
B.TECH. PROJECT
REPORT

On

Full Stack Development
Intern

BY

Rishabh Kumar Verma, 160001048

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

November, 2019





Full Stack Development Internship

PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Rishabh Kumar Verma, 160001048,

Discipline of Computer Science and Engineering,

Indian Institute of Technology, Indore

Guided by:

Dr. Bodhisatwa Mazumdar,

Assistant Professor,

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
November, 2019





iii

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Full Stack Development Internship” submit-
ted in partial fulfillment for the award of the degree of Bachelor of Technology in ‘Com-
puter Science and Engineering’ completed under the supervision of Dr. Bodhisatwa
Mazumdar, Assistant Professor, Computer Science and Engineering, IIT Indore is an
authentic work.

Further, I declare that I have not submitted this work for the award of any other de-
gree elsewhere.

Rishabh Kumar Verma

CERTIFICATE by BTP Guide

It is certified that the above statement made by the student is correct to the best of my
knowledge.

Dr. Bodhisatwa Mazumdar,
Assistant Professor,

Discipline of Computer Science and Engineering,
IIT Indore





v

PREFACE

This report on "Full-Stack Development(Internship at Dunzo)" is prepared under the
guidance of Dr. Bodhisatwa Mazumdar, Assistant Professor, Computer Science and En-
gineering, IIT Indore.

Through this report, I have tried to provide a detailed description of what projects
I’ve got the chance to contribute in during internship. I also tried to design approaches
for future improvement.

I have tried my best to explain the proposed solution.





vii

ACKNOWLEDGEMENTS

I want to thank my team User-Backend for their guidance and constant support in
structuring the project and providing valuable feedback throughout the course of var-
ious projects. Their overseeing the project meant there was a lot that I learnt while
working on it. I thank them for their valuable time and efforts.

I am grateful to my mentor Mr. Shubham Agarwal without whom these projects
would have been impossible. He provided valuable guidance to handle the delicacies
involved in the project and also taught me how to write a scientific paper.

Lastly, I offer my sincere thanks to everyone who helped me complete this project,
whose name I might I have forgotten to mention.

Rishabh Kumar Verma





ix

Contents

CANDIDATE’S DECLARATION iii

CERTIFICATE by BTP Guide iii

PREFACE v

ACKNOWLEDGEMENTS vii

Table of Contents vii

Abbreviations x

1 Introduction about Dunzo 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Internship Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 LazyPay Integration 3
2.1 About LazyPay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reason for integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 APIs used in integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 API flow for non registered user . . . . . . . . . . . . . . . . . . . . 4
2.3.2 API Flow for registered user . . . . . . . . . . . . . . . . . . . . . . 4
2.3.3 Some other useful API . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Circuit Breaker 7
3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Further improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Weighted Arithmetic Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Cohort Optimisation 9
4.1 Offers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Cohorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4.1 Redis Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Introduction to Redis Cache . . . . . . . . . . . . . . . . . . . . . . . 10
Why Redis Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



x

4.4.2 How Redis Cache works . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Redis Over Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 Points to be taken care of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 New B2B Merchant Fraud 13
5.1 About B2B Merchant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Scheme for New B2B merchant . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Flaw in scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Dunzo Cash usage at various levels 15
6.1 About Dunzo Cash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Dunzo Cash Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Dunzo Cash Policy level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.4.1 Why table would get polluted? . . . . . . . . . . . . . . . . . . . . . 16
6.5 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Invite Code fraud 19
7.1 About Invite Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Fraud with this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.4.1 Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4.2 Front-end changes for multiple cities . . . . . . . . . . . . . . . . . 20

7.5 Points to be remembered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



xi

List of Abbreviations

API Application Program Interface
DB DataBase
OTP One Time Password
COD Cash On Delivery
B2B Business To Business





1

Chapter 1

Introduction about Dunzo

1.1 Background

Dunzo is a startup in Bangalore, India. Their main goal is that if anything is getting
delivered from point A to point B, then it should get delivered by Dunzo. They are
currently functioning in cities like Bangalore, Hyderabad, Chennai, Jaipur and 5 more
cities. As of now they are delivering in categories like food, grocery, medicine, Pick
Drop and Pillion.

Dunzo became a popular startup for their unique idea which was nowhere imple-
mented earlier. Like Flipkart and Amazon delivered household items, Uber and Ola
focused on transportation only, Swiggy and Zomato focused on food delivery only. But
no one actually focused to do everything on same platform and that should be done
because at the core, each of them are delivering something, so it shouldn’t be a problem
if we’re delivering things which doesn’t fall in same category. And now-a-days Ama-
zon has now realized this fact, so Amazon has started delivering grocery, and they’re in
position to buy Uber Eats.

Beside of delivery things from shops for us, Dunzo became popular for one thing on
which no was focused, and to bring some competition in this field Swiggy too started
doing a bit. Dunzo completes a very useful case of Pick and Drop, say, you’ve forgot
your charger at your home, and you came office, so you want it to get deliver from
your home, you can just Dunzo it. Just give your pickup and drop locations, and that’s
it. Dunzo will do that task for you. Beside this, you can order literally anything via
Dunzo, if that area is in serviceable range of Dunzo, you can give pickup location of
shop and the items you want from the shop, Dunzo partner will pick that up for you.

These were some of the reasons Dunzo got popular and Google were very excited
with this idea, and that’s how they became the India’s first start-up in which Google
gave the funding.

Talking about how Dunzo functions internally is that it’s divided into three main
teams, and that are User, Merchant and Partner. I was the part of User team which
mainly focused on back-end development. User team is further divided into 4 different
sub teams and they are: Payments, User Promotion, New User Activation and B2B mer-
chants.



2 Chapter 1. Introduction about Dunzo

1.2 Internship Experience

In these 6 months of internship, I got to work on various aspects of Dunzo. Mainly
it was around Invite Code, Dunzo Cash, offers/promotions and a payment method
LazyPay. I got to work with front-end team as well, for the tasks which had front-end
dependency as well. At the time I was in payment team, we were actually planning
to integrate a new payment method to provide some more ease to users for paying on
Dunzo. And there was one more thing that was pending from a lot of time, that if any
payment method was going down in terms of successful transaction rate, they manually
had to turn off that payment method in order to stop users making payment through
that payment method. So, we were planning to have a system which would automate
the task pf turning off and on for these payment methods.

In User Promotions, we were actually focused on how to increase users activity on
app by making them use more offers and coupons and Dunzo cash. Main problems
which we faced was loading offers on Home Screen was taking huge amount of time,
which further was a very bad user experience as Home Screen was the first screen user
will view and if that will take this much time then it was not at all a good experience,
so we had to optimise that time.

Dunzo Cash is nothing but a first-of-its-kind rewards ecosystem designed to provide
benefits to Dunzo customers. Dunzo Cash can be used in any transaction on Dunzo at
some extent. Dunzo cash was mainly based on Dunzo Cash Policy which was defined
at various levels, which was earlier



3

Chapter 2

LazyPay Integration

The following chapter discusses about what is LazyPay, why was LazyPay in Dunzo,
major APIs used in integration, what were results after integrating this and what are
future scope in Payments.

2.1 About LazyPay

LazyPay is a pay-later payment method, which is very popular these days. It’s different
from conventional payment like UPI, Paytm, Debit/Credit Card. It’s a credit tool which
has many advantages over conventional tools.
The advantages of credit tools over conventional tools are:

• They involve only two bank servers comparing to conventional tools, as they in-
volve at least of 4 servers. Involving more servers means more chance of fail-
ure because if any of them is facing any technical issue, that maybe because of
high traffic, heavy requests, or any other reasons, then there are very high chances
that transaction may get failed in between. Let’s try to understand the situation
through an example, say A and B are two clients trying to send money online via
UPI, which is very popular payment method these days, in which A is trying to
send money to B. So, first A will request to A’s payment mode server which is
using UPI for transactions. Some of these payment modes are Paytm, GPay, Ama-
zonPay, PhonePe etc. Say in this case, it’s GPay. So A will request to GPay’s server
that I want to send x rupees to B. GPay will request A’s bank server to give x ru-
pees to it. And then A’s Gpay will transfer that amount to B’s Gpay, further B’s
Gpay will request B’s Bank to accept the payment of x rupees. So, we can say that
if anywhere request got failed then transaction will get failed.

• In case of money is deducted from one end but somehow it was not able to reach
at the other end, due to problem in bank servers. Then the cron which periodically
checks for such cases runs usually in 7 days for bank servers in most of the cases.
So, there are chances that you finally get your money back in such cases atmost
after 7 days. But in LazyPay and similar payment methods, they involve only
merchant’s server and lazypay’s server for the transaction, so first the chances of
getting a transaction failed is less than from previous cases, and say if it still does
then their cron runs after 2 days. Cron are basically functions which are called by
server periodically.

• At the same time they reduces the instant involvement of bank server’s which
further reduces the load on bank servers.



4 Chapter 2. LazyPay Integration

• As they’re pay-later kind of payment method so they’ll ask you to pay for the
transactions you’ve done using them in last 15 days or some fixed period, depend-
ing on your credit score. How much you can pay using them is also dependent on
your credit score.

2.2 Reason for integration

Before LazyPay there was no payment method in Dunzo, which had credit based pay-
later system. And with LazyPay already being a popular payment method. So, it was
a good payment method to integrate considering it’s very high successful transaction
rate(more than 90 percent).

2.3 APIs used in integration

2.3.1 API flow for non registered user

Flow for non registered has done in following way:

• Eligibility API – This API is used to check user’s eligibility based on his credit
score, and returns whether user is eligible or not to make a transaction via Lazy-
Pay. Credit score generally takes into account how often you make transaction
through LazyPay, and of what amount mostly.

• Token Initiate API – If the user is eligible then this API is getting called which
sends an OTP on user’s phone no. provided.

• OTP Validate API – This API is used for validating the OTP entered by user to the
OTP they send while calling Token Initiate API

• Initiate Pay API – If everything went fine as of now, then this API is used for
initiating the transaction, which further results into creating the task, if transaction
got successful.

2.3.2 API Flow for registered user

Flow for registered user is in following way:

• Eligibility API – This API is still used because user may exceed the max. amount
he/she can make in transaction. So, it’s always used before making any transac-
tion.

• Initiate Pay API – If the registered user is eligible then we call this API to initiate
the transaction.



2.4. Results 5

2.3.3 Some other useful API

Other useful APIs which can also get used in transactions are:

• Status Check API – At any point of time, what is the status of any transaction can
be obtained using this API.

• Refund API – In case of something bad happens which resulted into LazyPay paid
on user’s behalf but somehow task was not raised, then we’ve to refund that bal-
ance.

• Unlink LazyPay API – If user is not going to use LazyPay then he/she may unlink
LazyPay from Dunzo.

2.4 Results

LazyPay integration proved to be a one of the most used payment method in Dunzo.
It’s the most preferred payment method of 10 percent of Dunzo’s user. Within 4 months
after integration almost 2 lakh task were paid by LazyPay, with almost more than 90
percent success rate. Share of post-paid task was nearly 9 percent of total task raised.

2.5 Future Scope

API like Eligibility API are called like twice whenever user reach to payment page, that
can be reduced to once, if the response of first call can be cached. That will save lot of
time simultaneously making response of home page a little bit faster.





7

Chapter 3

Circuit Breaker

The following chapter discusses about a problem of manually turning off and on any
payment method, if goes down or up. And how did we reach to the solution, it’s impact
on production.

3.1 Problem

We’ve many payment method for example Paytm, Amazon Pay, GPay, Simpl, LazyPay,
UPI and COD. Leaving COD, each of them is online payment method. So, they suffer
many times ups and downs due to third party servers. There are chances like if so
many requests are coming, or there is something wrong with their back-end or maybe
something else responsible for their server down. It’ll cause most of the transaction
failed. So, it’s our responsibility to stop users making payment from those payment
methods. So, for such situations earlier we have engineers/analyst assigned for the
task, they used to keep an eye on every payment method about their success rate, and
if they are going below the threshold rate, then first they stop making some users to
make payment, if still the result is same, then they manually shut that payment method
for a while. And they keep checking after sometime, that the issue has been resolved
or not. Doing such task manually is a very hard and tedious job to do. Our goal was
to automate the system in a way that it automatically identifies the payment method to
shut down or when to let them function again.

3.2 Solution

Solution for the given problem can be thought in following way:

• We made a cron whose job is to track all the transaction done in last 15 minutes.

• After having the details of every transaction done in last 15 minutes, we segregate
them on the payment mode. Like all transaction made through lazypay at a place,
all transaction made through paytm at a single place and respectively. Then we
analyse them which payment method has less than 60 percent success rate, then
we made them go into Half-Open state. If any of them has less than 50 percent
success rate, then those payment mode are made to go into Open state. And a
mail is generated to respected team, that this payment method is going down.

• After every 10 min, for the payment methods in Half-Open or Open are made to
go into Closed state, for 10 transactions, to check if the server is up or not. If the



8 Chapter 3. Circuit Breaker

success rate is above the threshold value, then they are kept into Closed state, else
depending upon their success rate they’re forced to go into Open or Half-Open
state.

• Doing this way, we made the job of one person done by Dunzo’s server itself. And
the task was earlier so difficult to manage now became easy, as now no one has to
take care of how and when which payment method is going down.

3.3 Further improvement

There is now this provision to improve the system a bit. The algorithm we use in cal-
culating the success rate of any payment method is done by counting no. of successful
transaction divided by total no. of transaction by that payment method. This was giving
a little bit wrong result because if we’re checking transactions of last 15 minutes then
there are chances that transactions done in minutes between 14th and 15th are getting
failed due to which we’re saying that this payment method is suffering server down
but transactions done in 1st 5 mins. are good, then this defines that server went down
in 14th to 15th minute, but it went up again very soon, as we can see the results in
early 5 minutes. So, instead of weighing every transaction same, we thought to give
more weightage to transaction which happened lately more to transaction done very
early, doing this way it’d be fair to make the decision that whether or not to make the
payment method shut down. For this method to implement we were planning to use
Weighted Arithmetic Mean for development.

3.4 Weighted Arithmetic Mean

The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most
common type of average), except that instead of each of the data points contributing
equally to the final average, some data points contribute more than others. The notion
of weighted mean plays a role in descriptive statistics and also occurs in a more general
form in several other areas of mathematics.

3.5 Result

Using weighted arithmetic mean, result now will be more reliable than earlier, and the
system was so smooth that there was no dependency on anyone. So, even if some
payment method going down in night, now there is no problem, as now day and night
are no different.



9

Chapter 4

Cohort Optimisation

The following chapter discusses about how new cohorts are created, how they helped
to the system, and if not done what can they effect

4.1 Offers

User-Promotion team generally has to take care of offers and promotions. And how
offers are created and which users are needed to see those offers are very interesting
problem to solve. So, Dunzo give offers to attract new and existing users to raise more
and more tasks from Dunzo. By this way we increase their involvement on the app. If
we’re creating any offer we may want that to be visible to users who may actually get
benefit from that. So, it was very necessary for us to classify users among groups, who
share some common properties or have some commonalities.

4.2 Cohorts

Cohorts are nothing but a categorisation of users based on some characteristics they
share with each other. These characteristics can be anything like users who’ve ordered
only medicine in last 7 days, users who have raised only food task in last 15 days (or in
last 7 days). So, they can be categories based on such facts and in last some interval of
time. They generally are classified on the basis of type of task they do and the interval
of time they take to raise the task. Based on that we create cohorts for them, and use
them to show offers which are beneficial to them and for us as well.

One more benefit of cohorts are if our offers are targeting to a part of our users then
we can see that offers is actually getting used or not by seeing response of those users on
that offers. So, in other way, it actually helped product team in proving their speculation
about any offers.

4.3 Problem

So we can see that offers and cohorts are related very closely to each other and they
most reasonably had to. Offers are visible to users on their home screen, so whenever
any users opens the home-page offers and promotions are loaded for that users. So,
now since the offers are condition based, so if any users lie in the cohorts defined by



10 Chapter 4. Cohort Optimisation

that offer, then they can see that offer, else not.

These conditions are nothing but just a Database query to make and see the result
that whether or not they would fall in the given condition defined by the cohort of that
offer. Many a time, a offer is not just having a single cohort, they have multiple cohorts
underlying them, so a user is keep getting checked for all cohort unless any of them
matches.

This was resulting into huge of time, as every DB query has its own time of execu-
tion, and sometimes they involved joins of tables, that makes them a very heavy DB
query, resulting into increase of response time of Home Screen. Therefore the problem
was to minimize that time taken by the Home API to load the offers, as less as it could.

4.4 Solution

4.4.1 Redis Cache

Introduction to Redis Cache

Redis is an open source (BSD licensed), in-memory data structure store, used as a database,
cache and message broker. It supports data structures such as strings, hashes, lists, sets,
sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes with radius
queries and streams. Redis has built-in replication, Lua scripting, LRU eviction, trans-
actions and different levels of on-disk persistence, and provides high availability via
Redis Sentinel and automatic partitioning with Redis Cluster.

You can run atomic operations on these types, like appending to a string; increment-
ing the value in a hash; pushing an element to a list; computing set intersection, union
and difference; or getting the member with highest ranking in a sorted set.

In order to achieve its outstanding performance, Redis works with an in-memory
dataset. Depending on your use case, you can persist it either by dumping the dataset
to disk every once in a while, or by appending each command to a log. Persistence can
be optionally disabled, if you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication, with very
fast non-blocking first synchronization, auto-reconnection with partial resynchroniza-
tion on net split.

Why Redis Cache

• It is blazingly fast! After all, it has been written in C.

• It’s a NoSql Database. That’s Amazingly amazing!



4.5. Redis Over Database 11

• Currently, it is being used by tech-giants like GitHub, Weibo, Pinterest, Snapchat,
StackOverflow, Flickr.

• In order to save your cloud database calls and eventually saving some dollars out
there, you can of course opt for caching so the Redis.

• It is Developer friendly and by that I mean to say that Redis is being supported
in most of the languages (Perks of using an Open Source Technology). Languages
like JavaScript, Java, Go, C, C++, Python, Objective-C, PHP and almost every fa-
mous language out there has support for this.

• Last and probably the very obvious point, it is open source and stable, so yeah
that’s another thing to say ’Yes’ to Redis.

4.4.2 How Redis Cache works

Let’s assume a system where you constantly need a data for awhile but that data is be-
ing obtained from Database, by of course running a SQL query every time.

So, let’s say the connection time to the DB is some x secs. and running query takes y
secs.

And say we needed the value for 5 times in a while. Then the total time required will
be, assuming we have a persistent connection, 5 * y secs..

Now, instead of querying over DB, we started querying on redis cache, connection
time will be again here, so for the understanding let’s say it has the same connection
time i.e x secs. but querying in redis cache is way faster as compared to querying over
DB, because here we just have to find the key where the data is stored which can be
searched in O(1). And since this data in RAM, so the read/write here is very fast as
compared to read/write in disk. What I meant to say is here querying takes almost z
secs. where z « y. So total time taken will be x + y + x + 4*z, because for the first time,
there won’t be data in cache, so in order to restore the data in cache we need to actually
make the DB query. And then we have to add connection time for both redis and DB.

This isn’t just about speed! Imagine what difference it would make to your users and
how much money you could save on server costs.

4.5 Redis Over Database

Querying over Redis is way faster than querying over database, because of how data is
stored in redis, and the way it is stored in redis. For getting any value from Database,
we have to make a SQL query for the same, and since the data maybe scattered it may
involve join of table as well. But in redis since values are stored in form of key value
pair, and because of the data stored in this manner retrieval of data for any key is in
O(1). And this value can be anything as redis supports many kind of Data Structure
such as strings, lists, hashmap.



12 Chapter 4. Cohort Optimisation

So, we actually used redis hashmap for our solution.
Redis key was generated in a manner userId:44989 and the value in correspondence

of such key would be hashmap, and it would comprises of various properties of users
like count of total tasks, count of medicinal tasks, count of grocery tasks and likewise.
So, instead of multiple querying over database, we can just make a single query on redis
which would be very less time taking in comparison to a single query on Database. So,
we can have all those properties at a single place with very less amount of time. So, we
can get all property’s value with a single query, which was earlier done using multiple
query and that too on while loading Home Screen. So, decision making reduced from
almost 2 secs to 10 ms.

4.6 Result

Now we know that querying over Database is way slower than querying over redis, and
that was causing the major time taken by the Home API. So optimising that surprisingly
reduces the response time of Home Screen from nearly 4.5 secs to 2 secs. And at the
same time there was risk that if this optimisation had not been done then response time
of Home API kept on increasing which would may in future results into crashing of
app. So, we’ve successfully created a system where creation of offers and promotion
won’t be creating any problem if it is going to get sticked to this system.

4.7 Points to be taken care of

Jumping over one existing solution from another may results into some serious issues.
Like earlier, every update of any task is directly done to Database, and now if we’re go-
ing to be reliable on redis cache, then we’ve to make sure that the status of task updation
in redis should be done correctly, because of so many factors.

Factors which may cause such things to happen are:

• Retrying APIs may results into update cache so many time, so it should be taken
care of by using set in redis, as it store only unique values.

• For the first time, since there will be no data in cache, so we’ve to run a script
which will back-fill the cache with user’s data. So, that there shouldn’t come a
huge request on DB.

• And whenever there is cache miss for any user, we had to make sure to return
default value at that time because calling DB for the value at that time may results
into large time of execution, so we called an async. function which will back-fill
the cache for the next time.



13

Chapter 5

New B2B Merchant Fraud

The following chapter discusses about the fraud New B2B merchant used to do on
Dunzo, how did we find solution for that, and what result came after through.

5.1 About B2B Merchant

B2B merchants are nothing but the traders in the market who have something to deliver
from one place to another but they really don’t want to bother about how delivery is
taking place but that should be reliable and trustable. All they want is to use Dunzo’s
service for delivering their goods from one place to another.

5.2 Scheme for New B2B merchant

Dunzo always welcome new users by giving them good offers or help in trading in some
other ways. Here as well, Dunzo gives 3 free tasks to new merchants to complete. And
Dunzo offers merchants to either deliver their goods now or they can schedule tasks as
well, so a partner will be available at the time they’ve scheduled for the task.

5.3 Flaw in scheme

Dunzo offered 3 free tasks for new merchants. But the check for the next task to give
them free or not is done by checking whether user has completed 3 tasks or not. If not
then next task will also be give free to them. In this way they can schedule as many
as task as they can and that too forever. After completion of 3 tasks only they will be
charged.

5.4 Solution

So the solution thought for the above fraud rather than checking on 3 completed task
the check should be on 3 Active + Completed task.

So, in redis cache for merchants users only we maintained a count of active tasks for
that user and whenever any merchant task status is either created or cancelled or any
potential status change is happening, it’s status is also updated in redis. So, now we’ve
active task count of any user in redis and we can check if the count of active + completed



14 Chapter 5. New B2B Merchant Fraud

task is less than 3 then we can free the next task else we will be charging for the next
task.

5.5 Result

This New B2B merchant fraud came down to 0 percent as it was happening earlier,
which nearly saved 2 lakhs rupees in the coming month as of expected.



15

Chapter 6

Dunzo Cash usage at various levels

The following chapter discusses about what is Dunzo Cash, what is Dunzo Cash Policy
and how it was used earlier, and it is going to be used now and what future demands
were also coming.

6.1 About Dunzo Cash

Dunzo Cash is a first-of-its-kind rewards ecosystem designed to provide benefits to
Dunzo customers. These benefits can be taken while you’re using Dunzo’s service in
which already there has been no offer used. Whenever Dunzo cash is applicable it’ll
pay some part of the total amount you have to pay.

6.2 Dunzo Cash Policy

Dunzo Cash is controlled by various factors and all those parameters are part of Dunzo
Cash Policy. Some of the basic parameters already available in Dunzo Cash Policy are
like max. dunzo cash per task any user can use, max dunzo cash discount percent per
task. Users can get dunzo cash while they’ve signed for the first time or they can refer
the app to some other user, by this way they can also earn Dunzo cash. So, how many
users a particular user can refer and earn dunzo cash depends on the policy currently
applicable for the user. And when dunzo cash will get expire for a user is also controlled
by the policy itself.

6.3 Dunzo Cash Policy level

So the policy which will finally be applicable on user have some levels if higher level of
policy is active for the user then he will have advantages from dunzo cash based on the
parameter given in that policy.

Hierarchy of Dunzo Cash Policy are as follows:

• City Level – Policy for the whole city

• Geo Level – Policy for a particular geo in a given city

• Cohort Level – Policy for users who fall in a particular cohort

• User Level – Policy for group of users.



16 Chapter 6. Dunzo Cash usage at various levels

• Default – In case any of them is not applicable.

Earlier User level of policy was not there but the product team found a very useful
use-case in which policy has to be at group of users. Like suppose there is a TED session
going on somewhere and Dunzo wants to sponsor it and at the same time they want to
do marketing about their product as well. So, this was the best place where they can
offer Dunzo cash to users and have them controlled through a policy because they can’t
fall either in a cohort or in a same city or in a same geo. So there has to be a policy at
this level.

6.4 Problem

There is a user-policy table in database, columns in this table were policy, policyId,
type, typeId and extra-Data. Earlier only three types of policy were there so this table
was not populated. But if the user policy will be added to this table then it’d be get
highly populated by them, because policies on higher level have larger activation period
compared to user level policy.

6.4.1 Why table would get polluted?

Entry of user level policy would be like policy will be user policy, policyId would be
some integer, type will be "user" and typeId would be userId. So, let’s say if the policy
has been made for group of 200 people, then there would be 200 entries in that table.
So, we needed a solution for the above scenario.

6.5 Solution

To tackle this problem, we actually took help of redis and Database in combination. We
actually created another table with listId and list. ListId would store some integer and
list would be group of all those users who belong to a common group session. There is
a possibility that at a time a user can belong to multiple user policy which was not the
case earlier, because no user can belong to different city or no user can have multiple
geos. So, to sort this out we have a redis cache for the user, which will be a set of tuple
(combination of different objects) and this will be sorted. Tuple will have elements like
activated-on, deactivated-on and policyId. And policyId will be mapped to policy with
some other keys. And this set will be sorted based on activated-on field, because the
element which have the latest activated-on will be the one user should get benefited
from. Since there is two types of cache we’re dealing currently with, then we have to
tackle for both of them in case of cache miss.

In case of cache miss for the policy and policy-id we can fetch it back from DB. But
for the case of user set it would be hard to restore the set of tuple, because for that
we’ve to traverse in each of the policy in DB just to look out is this the policy user was
belonging to. If not then skip for the next policy and so on. So, we actually needed
to have a timeout for such key quite large, larger than active period of largest active
policy. Still there would be possibility that cache miss may happen in that case, we’d



6.6. Result 17

not be concerning about any user policy for that user, if he is belonging to some other
policy then he would have advantage of that policy else he would be enjoying default
policy.

6.6 Result

With these feature live in production, it was possible for Dunzo to carry on such session
with no problem at all, and they can do experiments as well for small small groups.





19

Chapter 7

Invite Code fraud

The following chapter discusses about Invite Code and fraud users were making through
them and how did we find the solution for the above with future help as well.

7.1 About Invite Code

We already discussed about Dunzo Cash and Dunzo Cash Policy as well, so we dis-
cussed there that anyone can earn dunzo cash by referring Dunzo someone else as well,
and how much he and the one who got referred can earn depends upon the policy. But
there maybe the case, that a user started using Dunzo on his own, without being re-
ferred by someone, but he also should get awarded for that. So, for that we’ve Invite
Code that code can be entered by user in place of referral code. And he will get some
dunzo cash as it had been described in invite code rule.

7.2 Fraud with this

User when knew this feature that they can earn dunzo cash on their own, then they
started creating multiple account on the same device and started entering the same
invite code and kept earning dunzo cash, as earlier. So this fraud was reaching at next
level, as it spread very fast manner, and company was suffering a huge loss for the same.

7.3 Problem

Earlier there was this system that you can create invite code either for All the cities or
for any particular city, but not for a bunch of cities, you want neither once created you
can edit the city. So, this was the first problem they faced, because the fraud was mainly
happening in Delhi, Noida and Gurgaon. So, they wanted to remove these cities from
the usage of invite code. And secondly, this was anyway a great fraud, we shouldn’t let
users create multiple account from the same device.



20 Chapter 7. Invite Code fraud

7.4 Solution

7.4.1 Device ID

A Device ID is a string of numbers and letters that identifies every individual smart-
phone or tablet in the world. It is stored on the mobile device and can be retrieved by
any app that is downloaded and installed. It is most certainly unique for every kind
of device whether it is Android or iOS device. So, we started taking into account the
detail for every user that what’s his device ID, and if the device ID is same, we were
not allowing users to create accounts anymore. This reduced the increase in fake users
which were earlier very easy and reduced the fraud to some extent.

7.4.2 Front-end changes for multiple cities

Front-end changes were necessary because even from back-end we can make sure that
we will now allow for invite code to be created for multiple cities, but the one who is
creating invite code will not be running python script and create invite code directly to
the Database. So, I did the front-end changes to multiple options rather than choosing
only ALL, or any particular city, and earlier only one city-id was sent that would be
either any particular city’s id or it was NULL for ALL cities, but now front-end will
send a list of city-id to the back-end, and from back-end I ran a loop to create invite
code for all the cities in the list of city-ids.

7.5 Points to be remembered

As we created multiple cities for one invite code and earlier there was only one city-id
for each invite code so, and since we change the system, so we actually had to make
sure about backward compatibility. Because earlier wherever they were trying to get
invite code from Database using unique city-id that constraint had to be removed and
rather than querying for unique feature we have to query if such invite code is available
from any of the given city-ids.

7.6 Result

After the changes merged to production, the invite code fraud was brought down from
45 percent to 15 percent. Changes done in production were cities like Delhi, Noida and
Gurgaon were exempted from the use of invite code for a while. And a different invite
code was created for those 3 cities only. So, this feature was highly in use their as of
now.


	CANDIDATE'S DECLARATION
	CERTIFICATE by BTP Guide
	PREFACE
	ACKNOWLEDGEMENTS
	Table of Contents
	Abbreviations
	Introduction about Dunzo
	Background
	Internship Experience

	LazyPay Integration
	About LazyPay
	Reason for integration
	APIs used in integration
	API flow for non registered user
	API Flow for registered user
	Some other useful API

	Results
	Future Scope

	Circuit Breaker
	Problem
	Solution
	Further improvement
	Weighted Arithmetic Mean
	Result

	Cohort Optimisation
	Offers
	Cohorts
	Problem
	Solution
	Redis Cache
	Introduction to Redis Cache
	Why Redis Cache

	How Redis Cache works

	Redis Over Database
	Result
	Points to be taken care of

	New B2B Merchant Fraud
	About B2B Merchant
	Scheme for New B2B merchant
	Flaw in scheme
	Solution
	Result

	Dunzo Cash usage at various levels
	About Dunzo Cash
	Dunzo Cash Policy
	Dunzo Cash Policy level
	Problem
	Why table would get polluted?

	Solution
	Result

	Invite Code fraud
	About Invite Code
	Fraud with this
	Problem
	Solution
	Device ID
	Front-end changes for multiple cities

	Points to be remembered
	Result


