
1

B.TECH. PROJECT REPORT

On

Docker for SUSE Migration

BY

SUNAND AGARWAL,

160001057

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2019

2

3

 Docker for SUSE Migration

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

SUNAND AGARWAL,

160001057

Guided by:

Dr. Gourinath Banda,

Associate Professor,

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2019

4

5

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Docker for SUSE Migration” submitted in partial

fulfillment for the award of the degree of Bachelor of Technology in ‘Computer Science

and Engineering’ completed under the supervision of Dr. Gourinath Banda, Associate

Professor, Computer Science and Engineering, IIT Indore is an authentic work.

 Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Sunand Agarwal

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the student is correct to the best of my

knowledge.

Dr. Gourinath Banda,

Associate Professor,

Computer Science and Engineering,

IIT Indore

6

7

Preface

This report on "Docker for SUSE Migration" is prepared under the guidance of Dr.

Gourinath Banda, Associate Professor, Computer Science and Engineering, IIT Indore.

The main objective of any student is to get as much practical knowledge as possible. Being

able to have practical knowledge by developing a project is a lifetime experience. As

practical knowledge is as necessary as theoretical knowledge, we are thankful for working on

a project.

Through this project report we have tried to give a basic overview of how the GE Senographe

Pristina Mammography System works and mainly focuses on the containerization and

deployment aspects of the reconstruction software application associated with the product.

We have tried to the best of our abilities and knowledge to explain the content lucidly. We

have also added models and figures to make it more illustrative.

Through the development of the project we had a great insight into various approaches that

can be applied in the development of the product. This project is a stepping stone for my

career.

We are pleased to demonstrate this project. Proper care has been taken while organizing the

project so that it can be comprehended. Also, various software engineering principles have

been implemented.

Sunand Agarwal

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

8

9

Acknowledgments

The success and final result of this project required a lot of guidance and advice from many

people and I am incredibly privileged to have got this all along the duration of my project.

All that I have done is only due to such supervision and advice and I would not forget to

thank them.

I respect and thank Dr. Gourinath Banda, for providing me an opportunity to do the project

work and giving me the kind support and valuable guidance which made me complete the

project duly. I am incredibly thankful to him for providing such excellent support and advice,

although he had a busy schedule managing other projects as well. This project was done as

part of my internship at GE Healthcare.

I would not forget to remember his name for his encouragement and moreover for his timely

support and leadership until the completion of our project work. It is his help and support,

due to which I became able to complete the design and technical report.

I owe my sincere gratitude to our Head of Department of CSE, Dr. Surya Prakash, who

took a keen interest in the project work and supervised us all along, till the completion of our

project work by giving all the necessary information for developing a sound system.

I am thankful for and fortunate enough to get constant encouragement, support and guidance

from all the teaching staff of CSE which helped us in successfully completing our project

work. Also, I would like to extend our sincere esteems to all staff in the department for their

timely support.

Without their exceptional support this report would not have been possible.

Sunand Agarwal

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

10

11

Abstract

The healthcare industry is a collection and integration of divisions within the commercial

system that provides goods and aids to treat patients with remedial, precautionary,

rehabilitative, and palliative care. It is one of the world's largest and fastest-growing

industries.

Learning that you may have cancer plunges you into uncertainty. The more you understand

about your condition, the higher your sense of control. Breast cancer patients face challenges

throughout the journey of examination, surgery, post-treatment, and rehabilitation. The breast

cancer patient is treated by a multidisciplinary team including doctors, nurses, therapists,

mentors, and psychologists.

Mammography is the method of using low-energy X-rays to test the human breast for

examination and screening. The aim of mammography is the early discovery of breast cancer,

typically through the exploration of specific masses or microcalcifications. Mammography

has been around since the 1960s when French engineers Jean Bens and Emile Gabbay

produced a breast-dedicated X-ray machine with a specialized X-ray tube that released low-

energy radiation and still let doctors to see breast tissue in more comprehensive detail.

GE Healthcare announced the launch of its brand-new Senographe Pristina mammography

system, intended to make breast screening more convenient and encouraging for patients.

Senographe Pristina mammography system was designed to relieve anxiety when the patient

enters the exam room. Widespread mammography systems compress the breast

automatically, which can be the cause of significant trouble. Senographe Pristina highlights a

self-compression tool that assists women with a sensation of control by allowing them to

adjust the level of breast compression manually. Under the administration of a technologist,

the patient can set compression to a level that seems right for them.

This paper aims to provide a summary of how the Senographe Pristina works, basically the

reconstruction software. The project mainly works as a proof of concept to know if and up to

what extent can the above software be containerized and deployed on the Senographe Pristina

in the hospitals. This would help the radiologists to examine the patients' X-Ray images, and

would bring down the overall cost of the system.

12

13

Table of Contents

 Candidate’s Declaration 5

 Certificate by BTP Guide 5

 Preface 7

 Acknowledgments 9

 Abstract

Table of Contents

11

 1. Introduction

1.1 What is the Purpose?

16

 2. Tools Used

2.1 What is Docker?

2.2 Basic Docker Terminology

2.3 Why Docker?

2.4 Why Docker Instead of Virtual Machines? What is the big deal?

2.5 Docker vs. VM

2.5.1 Understanding VMs

2.5.2 Analyzing Docker Containers

17

 3. Docker Adoption and Product

3.1 Mammo Host PC

3.2 Reconstruction PC

3.3 How does the Reconstruction PC receive those 2D images?

3.4 So, what is the whole procedure of reconstruction?

3.5 What is the proposal?

3.6 Current Dual PC Setup

4. Containerization and Deployment

4.1 Containerization

4.2 Image Deployment

4.3 Optimizing Above Steps

24

28

14

4.4 New Image Deployment

4.5 New Dual PC Setup

5. Business Aspect

6. Conclusion

7. References

35

36

38

15

16

Introduction

GE Healthcare launched the Senographe Pristina Mammography System, which is

purposefully created to help diminish pain, discomfort and stress for patients to enhance the

mammography experience.

Now, the System currently works on a Dual PC Setup, where one PC, called the Mammo

Host PC, is used to take 3-Dimensional acquisitions from the Senographe Pristina. The

second PC, called the Reconstruction PC, is used to convert those 3-Dimensional

acquisitions to 3-Dimensional Volumes. These volumes are now pushed to the Radiologists'

systems for further examination. Multiple sets of Dual PCs are sold to the hospitals in pairs

along with the Senographe Pristina Systems. They are marketed in pairs since they are

connected via Ethernet.

The problem definition states that we want to containerize the software running in the

Reconstruction PC thereby removing the physical connection between both the PCs and

hence deploy that software in a single system. Now we would need a single system for

multiple Mammo Host PCs, thereby reducing the overall cost for the company as well as for

the customers (hospitals).

The technology (or tool) used to containerize and deploy software is Docker. We first

remove the physical connection between the two PCs, create a Docker image of the

reconstruction software and deploy that image in a new system and establish a connection

between the Mammo Host PC and this system.

What is the Purpose?

Currently the operating system on which both sets of PCs are running is based on Red Hat

Enterprise Linux 6.10 (RHEL 6.10). GE wants to migrate to another operating system

called SUSE Linux Enterprise Server 15 (SLES 15). They want all their systems to be

running on SLES 15 in the coming years, and this project is just the start of a long journey.

One of the reasons the migration is happening is because software updates and releases have

now been stopped for the current operating system.

Now what would happen is we would create the Docker image of the reconstruction software

based on a stripped-down version of the RHEL 6.10 operating system, and then we would

deploy that docker image on a system running on SLES 15. This would seem like the

software is running on SLES 15 itself.

17

Tools Used

What is Docker?

Docker has achieved tremendous popularity in this fast-growing IT industry. Corporations

are continuously adopting Docker in their production environment.

Before containerization came into the picture, the principal way to confine, organize

applications and their dependencies were to place every application in its virtual machine.

These machines run various applications on the same physical hardware, and this method is

nothing but virtualization.

But virtualization had few disadvantages such as the virtual machines were heavy in size,

running various virtual machines lead to volatile performance, the boot-up process would

typically take a long time and VM's would not solve the difficulties like portability, software

updates, or continuous integration and continuous delivery.

These shortcomings led to the emergence of a new technique called Containerization.

Containerization is a kind of virtualization that brings virtualization to the operating system

level. While the latter brings abstraction to the hardware, containerization brings abstraction

to the operating system.

Hence, Docker is a platform that packages an application and all its dependencies collectively

in the form of containers. This containerization character of Docker ensures that the

application runs in any environment.

Basic Docker Terminology

• An Image is a lightweight, stand-alone, executable package of a piece of software that

includes everything needed to run it: code, system dependencies, system libraries, etc.

• A Container is an instantiation of an image that we have brought to life. We can have

multiple copies of the same image running.

• A Dockerfile is basically a recipe for creating an image.

• Dockerhub / Image Registry is a place where people can post public (or private)

docker images to facilitate collaboration and sharing.

As you can see in the picture, each and every application runs on separate containers and has

its own collection of dependencies and libraries. This makes certain that each application is

free of other applications, giving developers a guaranty that they can build applications that

will not conflict with one another.

18

So a developer can create a container having numerous applications installed on it and

provide it to some other team. Then that team would only need to operate the container to

replicate the developer's environment.

Why Docker?

So why does everyone love containers and Docker?

• Ease of use: A massive part of Docker's fame is how easy it is to use. Docker can be

learned quickly, primarily due to the numerous resources available to learn how to

create and manage containers.

• Reproducibility: Reproducibility not only facilitates peer review, but ensures the

model, application or analysis we build can run without friction which makes our

deliverables more robust and withstands the test of time. For example, if we built a

model in Python it is often not enough to just run pip-freeze and send the resulting

requirements.txt file to our co-worker as that will only encapsulate Python explicit

dependencies — whereas there are often dependencies that live outside Python such as

operating systems, drivers, compilers, configuration files or other things that are

required for our code to run successfully. Even if we can get away with sharing Python

19

dependencies, enveloping everything in a Docker container diminishes the burden on

others of recreating our environment and makes our work more accessible.

• Better software delivery: Software distribution using containers can also be more

productive. Containers are movable. They are also entirely independent. Containers

include a separated disk volume. The volume goes with the container as it is produced

and deployed to multiple environments. The software dependencies (libraries, binaries,

etc.) ship with the docker container. If a container works on your device, it will run the

same way in a development, staging, and production environment. Containers can

eliminate the configuration variance difficulties common when deploying binaries or

raw code.

• Software-defined networking: Docker supports software-defined networking. The

Docker Engine and CLI allow administrators to define independent networks for its

containers, without having to involve a single router. Developers and operators can

create systems with complicated network topologies and ascertain the networks in

configuration files. This is a security advantage, as well. An application's containers

can run in a detached virtual network, with tightly-controlled entrance and exit paths.

Why Docker Instead of Virtual Machines? What is the big deal?

20

Getting down to the core, Docker allows applications to be divided into docker containers

with instructions for precisely what they need to last that can be easily ported from system to

system. Virtual machines also allow the exact same point, and various other accessories

already exist to make reconstructing these configurations transportable and reproducible.

While Docker has a more simple structure as compared to VMs, the real area where it causes

the disorder is resource performance.

If you have 20 Docker containers that you want to run, you can run them all on a single

virtual machine. To run 20 virtual machines, you've got to boot 20 operating systems with at

least minimum resource specifications available before factoring the Hypervisor for them to

run on with the base operating system.

Let's say we're going to go with a minimum of 256MB VM we'd be looking at 7.5GB of

RAM with 20 different OS kernels managing resources. With Docker we could allocate a

chunk of RAM to one virtual machine and have a single operating system managing those

competing resources… and we could do all of that on the base operating system without a

costly hypervisor needing to be involved at all.

A pivotal point to keep in mind is that Docker can do what it does due to strong integration

with the Linux kernel. It makes for significant performance at a low level, and as a result,

Docker is not (currently) a replacement for VMs for Windows, OS X, etc. When running

Docker containers on a non-Linux computer such as above, they will be run inside of a

virtual machine using boot2docker.

Those types of performance improvements are on par with cloud provider services like

Amazon and others getting a 26 to 1 performance gain on the VMs that they sell per hour. It's

a massive enabler for their markets because we're suddenly capable of doing a lot more for

the same amount. Instead of needing to buy 2 virtual machines (for load balancing) for every

isolated application that you need to deploy, we could cluster three larger VMs and deploy all

of them to it, actual processor limits aside.

21

Docker vs VM

Understanding VMs

Here's how it looks like to run a few applications on a system using virtual machines:

• It all begins with some infrastructure. This could be our laptop, a server running in

a data center, or a private server that we're using in the cloud.

• On top of that host runs a base operating system. On our laptop this will likely be

Windows, MacOS or some division of Linux. When we're discussing VMs, this is

generally designated as the host OS.

22

• Then we have something called a Hypervisor. We can think of virtual machines as a

self-contained system gathered into a single file, but something needs to be able to

operate that file. Modern type 1 hypervisors are HyperKit for MacOS, KVM for Linux

and Hyper-V for Windows. Popular type 2 hypervisors are VMWare and VirtualBox.

• The next layer is our guest operating systems. Let's say we wanted to run 3

applications on our server in total isolation. That would require spinning up three guest

operating systems, which are all controlled by our hypervisor.

Virtual machines come with a lot of equipment. Each guest OS in itself might be

700MB. That means we're using 2.1 GB of disk space just for our guest operating

systems. It gets more serious too because each guest OS needs its own CPU and

memory resources also.

• Then on top of that, each guest operating system needs its own copy of many

binaries and libraries to lay the groundwork down for whatever our application needs

to run. For example, we might need libpq-dev installed so that our web application's

library for connecting to PostgreSQL can connect to our PostgreSQL database. If we're

using something like Ruby, then we would need to install our gems. Likewise with

Python or NodeJS we would install our packages. Just about every primary

programming language has its own package manager. Since each application is

diverse, it is assumed that each application would have its own collection of library

requirements.

• Finally, we have our app. This is actually the source code for the awesome

application we've created. If we want each app to be isolated, we will need to run each

one inside of its own guest operating system.

23

Analyzing Docker Containers

Here's how the same set up looks like using docker containers instead:

• We still need some infrastructure to run Docker containers. Like VMs, this could

be our laptop or a server system somewhere out there in the cloud.

• Then, we have our host operating system. This could be anything we want that is

capable of operating Docker. All significant divisions of Linux are supported and there

are alternatives to run Docker on MacOS and Windows too.

• The Docker daemon/engine replaces the hypervisor in this case. The Docker

daemon is a service that operates in the background on our host operating system and

manages everything needed to run and communicate with Docker containers.

• Next up we have our executables and libraries, just like we do on virtual machines.

Instead of them running on a guest OS, they get built into individual units called

Docker images. Then the Docker daemon runs those Docker Images.

• The last bit of the puzzle is our applications. Each one would end up residing in its

own Docker image and will be handled separately by the Docker daemon. Typically

each application and its libraries and dependencies get collected into the same Docker

image. As we can see, each application is still separated.

24

Docker Adoption and Product

There are basically two PCs behind the working of the Senographe Pristina, called the Dual

PC Setup.

1. Mammo Host PC

The first system is the Mammo Host PC, on which the 2D images are stored after taking the

patient's exam. The underlying operating system this machine runs on is RHEL 6.10.

25

2. Reconstruction PC

The second system is the 3D Image Reconstruction PC, on which a reconstruction software

runs and converts those 2D X-Ray images on Mammo machine to 3D Volumes. The

underlying operating system on which this system runs on is also RHEL 6.10.

How does the Reconstruction PC receive those 2D images?

The answer is simple, via a network. Following the network protocol, the Reconstruction PC

acts as a Server and the Mammo Host PC as a client.

This client/server application lets a computer user show and optionally save and update files

on a remote machine as though they were part of the user's computer. This protocol allows

the user or system administrator to mount all or a portion of a file system on a server. The

portion of the filesystem that is mounted can be accessed by clients with whatever privileges

are allocated to each file (read-only or read-write). It uses Remote Procedure Calls (RPCs) to

map requests between servers and clients.

So, what is the whole procedure of reconstruction?

We take a patient's exam, i.e., 2D X-Ray images which are stored in some directory of the

Mammo Host PC. These images are then transferred via a network protocol to the

Reconstruction PC, whereby a reconstruction algorithm runs and converts those 2D images to

26

3D volumes. These 3D volumes are stored in some other directory of this Reconstruction PC

and then pushed to the radiologists' system for further examination of the patient.

What is the proposal?

What we want to prove using Docker is that the reconstruction software can be made into a

Docker Image, thereby removing the need for a whole extra set of Reconstruction PC.

Since we have to migrate from RHEL 6.10 to SLES 15, what is done in this project is that we

have a new PC, running on SLES 15, on which we will deploy our docker image. We will

establish a connection between the Mammo Host PC and this docker container so that the

reconstruction happens as before.

The difference now is that the software seems to run on a SLES 15 machine, though the

underlying base docker image of the container is still RHEL 6.10. This new PC would serve

as a reconstruction PC for multiple Mammo Host PCs, by running multiple instances of the

docker image. This would also save a lot of money for the company as well as the customers.

So, the new machine would look like this:

27

Current Dual PC Setup

As of now, the Mammo Host PC, as well as the Reconstruction PC, are running on RHEL

6.10. The networking part is as follows:

• The eth2 port of Mammo Host PC is connected via Ethernet to the eth0 port of the

Reconstruction PC.

• The eth2 port of the Reconstruction PC is connected to the external LAN, hence it is

available in the local network.

This means that the Mammo Host PC is not connected to the outside world and can only be

accessed using the corresponding Reconstruction PC. This is achieved using static IPs.

Therefore, this inseparable pair of PCs together is sold to the hospitals because of the

intermediate connection. This is very costly.

28

Containerization and Deployment

Containerization

Now we have to containerize the reconstruction software running on the Reconstruction PC.

This is done by taking an underlying base image of RedHat Linux 6.10 and installing all the

necessary packages to install the reconstruction software. So, we pull a rhel6.10 docker base

image and install the packages. Now we run the installation scripts of the software which will

install all the necessary RPMs, like software packages, antivirus, etc. Now we will commit

the docker image to save our changes and then push it to the Docker Hub for future

deployment.

Docker hosts public repositories called the Docker Registry (Hub) where we can find a list of

public Docker images for our use. While the Docker Hub plays an essential role in providing

public visibility to our Docker images and for we to utilize quality Docker images put up by

others, there is a clear need to set up our private registry too for our team/organization.

We can use Docker Hub or host a local Docker registry for storing our image.

Image Deployment

For the deployment of the image on our SLES 15 machine, we follow the steps below;

1. Pulling the Image

The first step in deployment is to pull the docker image to our system, which we've created

earlier. To download a specific image, or set of images (i.e., a repository), use docker pull.

For example,

$ docker pull <image_name>

29

2. Docker Network

Since the Reconstruction PC requires two network interfaces, eth0 and eth2, our docker

container also needs to be connected to these interfaces. Docker takes care of the networking

aspects by itself so that the containers can communicate with other containers and even with

the Docker Host.

By default, Docker creates a virtual bridge docker0, and all container networks are linked to

docker0 initially. The docker0 bridge is the core of default networking. When the Docker

service is started, a default Linux bridge is created on the host machine. The interfaces on the

containers talk to the bridge, and the bridge speaks to the external world. Multiple containers

on the same host machine can talk to each other through the same bridge.

As illustrated above, each container (Nginx1, C1, and C2) has its own virtual network

interface (eth0) which are in turn connected to the default docker0 bridge network, which is

connected to the host network interface (eth0). This means that using default network drivers,

containers are allocated static IPs and are not connected directly to the host network.

We have built a Docker application which is expected to be directly connected to the

underlying local network. In this type of situation, we can use the Macvlan network driver to

assign a MAC address to each container's virtual network interface, making it appear to be a

physical network interface directly connected to the physical network.

To create a Macvlan network,

30

$ docker network create -d macvlan \

 --subnet=192.168.32.0/24 \

 --ip-range=192.168.32.128/25 \

 --gateway=192.168.32.254 \

 --aux-address="my-router=192.168.32.129" \

 -o parent=eth0 macnet32

The following picture shows two Containers using Macvlan Bridge to communicate with

each other as well as to the outside world. Both Containers will directly get exposed to the

underlying network using Macvlan sub-interfaces.

3. Create container

After downloading the image and creating the required networks, it is now time to create the

container. For example,

docker create -t -i <container_name> <image_name>

31

4. Connect container to networks

While creating the container, we didn't provide any network driver which we created in

previous steps. So the container is still connected to its virtual network interface. In this step,

we connect it to the two macvlan networks corresponding to eth0 and eth2 ports of the host

SLES 15 machine. Now the container has its network interfaces and is connected to the local

network.

5. Start container

This is a straightforward step. After creating the container and connecting it to the networks,

it still isn't running. We start the container using

docker start -a -i <container_ID>

6. Configuration Steps

After we get inside the container, we still have loads of configuration steps. These steps

include changing the hostname, setting the IPs of the Mammo Host PC inside the container

so a connection can be established, etc.

All these configuration steps are to be done manually for now. We'll optimize this step in the

coming chapter so that these steps are performed automatically.

7. Network Mount

After doing the configuration, we have to run a network mount script on the Mammo Host

PC so that the 2D images can be transferred to the filesystem of this container.

8. Start the services

This is the final step. We start the necessary services inside the container, after which the

connection is established between the container and the Mammo Host PC. Now the systems

are ready for the reconstruction process.

After all these steps, we have our systems ready and our container is running and performing

the reconstruction successfully. But we have to optimize this as a radiologist would not know

much about Docker and configuring IPs.

32

Optimizing Above Steps

1. Dockerfile

A Dockerfile is a text file that contains all the commands a user could call on the command

line to assemble an image. Docker can build images automatically by executing the

instructions from a Dockerfile. For example,

FROM ImageName

RUN apt-get update && \

 <other instructions>

ENTRYPOINT <file_name>

CMD <services>

This is a sample dockerfile. We are merely using some image as our base container image,

installing the updates and other packages, defining our ENTRYPOINT as some file and then

defining that the command for this container is the service name.

An ENTRYPOINT allows us to configure a container that will run as an executable. We

write all the commands and configuration scripts inside the entrypoint filename, which will

automatically execute every time we start our container. This would get rid of the manual

configuration and the services steps. For this, we have to build the image using the

dockerfile, by

docker build . <image_name>

After building the image, we would then push it to the Docker Hub for future deployment.

This step is needed only once, as we have created a new image out of our previous one. We'll

use this new image now for deployment.

33

2. Removing intermediate connection

This is a crucial step. We remove the intermediate Ethernet between our SLES 15 machine

(eth0) and Mammo Host PC (eth2) and connect the latter PC to LAN. This would mean that

now both the systems are connected to the External LAN and are visible in the local network.

Now our container needs to be connected to one Macvlan network driver.

Both the systems would now have dynamic IP instead of static IP, which would have to be

updated in the dockerfile entrypoint of the container.

This step is necessary as we want to connect multiple Mammo Host PCs to our single SLES

15 machine by running numerous containers.

3. Image compression

This step reduces the size of the Docker Image. We can do so by downloading only the

necessary packages for the reconstruction software to run and not installing the unnecessary

ones as the container is just used to run that software. We are not using the container for

anything else, so as long as we can compress the size of our image, we do so.

New Image Deployment

Now we have a new image and the deployment steps have been reduced:

1. Pulling the Image

This step doesn't change. We still have to download our new docker image from Docker Hub

or private registry, wherever it had been pushed.

2. Create network

This time we have to create one macvlan network corresponding to the eth2 port of the host

machine so that the container is connected to the underlying local network.

3. Run container

In this step, we need to run the container using the image and the network we created. As

soon as we run the container, all the commands which we wrote in the dockerfile entrypoint

automatically execute by themselves. This saves us from the manual configuration.

34

For example,

docker run --network=my-net –itd --privileged --name=reconstruction --ip=<some_ip> <image_name>

4. Network Mount

We still have to run a network mount script on the Mammo Host PC as we didn't disturb the

configuration of this PC.

These are the steps required for the new image. The number has reduced to half of the

original, which is more comfortable for the radiologist. In short, he has to do the following:

• Pull Image

• Create a network

• Run Container

• Run Script File

New Dual PC Setup

In the above diagram, we can see that the container is running on our SLES 15 machine and

both the systems are now connected to the LAN.

35

Business Aspect

The current Dual PC setup has to be sold in pairs, as explained in the previous chapters. Now

let us assume the cost of one Reconstruction PC for the customers is around 3000$.

Let's say that the company sells around 6 to 7 Senographe Pristina Mammography Systems to

the customers, who are none other than hospitals themselves.

Case1: Using the current Dual PC setup

In this case, the company sells 6 to 7 pairs of Mammo Host PC and the Reconstruction PCs.

The total cost of the Reconstruction PCs alone would be nearly 18000$ - 21000$.

Case 2: Using the new Dual PC Setup

If our new Dual PC setup is implemented and sold, the company sells 6 to 7 Mammo Host

machines just as before. So this cost is the same. Now instead of 6 Reconstruction PCs, we

only have one single system running on SLES 15 used to run the docker containers. These

containers would be connected to their corresponding Mammo Host PCs as required. This

means that we will have a docker container for every Mammo Host PC. This would be a very

high-end machine than the original Reconstruction PC, as it is used to run several instances

of the reconstruction software. Let's say the cost of this new machine is as high as 5000$.

Money saved per hospital = approx. 15000$.

Now GE supplies products to thousands of hospitals all across the globe. Hence, this

implementation would save a lot of money (in millions of dollars) for the customers as well

as the company.

36

Conclusion

We calculated the time taken for reconstruction of 2D X-Ray images for the following cases:

Case1: Current Dual PC Setup

Case2: New Dual PC Setup

After running the tests for various instances of 2D images, we found that the time taken in

Case 2 is nearly 25% faster than in Case 1.

This is merely because of the fact that our new SLES 15 machine is a very high-end machine

as compared to the original Reconstruction PC. Theoretically, the duration should have been

slower in Case 2 if we use a similar kind of PC in both the cases, just because in Case 2, the

PCs are not connected via Ethernet and everything is happening over a network.

37

38

References

• https://opensource.com/resources/what-docker

• https://www.edureka.co/blog/docker-explained/

• https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-

7fc048ef91d5

• https://www.itnonline.com/content/ge-healthcare-launches-senographe-pristina-mammography-system

• https://nickjanetakis.com/blog/comparing-virtual-machines-vs-docker-containers

https://opensource.com/resources/what-docker
https://www.edureka.co/blog/docker-explained/
https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-7fc048ef91d5
https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-7fc048ef91d5
https://www.itnonline.com/content/ge-healthcare-launches-senographe-pristina-mammography-system
https://nickjanetakis.com/blog/comparing-virtual-machines-vs-docker-containers

