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Chapter 1

Introduction

1.1 About

In 2013, the US National Security Agency have published lightweight block cipher families, SI-
MON and SPECK, that cater towards optimal performance metrics of speed and area in resource-
constrained environment. Subsequently, a family of lightweight ciphers called SIMECK was
published in CHES 2015 [1], wherein the designers merged good features of both SIMON and
SPECK to yield an efficient and compact cipher for hardware implementation. Both SIMON and
SIMECK are based on Feistel construction with similar round functions except that they employ
different rotational constants ((1, 8, 2) for SIMON, and (0, 5, 1) for SIMECK). The requirements
of lightweight ciphers, such as resource count in implementation less than 3k gate equivalents,
meet stringent timing requirements of ISO 18000-63 that cannot be met by the traditional block
ciphers such as AES.

Both SIMON and SPECK have a Feistel structure, and provides implementation and security
support for for five block sizes of 32, 48, 64, 96, and 128 bits with key sizes as show in Table 1.1.
Although the cipher conform to the system requirements of lightweight resource-constrained
platforms, the security analysis was not stringently done. However, researchers performed ex-
tensive scrutiny over the last few years [2, 3, 4, 5]. The initial work on Simon focused on linear
ad differential cryptanalysis [3, 5, 6]. Based on Matsui’s algorithm, optimal differential trails for
12, 16, 19, 28, and 37 rounds of SIMON 32/48/64/96/128 were demonstrated in [7]. The work
computed the best differential distinguishers that can be computed on SIMON cipher.

The works in [4, 8] used the concept of partial difference distribution table (pDDT) to search
differential trails in Simon-like ciphers. Although the work determined improved differential
trails for SIMON and SPECK, optimal differential trails may not always be found as they employ
heuristics to compute high probability differential trails, . For SIMON round function, a formula
to compute differential probability was given by [9]. The authors employed SAT/SMT solvers to
determine optimal differential trails for SIMON, and demonstrated provably optimal differential
trails for SIMON 32, SIMON 48, and 16-round optimal differential trail with probability 2−54 for
SIMON64.

Our Contributions. This paper investigates the problem of pinpointing fault analysis in
SIMON. The main contributions of the paper can be summarized as follows:

1) Proposed a better attack in SIMON with much fewer faults than existing literature (espe-
cially for N = 48, 64), with low time complexity.

2) Restricted attack to a single register improving ease of attack.

3) Exposed Vulnerability in Higher Rounds of SIMON giving attacker more options to mount
an attack.

4) Found optimal round to attack for all version of SIMON.

5) Extended the same attack to Simeck giving a better attack than the existing literature.
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1.2 Background

SIMON is a family of lightweight cipher comprising a Feistel structure that operates on a 2n-bit
state, where n is the word size, n = 16, 24, 48, and 64. The key comprises m n-bit wwords where
m = 2, 3, 4, thus SIMON cipher of block size of 2n bits and key size mn bits is referred to as
SIMON2n/mn.

Block Size (2n) Key Size (mn) Word Size (n) Key words (m) Rounds
32 64 16 4 32

48
72

24
3

36
96 4

64
96

32
3 42

128 4 44

96
96

48
2 52

144 3 54

128
128

64
2 68

192 3 69
256 4 72

TABLE 1.1: Different Version Of SIMON
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Chapter 2

Existing Work

The fault analysis on SIMON was first analyzed in [10]. The work demonstrated that an adver-
sary, in the threat model of random single bit flip, can recover the n-bit last round key of SIMON
and SPECK by injecting n

2 and n
3 faults, respectively, into the left input of (T − 2)th round. The

work further extends demonstrate the attack on a random byte fault model, wherein multiple
bits of last round key were recovered depending on the Hamming weight of the induced byte
fault. However, owing to key scheduling algorithm, the last m-round key values need to be re-
covered to recover the entire mn-bit key. In other words, the adversary needs to inject faults in
(T− 3)th, . . ., (T−m− 1)th rounds, to recover the entire secret key, which implies larger control-
lability and hence cost of the adversary to inject faults in m round locations. In an improvement
on the average number of required faults, the work in [11] required 3.05 faults on average, with
the requirement of injecting faults in (T − 2)th, . . ., (T −m− 1)th rounds.

Vasquez et al. proposed a new attack in 2015 [12], injecting faults in (T − 3)th round instead in
(T− 2)th round, reducing the number of faults needed. Single round needed to be controlled for
M = 2, but 2 rounds had to be controlled for N = 3/4. Further Ravi Anand et al. presented an
attack in 2018 [13], attacking (T− 5)th round and needing to inject faults in only one round, with
very few faults. However SIMON96/96, SIMON96/144, SIMON128/128, SIMON96/192 and
SIMON128/256 were not tacked and the attack sacrificed in time complexity.
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Chapter 3

Proposed Attack

3.1 Analysing Simon’s Architecture

3.1.1 SIMON’s Architecture

SIMON2n/nm is defined by the following round function:

F(x) = (x ≪ 1) ∧ (x ≪ 8)⊕ (x ≪ 2)
Li+1 = Ri ⊕ F(Li)⊕ Ki

Ri+1 = Li

The cipher starts with the plaintext (L0, R0). Round i takes (Li, Ri) as input and results in
(Li+1, Ri + 1) as the output. The cipher repeats the process T times giving (LT, RT) as the cipther-
text.

3.1.2 Fault Model

We follow the 1 bit flip DFA model for the attack. The attacker need to have control over the L
register of a particular round. Each fault will be a single bit flip at a random location in register
L leading to a faulty ciphertext. The fault injected does not have any permanent impact on the
cipher and is reset after each fault injection, implying that each fault injection is independent.
We keep the plaintext and key constant throughout the attack. Throughout the text we assume
that the Fault is injected in register Lr and bit lr,j has flipped.

3.1.3 Fault Impact and Propagation

After fault injection, (Li, Ri) becomes (L∗i , R∗i ).

∆Ri+1 = Ri+1 ⊕ R∗i+1 = Li ⊕ L∗i = ∆Li

∆Li+1 = Li+1 ⊕ L∗i+1 = F(Li)⊕ F(L∗i )⊕ ∆Ri

= ∆F(Li)⊕ ∆Li−1

∆F(Li) = [(Li ≪ 1) ∧ (Li ≪ 8)⊕ (Li ≪ 2)]
⊕ [(L∗i ≪ 1) ∧ (L∗i ≪ 8)⊕ (L∗i ≪ 2)]

We can calculate of fault propagation in the next round using the equation:
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∆li+1,j = (li,j−1 ∧ li,j−8)⊕ [(li,j−1 ⊕ ∆li,j−1) ∧ (li,j−8 ⊕ ∆li,j−8)]

⊕ ∆li,j−2 ⊕ ∆li−1,j

This equation shows that ∆li+1,j is impacted only by ∆li,j−1, ∆li,j−8, ∆li,j−2, ∆li−1,j. Using this
equation we can trace the impact of the single bit fault in Lr

∆lr−1,i = 0 ∀ i
∆lr,j = 1

∆lr,i = 0 ∀ i 6= j
∆lr+1,j+1 = lr,j−7

∆lr+1,j+8 = lr,j+7

∆lr+1,j+2 = 1

∆lr+1,i = 0, For Rest Bits

Solving this for further rounds, we can compute which Deltas are 0, 1 and unknown.

Round 1 Unknown
r j -

r + 1 j + 2 j + 1, j + 8
r + 2 j, j + 4 j + 2, j + 3, j + 9, j + 10, j + 16
r + 3 j + 6 j + 1, j + 3toj + 5, j + 8, j + 10, j + 11, j + 12, j + 17, j + 18, j + 24
r + 4 j j + 2 to j + 14, j + 16, j + 18, j + 19, j + 20, j + 25, j + 26, j + 32
r + 5 j + 2 j + 1, j + 3 to j + 22, j + 24 to j + 28, j + 33, j + 34, j + 40
r + 6 j j + 2 to j + 30, j + 32 to j + 36, j + 41, j + 42, j + 48
r + 7 j + 2 j + 1, j + 3 to j + 38, j + 40 to j + 44, j + 49, j + 50, j + 56
r + 8 j j + 2 to j + 46, j + 48 to j + 52, j + 57, j + 58, j + 64

TABLE 3.1: Single Bit Fault Propagation

Note that depending on the value of N, fault propagation will overlap and change, ex-
ample: For N = 16, round r + 3 we have (j + 17)%16 => j + 1, (j + 18)%16 => j + 2 and
(j + 24)%16 => j + 8.

3.1.4 Important Equations

We can calculate the ∆(Li) using Li+1 and Li+2

∆Li = [F(Li+1)⊕ F(L∗i+1)]⊕ [Li+2 ⊕ L∗i+2] (3.1)

Using ∆(Li+1), ∆(Li) and ∆(Li−1) we can make questions in (Li).

∆li+1,j = (li,j−1 ∧ li,j−8)⊕ [(li,j−1 ⊕ ∆li,j−1) ∧ (li,j−8 ⊕ ∆li,j−8)] (3.2)

⊕ ∆li,j−2 ⊕ ∆li−1,j
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3.2 Pinpointing Fault Location

Identifying the Fault Location accurately is the first part of the attack. As we have already seen
in table (3.1), any single bit has it’s own propagation signature which is independent of the Key
value. We will use this property to pinpoint the fault location using a modified method as seen
in [13]

Suppose any text A = {a0, a1, ..., an−1}. The plain text is (L0, R0) representing the L and R
registers and key K. Cipher text obtained is (LT, RT) where T is the total number of Rounds.
Now the experiment is repeated but a 1-bit fault is injected in the L register of rth round in
SIMON at bit (γ) we get new cipher text (L(γ)

T , R(γ)
T ). The rth round is fixed throughout the

attack. The objective here is to find (γ) using (LT, RT) and (L(γ)
T , R(γ)

T ).
We will use 2 phases "Making the Correlation Matrix (offline)" and "Computing the Fault

Location (online)".

3.2.1 Correlation Matrix

S represents the correlation matrix. This is how we calculate it

LT−1 = RT

L(γ)
T−1 = R(γ)

T

∆L(γ)
T = LT ⊕ L(γ)

T

∆L(γ)
T−1 = LT−1 ⊕ L(γ)

T−1

∆L(γ)
T−2 = [F(LT−1)⊕ F(L(γ)

T−1)]⊕ [LT ⊕ L∗T]

∆L(γ)
T−2 = [F(LT−1)⊕ F(L(γ)

T−1)]⊕ [∆L(γ)
T ]

θ(γ) = {ψ(γ)
0 , ψ

(γ)
1 , ..., ψ

(γ)
3n−1}

θ(γ) = ∆L(γ)
T + ∆L(γ)

T−1 + ∆L(γ)
T−2

S(γ) = {s(γ)0 , s(γ)1 , ..., s(γ)3n−1}

s(γ)i = 1/2− Pr(ψ(γ)
i = 1)

The probability (Pr(ψ(γ)
i = 1)) is calculated over a sufficient number of trials, where for each

trial we consider a random plaintext (L0, R0) and random key (K). We store S(0), S(1), ... S(n−1)

as the correlation matrix S.

3.2.2 Computing the fault location

For a unknown plaintext (L0, R0) and unknown key (K) we obtain a ciphertext (LT, RT). Now,
we obtain a faulty ciphertext (L(γ)

T , R(γ)
T ) by injecting a 1-bit fault in an unknown position (γ) is

the L register of rth round. We will calculate the trail T using ∆L(γ)
T , ∆L(γ)

T−1 and ∆L(γ)
T−2 as above.
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θ(γ) = {ψ(γ)
0 , ψ

(γ)
1 , ..., ψ

(γ)
3n−1}

θ(γ) = ∆L(γ)
T + ∆L(γ)

T−1 + ∆L(γ)
T−2

T(γ) = {τ(γ)
0 , τ

(γ)
1 , ..., τ

(γ)
3n−1}

τ
(γ)
i = 1/2− (ψ

(γ)
i )

Now we identify (γ), by computing the S(j) which has the highest correlation with T(γ). For
this, a modified version of Pearson’s correlation coefficient µ(X, Y) is used as shown in [13]

µ(X, Y) = −1 in case of a mismatch, i.e. if (xi = 1/2, yi = −1/2) or (xi = −1/2, yi = 1/2)
holds true any i. Otherwise it is calculated as:

µ(X, Y) = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

3.2.3 Results and Accuracy

N Round
T − 1 T − 2 T − 3 T − 4 T − 5 T − 6 T − 7 T − 8

16 100% 100% 100% 100% 98% 70% − −
24 100% 100% 100% 100% 100% 97% 56% −
32 100% 100% 100% 100% 100% 99.5% 93.5% 60%
48 100% 100% 100% 100% 100% 100% 99.5% 98.5%
64 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 3.2: Fault Prediction Accuracy
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3.3 The Attack

3.3.1 Finding the secret key

We know for SIMON2N/NM we need to find M secret keys, KT−1, KT−2...KT−M. Once we know
the last M keys we can unroll the whole key schedule and find the original secret key.

We can write SIMON’s round structure as :

KT−1 = LT ⊕ LT−2 ⊕ F(LT−1)

KT−2 = LT−1 ⊕ LT−3 ⊕ F(LT−2)

...
KT−M = LT−M+1 ⊕ LT−M−1 ⊕ F(LT−M)

Since we already have LT, LT−1 as the cipher text. To find the Secret Key the AIM is to find {LT−2,
LT−3 ... LT−M−1} ; M left registers

3.3.2 Attack Flow

The attack starts with injecting x number of faults in the L register of the chosen round r. Using
fault pinpointing we compute the exact location where the faults was injected for each faulty
text. Since we need to find M Left registers we first make equations to compute LT−2, then move
up till LT−M−1. To compute Li we make equations using all the faulty ciphertext obtained till
now. Once we make all the equations, we run the SAT solver. If SAT solver gives a unique
solution, we found the complete Li register. If SAT solver gives multiple solutions we need to
increase the number of faults and retry. If SAT solver gives No Solution, the attack has failed
because of poor fault prediction. We repeat the process till we obtain M left registers. Using
{LT−2, LT−3 ... LT−M−1} we easily calculate the secret key.
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3.4 Making the Equations

Suppose we have to make equations for computing LT−i. We assume that we know all the
registers { LT, LT−1, ... LT−i+1}. Using equation [3.1], for each faulty text we can compute the
∆LT−i and ∆LT−i+1. For all j = 1 to N, we use equation [3.2].

∆lT−i+1,j = (lT−i,j−1 ∧ lT−i,j−8)⊕ [(lT−i,j−1 ⊕ ∆lT−i,j−1) ∧ (lT−i,j−8 ⊕ ∆lT−i,j−8)]

⊕ ∆lT−i,j−2 ⊕ ∆lT−i−1,j

But we don’t know ∆LT−i−1. We use the information that we know the round and location of
the fault, so skip all j for which the value of ∆lT−i−1,j is unknown according to table (3.1). Now
we have the equation only in terms of LT−i, we repeat the process for all the faulty texts.
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Chapter 4

Results

We generate these results using our implementation in C++ and using Cryptominisat as the SAT
Solver. At any point if the number of unique faults become greater than 90% of N, we consider
it a failed attempt.

4.1 Experimental Results

4.1.1 SIMON32/64

Here we can see that going from round T − 5 to T − 6 will reduce the number of faults
required but the poor fault pinpointing accuracy gives poor success rate, restriction us the T− 5.

M Round Total Faults Total Unique Faults Success %
4 T − 5 25.7 12.9 78%
4 T − 6 14.5 9.7 3/4%

TABLE 4.1: SIMON Attack Results N = 16
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4.1.2 SIMON48/72 and SIMON48/96

Better Fault Pinpointing accuracy for N = 24 lets us attack T − 6 with good accuracy. But
getting any results for T − 7 becomes impossible due to poor pinpointing.

M Round Total Faults Total Unique Faults Success %
3 T − 5 35.7 15.5 99%
3 T − 6 19.3 13.1 65%
4 T − 5 41.8 19.9 99%
4 T − 6 25.6 15.6 60%

TABLE 4.2: SIMON Attack Results N = 24

4.1.3 SIMON64/96 and SIMON64/128

We get low success rate at T− 5 due to very high number of faults needed. T− 6 becomes the
optimal round to attack with high success rate. T− 7 needs same number of faults for M = 3 and
gives better results for M = 4 but with poor success rate because of low pinpointing accuracy.
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M Round Total Faults Total Unique Faults Success %
3 T − 5 36.2 21.5 94%
3 T − 6 27.2 17.9 93%
3 T − 7 25.8 17.4 27%
4 T − 5 56.7 26.7 75%
4 T − 6 37.3 21.6 90%
4 T − 7 29.9 19.27 28%

TABLE 4.3: SIMON Attack Results N = 32

4.1.4 SIMON96/96 and SIMON96/144

T− 6 is the optimal round to attack for M = 2 and T− 7 for M = 3. T− 8 shows an increase
in faults needed giving a limit to highest round we should attack.

M Round Total Faults Total Unique Faults Success %
2 T − 6 35.8 24.6 100%
2 T − 7 42.6 27.2 96%
2 T − 8 66.5 34.6 37%
3 T − 6 47.3 29.6 99%
3 T − 7 44.1 28.1 96%
3 T − 8 66.1 34.5 35%

TABLE 4.4: SIMON Attack Results N = 48
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4.1.5 SIMON128/128, SIMON128/192 and SIMON128/256

T− 6 is the optimal round to attack for M = 2 and T− 7 for M = 3, 4 . T− 8 again shows an
increase in faults needed.

M Round Total Faults Total Unique Faults Success %
2 T − 6 51.0 34.5 100%
2 T − 7 62.6 38.5 93%
2 T − 8 91.3 47.4 44%
3 T − 6 68.6 41.0 99%
3 T − 7 65.2 39.8 93%
3 T − 8 93.7 48.1 40%
4 T − 6 88.9 47.5 96%
4 T − 7 74.7 43.3 93%
4 T − 8 93.5 48.4 42%

TABLE 4.5: SIMON Attack Results N = 64

4.2 Theoretical Analysis

4.2.1 Relation between total faults and unique faults

Let x be the total number of faults injected and y be total number of unique faults. For size of
block N, they relate with the following relation:

y = N
(

1−
(

N − 1
N

)x)
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This shows how injecting another unique fault becomes increasingly difficult as the number
of Unique Fault location come closer to N.

4.2.2 Optimal Attack Round and Attack Accuracy

We can notice that while making equations, the information is revealed because of the unknown
register bits. When forming equations for Li, the more number of usable unknown registers in
∆Li+1 less number of faults are required.

N Round
r r + 1 r + 2 r + 3 r + 4 r + 5 r + 6 r + 7 r + 8

16 0 2 5 7 8 6 2 0 0
24 0 2 5 9 12 12 7 1 0
32 0 2 5 9 15 16 11 4 1
48 0 2 5 9 15 18 17 14 10

TABLE 4.6: Fault Propagation : Number of Usable Unknowns

The above table shows the number of useful equations we are able to compute when fault is
injected in Lr, assuming 100% fault propagation. The number of unknowns will be lower than
the value in the table as the fault doesn’t propagate perfectly to lower rounds.

Lets consider N = 16, M = 4, when we inject fault in T − 5. We construct equations for
{LT−5, LT−4, LT−3, LT−2}. Computing LT−5 will require most faults because ∆LT−6 as only 2
unknowns i.e. 2 equations, conputing LT−2 will be the easiest with 8 equations for each fault.
The total faults required is defined be the maximum of faults required for each Li. So going to
T − 6 will reduce the number faults needed as we go from using [2,5,7,8] equations to [5,7,8,6]
equations. But going to T − 7 will not improve results.

The same relation between the above experimental results and this theoretical analysis con-
tinue for all variations of SIMON. For N = 48, 64 injecting faults at T − 8 does not give better
results then T − 7 because the fault doesn’t propagate perfectly to lower rounds reducing the
number of expected equation.

4.3 Comparison Of Results

Comparing our results against existing DFA attacks following Random Bit flip attack model with
complete Key-Space Reduction. We show that our results are better for all versions of SIMON.
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SIMON2n/mn Key Words # Faults Injected
[10] [12] Proposed Attack

SIMON32/64 4 101.7 50.8 25.7
SIMON48/72 3 130.8 87.2 19.3
SIMON48/96 4 174.4 87.2 25.6
SIMON64/96 3 189.4 126.3 27.2
SIMON64/128 4 252.6 126.3 37.3
SIMON96/96 2 210.2 105.1 35.8
SIMON96/144 3 315.4 210.2 44.1

SIMON128/128 2 299.7 149.8 51.0
SIMON128/192 3 449.5 299.7 65.6
SIMON128/256 4 599.4 299.7 74.7

TABLE 4.7: # Faults Comparison with Existing Work

Paper [13] shows an attack with lesser number of faults than our results but with much poor
time complexity. Also that attack couldn’t be mounted for higher values of N (48, 64), due to the
exponential increase in time complexity.

SIMON2n/mn Key Words Fault Injections
[13] # faults [13] Time Proposed Attack # faults Proposed Attack Time

SIMON32/64 4 4 191.23s 25.7 0.1s
SIMON48/96 4 6 290.99s 25.6 0.2s
SIMON64/128 4 9 404.03s 37.3 0.4s

TABLE 4.8: # Faults Comparison with Existing Work

We restrict our attack to just a single Left register of a round. This makes our attack much
easier to mount relative to existing work. We also mount our attack in much higher rounds
exposing more vulnerability.

SIMON2n/mn Key Words Rounds Attacked
[10] [12] [13] Proposed Attack

SIMON32/64 4 L27, L28, L29, L30 L27, L29 L27, R27 L27

SIMON48/72 3 L32, L33, L34 L32, L33 − L30

SIMON48/96 4 L31, L32, L33, L34 L31, L33 L31, R31 L30

SIMON64/96 3 L40, L41, L42 L32, L33 − L36

SIMON64/128 4 L39, L40, L41, L42 L31, L39 L39, R39 L38

SIMON96/96 2 L49, L50 L49 − L46
SIMON96/144 3 L50, L51, L52 L50, L51 − L47
SIMON128/128 2 L65, L66 L65 − L62

SIMON128/192 3 L65, L66, L67 L65, L66 − L62

SIMON128/256 4 L67, L68, L69, L70 L67, L69 − L65

TABLE 4.9: Round Comparison with Existing work
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Chapter 5

SIMECK Case Study

5.1 Background

Simeck is a lightweight cipher comprising of the Best Features from SIMON and SPECK as
shown in [1]. It changes the round function of SIMON from (1, 8, 2)→ Simeck (0, 5, 1). It reuses
the same architecture and Key Schedule. We extend the above proposed attack to Simeck and
post the results below.

Block Size (2n) Key Size (mn) Word Size (n) Key words (m) Rounds
32 64 16 4 32
48 96 24 4 36
64 128 32 4 44

TABLE 5.1: Simeck Versions

5.2 Simeck Propogation Table

Round 1 Unknown
r j -

r + 1 j + 1 j, j + 5
r + 2 j + 2 j, j + 1, j + 5, j + 6, j + 10
r + 3 j + 3 j, j + 1, j + 2, j + 5, j + 6, j + 7, j + 10, j + 11, j + 15
r + 4 j + 4 j to j + 3, j + 5 to j + 8, j + 10, j + 11, j + 12, j + 15, j + 16, j + 20
r + 5 − j to j + 13, j + 15 to j + 17, j + 20, j + 21, j + 25
r + 6 − j to j + 18, j + 20 to j + 22, j + 25, j + 26, j + 30
r + 7 − j to j + 23, j + 25 to j + 27, j + 30, j + 31, j + 35
r + 8 − j to j + 28, j + 30 to j + 32, j + 35, j + 36, j + 40

TABLE 5.2: Single Bit Fault Propagation
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5.3 Simeck Fault Pinpointing

N Round
T − 1 T − 2 T − 3 T − 4 T − 5 T − 6 T − 7 T − 8

16 100% 100% 100% 100% 99.5% 81.5% − −
24 100% 100% 100% 100% 100% 99.5% 92% 58%
32 100% 100% 100% 100% 100% 99.5% 99.5% 95%

TABLE 5.3: Fault Prediction Accuracy

5.4 Simeck Results

Round Total Faults Total Unique Faults Success %
T − 5 25.6 12.8 95%
T − 6 14.2 9.4 13%

TABLE 5.4: Attack Results Simeck32/64

Round Total Faults Total Unique Faults Success %
T − 5 41.5 19.9 93%
T − 6 27.1 16.1 91%
T − 7 25.2 15.7 24%

TABLE 5.5: Attack Results Simeck48/96

Round Total Faults Total Unique Faults Success %
T − 5 56.7 26.7 98%
T − 6 39.6 22.4 86%
T − 7 39.1 22.3 72%
T − 8 44.4 22.5 8%

TABLE 5.6: Attack Results Simeck64/128

5.5 Comparisons

Simeck2n/mn # Faults Injected
[14] Proposed Attack

Simeck32/64 113.3 25.6
Simeck48/96 165.7 27.1
Simeck64/128 228.2 39.6

TABLE 5.7: Faults Comparison with Existing Work
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Simeck2n/mn Rounds Attacked
[14] Proposed Attack

Simeck32/64 L30, L29, L28, L27 L27

Simeck48/96 L34, L33, L32, L31 L30

Simeck64/128 L42, L41, L40, L39 L38

TABLE 5.8: Rounds Comparison with Existing Work
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Chapter 6

Conclusion

In this work, we have presented a DFA on SIMON in which we can recover the complete secret
key with few faults and low time complexity. We were able to restrict the attack to the left
register of a single round and mounted the attack on multiple round. This exposed vulnerability
in more rounds and also computes the optimal round to attack for each version of the cipher. We
also present theoretical analysis into finding the optimal attack round. We further successfully
extended the attack to Simeck and presented similar results with fewer faults and low time
complexity.
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