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Abstract

In this work, we develop a generic tool for the recognition of similar objects.
The techniques proposed for object recognition mainly focus on categorizing
heterogeneous objects. However, when subjected to the multi-class classifi-
cation problem of similar objects, these models don’t fare so well. PointNet
architecture is one such model that directly consumes point clouds of im-
ages as inputs, instead of relying on the much bulkier 3D voxels and grids,
to classify multiple objects. Even though it gives remarkable accuracy when
classifying different objects, the performance declines when we try to classify
similar objects like faces. We are proposing a solution that combines the
object classification utility from PointNet architecture along with One-Shot
Learning from Siamese Network that converts our multi-class classification
problem to a binary classification problem and improves object recognition
accuracy, even for similar objects. We are applying our proposed approach
on 3D face recognition by conducting a series of experiments on three 3D
face databases, namely, IIT Indore database, Bosphorus database, and Uni-
versity of Notre Dame (UND) database, to test our model. We also use a
novel data augmentation technique that uses sub-sampling from the existing
point clouds to increase the size and variability of the available data. The
experimental results show that the proposed method is considerably better
in recognizing objects that are highly similar as compared to the original
PointNet architecture.
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Chapter 1

Introduction

One of the most active research fields in Computer Vision is 3D object
recognition. Recognition is the first step in the semantic analysis of an ob-
ject. The main objective of object classification is to recognize previously
unknown objects in digital images and 3D spaces. Object recognition tech-
niques typically use matching, learning, or pattern recognition algorithms
using techniques based on appearance or features. With the advent of new
algorithms, models, and approaches, 3D object recognition is becoming in-
creasingly effective. The manufacturing industry, autonomous driving, video
surveillance, urban planning, control and safety, and augmented reality ex-
tensively use 3D object classification and recognition. Most of the existing
2D and 3D use convolutional neural networks (CNNs), which successfully
extract features from the data.

Even though most of the proposed object recognition techniques success-
fully classify and recognize unknown objects, they are not very successful
when we apply them on subjects belonging to the same object class. We
are proposing a tool that is a unique combination of one of the popular ob-
ject recognition architectures and a one-shot learning network to overcome
the above-mentioned shortcoming. Face recognition can be one of the use
cases of object recognition for objects belonging to the same class. It is a
widely adopted biometric technology for access control in security, primarily
due to its contactless and non-invasive nature, unlike fingerprints and iris
recognition. Due to its limitations in adapting to changes in parameters like
illumination and poses such as emotions and occlusions, the research focus
is gradually being shifted from 2D face recognition to 3D face recognition.

There are two utilities of face recognition, namely, face verification, which
is a 1:1 comparison, and face identification, which is a 1:N juxtaposition
problem. In recent years, major developments in face recognition techniques
have increased the face recognition performance by manifold. However, most

1



CHAPTER 1. INTRODUCTION 2

of the techniques face the common challenge of the variations in the face ac-
quisition process, such as illumination irregularities due to reflection and
pose changes due to varied expressions, deformations, or occlusions. These
differences are more pronounced in 2D face recognition as compared to 3D
face recognition. This is primarily because 3D based approaches use the en-
tire face geometry data. There are two common approaches used to model
3D face data - 2.5D depth images that represent 3D points in a 2D space
along with different viewpoints, and 3D images that globally represent the
entire face geometry, for example, 3D voxels and point clouds.

Most of the deep learning-based approaches on 3D data use volumetric
CNNs in which the input is highly regularized in the form of 3D voxels or
image grids. This representation simplifies weight sharing and other ker-
nel optimizations. However, 3D voxels and grids are bulky in nature, thus
rendering the input computationally and spatially expensive. To overcome
this drawback, our approach directly consumes the input as an unordered
set of data points called point cloud instead of transforming them into a
regular 3D representation. 3D point cloud data processing is an important
research field in computer vision with applications in object classification
and recognition, environmental detection, mobile robot navigation, and so
on. Point clouds have an added advantage of invariance to transformations
like translation and rotation.

As discussed in [1], PointNet architecture is a deep learning CNN frame-
work that directly consumes point clouds as input. It is an efficient model
in classifying 3D dissimilar objects and is robust with respect to input dis-
turbances. The uniqueness of the PointNet architecture lies in its ability to
preserve the translational and rotational invariance property of point clouds.
However, PointNet architecture is used to classify inputs into different ob-
ject classes rather than different samples of the same class. Thus, face recog-
nition problems cannot be solely solved by deploying this architecture alone.

Thus to improvise over the PointNet architecture model, we’re combining
it with the Siamese network. The Siamese Network generates a similarity
score by matching a test sample with a reference sample and predicting
whether they belong to the same subject class or different subject classes.
This similarity score lies in the range 0, indicating no similarity, to 1 indi-
cating full similarity. The similarity function of the Siamese network thus
takes in two inputs and expresses how similar they are to each other.

One of the limitations of 3D object recognition is the difficulty in acquir-
ing a large amount of 3D data. Due to this limitation, effectively training the
model without overfitting is a challenge. In our work, we are using a novel
augmentation technique to increase the size of our database before training
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the model. We are creating different fixed-size subsets of the input point
clouds of our samples. These subsets will have fewer points than the original
sample, reducing the computational requirements but still maintaining all
the features of the original sample.

The rest of the report is organized as follows: Chapter 2 presents litera-
ture review of 3D Object Classification and 3D Face Recognition Techniques.
Chapter 3 discusses preliminaries required for the proposed technique. Our
proposed model is described in Chapter 4. The results of the analysis and
experiments on the proposed method are presented in Chapter 5. Chapter
6 concludes the report.



Chapter 2

Literature Review

Previously, 3D object identification used approaches like Iterative Closest
Point [2], the differential geometry approach [3] and calculating free-form
curved surfaces using spherical correlation [4]. Deep learning-based ap-
proaches are a class of machine learning algorithms that extracts high-level
features from raw input using multiple layers of representation and abstrac-
tion. Convolutional Neural Network is a type of deep learning model that
extracts complex features from raw images using local pooling and filters.
They have been particularly useful in character recognition [5] and EEG
signal recognition [6]. [7] proposes a multi-scale 3D deep convolutional neu-
ral network for hyperspectral image Recognition. [8] proposes a slice-based
CNN approach to recognize 3D objects in real-time, achieving a success rate
of 94.34% in ModelNet10 Recognition. To address the problems of inter-
class similarities, intra-class variances, and spatial variability in images, [9]
proposes a framework for object recognition that is discriminative and spa-
tially invariant.

Robotic perception and manipulation also requires applications of 3D ob-
ject detection and pose estimation. This is done by generating a synthetic
dataset from its 2D and 3D local features [10]. Sales et al. [11] propose
a novel 3D shape descriptor for recognizing objects in 3D scenes which is
taken as input for a supervised machine learning model. In order to fully
utilize the volumetric information which is usually hidden in the depth data,
a view-based 3D model is constructed from a single depth image [12]. 3D
feature information is often lost while being converted to their respective
voxel representations. To overcome this, a new rotation-invariant feature
[13] is proposed which is based on mean curvature. This method improves
the recognition rate on voxel CNNs and increases the overall accuracy on
ModelNet 10 dataset by 1%. Another 3D object detection approach involves
a system with an enhanced Depth Estimation Algorithm [14] which makes
use of statistical calculations for refining the depth image and reduces the

4



CHAPTER 2. LITERATURE REVIEW 5

effect of noise.

Biometrics is one of the major applications of 3D object recognition. Due
to their unique anatomical markers, 3D ear and face structures can be used
to create strong biometric security systems. One of the earlier approaches
involved Principal Component Analysis to extract features from 3D ear sur-
face for 2D ear image identification [15]. Ganapathi et al. [16] propose a
technique that uses 2D and 3D ear images for biometric recognition using
local feature detection and description. The proposed approach achieves a
remarkable accuracy of 98.69% on UND J2 dataset.

Yi Sun et al. [17] achieve an accuracy of 96% on the 2D LFW dataset
by combining two CNNs derived from convolution and inception layers. An-
other deep CNN approach, proposed by Jun-Cheng Chen et al. [18], trains
real-world unconstrained 2D LFW faces and achieves an accuracy of 97.45%.
For 2.5D depth images, Lv et al. [19] get a recognition rate of 97.8% by using
LBP for feature extraction and sparse representation classifier on FRGCv2.0.
Extracting accurate facial landmarks is one of the obstacles in processing 3D
faces. [20] studies facial shapes using scanned 3D images and analyzes differ-
ent approaches to extract facial landmarks. [21] gives a detailed overview of
recently used 3D face recognition algorithms, databases, features, and asso-
ciated challenges due to variations in expressions, poses, and occlusions. [22]
presents an efficient 3D face recognition approach to address the problem of
partial data like corrupted data, occlusions, and single training sample.

Most of the 3D face recognition algorithms that use point clouds try
to solve expression variations, but very few have been successful in solving
challenges caused by pose changes and occlusions. [23] extends the SIFT-like
matching framework to mesh data and proposes an approach that uses fine-
grained matching of 3D keypoint descriptors. [24] presents a comprehensive
parametric study of two CNN models on face recognition. The respective
models differ in combinations of activation functions, learning rates, and
filter size. The saturation due to the limited gallery size of 3D databases
has hindered the development in the field of 3D biometrics, despite recent
developments in deep learning. [25] proposes a method for generating a large
corpus of labeled 3D face scans for training and a solution to merge existing
3D databases for testing. [26] proposes a Deep CNN and a 3D augmentation
technique that synthesizes a number of different facial expressions from a
single 3D face scan.

Most of the Deep Learning-based approaches to 3D data use Volumetric
CNNs. [27, 28, 29] uses voxelized shapes as inputs to 3D CNNs. However,
such representation is hindered by sparse data spaces and computationally
expensive convolution operations. Capturing fine facial structures requires
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a very high voxel resolution, thus consuming massive amounts of memory.
Point Cloud Features encode the given set of 3D points such that they are in-
variant to certain intrinsic [30, 31] and extrinsic [32] transformations. These
features can be local or global, which need to be combined optimally to
get the best possible models. 3D data in the form of vectors are used by
Feature-based DNNs [33, 34] that extract original features of the shapes and
classify those shapes using a fully connected network.

Deep Siamese Neural Networks have also been used for face recognition
[35]. [36] presents one such approach based equipped with supervised loss
function, which increases the inter-class variations by maximizing the dis-
tance between the features for different classes while minimizing the intra-
class variations. [37] also uses Siamese Network to match scanned facial
images with digital ones.



Chapter 3

Preliminaries

In our proposed method, we are combining the PointNet Architecture with
the Siamese Network. PointNet is a unified architecture used for various ap-
plications such as object classification and part segmentation. It is a highly
efficient and robust architecture that gives strong performance for dissimilar
objects. We’re extending PointNet architecture to effectively match similar
3D objects by adding the Siamese network on top of it.

3.1 PointNet Architecture

Figure 3.1: PointNet Architecture (Figure taken from [1])

The PointNet architecture [1] is inspired by three essential properties of
the point clouds. First, being a set of points, the point clouds are invari-
ant to their N! Permutations. Hence, they are unordered. Second, there
are interactions among points, meaning that in spite of being in a set, the
neighboring points in the space form meaningful subsets that represent a lo-
cal structure. Lastly, the point clouds are invariant under transformations.
Rotating or translating the points of a point cloud altogether does not mod-

7



CHAPTER 3. PRELIMINARIES 8

ify the point cloud itself as it is a geometric object.

The PointNet architecture mainly consists of three modules, a max-
pooling layer, a local and global information combination structure, and
two joint alignment networks. The max-pooling layer is used to aggregate
the information from all the points. The local and global information combi-
nation structure is used in part segmentation. The structure first computes
the global feature vector and feeds the global feature vector back to the
point features by joining it with each of these point features. Now, when
the new point features are extracted, they have the local as well as the
global information in them. The first joint alignment network aligns the
input points while the second network is used to align the point features
generated by the architecture. An affine tranformation matrix is predicted
by the network which is directly applied to the input point clouds, thus
aligning all input sets to a canonical space before extracting features. The
same alignment technique is extended for aligning the feature space. The
two joint alignment networks are used to maintain the geometric invariance
property of the point clouds. The complete architecture is shown Figure 3.1.

The PointNet architecture provides a effective way for multi-class object
classification. But, for classifying objects belonging to the same object class,
we require a more robust solution on the top of this architecture.

3.2 Siamese Network

Figure 3.2: Traditional CNN Vs Siamese Network

In standard classification problems, a probability distribution over all
the classes is generated after feeding the input image to a series of layers.
However, the Siamese network uses a similarity score as visualized in Figure
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3.2, between the test image and a reference image to check if they belong to
the same or different class based on a threshold value to train itself. Here,
the reference image is a precomputed vector forming a baseline against which
the test vector is compared.

Instead of directly classifying a test image into one of the available
classes, the Siamese network, by taking references from each class, pro-
duces a similarity score that represents the possibility that the test and the
reference images belong to the same class. This similarity score lies in the
range 0 to 1 where 0 indicates no similarity and 1 indicates full similarity.
Thus, the Siamese Network learns a similarity function which takes in two
inputs and expresses how similar they are to each other. Hence, Siamese
network is a one-shot learning technique. This avoids using a large number
of samples for training as well as eliminates the need to retrain the model
when new classes are introduced.



Chapter 4

Proposed Methodology

In our proposed method, we are representing the 3D objects as a set of
3D points called point clouds. We use a novel augmentation technique to
augment our 3D data, which will increase the size of our otherwise limited
database, making the training more robust. The point cloud of each object
is used as input to the PointNet architecture. After the model is trained, we
extract features from the second-last dense layer of the architecture. The
extracted features are then used to train the Siamese network, which finally
predicts whether two objects belong to the same class or different classes.
Our method is a generic approach for 3D object classification which we are
applying for 3D face recognition. Figure 4.1 shows our proposed object
recognition process.

Data Preprocessing
(Denoising) Data Augmentation

Feature Extraction
using PointNet

Architecture

Training using
Siamese Network

Figure 4.1: Proposed object recognition process

10
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4.1 Preprocessing

Preprocessing of 3D scans is required to eliminate variations in poses as well
as 3D noise, which can impact the performance of our object classification
model. Generally, this elimination is achieved using frontalization and de-
noising techniques, respectively.

The 3D objects to be classified need to be aligned to a base reference
image to make our database uniform in accordance with some ground truth.
Algorithms such as ICP [2] can be used to minimize the distance between
the objects in the database and the reference object. However, as discussed
in Section 3.1, the PointNet architecture is invariant to geometric transfor-
mations of rotation and translation; thus, eliminating the need to frontalize
the objects.

The point clouds of the 3D objects can get contaminated with spikes
due to sensor noise, thus affecting the feature extraction process. We use a
spike removal technique, where a sliding window is moved across the object,
and the offset along the Z-coordinates is calculated, which, if greater than
a threshold value, translates the center of the window to the mean offset.
This process denoises the 3D scan, where the spikes are limited by the given
threshold.

4.2 Augmentation

There is very limited data available for 3D objects. Due to only a few sam-
ples at hand for each subject, it is not possible to effectively train the model.
The model learns the details and noise of these few samples so well that it
negatively impacts the testing of this model on new data. To avoid this
problem of overfitting, we increase the variability of our data by enlarging
the database using a novel augmentation technique.

Our 3D input data is in the form of point clouds that contain an un-
ordered set of 3D points, as explained in Section 3.1. However, we cannot
use the entire point cloud of a single sample as input because of the compu-
tational and memory limitations involved. As a solution, we create different
unordered subsets from the points in the point cloud of the sample. Each
subset contains a fixed number of points, which is approximately 50% of the
total points in the point cloud. Figure 4.2 shows one such example of a 3D
face scan. The original face contains around 55000 points in the point cloud.
We are randomly creating seven different subsets of 25000 points each. We
can see from the figure that the overall geometry and the structure of the
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face is maintained even after reducing the number of points in the point
cloud by approximately half. Our method also ensures that the information
from the entire point cloud is getting utilized without overshooting the com-
putational and memory requirements.

Figure 4.2: An example of the proposed augmentation technique

Further, we validate our above solution by calculating a similarity score
as discussed later in Section ?? between the subsamples created from the
same original sample. From the similarity scores shown in Figure 5.1, we
observe that the subsamples show a stark similarity with each other, im-
plying that the features remain intact even after scaling down the number
of points. Using this novel technique, we create two different kinds of aug-
mented databases, as explained below:

• Random point cloud augmentation (Type I): In this method, we
randomly select a specific number of 3D points from the entire point
cloud of the 3D scans repeatedly to generate multiple samples from a
single sample. We do this in a round-robin fashion for each subject to
create a uniform number of augmented samples. However, individual
samples may or may not be uniformly used.

• Random point cloud augmentation (Type II): This technique dif-
fers from the previous one in the sense that every sample for each
subject is used uniformly to create the augmented data. However, the
number of total augmented samples for each subject may or may not
be the same.

There exist various other augmentation techniques such as geometric trans-
formations of translation and rotation and kernel filters. Transformations
are not useful, since PointNet architecture is invariant to affine transfor-
mations as discussed in Section 3.1, thus rendering duplicate copies of the
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3D scans. Also, as our model uses CNN architecture, kernel filtering is
inherently used while training.

4.3 Proposed Model

Figure 4.3: Overview of the proposed architecture

Our proposed model combines PointNet Architecture with Siamese Net-
work. We use PointNet Architecture for feature extraction and Siamese Net-
work for the classification based on these extracted features. The overview
of our proposed architecture is shown in Figure 4.3.

First, we split our database into two sets - the train set and the test set.
PointNet Architecture is trained over the train set of our data. Typically,
PointNet gives the class of the input sample as the output of its last layer.
Instead, we are using PointNet till its second-last dense layer. This layer
outputs the feature vectors for the given samples. We extract these features
of our train set to then train the Siamese Network.

For Siamese Network, we need two sets of pairs from our extracted fea-
tures - genuine pairs that contain features from the samples belonging to
the same class and imposite pairs, which contain features from the samples
belonging to different classes. The Siamese Network gets trained on these
feature pairs to predict whether it is genuine or imposite. We create all pos-
sible genuine pairs for each class and all possible imposite pairs by taking
combinations of each class with every other class to make the training more
robust.

Finally, we test our model by first passing our test set through the trained
PointNet Architecture that generates feature vectors for the test set and
then compares each of these test features with train features of all classes to
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predict whether the combination is genuine or imposite. By pairing the test
image with a reference from each class, the Siamese network calculates a
similarity score for each pair and predicts the subject class with the highest
similarity score as the class of the test image. The detailed architecture of
our proposed model is shown in Figure 4.4.
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Chapter 5

Experiments and Results

We now apply our proposed object recognition model for 3D face recog-
nition. We use three 3D face databases to test our model - IIT Indore
(IITI) database, Bosphorus database, and University of Notre Dame (UND)
database. We expand our database to improvise feature extraction and
prevent overfitting by augmenting our databases. These databases are ran-
domly split into two sets: 70% for training and 30% for testing. We evaluate
classification performance based on recognition accuracy.

5.1 3D Databases Used

IITI The IIT Indore database contains 170 subjects with a total of 445
samples. An Artec 3D EVA scanner was used to acquire these 3D face
scans. The samples in the database are unaligned. However, we do not need
to align the images since PointNet architecture is invariant to geometric
transformations.

Bosphorus The Bosphorus database [38] contains 105 subjects with 4666
3D facial scans. The database has a rich set of expressions, systematic pose
variations and various occlusions. Out of these, we are testing our model on
the 299 neutral faces to compare the performance with other databases. An
Inspeck Mega Capturor II 3D was used to acquire this facial data. The face
scans in the database are aligned and contain minimal noise as the noise
reduction is already done at the time of data acquisition by experimentally
optimizing the acquisition setup.

UND The University of Notre Dame database (ND-collection D) [39, 40]
contains 277 subjects with 953 aligned 3D face scans. A Minolta Vivid 900
3D range scanner was used to acquire these images. These face scans contain
considerable noise in the form of spikes. Hence, we are using spike removal
technique to denoise the 3D scans.

15
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5.2 Augmentation of 3D Databases

Since the number of samples per subject is quite low for the given databases,
we augment them to increase the sample size. As discussed in Section 4.2,
we are applying two types of random point cloud augmentation. Type I
augmentation creates 21 samples per subject and Type II augmentation
creates 21 samples for each original sample present in a subject. The total
number of samples after each type of augmentation is shown in Table 5.1.

Database No. of sub-
jects

Original no.
of samples

No. of sam-
ples after
Type I aug-
mentation

No. of
samples
after Type
II augmen-
tation

IITI 170 445 3570 9345
Bosphorus 105 299 2205 6279
UND 277 953 5817 20013

Table 5.1: 3D face databases

In the Siamese Model, similarity scores are calculated such that the imposite
pairs have score closer to 0 and genuine pairs have score closer to 1. When
we create multiple samples from the same sample using Random Point Cloud
Augmentation, we need to validate that the features of the original samples
are not compromised. From Figure 5.1, we can see that the Similarity Scores
for ith and (i+1)th samples within the same subject class for 50 subjects are
close to 1, thus implying that the similarity is maintained in spite of the
reduction in points.

Figure 5.1: Similarity scores for sample pairs within the same subject class
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5.3 Performance on 3D Databases

We split each of the IITI, Bosphorus and UND databases into a 70-30 ratio
to create train sets and test sets. Table 5.2 gives the training accuracy on
the train set when it is passed through the Pointnet architecture:

Database Accuracy
for Type I
Augmentation

Accuracy
for Type II
Augmentation

IITI 87.5 88.86
Bosphorus 84.6 83.97
UND 79.95 77.08

Table 5.2: Results on the PointNet Architecture

For the Siamese Model, the distribution of the similarity scores for im-
posite (Class 0) and genuine (Class 1) classes for each of the 3 databases
is shown in Figure 5.2. Since maximum concentration of similarity scores
occurs near 0 (for an imposite pair) and 1 (for a genuine pair), we also plot
the distribution on log scale to show the number of samples in the inter-
mediate range. It is evident from the graphs that the similarity scores are
quite accurate for both genuine and imposite classes i.e. the score for most
of the imposite pairs is close to or equal to 0 and that for genuine pairs is
close to or equal to 1.

To find an accurate decision boundary for a pair to be classified as either
imposite or genuine, we plot a threshold vs FAR-FRR curve for each of the
3 databases as shown in Figure 5.3 and arrive at the given values for the
thresholds:- IITI - 0.97, Bosphorus - 0.88 and UND - 0.68.

We use 70-30 train-test split for creating genuine and imposite pairs for
the Siamese Network i.e. 70% of the total pairs are created from train fea-
tures obtained from PointNet Architecture and remaining 30% are created
from the test features extracted from the trained PointNet Architecture. Af-
ter training the Siamese network on these 70% of the pairs, we can test our
model in two ways. One way is to create pairs such that one sample is from
the test set and the other is from the trained set (test-train pairs). This
testing shows how well our model compares an unknown sample with the
known samples to determine the unknown sample’s subject class. Another
way is to create pairs from the test set itself (test-test pairs) to examine our
model’s ability to recognize genuine and imposite pairs from the unknown
set of samples.
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(a) Distribution for IITI database (b) Distribution (Log Scale) for IITI database

(c) Distribution for Bosphorus database
(d) Distribution (Log Scale) for Bosphorus
database

(e) Distribution for UND database (f) Distribution (Log Scale) for UND database

Figure 5.2: Similarity score distribution for IITI, Bosphorus and UND
databases
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Figure 5.3: FAR-FRR curves for IITI, Bosphorus and UND databases
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Table 5.3 and Table 5.4 show the results on the Proposed Model for Type I
and Type II augmentations respectively where the training on the Siamese
Model is done by selecting random pairs from the train features. Here, the
testing is done on train-test pairs.

Database Training Validation Testing

IITI 99.92 99.80 99.91
Bosphorus 99.71 99.46 99.66
UND 99.00 98.22 98.6

Table 5.3: Results for Type I Augmentation

Database Training Validation Testing

IITI 99.83 99.94 99.21
Bosphorus 99.55 99.40 98.30
UND 99.10 98.61 96.90

Table 5.4: Results for Type II Augmentation

From the experiments we find that the best results are achieved for Type-I
Augmentation as demonstrated in Table 5.5, Figure 5.4 and Figure 5.5.

Database Rank 1 Ac-
curacy

Area Under
ROC

IITI 99.1 1.00
Bosphorus 98.3 0.999
UND 97.0 0.998

Table 5.5: Rank 1 accuracy and area Under ROC for Type I Augmentation
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(a) Classification report for IITI database

(b) Confusion matrix for IITI database

(c) Classification report for Bosphorus database

(d) Confusion matrix for Bosphorus database

(e) Classification report for UND database

(f) Confusion matrix for UND database

Figure 5.4: Classification report and confusion matrices
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(a) ROC curve for IITI database
(b) CMC curve for IITI database

(c) ROC curve for Bosphorus database

(d) CMC curve for Bosphorus database

(e) ROC curve for UND database

(f) CMC curve for UND database

Figure 5.5: ROC and CMC curves for different databases
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We also test our model using test-test pairs to find out whether our Proposed
Model can predict if two test samples themselves form a genuine or imposter
pair i.e. whether they belong to the same class or not. The following tables
show the results for Type I augmentation.

Database Training Validation Testing

IITI 99.95 99.94 99.95
Bosphorus 99.75 99.55 99.69
UND 98.66 98.96 98.53

Table 5.6: Results for Type I Augmentation (test-test pairs)

We also experiment with the different ratios of train-test split in the Siamese
Network by changing it from 70-30 to 80-20 and 50-50 for Type I Augmen-
tation.

Database Training Validation Testing

IITI 99.93 99.96 99.91
Bosphorus 99.73 99.41 94.54
UND 98.58 97.89 97.71

Table 5.7: Results for train-test split: 80-20

Database Training Validation Testing

IITI 99.91 99.89 99.90
Bosphorus 99.75 99.67 99.62
UND 98.63 98.51 98.38

Table 5.8: Results for train-test split: 50-50



CHAPTER 5. EXPERIMENTS AND RESULTS 24

The Bosphorus database comes along with lm3 files for each 3D face scan
which contains pre-existing features. On passing them through our Proposed
Model, we achieve 93.54%, 92.52% and 79.17% on training, validation and
testing respectively which shows that the feature extraction in our Proposed
Model is much superior.

(a) Classification report for Bosphorus Features

(b) Confusion matrix for Bosphorus Features

Figure 5.6: Performance of Proposed Model on Bosphorus Features



Chapter 6

Conclusions

In this work, a generic 3D object recognition technique is proposed that gives
remarkable accuracy even on highly similar objects. In the technique, we
construct the model which improves over the existing PointNet architecture
by combining it with the Siamese Network with minimal preprocessing. To
overcome the problem of limited 3D data samples, we also propose two
new augmentation techniques where random points are selected from the
point clouds of the available 3D images. We evaluate our model on three
3D face databases, namely IIT Indore, Bosphorus, and UND databases,
achieving verification accuracy of 99.91%, 99.66%, and 98.60%, respectively.
Our experimental results show that the best performance is achieved when
Type I augmentation is used. The graphical analysis of these results also
verifies that our model gives high accuracy, implying a perfect segregation
between genuine and imposter pairs.
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