

B. TECH. PROJECT REPORT

On

IP Core Protection using Structural Obfuscation by

mixing Pseudo Nodes

BY

Rishabh Verma, 160001049

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

NOVEMBER 2019

IP Core Protection using Structural

Obfuscation by mixing Pseudo Nodes

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Rishabh Verma, 160001049

Guided by:

Dr. Anirban Sengupta

INDIAN INSTITUTE OF TECHNOLOGY INDORE

NOVEMBER 2019

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “IP Core Protection using Structural Obfuscation by

Pseudo Operation Mixing” submitted in partial fulfillment for the award of the degree of Bachelor of

Technology in ‘Computer Science Engineering’ completed under the supervision of Dr Anirban

Sengupta, Associate Professor, Computer Science and Engineering, IIT Indore is an authentic

work.

 Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Rishabh Verma (160001049)

CERTIFICATE by BTP Guide

 It is certified that the above statement made by the students is correct to the best of our

knowledge.

 Dr. Anirban Sengupta

 Associate Professor

 Computer Science and Engineering

IIT Indore

Preface

This report on “IP Core Protection using Structural Obfuscation by mixing Pseudo Nodes " is prepared

under the guidance of Dr Anirban Sengupta.

We have tried to present the detailed concept of structural obfuscation. Through this report the

explanation and all the transformation for obfuscation is shown diagrammatically. As well as the

algorithm for obfuscating the design. For better understanding of my concept one example of

obfuscation is added with all the steps from base case design i.e. design which is neither obfuscated nor

secure. To conclude the report comparison of cost of obfuscated design with non-obfuscated is made

along with strength of the achieved obfuscation.

Rishabh Verma, 160001049

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Acknowledgements

We wish to thank Dr. Anirban Sengupta and Mr. Mahindra Rathore PhD Student for their kind support

and valuable guidance.

It is their help and support, due to which we became able to complete the design and technical report.

Without their support this report would not have been possible. It was only possible because of their

enthusiasm, beforehand schedule, knowledge and sincerity towards me and my work to produce the

better result. We wouldn’t have achieved my goals without their encouragement at each step.

Rishabh Verma, 160001049s

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Abstract

Digital Signal Processing (DSP) kernels based intellectual property (IP) cores are important

components of modern consumer electronics (CE). However, hardware threats such as reverse

engineering and Trojan insertion have raised serious concerns about the protection of DSP kernels.

Obfuscation is one of the protection mechanisms that make DSP design architecture un-obvious to

interpret, thereby making it harder to reverse engineer. To tackle the problem of reverse engineering

and trojan insertion. We proposed the approach of mixing pseudo operation in data flow graph of IP

Core in order to obfuscate the data flow graph (DFG). By inserting and mixing pseudo operation we are

obfuscating the DFG structurally thus making it unobvious to adversary making hardware attacks more

complex against mentioned hardware attacks. In proposed approach insertion and hardware binding of

pseudo operations is performed in such a manner that it results into minimal overhead. Proposed

approach has been implemented and applied on various IP core; experimental results indicate that

proposed approach yields minimal overhead with stronger obfuscation.

Table of Content

Candidate’s Declaration

 Supervisor’s Certificate

 Preface

 Acknowledgements

 Abstract

 1) Introduction 1

 2) Prior works 2

 3) Proposed Methodology 3

 (a) Overview - High level Discussion 3

 (b) Details of the proposed algorithm 4

 4) Demonstration on a standard application 7

 5) Results and Analysis 14

 6) Conclusion 18

 7) Reference 19

List of Figures

Figure 3.1 Design flow of structural Obfuscation

Figure 4.1 Input DFG of DWT

Figure 4.2 DFG after scheduling with constraints 2 Multiplier 1 Adder

Figure 4.3 Scheduled graph obtained from Algorithm 2

Figure 4.4 Obfuscated graph obtained after hardware allocation

Figure 4.2 Pre-Obfuscation Datapath

Figure 4.2 Post-Obfuscation Datapath

Figure 5.1 Pre/Post Cost Comparison

List of Tables

1. Table 3.1 Example table returned by Algorithm 1

2. Table 3.2 Allocated resources instance before obfuscation.

3. Table 3.3 Table returned by Algorithm 1.

4. Table 3.4 Allocated resources instance after obfuscation.

5. Table 4.1 Security strength (Register Transfer Level)

6. Table 4.2 Delay overhead pre/post obfuscation

7. Table 4.3 Area overhead pre/post obfuscation

8. Table 4.4 Gate count pre/post obfuscation

9. Table 4.5 Strength of obfuscation at gate level

1

1. Introduction

With the mounting popularity of the reusable intellectual property (IP) cores, security threats such as

reverse engineering, piracy and hardware Trojan insertion have become a serious problem for

electronic designs due to globalization of supply chain. The global semiconductor supply chain for

SoC/IC design is highly susceptible to hardware attacks, such as trojans and IP piracy. However,

globalization in the semiconductor supply chain is inevitable due to requirements of maximizing design

productivity and minimizing design cycle time. Further, keeping the entire design and manufacturing

process of IC design in house increases the nonrecurring cost significantly, especially for mass-

production commercial developments. It is estimated that 10% of the globally sold electronic products

are counterfeited that leads to ∼$100 billion of revenue loss. To tackle reverse engineering and trojan

insertion obfuscation is used.

Obfuscation is a process of transforming an original design into its functionally equivalent form that

significantly enhances the reverse engineering complexity.

 Obfuscation classification:

1. Structural Obfuscation: is a technique by which the structure of an electronic hardware is

modified intentionally to conceal its design, which makes it significantly more difficult to reverse-

engineer. In other words, structural obfuscation modifies the design in such a way that the resulting

architecture becomes un-obvious to an adversary.

2. Functional Obfuscation: This kind of obfuscation is performed by locking the functionality of the

design using some key-gates. Without application of correct key sequence, the correct functionality

cannot be revealed.

2

2. Prior Related Work

Works towards the protection of IP cores against hardware threats have contributed to two major

classes of techniques such as watermarking [1]-[4] and obfuscation [5], [6], [7], [9], [10].

Watermarking is a passive mode of IP core protection where a secret mark is implanted into the design.

It aims to protect the ownership of the design. Obfuscation aims to prevent reverse engineering attacks

by obscuring a design. Watermarking approach cannot protect against reverse engineering-based

threats [1]. [1] aims to protect IP core that are combinational circuit based. However, it is incapable to

protect DSP kernels. Further, [2]-[4] target DSP kernels, however they do not handle protection against

reverse engineering-based threats such as Trojan insertion. Additionally, [5], [6], [7] uses high level

transformations (HLTs) based obfuscation to protect DSP kernels against RE threats. However, these

approaches are HLT based which cannot be universally applied on all type of DSP kernels. Further, the

protection achieved by HLT methods does not yield a robust obfuscation always. Finally, they may

also incur design overhead after obfuscation. [9], [11] protect an IP core of combinational circuit type

via logic obfuscation by inserting key gates into design. However, it suffers from several limitations:

(a) in the context of DSP kernels, insertion of several key-gates may result into significant area

overhead, (b) these approaches do not handle DSP kernels in their work, (c) the key based logic

obfuscation approaches are vulnerable to several other forms of threats such as Boolean satisfiability

(SAT) attack, removal attack, key sensitization attack etc.

Structural obfuscation methods do not suffer from above limitations. Our proposed work presents a

minimal overhead obfuscation for DSP kernels that eliminates limitations of prior work.

3

3. Proposed Methodology

3.1 Overview

The proposed algorithm approach Fig 3.1 takes IP core as data flow graph along with the resource

constraints and module library. Then it scheduled the data flow graph based on the input constraints

provided and the scheduled DFG is passed to the pseudo operation determination algorithm (Algorithm

1), pseudo node determination algorithm based on the resource’s constraints find out control steps

which can accommodate pseudo nodes and returns table representing it. This table along with

scheduled graph is passed to Pseudo operation mixing step. In this step pseudo operations are inserted

and mixed into the scheduled graph based on the table returned from previous step. After processing

this step obfuscated data flow graph is passed to hardware binding step after this step obfuscated design

is forwarded to Datapath and controller synthesis step and finally obfuscated design of DSP core is

obtained.

Figure 3.1: Design Flow of proposed algorithm

4

3.2 Details of the proposed algorithm

Algorithm 1: Pseudo Operation Determination

Inputs: Initial scheduled DFG, Resource constraints

Algorithm:

In each control step:

For each Resource type (Ex- adder, multiplier)

If (count of allocated resource < resource constraint/2)

Put 1 in table corresponding to resource type and control step

 Else

Put 0 in table corresponding to resource type and control step

Output: Table T1 with row representing control step and column as resources type

Example:

Output Table

 Here in control step 1 under column adder signifies that pseudo

operation of type adder can be inserted into control step 1 while 0 in

control step 3 represent no pseudo operation of type adder can be

inserted into this step.

Table 3.1

Table returned by Algorithm 1 along with the scheduled graph is passed to the Algorithm 2, which

insert and mix the pseudo operations to the scheduled graph.

Control

Step

Adder Multiplier

1 1 1

2 1 0

3 0 1

5

Algorithm 2: Pseudo Operation mixing in CDFG

Inputs: Initial scheduled DFG, table of CS numbers and their corresponding pseudo nodes

Algorithm: Select Control Step one by one from the table:

 Insert the corresponding nodes (operations) in the selected control step

 To insert pseudo operations in 1st control step

Assign primary inputs of any original operation in the same control step to the

pseudo nodes

To insert pseudo operations in control other than 1st control step and no pseudo

operations have been inserted into any of prior control steps

Assign output of any original operation in the previous control step to the inputs

of pseudo operation

For remaining pseudo operations in the table

 For each pseudo operation

Assign 1st input from the output of previous inserted pseudo node in the prior

CS

Assign 2nd input from the output of any original operation in the previous CS

Output: Scheduled DFG with inserted pseudo-graph

The returned DFG from this algorithm is passed to pseudo operation binding phase. In this phase

hardware is allocated to the inserted pseudo operations.

6

Rule for Pseudo Operations Binding

Inputs: CDFG after insertion of a pseudo nodes

for each control step:

for each type pseudo operation

Allocate the operation to the instance which have maximum number of

unallocated inputs (unallocated inputs are calculated by taking difference of upper

nearest power of 2 for count of allocated operation to resource instance)

if no inputs of any of the unallocated hardware are free then operation is allocated it to

the resource instance which is least used.

end for

end for

Output: Obfuscated DFG is obtained

7

4. Demonstration of proposed approach on DWT DFG

Fig 4.1: Input DFG along with constraints of 2 multiplier,1 Adder

The proposed approach takes input DFG of Discreate Wavelet Transform function shown in Fig 4.1

along with resource constraints of 2 multiplier, 1 adder and module library then it applies list

scheduling algorithm based on the input constraints, which allocates control step to each node shown in

Fig 4.2.After the scheduling CDFG in Fig 4.2 is passed to pseudo node determination phase of

obfuscation in this step Algorithm 1 is applied to obtain table 3.3 which represents number and type of

pseudo operation that can be inserted in each control step.

8

Fig.4.2: DFG After scheduling based on the resource constraints provided

Table 3.2: Allocated Resource Instances Before Obfuscation

Resource Instances Input Mux Size

A1 9 16

M1 6 8

M2 2 2

9

Control Step Adder Multiplier

1 1 0

2 0 0

3 0 0

4 0 0

5 0 1

6 0 0

7 0 1

8 0 0

9 0 1

10 0 1

Table 3.3: Table returned by Algorithm 1

After applying pseudo operation determination step. The second phase is applied that is pseudo

operation mixing step. In this step algorithm 2 is applied which inserts and mix the pseudo operation in

CDFG.As a result graph shown in fig 4.3 is obtained. Finally, binding rules are applied and obfuscated

design is obtained shown in Fig 4.4.

10

Fig 4.3: Scheduled graph obtained from Algorithm 2

Fig 4.4: Obfuscated DFG obtained after allocating hardware allocation

11

Resource
Instances

Inputs Mux Size

A1 10 16

M1 8 8

M2 4 4

Table 3.4: Allocated Resource Instances after Obfuscation

Table 3.4 shows the allocated resource instance after applying proposed approach.

12

Pre-Obfuscation Datapath

 Fig 4.5

13

Post Obfuscation Datapath

 Fig 4.6

Red connections are the affected connections due to structural obfuscation.

Implementation:

The proposed approach is implemented in C++ and executed on Intel Core-i5-3210M CPU @ 2.3 GHz

2.4GHz. And Obtained Obfuscated DWT DFG is implemented on Altera Quartus II

14

5. Results

Synthesis Report

Pre-Obfuscation

Family Cyclone II

Total logic elements 968 / 14448(7%)

Total combinational functions 966 / 14448(7%)

Dedicated logic registers 34 / 14,448 (< 1 %)

Device EP2C15AF484C6

Post Obfuscation

Family Cyclone II

Total logic elements 1,130 / 14448(8%)

Total combinational functions 1,125 / 14448(8%)

Dedicated logic registers 36 / 14,448 (< 1 %)

Device EP2C15AF484C6

DSP Benchmark Pre-Obfuscation

Delay(ps)

Post Obfuscation

Delay(ps)

Delay Overhead(ps)

IIR 2533.01 2533.01 0%

Mesa Horner 2191.54 2191.54 0%

JPeg 2477.02 2477.02 0%

MPeg 2278.29 2278.29 0%

DWT 2849.25 2874.75 0.89%

FIR_TAP_24 9612.90 9612.90 0%

Feedback point 3409.95 3409.95 0%

Table 4.2: Delay Pre/Post Obfuscation

𝐷𝑒𝑙𝑎𝑦 = ∑(max(𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) + max(𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑚𝑢𝑥)

𝐶𝑆

1

+ max(𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑑𝑒𝑚𝑢𝑥))

15

Table 4.2,4.3 shows comparison of delay and latency of design before obfuscation and after

obfuscation.

DSP Benchmark Pre-Obfuscation
Area(us)

Post Obfuscation
Area(us)

Area Overhead

IIR 121.21 121.21 0%

Mesa Horner 198.62 198.62 0%

JPeg 1339.50 1339.50 0%

MPeg 323.66 323.66 0%

DWT 213.96 213.96 0.89%

FIR_TAP_24 213.22 213.22 0%

Feedback point 262.00 262.00 0%

Table 4.3: Area overhead pre/post obfuscation

Area = ∑ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀𝑢𝑥 + 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑑𝑒𝑚𝑢𝑥

DSP Benchmark Pre-Obfuscation

Gate Count

Post Obfuscation

Gate Count

IIR 3648 3648

Mesa Horner 4192 4192

JPeg 29856 29856

MPeg 8272 8272

DWT 6288 6720

FIR_TAP_24 17152 17152

Feedback point 13408 13408

Table 4.4: Gate Count Pre/Post Obfuscation

16

𝑪𝒐𝒔𝒕 = w1
𝐿

𝐿𝑚𝑎𝑥
+ 𝑤2

𝐴

𝐴𝑚𝑎𝑥

➢ A and L is area and delay of design solution

➢ Amax , Lmax indicate maximum values of area and delay of design solution in the design space

➢ w1 & w2 are the user defined weight. Both values are chosen to be 0.5 to assign equal

preference

Fig 5.1: Pre/Post Obfuscation Cost Comparisons

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛(𝑅𝑇𝐿) (%)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ⁄ 𝑜𝑓 𝑚𝑢𝑥 𝑑𝑒𝑚𝑢𝑥 ⁄

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ⁄ 𝑜𝑓 𝑚𝑢𝑥 𝑑𝑒𝑚𝑢𝑥 ⁄
∗ 100%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IIR Mesa Horner Jpeg Mpeg DWT FIR_TAP_24 Feedback_point

Pre-Obfuscation Post-Obfuscation

17

DSP Benchmark Strength

IIR 56.25 %

Mesa Horner 44.4%

JPeg 9.84%

MPeg 30.55%

DWT 57.14%

FIR_TAP_24 40.62%

Feedback point 10.71%

Table 4.1: Security Strength (RTL)
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑜𝑏𝑓𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛(𝐺𝑎𝑡𝑒 𝐿𝑒𝑣𝑒𝑙) (%) =

𝐺𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑔𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡
∗ 100%

DSP Benchmark Gate Count Affected
Gate Count

Strength of
obfuscation

IIR 3648 3168 86.84%

Mesa Horner 4192 3168 75.57%

FFT 10752 3168 29.46%

JPeg 29856 8256 27.65%

MPeg 8272 4752 57.44%

DWT 6288 5472 87.02%

FIR_TAP_24 17152 16672 97.20%

Feedback point 13408 4752 35.44%

Table 4.5: Strength of Obfuscation at Gate level

18

6. Conclusion

Protection of IP cores is of prominence these days because of globalization of design supply chain.

A designer at times may have to compromise with other design metrics such as area and delay

during incorporating protection feature within an IP. This has always been a challenge for a

designer to generate a highly secured design while keeping design overhead as minimal as possible.

This paper illustrated how proposed work obtain obfuscated design with minimal overhead.

Through our work we tried to bring new innovation in this field. This kind of work has never been

proposed in the literature before. We have achieved very less overhead in terms of cost with results

in the strong strength of obfuscation.

19

7. References

1. D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual property protection by

watermarking combinational logic synthesis solutions,” in Proc. Int. Conf. Comput.-Aided Design,

Nov. 1998, pp. 194–198.

2. A. B. Kahng et al., “Watermarking techniques for intellectual property protection,” in Proc. 35th

Annu. Design Autom. Conf., Jun. 1998, pp. 776–781.

3. D. Roy and A. Sengupta, “Low Overhead Symmetrical Protection of Reusable IP Core Using Robust

Fingerprinting and Watermarking During High Level Synthesis,” Future Gener. Comput. Syst., vol. 71,

no. C, pp. 89–101, Jun. 2017.

4. A. Sengupta and S. Bhadauria, “Exploring Low Cost Optimal Watermark for Reusable IP cores

During High Level Synthesis,” IEEE Access, vol. 4, pp. 2198–2215, 2016.

5. A. Sengupta, D. Roy, S.P. Mohanty, and P. Corcoran, “DSP Design Protection in CE through

Algorithmic Transformation based Structural Obfuscation,” IEEE Trans. on Consum. Electron., Vol.

63, no. 4, pp. 467 – 476, Nov. 2017.

6. Y. Lao and K. K. Parhi, “Obfuscating DSP Circuits via High-Level Transformations,” IEEE Trans.

on Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 819–830, May 2015.

7. A. Sengupta and D. Roy, “Protecting an intellectual property core during architectural synthesis

using high-level transformation based obfuscation,” IET Electronics Letters, Vol: 53, Issue: 13, pp. 849

– 851, June 2017.

9. J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic obfuscation,” in DAC,

2012, San Francisco, June 2012, pp. 83–89.

10. J. Zhang, “A Practical Logic Obfuscation Technique for Hardware Security,” IEEE Trans. on Very

Large Scale Integr. (VLSI) Syst., vol. 24, no. 3, pp. 1193–1197, 2015.

11. 2016Matrix Technologies, Hologram Features. [Online]. Available:

http://www.matrixtechnologies.in/hologram-features.html, last accessed on April 2018.

20

