
B.TECH. PROJECT REPORT

On

Implementing Realtime Kernel in Rust
Programming Language

BY
KANISHKAR JOTHIBASU

Discipline of Computer Science and Engineering,

INDIAN INSTITUTE OF TECHNOLOGY INDORE

NOVEMBER 2019

Implementing Realtime Kernel in Rust
Programming Language

PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

KANISHKAR JOTHIBASU, 160001028,

Discipline of Computer Science and Engineering,

Indian Institute of Technology, Indore

Guided by:

Dr. GOURINATH BANDA,

Associate Professor,

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
November, 2019

iii

CANDIDATES’ DECLARATION

I hereby declare that the project entitled “Implementing Realtime Kernel in Rust Pro-
gramming Language” submitted in partial fulfillment for the award of the degree of
Bachelor of Technology in ‘Computer Science and Engineering’ completed under the
supervision of Dr. GOURINATH BANDA, Associate Professor, Computer Science and
Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other de-
gree elsewhere.

KANISHKAR JOTHIBASU

160001028

CERTIFICATE by BTP Guide

It is certified that the above statement made by the student is correct to the best of my
knowledge.

Dr. GOURINATH BANDA,
Associate Professor,

Discipline of Computer Science and Engineering,
IIT Indore

v

PREFACE

This report on “Implementing Realtime Kernel in Rust Programming Language” is
prepared under the guidance of Dr. GOURINATH BANDA, Associate Professor, Com-
puter Science and Engineering, IIT Indore.

Through this report, I have tried to provide a detailed description of our approach to
implementing Real-time Kernel in Rust programming language. I also have explained
the reasons to choose Rust and how it helped develop a safe kernel. The design imple-
mentation decisions taken in the due course of the project have been explained.

I have tried my best to explain the proposed solution. The Kernel has been imple-
mented and is open-sourced under MIT license.

vii

ACKNOWLEDGEMENTS

I want to thank my B.Tech Project supervisor Dr. GOURINATH BANDA for his guid-
ance and constant support in structuring the project and providing valuable feedback
throughout the course of this project. His overseeing the project meant there was a lot
that I learnt while working on it. I thank him for his time and efforts.

I am grateful to the Institute for the opportunity to be exposed to systemic research
especially Dr. GOURINATH BANDA’s Lab for providing the necessary hardware utilities
to complete the project.

Lastly, I offer my sincere thanks to everyone who helped me complete this project,
whose name I might I have forgotten to mention.

KANISHKAR JOTHIBASU

ix

ABSTRACT

Software failure caused $1.7 trillion in financial losses in the year 2017. A large percent-
age of these bugs fall into the category of Memory and Concurrency bugs. Many pro-
gramming languages address this issue by handling memory and concurrency safety
through a runtime platform, but this adds significant execution overhead. Hence, the
languages which are focused on performance tend to provide compiled binaries; thus,
they do not have any mechanism to guarantee safety.

Rust is a programming language that offers safety and reliability without sacrificing
runtime performance. It achieves this with the help of a powerful type system and static
code analysis to ensure safety at compile-time. Rust enables developers to write Safe
and Robust software with ease. The goal of this thesis is to develop a real-time kernel
in rust. Real-time kernels are an integral part of embedded systems. They guarantee
low interrupt latency and highly predictable task scheduling. They typically are a part
of safety-critical real-time systems, which mandate reliability, safety, and predictability.

xi

Contents

CANDIDATES’ DECLARATION iii

CERTIFICATE by BTP Guide iii

PREFACE v

ACKNOWLEDGEMENTS vii

ABSTRACT ix

Table of Contents ix

List of Listings xv

1 Introduction 1
1.1 Real-time Kernels . 1
1.2 Embedded Hardware . 1

1.2.1 Microcontrollers . 1
1.3 Advantages of Kernel-based Embedded Systems over the Monolithic im-

plementations . 1
1.4 Challenges of Real-time Kernels . 2

1.4.1 Memory Restrictions . 2
1.4.2 Power Restrictions . 2
1.4.3 Data-structure Overhead: Kernel Data-structures 3

1.5 Advantages of Implementing Real-time Kernels in Rust Programming
Language . 3
1.5.1 Memory and Concurrency Safety . 3
1.5.2 Easy Dependency management . 4
1.5.3 Performance . 4
1.5.4 Unsafe Rust . 4

2 Kernel Architecture and Design 7
2.1 Kernel Architecture . 7

2.1.1 Top-level Organization . 8
2.1.2 Kernel Subsystems . 8

xii

Task Manager . 8
Resource Manager . 9
Software Bus . 9
Task Synchronization . 9
Task Communication . 9
Time Manager . 10
Event Manager . 10
Hardware Adaptation Layer (HAL) 10

2.1.3 Stack-Based Priority Ceiling Protocol (SBPC) [4] 10
2.1.4 Dynamic Memory Allocation . 11
2.1.5 Atomic execution in Single-processor multi-tasking systems 11

2.2 Hardware . 11
2.2.1 Interrupt Handlers . 12

SysTick . 12
PendSV . 12
SVC . 13

2.2.2 Privileged execution mode . 13
2.2.3 2 Stack Pointers . 15
2.2.4 CLZ Instruction . 15
2.2.5 WFE Instruction . 15

2.3 Language Features . 16
2.3.1 Generics . 16
2.3.2 Enums . 17
2.3.3 Error Handling . 18
2.3.4 Traits . 19

3 Implementation 21
3.1 Kernel Configuration . 21
3.2 Boolean Vector . 22
3.3 Task Manager . 23

3.3.1 Subsystem Data-structures . 23
3.3.2 Kernel Routines . 24

init(is_preemptive: bool) . 24
start_Kernel(&self, peripherals: &Peripherals, tick_interval: u32) . 24
create_task(&self, priority: usize, stack: &mut [u32], handler_fn:

fn(&T) -> !, param: &T) . 24
block_tasks(&self,task_mask: BooleanVector) 24
unblock_tasks(&self,task_mask: BooleanVector) 25
schedule() . 25

xiii

preempt() . 25
task_exit() . 25
get_curr_tid() . 25
get_next_tid() . 25
release(&self, task_mask: BooleanVector) 25
is_preemptive(&self) . 26
enable_preemption(&self) . 26
disable_preemption(&self) . 26
spawn! . 26

3.3.3 Task State transition diagram . 26
3.4 Resource Manager . 27

3.4.1 Subsystem Data-structures . 27
3.4.2 Resource Container . 28

Resource::lock(&self) . 29
Resource::unlock(&self) . 29
Resource::acquire(&self, handler: F(&T)) 29
Resource::access(&self) . 29

3.4.3 Kernel Routines . 29
init_peripherals() . 29
new(resource: T, tasks_mask: BooleanVector) 29

3.5 Software Synchronization Bus . 30
3.5.1 SemaphoreControlBlock . 30

SemaphoreControlBlock::new(tasks_mask: u32) 30
SemaphoreControlBlock::signal_and_release(&mut self, tasks_mask:

BooleanVector) . 30
SemaphoreControlBlock::test_and_reset(&mut self, curr_tid: TaskId) 30

3.5.2 Subsystem Data-structures . 31
3.5.3 Kernel Routines . 31

new (tasks_mask: BooleanVector) 31
signal_and_release(sem_id: SemaphoreId, tasks_mask: Boolean-

Vector) . 31
test_and_reset(sem_id: SemaphoreId) 31

3.6 Software Communication Bus . 31
3.6.1 Subsystem Data-structures . 32
3.6.2 Message Container . 32

Message::new(val: T, id: MessageId) 33
Message::broadcast(&self, msg: T) 33
Message::receive(&self) . 33

3.6.3 Kernel Routines . 33

xiv

new(notify_tasks_mask: BooleanVector, receivers_mask: Boolean-
Vector, msg: T) . 33

broadcast(msg_id: MessageId) . 33
3.7 Time management . 34

3.7.1 Subsystem Data-structures . 34
3.7.2 Kernel Routines . 34

Time::tick() . 34
now() . 35

3.8 Event Manager . 35
3.8.1 Subsystem Data-structures . 35
3.8.2 Event Descriptor . 37

Opcode . 38
3.8.3 Kernel Routines . 38

sweep_event_table(event_type: EventTableType) 39
enable_event(event_id: EventId) . 39
new_FreeRunning (is_enabled: bool, threshold: u8, event_counter_type:

EventTableType) . 39
new_OnOff(is_enabled: bool) . 39
set_semaphore(event_id: EventId, sem: SemaphoreId, tasks_mask:

BooleanVector) . 39
set_tasks(event_id: EventId, tasks_mask: BooleanVector) 39
set_message(event_id: EventId, msg_id: MessageId) 39
set_next_event(event_id: EventId, next_event: EventId) 39

3.8.4 Utils . 40
generate_task_mask(tasks: &[u32]) 40
is_privileged() . 40
get_msb(val: u32) . 40

3.9 Dynamic Memory Allocation . 40
3.10 Development Flow . 40
3.11 End Application Organization (Using HARTEX) 41

4 Testing 43
4.0.1 Tasks (Basic) . 43
4.0.2 Tasks (Complete) . 45
4.0.3 Semaphore . 47
4.0.4 Resource . 49
4.0.5 Message . 52
4.0.6 Events . 54
4.0.7 Heap . 56

xv

5 Conclusion and Future Work 59
5.1 Conclusion . 59
5.2 Future Work . 59

A Kernel Code 61
A.1 Code Organization . 61

xvii

List of source codes

1 Rust Lang : Generics . 16
2 Rust Lang : Generics Example . 16
3 Rust Lang : Generics with Multiple Type parameters 16
4 Rust Lang : Generic Functions . 17
5 Rust Lang : Enums . 17
6 Rust Lang : Enums example . 17
7 Rust Lang : Enums Example . 18
8 Rust Lang : Error Handling . 18
9 Rust Lang : Traits . 19
10 Cargo.Toml for Max 8 tasks. 21
11 Cargo.Toml for Max 8 tasks and 16 resources. 21
12 Cargo.Toml with conflicts. 22
13 Task Manager Definition . 23
14 Resource Manager Definition . 27
15 Resource Container Definition . 28
16 SemaphoreControlBlock Definition . 30
17 SemaphoresTable Definition . 31
18 Message Table definition . 32
19 Message Container Definition . 32
20 Time Manager Definition . 34
21 Event Manager Definition . 35
22 Event Descriptor Definition . 37
23 listing . 40
24 Examples : Tasks (Basic) . 43
25 Examples : Tasks (Complete) . 45
26 Examples : Semaphores . 47
27 Examples : Resource . 49
28 Examples : Message . 52
29 Examples : Events . 54
30 Examples : Heap . 56
31 Code Organization . 61
32 /src/system/task_manager.rs . 62
33 /src/kernel/task_manager.rs . 62

1

Chapter 1

Introduction

1.1 Real-time Kernels

A Real-time Kernel is a Kernel intended to serve real-time applications, i.e., they re-
spond to an input/event and produce the result within a guaranteed time interval
(deadline) [1]. They enable the development of the application split as individual tasks
instead of a monolith. They also provide the infrastructure required for task scheduling,
inter-task synchronization, and communication.

1.2 Embedded Hardware

An embedded system can be defined as a special type of computer system that exe-
cutes some specific predefined programs which are generally used within an electro-
mechanical system [10]. Industrial machines, toys, automobiles, etc. are some areas
where Embedded systems are used extensively. At present, most of the Embedded sys-
tems used are Microcontroller-based systems.

1.2.1 Microcontrollers

Microcontrollers can be understood as Computers on a single chip. They are inexpen-
sive, small, and low power consuming devices [10]. It operates on the data provided to
it through the serial and parallel ports. It is controlled by software stored in the on-chip
memory. It consists of a processor core, RAM, ROM, and I/O pins used to redirect I/O
from sensors/actuators to the processor.

1.3 Advantages of Kernel-based Embedded Systems over

the Monolithic implementations

In Microcontrollers, Monolithic implementations imply an infinite loop of instructions.
In Real-time Kernels, there is no need to break functionality up into fragments to fit it

2 Chapter 1. Introduction

within the major and minor cycles, functionality can be executed at the appropriate rate,
and sporadic events such as infrequent but short deadline interrupts can be dealt with
efficiently. Applications using Real-time Kernels can make significantly more effective
use of CPU time than Monoliths. Simple cyclic systems can waste as much as 20% of
the CPU through over-sampling and provision for sporadic activities [3].

Real-time operating systems provide basic infrastructure to design the system as
individual tasks that can communicate and synchronize amongst themselves. The es-
sential services provided by the Real-time Kernel is listed below [5] :

• External event management
• Timing event management
• Task scheduling and management
• Resource management
• Task synchronization
• Task communication

1.4 Challenges of Real-time Kernels

Implementations of Real-time Kernels are very different from the desktop OS Kernels.
They are intended to work on Microcontrollers, which have several constraints [3].

1.4.1 Memory Restrictions

Microcontrollers have two kinds of memory, Flash memory, and RAM. Flash memory
is where the Code is stored, while the RAM is where the runtime data-structures are
stored. Now the problem is both Flash and RAM are generally in KBs. For example,
the board used for testing in this project has a Flash memory of 512 Kb and the RAM
128 Kb, which is very small compared to what general computers have. Thus, the bi-
nary size of the whole application (including the Kernel) must be lesser than the Flash
memory. These constraints have to be addressed both during design and subsequent
implementation phases.

1.4.2 Power Restrictions

Embedded systems are extensively used in battery-powered environments, in systems
like TV remotes, Digital watches, Smartwatches, and IoT devices. Thus the end appli-
cation (Including the Kernel) needs to be power efficient.

1.5. Advantages of Implementing Real-time Kernels in Rust Programming Language 3

1.4.3 Data-structure Overhead: Kernel Data-structures

Due to the tight constraints in Microcontrollers, the Kernel data-structures need to be
efficient in terms of memory and execution time. Thus, Real-time Kernel cannot afford
to use complex data structures for its operation. They also cannot use Dynamic memory
allocation. The issue with dynamic memory is that it is very slow compared to static
memory [2]. Real-time Kernels cannot afford this overhead in its operation.

1.5 Advantages of Implementing Real-time Kernels in Rust

Programming Language

Rust is a multi-paradigm system programming developed by Mozilla [7]. The lan-
guage has been designed with performance and reliability in mind. It is a significant
advancement in industrial programming languages due to its success in bridging the
gap between low-level system programming and high-level application programming
languages [jung_Rustbelt:_2018]. This success has ultimately empowered program-
mers to build reliable and efficient software with ease. The safety guarantees made by
the Rust have been verified and proven to be correct by using formal methods [8].

Real-time Kernels are typically a part of other larger safety-critical systems [10]. The
compile-time guarantees made by Rust make it a perfect fit for the development of Real-
time Kernels.

1.5.1 Memory and Concurrency Safety

Memory and Concurrency Safety are typically guarantees made by high-level inter-
preted programming languages like Perl or Python. These languages achieve them
with the help of a runtime platform, which dynamically handles the memory allocated
on heap. This approach works well for application software. But System software can-
not accept the large execution overheads, especially Real-time systems. Any standard
benchmark proves how interpreted languages like Python and Perl are much slower
compared to C and C++. But without a runtime, it’s impossible to guarantee memory
and concurrency safety.

The term memory safety stands for accessing and managing memory in a safe way
[oppermann_Rust_nodate]. Figure 1.1 shows the share of vulnerabilities in the Linux
Kernel.

All the bugs mentioned above other than the "others" section are safety bugs that
Rust resolves at compile-time.

4 Chapter 1. Introduction

FIGURE 1.1: Linux Kernel CVEs 2018 [oppermann_Rust_nodate]

1.5.2 Easy Dependency management

Cargo is the Rust package manager. Cargo downloads the Rust project’s dependencies,
compiles your packages, makes distributable packages [14]. Dependencies or packages
(called crates in Rust) used in a project can be defined in "Cargo.toml" in the project root
directory, and Cargo takes care of Downloading, building, and linking the packages
with application code irrespective of the target platform.

1.5.3 Performance

In performance benchmarks, idiomatic Rust code’s execution time is on par with that of
C/C++.

1.5.4 Unsafe Rust

While working with embedded hardware or writing bare-metal Code, many operations
cannot be verified by the compiler. For example, explicitly writing to some registers,
inlining assembly instructions, etc. But these features are necessary to implement most
of the applications that interface with hardware directly. Rust allows writing unsafe
blocks of code, inside which few compiler checks are overridden. Unsafe blocks help
encapsulate unsafe Code in a program. They allow dereferencing raw pointers, writing

1.5. Advantages of Implementing Real-time Kernels in Rust Programming Language 5

to registers, inlining assembly code, and calling other unsafe functions. These blocks
are to be explicitly marked unsafe by the developer [19].

Unsafe blocks allow pointer manipulation, but the compiler still does various other
static-analysis to ensure safety. If the unsafe blocks are written carefully and are verified
to be correct, the compiler then assumes the unsafe blocks to be working correctly and
verifies the rest of the Code for correctness.

7

Chapter 2

Kernel Architecture and Design

The Kernel Subsystems have been implemented according to the HARTEX design doc-
ument [5]. The design is also influenced by the features provided by the processor and
the software design ideas proposed by Rust. The Kernel has been designed with a fo-
cus on predictable execution, low latency, and compile-time Memory and Concurrency
safety.

The uniqueness of this implementation in Rust is attributed to the following :

• Software architectural novelties (of HARTEX);
• Hardware features and
• Language features.

2.1 Kernel Architecture

The HARTEX design has been developed, keeping in consideration the tight CPU and
memory constraints of Microcontrollers. The novelties in the Architecture are [5, Chap-
ter 2] :

• Due to the usage of BooleanVectors, the Kernel does not use complex data-structure
like queue or list;

• Scheduling, Software bus, and Resource management is implemented with Boolean-
Vectors, which reduce the memory and performance overhead of the Kernel;

• Non-blocking Synchronisation and Communication between tasks are achieved
through BooleanVectors semaphores;

• Event manager helps writing interrupt handlers with much lower execution times
and

• Resource management via Stack-based priority ceiling protocol, which overcomes
the problems of both deadlock and priority-inversion.

8 Chapter 2. Kernel Architecture and Design

FIGURE 2.1: Kernel Organization

2.1.1 Top-level Organization

The Kernel is organized into various subsystems, as shown in Figure 2.1. Each module
encloses the associated data-structures and routines in it. The Subsystems interact with
each other via appropriate interfaces; they also provide certain public calls that can be
invoked by the end-application [5].

2.1.2 Kernel Subsystems

The Kernel Subsystems are :

• Task Manager;
• Integrated Event Manager;
• Resource Manager;
• Software Bus and
• Hardware Adaptation Layer.

Task Manager

The end-application in real-time systems are composed of several individual tasks. In
the implementation, the tasks are defined as functions and are passed on to the Kernel
with their corresponding priority. The Task Manager schedules the tasks based on their
priority [5]. On activation of a higher priority task, this module handles storing the con-
text of the current task and loads the context of the highest priority task. The Scheduler
developed in this project is preemptive and priority-based.

2.1. Kernel Architecture 9

Multi-tasking in single-core processors is done by scheduling multiple tasks one by
one on the CPU. A task can exist in one of the following four states [5]:

• Running: The task is currently running on the CPU.
• Ready: The task is currently not running but is ready to be executed.
• Preempted: When a higher priority task is released, the low priority task is pre-

empted; and the high priority task starts execution.
• Inactive: The task has finished execution.

Resource Manager

In multitasking systems, the shared resources are to be used in an atomic fashion; this
can be easily achieved by the use of Mutex. But Atomic execution of resources intro-
duces Deadlocks. Deadlocks cannot be accepted in real-time systems as they put the
whole system on a halt. HARTEX employs the Stack-based priority ceiling protocol (SBPC)
[4], which ensures the atomic use of resources without running into deadlocks [5].

The Resource manager ensures atomicity by execution locking, i.e., When a resource
is being locked, all competing tasks are blocked right away. These tasks are unblocked
when the resource is unlocked [5].

Software Bus

Software bus handles task synchronization and Communication. The Kernel is designed
to operate asynchronously. When a task requests for notification, the Kernel doesn’t
wait for the notification to be dispatched. Instead, it returns false if not available yet
and returns the corresponding value in case the notification has arrived. Blocking the
Kernel would affect the performance of the system on the whole.

Task Synchronization

Some tasks start or resume execution beyond a certain point (called a synchronization
point) only if some other task has completed execution till a certain point. Synchro-
nization is achieved by notifying the tasks on reaching the synchronization point. In
HARTEX, it is achieved through semaphores.

Task Communication

Communication is similar to Synchronization. But in Communication, messages can be
passed onto the other tasks at the synchronization points. HARTEX Messaging system
is designed based on Content Oriented Messaging [5]. It implies that the details of the
sender, receivers, and message buffer need not be specified every time to send a mes-
sage, only the name of the message is required. The details of the sender, receivers, and

10 Chapter 2. Kernel Architecture and Design

the message buffer are provided while initializing the Message primitive at configura-
tion stage.

Time Manager

Time manager can be understood as the system clock. It is tightly coupled with the Sy-
sTick timer interrupt, which updates the milli-second field of the time manager, which
simultaneously updates the seconds, minutes, and hours fields if required. It is used to
dispatch events in the Event Manager, and also can be used by the tasks to get the time
elapsed.

Event Manager

This module is used to dispatch events on the occurrence of interrupts and other Tim-
ing events [5]. The event manager recognizes interrupts via the Hardware Adaptation
Layer (HAL). Every event specified has an event descriptor that specifies how the event
should be handled. The event manager uses the event descriptor and notifies other
Kernel Subsystems to take appropriate action.

Event Manager provides a significant improvement in end-application predictabil-
ity. As the interrupt handler itself does not perform the task, the end functionality re-
quired is defined as a task. The interrupt handler just notifies the event manager, which
further informs other subsystems; this keeps the execution time of interrupt handlers
very low. During the execution of interrupt handlers, the occurrence of other interrupts
is ignored. Hence, keeping light interrupt handlers increases the number of interrupts
that can be serviced in a time interval.

Hardware Adaptation Layer (HAL)

This is the closest layer in the Kernel to the hardware. The purpose of the hardware
abstraction layer is to allow upper layers of software to discover and use the hardware
through an abstract API [5]. HAL makes it easy to define interrupt-handlers and to
configure onboard GPIO pins, clocks, etc. Note that the HAL has not been implemented
as a part of this thesis; instead, a standard HAL implementation for cortex-m based
boards has been used[12].

2.1.3 Stack-Based Priority Ceiling Protocol (SBPC) [4]

The Kernel being static knows beforehand about all the tasks, resources, and the depen-
dencies between them. SBPC takes advantage of this information to provide mutual
exclusion between resources while simultaneously avoiding deadlocks [5, Chapter 6].

For deadlocks to occur, four conditions must be held simultaneously :

2.2. Hardware 11

• Mutual Exclusion
• Cyclic Waiting
• No Preemption
• hold and wait

To avoid deadlocks, SBPC breaks the cyclic wait condition. The resources and tasks
accessing them are known in advance. Every resource has a corresponding Resource
Control Block (RCB), which holds the ceiling priority of the resource. The ceiling prior-
ity of a resource is the priority of the highest priority task that can access the resource.
For example, let’s say resource R1 is shared by five tasks with priorities 5, 3, 8, 2, 7
correspondingly. Then the ceiling priority of R1 is 8.

The highest ceiling priority of all the currently locked resources is stored in a variable
called the System Ceiling.

Pi(t) stores the value of the System Ceiling at time t, Pi_stack stores the history of
Pi(t). It is initialized to a value Ω, which is a value lower than the priorities of all tasks
(for example, -1). When all resources are free, Pi = Ω. Each time a resource is allocated
to a task, its ceiling priority is pushed onto the Pi_stack. Note that a request for a re-
source is only processed if the ceiling priority of the resource is greater than the System
Ceiling. Tasks with priorities lesser than the System Ceiling at the point in time will not
be executed even if the task manager has released them. In this way, cyclic waiting of
resources can be avoided.

2.1.4 Dynamic Memory Allocation

The Kernel does not use dynamic data structures. But the end application might need
dynamic data structures for providing the required functionality. Thus the Kernel sup-
ports an optional allocator which can be used to create dynamic data structures.

2.1.5 Atomic execution in Single-processor multi-tasking systems

In Single processor systems, atomic execution is obtained by disabling interrupts before
the critical section and enabling it after them. If interrupts are disabled, the CPU won’t
interfere with currently executing code, therefore achieving atomic execution [16].

2.2 Hardware

The Kernel implemented is designed for ARM-Based microcontrollers, specifically Cortex-
M4 (Armv7E-M) based ones. The reason for choosing ARM is that it is the most popu-
lar and widely used embedded platform. It is mainly used in portable devices due to

12 Chapter 2. Kernel Architecture and Design

its low power consumption and reasonably good performance [6]. It’s used in smart-
phones, tablets, multimedia devices, wearables, etc.

The Kernel implemented has been developed and tested on STM32f407VET6[17],
which is a Cortex-M4 based microcontroller from STMicroelectronics. The specifications
of the platform are as follows :

• Cortex M4 microcontroller (168 MHZ)
• 512K Flash memory
• 196K RAM
• Power Consumption: 238 µA/MHz at 168 MHz
• Up to 17 timers: 16- and 32-bit running

The Kernel implementation is not dependent on features provided by the micro-
controller, but it uses the features provided by the Microprocessor. A few features of
Cortex-M4 has been very instrumental in the Kernel Design.

2.2.1 Interrupt Handlers

Embedded platforms supports specifying various interrupt handlers; some of them can
be configured to the developers’ needs (external interrupts). The Kernel uses 3 inter-
rupts for its operation : SysTick, PendSV, and SVC.

SysTick

SysTick is a timer that is a part of the Nested vector interrupt control (NVIC) controller
in the Cortex-M microprocessor [6]. It is built and designed to provide a periodic inter-
rupt for Kernels, but it can be used for other simple timing purposes. SysTick interrupt
handler is used for time management, scheduling tasks regularly and for dispatching
timing events. Note that by default, SysTick is the highest priority interrupt; hence the
Time Manager of the Kernel will always stay in sync.

PendSV

PendSV interrupt is a software interrupt, i.e., it is raised by the application and not the
hardware [6]. PendSV interrupt handler is used for context switch in the implemen-
tation. The reason for performing context switch in PendSV instead of doing it in the
SysTick itself is to maintain a low response delay.

Note that Interrupts have priorities, SysTick has the highest priority while PendSV
has the lowest while other interrupts like external interrupts lie in between. If an inter-
rupt request IRQ, takes place before the SysTick exception, the SysTick exception will

2.2. Hardware 13

preempt the IRQ handler. In this case, the OS should not carry out the context switch-
ing (Figure 2.2). Otherwise, the IRQ handler process will be delayed [6]. Another case
that would cause a problem is when External interrupts are raised while the CPU was
serving SysTick. Then the context switch would have occurred before servicing these
external interrupts. But if context switch was done in PendSV, then all the external
interrupts are serviced before performing the context switch. Thus, by using PendSV
interrupts, the Kernel can guarantee better response time.

FIGURE 2.2: Illustration of PendSV interrupt [6]

SVC

SVC interrupt is a software interrupt. SVC is for generating operating system function
calls. Instead of allowing user programs to access hardware directly, an operating sys-
tem may provide access to hardware via an SVC interrupt [6]. In the Kernel developed,
SVC is used for a few function calls which can only be executed in privileged mode.
The unprivileged code creates the SVC interrupt, and the interrupt handler performs
the privileged task.

2.2.2 Privileged execution mode

The Cortex-M4 processor has two operation modes and two privilege levels [6].

• The operation modes :

– Thread mode: the processor is running a normal program.
– Handler mode: the processor is running an exception handler like an inter-

rupt handler or system exception handler.

• The privilege levels :

14 Chapter 2. Kernel Architecture and Design

– privileged level and user level: it provides a mechanism for safeguarding
memory accesses to important memory regions as well as provides a basic
security model.

In thread mode, the CPU can either be in a privileged state or in the user state. But
while handling exceptions/interrupts, the processor switches to the privileged state [6].
In the privileged state, a program has access to all instructions and registers and can
write to any register. But in the case of user state, the program is constrained to ensure
safety in the application. When an exception takes place, the processor always switches
back to the privileged state and returns to the current state after exiting the exception
handler [6].

In Cortex-M4, the following Registers cannot be accessed in the user state [12].

• BASEPRI
• CONTROL
• FAULTMASK
• MSP
• PRIMASK

The separation of privileged and user code improves the security of the system by
preventing system configuration registers from being accessed or changed by user tasks.

The Kernel developed exploits this feature to ensure safety in the end application.
All the tasks in the Kernel execute in the user-space. Even though many Kernel func-
tions run in the user-space, a few essential Kernel routines can only be executed in the
privileged space :

• Hardware Peripheral initialization and configuration;
• Kernel Initialization and setup;
• Tasks configuration;
• Declaration and Initialization of Kernel Primitives (Resources, Messages, Semaphores,

and Events) and
• Context switch (which heavily influences the other Kernel modules).

If any of the Kernel routines mentioned are executed from the user level, the Kernel
throws an error or halts at a hard fault.

In the case where a thread ends, there is a need to switch from user state to privi-
leged state to start the next task. So this is solved by raising an interrupt(SVC) from the
thread mode. When this is done, the processor shifts to the interrupt handler for SVC
exception, which in turn does the context switch (as interrupts run in privileged mode)
and loads the new task onto the board. Now when the processor returns to the user
state, it executes the newly loaded process.

2.2. Hardware 15

2.2.3 2 Stack Pointers

Cortex-M maintains two stack pointers: a Main Stack Pointer (MSP) and a Process Stack
Pointer (PSP). By default, all privileged state (Kernel code and interrupt handlers) code
runs on the MSP while the user state code (threads/tasks) runs on PSP [6].

The fact that the operating system and exception handlers use a different stack from
the application means that the OS can protect its stack and prevent applications from
accessing or corrupting it. Also, it ensures that the OS does not run out of stack if the
application consumes all the available stack space. It means that there is always space
on the stack to run an exception handler in the case of errors [6].

Similar to the Privileged execution mode, a significant chunk of the OS runs on the
main stack.

2.2.4 CLZ Instruction

In the Task Management Module, the decision of the next task to be scheduled uses
a function that calculates the Most Significant Bit (MSB) of the value passed to it. This
function implemented algorithmically takes O(no_of_tasks) time to execute, which makes
it dependent on the number of the tasks in the Kernel. But the goal of the Kernel imple-
mentation is to have the all Kernel routines as optimal as possible.

ARM support Count Leading Zeroes (CLZ) CPU instruction, which is faster than any
scalable implementation to calculate MSB. The Kernel developed uses this instruction
to calculate the MSB to ensure speed and scalability [6].

2.2.5 WFE Instruction

Consider a case in which all the tasks have finished executing. In this case, the Kernel
has no task to schedule and just has to wait for some task to be released by an tim-
ing/external event. But until this, the Kernel will have to wait. Thus, the Kernel itself
defines a task with zero priority called the Idle task. This task just loops and does noth-
ing productive. Thus, whenever the Kernel runs out of tasks to schedule, Idle task is
scheduled. But, infinite looping means the CPU is never free. Which directly affects the
power consumption of the embedded device on the whole.

ARM supports Wait For Event (WFE) CPU instruction, which on execution puts the
CPU to sleep until the occurrence of the next event. The Idle task executes the WFE
instruction in a loop. So if there is no task to be scheduled, the Idle task puts the CPU to
sleep until the next event. This reduces the power consumption considerably.

[6].

16 Chapter 2. Kernel Architecture and Design

2.3 Language Features

2.3.1 Generics

Generics are used for defining generalized function/structs/types. It reduces code du-
plication and helps the compiler to ensure type correctness [15].

Listing 1 Rust Lang : Generics

1 struct Sample<T> {

2 field1: T,

3 field2: T,

4 }

5

6 let x = Sample {field1 : 1, field2 : 5}

7 let y = Sample {field1 : "hello" , field2 : "all"};

In listing 1 Sample has been defined only once, x and y hold instances of Sample
with different types in it. But note that in this case, Sample::field1 and Sample::field2
have to be of the same type as they are defined to be of the same Generic Type T. This
is how Rust enforces type safety statically. For example, Listing 2 would not compile
because Sample::field1 and Sample::field2 have to be of different types.

Listing 2 Rust Lang : Generics Example

1 let x = Sample {field1 : 1, field2 : "hello" }

In Listing 3, Here Sample::field1 will be of type T1 and Sample::Field2 of type T2.

Listing 3 Rust Lang : Generics with Multiple Type parameters

1 struct Sample<T,U> {

2 field1: T,

3 field2: U

4 }

Similarly, Generic types can also be used to define functions :

2.3. Language Features 17

Listing 4 Rust Lang : Generic Functions

1 fn generic_function<T> (a: T, b: T) {

2

3 }

2.3.2 Enums

Rust enums are very similar to C/C++ enums (Listing 5). They help define types by
enumerating its possible values [13].

Listing 5 Rust Lang : Enums

1 enum Car {

2 Sedan,

3 Hatchback,

4 SUV

5 }

The developer can define an instance of the values in an Enum, like in Listing 6.

Listing 6 Rust Lang : Enums example

1 let x = Car::Sedan;

2 let y = Car::Hatchback;

A feature that makes Rust enums unique and robust is that the enums can hold
values. This allows definition of more powerful types like in Listing 7.

18 Chapter 2. Kernel Architecture and Design

Listing 7 Rust Lang : Enums Example

1 enum IpAddress {

2 IpV4(u8, u8, u8, u8),

3 IpV6(String)

4 }

5

6 let ip1 = IpAddress::IpV4(192,198,1,1);

7 let ip2 = IpAddress::IpV6("2001:db8::8a2e:370:7334");

2.3.3 Error Handling

Generics and Enums give birth to two powerful types, which makes compile-time error
handling and other static checks very robust. The Rust library defines two Enums,
Option and Result (Listing 8.

Listing 8 Rust Lang : Error Handling

1 enum Option<T> {

2 Some(T),

3 None

4 }

5

6 enum Result<T,E> {

7 Ok(T),

8 Err(E)

9 }

The Option type encodes the very common scenario in which a value could be some-
thing or nothing. The Result Enum helps represent cases where a function might not
succeed, so the return value will either contain the value or the Error. Expressing this
concept in terms of the type system means the compiler can check whether the devel-
oper has handled all the cases that should be handled; this functionality can prevent
bugs that are extremely common in other programming languages [13]. Option and
Result are better implementations of Null pointers and try-catch.

2.3. Language Features 19

2.3.4 Traits

Traits in Rust are very similar to Java interfaces. It is a language feature that tells the
compiler about the functionality a type must provide [18].

Traits allow a type to make certain promises about their behavior. Generic functions
can exploit this to specify constraints on the types they accept. Hence the compiler can
now be sure that the function arguments will definitely provide the functionalities that
the function expects from it.

Listing 9 Rust Lang : Traits

1 trait HasArea {

2 fn area(\&self) -> f64;

3 }

4

5 fn print_area <T: HasArea> (shape: T) {

6 println!("This shape has an area of {}", shape.area());

7 }

In Listing 9 though print_area doesn’t know what would be the type of shape. The
compiler can be sure it implements HasArea trait; hence, area() will be definitely defined
by the type T.

An Important trait that the Kernel implementation uses is the Sync trait. Any type
that implements the Sync trait is understood to be safe to be shared across tasks. The
compiler ensures that variables shared across tasks or between tasks and interrupt han-
dlers implement the Sync trait.

21

Chapter 3

Implementation

The Kernel internally uses only statically allocated structures to guarantee performance.
Thus, the configuration variables like maximum no. of tasks, resources, etc. are defined
as constants. The Kernel itself is developed as an independent rust library.

Every Kernel Subsystem requires the definition of a few data-structures; these def-
initions reside in a separate folder. The Kernel routines and primitives are dependent
on these data-structures; thus, they are imported and initialized in the file in which the
routines are defined. Appendix A Explains the Kernel Code structure.

3.1 Kernel Configuration

Rust allows developers to compile code based on flags passed to the compiler [11]. This
feature has been used to provide the configurability in the Kernel. In Cargo.toml, along
with the package version, the developer can mention additional feature flags; these are
used by the library to enable and disable some particular features.

Listing 10 Cargo.Toml for Max 8 tasks.

1 hartex-rust = { version = "0.3.0", features=["tasks_8"] }

In Listing 10, adding the tasks_8 feature flag sets the max tasks in the Kernel to 8.
Feature flags allow configuration of the Kernel at the compile time without having to
tinker with the source code. Developers can also specify multiple feature flags.

Listing 11 Cargo.Toml for Max 8 tasks and 16 resources.

1 hartex-rust = { version = "0.3.0", features=["tasks_8", "resources_16"]

}↪→

22 Chapter 3. Implementation

Listing 11 Will allocate Kernel data-structures to store at max 16 resources and eight
tasks.

Listing 12 Cargo.Toml with conflicts.

1 hartex-rust = { version = "0.3.0", features=["tasks_8", "tasks_16"] }

Specification according to Listing 12 fails to compile as it is conflicting.
By default, the Kernel supports 32 Messages, Semaphores, Events, Tasks and Re-

sources. The supported feature flags are :

• tasks_8
• tasks_16
• tasks_32 (default)
• resources_16
• resources_32 (default)
• resources_64
• events_16
• events_32 (default)
• events_64
• Semaphores_16
• Semaphores_32 (default)
• Semaphores_64

3.2 Boolean Vector

A Boolean Vector internally translates to a 32-bit integer. Each bit corresponds to the task
with TaskID as the position of the bit. Boolean Vectors are used to represent blocked_tasks
and active_tasks.

To understand better, consider Boolean Vectors with only 8 bits. Let’s say active_tasks
is 0b10010101; this implies that Tasks with TaskIds 0,3,5,7 are active tasks. Let blocked_tasks
be 0b00010001; this means that Tasks with TaskIds 3,7 are blocked tasks.

We can clearly see how this is much more optimal than other Kernel implementa-
tions that use queues and lists. For example, for enabling or disabling tasks, the Kernel
will only have to set/un-set bits in active_tasks.

The Thesis will only discuss the Kernel routines and primitives. For Implementation de-
tails, take a look at the API documentation and source code. Links to the same are available in
Appendix A.

3.3. Task Manager 23

3.3 Task Manager

3.3.1 Subsystem Data-structures

Listing 13 Task Manager Definition

1 pub struct TaskControlBlock {

2 pub sp: usize,

3 }

4

5 pub struct Scheduler {

6 pub curr_tid: usize,

7 pub is_running: bool,

8 pub task_control_blocks: [Option<TaskControlBlock>; MAX_TASKS],

9 pub blocked_tasks: BooleanVector,

10 pub active_tasks: BooleanVector,

11 pub is_preemptive: bool,

12 pub started: bool,

13 }

• TaskControlBlock : A single tasks’s state.

– TaskControlBlock::sp : Holds a reference to the stack pointer for the task.

• Scheduler : Maintains state of all tasks in the Kernel.

– Scheduler::curr_tid : The TaskId of the currently running task.
– Scheduler::is_running : True if the scheduler has started scheduling tasks on

the CPU.
– Scheduler::task_control_blocks : An Array of TaskControlBlocks corresponding

to each task.
– Scheduler::active_tasks : A boolean vector in which, if a bit at a position is true,

it implies that the task is active and to be scheduled.
– Scheduler::blocked_tasks : A boolean vector in which, if a bit at a position is

true, it implies that the task is blocked and cannot be scheduled even if it’s
active.

– Scheduler::is_preemptive : A variable which decided if the scheduler should
preemptively schedule tasks or not.

– Scheduler::started : Set true as soon as the first task is scheduled.

24 Chapter 3. Implementation

3.3.2 Kernel Routines

init(is_preemptive: bool)

Initializes the Kernel scheduler. is_preemptive defines if the Kernel should operating
preemptively or not. This method sets the is_preemptive field of the Scheduler instance
and creates the idle task. The idle task is created with zero priority; hence, it is only
executed when no other task is in Ready state.

start_Kernel(&self, peripherals: &Peripherals, tick_interval: u32)

Starts scheduling tasks on the system. It also starts the SysTick timer using the reference
of the Peripherals instance and the tick_interval. Peripherals is a struct which provides
abstract APIs to interact with the hardware. tick_interval specifies the frequency of the
timer interrupt. The SysTick interrupt updates the Kernel regarding the time elapsed,
which is used to dispatch events and schedule tasks.

create_task(&self, priority: usize, stack: &mut [u32], handler_fn: fn(&T) -> !, param:
&T)

The program counter for the task is the value of handler_fn, which is a function pointer.
param is a variable whose reference will be made accessible to the task; this helps in
sharing variables with other tasks. Both these values are stored in a specific index of
the stack . When the context switch routine loads the stack for this task, the appropriate
program counter and argument for that function are loaded by the CPU.

An important thing to note is that the task’s index in the task_control_blocks is the pri-
ority of the task. Hence there can be only one task of a priority. Also, another important
thing is that the argument param is of a generic type T.

<T: Sync> informs the compiler that the type T must implement the Sync trait. By
implementing the Sync trait, a type becomes safe to be shared across tasks. Hence if a
type that doesn’t implement Sync trait (like a mutable integer) is passed as param, then
the code won’t compile. This ensures that only concurrency-safe variables are shared
between tasks. Kernel primitives like Message and Resource (which are data race safe)
implement the Sync trait; hence, they can be passed as param.

handler_fn is of type fn(&T) -> !, which implies it is a function pointer which takes
a parameter of Type &T and shall not return. The newly created TaskControlBlock is
pushed onto task_control_blocks.

block_tasks(&self,task_mask: BooleanVector)

The Kernel blocks the tasks in tasks_mask. The bits set in task_mask are set in Sched-
uler::blocked_tasks.

3.3. Task Manager 25

unblock_tasks(&self,task_mask: BooleanVector)

The Kernel unblocks the tasks in tasks_mask. The bits set in task_mask are un-set in Sched-
uler::blocked_tasks.

schedule()

This function is called from both privileged and unprivileged context. If the function is
called from privileged context, then preempt() is called. Else, svc_call() is called, which
creates a SVC interrupt. And the SVC interrupt handler (privileged mode) calls sched-
ule again. Thus, the permission level is raised via the interrupt handler.

preempt()

If the scheduler the highest priority task and currently running task aren’t the same,
then the PendSV interrupt is raised, this interrupt handler required context switch. In
case the Kernel has just started and the Kernel has to dispatch its first task, it only loads
the context, and does not store the current context. The task with the highest priority is
evaluated by get_next_tid().

task_exit()

The task_exit function is called just after a task finishes execution. This function un-sets
the task’s corresponding bit in the active_tasks and calls schedule(). In this way, the Kernel
schedules the next highest priority task, which is in Ready state.

get_curr_tid()

Returns the TaskId of the currently running task (curr_tid) in the Kernel.

get_next_tid()

Returns the TaskId of the current highest priority task (in Ready state) in the Kernel. The
task with the highest priority in Ready state is evaluated by calling get_MSB(active_tasks
& (blocked_tasks)).

release(&self, task_mask: BooleanVector)

The Kernel releases the tasks in the task_mask, hence these tasks transition from the
waiting to the ready state. The set bits in task_mask are set in Scheduler::active_tasks.

26 Chapter 3. Implementation

is_preemptive(&self)

Returns if the scheduler is currently operating preemptively or not.

enable_preemption(&self)

Enables preemptive scheduling.

disable_preemption(&self)

Disables preemptive scheduling.

spawn!

According to create_task(...), the tasks must be looping infinitely. But, if the tasks run in-
finitely, then the scheduler will schedule only that task. Hence the task is defined as the
work that will be done in one iteration of the handler_function passed on to create_task(...).
task_exit() must be called at the end of every iteration. The spawn macro makes it eas-
ier to define tasks; its expansion takes care of these constraints. It also defines a static
variable of type TaskId, which corresponds to the task created.

3.3.3 Task State transition diagram

FIGURE 3.1: Task State transition Diagram

3.4. Resource Manager 27

The following methods can cause the corresponding transitions

• A : release()

• B : schedule()

• C : task_exit()

• D : block_task() and schedule() (when a higher priority task is released)

• E : unblock_task() and schedule() (when all higher priority tasks are preempted)

3.4 Resource Manager

3.4.1 Subsystem Data-structures

Listing 14 Resource Manager Definition

1 const PI: i32 = -1;

2

3 pub struct ResourceControlBlock {

4 ceiling: TaskId,

5 tasks_mask: BooleanVector,

6 }

7

8 pub struct ResourceManager {

9 resource_control_blocks: [Option<ResourceControlBlock>;

MAX_RESOURCES],↪→

10 top: usize,

11 pi_stack: [i32; MAX_RESOURCES],

12 curr: usize,

13 system_ceiling: i32,

14 }

• ResourceControlBlock : Describes a single Resource

– ResourceControlBlock::tasks_mask : An boolean vector holding which tasks have
access to the resource.

– ResourceControlBlock::ceiling : It holds the priority of the highest priority task
that can access that resource.

28 Chapter 3. Implementation

• ResourceManager : Manages the state of all Resources and notifies the task manager
regarding blocking and unblocking of tasks.

– ResourceManager::resource_control_blocks : An Array of ResourceControlBlocks.
– ResourceManager::curr : Next empty index in the array where the new Re-

sourceControlBlock can be stored.
– ResourceManager::pi_stack : This stack is used for locking and unlocking of

resources.
– ResourceManager::top : Points the top of the pi_stack.
– ResourceManager::system_ceiling : Hold the ceiling of the resource with the

highest ceiling amongst the currently locked resources.

In the case where the resource locking/unlocking is being performed outside user
tasks (privileged mode), the priority is considered to be 0. This helps as the Kernel
would want to ensure that the resource can be accessed in interrupts and main thread
only if no actively running task is holding it locked (as 0 is the minimum task priority).
Also, 0 priority is assigned to the idle task. The idle task is defined by the Kernel such
that it doesn’t access any resources; thus, priority 0 can be used for Interrupt handlers
without any conflicts.

The ResourceId of a Resource is its index in the resource_control_blocks.

3.4.2 Resource Container

Resource Container is a concurrency-safe Kernel primitive to manage the state of each
resource individually. It uses a global instance of ResourceManager to handle locking
and unlocking of the resources. It provides a wrapper around any generic type and
makes it safe to be shared across threads. It guarantees not only atomic access to re-
sources but also deadlock-free resource allocation, which is a stronger guarantee.

Listing 15 Resource Container Definition

1 struct Resource<T> {

2 inner: T,

3 id: ResourceId,

4 }

• Resource::inner : This field holds the actual resource that has to be locked.
• Resource::id : Holds the ResourceId allotted by ResourceManager for this resource.

3.4. Resource Manager 29

Resource::lock(&self)

Called to lock the resource; once locked, until unlocked, no other task can access this
resource. All tasks which are competing for this resource are locked to avoid data races
and deadlocks. The competing tasks for a resource are defined as the tasks which have
lower priority than the ceiling of the Resource.

Resource::unlock(&self)

Called to unlock the resource. It unblocks the tasks which were blocked while locking
this resource.

Resource::acquire(&self, handler: F(&T))

Acquire is a helper function that ensures that if a resource is locked, it is unlocked too.
It also ensures that the resources are unlocked in the order in which they were locked
[5]. It takes one argument, which is function closure, that takes a parameter of type &T.
If the resource is free, then the closure is executed with inner as the parameter.

Resource::access(&self)

There might be cases where the variable has to be accessed without locks. This function
is used to access the resource bypassing the locking system, and it returns a reference to
inner. This function is explicitly marked unsafe.

3.4.3 Kernel Routines

init_peripherals()

This function instantiates the cortex_m::Peripherals struct, wraps it in a resource con-
tainer, and returns it. This peripheral instance is instrumental in configuring the GPIO
pins on the board, clock, etc. it also has to be passed on to start_Kernel() function.

new(resource: T, tasks_mask: BooleanVector)

Instantiate a new Resource. Also, one important thing is that once a variable is passed
onto this function, the variable cannot be accessed in the scope from where it was
passed. This function takes ownership of the variable. It returns a resource instanti-
ated with the value. Hence ensuring the value cannot be accessed outside the Resource
container.

The 0th bit is set in tasks_mask so as to allow privileged code (all user tasks are un-
privileged) to be able to access all the resource by default.

30 Chapter 3. Implementation

3.5 Software Synchronization Bus

3.5.1 SemaphoreControlBlock

Semaphores form the core of synchronization and communication in the Kernel.

Listing 16 SemaphoreControlBlock Definition

1 struct SemaphoreControlBlock {

2 flags: u32,

3 tasks: u32,

4 }

• SemaphoreControlBlock::flags : It is a boolean vector that represents the tasks that
have to be notified by the semaphore.

• SemaphoreControlBlock::tasks : It is a boolean vector that corresponds to the tasks
that are to be released by the semaphore on being signaled.

SemaphoreControlBlock::flags and SemaphoreControlBlock::tasks play very important roles
in task synchronization. The tasks in the tasks field are released whenever the sig-
nal_and_release() call is made on the semaphore. flags is updated on every call to sig-
nal_and_release() with the parameter passed to it. Whenever test_and_reset() is called, it
returns true if the TaskId of the current task is enabled in the flags field. After that, it
un-sets the TaskId of in the flags field.

SemaphoreControlBlock::new(tasks_mask: u32)

Creates and returns a new semaphore instance with tasks field set to tasks_mask.

SemaphoreControlBlock::signal_and_release(&mut self, tasks_mask: BooleanVector)

This method, when called, appends the tasks_mask to the flags field. The tasks in the
tasks field of the Semaphore are released.

SemaphoreControlBlock::test_and_reset(&mut self, curr_tid: TaskId)

This method returns true if the TaskId curr_tid is set in the semaphore’s flags field and
then un-sets it.

3.6. Software Communication Bus 31

3.5.2 Subsystem Data-structures

Listing 17 SemaphoresTable Definition

1 struct SemaphoresTable {

2 table: [SemaphoreControlBlock; SEMAPHORE_COUNT],

3 curr: usize,

4 }

• SemaphoresTable::table : List of SemaphoreControlBlocks.
• SemaphoresTable::curr : Max index in table till which SemaphoreControlBlocks

have been allotted.

The SemaphoreId of a Semaphore is its index in SemaphoresTable::table.

3.5.3 Kernel Routines

This module instantiates a global instance of SemaphoreTable and then defines func-
tions which provide task synchronization functionality with its help.

new (tasks_mask: BooleanVector)

Creates a new SemaphoreControlBlock and returns its SemaphoreID. The newly create
SemaphoreControlBlock is appended to table of SemaphoreTable.

signal_and_release(sem_id: SemaphoreId, tasks_mask: BooleanVector)

Calls the signal_and_release() method on the Semaphore with SemaphoreID as sem_id.

test_and_reset(sem_id: SemaphoreId)

Calls the test_and_reset() method on the Semaphore with SemaphoreID as sem_id.

3.6 Software Communication Bus

Inter-task communication also utilizes semaphores to release tasks and to keep track of
the tasks which can access the message and the tasks that have to be notified about the
arrival of messages.

32 Chapter 3. Implementation

3.6.1 Subsystem Data-structures

Listing 18 Message Table definition

1 pub struct MCB {

2 pub receivers: BooleanVector,

3 }

4

5 pub struct MessagingManager {

6 pub mcb_table: [Option<MCB>; MESSAGE_COUNT],

7 pub scb_table: SemaphoresTable,

8 }

• MCB : Corresponds the details of a single message.

– MCB::receivers : Boolean vector representing the receiver tasks.

• MessagingManager : The message table stores the metadata of messages, i.e., the
receiver tasks and the tasks which to be released when the message has been dis-
patched.

– MessagingManager::mcb_table : This array stores the MCB corresponding to
each message.

– MessagingManager::scb_table : SemaphoresTable

3.6.2 Message Container

It holds a variable of a generic type so that any message can be stored in it. It implements
the Sync trait making it safe to be shared across tasks. In the Messaging Subsystem, a
global instance of MessageTable is defined and used by the Kernel primitives.

Listing 19 Message Container Definition

1 struct Message<T> {

2 inner: T,

3 id: MessageId,

4 }

• Message::inner : Holds the Message that has to be sent to the receiver tasks.

3.6. Software Communication Bus 33

• Message::id : Holds the MessageId corresponding to the message, which will be
used to notify and release the tasks on arrival of the message.

Message::new(val: T, id: MessageId)

Creates a new Message of type T with message_id as id and returns it.

Message::broadcast(&self, msg: T)

The value of the message is passed as an argument, which is stored in inner. Then the
updated message is broadcast, which notifies and releases tasks correspondingly. Its
called by the sender task.

Message::receive(&self)

The receiver task calls this function. It returns the message value if the message is avail-
able for being read, else returns None.

3.6.3 Kernel Routines

new(notify_tasks_mask: BooleanVector, receivers_mask: BooleanVector, msg: T)

Creates a new message container using the parameters passed to it and returns the
newly created message.

broadcast(msg_id: MessageId)

Broadcasts the message corresponding to msg_id. This function is needed only by event
manager.

34 Chapter 3. Implementation

3.7 Time management

3.7.1 Subsystem Data-structures

Listing 20 Time Manager Definition

1 struct Time {

2 m_sec_10: u32,

3 sec: u32,

4 min: u32,

5 hour: u32,

6 day: u32,

7 }

8

9 enum TickType {

10 MilliSec10,

11 Sec,

12 Min,

13 Hour,

14 Day,

15 }

• Time : This struct represents a time object.
• TickType : This enum represents the highest order time that elapsed in a tick. The

tick function returns TickType.

3.7.2 Kernel Routines

Time::tick()

A tick updates the Time object’s m_sec_10 field, which implies 10 MilliSecond has passed,
and after every tick, the other fields (Second, Minutes, Hour, and Day) of the Time object
are also updated if required. The tick method is called by the SysTick interrupt handler,
and the return value is used by the interrupt handler to dispatch events.

Note that if the returned TickType is Hour, it not only implies the current tick caused
completion of an hour, but that it caused completion of an Hour, Second, and 10 Mil-
liSecond.

3.8. Event Manager 35

now()

Returns the time object, which corresponds to the uptime of the Kernel.

3.8 Event Manager

3.8.1 Subsystem Data-structures

Listing 21 Event Manager Definition

1 pub enum EventType {

2 FreeRunning,

3 OnOff,

4 }

5

6 pub enum EventTableType {

7 MilliSec,

8 Sec,

9 Min,

10 Hour,

11 OnOff,

12 }

13

14 pub struct EventIndexTable {

15 table: [usize; EVENT_INDEX_TABLE_COUNT],

16 curr: usize,

17 }

18

19 pub struct EventManager {

20 event_table: [Event; EVENT_COUNT],

21 curr: usize,

22 ms_event_table: EventIndexTable,

23 sec_event_table: EventIndexTable,

24 min_event_table: EventIndexTable,

25 hr_event_table: EventIndexTable,

26 onoff_event_table: EventIndexTable,

27 }

36 Chapter 3. Implementation

• EventTableType : Events are executed at multiples of different time units. For ex-
ample, an event can be dispatched once every 40 milliseconds, or 50 seconds, etc.
This enum represents each such time units. Note that this includes OnOff also as
OnOff events do not belong to any of the time units; hence, it is given as a separate
field.

• EventIndexTable : An EventIndexTable is created for each of the elements of Event-
TableType.

– table: Holds the list of EventIds of events that belong to the particular Event-
TableType this EventIndexTable belongs to.

– curr: Index to the next free location in the table.

• EventManager : Holds and Implements all Event management and dispatch func-
tions.

– event_table : This array holds the Event descriptors of all events.
– curr : Points to the current empty slot in the event_table.
– ms_event_table : An instance of EventIndexTable which holds list of EventIds

of type EventTableType::MilliSec.
– sec_event_table : An instance of EventIndexTable which holds list of EventIds

of type EventTableType::Second.
– min_event_table : An instance of EventIndexTable which holds list of EventIds

of type EventTableType::Minute.
– hr_event_table : An instance of EventIndexTable which holds list of EventIds

of type EventTableType::Hour.
– onoff_event_table : An instance of EventIndexTable which holds list of Even-

tIds of type EventTableType::OnOff.

3.8. Event Manager 37

3.8.2 Event Descriptor

Listing 22 Event Descriptor Definition

1 pub enum EventType {

2 FreeRunning,

3 OnOff,

4 }

5

6 pub struct Event {

7 is_enabled: bool,

8 event_type: EventType,

9 threshold: u8,

10 counter: u8,

11 opcode: u8,

12 semaphore: SemaphoreId,

13 tasks: BooleanVector,

14 msg_index: MessageId,

15 next_event: EventId,

16 }

• EventType : It is an Enum that represents if an Event is of type FreeRunning or
OnOff.

– FreeRunning : Represents events that repeatedly occur after a particular time
threshold.

– OnOff : Represents events that are dispatched once and are then disabled.
They are executed later only if Some task enables it explicitly.

• Event : This object corresponds to an event descriptor.

– is_enabled : If the event is currently enabled or not.
– event_type : Is the event OnOff or FreeRunning.
– threshold : The frequency (of time unit in which it belongs to) in which the

Event should run.
– counter : The current time elapsed. On reaching the value of the threshold, it

is reset to zero, and the Event is dispatched.
– opcode : This is a 4-bit code that corresponds to what are the operations that

this event corresponds to.

38 Chapter 3. Implementation

– semaphore : Hold the SemaphoreId of the Semaphore that has to be signaled
when the event is dispatched.

– tasks : Holds the BooleanVector of the tasks that have to be released or sig-
naled (in case of semaphore event) when the event is dispatched.

– msg_index : Holds the MessageId of the message corresponding to the index.
– next_event : Hold the EventId of the next event that has to be triggered by this

event.

Opcode

Opcode is a 4-bit code that represents what operations an event does on dispatch.

• 1 : signal_and_release() a semaphore.
• 1«1 : broadcast() a message.
• 1«2 : release() tasks.
• 1«3 : Set next event. Next event is the event that is dispatched by the current event

on its dispatch.

It can be clearly seen how a single Opcode can end up doing multiple operations.
For e.g., an opcode of 0b1010 would represent both signaling a semaphore and releasing
tasks. Hence each Event descriptor holds fields corresponding to the parameters that
the Opcode describes :

• Semaphore : SemaphoreId(Event::semaphore) and BooleanVector of tasks(Event::tasks)
• Message : MessageId(Event::msg_index)
• Tasks : BooleanVector of tasks(Event::tasks)
• Next Event : EventId(Event::next_event)

Note that In case where an event has to release a Semaphore and release tasks, the
field Event::tasks is being used to describe both. set_tasks function is called to set the
Event::tasks, and set_semaphore is called to set the Event::semaphore and Event::tasks fields.
Thus, in the implementation of the functions configuring the Events, checks have been
done to ensure no double writes. If set_tasks and set_semaphore are called for the same
event, then the Kernel throws an error.

3.8.3 Kernel Routines

This Module instantiates a global instance of EventManager which is configured and
used by the Kernel to manage Events.

3.8. Event Manager 39

sweep_event_table(event_type: EventTableType)

Dispatches all the events with EventTableType as event_type. For a FreeRunning event,
when an event is dispatched its counter value is reduced by 1. If counter reaches zero
then it is reset to threshold and the operations mentioned in its Opcode are performed.

enable_event(event_id: EventId)

This function is used to enable events if disabled. Useful for dispatching OnOff type
events.

new_FreeRunning (is_enabled: bool, threshold: u8, event_counter_type: EventTable-
Type)

Creates a new Event of type EventType::FreeRunning.

new_OnOff(is_enabled: bool)

Creates a new Event of type EventType::OnOff.

set_semaphore(event_id: EventId, sem: SemaphoreId, tasks_mask: BooleanVector)

Configure the event with EventId as event_id for signalling a semaphore on dispatch.
The Event::semaphore field of Event is set to sem, and Event::tasks to tasks_mask.

set_tasks(event_id: EventId, tasks_mask: BooleanVector)

Configure the event with EventId as event_id for releasing tasks in the tasks_mask Boolean-
Vector. The Event::tasks field of Event is set to tasks_mask.

set_message(event_id: EventId, msg_id: MessageId)

Configure the event with EventId as event_id to broadcast the message with MessageId
as msg_id. The Event::msg_index field of Event is set to msg_id.

set_next_event(event_id: EventId, next_event: EventId)

Configure the event with EventId as event_id to dispatch the event with EventId as
next_event. The Event::next_event field of Event is set to next_event.

40 Chapter 3. Implementation

3.8.4 Utils

generate_task_mask(tasks: &[u32])

A helper function that generates a BooleanVector corresponding to the array of TaskIds
passed as an argument to it. It returns the BooleanVector. This function is helpful while
initializing the Kernel tasks and primitives.

is_privileged()

It plays a significant role in the Permission management. It is written using inline-
assembly. It reads the access level by reading the Control register of the CPU; returns
true if code is currently running privileged context, else returns false.

get_msb(val: u32)

This function is called very frequently in the Kernel. Hence, it is important that it is as
optimal as possible to keep the Kernel routines optimal. Most Machine architectures
provide a CPU instruction called CLZ (Count leading Zeroes), this instruction returns
the no. of zeroes before the first set bit. This instruction has been used to calculate the
MSB of a val. This function is also written in inline-assembly; it returns the position of
the Most significant bit.

3.9 Dynamic Memory Allocation

On enabling the alloc feature flag, the Kernel exports a module called alloc, which con-
tains the definition of dynamic data structures. Note that if the alloc flag is not enabled,
then the allocator code won’t be compiled. The allocator has not been implemented as
a part of this project, alloc_cortex_m[9] library has been used.

Listing 23 listing

1 hartex-rust = { version=0.0.5, features=["alloc"] }

3.10 Development Flow

The following flowchart explains how to write embedded applications and flash it on
any microcontroller.

3.11. End Application Organization (Using HARTEX) 41

FIGURE 3.2: Development Workflow

3.11 End Application Organization (Using HARTEX)

The following flowchart depicts the general workflow of working with Hartex-rust on
Cortex-M based Microcontrollers. Tooling and Development guide for Rust on Embed-
ded can be found in the rust embedded book[16].

FIGURE 3.3: End Application Organization (Using HARTEX)

• Cortex-m boilerplate : Cortex-M projects require a few Linker scripts and other files
to be able to compile for the specified machine architecure. Instead of Setting it up
manually each time, developers can use this pre-configured repository.

• Configure Linker : In the Project Folder, consists of two configuration files: memory.x

and .cargo/config . memory.x describes the memory layout of the device being
used; this file is used by the Linker while Linking. The .cargo/config file de-
scribes the compilation target and other Linker configurations. Both these files
have to be configured according to the Microcontroller’s specifications.

• Import hartex-rust : Add hartex-rust = * to the Cargo.toml to import the latest
version of Hartex-rust in the project.

https://github.com/rust-embedded/cortex-m-quickstart

42 Chapter 3. Implementation

• Import Board Crate : Almost Every Microcontroller has a Peripheral Access crate,
which provides abstract APIs to access the board peripherals. Check this page to
find the one for a specific board. Importing this crate in main.rs will configure the
Interrupt vectors on the Microcontroller, else the project won’t compile.

• Define Heap : Define memory for Heap in case the application uses dynamic data
structures.

• Write Code : Develop the application.
• Build Release binary : Run cargo build --release , this will generate the com-

piled release binary of the application that can now be flashed on to the board.
• Connect Board & Debugger to System : Embedded boards require a debugger at-

tached to the board to flash code onto it. After connecting the debugger to the
board, connect the debugger to the computer.

• Start OpenOCD : OpenOCD is a tool for on-chip debugging. It allows the devel-
oper to flash code onto the board. After connecting the debugger to the computer,
start openocd; it also instantiates a GDB server via which compiled binary can be
loaded onto the board.

• arm-none-eabi-gdb : This tool connects with the GDB server started by OpenOCD.
On passing it the path to the compiled binary, it flashes it onto the board.

https://github.com/rust-embedded/awesome-embedded-rust#peripheral-access-crates

43

Chapter 4

Testing

Initial implementation of the Kernel was tested on a Machine Architecture emulator
called QEMU. Various examples depicting the kernel features have been implemented
and tested for the correct output. Below is the code of the examples with the documen-
tation, and output with the explanation.

4.0.1 Tasks (Basic)

This example demonstrates just simple tasks and checks if they execute in the expected
order.

LISTING 24: Examples : Tasks (Basic)

1 #![no_std]

2 #![no_main]

3

4 extern crate panic_halt;

5 extern crate stm32f4;

6

7 use core::cell::RefCell;

8

9 use cortex_m::peripheral::Peripherals;

10 use cortex_m_rt::entry;

11 use cortex_m_semihosting::hprintln;

12

13 use hartex_rust::tasks::*;

14 use hartex_rust::util::generate_task_mask;

15 use hartex_rust::resources;

16 use hartex_rust::spawn;

17 use hartex_rust::types::*;

18

19 #[entry]

44 Chapter 4. Testing

20 fn main() -> ! {

21 /*

22 Gets an instance of cortex-m Peripherals struct wrapped in a RefCell

inside a Resource container.↪→

23 Peripherals struct provides APIs to configure the hardware beneath.

24 RefCell is used to provide interior mutability read more at :

25 https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

26 */

27 let peripherals: Resource<RefCell<Peripherals>> =

resources::init_peripherals().unwrap();↪→

28

29 /*

30 Define the task stacks corresponding to each task.

31 Note to specify the stack size according to the task parameters and

local variables etc.↪→

32 */

33 static mut stack1: [u32; 300] = [0; 300];

34 static mut stack2: [u32; 300] = [0; 300];

35 static mut stack3: [u32; 300] = [0; 300];

36

37 /*

38 Task definition.

39 The first parameter corresponds to the name that will be used to

refer to the task.↪→

40 The second variable corresponds to the priority of the task.

41 The third variable corresponds to the task stack.

42 The fourth variable corresponds to the task body.

43 */

44 spawn!(task1, 1, stack1, {

45 hprintln!("TASK 1");

46 });

47 spawn!(task2, 2, stack2, {

48 hprintln!("TASK 2");

49 });

50 spawn!(task3, 3, stack3, {

51 hprintln!("TASK 3");

52 });

53

Chapter 4. Testing 45

54

55 // Initializes the kernel in preemptive mode.

56 init(true);

57

58 // Releases tasks task1, task2, task3

59 release(generate_task_mask(\&[task1, task2, task3]));

60

61 /*

62 Starts scheduling tasks on the device.

63 It requires a reference to the peripherals to start the SysTick

timer.↪→

64 150_000 corresponds to the tick interval of the SysTick timer.

65 */

66 start_kernel(

67 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

68 150_000,

69);

70

71 loop {}

72 }

The Output of this code snippet is as follows :

1 TASK 3

2 TASK 2

3 TASK 1

The code runs as expected; the tasks are scheduled in decreasing order of priority.

4.0.2 Tasks (Complete)

The following code defines two tasks which take a parameter and print it to console.

LISTING 25: Examples : Tasks (Complete)

1 // Imports

2

3 #[entry]

4 fn main() -> ! {

5 let peripherals = resources::init_peripherals().unwrap();

46 Chapter 4. Testing

6

7 // These are task parameters, they are passed to the task when called

8 let task1_param = "Hello from task 1 !";

9 let task2_param = "Hello from task 2 !";

10

11 static mut stack1: [u32; 300] = [0; 300];

12 static mut stack2: [u32; 300] = [0; 300];

13

14 /*

15 The task definition here is different :

16 arg 1 : task name, this will be used to address the task across the

code↪→

17 arg 2 : priority of the task

18 arg 3 : task stack

19 arg 4 : this corresponds to by what name the task body will refer the

task argument↪→

20 arg 5 : the task argument

21 arg 6 : task body

22 */

23 spawn!(task1, 1, stack1, param, task1_param, {

24 hprintln!("{}", param);

25 });

26 spawn!(task2, 2, stack2, param, task2_param, {

27 hprintln!("{}", param);

28 });

29

30 init(true);

31 release(generate_task_mask(\&[task1, task2]));

32 start_kernel(

33 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

34 150_000,

35);

36

37 loop {}

38 }

The Output :

Chapter 4. Testing 47

1 Hello from task 2 !

2 Hello from task 1 !

The Tasks task1 and task2 take parameters task1_param and task2_param, respectively.
The parameters are called as param in the task body. The output is as expected, according
to the priority of the tasks.

4.0.3 Semaphore

The following code demonstrates using a semaphore and testing the working of meth-
ods signal_and_release and test_and_reset .

LISTING 26: Examples : Semaphores

1 // Imports

2

3 struct AppState {

4 sem1: SemaphoreId,

5 sem2: SemaphoreId,

6 }

7

8 #[entry]

9 fn main() -> ! {

10 let peripherals = resources::init_peripherals().unwrap();

11

12 /*

13 Instance of AppState, whose reference will be shared with all

tasks.↪→

14 sem1 is a Semaphore that releases task1 on being signaled,

similarly sem2 releases task2.↪→

15 */

16 let app_inst = AppState {

17 sem1: semaphores::new(generate_task_mask(\&[task1])).unwrap(),

18 sem2: semaphores::new(generate_task_mask(\&[task2])).unwrap(),

19 };

20

21 static mut stack1: [u32; 300] = [0; 300];

22 static mut stack2: [u32; 300] = [0; 300];

23 static mut stack3: [u32; 300] = [0; 300];

24

48 Chapter 4. Testing

25 spawn!(task1, 1, stack1, params, app_inst, {

26 hprintln!("TASK 1: Enter");

27 semaphores::signal_and_release(params.sem2,

generate_task_mask(\&[task2]));↪→

28 hprintln!("TASK 1: End");

29 });

30

31 spawn!(task2, 2, stack2, params, app_inst, {

32 hprintln!("TASK 2: Enter");

33 if semaphores::test_and_reset(params.sem2).unwrap() {

34 hprintln!("TASK 2: sem2 enabled");

35 } else {

36 hprintln!("TASK 2: sem2 disabled");

37 }

38 hprintln!("TASK 2: End");

39 });

40

41 spawn!(task3, 3, stack3, params, app_inst, {

42 hprintln!("TASK 3: Enter");

43 semaphores::signal_and_release(params.sem1, 0);

44 hprintln!("TASK 3: End");

45 });

46

47 init(true);

48 release(generate_task_mask(\&[task2, task3]));

49 start_kernel(

50 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

51 150_000,

52);

53 loop {}

54 }

The Output :

1 TASK 3: Enter

2 TASK 3: End

3 TASK 2: Enter

4 TASK 2: sem2 disabled

5 TASK 2: End

Chapter 4. Testing 49

6 TASK 1: Enter

7 TASK 1: End

8 TASK 2: Enter

9 TASK 2: sem2 enabled

10 TASK 2: End

The output explained step by step :

• Tasks task2 and task3 are released initially; hence, the kernel first schedules task3.
• task1 is released when sem1 is signaled, but it won’t affect the current execution as

it has a lower priority.
• After task3 exits, task2 is scheduled. It calls test_and_reset() on sem2, but as sem2 has

not been signaled yet, it returns false. Hence "TASK 2: sem2 disabled" is printed
onto the console.

• After task2, task1 is scheduled. task1 signals sem2 while passing task2 as the task to
notify and then finishes its execution. Signaling sem2 releases task2.

• task2 will start its execution. But this time, as task1 notified task2, sem2 would be
enabled. Hence task2 will print "TASK 2: sem2 enabled" this time.

• No more task to schedule.

4.0.4 Resource

The following examples depict the use of Resource containers and releasing tasks before
freeing the resource. Also, note that Resource Container implements the Sync trait as it
is safe to be accessed across tasks. If app_inst uses any field that does not implement the
Sync trait, then the code will not compile.

LISTING 27: Examples : Resource

1 // Imports

2 struct AppState {

3 sem2: SemaphoreId,

4 sem3: SemaphoreId,

5 res1: Resource<[u32; 3]>,

6 res2: Resource<[u32; 2]>,

7 }

8

9 #[entry]

10 fn main() -> ! {

11 let peripherals = resources::init_peripherals().unwrap();

50 Chapter 4. Testing

12

13 // app_inst also holds the resource containers res1 and res2.

14 let app_inst = AppState {

15 sem2: semaphores::new(generate_task_mask(\&[task2])).unwrap(),

16 sem3: semaphores::new(generate_task_mask(\&[task3])).unwrap(),

17 res1: resources::new([1, 2, 3], generate_task_mask(\&[task1,

task2])).unwrap(),↪→

18 res2: resources::new([4, 5],

generate_task_mask(\&[task3])).unwrap(),↪→

19 };

20

21 static mut stack1: [u32; 512] = [0; 512];

22 static mut stack2: [u32; 512] = [0; 512];

23 static mut stack3: [u32; 512] = [0; 512];

24

25 spawn!(task1, 1, stack1, params, app_inst, {

26 hprintln!("TASK 1: Enter");

27 // If res1 is free, then the closure passed on is executed on the

resource.↪→

28 params.res1.acquire(|res| {

29 hprintln!("TASK 1 : res1 : {:?}", res);

30 semaphores::signal_and_release(params.sem2, 0);

31 semaphores::signal_and_release(params.sem3, 0);

32 // emulates a long task so that in the next SysTick task3 is

scheduled↪→

33 for i in 0..10000 {}

34 hprintln!("TASK 1 : task 2 and 3 dispatched");

35 });

36 hprintln!("TASK 1: End");

37 });

38

39 spawn!(task2, 2, stack2, params, app_inst, {

40 hprintln!("TASK 2: Enter");

41 params.res1.acquire(|res| {

42 hprintln!("TASK 2 : res1 : {:?}", res);

43 });

44 hprintln!("TASK 2: End");

45 });

Chapter 4. Testing 51

46

47 spawn!(task3, 3, stack3, params, app_inst, {

48 hprintln!("TASK 3: Enter");

49 params.res2.acquire(|res| {

50 hprintln!("TASK 3 : res2 : {:?}", res);

51 });

52 hprintln!("TASK 3: End");

53 });

54

55 init(true);

56 release(generate_task_mask(\&[task1]));

57 start_kernel(

58 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

59 150_000,

60);

61 loop {}

62 }

The Output :

1 TASK 1: Enter

2 TASK 1 : res1 : [1, 2, 3]

3 TASK 3: Enter

4 TASK 3 : res2 : [4, 5]

5 TASK 3: End

6 TASK 2: Enter

7 TASK 2: End

8 TASK 1 : task 2 and 3 dispatched

9 TASK 1: End

• task1 is the only task that is released initially.
• task1 acquires resource res1; then, it signals task2 (via sem2) and task3(via sem3),

which releases them.
• Next is a loop which emulates a long task to emulate a race condition. Hence

before line no. 24 the scheduler schedules task3.
• task3 tries to acquire resource res2 and succeeds as no other task is holding it.
• After task3 exits, task2 is scheduled, which tries to acquire res1. But res1 is still held

locked by task1; hence, task2 does not get hold of the resource.
• Then task2 finished execution, and task1 follows and finishes its unfinished code.

52 Chapter 4. Testing

4.0.5 Message

The following example depicts the usage of Message Containers. Semaphores have
been used to launch tasks to verify the functionality message.receive().

LISTING 28: Examples : Message

1 // Imports

2 struct AppState {

3 sem3: SemaphoreId,

4 msg1: Message<[u32; 2]>,

5 }

6

7 #[entry]

8 fn main() -> ! {

9 let peripherals = resources::init_peripherals().unwrap();

10

11 let app_inst = AppState {

12 sem3: semaphores::new(generate_task_mask(\&[3])).unwrap(),

13 msg1: messages::new(

14 generate_task_mask(\&[task2]),

15 generate_task_mask(\&[task2]),

16 [9, 10],

17)

18 .unwrap(),

19 };

20

21 static mut stack1: [u32; 300] = [0; 300];

22 static mut stack2: [u32; 300] = [0; 300];

23 static mut stack3: [u32; 300] = [0; 300];

24

25 spawn!(task1, 1, stack1, params, app_inst, {

26 hprintln!("TASK 1: Enter");

27 params.msg1.broadcast(Some([4, 5]));

28 semaphores::signal_and_release(params.sem3, 0);

29 hprintln!("TASK 1: END");

30 });

31

32 spawn!(task2, 2, stack2, params, app_inst, {

33 hprintln!("TASK 2: Enter");

Chapter 4. Testing 53

34 if let Some(msg) = params.msg1.receive() {

35 hprintln!("TASK 2: msg received : {:?}", msg);

36 }

37 hprintln!("TASK 2: END");

38 });

39

40 spawn!(task3, 3, stack3, params, app_inst, {

41 hprintln!("TASK 3: Enter");

42 if let Some(msg) = params.msg1.receive() {

43 hprintln!("TASK 3: msg received : {:?}", msg);

44 }

45 hprintln!("TASK 3: END");

46 });

47

48 init(true);

49 release(generate_task_mask(\&[task1]));

50 start_kernel(

51 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

52 150_000,

53);

54 loop {}

55 }

The Output :

1 TASK 1: Enter

2 TASK 1: END

3 TASK 3: Enter

4 TASK 3: END

5 TASK 2: Enter

6 TASK 2: msg received : [4, 5]

7 TASK 2: END

• First, task1 is executed; it broadcasts message msg1 and releases task3.
• Note that task3 is not in the receivers list of msg1. Hence when task3 calls

msg1.receive() it does not return the message.
• Next, when task2 is executed, it receives the message and prints it to the console.

54 Chapter 4. Testing

4.0.6 Events

The following code snippet depicts the usage of the Event manager. The example de-
picts all type of events and all possible configurations that can be provided.

LISTING 29: Examples : Events

1 // imports

2 struct AppState {

3 sem2: SemaphoreId,

4 msg1: Message<[u32; 2]>,

5 }

6

7 #[entry]

8 fn main() -> ! {

9 let peripherals = resources::init_peripherals().unwrap();

10

11 let app_inst = AppState {

12 sem2: semaphores::new(generate_task_mask(\&[task2])).unwrap(),

13 msg1: messages::new(

14 generate_task_mask(\&[task3]),

15 generate_task_mask(\&[task3]),

16 [9, 10],

17)

18 .unwrap(),

19 };

20

21 /*

22 Creates a FreeRunning Event that occurs once in every second.

23 The event releases task1 when its counter expires.

24 */

25 let e1 = events::new_FreeRunning(true, 1,

EventTableType::Sec).unwrap();↪→

26 events::set_tasks(e1, generate_task_mask(\&[task1]));

27

28 /*

29 Creates a FreeRunning Event that occurs once in every 2 seconds.

30 The event signals semaphore sem2 when its counter expires.

31 */

32 let e2 = events::new_FreeRunning(true, 2,

EventTableType::Sec).unwrap();↪→

Chapter 4. Testing 55

33 events::set_semaphore(e2, app_inst.sem2, generate_task_mask(\&[task1,

task2]));↪→

34

35 /*

36 Creates an OnOff Event.

37 The event broadcasts message msg1 whenever it is dispatched.

38 */

39 let e3 = events::new_OnOff(false).unwrap();

40 events::set_message(e3, app_inst.msg1.get_id());

41

42 /*

43 Creates a FreeRunning Event that occurs once in every 3 seconds.

44 The event dispatches event3 when its counter expires.

45 */

46 let e4 = events::new_FreeRunning(true, 3,

EventTableType::Sec).unwrap();↪→

47 events::set_next_event(e4, e3);

48

49 static mut stack1: [u32; 300] = [0; 300];

50 static mut stack2: [u32; 300] = [0; 300];

51 static mut stack3: [u32; 300] = [0; 300];

52

53 spawn!(task1, 1, stack1, params, app_inst, {

54 hprintln!("TASK 1: Enter");

55 if let Ok(true) = semaphores::test_and_reset(params.sem2) {

56 hprintln!("TASK 1: sem2 enabled");

57 }

58 hprintln!("TASK 1: End");

59 });

60

61 spawn!(task2, 2, stack2, params, app_inst, {

62 hprintln!("TASK 2: Enter");

63 if let Ok(true) = semaphores::test_and_reset(params.sem2) {

64 hprintln!("TASK 2: sem2 enabled");

65 }

66 hprintln!("TASK 2: End");

67 });

68

56 Chapter 4. Testing

69 spawn!(task3, 3, stack3, params, app_inst, {

70 hprintln!("TASK 3: Enter");

71 if let Some(msg) = params.msg1.receive() {

72 hprintln!("TASK 3: msg received : {:?}", msg);

73 }

74 hprintln!("TASK 3: End");

75 });

76

77 init(true);

78 release(task1);

79 start_kernel(

80 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

81 150_000,

82);

83 loop {}

84 }

The Output:

1 TASK 3: Enter

2 TASK 3: msg received : [9, 10]

3 TASK 3: End

4 TASK 1: Enter

5 TASK 1: sem2 enabled

6 TASK 1: End

7 TASK 1: Enter

8 TASK 1: End

9 TASK 2: Enter

10 TASK 2: sem2 enabled

11 TASK 2: End

12 TASK 1: Enter

13 TASK 1: sem2 enabled

14 TASK 1: End

15 ... repeats

4.0.7 Heap

The following example depicts the usage of dynamic memory in the application.

Chapter 4. Testing 57

LISTING 30: Examples : Heap

1 // Imports

2 /*

3 lazy_static is used to define global static variables.

4

5 Declaring variables in lazy_static can be useful while sharing kernel

primitives to kernel tasks and interrupt↪→

6 handlers. Resources can be shared with tasks as a parameter but interrupt

handlers do not take parameters; hence↪→

7 the only way to share data with them is via global statics.

8

9 The Resource res1 stores a resource of type Vec. Vec is a dynamic memory

data structure.↪→

10 */

11 lazy_static! {

12 static ref resource1: Resource<RefCell<Vec<u32>>> =

13 resources::new(RefCell::new(Vec::new()), generate_task_mask(\&[1,

2])).unwrap();↪→

14 }

15

16 #[entry]

17 fn main() -> ! {

18 // Initialize heap for the application. The argument is the size of

the heap.↪→

19 init_heap(50);

20 let peripherals = resources::init_peripherals().unwrap();

21

22 static mut stack1: [u32; 256] = [0; 256];

23 static mut stack2: [u32; 256] = [0; 256];

24 static mut stack3: [u32; 256] = [0; 256];

25

26 spawn!(task1, 1, stack1, {

27 hprintln!("TASK 1: Enter");

28 resource1.acquire(|res| {

29 let res = \&mut res.borrow_mut();

30 res.push(1);

31 hprintln!("TASK 1: Resource : {:?}", res);

32 });

58 Chapter 4. Testing

33 hprintln!("TASK 1: End");

34 });

35 spawn!(task2, 2, stack2, {

36 hprintln!("TASK 2: Enter");

37 resource1.acquire(|res| {

38 let res = \&mut res.borrow_mut();

39 res.push(2);

40 hprintln!("TASK 2: Resource : {:?}", res);

41 });

42 hprintln!("TASK 2: End");

43 });

44

45 init(true);

46 release(generate_task_mask(\&[task1, task2]));

47 start_kernel(

48 unsafe { \&mut peripherals.access().unwrap().borrow_mut() },

49 150_000,

50);

51 loop {}

52 }

The Output :

1 TASK 2: Enter

2 TASK 2: Resource : [2]

3 TASK 2: End

4 TASK 1: Enter

5 TASK 1: Resource : [2, 1]

6 TASK 1: End

59

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The objectives with which the Kernel was designed and implemented are :

• Optimize Kernel operations with the help of simpler data-structures (Boolean Vec-
tors).

• Compile-time Memory and Concurrency Safety.

• Avoiding Deadlocks and Priority-inversion.

• Ensure stronger real-time guarantees with the help of design and Hardware fea-
tures.

• Modular and Scalable implementation.

All the Kernel subsystems discussed in 2.1 have been implemented and tested manu-
ally. The Kernel has been developed as a library and can be imported and used in any
embedded application. The source code has been open-sourced under MIT license, and
API documentation has been hosted online. Links to the same can be found in Ap-
pendix A. Some example applications were compiled, and the Binary size was noted
down to be :

• 2 Basic tasks : 15 Kb

• Heap example : 23 Kb

5.2 Future Work

Hartex-rust has great potential for use in Embedded Systems. The future work on this
project might include :

• Framework for Testing and Benchmarking.

60 Chapter 5. Conclusion and Future Work

• Language features like constant functions, constant generics, etc. are currently
under heavy development. These features, once on reaching stabilization, can be
used for further performance improvement of various kernel routines. These fea-
tures enable compile-time evaluation of functions, which will help further boost
the Kernel’ performance.

• Support for additional machine architectures can be added with the help of Con-
ditional Compilation (called feature-flags in Rust).

• Implementation of networking stack would enable the use of Hartex-Rust in IoT
projects.

• The Kernel has been designed and developed for single-core/processor systems.
The Major work on this project could include modifying the internals to work
efficiently on multiprocessor systems.

61

Appendix A

Kernel Code

The Kernel Source code is hosted on Github. The Kernel user documentation and de-
veloper documentation can be found here.

A.1 Code Organization

The Source code of the kernel is organized into sub-modules to help maintain clarity.
The File structure is as follows :

LISTING 31: Code Organization

1 .

2 |_____ config.rs # Kernel Configuration variables

3 |_____ kernel # Kernel modules

4 |.. |_____ event_management.rs

5 |.. |_____ mod.rs

6 |.. |_____ resource_management.rs

7 |.. |_____ software_comm_bus.rs

8 |.. |_____ software_sync_bus.rs

9 |.. |_____ task_management.rs

10 |.. |_____ time_management.rs

11 |_____ lib.rs # Specifies which functions and primitives will be exposed

outside the library.↪→

12 |_____ macros.rs # Macro definitions

13 |_____ system # Kernel Data-structures definition

14 |.. |_____ event_manager.rs

15 |.. |_____ mod.rs

16 |.. |_____ resource_manager.rs

17 |.. |_____ software_comm_bus.rs

18 |.. |_____ software_sync_bus.rs

19 |.. |_____ task_manager.rs

https://github.com/Autonomous-Cyber-Physical-Systems/hartex-rust
https://autonomous-cyber-physical-systems.github.io/hartex-rust/

62 Appendix A. Kernel Code

20 |.. |_____ time_manager.rs

21 |.. |_____ types.rs

22 |_____ utils # Utility functions

23 |_____ arch.rs # Machine specific code

24 |_____ errors.rs # Error type definition

25 |_____ heap.rs # Dynamic Memory allocator

26 |_____ helpers.rs # Helper Functions

27 |_____ interrupts.rs # Interrupt handlers

28 |_____ mod.rs

The definition of all kernel subsystems is in the folder /src/system. The folder
/src/kernel/ holds files corresponding to each sub-module. These files declare a global
instance of the subsystem data structures and define public functions on them. For ex-
ample:

LISTING 32: /src/system/task_manager.rs

1 pub struct TaskManager {

2 ...

3 }

4

5 impl TaskManager {

6 pub fn init(args..) {}

7 pub fn start_kernel(args..) {}

8 pub fn release(args..) {}

9 }

LISTING 33: /src/kernel/task_manager.rs

1 let task_manager = TaskManager::new();

2

3 pub fn init(args..) {

4 task_manager.init(args..);

5 }

6

7 pub fn start_kernel(args..) {

8 task_manager.start_kernel(args..);

9 }

10

11 pub fn release(args..) {

A.1. Code Organization 63

12 task_manager.release(args..);

13 }

65

Bibliography

[1] Phillip A. Laplante. Real-time systems design and analysis: an engineer’s hand-
book. New York: Institute of Electrical and Electronics Engineers, 1993. ISBN:
9780780304024.

[2] Andrew W. Appel and Zhong Shao. “Empirical and analytic study of stack
versus heap cost for languages with closures”. en. In: Journal of Functional
Programming 6.1 (Jan. 1996), pp. 47–74. ISSN: 0956-7968, 1469-7653. DOI: 10 .

1017 / S095679680000157X. URL: https : / / www . cambridge . org / core /

product/identifier/S095679680000157X/type/journal_article (visited on
11/18/2019).

[3] Robert Davis, Nick Merriam, and Nigel Tracey. How embedded applications using an
RTOS can stay within on-chip memory limits. Jan. 2000.

[4] Jane W. S. Liu. Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.
ISBN: 0130996513 9780130996510. URL: http://www.amazon.com/Real- Time-
Systems-Jane-W-Liu/dp/0130996513.

[5] Gourinath Banda. “Scalable Real-Time Kernel for Small Embedded Systems”.
English. MA thesis. Denmark: University of Southern Denmark, June 2003.
URL: http : / / citeseerx . ist . psu . edu / viewdoc / download ; jsessionid =

84D11348847CDC13691DFAED09883FCB?doi=10.1.1.118.1909&rep=rep1&type=

pdf.

[6] Joseph Yiu. The Definitive Guide to the ARM Cortex-M3. en. Elsevier, 2007. ISBN:
9780750685344. DOI: 10.1016/B978- 0- 7506- 8534- 4.X5001- 5. URL: https:
//linkinghub.elsevier.com/retrieve/pii/B9780750685344X50015 (visited on
11/17/2019).

[7] Wicher Heldring. “An RTOS for embedded systems in Rust”. English. PhD thesis.
University of Amsterdam, June 2018. URL: https://esc.fnwi.uva.nl/thesis/
centraal/files/f155044980.pdf.

[8] Aaron Weiss et al. “Oxide: The Essence of Rust”. In: arXiv:1903.00982 [cs] (Mar.
2019). arXiv: 1903.00982. URL: http://arxiv.org/abs/1903.00982 (visited on
11/17/2019).

[9] alloc_cortex_m - Rust. URL: https://docs.rs/alloc-cortex-m/0.3.5/alloc_
cortex_m/ (visited on 11/18/2019).

https://doi.org/10.1017/S095679680000157X
https://doi.org/10.1017/S095679680000157X
https://www.cambridge.org/core/product/identifier/S095679680000157X/type/journal_article
https://www.cambridge.org/core/product/identifier/S095679680000157X/type/journal_article
http://www.amazon.com/Real-Time-Systems-Jane-W-Liu/dp/0130996513
http://www.amazon.com/Real-Time-Systems-Jane-W-Liu/dp/0130996513
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84D11348847CDC13691DFAED09883FCB?doi=10.1.1.118.1909&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84D11348847CDC13691DFAED09883FCB?doi=10.1.1.118.1909&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84D11348847CDC13691DFAED09883FCB?doi=10.1.1.118.1909&rep=rep1&type=pdf
https://doi.org/10.1016/B978-0-7506-8534-4.X5001-5
https://linkinghub.elsevier.com/retrieve/pii/B9780750685344X50015
https://linkinghub.elsevier.com/retrieve/pii/B9780750685344X50015
https://esc.fnwi.uva.nl/thesis/centraal/files/f155044980.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f155044980.pdf
http://arxiv.org/abs/1903.00982
https://docs.rs/alloc-cortex-m/0.3.5/alloc_cortex_m/
https://docs.rs/alloc-cortex-m/0.3.5/alloc_cortex_m/

66 Bibliography

[10] Barua, A., Hoque, M. M., & Akter, R. (2014). Embedded Systems: Security Threats
and Solutions. American Journal of Engineering Research (AJER), 03(12), 119–123. Re-
trieved from www.ajer.org.

[11] Conditional Compilation - The Rust Programming Language. URL: https://doc.rust-
lang . org / 1 . 30 . 0 / book / first - edition / conditional - compilation . html

(visited on 11/17/2019).

[12] cortex_m - Rust. URL: https://docs.rs/cortex-m/0.6.1/cortex_m/ (visited on
11/18/2019).

[13] Defining an Enum - The Rust Programming Language. URL: https://doc.rust-
lang.org/book/ch06-01-defining-an-enum.html (visited on 11/18/2019).

[14] Dependencies - Rust By Example. URL: https://doc.rust-lang.org/rust-by-
example/cargo/deps.html (visited on 11/17/2019).

[15] Generic Data Types - The Rust Programming Language. URL: https://doc.rust-
lang.org/book/ch10-01-syntax.html (visited on 11/18/2019).

[16] Rust Working Group. Introduction - The Embedded Rust Book. URL: https://rust-
embedded.github.io/book/ (visited on 11/18/2019).

[17] STM32F407VE. en. URL: https://www.st.com/en/microcontrollers-microproc
essors/stm32f407ve.html (visited on 12/03/2019).

[18] Traits. URL: https://doc.rust-lang.org/1.8.0/book/traits.html (visited on
11/18/2019).

[19] Unsafe Rust - The Rust Programming Language. URL: https://doc.rust-lang.org/
book/ch19-01-unsafe-rust.html (visited on 11/22/2019).

https://doc.rust-lang.org/1.30.0/book/first-edition/conditional-compilation.html
https://doc.rust-lang.org/1.30.0/book/first-edition/conditional-compilation.html
https://docs.rs/cortex-m/0.6.1/cortex_m/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/rust-by-example/cargo/deps.html
https://doc.rust-lang.org/rust-by-example/cargo/deps.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://rust-embedded.github.io/book/
https://rust-embedded.github.io/book/
https://www.st.com/en/microcontrollers-microprocessors/stm32f407ve.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407ve.html
https://doc.rust-lang.org/1.8.0/book/traits.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

	CANDIDATES' DECLARATION
	CERTIFICATE by BTP Guide
	PREFACE
	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	List of Listings
	Introduction
	Real-time Kernels
	Embedded Hardware
	Microcontrollers

	Advantages of Kernel-based Embedded Systems over the Monolithic implementations
	Challenges of Real-time Kernels
	Memory Restrictions
	Power Restrictions
	Data-structure Overhead: Kernel Data-structures

	Advantages of Implementing Real-time Kernels in Rust Programming Language
	Memory and Concurrency Safety
	Easy Dependency management
	Performance
	Unsafe Rust

	Kernel Architecture and Design
	Kernel Architecture
	Top-level Organization
	Kernel Subsystems
	Task Manager
	Resource Manager
	Software Bus
	Task Synchronization
	Task Communication
	Time Manager
	Event Manager
	Hardware Adaptation Layer (HAL)

	Stack-Based Priority Ceiling Protocol (SBPC) liu2000realtime
	Dynamic Memory Allocation
	Atomic execution in Single-processor multi-tasking systems

	Hardware
	Interrupt Handlers
	SysTick
	PendSV
	SVC

	Privileged execution mode
	2 Stack Pointers
	CLZ Instruction
	WFE Instruction

	Language Features
	Generics
	Enums
	Error Handling
	Traits

	Implementation
	Kernel Configuration
	Boolean Vector
	Task Manager
	Subsystem Data-structures
	Kernel Routines
	init(is_preemptive: bool)
	start_Kernel(&self, peripherals: &Peripherals, tick_interval: u32)
	create_task(&self, priority: usize, stack: &mut [u32], handler_fn: fn(&T) -> !, param: &T)
	block_tasks(&self,task_mask: BooleanVector)
	unblock_tasks(&self,task_mask: BooleanVector)
	schedule()
	preempt()
	task_exit()
	get_curr_tid()
	get_next_tid()
	release(&self, task_mask: BooleanVector)
	is_preemptive(&self)
	enable_preemption(&self)
	disable_preemption(&self)
	spawn!

	Task State transition diagram

	Resource Manager
	Subsystem Data-structures
	Resource Container
	Resource::lock(&self)
	Resource::unlock(&self)
	Resource::acquire(&self, handler: F(&T))
	Resource::access(&self)

	Kernel Routines
	init_peripherals()
	new(resource: T, tasks_mask: BooleanVector)

	Software Synchronization Bus
	SemaphoreControlBlock
	SemaphoreControlBlock::new(tasks_mask: u32)
	SemaphoreControlBlock::signal_and_release(&mut self, tasks_mask: BooleanVector)
	SemaphoreControlBlock::test_and_reset(&mut self, curr_tid: TaskId)

	Subsystem Data-structures
	Kernel Routines
	new (tasks_mask: BooleanVector)
	signal_and_release(sem_id: SemaphoreId, tasks_mask: BooleanVector)
	test_and_reset(sem_id: SemaphoreId)

	Software Communication Bus
	Subsystem Data-structures
	Message Container
	Message::new(val: T, id: MessageId)
	Message::broadcast(&self, msg: T)
	Message::receive(&self)

	Kernel Routines
	new(notify_tasks_mask: BooleanVector, receivers_mask: BooleanVector, msg: T)
	broadcast(msg_id: MessageId)

	Time management
	Subsystem Data-structures
	Kernel Routines
	Time::tick()
	now()

	Event Manager
	Subsystem Data-structures
	Event Descriptor
	Opcode

	Kernel Routines
	sweep_event_table(event_type: EventTableType)
	enable_event(event_id: EventId)
	new_FreeRunning (is_enabled: bool, threshold: u8, event_counter_type: EventTableType)
	new_OnOff(is_enabled: bool)
	set_semaphore(event_id: EventId, sem: SemaphoreId, tasks_mask: BooleanVector)
	set_tasks(event_id: EventId, tasks_mask: BooleanVector)
	set_message(event_id: EventId, msg_id: MessageId)
	set_next_event(event_id: EventId, next_event: EventId)

	Utils
	generate_task_mask(tasks: &[u32])
	is_privileged()
	get_msb(val: u32)

	Dynamic Memory Allocation
	Development Flow
	End Application Organization (Using HARTEX)

	Testing
	Tasks (Basic)
	Tasks (Complete)
	Semaphore
	Resource
	Message
	Events
	Heap

	Conclusion and Future Work
	Conclusion
	Future Work

	Kernel Code
	Code Organization

