
B. TECH PROJECT REPORT
On

Design and implementation of protocol
for encryption of data and preventing

replay attack in the network.

BY
ABHISHEK MISHRA

DISCIPLINE OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2019

1

Design and implementation of protocol for
encryption of data and preventing replay

attack in the network
A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of
BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by :
ABHISHEK MISHRA

Guided by :
DR. NEMINATH HUBBALLI

Associate Professor
Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2019

3

CANDIDATE’S DECLARATION

I hereby declare that the project entitled Design and implementation of protocol for en-
cryption of data and preventing replay attack in the network submitted in partial fulfillment
for the award of the degree of Bachelor of Technology in Computer Science and Engineering
completed under the supervision of DR. NEMINATH HUBBALLI, Associate Professor ,
Department of Computer Science and Enginnering IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other degree
elsewhere.

ABHISHEK MISHRA
B. Tech. IV Year

Discipline of Computer Science and Engineering
IIT Indore

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is correct to the best of my/our
knowledge.

DR. NEMINATH HUBBALLI
Associate Professor

Department of Computer Science and Engineering

5

PREFACE

This report on Design and implementation of protocol for encryption of data and prevent-
ing replay attack in the network is prepared under the guidance of Dr. Neminath Hubballi.
This report is the result of my internship at GE Healthcare, Bangalore. This report includes a
brief description of the reason for encryption and replay attack prevention. It discusses various
types of encryption algorithm. The implementation of these encryption algorithm is done to
determine the most suitable algorithm. It includes the design for protocol to incorporate en-
cryption and replay attack prevention into the existing application layer protocol. I have tried
to the best of my ability to explain the content in a lucid manner. I have also added figures to
make the report more illustrative and easily understandable.

ABHISHEK MISHRA
B. Tech. IV Year
Discipline of Computer Science and Engineering
IIT Indore

7

ACKNOWLEDGEMENT

I would like to thank my B.Tech Project Supervisor Dr. Neminath Hubballi for his valuable
guidance and support throughout the duration of the project and for giving me this opportunity
to work in this interesting domain. Without your support, this report wouldn’t have been pos-
sible
I would like to thank Mr. Lokesh Aradhya, who is Director at Monitoring Solutions De-
partment at GE Healthcare. He provided constant guidance and helped me understand various
technologies. Whenever i got stuck in some problem, his advice always proved useful.
I would also like to thank my friends and family who provided constant encouragement and
enabled me to perform at best of my abilities. I am really grateful to Department of Computer
Science and Engineering, IIT Indore for this opportunity. I offer my sincerest thanks to all the
people who were directly or indirectly involved in this project

ABHISHEK MISHRA
B. Tech. IV Year
Discipline of Computer Science and Engineering
IIT Indore

9

ABSTRACT

The GE Hospital Network has many monitoring and data-processing devices and earlier real-
time data moved freely through the network in plain-text format. This made it very easy to steal
critical patient information and also made the network vulnerable to cybersecurity threats.
In this project, I have worked on making protocol changes to encrypt the data before it enters
the network. This involves determining the appropriate algorithm for encryption so that the
time taken to encrypt doesn’t put too much lag into data transfer. All the algorithms are the-
oretically unbreakable, it is dues to mishandling of keys and Initialization Vector that makes
the encryption weak, the protocol developed ensures proper key management, key rotation and
initialization vector generation so that the encryption doesn’t have any vulnerability.
There are many threats that remain after encryption such as replay attacks on the network so
this project includes building a mechanism to prevent replay attack by adding context infor-
mation in the packet (in cases where time information is not accurate). After developing the
protocol, it was implemented on 2 GE Applications.

11

Contents

CANDIDATE’S DECLARATION 5

CERTIFICATE by BTP Guide 5

PREFACE 7

ACKNOWLEDGEMENT 9

ABSTRACT 11

Contents 13

List of Tables 15

List of Figures 16

1 Introduction 17
1.1 Network . 17
1.2 Protocol description . 17
1.3 Problems with the existing protocol . 18
1.4 Objectives . 18

1.4.1 real-time encryption . 18
1.4.2 protocol for facilitating encryption . 18
1.4.3 protocol for prevention of replay attack 18

1.5 Explaining replay attacks . 19

2 Determining the right Algorithm 20
2.1 Basic Constraints . 20
2.2 Factors that determine the right choice of Algorithm 20
2.3 Test Setup for constraint . 20
2.4 Asymmetric encryption . 21

2.4.1 RSA . 22
2.5 Symmetric Key Encryption . 23

2.5.1 AES-CBC . 24
2.5.2 AES-GCM . 25
2.5.3 Xchacha20-Poly1305 . 26

2.6 Results . 26
2.6.1 AES-GCM (with hardware acceleration) vs Xchacha20-Poly1305 . . . 27

13

3 Protocol changes for enabling AES-GCM encryption 28
3.1 Initialization Vector and Key Management . 28
3.2 Authentication . 28
3.3 Working of protocol . 29

4 Protocol for prevention of replay attacks 30
4.1 Problem of replay attack . 30
4.2 Time Stamp based context . 30

4.2.1 Problems with time stamp based approach 30
4.3 New protocol concept . 30
4.4 Context exchange . 31
4.5 Packet structure changes . 31
4.6 Broadcast packet transfer . 32
4.7 Unicast packet transfer . 33
4.8 Calculation of critical time difference that can be allowed 33

5 Conclusion and Future Work 34
5.1 Conclusion . 34
5.2 Future Work . 34

Bibliography 35

14

List of Tables

2.1 Comparison of Algorithms . 26

15

List of Figures

1.1 Illustration of a Replay Attack . 19

2.1 Key Generation in Asymmetric Encryption 21
2.2 Illustration of public key encryption . 22
2.3 Illustration of symmetric encryption . 23
2.4 Illustration of AES-CBC encryption . 24
2.5 Illustration of AES-GCM encryption . 25
2.6 comparison of aes-gcm and Xchacha-Poly1305 27

4.1 broadcast packet context . 32
4.2 unicast packet context . 33

16

Chapter 1

Introduction

.

1.1 Network
Monitoring solution team makes devices that are present for monitoring patients inside the
hospital such as bedside monitors and nurse workstation for monitoring multiple patients for
continuous real-time monitoring of critical patient data such as heart rate and respiration rate.
These devices include an application along with a computer system designed to facilitate the
application.
All the GE devices in the Hospital network work on a common application layer protocol
known as Unity protocol. Government regulations require that the patient data is to be stored
according to certain guidelines as mentioned in HL7 standard. So there is one more device
besides the monitoring devices which has a sole task of converting data from GE standard to
HL7 standard so that it conforms to appropriate guidelines for data storage. This device handles
the traffic from multiple other monitoring devices so functioning of this device is critical for
the hospital to function.
All these devices are interconnected with a LAN inside the hospital and critical patient data
moves from one device to another using a custom GE application layer protocol. This protocol
is majorly based on UDP protocol. These applications are “plug and play” i.e they don’t require
any handshake as such before they start functioning.

1.2 Protocol description
1. Once the application starts, it creates a thread and starts emitting broadcast packets into

the network to announce its presence.

2. It contains all the info that might be needed by other applications in the network to
identify the type of application and sent appropriate requests to the application based on
its functionality.

3. Once the broadcast packet is received the recipients determine the functionality of sender
and send UDP unicast messages to carry request and response.

4. Since these applications stream out continuous rates of data so UDP works well as appli-
cation can tolerate few packet drops.

17

1.3 Problems with the existing protocol
The critical patient data is sent in plain text i.e. without any encryption.

1. The data stolen can be misused. For ex- Targeted advertisement to sell fake medicines to
desperate terminally ill patients.

2. There are certain regulations that must be followed. Failure to do so can lead to fines.

3. Patients have the right to privacy.

4. Sending data in plain text format can be used to gain information about the network
which can be misused by hackers.

5. There is no authentication mechanism to ensure only valid entities can communicate with
the application.

1.4 Objectives
The expectation from the new protocol is as follows:

1.4.1 real-time encryption
To determine which encryption algorithm will be suitable, the application transmit real time
data so time delays due to encryption and decryption can cause a lag in the application which
can cause major problems in patient monitoring.

1.4.2 protocol for facilitating encryption
To make application layer protocol changes to facilitate encryption such as key management,
initialization vector etc.

1.4.3 protocol for prevention of replay attack
Now encryption of packets ensures data confidentiality but it is still vulnerable to a form of
attack known as a Replay Attack. Replay attack might allow hackers to gain control to the
system or even permanent damage to it without knowing what is inside the packet or breaking
the encryption.

18

1.5 Explaining replay attacks
Replay attack is a form of attack in which a malicious entity snoops into a computer network
and intentionally delays or re-sends packets which can cause the recipient to malfunction. [1]

Figure 1.1: Illustration of a Replay Attack

[2]

In this case entity E can sniff out the packet containing the hashed password and resend it to
authenticate itself as entity A and gain access to confidential information. The attacker doesn’t
need to know what is inside the packet or whether the data is encrypted or not as replaying an
already valid packet ensures that it will be properly authenticated and decrypted by the receiver
properly. So even after encryption, in order to prevent replay attacks on the network, there was
a need to make changes in the protocol to prevent replay attacks.

19

Chapter 2

Determining the right Algorithm

2.1 Basic Constraints
The application requires that the encryption to be done at such a rate that 1 million byte arrays
of 1000 bytes each be encrypted and decrypted in less than or equal to 20 secs on the dedicated
hardware, If this rate is not maintained the packet queue size would keep on increasing as the
packet processing rate is lower than the rate of arrival of incoming packets, leading to crashing
of application.

2.2 Factors that determine the right choice of Algorithm
There are 2 main factors which governed the choice of algorithm.

• Most of the devices on the network are real time so encryption should be fast so that
device performance is not affected.

• The protocol for communication between the devices is based on UDP, so one cannot
rely on the packet dispatched to reach the endpoint.

2.3 Test Setup for constraint
To check whether an algorithm works or not, the idea was to make a small code using the choice
of algorithm that would encrypt and decrypt 1 million packets.

There are 2 main paradigms for encryption:

• Asymmetric Encryption

• Symmetric Encryption

20

2.4 Asymmetric encryption
In Asymmetric encryption there are 2 kinds of keys, public Key and private Key.
As the name suggests, the public key is shared in the network and the private key is kept secret.
Public key can be used to encrypt a message for the receiver which the receiver decodes using
his private key.

Key management is convenient and key rotation is trivial as key is randomly generated
every time the application starts. Once key exchange successfully happens a secure channel is
created for every communicating device.

Incorporating asymmetric encryption involves adding a key exchange mechanism in the
existing protocol but this is difficult in case of UDP protocol as UDP doesn’t ensure that the
packet dispatched would reach the target. Every device has to maintain a table for all other
device and their corresponding public key.So to use Asymmetric encryption, a lot of changes
need to be made in the existing application.
Asymmetric algorithms tend to be slower as compared to the symmetric ones since our appli-
cation requires real-time data encryption where speed is a major factor, asymmetric algorithms
rarely satisfy the constraint. For asymmetric encryption, I implemented RSA.

Figure 2.1: Key Generation in Asymmetric Encryption

[3]

21

2.4.1 RSA
RSA is one the oldest and most popular asymmetric key algorithm. The concept for this algo-
rithm is that it is difficult to factorize large numbers. The math for this algorithm is based on
modulo exponentiation. RSA is essentially a deterministic algorithm which means that same
plain-text will form same cipher-text if same key is used. This makes it easier to break the
encryption by pattern matching to decipher the contents.

Figure 2.2: Illustration of public key encryption

[3]

Implementation: Made the java code using java cryptographic extension(JCE) as men-
tioned in the test setup for constraints

22

2.5 Symmetric Key Encryption
In symmetric cryptographic same key is used for encryption and decryption. Apart from a key,
a second variable called nonce or initialization vector is used for encryption as well. For ex:- If
S is the string to be encrypted, I is the initialization vector, K is the key.
Then encryption is enc(S,I,K)=S.enc And Decryption is dec(S.enc,I,K)=S
The same IV and nonce is used for both encryption and decryption. So the hacker has to
know both key and initialization vector to decode the message. So Key is kept secret while
Initialization vector is public.

Figure 2.3: Illustration of symmetric encryption

[4]

Symmetric key algorithms tend to be faster and use less memory and CPU resources.Since
the key and initialization vector as be same so both of them cannot be randomly generated in
both server and client side. Key is generally hard-coded and initialization vector is embedded
inside the packet. So key management and key rotation is a problem. For Symmetric encryption
i tried the following algorithms:

• AES-CBC

• AES-GCM

• Xchacha20-Poly1305

23

2.5.1 AES-CBC
AES encryption happens over blocks of 16 bytes. A plain-text bigger than that is divided into
blocks of 16 bytes to carry out rounds of encryption in each. In AES-CBC, each plain-text
block is XORed with the ciphertext of the previous block. This ensures that a single letter of
plain-text is changed, the change doesn’t remain local to the corresponding ciphertext block.
In Fact this change propagates over the entire ciphertext blocks coming after it. This adds
pseudo-randomness to the output and makes it difficult to find patterns in the output.

Figure 2.4: Illustration of AES-CBC encryption

[5]

Implementation: Made the java code using java cryptographic extension(JCE) as men-
tioned in the test setup for constraints.

24

2.5.2 AES-GCM
AES-GCM works like a stream cipher. This algorithm uses the counter mode of encryption
together with galois mode for authentication. The design of this algorithm is in such a way that
it can be parallelised better, this makes it run a lot faster as compared to AES CBC. It uses AES
to generate pseudo-random number which is XORed with the plain-text to generate ciphertext.
Like AES-CBC, AES-GCM also uses initialization vector to make the output non-deterministic
w.r.t key. The initialization vector which is XORed with the first plain-text block adds a non
deterministic nature to the relationship between key and plain-text.

Figure 2.5: Illustration of AES-GCM encryption

[6]

Implementation: For AES-GCM wolfcrypt library is the best, but wolfcrypt isn’t available
for java so i wrote a JNI wrapper library to link wolfcrypt library from C language to Java.

25

2.5.3 Xchacha20-Poly1305
This is a modified version of the chacha20 cipher i.e. more number of bits for initialization
vector. The cipher is a high speed one and performs better in software-only implementation
as compared to AES. But the devices on the network have modern intel processors which has
hardware support for AES so by testing only we can determine which would work faster.

Implementation: Made the java code using lazysodium JNI library which is built over
libsodium written in C language as mentioned in the test setup for constraints. Stream ciphers
tend to be faster in general.

2.6 Results
• RSA:Time taken was about 120-140 sec for the test setup which is not feasible as it

doesn’t satisfy the basic constraint.

• AES-CBC:Time taken was in the range of 4to 7 secs but it doesn’t provide authentication
system.

• AES-GCM:Time taken was 4-5 sec which is well within the accepted range. It also
provides authentication feature.

• Xchacha-Poly1305:Time taken was 13-15 secs which is within the range. It provides
authentication feature too.

Name of Algorithm Suitability Reason (If no)
RSA NO Constraint not satisfied.

AES-CBC NO Constraint satisfied but no authentication feature

AES-GCM YES

Xchacha20-Poly1305 YES

Table 2.1: Comparison of Algorithms

26

2.6.1 AES-GCM (with hardware acceleration) vs Xchacha20-Poly1305

Figure 2.6: comparison of aes-gcm and Xchacha-Poly1305

Xchacha20 despite being a stream cipher which tend to be faster is working slower than AES-
GCM. The reason for this is since AES was so commonly used, all modern intel processors have
AES support built into the chip itself which makes an entire round of AES run fast. Wolfcrypt
library has compiler options to enable this hardware acceleration if it detects the processor has
AES support. This support for hardware acceleration was one of the major reasons to choose
wolfcrypt library. So AES-GCM is the best choice.

27

Chapter 3

Protocol changes for enabling AES-GCM
encryption

3.1 Initialization Vector and Key Management
Initialization vector is a 12 byte value is generated randomly for each packet and embedded in-
side the packet before sending the packet and this adds a non-deterministic nature to the output.
In order to make the network invincible to pattern matching to decrypt packets, key-Initialization
vector pair has to be unique for each message since initialization vector is randomly generated,
after some time key has to be changed so that key-initialization vector pair doesn’t repeat. This
is handled using HKDF algorithm to generate new key from master key every time application
starts. The same master key is hard-coded in all applications and 12 byte random salt value is

generated after every 60 minutes. The key for encryption is derived using HKDF key derivation
algorithm using master key and salt. This key is used to encrypt the packet and this salt value
is embedded in the packet. The receiver has the same master key. It extracts the salt value and

IV from the packet, uses same HKDF function to generate key and decrypts the message using
the generated IV.

Since 12 byte is used for IV and 12 byte for salt, probability of pair repeating is:

1/2192

which is negligible so key management problem is solved.

3.2 Authentication
AES-GCM algorithm has a built-in functionality for authentication. This authenticating data
contains source IP, destination IP, source port number and destination port number embedded
in the encrypted packet. The decryption algorithm is also given the expected authenticating
data value, if this data doesn’t match with the authenticating data extracted from packet then
packet is discarded. The algorithm also produces addition 16 bytes of media authentication
code. This can be used to verify the integrity of the data i.e. to ensure that data hasn’t been
modified intentionally or unintentionally.

28

3.3 Working of protocol
When the application starts, it’ll generate a 12 byte salt which will be stored in a static vari-
able. This variable will be updated every 60 minutes.This value is used to generate key via key
derivation functions and a master key which will be hard-coded
When the application wants to send a message, it will use the generated key to encrypt the mes-
sage along with an randomly generated 12 byte initialization vector. The Media Authentication
Code generated, the salt value and initialization vector is put into the packet along with the
encrypted payload.
The recipient extracts the salt value and uses it to generate the key required for decryption.
Then it extracts the initialization vector. After that it decrypts the message and compares the
Media Authentication Code extracted from the packet with the newly calculated media authen-
tication code from encrypted payload, if they match and authentication is also successful then
only data is forwarded for further processing.

29

Chapter 4

Protocol for prevention of replay attacks

4.1 Problem of replay attack
In order to prevent replay attacks, there must be a mechanism to identify the replayed or delayed
packets. These packets are encrypted so one way is to put in some sort of context information
in the packet. This value is put before encryption so cybercriminal cannot change or see or
manipulate this value so if the packet has expired i.e it has outdated context value then hacker
cannot do any tampering to correct the context value.

4.2 Time Stamp based context
One of the simplest ways to prevent replay attack is to simply add the UTC timestamp in
the packet before encryption. Then based on network architecture, a critical time difference
allowed is chosen. When the recipient receives a packet, it first decrypts it and checks the
timestamp. If the time difference between the timestamp in the packet and current time is
within critical time difference allowed then only the packet is valid.
If the packet is delayed or replayed, it reaches the target late and if the critical time difference
allowed is small enough such packets won’t reach the destination on time and will be rejected.

4.2.1 Problems with time stamp based approach
This mechanism only works if the time on all the devices are in-sync with each other. But it
has been observed that due to time drift and other natural reasons, there is a time difference of
upto 45 sec between devices so critical time difference allowed has to be greater than 45 sec.
This is too long so the probability of replay attack successfully happening is high.

4.3 New protocol concept
The UTC time might differ in both the devices, but all devices are able to measure time elapsed
quite accurately. So one device might have time X other device time Y but after 5sec devices
will have X+5 and Y+5 time.
Before presenting the protocol, there are 2 keywords.
Base context: This is an integer value randomly generated for a session.
Current context: This integer value includes time considerations as well.

30

Current context= Base context + (current time - time at which base context was set).
So if device A knows that base context of device B is X. After 5 sec, device A will know the
current context of device B is X+5.

4.4 Context exchange
As mentioned earlier, as per existing protocol when application starts it announces its presence
in the network by broadcasting introductory packets which contain information about what the
application is capable of doing. So now context exchange will happen using these packets.

• The application when it starts, generates a base context and starts broadcasting its base
context to the network.

• There is a separate thread that listens to all the context from other devices in the network.

• On receiving base context value, this value is stored in a hash-table to calculate the current
context value of other devices whenever it sends a request or response.

4.5 Packet structure changes
Now inside each packet a current context of the recipient is added and then the packet is en-
crypted. So devices guess each others context. If the context received is quite close to the
predicted context then only the packet is considered valid otherwise it is rejected. So in each
packet there is sender’s current context and recipients current context.

31

4.6 Broadcast packet transfer
Device A on starting up chooses 1000 as base context.
Device B on starting up chooses 100 as base context.

Figure 4.1: broadcast packet context

The broadcast packet has receiver’s context set to UTC time as it doesn’t know the receiver’s
context yet. This UTC time is used to verify the broadcast packet as broadcast packet doesn’t
carry any sensitive information so a weaker UTC based authentication can be used.

32

4.7 Unicast packet transfer

Figure 4.2: unicast packet context

So constraint imposed by the protocol is that each device tries to guess each other’s context
value. Device A on each packet puts a guess for device Bs current context. THis value is
encrypted. Device B will accept only if it finds that guessed current context is reasonably close
to the current context. Otherwise it discards the packet.

4.8 Calculation of critical time difference that can be allowed
The error allowed in guessing context should be short enough to give less time window for
replay attack that’s why unicast messages which carry critical data are checked for validity
using context instead of UTC timestamp. Only broadcast messages are checked with UTC
time as broadcast messages do not carry very sensitive info so a weaker check would work on
them.
It should be large enough so that it is not affected by propagation and transmission delay. This
number is decided based on the network structure.

33

Chapter 5

Conclusion and Future Work

5.1 Conclusion
The protocol developed was implemented on 2 GE Application device and it was observed that
all the requirements were satisfied.
In this project, I have shown that choice of algorithm plays a very important role in ensuring that
encryption happens faster. I have also shown a method to handle initialization vector generation
and automatic key management using key derivation function which ensures that there are no
patterns in cipher-text.
I have also shown how replay attack can be prevented in absence of accurate time in the device.

5.2 Future Work
These are the few issues on which work is going on:

• The master key is hard-coded in the code base. This makes the system vulnerable as
the person having access to the code base can easily get the master key. So there is
development going on for a way to dynamically assign master key by installing a key
management server in the hospital. Once completed, this will eliminate the need to man-
ually configure or rotate the master key.

• For accurately preventing replay attack, we need the time lag allowed for packet to be as
less as possible so work is going on to dynamically derive this time lag value based on
the network architecture and traffic.

34

Bibliography

[1] https://www.kaspersky.co.in/resource-center/definitions/replay-attack

[2] https://en.wikipedia.org/wiki/Replay attack

[3] https://en.wikipedia.org/wiki/Public-key cryptography

[4] https://www.101computing.net/symmetric-vs-asymmetric-encryption/

[5] https://en.wikipedia.org/wiki/Block cipher mode of operation

[6] https://en.wikipedia.org/wiki/Galois/Counter Mode

35

