

B. TECH. PROJECT REPORT
On

Double Line of Defense for Securing DSP

Hardware IP

BY

Somesh Patil, 160001056

Gaurav Naukudkar, 160001040

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2019

 Double Line of Defense for Securing DSP

Hardware IP

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Somesh Patil, 160001056

Gaurav Naukudkar, 160001040

Guided by:

Dr. Anirban Sengupta

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2019

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Double Line of Defense for Securing DSP

Hardware IP” submitted in partial fulfillment for the award of the degree of Bachelor of

Technology in ‘Computer Science and Engineering’ completed under the supervision of

Dr. Anirban Sengupta, Associate Professor, Computer Science and Engineering, IIT

Indore is an authentic work.

 Further, we declare that we have not submitted this work for the award of any other

degree elsewhere.

Somesh Patil (160001056) Gaurav Naukudkar(160001040)

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the best of

my knowledge.

Dr. Anirban Sengupta

Associate Professor

 Computer Science and Engineering

 IIT Indore

Preface

This report on “Double Line of Defense for Securing DSP Hardware IP” is prepared under the guidance

of Dr. Anirban Sengupta.

We have tried to present the detailed concept of multiphase key based structural obfuscation and physical

level watermarking. Through this report the explanation and all the transformation for structural

obfuscation and watermark embedding is shown diagrammatically. As well as the algorithm for making

the design secure is present. For better understanding of our concept one complete structurally obfuscated

and watermarked design is added with all the steps from base case design i.e. design which is neither

obfuscated nor secure. To conclude the report comparison of our obfuscation with previous work as well

as comparison of cost of obfuscated and watermarked design with related work is included.

Somesh Patil (160001056) and Gaurav Naukudkar (160001040)

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Acknowledgements

We wish to thank Dr. Anirban Sengupta for his kind support and valuable guidance.

It is his help and support, due to which we became able to complete the design and technical report.

Without his support this report would not have been possible. It was only possible because of his

enthusiasm, beforehand schedule, knowledge and sincerity towards us and our work to produce better

results. We wouldn’t have achieved our goals without his encouragement at each step.

Somesh Patil (160001056) and Gaurav Naukudkar (160001040)

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Abstract

Digital signal processing (DSP) cores are an integral part of consumer electronics devices. A DSP circuit

is considered to be secure, if its functionality is designed to be hidden from an adversary. In other words to

make a DSP design secured, its hardware architecture should not look obvious in terms of its functionality.

Structural obfuscation plays a critical role in realizing this objective. Structural obfuscation offers a means

to effectively secure through obfuscation the contents of any Digital Signal Processing (DSP) cores used

in consumer electronics devices. However, due to increasing globalization of design supply chain,

possibility of intervention and typical attacks is on the rise, which therefore mandates protection of Digital

Signal Processing (DSP) cores from piracy/counterfeiting. Embedding a strong watermark is sufficient to

prove IP core ownership during conflict resolution process. In this work a novel multiphase key based

structural obfuscation methodology along with embedding a watermark at the physical level for protecting

a Digital Signal Processing (DSP) core. The proposed approach specifically targets protecting Digital

Signal Processing (DSP) cores against both the threat models i.e. reverse engineering and IP

piracy/counterfeiting attacks. This problem has never been addressed before. The multiple phases

involved in key based structural obfuscation are Loop unrolling, Partitioning, Redundant Operation

Elimination (ROE), Tree Height Transformation (THT) and Folding which can yield camouflaged

functionally equivalent designs, making it extremely difficult for an adversary to reverse engineer it.

Followed by embedding a watermark at the physical level which will protect the Digital Signal Processing

(DSP) core from piracy/counterfeiting attacks. Results indicate that without incurring any design cost

overhead, the proposed approach is able to protect the DSP core against both the threat models.

Table of Contents

I. Introduction 1

II. Prior Work 2

III. Proposed Methodology 3

III.1. Overview 3

III.2. Details of Proposed Algorithm 5

 III.2.1 Multiphase Key Based Structural Obfuscation 5

 III.2.2 Physical Level Watermarking 10

IV. Demonstration on a Standard Application 12

V. Results 19

 V.1. Metrics Calculations 19

 V.2. Design Cost and Watermark Metrics 20

VI. Conclusion 22

VII. References 23

List of Figures

Fig. III.1 Overview of Proposed Algorithm

Fig. III.2 FIR filter DFG

Fig. III.3 Loop Unrolled DFG with unrolling factor 8.

Fig. III.4 Partitioned DFG with number of partitions = 4

Fig. III.5 DFG in which ROE is applied

Fig. III.6 DFG before THT

Fig. III.7 DFG after THT

Fig. III.8 CDFG showing Folding

Fig. III.9 Floor plan

Fig. III.10 Final floor plan after embedding watermark

Fig. IV.1. DFG representing 160-tap FIR application

Fig. IV.2 Loop unrolled FIR application with UF=16

Fig. IV.3 5-Partitioned Loop unrolled FIR application with UF=16

Fig. IV.4 After applying THT based structural obfuscation according to key-5

Fig. IV.5 Scheduled FIR application with applied folding four times.

Fig. IV.6 Fig Obfuscated RTL data path of each partition

Fig. IV.7 Key-based structurally obfuscated RTL Datapath of FIR application

Fig. IV.8 Initial Floorplan

Fig. IV.9 Floorplan after embedding 2 α.

Fig. IV.10 Floorplan after embedding 2 α and 8 β

Fig. IV.11 Floorplan after embedding 2 α, 8 β, 4 γ

List of Tables

Table V.1: Costs for various phases for a given key value

Table V.2: Baseline vs Final Costs for various keys

Table V.3: Baseline vs Final Costs for various keys (after Floorplanning)

Table V.4: Watermark Metrics

1

I. Introduction

Hardware security and Intellectual Property (IP) core protection is an emerging area of research

for semiconductor community that focusses on protecting designs against standard threats such as

reverse engineering, counterfeit, forgery, malicious hardware modification etc. Hardware security

is broadly classified into two types: (a) authentication based approaches (b) obfuscation based

approaches. Some of the approaches that fall under the first type are digital watermarking, IP

metering, physical unclonable functions etc. The second type of hardware security approach i.e.

obfuscation can again be further sub-divided into two types: (i) structural obfuscation (ii)

functional obfuscation. Structural obfuscation transforms a design into one that is functionally

equivalent to the original but is significantly more difficult to reverse engineer (RE), while the

second one is active protection type that locks the design through a secret key. Obfuscation may

include altering human readability of hardware description language or encrypting the source code.

Converting a design into a form that makes it harder for an adversary to discover its functionality

is difficult to reverse engineer i.e. when an IP core functionality is designed to be hidden for an

adversary, it is difficult to reverse engineer.

Almost every smart CE device is heavily dependent on DSP and multimedia processor (MP) IP

cores. Because of the globalization of the design supply chain, these IP cores are not safe from

predatory attacks. Thus, the protection of reusable IP cores has become a serious concern for the

CE industry in the current era. However, the existing state of the art focuses on protecting IP cores

against single threat i.e. either reverse engineering or IP piracy. But our proposed approach has the

ability to tackle both the threat models i.e. reverse engineering and IP piracy simultaneously

thereby adding a double line of defense against such threat models, without incurring any overhead

cost. Our approach combines structural obfuscation with watermarking which provides double line

of defense against IP piracy and reverse engineering attacks. The structural obfuscation technique

used in our approach is multiphase key based which makes it very difficult to reverse engineer and

also adds novelty to our approach.

2

II. Prior Work

Consumer electronics literature has several works dealing with various aspects of digital signal

processor. They focus on different aspects of consumer electronics system characteristics such as

energy efficiency, high performance, and area efficiency. However, they miss the critical axis of

Consumer Electronic system (i.e. the “security and IP protection”); thus, do not comprehensively

address the critical Consumer Electronic design issues in the current social network driven era in

which the cyber-security is a critical design axis.

Logic obfuscation uses additional XOR/XNOR gates in circuits to protect the IP core [7] [8] [9].

However, this incurs overhead in design due to insertion of additional logic components/circuitry.

Further, to effectively implement this approach, determining correct location of key gates is

essential. Further, in [10], [11] structural obfuscation is executed on DSP cores. Further, [11] has not

handled loop-based CDFG applications for DSP. Therefore, no loop-based HLT techniques are

applicable to obfuscate the design. Moreover, no equivalent DSP circuit of obfuscated design is

generated during synthesis. These approaches also do not perform multiple-phase obfuscations

using Loop Unrolling, Partitioning, Redundant Operation Elimination, Tree Height

Transformation and Folding. Also, none of the above approaches perform key-based Structural

Obfuscation.

Embedding watermarking at the physical level for IP protection has been tackled only in few works

so far. For example, in [5] and [6], authors use only a combination of 0 and 1 to encode their signature

in the form of adding additional edges in the colored interval graph during High Level Synthesis.

However, in such cases the signature is susceptible to attacks/compromise, if encoding rule of both

the variable is known somehow. Moreover [5] and [6] are not capable to produce watermark with

low embedding cost or less storage overhead. However, no approach exists in literature that tackles

both the attacks on IP cores i.e. Reverse Engineering and IP piracy. Moreover, the proposed

approach handles both the attacks and does not incur any design overhead.

3

III. Proposed Methodology

III.1 Overview

For protecting Digital Signal Processing Hardware IP cores we have combined multiphase key

based structural obfuscation with watermarking at the physical level which ensures double line of

defense against reverse engineering and piracy/counterfeiting attacks. The multiple high-

level transformations involved in key based structural obfuscation are Loop Unrolling,

Partitioning, Redundant Operation Elimination (ROE), Tree Height Transformation (THT) and

Folding. Loop Unrolling is a high-level transformation applicable to only loop-based Control Data

Flow Graphs (CDFGs) which is applied to obfuscate it by unwinding the loop. Partitioning is

a high-level transformation technique which is applied to obfuscate the loop unrolled CDFG by

dividing it into a number of symmetric partitions, such that every partition must contain at least

two nodes having a dependency between them. Redundant Operation Elimination (ROE) is a high-

level transformation technique which is applied to obfuscate the input CDFG by removing

redundant nodes from the graph. Tree Height Transformation (THT) is a high-level transformation

technique which is responsible for obfuscating the CDFG by increasing or decreasing the height

of the graph. Folding is a high-level transformation technique in which a common resource is

shared among a set of nodes that have the same operation type but are present in successive control

steps. Then we create a floorplan which denotes the orientation of the resources on the chip.

Watermark consists of three variables α, β and γ which is then finally embedded into the floorplan.

Alpha (α) component of the signature is embedded by placing an odd functional unit module above

an even functional unit module of the same type. Beta (β) component of the signature is embedded

by placing an odd multiplexer unit above an even multiplexer unit of the same type. Gamma (γ)

component of the signature is embedded by placing an odd demultiplexer unit to the right of an

even demultiplexer unit of the same type.

4

Fig. III.1 Overview of Proposed Algorithm

Loop Unrolling

Multiphase Key Based Structural Obfuscation

Loop Unrolling

Partitioning

Redundant Operation Elimination (ROE)

Tree Height Transformation (THT)

Folding

Physical Level Watermarking

Floor planning

Embedding a watermark

5

III.2 Details of Proposed Algorithm

III.2.1 Multiphase Key Based Structural Obfuscation

Loop Unrolling

Loop transformation based high level transformation technique which is applied to obfuscate the

input CDFG by unwinding the loop is loop-unrolling. Unrolling of Loops can be achieved by

repeating the same loop body in multiple sequences to improve execution delay. Finally, loop

unroll based structurally obfuscated graph is produced as output. In the proposed approach the

unrolling factor is provided as an input by the user. Loop unrolling minimize the execution time

simultaneously obfuscate the design. For example, the figure below unrolls the input loop based

CDFG on the left 8 times resulting in loop unrolled CDFG on the right.

 Fig. III.2 FIR filter DFG. Fig. III.3 Loop Unrolled DFG with unrolling factor 8.

6

Partitioning

It is a high-level transformation technique which is applied to obfuscate the loop unrolled CDFG

by dividing it into a number of symmetric partitions, such that every partition must contain at least

two nodes having a dependency between them. Finally, partition based structurally obfuscated

graph is produced as output. Partitioning plays a significant role in obfuscation because finally

after applying all the high-level transformations when the partitions are recombined the number

of multiplexers and demultiplexers in the final RTL increases thereby obfuscating the IP. In the

proposed approach the number of partitions is provided as an input by the user. For example, the

figure below shows the CDFG divided into 4 partitions.

Fig. III.4 Partitioned DFG with number of partitions = 4

7

Redundant Operation Elimination (ROE)

A high-level transformation technique which is applied to obfuscate the input CDFG by removing

redundant nodes from the graph is redundant operation elimination. A node in the input graph is

identified as a redundant node if there exist another node which has exactly same parents/inputs

and same operation type. In our proposed approach we scan each node based on the node numbers

in ascending order. If a pair of nodes is found which have same inputs and operation type then the

node having higher node number is identified as a redundant node. These nodes are deleted from

the graph and necessary adjustment is performed to maintain the correct functionality of the graph.

Finally, ROE based structurally obfuscated graph is produced as output. For example, after

applying ROE on figure below (including all the nodes shaded and non-shaded) only shaded nodes

remain in the CDFG (non-shaded nodes are redundant thus excluded). According to our proposed

analysis nodes 6, 8, 9, 10, 12 are eliminated. Nodes 5 and 6 are redundant operations hence 6 is

eliminates, as a result the input of 9 and 10 gets changed from 6 to 5. Similarly, 7, 8, 9, 10 are also

satisfying aforementioned conditions, therefore, 8, 9, 10 are deleted and simultaneously inputs of

their children is also changed. After applying the ROE transformation, obfuscated design is

obtained.

Fig. III.5 DFG in which ROE is applied

8

Tree Height Transformation (THT)

A high-level transformation technique which is responsible for obfuscating the input CDFG by

increasing or decreasing the height of the graph is tree height transformation. It divides the critical

path dependency into temporary sub-computations and evaluates in parallel, thereby generates

structurally dissimilar yet functionally equivalent graph. Finally, THT based structurally

obfuscated graph is produced as output. For example, in the figure below on right, THT-based

structurally obfuscated form of the input graph (shown in figure below on the left) is shown. It

reduces the height of the obfuscated graph from 5 to 4 compared to the original design (figure on

the left). The computation of node 6 and 8 in obfuscated design is executed prior to the input

design. The dependencies of the obfuscated graph are adjusted to maintain the correct

functionality. The modified dependencies are marked with red lines.

 Fig. III.6 DFG before THT Fig. III.7 DFG after THT

9

Folding

A high-level transformation technique in which a common resource is shared among a set of nodes

that have the same operation type but are present in successive control steps. The number of nodes

in a set sharing the resource is called the folding factor. The value of the key specified by the user

denotes the number of folding transformations to be applied which is known as the folding knob.

The impact that folding transformation has on the final RTL design is that it increases the number

of delay elements (also known as registers) thereby structurally obfuscating the design without

causing any change to the functionality. For example, in the figure below nodes 6 and 8 have the

same operation type and are present in successive control steps and hence, folded. In, the example

value of folding factor is 2 and the value of folding knob is 2.

 Fig. III.8 CDFG showing Folding

10

III.2.2 Physical Level Watermarking

Floorplanning

After, applying the above-mentioned transformations RTL design is created. Using the RTL

design a list of resources comprising of all the resources used in the RTL design is generated which

sorted by area of resource. Using the resource list, the dimensions of a hypothetical block are

computed, whose width equals maximum width of all the resources present in the resource list and

height equals maximum height of all the resources present in the resource list. These blocks are

then positioned one after the other in x-direction and one above the other y-direction. Whenever,

any block is added it is ensured that all the blocks placed so far forms a rectangle and incase if

they don’t then the voids of the smallest rectangle that can be formed are filled with empty blocks.

The resources are then positioned inside these blocks. Following two rules must be satisfied by the

resources positioned inside the blocks: -

 i. Only resources of the same type can be positioned one above the other within a block.

ii. Positioning of resources must be done from the leftmost corner of the block in y-direction.

Once, all resources in the resource list get placed inside some block floorplan is generated.

Fig. III.9 Floor plan

11

Embed Watermark

After generating the floorplan watermark is embedded in it. The user will give a signature

comprising of combination of α, β and γ to be embedded in the floorplan. To embed

the watermark, we create three different lists namely functional units list consisting of all the

functional units used in the resource list, multiplexer list comprising of all the multiplexers used

in the resource list and demultiplexer list comprising of all the demultiplexers used in the resource

list. The three variables used in watermark are α, β, γ.

α: odd functional unit module will be placed on top of even functional unit module by swapping

between two modules of same type.

β: odd multiplexer will be placed on top of even multiplexer of same size by swapping between

two multiplexers of same size.

γ: odd demultiplexer will be placed to the right of even demultiplexer of the same size by swapping

between two demultiplexers of same size.

By satisfying the conditions for α, β and γ the watermark is finally embedded in the floorplan.

The figure below shows final floorplan after embedding watermark αβαβββγγββγγββ

Fig. III.10 Final floor plan after embedding watermark

12

IV. Demonstration on a Standard Application

We are going to follow an example of 160 TAP FIR filter with obfuscation key 16-5-5-4 and

watermark signature ααββββββββγγγγ.

1.We have a DFG from equation of 160 TAP FIR filter.

𝑦[𝑛] =∑ ℎ[𝑖] ∗ 𝑥[𝑛 − 𝑖]
160

𝑖=1

2. We choose a key value of 16 for the loop unrolling and get the following DFG.

* *

b

+

* * *

+

+

a

b

a
b

a

b

a

+

* * *

+
+

+

b

a
b

a

b

a

* *

+
+

+

b

a
b

a
b

9

a

9

* * *

+
+

+

b1

0

a1

0 b1

1

a1

1 b1

2

a1

2

* * *

+

+
+

b1

3

a1

3
b1

4

a1

4 b1

5

a1

5

+

>

 Fig. IV.2 Loop unrolled FIR application with UF=16

160

i
16

y[n]

Fig IV.1. DFG representing 160-tap FIR application

13

3. We choose key value of 5 for the partitioning which gives us the following the partitioned DFG.

4. Since redundant operation elimination is not applicable on this DFG we move on to next phase.

5. Apply Tree Height Transformation for the key value of 5.

* *

b0

+

* * *

+

+

a0

b1

a1

b2

a2

b3

a3

+

* * *

+

+

+

b4

a4

b5

a5

b6

a6

* *

+
+

+

b7

a7

b8

a8

b9

a9

* * *

+

+

+

b10

a10

b11

a11

b12

a12

* * *

+

+

+

b13

a13

b14

a14

b15

a15

+

>

P1

P2

P3

P4

P5

Fig. IV.3 5-Partitioned Loop unrolled FIR application with UF=16

160

i
16

y[n]

P2

P3

P4

P5

+

>

*

b

0

+

* * *

+

+

a

0 b

1

a

1 b

2

a

2 b

3

a

3

+ +

* * *

+

+

b

4

a

4 b

5

a

5 b

6

a

6

+

* * *

+

+

b

7

a

7 b

8

a

8 b

9

a

9

+

* * *

+

+

b10

a10
b11

a11

b1

2

a12

+

* * *

+

+

b13

a1

3 b1

4

a14

b15

a1

y[n]

160
i

16

Fig. IV.4 After applying THT based structural obfuscation according to key-5

14

6. After scheduling and resource allocation (4M,1A), we applying folding according to value of 4.

7. After this we generate the RTL for each obfuscated partition.

i
1

160

<

 *

b

0

+

* * *

+

+

a

0 b

1

a

1 b

2

a

2 b

3

a

3

+

+

* * *

+

+

b

4

a

4 b

5

a

5 b

6

a

6

+

*

* *

+

+

b

7

a

7 b

8

a

8 b

9

a

9

S

1

S

2

S

3

S

4

S

2

S

3

S

4 +

* * *

+

+

b1

3

a1

3 b1

4

a14
b1

5

a1

+

+

* *

*

+

+

b1

0

a1

0
b11

a11

b1

2

a12

P1

P2

P3

P4

P5

Folding knob
applied once

Folding knob
applied twice

Folding knob
applied thrice

Folding knob
applied
fourth

Fig. IV.5 Scheduled FIR application with applied folding four times.

y[n]

15

 Fig. IV.6 Fig Obfuscated RTL data path of each partition

8. Now combine the partitions to obtain combined RTL data path.

C

Y[

n]

M

1

M

2

M

3

A1

0 1 2 0 1 2

0 1 2

D

a

4

b

4

a

5

b

5

a

6

b

6

M

4

M

1

M

2

A1

0 1 2 0 1 2

0 1 2

D

a

7

b

7

a

8

b

8

a

9

b

9

S1

S

1

S

2
S

3

S

3

S

4

S

4
S

2

0 1 2

0 1 2

0 1 2

M

2

M

3

M

4

A1

a1

3

b1

3

a1

4

b1

4

a1

5

b1

5

0 1 2

M

3

M

4

M

1

A1

0 1 2

0 1 2

D

a1

0

b1

0

a1

1

b1

1

a1

2

b1

2

0 1 2

0 1 2

0 1 2

A1
D

M

1

M

2

M

3

M

4

a

0

b

0

a

1

b

1

a

2

b

2

a

3

b

3

3

3

3 3

3

3

i 16

0
16

0

P1

P2

P3

P4

P5

1

2

3

4

5

6

7

8

9

1
0

x11

C

a0 b0 a1 b1 a2 b2 a3 b3
a4 b4 a5 b5 a66 b6 a7 b7

a8b8 a9 b9 a10 b10 a11 b11
a12 b12 a13 b13 a14 b14 a15 b15

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

A1

M1 M2 M3 M4

 D D

D

D

i 16

0

160
d1

x1 x2

x3 x4 x5 x6 x7 x8 x9 x10

d2 d3 d4 d5

d6
d7 d8 d9 d10

y[n]

x12 x13 x14
x15 x16 x17

x18 x19 x20

Fig. IV.7 Key-based structurally obfuscated RTL Datapath of FIR application

16

We get the resource list sorted by area from the above as following:

Multiplier (M): 1,2,3,4.

Demultiplexer 1:8 (d8): 1.

Multiplexer 8:1 (x8): 1,2.

Comparator (C): 1.

Demultiplexer 1:4 (d4): 1,2,3,4,5,6,7,8,9.

Multiplexer 4:1 (x4): 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18.

Adder (A): 1.

9. Now we place the units according the mentioned algorithm and we have the following floorplan.

 Fig. IV.8 Initial Floorplan

17

10. After embedding the alphas we get the floorplan as

Fig. IV.9 Floorplan after embedding 2 α.

11. After all the betas are embedded, we have floorplan as

Fig. IV.10 Floorplan after embedding 2 α and 8 β

18

12. After embedding the gammas, we get the final floorplan as following.

Fig IV.11 Floorplan after embedding 2 α, 8 β, 4 γ

19

V. Results

V.1 Metrics Calculation

Design Cost

Design Cost for any phase is calculated by the following formula:

𝐶𝑜𝑠𝑡 = 0.5 ×
𝐴

𝐴𝑚𝑎𝑥
+ 0.5 ×

𝐿

𝐿𝑚𝑎𝑥

Where,

A = Area of the current design

Amax = Area for the current design using the maximum possible resources

L = Latency for the current design

Lmax = Latency for the current design using 1 instance of each type of operational resource.

Area is calculated by adding the areas of all the units which will be used in the RTL.

Latency is calculated by adding the max latency for each of the control steps and take cares of

the delays of operations, multiplexers and demultiplexers.

For the cost after floor-planning the latency remains the same but area calculation changes, it is

measured as the area of the rectangular envelope required to cover the all modules.

Watermark metrics

i.) Probability of coincidence Pc:

𝑃𝑐 = (∏
1

(∑
𝑛1(𝑛1 − 1)

2) − (𝑝 − 1)𝑛1∈𝑅𝑚

α

𝑝=1

) ∗ (∏
1

(∑
𝑛2(𝑛2 − 1)

2) − (𝑞 − 1)𝑛2∈𝑋𝑢

β

𝑞=1

)

∗ (∏
1

(∑
𝑛3(𝑛3 − 1)

2) − (𝑟 − 1)𝑛3∈𝐷𝑣

γ

𝑟=1

)

20

Where, ‘n1’ belongs to FU of type Rm, where m is the total types of FUs; ‘n2’ belongs to

Multiplexer of size Xu, where u indicates different sizes of Multiplexer in the design; ‘n3’

belongs to Demultiplexer of size Dv, where v indicates different sizes of Demultiplexer in the

design.

ii.) The tamper tolerance ability T:

𝑇 = 𝑉𝑤

Where, V indicates the number of variables corresponding to the watermark signature W

indicates the size of the signature (watermark strength).

iii.) Probability of finding watermark signature through brute force attack Pb

𝑃𝑏 =
1

𝑇

V.2 Design Cost and Watermark Metrics

Table V.1 gives design costs for the various phases of key based structural obfuscation for a

particular obfuscation key value for various DSP applications.

Table V.1: Costs for various phases for a given key value

Table V.2 Gives us a comparison of how final design cost after obfuscation varies with different

obfuscation keys for various DSP applications and how they compare to the baseline design cost.

DSP

Application

Key

Value

Baseline

Cost

Cost

 Loop

Unroll

Partitioning ROE THT Folding

FIR 16-5-4-4 1 0.4141 0.3987 NA 0.3700 0.3715

DE 2-2-2 0.7528 0.5989 0.5787 NA NA 0.5787

DCT 3-1-3 0.5001 NA 0.5197 NA 0.5057 0.5094

IIR 2-1-4 0.5465 NA 0.5333 NA 0.5186 0.5186

ARF 1-4-10 0.4629 NA 0.4629 0.5195 NA 0.5242

21

Table V.2: Baseline vs Final Costs for various keys

Table V.3 gives us the final design costs after taking consideration of floorplanning effects in the

area calculation for different obfuscation keys for various DSP applications.

Table V.3: Baseline vs Final Costs for various keys (after Floorplanning)

DSP

Application

Baseline

Cost

Key and Final Cost (after Floorplanning)

 Key 1 Cost Key 2 Cost Key 3 Cost

FIR 1 16-5-4-4 0.3649 20-4-4-4 0.4028 32-8-8-8 0.3023

DE 0.7528 2-2-2 0.6682 4-2-12 0.4743 8-4-16 0.4377

DCT 0.5001 3-1-3 0.5060 2-2-2 0.5057 4-4 0.4790

IIR 0.5465 2-1-4 0.4901 3-1-4 0.5642 4-5 0.4971

ARF 0.4629 1-4-10 0.5691 2-4-10

0.5441 3-10 0.5028

Table V.4 shows how the strength of watermark varies with the signature for each DSP

application with their keys.

DSP

Application

Baseline

Cost

Key and Final Cost

 Key 1 Cost Key 2 Cost Key 3 Cost

FIR 1 16-5-4-4 0. 3715 20-4-4-4 0.3698 32-8-8-8 0.3023

DE 0.7528 2-2-2 0.5787 4-2-12 0.4591 8-4-16 0.3853

DCT 0.5001 3-1-3 0.5094 2-2-2 0.4799 4-4 0.5276

IIR 0.5465 2-1-4 0.5186 3-1-4 0.5567 4-5 0.5459

ARF 0.4629 1-4-10 0.5242 2-4-10

0.4891 3-10 0.4799

22

Table V.4: Watermark Metrics

DSP

Application

(Key)

Watermark

Signature

Probability of

coincidence

Tamper

Tolerance

Probability of

Random Brute

Attack Success

FIR (16-5-5-

4)

ααβββββββββγγγγ 6.1414E-28 14348907 6.9691E-8

 ααββββββββγγγγ 8.9665E-26 4782969 2.0907E-7

ααββββββββγγγ 2.9589E-24 1594323 6.2722E-7

DE (2-2-2)

αααββββββββββγγ 8.3883E-27 14348907 6.9691E-8

ααβββββββββγγ 4.9071E-24 1594323 6.2722E-7

ααβββββββββγ 1.3740E-22 531441 1.8816E-6

DCT (3-1-3)

ββββββββγγ 1.3227E-16 59049 1.6935E-5

ββββββγγ 3.2406E-13 6561 1.5241E-4

βββββββγ 7.1294E-14 6561 1.5241E-4

IIR (2-1-4)

βββββββγ 3.9519E-14 6561 1.5241E-4

ββββββγ 2.1340E-12 2187 4.5724E-4

βββββγ 1.1737E-10 729 0.0014

ARF (1-4-10)

 αααββββγγ 2.2603E-9 19683 5.0805E-5

ααβββγγ 2.1473E-7 2187 4.5724E-4

αααβββγ 1.2883E-7 2187 4.572E-4

We observed an average runtime of 68.8 ms on Intel i3-5005U processor and 4GB of DDR3 ram.

23

VI. Conclusion

Through our work we tried to bring new innovation in this field. We proposed a first ever key

based structural obfuscation algorithm providing the IP designer to have control over extent of

obfuscation over each of the phases of the obfuscation. This algorithm is also first of its kind

which uses partitioning based obfuscation approach.

We also proposed first ever physical level watermarking algorithm which allows us to combine

the benefits of structural obfuscation and watermarking.

Thus, we have a one of its kind algorithm which combines two types of DSP securing

techniques, with negligible to no extra overhead in most of the cases we tested upon.

24

VII. References

1. A. Sengupta, S. Bhadauria and S. P. Mohanty, "Embedding low cost optimal watermark

during high level synthesis for reusable IP core protection," 2016 IEEE International Symposium

on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 974-977.

2. A. Sengupta and D. Roy, "Multi-phase watermark for IP core protection," 2018 IEEE

International Conference on Consumer Electronics (ICCE), Las Vegas, NV, 2018, pp. 1-3.

3. A. Sengupta, D. Roy, S. P. Mohanty and P. Corcoran, "DSP design protection in CE through

algorithmic transformation based structural obfuscation," in IEEE Transactions on Consumer

Electronics, vol. 63, no. 4, pp. 467-476, November 2017.

4. A. Sengupta, S. Neema, P. Sarkar, S. Harsha P, S. P. Mohanty and M. K. Naskar,

"Obfuscation of Fault Secured DSP Design Through Hybrid Transformation," 2018 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, 2018, pp. 732-737.

5. F. Koushanfar, I. Hong, M. Potkonjak, "Behavioral Synthesis Techniques for Intellectual

Property Protection", ACM Trans. Des. Autom. Electron. Syst., vol. 10, no. 3, pp. 523-545, July

2005.

6. I. Hong, M. Potkonjak, "Behavioral synthesis techniques for intellectual property protection",

Proc. of the 36th annual ACM/IEEE Design Automation Conference, pp. 849-854, 1999.

7. J. Zhang, "A Practical Logic Obfuscation Technique for Hardware Security", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 1193-1197,

March 2016.

8. X. Wang, X. Jia, Q. Zhou, Y. Cai, J. Yang, M. Gao, G. Qu, "Secure and low-overhead circuit

obfuscation technique with multiplexers", 2016 International Great Lakes Symposium on VLSI,

pp. 133-136, May 2016.

25

9. J.A. Roy, F. Koushanfar, I.L. Markov, "EPIC: Ending Piracy of Integrated Circuits", 2008

Design Automation and Test in Europe, pp. 1069-1074, March 2008.

10. Y. Lao, K.K. Parhi, "Obfuscating DSP Circuits via High-Level Transformations", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 819-830, May

2015.

11. A. Sengupta, D. Roy, "Protecting an intellectual property core during architectural synthesis

using high-level transformation based obfuscation", Electronics Letters, May 2017

