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Preface 

 

This report on “Developing an OEDR Module for Autonomous Vehicle Using Simulators " 
is prepared under the guidance of Dr. Gourinath Banda. 

Through this report we have tried to give a detailed design of an object and event detection and 
recognition utility for autonomous vehicle using simulators and try to cover every aspect of the 
new design, if the design is technically and economically sound and feasible. 

We have tried to the best of our abilities and knowledge to explain the content in a lucid 
manner. We have also added figures and statistics to make it more illustrative. 
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Abstract 

Over 80% of car crashes in the US are caused by driver error. There would be less user errors 
and fewer mistakes on the roads if all vehicles became driverless. Autonomous vehicles may 
cut travel time by up to 40 percent, recover up to 80 billion hours lost to commuting and 
congestion, and reduce fuel consumption by up to 40 percent. 
 
Simulators provide controlled environment and numerous environment perceiving models. 
The sensors and chips for autonomous cars are astronomically expensive. This is way beyond 
the price scope of 99% of drivers. 
 
Self-driving simulations have advantages in mileage data collection efficiency, road 
condition dataset diversity, and sensor corresponding data accuracy. We have worked on 
developing the Object and Event Detection and Recognition (OEDR) module development 
using the IPG Carmaker simulation platform. During the OEDR's recognition phase, we are 
using the machine learning and computer vision concepts to provide supervised approach to 
the solution development. Our work makes use of the YOLOv3 model and several other 
custom built models. We have shown that with the help of simulator we can develop 
economical and efficient state of the art modules for self-driving cars. We have laid the 
foundation to enable research and development into Autonomous Cars at the university level 
without requiring the expensive true scale automotive/cars. 
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Chapter 1

Introduction

1.1 Introduction to autonomous vehicle

Autonomy means to function independently. Autonomous cars require a sensor module

which is responsible for sensing objects and events ongoing in its environment. In this

dissertation, we are proposing a simulator-based Object and Event Detection and Recog-

nition(OEDR) module development using an advanced simulator from IPG[17]. This work

contributes to the autonomous car development efforts.

The concept of autonomous car was first exhibited at the 1939 New York World’s Fair. The

exhibit was created by General Motors to display its vision of how the automated highway

system of self-driving cars would be. At present, due to safety features like braking systems

and assisted parking, and a few with autonomous driving, steering, brake, and parking

capabilities, many vehicles on the road are considered to be semi-autonomous. Autonomous

vehicle technology relies on GPS capabilities as well as advanced sensing systems that can

detect lane boundaries, signs and signals, and unexpected obstacles. An autonomous vehicle

offers:

• Improved safety: Around 94% of the accidents on a road are caused by human error

and with the help of autonomous vehicles 90% of these accidents can be avoided. [2]
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• Increased efficiency: On an average, in developed countries, people spend around 26

minutes in a car to commute to the work place [3]. Autonomous cars can let people

use this time efficiently for other purposes.

• Greater mobility options: Autonomous vehicles can be used in public transport,

vehicles for disabled and they can overcome congestion on roads.

According to the Society of Automotive Engineers(SAE) classification[1], autonomous

vehicles are classified into 6 Levels: Level 0 to Level 5.

• Level 0 (No Driving Automation):

Vehicles are manually controlled by the driver.

• Level 1 (Driver Assistance):

It is the lowest level of autonomy. These vehicles include a single autonomous system

for driver assistance, such as lateral or longitudinal control.

• Level 2 (Partial Driving Automation):

This consists of advanced driver assistance systems or ADAS, which includes both

lateral or longitudinal control to stay clear of other vehicles.

Figure 1.1: Levels of Automation
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• Level 3 (Conditional Driving Automation):

The technological capabilities of an autonomous vehicle take a huge jump from level

2 to level 3. "Environment detection" capabilities are introduced in level 3 vehicles

and they can make informed decisions for themselves. But they still require human

override. The driver must remain alert and ready to take control if the system is unable

to execute the task.

• Level 4 (High Driving Automation):

The main difference between Level 3 and Level 4 is that Level 4 vehicles can intervene

if things go wrong. In this sense, these cars do not require human interaction in most

circumstances. However, a human still has the option to manual override.

• Level 5 (Full Driving Automation):

These vehicles do not require human intervention and won’t have steering wheel or

acceleration/brake pedals. They can do what ever an experienced human driver would

do and are not limited to the geofencing.

1.1.1 Generic block diagram of autonomous car systems

The following are the main components of an autonomous car system:

• Environment Mapping:

It involves localisation of the vehicle with the help of an external aid (such as GPS)

and also the information extracted from the environment perception module.

• Environment Perception:

The OEDR module falls under this category. It is responsible for the decision taken

by other modules present in an autonomous vehicle. It includes both detection and

recognition of different objects and events.

• Motion planning:
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This module is responsible for decision making based on the information provided by

the environment perception module.

• Controller:

It is responsible for implementing the decisions taken by the motion planner by taking

the necessary lateral and longitudinal control.

Figure 1.2: Generic Block Diagram of Autonomous Car Systems[4]

1.1.2 Importance of perception via OEDR

An autonomous vehicle should be able to both localize itself in an environment and identify

and keep track of objects (both moving and stationary). The data can be accessed through

sensors like camera, LIDAR and RADAR and also using other functionalities available like

GPS. The information from these sensors can be used together and fused to localize the car

and track objects in its environment, which will help it sustain the journey to its destination.

5



1.2 Contribution of this work

1.2.1 Developing the OEDR module of autonomous cars with state of

the art simulators

According to a study, obtaining confidence in autonomous cars similar to that of human-level

proficiency would require testing that takes about 400 years[5]. Considering the above fact

and other key aspects of conventional autonomous driving such as cost of infrastructure

and maintenance, the development of the autonomous vehicle will take a lot of time, effort

and capital. By using simulators in the design and development of various modules of

autonomous cars we can reduce this testing duration. In our project, we have employed the

help of simulators to create a realistic imitation of the driving environment and developed

an OEDR with stereo cameras.

• Achieving human level proficiency:

Using simulators the time taken for the training of the autonomous vehicle can be

reduced by employing the features of running a simulation. In a simulation the

training speed can be greatly improved by running parallel instances of the same car

and then collaborating the progress. In this way many of the cases a vehicle would

encounter can be experienced by the simulated vehicle in a much faster and controlled

environment.

• Controlled Environment:

The environment of a simulator can be emulated accordingly to fit any scenario that

one might encounter while driving as the simulator provides many options such as

diverse environments and traffic conditions. The data retrieved by the vehicle in the

simulator could be analysed in a very efficient way as the simulation can be rerun or

paused at any time of the simulation, may it be while driving properly or during a

crash scenario.
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• Reduced development cost:

The equipment and other infrastructure involved in the autonomous industry demands

a substantial amount of capital which could set back the progress of the development.

Whereas in simulators, only the computer in which simulation is conducted costs

capital and other components such as vehicle, sensors can be avoided, thus reducing

the development cost involved. Furthermore, the analysis results from simulation are

very much valid in the field.

1.2.2 IPG CarMaker

The simulator with which we have completed our project is IPG CarMaker. CarMaker

includes a complete model environment comprising an intelligent driver model, a detailed

vehicle model and highly flexible models for roads and traffic. With the aid of this model

environment, we can build complete and realistic test scenarios with ease, taking the test run

off the road and directly to our computer. The event and maneuver-based testing method

ensures that the necessary flexibility and realistic execution are available in the simulator,

for example setting the environmental conditions like fog, sunlight glare, etc.
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Chapter 2

OEDR and IPG CarMaker

2.1 Introduction to IPG CarMaker

IPG CarMaker can be used to accurately model real-world test scenarios, including the

entire surrounding environment, in the virtual world. The powerful and capable models for

vehicles, roads, drivers, and traffic make this possible.

• Open integration and test platform:

CarMaker provides an open integration and test platform and can be used throughout

the entire development process, from model to software to hardware to vehicle in the

loop.

• Real time capable models:

It provides many real time models capable such as intelligent driver model, a detailed

vehicle model and highly flexible models for roads and traffic.

• Efficiency:

CarMaker’s performance guarantees flexibility, productivity and precision for all simu-

lation tasks, thereby ensuring significant savings in cost and time for the development

of your vehicle.
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• Documentation:

It provides extensive documentation which makes the process of navigating, accessing

different models and testing much easier.

• Low hardware and Dependencies requirements:

Aside from the low hardware requirements, the CarMaker software comes in with

different modules which can installed only if required as there are less dependencies

involved during a simulation.

2.2 Introduction to OEDR

OEDR module is a necessary component of the autonomous vehicle systems as it is respon-

sible for environment perception. It is also known as the eye of the self-driving vehicle. It is

responsible for the following features:

• Localisation:

It helps place the vehicle at an appropriate position with respect to its environment.

• Safety:

Many components of the autonomous vehicle such as collision detection, etc. are

essential for ensuring not only the safety of the vehicle but also other drivers and

pedestrians on the road.

• Lateral and Longitudinal control:

The output of different models implemented in the OEDR module help the motion

planning module to decide the necessary lateral and longitudinal variables needed for

the movement of the vehicle.

9



Figure 2.1: Components of OEDR Module[4]

The above features are achieved through help of the following components of the OEDR,

• Object Detection:

It includes detection of obstacles and other objects( both static and dynamic ) present

in its vicinity.

• Object Tracking:

Object tracking is an crucial task for the decision making process of the autonomous

vehicle as it keeps track of all the objects which could help determine how these could

affect the vehicle.

• Motion prediction:

Using the information the object detection and tracking components the vehicle can

now predict the motion of other objects to assess the decision that will be needed to

be taken by the vehicle.

2.3 Developing OEDR in IPG CarMaker

Due to the availability of many sensors like camera, LIDAR and RADAR the development of

the OEDR module is not restricted and they can be customized according to the necessities.

The CarMaker also provides control over all the variables from climatic conditions to the

friction of the tires which helps cover different real-life scenarios for productive development

of the OEDR module.

10



Chapter 3

Sensor modules

3.1 Object Detection and Classification

Object detection involves detecting the instances of objects from a particular class in an

image. The goal of object detection is to detect all instances of objects from a known class,

such as people, cars, etc. The challenges involving object detection and classification are,

• Speed for real-time detection

• Multiple spatial scales and aspect ratios

• Limited data

• Class imbalance

A collection of instances is a dataset, in out object detection task we needed a dataset to train

our deep learning model. Some of the features we were looking when we are searching for

datasets are: the classes present in the dataset must be related to self-driving car related, the

volume of the dataset is small to medium, and object annotation is present in the form of 2d

annotation as we were interested in the creation of 2d boundary box. We considered Lyft[15],

Waymo[16], and Rovit[11] dataset. Lyft dataset only contained 3d annotation of an object,

11



Object Detection Algorithm Mean Average Precision Time(ms)
Mask RCNN 36.2 172

SSD513 31.2 125
YOLOv3 33 51

Table 3.1: Object Detection Algorithm:Time-Accuracy Trade-off[10]

so we discarded it. Waymo dataset has a vast volume, and due to constrained computation

power, we went with the Rovit dataset.

In our dissertation we have explored the following object detection models:

• Single Shot Detector(SSD) 513: A typical CNN network gradually shrinks the feature

map size and increase the depth as it goes to the deeper layers. Taking advantage

of the above feature, the shallow layers are used to predict small objects and deeper

layers to predict big objects, as small objects don’t need bigger receptive fields and

bigger receptive fields can be confusing for small objects.[18]

• Mask RCNN: This approach efficiently detects objects in an image while simultane-

ously generating a high-quality segmentation mask for each instance. The method,

called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an

object mask in parallel with the existing branch for bounding box recognition[19].

• YOLOv3: YOLOv3 is a variant of a popular object detection algorithm YOLO – You

Only Look Once[10].

Table 3.1 shows the comparision between the above mentioned models:

We can see that the Mask RCNN model offers a much better MAP of all but loses to

others in the time taken for detection and the SSD model offers reduced time by trading off

the MAP. However the YOLOv3 offers the best time for detection of the 3 available models

while still maintaining a better MAP comparable to that of the others.

So, we have opted for YOLOv3, which uses a CNN based approach, for our object

classification challenge.
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3.1.1 CNN

In deep learning, a convolutional neural network (CNN, or ConvNet)[6] is a class of deep

neural networks, most commonly applied to analyzing visual imagery. It has the following

features:

• Local Receptive Fields

With local receptive fields we can extract elementary visual features such as edges,

corners, etc.

• Shared Weights

Elementary feature detectors that are useful in one part of the image are likely to be

across the entire image.

• Spatial/Temporal Sub-sampling

Sub-sampling reduces the resolution to reduce the sensitivity to shifts and distortion

Figure 3.1: Convolutional Neural Network

3.1.2 YOLOv3

You only look once (YOLO) is an object detection system for real-time processing. This

system is called this way because it traverses through the image only once to detect all the

object instances. There are three versions of this system present as of now YOLO, YOLOv2,

YOLOv3. For our implementation, we have chosen YOLOv3.
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3.1.2.1 Understanding How YOLOv3 works

YOLOv3 is size invariant as it employs only the usage of convolutional layers making it

a fully convoluted network. It consists of 75 convolutional layers, with skip connections

and up-sampling layers. The lack of pooling layers in the model is supported as this helps

in preventing loss of low-level features often attributed with pooling. The network down-

samples the image by a factor called stride. Generally, a stride of any layer in the network is

equal to the factor by which the output of the layer is smaller than the input image to the

network.

The features learned by the convolutional layers are passed onto a classifier/regressor

which makes the detection prediction. As YOLOv3 uses 1x1 convolutions during prediction,

the size of the prediction map is exactly the size of the feature map before it. YOLOv3

contains (B x (5 + C)) entries in the feature map depth-wise. Where B is the number of

bounding boxes each cell can predict. Each of the bounding boxes has 5 + C attributes,

which describe the center coordinates, the dimensions, the objectness score and C class

confidences for each bounding box. YOLOv3 predicts 3 bounding boxes for every cell and

C is the number of classes included for classification.

In YOLOv3 only one cell of the formed grid[change this] is responsible for detecting

an object. First, we must ascertain which of the cells this bounding box belongs to. To

understand it better let us consider an example[7]. The input image is 416 x 416, and the

stride of the network is 32 so the dimensions of the feature map will be 13 x 13. The cell

containing the center of the ground truth box of an object is chosen to be the one responsible

for predicting the object. Here, the cell is chosen to be the 7th cell in the 7th row of the grid

and this cell can predict 3 bounding boxes for the detected object.

So now the model needs to choose one final bounding box to make the prediction. YOLOv3

uses log-space transforms to calculate x,y center co-ordinates, and the width and height of

our prediction.

YOLOv3 doesn’t predict the absolute coordinates of the bounding box’s center but the
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Figure 3.2: Example

normalized (by 1) dimensions of the cell relative to the top-left corner of the image. For

example, if the prediction for the center is (0.4, 0.7) in the above given 13x13 feature grid

that means that the center lies at (6.4,6,7) i.e the (7,7) cell of the grid.

But by using just this approach we break the theory behind YOLO. For example, consider

the prediction to be (1.2,0.7), this leaves the prediction to be in the adjacent cell(8,7), whereas

it is was initially predicted to be at cell (7,7). Therefore, to remedy this problem, the output

is passed through a sigmoid function, which squashes the output in a range from 0 to 1,

effectively keeping the center in the grid which is predicting.

Next comes interpreting the objectness score and class confidence scores. Objectness

score denotes the probability that the object is contained in the bounding box predicted,

whereas class confidence represents the probabilities of the detected object belonging

to a particular class. YOLOv3 dropped the usage of softmax unlike its predecessors as

softmaxing the class scores assumes that the classes are mutually exclusive.

YOLOv3 makes predictions across 3 different scales. The detection layer is used to
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make detection at feature maps of three different sizes, having strides 32, 16, 8 respectively.

This means, with an input of 416 x 416, we make detections on scales 13 x 13, 26 x 26 and

52 x 52 as shown in the Figure 3.3. The feature is introduced in the third version of the

model to help better the detect smaller objects.

(a) 13x13 (b) 26x26 (c) 52x52

Figure 3.3: Different Scales of Detection

For an image of size 416 x 416, YOLOv3 predicts ((52 x 52) + (26 x 26) + 13 x 13)) x 3

= 10647 bounding boxes. We use the following methods to reduce the from 10647 to 1.

• Thresholding by Object Confidence:

First, we filter boxes based on their objectness score. Generally, boxes having scores

below a threshold are ignored.

• Non-maximum Suppression

NMS intends to cure the problem of multiple detections of the same image. For

example, all the 3 bounding boxes of the red grid cell may detect a box or the adjacent

cells may detect the same object. Using the IoU values, one of the 3 boxes is chosen.

Intersection over Union(IoU) is the ratio of the area of intersection over the union

area occupied by the ground truth bounding box and the predicted bounding box.
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Figure 3.4: Non-maximum Suppression

3.1.2.2 Implementaion

Our implementation uses Rovit dataset which consists of 7 classes namely ’Person’, ’Bicy-

cle’, ’Car’, ’Motorbike’, ’Bus’ ,’Traffic sign’ and ’Traffic light’. The filters at output layer

can calculated using the formula (B x (5 + C))=(3 x (5 + 7))=36.

Figure 3.5: Object Detection in CarMaker

From the output image(Figure 3.5) we can see the classes of the detected objects along

with their class confidence.
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3.2 Traffic Sign Classification

Traffic signs, also known as road signs are signs placed at the side of or above roads to give

instructions or provide information to road users. There are a large number of traffic signs

that a driver needs to keep track of. We could place these signs as individual classes in the

YOLOv3 module but it will increase the number of classes significantly as there are more

than 40 traffic sign classes that we are considering which will increase the complexity of

the model and time of execution. So, we have created a dedicated module for traffic sign

detection.

3.2.1 Traffic Sign Detection Module Pipeline

Our traffic sign classifier take traffic sign images from the output of YOLOv3 module and

each traffic sign image follow the pipeline given in Figure 3.6.

• Image Pre-processing

• Detection module

Figure 3.6: Traffic Sign Classifier Pipeline

3.2.1.1 Image Pre-processing

Each traffic sign image detected by the YOLOv3 module is in RGB representation. Although

colors in the traffic signs are important for people to recognize them in the real world, traffic
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signs have different shapes and contents. So, we can ignore the color of traffic signs and

only work with the shapes and contents. This will help us to reduce the size of the images

significantly thus training and prediction time.

For example: If we take a 32x32 RGB image it will have 32x32x3 pixels. But if we

consider the same image but in grayscale, it will have 32x32x1 pixels. Now, this may

look relatively little change in pixel value considering the computational power of modern

computers. But here we are considering only one image. If we consider all images in the

dataset then there will be 153600000 (50,000x32x32x3) pixels in total wherein grayscale

case we will only have 51200000 pixels. There is a difference of one hundred and two

million, four hundred thousand pixels. This slows down our training significantly considering

the performance it will give our model if we use RGB instead of grayscale images. It also

slows predicting as we have to work almost three times more in the case of an RGB image.

Also, we are resizing each image to 32x32 pixels because the size of the boundary box

from the YOLO module can change in each case. We are taking 32x32 as square image

matrix can be rotated, and analyzed in smaller patches.

3.2.1.2 Detection Module

We have adopted a deep learning model to solve this problem. The first model that we

have implemented is based on LeNet-5[6] architecture(Figure 3.7). The LeNet-5 architecture

consists of two sets of convolutional and average pooling layers, followed by a flattening

convolutional layer, then two fully-connected layers and finally a softmax classifier.

Figure 3.7: LeNet Architecture
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We trained this architecture with the German Traffic Sign dataset[9] and the best accuracy

we have achieved is 94%. Examining the misclassified images we found that most of the

misclassification is caused when the pattern in the actual class and predicted class is similar.

Also, classes with complicated patterns are predicted wrong almost all the time. This leads

to the conclusion that this model is the facing bias problem.

To solve this issue we changed the architecture of our model(Figure 3.8). We introduced

one more convolutional layer and changed the number of neurons in fully connected layers.

Figure 3.8: Detection Module Architecture

In the first convolutional layer, we are using 32 1x1 kernels. It will produce 32 32x32

layers because as input we have 1 32x32 layer. Here the idea is to distribute the features

among 32 layers from 1 layer to get more patterns or features from the input image. Next,

we are using a convolutional layer again but this time we are using 64 5x5 kernels. It will

produce 64 28x28 layers. Here again, we are distributing features from 32 layers to 64 layers

to get more features or pattern but at the same time, we are reducing each layer size(from

32x32 to 28x28) to improve computation. Then we are applying a 22 max-pooling layer.

It will result in 64 14x14 layers. It is used to progressively reduce the spatial size of the

representation to reduce the number of parameters and computation in the network and also

it extracts the sharpest features of each layer. So given an image, the sharpest features are the

best lower-level representation of an image. Next, we are applying 128 5x5 convolutional

layers again. It will produce 128 10x10 layers. Then we are applying a max-pooling layer

of 2x2 size. It will produce 128 5x5 layers. The idea behind these last two layers is the same
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as before. Now we flatten the result of the last max-pooling layer and create a 128x5x5 1D

tensor. We do this because the next layers are fully connected layers and they take 1D tensor

as input. So, after this, there are three fully connected layers. The last layer being the output

layer and as we have 43 classes in the dataset, the last layer has 43 neurons. The second

last layer contains 512 neurons and the third last layer has 1024 neurons. The output from

the convolutional layers represents high-level features in the data. Fully connected layers

connect every neuron in one layer to every neuron in another layer. The flattened matrix

goes through a fully connected layer to classify the images. Fully connected layers simply

learn non-linear functions of high-level features (from convolution and pooling layers) and

classify images based on High-level features. Here in each fully connected layer, we are

using ReLU activation function and in each convolutional layer, there is no padding and

stride is 1x1.

3.2.2 Model Statistics

We have tested this model with german traffic sign dataset.

3.2.2.1 Dataset Statistics

• This dataset contains 43 classes of different traffic sign.

• It has more than 50,000 images in total.

• Some examples of classes would be Stop, No vehicles, Speed Limit etc.

3.2.2.2 Training

• We have trained the model with 34799 images(Figure 3.9).
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Figure 3.9: Classes in German Traffic Sign Dataset

3.2.2.3 Test Results

• Accuracy of the Model is 97

• Least error in Class : Vehicles over 3.5 metric tons prohibited.

• Most error in Class : Speed limit(80 km/h)

3.2.2.4 Computation Time

Average Time for computation is 0.0033 s. Bar chart in Figure 3.10 showcase time of

execution for different images.
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Figure 3.10: Computation Time of Traffic Sign Classifier

3.3 Traffic Light Classification

Traffic lights, also known as traffic signals, traffic lamps, stop lights, are used to control the

movement of traffic. They are placed in roads at intersections and crossings. According

to the Vienna Convention on road and signals, all traffic signals must be in some form of

red, yellow, and green. When the traffic signal with three aspects is arranged horizontally

or sideways, the arrangement depends on the rules of the road. In right-lane countries, the

sequence (from left to right) is red-yellow-green. In left-lane countries, the sequence is

green–yellow–red. In this project, we have adopted the right-lane rule of driving.

A report on the findings of an eight-year study conducted by the National Highway

Traffic Safety Administration (NHTSA) says there were on average 1,578 fatalities each

year resulting from two-vehicle traffic crashes at intersections controlled by traffic signals[14].

Approximately 51% of those fatal crashes were caused by drivers who ran red lights. So,

we have implemented a dedicated module to classify traffic light. In this chapter we will be

looking at our traffic light classifier in detail and why we choose it.
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3.3.1 Traffic light Pipeline

Our traffic light classifier take traffic light images from the output of YOLO module and

each traffic light image follow pipeline given in Figure 3.11.

• Image Pre-processing

• Feature Extraction

• Prediction

Figure 3.11: Traffic Light Classifier Pipeline

3.3.1.1 Image Pre-processing

The traffic light will be first detected through the YOLO model then it will be identified

by this module. So, the size of the boundary box of a traffic light will not be fixed. But to

follow our traffic light classifier we need a fixed height of the traffic light image. So, we

have converted each traffic light image to a 32x32 image. We are taking 32x32 as a square

image matrix which can be rotated and analyzed in smaller patches and as the size of the

boundary box from the YOLO module can change on each case.

Now there may be unnecessary information and noise in the 32x32 RGB image which

can lead to incorrect identification of traffic light. We are using Gaussian Filtering to achieve

this. A Gaussian filter is a linear filter. The Gaussian filter reduces contrast and as increasing

the contrast will increase the visible noise, especially in the shadow areas, the gaussian filter
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works great in this case to mask all the noises of the image. Figure 3.12 is an example of

how this works.

Figure 3.12: Image Prepossessing I

In the Figure 3.12 we can clearly see that there is less noise in the third image than there

is noise in the first or second image.

Also, we are cropping 4 rows from both upper and lower end of image as we do not need

whole traffic light board we only need the part of the board where these lights are present.

Figure 3.13: Image Prepossessing II

In Figure 3.13 we can see the final image (32x32 Gaussian Blur Image) only has the

traffic sign than all other objects in the original image.
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3.3.1.2 Feature Extraction

Traffic Light classifier module we are interested in a feature that can identify a light is

illuminated. So, we are using brightness feature of an image.

Now to get the brightness feature from an image we will need to convert RGB image to

HSV image. HSV is an alternative representation of the RGB color model, where H stands

for hue, S stands for saturation, and V stands for Value. We are only interested in the value

component only.

Value describes in brightness or intensity of the color, from 0-100 percent, where 0 is

completely black, and 100 is the brightest and reveals the most color. Now, we only need to

get three positions of images where red, green, and yellow light can be illuminated. Because

then we only need to compare the average brightness value of these three regions and we

can identify which one is illuminated at a moment. As we are using the right-lane driving

convention we know red will be at the top, yellow at the middle, and green at the bottom. So,

we have divided the preprocessed image into three segments horizontally. Now we are taking

an average brightness value of the top segment to get the brightness of the red segment.

Similarly, we are taking an average brightness of the middle and the bottom segment to get

the brightness of the yellow and green segment respectively. The segment with the highest

brightness is the one illuminated. So if we apply this logic to the preprocessed image we

will get results like Figure 3.14.

Figure 3.14: Divided Traffic Light Segments
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3.3.1.3 Prediction

This step compares the average brightness from previous region and predicts the light

corresponding to the highest brightness one as illuminated.

Figure 3.15: Average Region Brightness

If we plot the average brightness value for these three regions from feature extraction

we get the chart shown in Figure 3.15.

It is clearly visible that the region corresponding to red is most bright. So this model

will detect a red traffic light signal which is true if verified with the base image.

3.3.2 Model Statistics

3.3.2.1 Traffic Sign Testing Dataset Statistics

• No of Images with Red traffic light illuminated: 180

• No of Images with Yellow traffic light illuminated: 35

• No of Images with Green traffic light illuminated: 429
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3.3.2.2 Test Result

• 100% accuracy for Red traffic light illuminated.

• 100% accuracy for Yellow traffic light illuminated.

• 99% accuracy for Green traffic light illuminated.

3.3.2.3 Computation Time

Average Time for computation is 0.0033s (Figure 3.16).

Figure 3.16: Computation Time:Traffic Light

3.4 Lane Detection and radius of road estimation

Lane detection is to detect lanes on the road and provide the accurate location and shape of

each lane. It serves as one of the key techniques to enable modern assisted and autonomous

driving systems.

Here we have proposed a lane detection pipeline with computer vision techniques.
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3.4.1 Lane Detection Pipeline

• Image Pre-processing

• Binary Image

• Perspective Transform

• Lane Detection

• Reverse Perspective Transform

• Radius of Curvature

3.4.1.1 Image Pre-processing

First, we resize every image to 1280x720 pixels. This is to standardize the image size as

well as ease of computation and parameter choice during the next phases.

3.4.1.2 Binary Image

In this step, we wanted to generate a binary image matrix. We create this binary matrix in

such a way that the only contestant for lane pixel positions will only be one other will be

zero. Here we are interested only in steep edges that are most likely to edges. To achieve

this we are using the Sobel operator[12].

3.4.1.2.1 Sobel Operator

The Sobel operator performs a 2-D spatial gradient measurement on an image and so em-

phasizes regions of high spatial frequency that correspond to edges. Typically it is used to

find the approximate absolute gradient magnitude at each point in a grayscale image. Sobel

operator can be used to detect both vertical edge and horizontal edge.
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-1 0 -1
-2 0 -2
-1 0 -1

Table 3.2: Vertical Sobel Operator

-1 -2 -1
0 0 0
-1 -2 -1

Table 3.3: Horizontal Sobel Operator

Vertical Edge detection

Sobel operator consists of a mask. When we apply this mask on the image it prominent

vertical edges. It simply works like a first-order derivative and calculates the difference of

pixel intensities in an edge region. For example, Table 3.2 is a 3x3 vertical mask for Sobel

operation:

As the center column is of zero so it does not include the original values of an image but

rather it calculates the difference of right and left pixel values around that edge. Also, the

center values of both the first and third columns are 2 and -2 respectively. This gives more

weight age to the pixel values around the edge region. This increases the edge intensity and

it becomes enhanced comparatively to the original image. In the implementation 3x3 mask

used for vertical edge detection.

Horizontal Edge detection

The Table 3.3 is an example of horizontal mask for sobel operation: This mask will

prominent the horizontal edges in an image. It also works on the principle of the above

vertical mask and calculates difference among the pixel intensities of a particular edge. As

the center row of mask consists of zeros so it does not include the original values of edge in

the image but rather it calculates the difference of above and below pixel intensities of the
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particular edge. Thus increasing the sudden change of intensities and making the edge more

visible. In the implementation 3x3 mask used for horizontal edge detection.

Post-processing

After each Sobel operation, we are using a minimum threshold and a maximum threshold.

If the gradient output of a pixel after applying Sobel operation is inside that range then there

will be one in the output matrix corresponding that pixel otherwise it will be zero. During

implementation, we experimented with a wide range of threshold values and we found the

best result in the range [15,150] for vertical edge detection and [30,150] for horizontal edge

detection.

Figure 3.17 is an example of all the steps mentioned before.

(a) Original Image (b) Horizontal Edge Detection (c) Vertical Edge Detection

Figure 3.17: Sobel Operation

3.4.1.2.2 Magnitude of Gradient

In Sobel’s operation, we can see that the x gradient (using the vertical mask) does a cleaner

job of picking up the lane lines, but we can see the lines in the y gradient (using the horizontal

mask) as well. Next, we will be applying a threshold to the overall magnitude of the gradient,

in both x and y. The magnitude or absolute value of the gradient is just the square root of

the squares of the individual x and y gradients. For a gradient in both the x and y directions,

the magnitude is the square root of the sum of the squares.

absSobelX =
√
(sobelx)2
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absSobelY =
√

(sobely)2

absSobelXY =
√
(sobelx)2 +(sobely)2)

Similarly, like Sobel operation, we are using minimum threshold and maximum threshold

as the post-processing step. We found that [50,150] range gives us the best result. If we

apply the magnitude of the gradient to the same image we tested during Sobel we get Figure

3.18.

Figure 3.18: Magnitude of Gradient

3.4.1.2.3 Direction of Gradient

We can observe the last two process does great for any edge detection. But for lane detection

we do not want to detect all the edges, we’re interested only in edges of a particular

orientation. So now we will explore the direction, or orientation, of the gradient. The

direction of the gradient is simply the inverse tangent (arctangent) of the y gradient divided

by the x gradient:

arctan(sobely/sobelx)

Each pixel of the resulting image contains a value for the angle of the gradient away
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from horizontal in units of radians, covering a range of−π

2
to

π

2
. An orientation of 0 implies

a vertical line and orientations of +/− π

2
imply horizontal lines.

Here we are also doing post-processing by using a threshold range. We got the best

results for (0.7,1.3) range. If we apply direction of gradient to the same image we tested

during Sobel we get the Figure 3.19.

Figure 3.19: Direction of Gradient

3.4.1.2.4 HSL and Color Threshold

In the previous methods, we are considering grayscale images. Lane detection works fine for

most of the time if we only create the output matrix by the above methods but with different

color and contrast, there may be a problem with only considering gradient. Figure 3.20 is an

example where previous gradient methods face problems.
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Figure 3.20: Corner Case

Figure 3.21 is how the combined binary looks like:

Figure 3.21: Corner Case:Combined Binary

We can clearly see lanes are not recognizable after some distance. To solve this problem

we are using HSL and color threshold. HSL is an alternative representation of the RGB

color model, where H stands for hue, S stands for saturation, and L stands for lightness. We

have already discussed about hue and saturation in the traffic light classification module.

Lightness is represented in percentage and 0% means black and 100% means white. Now

after converting the Figure 3.20 to HSL representation and plotting the S matrix we get the

Figure 3.22.
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Figure 3.22: Corner Case:S Channel

Next we are applying thresholding and creating a binary matrix which contains one cor-

responding to the pixel positions which are in this threshold range. During implementation

we found that (170,255) range gives best result. If we apply this threshold to the Figure 3.22

we get Figure 3.23.

Figure 3.23: Corner Case:S Binary
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The Figure 3.23 is much better than the binary image we got from gradient methods.

3.4.1.2.5 Combined Binary Matrix

Finally we combine all the binary matrix from the previous discussion. Let’s assume,

gradxbin is the binary matrix resulted from vertical edge detection, gradybin is the binary

matrix resulted from horizontal edge detection, magbin is the binary matrix resulted from

magnitude of gradient, dirbin is the binary matrix resulted from direction of gradient, hlsbin

is the binary matrix resulted from HSL and thresholding the we say combined binary matrix

as follows

Combinedbin = (gradxbinAND gradybin) OR (magbin AND dirbin) OR hlsbin

3.4.1.3 Perspective Transform

A perspective transform[13] maps the points in a given image to different, desired, image

points with a new perspective. In the perspective transform, we are most interested in is

a bird’s-eye view transform that lets us view a lane from above; this will be useful for

calculating the lane curvature later on. When we apply a perspective transform, we choose

four points manually and from previous images, we decide the destination points such that

mapping these points to the destination points we will be getting the top view of the lane.

During the implementation we choose the following array as the source and destination

points respectively :

source points = [ [250,700], [ 1200, 700 ], [ 550, 450 ], [ 750, 450 ] ]

destination points = [ [ 250 , 700 ] , [ 1200, 700 ], [ 300, 50 ], [ 1000, 50 ] ]

Using the above parameter if we apply the perspective transformation to a frame taken

from IPG CarMaker we get the Figure 3.24.
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(a) Original Image

(b) Perspective Transform Image

Figure 3.24: Perspective Transform Operation

It is obvious from the Figure 3.24 that if we choose the original image to find the

radius of curvature of the road then we will be getting the wrong result but the perspective

transformed image almost accurately shows the actual orientation of lane lines and radius of

curvature.

3.4.1.4 Lane Detection

We will be detecting lane on perspective transformed the combined binary image. Here

peaks of the histogram method are used to find the lanes. We create a histogram from the

sum of columns of the bottom half of the combined binary image. In our combined binary

image, pixels are either 0 or 1, so the two most prominent peaks in this histogram will be

good indicators of the x-position of the base of the lane lines. We can use that as a starting

point for where to search for the lines. From that point, we can use a sliding window, placed

around the line centers, to find and follow the lines up to the top of the frame. There are a

few parameters here that we have to consider:

• Number of windows: Number of sliding windows.

• Margin: Width of the window, in this area lane search is done.

• Minimum pixel: Minimum number of pixels found to recenter.
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During implementation we fixed the image to 1280x720 pixels and took the following

parameter values and got the best results:

• Number of windows: 9

• Margin: 110

• Minimum Pixel: 50

Figure 3.25 shows the above parameters and how the histogram is used to find lane.

Figure 3.25: Lane Detection

3.4.1.5 Reverse Perspective Transform

After lanes are detected we transfer the image back to its original form by mapping destina-

tion points mentioned in perspective transform back to original points.

3.4.1.6 Radius of Curvature

Lane pixels detected during the lane detection phase used to calculate the radius of curvature.

Lane pixel’s x and y pixel positions fitted in a second order polynomial curve:

f (y) = Ay2 +By+C
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Here lane pixels are fitted for f (y) rather than f (x) because the lane lines in the warped

image are near vertical and may have the same x value for more than one y value. Radius of

curvature at any point x of function x = f (y) given as follows:

Rcurve =
[1+(

dy
dx

)2]3/2

|d
2x

dy2 |
In the case of the second order polynomial above, the radius of curvature becomes:

Rcurve =
[1+(2Ay+B)2]3/2

|2A|

3.5 Depth Estimation

Depth estimation or calculating the distance between the autonomous vehicle and the

detected objects is a crucial step in maneuvering the vehicle in a safe and efficient manner.

Depth estimation using cameras is done using either of the following ways.

• Monocular depth estimation:

It involves processing of images from a single point of view i.e. using the data

acquired using a single camera. The data is usually processed using machine learning

models or by combining the image data with other sensors.

• Stereo depth estimation:

It involves processing of images from multiple points of view i.e. using the data

acquired using multiple cameras. The depth is estimated by using multiple cameras to

triangulate the detected object.

The first model we researched was by using monocular depth estimation. This models

uses the concept of triangular similarity. In this the depth(D) is estimated using the focal

length(F) of the camera, width(W) of the object and width(P) of the object in pixels. Using

the above information depth can be calculated as D = (W ∗F)/P. The accuracy of this

method drops when the detected object is not aligned with the camera i.e. as the pixel width

of the rotated object is inaccurate.

39



Despite the recent progress in monocular depth estimation, the accuracy of the results

is still far behind the stereo depth estimation technique. This mainly due to the texture

and structural variations, object occlusions, and rich geometric detailing which limits the

development of monocular depth estimation. In our project, we have used Stereo depth

estimation to triangulate and locate the detected objects.

3.5.1 Stereo Depth Estimation

Stereo depth estimation[4] employs the concept of triangulation i.e. the process of determin-

ing the location of a point by forming triangles to it from known points. Here the location of

the object is determined using the location of the cameras as known points, so the distance

of the object can be calculated as the cameras are fixed on the vehicle-no relative motion

with respect to the vehicle.

Figure 3.26: Triangulation Image and Equations[4]

The main challenge that arises in depth estimation is locating the same object in both

camera images. Identifying the position of an object is done by selecting a part of the second

image which most resembles the object selected in the first image as shown in Figure 3.27.
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Figure 3.27: Detecting Most Similar Component of the Second Image[4]

The process of locating the object in the second image can be done by traversing through

the second image systematically i.e choosing the left topmost corner and moving the cho-

sen frame across the image such that it covers the entire image to find the most suitable

frame. But this approach consumes a lot of computation time. The process of locating the

appropriate frame can be shortened by leveraging the fact that upon placing the two cameras

at the same height the process of traversing through the second image can be restricted to

moving from only left to right in the same height range as that of the object chosen in the

first image(Figure 3.28).

Figure 3.28: Optimised Search[4]
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3.5.2 Implementation and examples

The method used for finding the best match with the two images is minimizing the euclidean

distance calculated from the two images i.e finding the average of the distance between

every pixel of the selected part of the images.

Upon finding the closest match using the above formula, depth/distance of the object can be

calculated.

Consider the following set of images(Figure 3.29) that have the same object but at

different positions of the image. As both the cameras are at the same height we can see that

the object is present at the same height range in both the images.

Figure 3.29: Input Left and Right Images

The disparity in the images can be calculated using the highlighted strips of the images.

By using the above formula the depth of the object present can be calculated as we have

disparity values.

Figure 3.30: Processed Disparity Output
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3.6 LIDAR

LIDAR—Light Detection and Ranging—is a remote sensing method used to examine the

environment by projecting infrared lasers and studying the reflecting rays which are captured

by sensors. Distance to the object is determined by recording the time between transmitted

and reflected rays and by using the speed of light to calculate the distance traveled. The

groups formed by the reflections can be analyzed to detect, classify and segment the objects

present in the environment.

We have used the euclidean clustering algorithm[8] to group the point cloud data gener-

ated by LIDAR which in-turn is used for object detection.

3.6.1 Clustering Algorithms

Clustering is the task of dividing the population or data points into several groups such that

data points in the same groups are more similar to other data points in the same group than

those in other groups. In simple words, the aim is to segregate groups with similar traits and

assign them into clusters. The clustering types can be divided into the following categories.

• Hard clustering:

In this the data points are strictly classified into different groups i.e it either belongs

to the group or not.

• Soft clustering:

Unlike hard clustering, a data point can belong multiple groups with a set probability

value for each group.

Whereas clustering algorithms fall into the below four categories.

• Connectivity models:

These models are based on the notion that the data points closer in data space exhibit

more similarity to each other than the data points lying farther away.
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• Centroid models:

These are iterative clustering algorithms in which the notion of similarity is derived

by the closeness of a data point to the centroid of the clusters.

• Distribution models:

These clustering models are based on the notion of how probable is it that all data

points in the cluster belong to the same distribution.

• Density Models:

These models search the data space for areas of varied density of data points in the

data space.

3.6.2 Euclidean Clustering Algorithm

Euclidean clustering fall under hard clustering and centroid model as the data points clas-

sified fall under only one of the available groups and it is implemented in an incremental

fashion.

Figure 3.31: Clustering Algorithm[8]

The algorithm takes in a single point and adds all the points close enough into the point

and contains this process till the no other points are inside the threshold, to form a group,

this process continues till all the data points are considered to be in any group. During

implementation, many variables are taken into consideration such as minimum cluster/group

size, tolerance distance, etc.
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3.6.3 Implementation and Examples

The implementation process can divided into the following steps.

• Extracting the point cloud data: The data from the PCD format of the LIDAR is

extracted and the data is then down-sampled to achieve better performance.

Figure 3.32: Input LIDAR Data

• Variable selection: In this step the variables such as minimum cluster size, maximum

cluster size and cluster tolerance are set.

• Clustering: After setting up the variables, the above mentioned algorithm is used to

extract the different clusters(Figure 3.33) from the given point cloud(Figure 3.32) and

saved into different cluster files/variables for any further potential uses.

Figure 3.33: Detected Cluster Example
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3.7 Camera Integration

All the individual modules are integrated with CarMaker. CarMaker streams data captures in

bytes format to port 2210. Each image has a header file and in the header file camera number

is mentioned. As we have used two cameras for this implementation we will be getting two

images for each instance. Now right image will first be given input to YOLOv3 module and

lane detection module. Left image will only be used in depth estimation. YOLOv3 module

will return object that are present in the right frame. If there is any traffic light present in this

frame then traffic light image is given as an input to traffic light classifier. Similarly, if traffic

sign is detected then it is given as an input to traffic sign classifier. Every object is given as

an input to depth estimation module. Now results from these modules are combined and

shown in a frame with each detail detected by all modules shown. Figure 3.34 showcases

the pipeline of different modules related to the camera sensor.

Figure 3.34: Camera Integration
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Chapter 4

Conclusion and Future work

4.1 Conclusion

Driving is a complex phenomenon with lots of dependencies. Developing a level 5 self-

driving car will take time. From the results of this thesis, we can create and test all modules

of the self-driving car in simulators. We can run simulations in large numbers parallelly to

train and find out any situation that causes the anomaly. Thus we can reduce development

time significantly by using simulators and the fact that self-driving cars can share their

experience in a matter of minutes to other self-driving cars, unlike humans. So, the state of

the art development for self-driving cars can be done in simulators with significant efficiency

and low development cost.

4.2 Future work

As per the current development state, we have only integrated the camera sensor modules

to the IPG CarMaker, LIDAR sensor module is implemented but not integrated. So, as

future work LIDAR sensor modules can be integrated to improve environment perception.

Also, we can use other sensors like RADAR, ultrasonic sensors to improve environment

perception.
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4.3 Contributions

• Object Detection Algorithm research

• Traffic Light Classification Implementation

• Traffic Sign Classification Research and Implementation

• Lane Detection Research and Implementation

• YOLOv3, traffic Sign and traffic light integration

I thank T Venkat Nikhil for his contribution in developing the CarMaker testing environ-

ment.
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