma 3.4, Let DT and {DSi
}ki=1 be the

target distributions and k source distributions over X . Let H be the hypothesis
class where V C dim(H) = d. If D̂T and {D̂Si

}ki=1 are the empirical distributions
of DT and {DSi

}ki=1 generated withm i.i.d. samples from each domain. then, for
0 < δ < 1, with probability of atleast 1− δ, we have:

εT (h) ≤ max
i∈[k]

ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 2KW (D̂T ; {D̂Si

}ki=1)

+4K

√
2

λ′
log

(
1

δ

)
·
(√

1

m

)
+ λ

Proof. ∀h ∈ H , let ij := arg maxi∈[k] W (DT ;DSi
)

εT (h) ≤ max
i∈[k]

εSi
(h) + 2KW (DT ; {DSi

}ki=1) + λ

= max
i∈[k]

εSi
(h) + 2KW (DT ;DSij

) + λ

≤ max
i∈[k]

εSi
(h) + 2KW (DT ; D̂T ) + 2KW (D̂T ;DSij

) + λ

≤ max
i∈[k]

εSi
(h) + 2KW (DT ; D̂T ) + 2KW (D̂T ; D̂Sij

) + 2KW (D̂Sij
;DSij

) + λ

≤ max
i∈[k]

εSi
(h) + 2KW (DT ; D̂T ) + 2KW (D̂T ; {D̂Si

}ki=1) + 2KW (D̂Sij
;DSij

) + λ

≤ max
i∈[k]

εSi
(h) + 2KW (D̂T ; {D̂Si

}ki=1) + 2K

√
2

λ′
log

(
1

δ

)
·
(√

1

m
+

√
1

m

)
+ λ

≤ max
i∈[k]

εSi
(h) + 2KW (D̂T ; {D̂Si

}ki=1) + 4K

√
2

λ′
log

(
1

δ

)
·
(√

1

m

)
+ λ

≤ max
i∈[k]

ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 2KW (D̂T ; {D̂Si

}ki=1)

+ 4K

√
2

λ′
log

(
1

δ

)
·
(√

1

m

)
+ λ
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Average Case Generalization Bound

We extend the definitions from Def 3.1 to include a convex combination α of the
k sources.

Definition 3.2. Let α ∈ Rk such that α ≥ 0 and
∑

i∈[k] αi = 1. Define
Wα(DT ; {DSi

}ki=1) as follows:

Wα(DT ; {DSi
}ki=1) :=

∑
i∈[k]

αi ·W (DT ;DSi
) =

∑
i∈[k]

αi · sup
||f ||L≤1

Ex∼µt [f(x)]− Ex∼µsi [f(x)]

Let h∗α be the optimal hypothesis that achieves the minimum combined risk, λα:

λα := εT (h∗) +
∑
i∈[k]

αi · εSi
(h∗)

Theorem 3.6.

εT (h) ≤
∑
i∈[k]

αi · εSi
(h) + 2KWα(DT ; {DSi

}ki=1) + λα

Proof.

εT (h) ≤ εT (h∗) + εT (h, h∗)

= εT (h∗) +
(∑
i∈[k]

αi

)
· εT (h, h∗)−

∑
i∈[k]

αi · εSi
(h, h∗) +

∑
i∈[k]

αi · εSi
(h, h∗)

= εT (h∗) +
∑
i∈[k]

αi · (εT (h, h∗)− εSi
(h, h∗)) +

∑
i∈[k]

αi · εSi
(h, h∗)

≤ εT (h∗) +
∑
i∈[k]

αi · 2KW (DT ;DSi
) +

∑
i∈[k]

αi · εSi
(h) +

∑
i∈[k]

αi · εSi
(h∗)

=
∑
i∈[k]

αi · εSi
(h) + 2KWα(DT ; {DSi

}ki=1) + λα
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Theorem 3.7. (Han Zhao et al. 2018) Let {DSi
}ki=1 be k source distributions

over X . Let H be a hypothesis class where V C dim (H) = d. If {D̂Si
}ki=1 are

the empirical distributions of {DSi
}ki=1 generated withm i.i.d samples from each

domain, then, for ε > 0, we have:

Pr
(

sup
h∈H

∣∣∣∑
i∈[k]

αi · εSi
(h)−

∑
i∈[k]

αi · ε̂Si
(h)
∣∣∣ ≥ ε

)
≤ 2k

(em
d

)d
exp (−2mε2)
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Theorem 3.8. Under the Assumption of Lemma 3.4, Let DT and {DSi
}ki=1 be the

target distributions and k source distributions over X . Let H be the hypothesis
class where V C dim(H) = d. If D̂T and {D̂Si

}ki=1 are the empirical distributions
of DT and {DSi

}ki=1 generated withm i.i.d. samples from each domain. then, for
α ∈ Rk, α ≥ 0,

∑
i∈[k] αi = 1, for 0 < δ < 1, with probability of atleast 1− δ, we

have:

εT (h) ≤
∑
i∈[k]

αi · ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 4K

(√
2

λ′
log

(
1

δ

)
·
(√

1

m

))
+2KWα(D̂T ; {D̂Si

}ki=1) + λα

Proof.

εT (h) ≤
∑
i∈[k]

αi · εSi
(h) + 2KWα(DT ; {DSi

}ki=1) + λα

=
∑
i∈[k]

αi · εSi
(h) + 2K

∑
i∈[k]

αi ·W (DT ;DSi
) + λα

≤
∑
i∈[k]

αi · εSi
(h) + 2K

∑
i∈[k]

αi ·
(
W (DT ; D̂T ) +W (D̂T ; D̂Sij

) +W (D̂Sij
;DSij

)
)

+ λα

≤
∑
i∈[k]

αi · εSi
(h) + 2K

∑
i∈[k]

αi ·
(
W (DT ; D̂T ) +W (D̂Sij

;DSij
)
)

+ 2K
∑
i∈[k]

αi ·W (D̂T ; D̂Sij
) + λα

≤
∑
i∈[k]

αi · εSi
(h) + 4K

∑
i∈[k]

αi ·

(√
2

λ′
log

(
1

δ

)
·
(√

1

m

))
+ 2K

∑
i∈[k]

αi ·W (D̂T ; D̂Sij
) + λα

≤
∑
i∈[k]

αi · εSi
(h) + 4K

(√
2

λ′
log

(
1

δ

)
·
(√

1

m

))
+ 2KWα(D̂T ; {D̂Si

}ki=1) + λα

≤
∑
i∈[k]

αi · ε̂Si
(h) +

√
1

2m

(
log

2k

δ
+ d log

em

d

)
+ 4K

(√
2

λ′
log

(
1

δ

)
·
(√

1

m

))
+ 2KWα(D̂T ; {D̂Si

}ki=1) + λα
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