
B. TECH. PROJECT REPORT
On

 Performance Evaluation of
Multi Pattern Matching
Algorithms for Network

Applications

BY
Ghanshyam Bairwa

160001022

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019

Performance Evaluation of
Multi Pattern Matching
Algorithms for Network

Applications
A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of
BACHELOR OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

Submitted by:
Ghanshyam Bairwa

160001022

Guided by:
Dr. Neminath Hubballi

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019

Ⅰ

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Performance Evaluation of Multi Pattern

Matching Algorithms for Network Applications” submitted in partial fulfillment for the

award of the degree of Bachelor of Technology in Computer Science and Engineering

completed under the supervision of Dr. Neminath Hubballi, IIT Indore is an authentic

work. Further, I declare that I have not submitted this work for the award of any other

degree elsewhere.

Signature and name of the student(s) with date

CERTIFICATE by BTP Guide(s)

It is certified that the above statement made by the students is correct to the best of my

knowledge.

Dr. Neminath Hubballi

Associate Professor

Ⅱ

Acknowledgments

I wish to thank my supervisor, Dr. Neminath Hubballi for his kind support and valuable

guidance. It is his help and support, due to which the project design and report came to

life.

The opportunity to work on a project under his guidance was a great chance for learning

and professional development. In spite of being busy with his duties, he always spared

time to listen to my problems, clear my doubts and guide me at every step of my project.

Ghanshyam Bairwa
160001022
B.Tech. IV Year
Discipline of Computer Science and Engineering
IIT Indore

Ⅲ

Abstract

Multi-pattern matching algorithms find all occurrences of patterns in a given input text.

We implement two multi pattern matching algorithms namely Aho-Corasick and Wu-

Manber and compare the performance using their execution time. We used different set

of keywords taken from network application and search them in packet payloads and

evaluate the algorithms time complexity. We compare the running time of both

algorithms with different implementations.

Table of Contents

Chapter 1

Multi Pattern Matching ………………….…………………….……………………. 1

 1.1 Introduction …………..………………….…………..………………………... 1

 1.2 Aho-Coarasick Algorithm ………….…………………………………………. 1

 1.2.1 Preprocessing and Scanning …………………………………………………………….. 1

 1.2.2 Implementation Ways ………………………………………………………………….. 3

 1.2.3 Time Complexity ………………………………………………………………………. 3

 1.2.4 Algorithms ………………………….…………………………………………………... 3

 1.3 Wu-Manber Algorithm ………….…………………………………………….. 6

 1.3.1 Preprocessing Stage …………………………………………………………………….. 6

 1.3.2 Scanning Stage ………………………………………………………………………….. 6

 1.3.3 Complexity ……………………………………………………………………………... 6

 1.3.4 Algorithms ………………………………………………………………………………. 7

 1.4 Result and Analysis ………….…………………………………………………. 8

 1.5 Conclusion …….…….……………………………………………………….... 9

 1.6 Future Work ….……….……………………………………………………… 10

References ………….……………………………………………………………….. 11

1

Multi Pattern Matching Algorithms
Implementation and Performance

Comparison

1.1 Introduction

 For multi-pattern matching algorithms find occurrences of multiple patterns in a given text. In this

work, we implemented two multi-pattern matching algorithms namely Aho-Coarasick and Wu-Manber

algorithms. Aho-Coarasick uses the concept of finite automata. Wu-Manber uses the mismatching

method used in Boyer-Moore algorithm. We compared these two algorithms by implementing them in

both Java and C++.

1.2 Aho-Coarasick Algorithm

 Aho-Corasick algorithm consists of two parts. First part is used to construct a finite state pattern

matching machine from the given set of keywords whereas the second part uses the pattern matching

machine to process the text string in a single pass. The time required for the construction of the pattern

matching machine is proportional to the sum of the lengths of the keywords. Aho-Coarasick algorithm

uses goto, failure, and output functions which are explained subsequently.

1.2.1 Preprocessing and Scanning

 Consider following set of keywords {he, she, his, hers}. The state transition machine built using

the goto function is shown in Fig. 1.1. In this figure, double circles denote a keyword has been

identified in the input text. Algorithm 1 provides the procedure to construct goto and partially output

function. In some cases, a keyword contains other keywords in its substring, for e.g., if we consider a

keyword she from the above set it also contains a keyword he as a suffix which is also a keyword.

Chapter 1 |

2

These types of cases are handled using failure function. The failure function provides the next state of

a failed goto function. Algorithm 2 defines the failure function and output function. The start state or

0th state will not have any failed transitions. Algorithm 2 uses breadth first search to reach all states

and then find the failure states. The result of failure function for the given example is shown in Table

1.1. Similarly, the output function for the given example is shown in Table 1.2.

Fig. 1.1 goto function (finite automata)

State no. - i 1 2 3 4 5 6 7 8 9

failure(i) 0 0 0 1 2 0 3 0 3

Table 1.1 failure function

State no. - i 1 2 3 4 5 6 7 8 9

output(i) {} {he} {} {} {she, he} {} {his} {} {hers}

Table 1.2. output function

 Algorithm 3 is used for scanning the text and searching the keywords. Reading each character

results in the transition between the states of finite state automata. If the next transition of goto function

fails then failure function is used to identify the next state. For every state, it checks whether the state

contains the keywords or not.

3

1.2.2 Implementation Ways

 goto and failure functions can either be stored as arrays or can be implemented using linked lists.

We used both types of data structures in our implementation. It is worth noting that accessing an

element in an array takes constant time, while in linked list it takes linear time. In contrast, linked lists

are dynamic and flexible and can expand and contract their size if more patterns need to be added or

some are to be removed. It is advisable to use arrays if number of keywords are less, while lists can be

used if there are a large number of patterns.

1.2.3 Time Complexity

 In algorithm 3, the time taken for searching a keyword is twice the length of text transition. As the

algorithm has to scan the whole text reading each character which requires one transition. The

transition for fail cases are also needed to be considered. Algorithm 1 and 2 require linear time which is

proportional to the sum of the length of keywords. Thus, the total time complexity is n+l, where n size

of the text and l is the sum of the length of the keywords.

1.2.4 Algorithms

Algorithm 1. Construct goto function.

Input. keywords K = {y1, y2 yk}.

Output. partially computed output function output and goto function g.

Method. Initially output(s) = NULL and g(s,a) = null

begin

newstate←0

for i←1 until k do entry(yi)

for ∀ a, such that g(0,a) = null do g(0, a) ←0

end

function entry(a1 a2 …….ak)

begin

currentstate←0; j←1

while g(currentstate, aj) ≠ null do

currentstate ← g(currentstate, aj)

4

j←j+l

endwhile

for p←j until k do

newstate← newstate + 1

g(currentstate, ap) ← newstate

currentstate ← newstate

endfor

output(currentstate) ←{a1 a2 …….ak }

endfunction

Algorithm 2. Construct failure function.

Input - output of Algorithm 1

Output - output function output and Failure function f .

Method

begin

queue ← empty

for each a such that g(0, a) = s ≠ 0 do

queue ← queue ∪ {s }

f(s) ← 0

endfor

while queue ≠ empty do

let r be the next state in queue

queue ← queue - {r}

for each a such that g(r, a) = s ≠ fail do

queue ← queue ∪ {s }

state ← f (r)

while g(state, a) = fail do

state ← f(state)

5

endwhile

f(s) ← g(state, a)

output(s) ← output(s) ∪ output(f(s))

endfor

endwhile

end

Algorithm 3. Pattern matching machine.

Input - A text string str = a1a2…….an and a pattern matching machine M.

Output - Positions of keywords in str.

Method

begin

state←0

for i←1 until n do

while g(state, ai) = fail do

state←f(state)

endwhile

state ← g(state, ai)

if output(state) ≠ empty then

print i

print output(state)

endif

endfor

end

6

1.3 Wu-Manber Algorithm

 This algorithm also consists of two parts preprocessing and searching. It compares the last

characters of the keywords with the text and shifts search portion if the characters do not match. The

maximum shift depends on the size of the block and the size of the minimum length keyword.

1.3.1 Preprocessing Stage

First, we will find the minimum length keyword in the set, let’s assume its length is m. Variable

B is used to represent block and its value should be 2 or 3. Three tables are constructed namely Shift

table, Hash table, and Prefix table. Shift table is used to find the shift amount for a particular hash

value. Hash table is used to map the shift value with the block of characters to match. Prefix table is

used to enhance the performance of the algorithm. Algorithm 4 is for the preprocessing stage.

Implementation of this algorithm requires a hash function which must be time and memory efficient.

Shift value can vary from 0 to m-B+1.

1.3.2 Scanning Stage

 In this stage, algorithms scans or read the text and search for the keywords. On scanning, it

calculates the hash value for the current B size substring of the text with the help of the hash function.

From this hash value, it calculates the shift value from the Shift table. Shift value has two possibilities.

If the shift value is 0 then it indicates that this substring matched with the last B characters of at least

one keyword. Therefore, we can calculate the hash value for the Prefix table. If this hash value gets any

keyword from the Prefix table then we need to search for this whole keyword. If we find whole

keywords matched with the substring of the text then we can print the keyword. If it fails to match then

we will shift the current position by 1. The second possibility is greater than 0 shift value. It means the

current sub-string is not matching with any of the keywords. So we can shift the current position

according to the shift value which varies from 1 to m-B+1. Algorithm 5 is used for the scanning stage.

1.3.3 Complexity

The complexity of the algorithm is less than the linear time for the linear size text it is due to

shifting in blocks. Let n number of patterns, m is the average size of a pattern, l be the size of the text,

L=mn the total size of the patterns. Shift table can be formed in the O(L). For shift value 0 it takes O(1)

time. But for shift value more than 0, it uses the Hash table and the Prefix table. Therefore, the time

complexity can be calculated by the following equation:

7

Time complexity = O(log(2L)*l / m)

1.3.4 Algorithms

Algorithm 4. Preprocessing

Input. Set of keywords K = {y1, y2 yk}, B = 3(it can be 2).

Output - Prefix table prefix, Shift table shift, Hash table hash.

Method

begin

m ← length of smallest keyword

for each keyword yi do // yi = a1 a2 …….ap

begin

for j←m until B do

Begin

hash ←hashFunctoin(aj-B+1…...aj-1aj)

shift(hash) ← minimum(m-B+1, m-j)

 end

prefix ←hashFunction(a1a2)

end

end

Algorithm 5. Scanning

Input. Text str, Prefix table prefix, Shift table shift, Hash table hash.

Output - Locations at which keywords occur in str. // str = a1 a2 …….ap

Method

begin

i ←m

while i ≤ length of str do

begin

8

hv1 ← hashFunction (ai-B+1…...ai-1ai)

shiftValue ← shift (hash (hv1))

if shiftValue > 0 then do i← i + shiftValue

else

begin

prefixValue ← hashFunction (ai-m+1ai-m+2)

for prefix value of each keyword kj do

begin

if prefixValue = prefix(kj) then

scan the text from ai-m+1 and keyword kj

 if keyword kj matched then

print (j)

print (kj)

endif

endif

end

i ← i + 1

end

 end

end

1.4 Result and Analysis

 We performed experiments using our implementations of Aho-Coarasick and Wu-Manber

algorithms on a network traffic dataset generated by collecting network packets. Keywords are

searched in the payloads of reconstructed bidirectional flows. A flow is identified by 5 tuple source

port, destination port, source IP, destination IP, and transport protocol type. Bidirectional flows are

generated using Jnetpcap library. Similarly Netinet library is used to implement the same in C++.

9

 We used a set of keywords to search in payload of flows. Fig 1.2 is shows the comparison of

running time of WM and AC for different sizes of data. For preprocessing, AC took around 5.1 ms and

WM took around 696 ms. Running time comparison for different size dataset is tabulated in Table 1.3.

This result is the execution time from implementation of C++. Java implementations both the

algorithms took 5 times more time than their C++ counterparts.

S.No. Data (MB) Aho-Corasick (sec) Wu-Manber (sec)

1 1.3 0.032636 0.0324286

2 1.1 0.038713 0.038027

3 7.4 0.172994 0.1745674

4 14.7 0.4632056 0.4963688

5 25.8 0.5015116 0.5028964

6 47.4 1.204218 1.111128

7 49.1 1.371124 1.356192

8 76.1 2.194196 2.294584

9 292.2 6.633694 6.641762

10 387 9.10905 9.19906

Table 1.3 Time taken by AC and WM

1.5 Conclusion

 In this thesis, we described performance comparison of two multi-pattern matching algorithms.

Aho-Corasick and Wu-Manber to find the occurrence of patterns in the text. We then performed an

experiment on a dataset using sets of keywords from network traffic. Using the results of the

experiment we finally compared time complexity of both algorithms to conclude that Aho-Corasick

algorithm is faster compared to Wu-Manber.

10

 Fig 1.2 AC vs WM for scanning time comparison

1.6 Future Work

 Current implementations is limited to only TCP/UDP protocols we would like to implement our

algorithms to process other protocols like DCCP, FCP, SST, SPX, etc.

11

References

[1] Aho, Alfred V. & Corasick, Margaret J. (1975). Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 18, 333-340.

[2] Commentz-Walter, Beate. (1979). A string matching algorithm fast on the average. Automata

Languages and Programming, 6, 118-132

[3] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001-09-01). "The

Rabin–Karp algorithm". Introduction to Algorithms (2nd ed.). Cambridge, Massachusetts: MIT Press.

pp. 911–916.

[4] Baeza-Yates, R. A. (1989). ‘Improved string searching, Software - Practice and Experience, 19,

257-271.

[5] Wu, Sun & Manber, Udi. (1994). A fast algorithm for multi-pattern searching. Technical Report

TR-94-17, University of Arizona.

