
B. TECH. PROJECT
REPORT

On

Improving the Efficiency of
Large Scale Optimal Control

Problems
BY

Ashutosh Bang and Kumar Abhinav

DISCIPLINE OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019

Improving the Efficiency of Large
Scale Optimal Control Problems

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

 Submitted by:

Ashutosh Bang and Kumar Abhinav

Guided by:

Dr. Kapil Ahuja, Associate Professor, IIT Indore, and Dr. Marc Steinbach, Hannover University,
Germany

 INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2019

i .

Declaration of Authorship

We hereby declare that the project entitled “Improving the Efficiency of Large

Scale Optimal Control Problems” submitted in partial fulfillment for the award of

the degree of Bachelor of Technology completed under the supervision of Dr.

Kapil Ahuja, Associate Professor, Computer Science and Engineering, IIT Indore

and Dr. Marc Steinbach, Leibniz University Hannover is an authentic work.

Further, I/we declare that I/we have not submitted this work for the award of any

other degree elsewhere.

Signed:

Ashutosh Bang Kumar Abhinav

ii .

iii .

Certificate

This is to certify that the B.Tech Project entitled, “Improving the Efficiency of

Large Scale Optimal Control Problems” and submitted by Ashutosh Bang and

Kumar Abhinav in partial fulfillment of the requirements of B.Tech Project

embodies the work done by them under my supervision.

Supervisor

Dr. KAPIL AHUJA

Associate Professor,

Indian Institute of Technology Indore

Date:

iv .

v .

Acknowledgments

It is our privilege to express our gratitude to several persons who helped us directly

or indirectly to conduct this research project work. We express our heart full

indebtedness to our BTP guide Dr. Kapil Ahuja and Dr. Marc Steinbach for his

sincere guidance and inspiration in completing this Project.

We are extremely thankful to Mr. Aditya Anand Shastri for his coordination and

cooperation and for his kind guidance and encouragement.

We also thank our friends who have more or less contributed to the making of this

project.

This study has indeed helped us to explore more knowledgeable avenues related to

this topic and we are sure it will help us in the future.

vi .

vii .

 INDIAN INSTITUTE OF TECHNOLOGY INDORE

Abstract

Department of Computer Science and Engineering

Bachelor of Technology

Improving the Efficiency of Large Scale Optimal Control Problems

Using SQP iteration, direct boundary value problem methods are significantly

successful to get the solution of optimal control problems which are nonlinear. An

application of it is Passive Solar Building in Germany. ODE (Ordinary Differential

Equations) are used for solar cycle rooftop in Germany for maintaining water

temperature in buildings.

The solution involves Conversion of ODEs to NLP (Non - Linear Programming) and

then approximating the corresponding Non Linear Programming to Quadratic

Programming problem using a special method called collocation. After that, the

Quadratic Program formulation is solved using some specialized KKT routines. At

present, MA27 is used as the solver for the respective specific Non Linear

Programming problem.

Through this project, we aim at improvising the runtime of the algorithm by using

Linear algebra techniques and a specialised KKT solver that works with dense

matrices. We considered the significant requirement for ensuring the efficiency of

the implementation as better implementation practices can lead to great time

reductions.

viii .

Contents

Declaration of Authorship i

Certificate iii

Acknowledgements v

Abstract vii

Table of Contents viii

 I Improving the Efficiency of Large Scale Optimal Control

Problems

1

 1 Introduction 1

 1.1 Problem Statement . 1

 1.2 NLP Formulation 3

 1.3 Collocation

3

 2 Solving the NLP 4

 2.1 Solution using MA27 4

 2.2 Why overriding with MSKKT .

2.3 Issues in overriding

2.4 Solution for Overriding

2.5 Achieving the solution

2.6 Results

5

5

6

6

7

 3 Effective Implementation 9

 3.1 Challenges 9

 3.2 Ensuring Implementation Efficiency 9

 4 Equations 10

https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1fob9te
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1fob9te
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.2et92p0
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.3o7alnk
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.ihv636
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.41mghml
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.28h4qwu

ix .

 4.1 Legend . 10

 4.2 Reformulating the Quadratic Program . 11

 4.3 Condensation Phase.

 4.4 Expansion Phase

 4.5 Calculations

 4.6 Analysis

12

14

15

16

55 Human Chatbot Interaction

 5.1 Introduction .

 5.2 Analysis .

 5.3 Part I: Machine Learning.

 5.4 Part II: Platform

 5.5 Results

 17

 17

 19

 20

 29

 31

 II Future Work 32

 III References 33

https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.37m2jsg
https://docs.google.com/document/d/1BaBWQ1Mt1D7q9C0h_lEQM1DxeJYD8GSN4hNVzHoLWtk/edit#heading=h.46r0co2

x .

List of Tables
 2.1 Copy, factorizing, solving and total time 7

 2.2 Time complexity analysis 8

Chapter 1

Introduction
The history of optimal control problems dates back to the end of the seventeenth century, having
its origin in the calculus of variations. For instance, the famous brachistochrone problem which
was proposed by the Swiss mathematician Johann Bernoulli in 1696, maybe formulated as an
optimal control problem. A specific theory of optimal control, however, has only been developed
in the fifties and sixties of this century when real-life problems had to be solved in engineering
and science. These textbooks and other early works study the questions of existence and
uniqueness, controllability and attainability, and apply variational principles to derive necessary
and sufficient optimality conditions for many problem classes. Extremal trajectories of a control
problem are thus characterized as solutions of an associated boundary value problem. Numerical
methods that rely on the solution of such boundary value problems are called indirect methods.

One real-life example of Large-Scale Optimal Control Problems is Passive solar building. Solar
thermal energy is one good option for a sustainable way to provide heating or cooling for
buildings or low-temperature processes.

1.1 Problem Statement

ODE(Ordinary Differential Equations) are used for solar cycle rooftop in Germany for
maintaining water temperature in buildings.

It involves

● Conversion of ODEs to NLP (Non-Linear Programming)
● Approximating NLP to QP using collocation.
● Solving the QP formulation using specialized KKT routines.

1

Passive Solar Building

ImageRef :https://www.german-energy-solutions.de/GES/Redaktion/EN/Images/Articles/solar-h
eating-energy-water-heating.jpg?__blob=normal&v=3&size=834w

2

1.2 NLP Formulation:

The problem statement can be formed in a Non-Linear Programming (NLP) format. There are
solvers available to solve the corresponding NLP in an optimal manner like MA27, which is the
“State of the Art” solver for the specific problem.

1.3 Collocation:

Collocation, the second major BVP approach, differs from multiple shooting by the choice of
local discretization schemes. On each subinterval (j; j+1), a polynomial p j of a certain prescribed
degree ‘l’ is taken as the local representation of the trajectory. This polynomial must satisfy the
differential equation in each node of the local grid, which consists of ‘l’ collocation points.

3

Chapter 2

Solving The NLP

2.1 Solution using MA27

MA27 is the solver for the specific NLP problem in which the expected input is in the triplet form. It is
the state of the art solution for the corresponding problem.
● Compatible with sparse matrices.
● Existing solver for the corresponding NLP.

4

2.2 Why overriding with MSKKT(Multi-stage KKT)?
We are basically developing a model to create a wrapper for the process of overriding the state of the art
MA27 solver with the MSKKT solver. The reasons supporting the corresponding operation are as
follows:
● MSKKT is a fast specialized KKT solver
● Expected to significantly speed up the solving process.

2.3 Issues in overriding
While accomplishing the overriding of MA27 solver with MSKKT, there was a list of issues that were
required to handle, to ensure the optimality of the corresponding operation. The issues are as follows:
● MSKKT works with dense matrices only.
● Due to collocation, matrices involved in NLP are highly sparse.
● We are wasting space as well as computation bypassing this directly over to MSKKT.

○ MSKKT is still only ~2s slower than MA27 even after this handicap.

5

2.4 Solution for Overriding
It was required to solve the underlying issues for ensuring the optimality of the overriding process of
MSKKT. So, the strategies that we followed in order to solve the aforementioned issues are as follows:
● Making sparse matrices dense by eliminating collocation related matrices.
● Applying MSKKT on dense matrices for optimal results.
● Expanding the results by calculating values of collocation variables and corresponding

multipliers

2.5 Achieving the Solution
The steps that we followed to resolve the issues that are encountered during the overriding of the MA27
solver by the MSKKT solver are as follows:
● Condensing of collocation conditions and variables efficiently.
● By developing a model for MSKKT wrapper with MA27 interface.
● Implemented in C.

6

2.6 Results
The results that we got after the overriding of the state of the art MA27 solver by the MSKKT solver in
terms of the factorization time, solving time, copying time and the total time for these operations are
formatted in a tabular form. There was a reduction in the number of variables involved during the solving
of equations drastically.
● The number of total variables reduced from:

○ 1627020 -> 122616
○ Reduced by ~13 times.

● RHS(Right Hand Side) variables reduced from:
○ 35370 -> 9432
○ Reduced by ~4 times.

For an explanation of how the above reduction was achieved, refer Section 4.5

Algorithm Values Time Complexity Explanation

spd_mul sparse matrix dimn: n*m
no of non-zeroes: nz
dense matrix dimn: m*k

O(nz*m + n*k) Sparse matrix * dense matrix

dsp_mul dense matrix dimn: n*m
sparse matrix dimn: m*k
no of non-zeroes: nz

O(nz*m + n*k) Dense matrix * sparse matrix

mat_add Matrix dimension: n*m O(n*m) Add two dense matrices

mat_mul Matrix dimension:n*m, m*k O(n*m*k) Multiply two dense matrices

transpose Matrix dimension: n*m O(n*m) Transpose a dense matrix

densify Matrix dimension: n*m O(n*m) Convert sparse matrix to a
column major dense matrix

setJ Resultant matrix dimension:
nx*(nx+nu)

O(nx*(nx+nu)) set control matrix from
calculated values (for use in
MSKKT)

setH Resultant matrix dimension:
(nx+nu)*(nx+nu)

O((nx+nu)*(nx+nu)) set state matrix from calculated
values (for use in MSKKT)

Table 2.1: Time complexity analysis

7

Solver No of iterations Min. objective
function

Timings (s)

MA27 152 2.91037748446228
74e+05

15.695

MSKKT (without
condensation)

154 2.91037748446227
87e+05

copy 0.86
factorize 13.34
solve 2.95
total 17.15

Per iteration:-
copy 0.006
factorize 0.087
solve 0.019
total 0.111

MSKKT (after
condensation)

4 4.13635391624223
38e+05

copy 1.31
factorize 0.02
solve 0.13
total 1.46

Per iteration:-
copy 0.3275
factorize 0.005
solve 0.0325

Table 2.2: Runtime Performance analysis

Note: Copy time increase because of calculation of the condensed matrix. In the initial phase, all
3 matrices (H, C and G) need to be condensed. However, in the subsequent stages, only the
Hessian matrix requires recondensing. Hence, the overhead of copy would reduce with increase
in the number of iterations.

8

Chapter 3

Effective Implementation
There were a lot of challenges involved during the process of improving the efficiency of Large
Scale Optimal Control Problems. There was a strict requirement of ensuring the implementation
efficiency for optimal results. We need to execute a list of operations on the matrices while
maintaining the sparsity of the matrices involved in the equation. The details of the
corresponding topics is discussed in the following section.

3.1 Challenges:
The hurdles in the process of improving the efficiency of large scale optimal control problems are as
follows:
● Maintaining sparsity of the matrices until the number of zeros was negligible.
● Applying complex operations on sparse matrices while maintaining the existing format:

○ LU factorization
○ Inverse operations

● Implementing routines that efficiently handle operations between sparse and dense
matrices.

● Handling a lot of pointers ensuring there is no memory leak

3.2 Ensuring Implementation efficiency
There was a significant requirement for ensuring the efficiency of the implementation as better
implementation practices can lead to great time reductions. The steps that we followed to ensure the same
is as follows:
● Reducing the number of memory allocation (malloc, calloc) calls as much as possible, by

creating buffers at initialization, and efficiently reusing the space to cut down on
allocation costs and heap fragmentation.

● Maximizing Cache efficiency of the solution, for example by leveraging cache locality in
matrix multiplications by rearranging the order.

● Multipass calculations to evaluate and set values in MSKKT buffer, which avoids the
overhead of going back and forth to set them.

9

Chapter 4

Equations
The reformulation takes part in two phases. First, we condense the matrices and rhs vectors,
eliminating all the terms corresponding to the collocation variables. Then, these matrices and
vectors are sent to be evaluated by MSKKT, which then returns the corresponding values of state
and control variables and multipliers (specifically, x, u and λ). These values are then utilized to
‘expand’ the results by calculating the collocation variables and multipliers (z and μ). The
corresponding formulation to achieve the objective are as follows:-

4.1 Legend

1. x = Initial State Variables
2. u = Control Variables
3. z = Collocation Variables
4. H = Hessian Matrix
5. G = Control Equality Constraints
6. C = Collocation Equality Constraints
7. h = RHS vector of control equality constraints
8. c = RHS vector of collocation equality constraints

10

4.2 Reformulating the Quadratic Program
1.

1.

2.

Formulation reference: www.ifam.uni-hannover.de/fileadmin/IFAM/ordner/steinbach
/publications/dipl_diss /urz.ps

11

http://www.ifam.uni-hannover.de/fileadmin/IFAM/ordner/steinbach/publications/dipl_diss
http://www.ifam.uni-hannover.de/fileadmin/IFAM/ordner/steinbach/publications/dipl_diss

4.3 Condensation Phase

Mathematically it is a projection of several sparse matrices on the null space of another sparse
matrix, where the resulting projected matrices are dense and are to be placed into a special KKT
solver, which is called MSKKT.

Recall that the local discretization scheme in collocation is solved as part of the global NLP, and
hence in each SQP iteration as part of the QP. Compared to multiple shooting on the same global
grid, the QP is, therefore, larger, but it has a more specific structure.

More precisely, the blocks sitting at the corners of derived matrices are also present in multiple
shooting, whereas all the central blocks, being associated with collocation variables and
conditions, belong solely to the local discretization. In the following we will show how
collocation variables and conditions are locally eliminated, leaving a condensed QP which has
exactly the same structure as in multiple shooting.

12

13

4.3 Expansion Phase

2

14

4.4 Calculations
The following equations explains how we arrived at the above formulation:-

Equations :

15

4.5 Analysis

Dimensions for the current problem:-

1. No of stages (m) = 393
2. Dimension of x = 11
3. Dimension of z = 33

Therefore, dimensions and no of entries are:-

Without Expansion With Expansion

H = 46 x 46
G = 11 x 46
C = 33 x 46

x = 11 x 1
z = 33 x 1
u = 2 x 1
μ = 33 x 1
λ = 11 x 1

H̅ = 13 x 13
G̅ = 11 x 13

x = 11 x 1

u = 2 x 1

λ = 11 x 1

Matrices: 1627020
Vectors: 35370

Matrices: 122616
Vectors: 9432

16

Chapter 5

Human Chatbot Interaction

5.1 Introduction

We are trying to analyze how humans converse with other chat-bots, to try and understand how
we differentiate between humans and bots. Understanding this better would result in significantly
enhancing the user experience, by improving response quality to mimic human conversations,
leading to more engaging conversations.

Some examples of how this would benefit certain use-cases would be:

Duolingo: It is a platform that people use to learn the native language. To enhance the learning
speed, conversing with someone well-versed in that language is highly beneficial. However, the
non-native speakers are generally shy, since they are prone to making mistakes in the language
they are learning. To solve this, Duolingo introduced chat-bots, which the users could talk to.
This study could help the developers to make the model behave more like a native speaker,
improving the user experience

Grammarly: Grammarly helps to grammatically correct sentences. The study could help by
possibly improving the tonality of their suggestions.

IITI Website: A chat-bot would greatly enhance a user’s experience of our institute’s website, by
making content more accessible. Having closer to human interaction would be a bonus!

Since we were interested in understanding the limitations better, we tried looking at related
queries on the internet. Though there are certain well-known shortcomings, there has not yet
been a formal study on the topic, which makes our project the first of its kind.

17

18

Why the best dataset for a suitable model?
● Gives great results on a small dataset.
● Dataset gives generic talks
● For the CSE website:

○ The manual dataset will be small
○ We wish to have a generic talk

● Suitable for Human Chatbot Interaction due to Generic Talks.

● Platform UI

5.2 Analysis:
We are developing a chat app to analyze the conversations between humans and the chat-bot. We
first analyze the different categories of chatbots, picking up the most suitable for our use-case.
We then proceed with using a suitable dataset, and applying several NLP pre-processing
techniques. Multiple state-of-the-art Algorithms are then compared with each other, and the one
having the Most Natural response was selected. We then integrate it with the chat app platform
that will allow the chatbot to converse with other humans.

19

5.3 Part I: Machine Learning

Different Types of Chatbots:

Refer to the image below

Image Ref: https://miro.medium.com/max/704/1*r8rR34sfjX4zdM0tXOsvaQ.png
Retrieval-Based models generate responses from a fixed dataset . This prevents it from being a
truly ‘open domain’ solution since we cannot possibly store all the responses. However, it can be
reasonably approximated by storing the majority of common discussions. A reasonable
justification that we could provide is that humans don’t really know a proper response to
everything, hence we do not really expect someone else to be all-knowing either.

Generative models are used to generate responses on the fly . However, they are highly prone to
making grammatical errors. We also do not yet have the necessary compute and machine
learning models to solve the open domain version.

20

https://miro.medium.com/max/704/1*r8rR34sfjX4zdM0tXOsvaQ.png

Image Ref: https://miro.medium.com/max/782/1*4SzjHTccgX85iRrw589Y1g.png

Brief Description of Natural Language Processing:

Natural Language Processing (abbreviated as NLP) is the study of the interaction between
computers and human languages. It is a fusion of Computer Science, AI, and Computational
linguistics. Key uses include:

● Language translation applications such as Google Translate
● Word Processors such as Microsoft Word and Grammarly that employ NLP to check the

grammatical accuracy of texts.
● Interactive Voice Response (IVR) applications used in call centers to respond to certain

users’ requests.
● Personal assistant applications such as Google Assistant, Siri, Cortana, and Alexa.

Preprocessing the Data:

Converting raw data into trainable vectors undergoes the following series of operations

21

https://miro.medium.com/max/782/1*4SzjHTccgX85iRrw589Y1g.png

● Converting the entire text into uppercase or lowercase , so that the algorithm does not
treat the same words in different cases as different

● Tokenization : Converting strings into a list of tokens i.e words
● Removing Noise, i.e everything that isn’t in a standard number or letter.
● Removing Stop words.
● Stemming : Process of reducing inflected (or sometimes derived) words to their stem,

base or root form — generally a written word form.
○ For example, if we were to stem the following words: “Stems”, “Stemming”,

“Stemmed”, and “Stemtization”, the result would be a single word “stem”.
● Lemmatization : A slight variant of stemming. The major difference: Stemming can

often create non-existent words, whereas lemmas are actual words. So, your root stem,

meaning the word you end up with, is not something you can just look up in a dictionary,

but you can look up a lemma. Examples of Lemmatization are that “run” is a base form

for words like “running” or “ran” or that the word “better” and “good” are in the same

lemma so they are considered the same.

● TF-IDF:

○ Problem: Highly frequent words start to dominate in the document (e.g. larger

score), but may not contain as much “informational content”.

○ Give more weight to longer documents than shorter documents.

○ Approach: Rescale the frequency of words by how often they appear in all

documents.

○ So that the scores for frequent words like “the” that are also frequent across all

documents are penalized. This approach to scoring is called Term

Frequency-Inverse Document Frequency, or TF-IDF for short, where:

■ Term Frequency: is a scoring of the frequency of the word in the current

document.

■ TF = (Number of times term t appears in a document)/(Number of terms in

the document)

■ Inverse Document Frequency: is a scoring of how rare the word is across

documents.

■ IDF = 1+log(N/n), where, N is the number of documents and n is the

22

number of documents a term t has appeared.

○ The product TF*IDF is then used to analyze the significance of a word in the

document

● Word2vec is a group of related models that are used to produce word embeddings. These

models are shallow, two-layer neural networks that are trained to reconstruct linguistic

contexts of words. Word2vec takes as its input a large corpus of text and produces a

vector space, typically of several hundred dimensions, with each unique word in the

corpus being assigned a corresponding vector in the space. Word vectors are positioned in

the vector space such that words that share common contexts in the corpus are located

close to one another in the space.

Why do we need them?

Consider the following similar sentences: Have a good day and Have a great day. They hardly

have a different meaning. If we construct an exhaustive vocabulary (let’s call it V), it would have

V = {Have, a, good, great, day}.

Now, let us create an encoded vector for each of these words in V. Length of our encoded vector

would be equal to the size of V (=5). We would have a vector of zeros except for the element at

the index representing the corresponding word in the vocabulary. That particular element would

be one. The encodings below would explain this better.

Have = [1,0,0,0,0]`; a=[0,1,0,0,0]` ; good=[0,0,1,0,0]` ; great=[0,0,0,1,0]` ; day=[0,0,0,0,1]` (`

represents transpose)

If we try to visualize these encodings, we can think of a 5-dimensional space, where each word

occupies one of the dimensions and has nothing to do with the rest (no projection along the other

dimensions). This means ‘good’ and ‘great’ are as different as ‘day’ and ‘have’, which is not

23

true. Our objective is to have words with similar context occupy close spatial positions.

Mathematically, the cosine of the angle between such vectors should be close to 1, i.e. angle

close to 0.

Image Ref: http://i0.wp.com/techinpink.com/wp-content/uploads/2017/07/cosine.png

Here comes the idea of generating distributed representations . Intuitively, we introduce some

dependence of one word on the other words. The words in the context of this word would get a

greater share of this dependence. In encoding representations, all the words are independent of

each other , as mentioned earlier.

Survey of Datasets:

Major Requirement: Since we are aiming for natural human interaction, we require the dataset to
be conversational. This requirement disqualifies some well-known datasets like Twitter
Customer Support, Ubuntu Corpus, Wiki QA Corpus.

Following are some well known conversational datasets:-

● Reddit Dataset:
○ By far the biggest available dataset for language processing. However, training

would take months to provide a reasonable response, and reducing the size of the
dataset would destroy the diversity of responses. This leaves us with

24

http://i0.wp.com/techinpink.com/wp-content/uploads/2017/07/cosine.png

experimenting on some pre-trained models, which led us to realize profanity in
the dataset being a big issue.

● IRC Chat Logs :
○ The audience was mostly of a technical background, which would bias the model

● ConvAI2:
○ Consists of conversations between bots and humans, the model ended up learning

the flaws of the bots involved in the conversation, when used alone.
● Cornell Movie Dialogue Corpus:

○ Consists of discussions between movie characters. The conversation is general but
superficial in nature.

We currently tried using the ConvAI2 dataset, mixed with some external data to reduce the
degree of error, and achieved mostly convincing responses from the model.

25

Survey of Models

ChatterBot

● Most simple model
● Language independent design
● Generate responses based on collections of known conversations
● Selects the closest matching response by searching for the closest matching known

statement that matches the input, it then returns the most likely response to that statement
based on how frequently each response is issued by the people the bot communicates
with.

● Simply uses word2vec
○ For retrieving the most appropriate response
○ Finding the most similar context

ChatBot RNN

● The underlying model is a character-based sequence predictor
● Uses optional beam search
● The highest probability word is selected as the output by the decoder. But this does not

always yield the best results, because of the basic problem of greedy algorithms. Hence
beam search is applied which suggests possible translations at each step. This is done by
making a tree of top k-results.

● Uses relevance masking/MMI(maximum mutual information) to formulate its responses

26

LSTM Dual Encoder

ImageRef: https://github.com/Janinanu/UDC_Chatbot/raw/master/src/Model%20layers.png

● Provided the context and response, the model replies with the probability of the response
being valid for the context

● Runtime is linear in the number of responses
● So, scalability is a big issue.

27

https://github.com/Janinanu/UDC_Chatbot/raw/master/src/Model%20layers.png

Seq2Seq

Image Ref: https://www.guru99.com/images/1/111318_0848_seq2seqSequ4.png
● Uses LSTM
● Encoder: It uses deep neural network layers and converts the input words to

corresponding hidden vectors. Each vector represents the current word and the context of

the word.

● Decoder: It is similar to the encoder. It takes as input the hidden vector generated by

encoder, its own hidden states and current word to produce the next hidden vector and

finally predict the next word.

Which model to choose?

The decision finally boiled down to using Seq2Seq (Generative) v/s Chatterbot (Rule-based),
which we found to be the best of its respective categories. We observed that the Generative
model was throwing grammatical errors and was not able to maintain the context unless it was
trained with large amounts of data. Because of its simple design, Chatterbot performed well on
the medium-sized dataset (ConvAI2), hence it is our current model .

28

https://www.guru99.com/images/1/111318_0848_seq2seqSequ4.png

5.4 Part II: Platform

AIM :

We want to design a chat application that allows user-user and user-bot blind interaction. The app
would require humans to interact with another person/bot, and identify whether there is a bot on
the other end. We will analyze the accuracy of the claim, as well as ask users who identified the
bot correctly about how they managed to identify it.

The Github Repo for our app could be found at https://github.com/Abhinav2812/chat-app

Tech Stack:
❖ Javascript

➢ React & Redux (For the app’s front-end)
➢ Express JS (For the back-end, pairing the user as well as interfacing with the

chatbot AI)
➢ Socket.IO (For instantaneous messaging)

❖ Python
➢ Tensorflow & Keras: For the machine learning models
➢ NLTK: For pre-processing the data
➢ Flask: For hosting the chatbot API

29

Responsive Design:

The app is compatible with devices of different form factors like smartphones, tablets, PCs, etc.

30

5.5 Results:

Responses generated by the model were highly convincing. Some of the responses are as below:-

31

Future work:
● LU factorization routine takes ~90% of the entire condensation/expansion time overhead.

Improving this aspect will lead to further significant speed enhancements.
● Parallelization of the condensation/expansion routines, since the coupling is only between

adjacent stages.
● Human Chatbot Interaction

○ Machine Learning
■ Analyze the conversations
■ We observed that restricting the length of responses improved the

performance of the generative model
■ Hunting for more observations other than:

● Losing context during a long conversation
● Elapsed time for providing responses

○ Platform
■ To support the random assignment of users and bots
■ To make the web-app installable: Would provide a seamless

cross-platform native experience
■ To allow for both one-to-one and group chats

32

References:

1. https://lionbridge.ai/datasets/15-best-chatbot-datasets-for-machine-learning/
2. https://www.reddit.com/r/MachineLearning/comments/5lx7px/p_pretrained_rnn_chatbot/
3. https://github.com/Janinanu/UDC_Chatbot/
4. https://medium.com/analytics-vidhya/building-a-simple-chatbot-in-python-using-nltk-7c

8c8215ac6e
5. https://github.com/gunthercox/ChatterBot
6. https://arxiv.org/abs/1409.3215
7. https://arxiv.org/abs/1301.378 1
8. https://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html
9. https://github.com/ibayer/CSparse

10. https://www.ifam.uni-hannover.de/fileadmin/IFAM/ordner/steinbach/publications/dipl_di
ss/urz.ps

11. https://pdfs.semanticscholar.org/0cd4/c5db09cffa50b20db73f2c6d2485e2bb7d79.pdf

33

https://arxiv.org/abs/1301.3781

