
B.TECH. PROJECT
REPORT

On

Multi-Strategy Differential
Evolution for Multimodal

Optimization Problems
BY

Prathamesh Naik, 160001037
&

Arjun Srivastava, 160001007

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2019

Multi-Strategy Differential Evolution
for Multimodal Optimization Problems

PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Prathamesh Naik, 160001037
&

Arjun Srivastava, 160001007,

Discipline of Computer Science and Engineering,

Indian Institute of Technology, Indore

Guided by:

Dr. Aruna Tiwari,

Associate Professor,

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019

iii

Declaration of Authorship
We hereby declare that the project entitled “Multi-Strategy Differential Evolution for
Multimodal Optimization Problems ” submitted in partial fulfillment for the award of
the degree of Bachelor of Technology in Computer Science and Engineering completed
under the supervision of Dr. Aruna Tiwari, Associate Professor, Computer Science
and Engineering, IIT Indore is an authentic work.
Further, we declare that we have not submitted this work for the award of any other
degree elsewhere.

Signatures (with date):

Prathamesh Naik Arjun Srivastava

v

Certificate
This is to certify that the thesis entitled, “Multi-Strategy Differential Evolution for Mul-
timodal Optimization Problems ” and submitted by Prathamesh Naik (ID No 160001037)
and Arjun Srivastava (ID No 160001007) in partial fulfillment of the requirements of CS
493 B.Tech Project embodies the work done by them under my supervision.

Supervisor

Dr.ARUNA TIWARI

Associate Professor,
Indian Institute of Technology
Indore
Date:

vii

“If I have seen further than others, it is by standing upon the shoulders of giants. ”

Isaac Newton

ix

INDIAN INSTITUTE OF TECHNOLOGY INDORE

Abstract
Department of Computer Science and Engineering

Bachelor of Technology

Multi-Strategy Differential Evolution for Multimodal Optimization Problems

Many real world problems require finding multiple solutions. Multiple optimal solu-
tions help in providing a better understanding of complex systems, as they reveal the
underlying patterns of such systems. They’re useful as candidate solutions to reduce
the search space for solving real life problems, as they allow us to make focused trade
offs within this constrained set, rather than needing to consider the full search space.
They’re necessary when using imperfect simulators, as finding one optimal solution
isn’t enough because it may not be suitable in real life. We need to identify multiple
optimal solutions for decision makers to choose from. But searching for multiple opti-
mal solutions simultaneously is known to be much more challenging than traditional
uni-modal optimization.

We present an exhaustive literature review, surveying the best techniques to solve
the problem of multi-modal optimisation. In particular we study and implement DSDE,
DSDE-C (Dual-Strategy Differential Evolution With Affinity Propagation Clustering) & FBK-
DE (formulation, balance, and keypoint - a Differential Evolution algorithm using Nearest-
Better Clustering). By studying and implementing the state of the art algorithms in this
field, we also replicate their corresponding results.

We go one step further by proposing a novel algorithm which combines currently
known techniques such as archival from DSDE and Nearest Better Clustering with Min-
size from FBK-DE, and adds a Multi Armed Bandit strategy for generating new indi-
viduals along with other novelties such as the use of a softmax temperature strategy in
clustering.

We perform extensive experimention for hyper-parameter optimization as well as
for choosing the best combination of strategies. As part of our work we also create a
framework to parallelize the testing on such a big dataset. It provides a linear speedup
which helped us reduce our testing time by over 30 times.

Based on the experimentation, we present two different versions of our algorithm
which show different characteristics on different kinds of problem types. In particular,
the first version is suitable for low dimensional problems while the latter one is meant
for higher dimensional problems.

We achieve an improved performance on CEC2013 which is the benchmark dataset
of this field. We improve scores by 9% and reduce error rate by 22%.

HTTP://IITI.AC.IN/
http://cse.iiti.ac.in/

xi

Acknowledgements
We would like to thank our B.Tech Project supervisor Dr. Aruna Tiwari for her guid-

ance and constant support in structuring the project and her valuable feedback through-
out the course of this project. Her overseeing the project meant there was a lot that we
learnt while working on it.

We are grateful to Ms. Suchitra Agrawal who provided valuable guidance in shap-
ing the project. We thank her for her time and effort.

Most importantly, we are thankful for each other’s camaraderie, without which writ-
ing the thesis would have taken much longer. Also, we are thankful to our other friends
who were a constant source of both motivation and light hearted humour.

We are really grateful to the Institute for the opportunity to be exposed to systemic
research, especially, Dr. Aruna Tiwari’s lab for providing the necessary hardware utili-
ties to complete the project.

Lastly, we offer our sincere thanks to everyone who helped us to complete this
project, whose name we might have forgotten to mention.

xiii

Contents

Declaration of Authorship iii

Certificate v

Abstract ix

Acknowledgements xi

Table of Contents xi

List of Tables xv

List of Figures xvii

List of Algorithms xix

Abbreviations xxi

1 Introduction 1
1.1 Background . 1
1.2 Why do we need to find multiple optimas? 2
1.3 Objectives . 2
1.4 Organization of this thesis . 3

2 Literature Review 5
2.1 Standard evolutionary approach to solve MMOPs 5

2.1.1 Initialization . 7
2.1.2 Partitioning (niching or clustering) 7

Speciation clustering . 7
Nearest better clustering (NBC) . 8
Nearest better clustering with Minsize 9

2.2 Evolution . 9
2.2.1 Mutation . 9
2.2.2 Crossover . 10
2.2.3 Selection . 10

2.3 Benchmark Functions for CEC’2013 Special Session and Competition on
Niching Methods for Multimodal Function Optimization 10
2.3.1 Plots (from [3]) . 11
2.3.2 Metrics . 12

2.4 Dual-Strategy Differential Evolution With Affinity Propagation Cluster-
ing for Multimodal Optimization Problems 13

xiv

2.4.1 DSDE . 13
2.4.2 DSDE-C (selection strategy) . 13
2.4.3 Adaptive selection . 14

2.5 Differential Evolution for Multimodal Optimization With Species by Nearest-
Better Clustering . 15
2.5.1 Balance . 16
2.5.2 Mutate . 17

2.6 A Niching Memetic Algorithm for Multi-Solution Traveling Salesman
Problem ([6]) . 18

2.7 Comparison between DSDE & FBK-DE . 19

3 Design proposals 21
3.1 Nearest better clustering with temperature: softmax based cutting strategy 21
3.2 Archival . 22
3.3 Selection strategies . 23
3.4 Stable mutation strategy . 23
3.5 Better new individual generation inspired by Multi-armed bandits 23

3.5.1 New Generate Method : NGM . 24
3.5.2 Multi-armed Bandit : M . 25
3.5.3 Multi Armed Bandit Iterative : MI 25
3.5.4 Multi Armed Bandit Repeated : MR 26
3.5.5 Multi Armed Bandit Iterative Repeated : MIR 26

3.6 Final algorithm . 27
3.6.1 Flowchart . 27
3.6.2 Psuedocode . 28
3.6.3 Complexity analysis . 29

4 Implementation details 31

5 Experimentation 33

6 Results 35
6.1 Performance of FBK-DE (replicated) . 35

6.1.1 Peak Ratios at various accuracy levels 35
6.1.2 Success Ratios at various accuracy levels 36

6.2 Performance of Final-1 algo . 37
6.2.1 Peak Ratios at various accuracy levels 37
6.2.2 Success Ratios at various accuracy levels 38
6.2.3 Comparison between Final-1 and FBK-DE 39

6.3 Performance of Final-2 algo . 40
6.3.1 PR at various accuracy levels . 40
6.3.2 SR at various accuracy levels . 41
6.3.3 Comparison between Final-2 and FBK-DE 42

6.4 Complete comparison at accuracy 10−4 . 43
6.4.1 Comparison between Final-1, Final-2 and FBK-DE 44

7 Conclusion 45

xv

A The CEC-2013 benchmark suite 47
A.1 Description . 47
A.2 Examples of functions (from [3]) . 48

Bibliography 51

xvii

List of Tables

2.1 Differences between DSDE and FBK-DE . 19

3.1 Parameters for final-1,final-2 and original 28
3.2 Common parameters . 29

6.1 FBK-DE (replicated): Peak Ratios at various accuracy levels 35
6.2 FBK-DE (replicated): Success Ratios at various accuracy levels 36
6.3 Final-1 algo: Peak Ratios at various accuracy levels 37
6.4 Final-1 algo: Success Ratios at various accuracy levels 38
6.5 Final-2 algo: Peak Ratios at various accuracy levels 40
6.6 Final-2 algo: Success Ratios at various accuracy levels 41
6.7 Comparison between Final-1, FBK-DE and Final-2 43

A.1 Function Characteristics . 47

xix

List of Figures

2.1 Standard evolutionary approach to solve MMOPs 6
2.2 Examples of functions from the benchmark dataset 11

3.1 Softmax with different temperatures (from [7]) 22
3.2 Illustration showing the fault in the original generate method 24
3.3 Flochart for the final algorithm . 27

6.1 Comparison between Final-1 and FBK-DE 39
6.2 Comparison between Final-2 algo and FBK-DE 42
6.3 Comparison between Final-1, FBK-DE and Final-2 44

A.1 F3 : Uneven Decreasing Maxima (1D) . 48
A.2 F5 : Six-Hump Camel Back (2D) . 48
A.3 F6 : Shubert (2D) . 49
A.4 F12 : Composition Function 4 (2D version) 49

xxi

List of Algorithms

1 Speciation clustering (from [1]) . 7
2 Nearest better clustering (from [2]) . 8
3 Nearest better clustering with Minsize (from [2]) 9
4 DSDE (from [1]) . 13
5 DSDE-C selection (from [1]) . 13
6 Adaptive selection mechanism (from [1]) 14
7 FBK-DE (from [2]) . 15
8 Balance (from [2]) . 16
9 Mutate (from [2]) . 17
10 Softmax Algorithm . 21
11 Permute Softmax Algorithm . 22
12 NBC-Minsize-Temperature . 22
13 Stable Mutate algorithm . 23
14 New Generate Algorithm . 24
15 Goodness (UCB) . 25
16 Best Sub-Specie Algorithm . 25
17 Multi Armed Bandit Generate Algorithm 25
18 Multi Armed Bandit Iterative Generate Algorithm 25
19 Multi Armed Bandit Repeated Generate Algorithm 26
20 Multi Armed Bandit Iterative Repeated Generate Algorithm 26
21 Final algorithm . 28

xxiii

List of Abbreviations

BSS Best Sub-Specie Algorithm
CEC Congress On Evolutionary Computation
DSDE Dual Strategy Differential Evolution
FBK-DE Formulation Balance Keypoint Differential Evolution
M Multi Armed Bandit Generate
MAR Minimum Accpeptable Rate
MAS Maximum Acceptable Size
MI Multi Armed Bandit Iterative Generate
MIR Multi Armed Bandit Iterative Repeated Generate
MMOP Multi Modal Optimisation Problem
MR Multi Armed Bandit Repeated Generate
NBC Nearest Better Clustering
PR Peak Ratio
SR Success Ratio

1

Chapter 1

Introduction

1.1 Background

The aim of this project is threefold:

• Studying and implementing the current state of the art evolutionary algorithms for
solving multimodal optimization problems (MMOP: problems having multiple
optimal solutions)

• Designing a novel evolutionary algorithm to solve multimodal optimization prob-
lems

• Testing the new approach on standard benchmark sets and analysing the results

Searching for multiple optimal solutions simultaneously is known to be much more
challenging than traditional unimodal optimization.

• Unimodal optimization

Find anyX0 : f (X0) >= f (x) ∀x ∈ Domain

• Multimodal optimization

Find all X0 : f (X0) >= f (x) ∀x ∈ Domain

Solving MMOPs requires carefully balancing exploration and exploitation. Explo-
ration is required to maintain population diversity so as to locate as many global optima
as possible, while exploitation is needed to increase the accuracy of the solutions found.

In recent years, efforts have been made to extend evolutionary algorithms to MMOPs.
The key idea has been to partition the population and apply evolutionary techniques
within the subpopulations, with the goal that eventually each subpopulation will find
a different optima. In this project, we will analyse and implement certain well known
approaches and design a new algorithm to try to improve the state of the art.

2 Chapter 1. Introduction

1.2 Why do we need to find multiple optimas?

Many real world problems admit multiple optimal solutions. For many such problems,
it is often preferable (or even required) to find multiple optima. Some of the reasons are
noted below.

• Better understanding: For better understanding of complex systems by finding
all possible optimal configurations. Finding one optimal solution for complex sys-
tems is not very enlightening. By finding all possible optimal configurations, we
gain a much better understanding of its underlying principles.

Eg. Pareto optimization in economics
Affordability and taste determine how likely customers are to go to a restaurant.
We can setup the problem formally, find multiple optimal solutions and accurately
determine the tradeoff between affordability and taste.

• Reducing search space: Finding candidate solutions to reduce the search space to
solve real world problems. By having all of the potentially optimal solutions, we
can treat them as candidate solutions and we can make focused trade offs within
this constrained set, rather than needing to consider the full search space.

Eg. Multiple solutions of the travelling salesman problem
A person can choose among various solutions (i.e. paths) based on traffic condi-
tions, weather predictions, transport availability etc.

• Imperfect simulators: Simulators used in fields such as robotics aren’t perfect;
finding one optimal solution isn’t enough as it may not be suitable in real life. We
need to identify multiple optimal solutions for decision makers to choose from.

Eg. Finding good policies using robotic simulators that actually work in the real world.
If we’re trying to find an optimal policy for a robotic hand, it’s very slow and ex-
pensive to test it in the real world. So instead we would use a robotic simulator.
But since the simulators aren’t perfect, the policy we find may not be suitable in
the real world. So we would want to find multiple solutions and then we could
choose from them.

1.3 Objectives

• Studying evolutionary algorithm concepts

We’ll study differential evolution, population initialization, mutation operators,
crossover operators, selection operators as well as niching (or clustering) tech-
niques.

• Studying and implementing the two algorithms for Dual-Strategy Differential Evo-
lution With Affinity Propagation Clustering (DSDE and DSDE-C)[1]

We’ll study & implement these two algorithms as they introduce novel concepts
like dual-strategy evolution & archival.

1.4. Organization of this thesis 3

• Studying and implementing FBK-DE (formulation, balance, and keypoint - a Dif-
ferential Evolution algorithm using Nearest-Better Clustering)[2]

We’ll study & implement this algorithm as it is the current state of the art evo-
lutionary algorithm for multi-modal optimization problems. It also introduces a
new clustering method (Nearest-Better-Minsize clustering).

• Understanding and using the standard CEC’2013 benchmark dataset [3]

We’ll test our approaches using this benchmark suit, as it will aid in comparing
the performance of our new design proposals with each other and with the current
state of the art algorithms.

• Designing and implementing an evolutionary algorithm for solving multi-modal
optimization problems

We’ll combine the concepts learned from the three algorithms that we’ve imple-
mented and propose novel strategies for clustering, generation & archival to create
a new algorithm.

• Experimentation followed by analysis of results

Experimentation will be used for hyper-parameter optimization as well as for
choosing the best strategies.

• Creating accessible resources to explain the new algorithm

1.4 Organization of this thesis

In this chapter, we introduced the problem, explained the motivation behind multi-
modal optimization and specified the objectives of our project. The rest of the report is
organized as follows.
Chapter 2 provides the literature review to bring the reader up to speed to the current
state of art in solving multimodal optimization problems and also helps to provide a
foundation for contrasting our Final algorithm. Chapter 3 describes design proposals
to help improve the state of the art and also the design of our final proposed algorithm.
We provide the high level overview of our algorithm with all necessary details for the
reader’s benefit. Chapter 4 elaborates upon the implementation details in replicating
previous work (DSDE, DSDE-C and FBK-DE) and coding our proposed algorithm along
with the related software engineering considerations. Chapter 5 provides the necessary
details related to evaluating different candidate solutions. In Chapter 6, we present all
relevant data and results and compare the performance of our algorithm relative the the
previous state of the art. Finally we conclude in Chapter 7 providing a summary and
potential future directions of extending our work.

5

Chapter 2

Literature Review

The following chapter discusses literature pertaining to previously known methods of
multi-modal optimization using evolutionary techniques.

2.1 Standard evolutionary approach to solve MMOPs

To start with, we have a fitness function which we want to maximise. We randomly ini-
tialise a population of N individuals (an individual is just a point in function domain)
within the given bounds of the function domain. Then we evaluate the population, i.e.
find the fitness of all the individuals by evaluating the fitness function on all of them.

Using the fitness and spatial information (coordinates corresponding to individuals),
we partition the population using some method such as speciation, crowding, etc. This
process is called clustering. The resulting sub-populations are also referred to as species
or niches.

Next we apply evolutionary techniques (including different kinds of mutation and crossover
operators) inside each of the sub-populations. We evaluate the new generation of indi-
viduals (i.e., calculate their fitness).

Finally we select individuals from the parents as well as children that are good enough
to enter the next generation. These selected individuals form the new population and
the process is repeated until we reach the termination criteria (which is usually the max-
imum number of fitness function evaluations allowed).

The flowchart for the whole procedure is given on the next page.

6 Chapter 2. Literature Review

FIGURE 2.1: Standard evolutionary approach to solve MMOPs

2.1. Standard evolutionary approach to solve MMOPs 7

2.1.1 Initialization

The initial population is randomly initialised as follows.

xj
i(0) = rand(0, 1) ∗ (xj

max − xj
min) + xj

min (2.1)

Here xj
i(g) represents the jth dimension value of the ith individual xi at gth generation.

xmax and xmin are the upper and lower bounds of the jth dimension. i varies from 1 to
NP (the size of the population) and j varies from 1 to D (dimensions of the problem).
rand(0, 1) represents a random value drawn from a uniform distribution from 0 to 1.

2.1.2 Partitioning (niching or clustering)

There are various methods for partitioning that we studied and implemented. They are
described below.

Speciation clustering

Algorithm 1 Speciation clustering (from [1])

In speciation, the population is divided into species (sub-populations). Each sub-population
is formed by a species seed and its (M− 1) neighbors .
The best individual and it’s nearest (M − 1) neighbours form a specie. Now they’re
removed from the population and this process is repeated until all species are formed.

8 Chapter 2. Literature Review

Nearest better clustering (NBC)

Algorithm 2 Nearest better clustering (from [2])

First, the population is sorted by the fitness in descending order. Then,the distance
between each pair of individuals is calculated. Using these distances, each individ-
ual(except for the best one) finds its own nearest-better neighbor and an edge is created
to connect them.
The nearest-better neighbor is called the leader individual for two nodes connected by
an edge, while the individual itself is called the follower individual. After forming
these connections, a spanning tree T is formed. After this process, the mean distance
(i.e., length) µdist is calculated.
Next, all the edges whose distance is greater than φ ∗ µdist are cut off, where φ is called
the scale factor of NBC.
At the end, the spanning tree T is divided into several subtrees. Each of them represents
a species and the root of a subtree is regarded as the seed of the corresponding species.
As comapared to other clustering methods, NBC performs well. NBC also does not re-
quire prior knowledge such as the number of peaks. Further, NBC requires only one
parameter φ to be set.
φ controls the number of species. When it is small,more species are obtained, while
increasing φ results in fewer species. In general, φ is set to 2.0 [4]

2.2. Evolution 9

Nearest better clustering with Minsize

Algorithm 3 Nearest better clustering with Minsize (from [2])

A spanning tree is constructed just like in NBC and the average distance µdist is calcu-
lated.
Next, we calculate the follow vector. The value of follow corresponding to an individual
represents the number of nodes in the subtree rooted at that individual.
To calculate this, each value of follow is initialised to 1. After this, the edges are sorted
in descending order according to the fitness values of the follower individuals. Then
for each edge, the follow value of each follower individual is added to that of the corre-
sponding leader individual.
Next, the edges in are sorted by their length in descending order. Then, edges satisfy-
ing the 2 conditions are cut off. The first is the condition of the standard NBC, that the
distance exceeds the weighted average distance. The second condition is that the sizes
of the two species after the cutoff must both greater than or equal to minsize. Finally, all
species are returned.

2.2 Evolution

2.2.1 Mutation

Mutation operators are used to generate the mutant individuals. For an individual x, a
mutation operator is used to convert it to a corresponding mutant individual v.

10 Chapter 2. Literature Review

Example mutation operators:

• DE/rand/1
vi(g) = xr3(g) + F ∗ (xr1(g)− xr2(g)) (2.2)

• DE/best/1
vi(g) = xbest(g) + F ∗ (xr1(g)− xr2(g)) (2.3)

Here, r1, r2, and r3 are indices of three random individuals from the sub-population.
The parameter F (which is between 0 to 1) controls the effect of difference vectors. xbest
is the individual with the best fitness in the current sub-population.

2.2.2 Crossover

Crossover operation exchanges some components from xi and vi to form a trial vector ui
, with each dimension determined as where jrand is an integer uniformly selected from
1, 2, ..., D to make sure that at least one dimension of ui comes from vi.

ui,j =

{
vi,j, if rand ≤ CR or j = jrand

xi,j, otherwise
(2.4)

The crossover rate CR is another parameter, which decides the proportion of the trial
vector inherited from the mutation vector vi.

2.2.3 Selection

The selection operator is utilized to choose the best individual from ui(g) and xi(g) into
the next generation shown as follows:

xi =

{
ui, if f (ui) ≥ f (xi)

xi, otherwise
(2.5)

2.3 Benchmark Functions for CEC’2013 Special Session and
Competition on Niching Methods for Multimodal Func-
tion Optimization

In this technical report ([3]), the authors introduce a unifying framework for evaluating
niching methods and multimodal optimization algorithms. Their goal was to create a
standardised testing suite so that further advances in the area of multimodal optimiza-
tion can be made with ease.
They have put together 20 benchmark test functions with different characteristics. The
first 10 benchmark functions are simple, well known and widely used functions, largely
based on earlier studies. The remaining benchmark functions are more complex and
follow the paradigm of composition functions.

2.3. Benchmark Functions for CEC’2013 Special Session and Competition on Niching
Methods for Multimodal Function Optimization 11

All the 20 multimodal test functions in the CEC 2013 benchmark set are maximiza-
tion problems and have a given limit of maximum number of function evaluations
(MaxFEs). We decided to choose this standard set of functions for experimentation so
that we can readily compare the performance of various new approaches with existing
algorithms.

The functions vary in complexity, dimensionality (1 to 20) and number of optima (upto
216). We used an implementation of this benchmark suite in Python. The benchmark
includes methods to access the different functions and their properties. The benchmark
also includes a method to check how many optima we found within a given accuracy
level.

We used a Python implementation of the benchmark set (which can found at [5])

2.3.1 Plots (from [3])

FIGURE 2.2: Examples of functions from the benchmark dataset

12 Chapter 2. Literature Review

2.3.2 Metrics

The following two metrics are used to measure performance on any problem from this
benchmark set:

• Peak ratio (PR): The fraction of optimas found for a particular accuracy level (av-
eraged over multiple runs)

PR =
∑NR

run=1 NPFi

NKP ∗ NR
(2.6)

NPFi (number of peaks found) denotes the number of global optima found at the
end of the i-th run, NKP (number of known peaks) the number of known global
optima and NR the number of runs.

• Success ratio (SR): The fraction of times we find all optimas

SR =
NSR
NR

(2.7)

NSR denotes the number of successful runs.

2.4. Dual-Strategy Differential Evolution With Affinity Propagation Clustering for
Multimodal Optimization Problems 13

2.4 Dual-Strategy Differential Evolution With Affinity Prop-
agation Clustering for Multimodal Optimization Prob-
lems

2.4.1 DSDE

Algorithm 4 DSDE (from [1])

2.4.2 DSDE-C (selection strategy)

Algorithm 5 DSDE-C selection (from [1])

This paper introduces 2 algorithms: DSDE & DSDE-C (dual strategy differential evo-
lution) which have certain novel characteristics. They use a dual-strategy mutation
scheme to balance exploration and exploitation in generating offspring. This involves
dividing each subpopulation into superior and inferior parts based on the fitness of

14 Chapter 2. Literature Review

individuals, and then using 2 different mutation strategies according to whether an in-
dividual is superior or inferior.
In the above pseudocode for DSDE, the partitioning algorithm used is speciation clus-
tering (described earlier: Algorithm 1).

2.4.3 Adaptive selection

Algorithm 6 Adaptive selection mechanism (from [1])

The algorithms use an adaptive selection mechanism based on APC (Affinity Propa-
gation Clustering) to choose diverse individuals from different optimal regions for lo-
cating as many peaks as possible. The choosing probability for each subpopulation is
calculated as follows:

Pi =
fi − fmin + φ

fmax − fmin + φ
(2.8)

Here, fi is the fitness of the species seed in the ith subpopulation, fmax and fmin are the
maximum and minimum fitness among all the species seeds. To avoid division by zero,
φ is set as 0.0001.

Lastly, the algorithms include an archival technique to detect and preserve stagnated
and converged individuals. These individuals are stored in the archive to preserve the
found promising solutions and are reinitialized for exploring new areas.

2.5. Differential Evolution for Multimodal Optimization With Species by
Nearest-Better Clustering 15

2.5 Differential Evolution for Multimodal Optimization
With Species by Nearest-Better Clustering

This paper introduces the FBK-DE (formulation, balance, and keypoint - differential
evolution) algorithm, which is the current state of the art in evolutionary multimodal
optimization techniques.

Algorithm 7 FBK-DE (from [2])

First, it uses nearest-better clustering (NBC) with minsize (Algorithm 3 to divide the
population into multiple species with minimum size limitations.

Second, to avoid placing too many individuals into one species, a species balance
strategy (Algorithm 8) is used to adjust the size of each species.

Third, two keypoint-based mutation operators named DE/keypoint/1 and DE/keypoint/2
are proposed to evolve each species together with traditional mutation operators (Algo-
rithm 9). Fourth, new individuals are generated using Equation 3.2.

16 Chapter 2. Literature Review

2.5.1 Balance

Algorithm 8 Balance (from [2])

The balance algorithm first calculates the average size of a specie µavg. It then generates
an upper bound µλ for a specie size by multiplying it with λ. Then it resizes all species
such that no specie is bigger than µλ , by removing individuals from the bigger species
and uniformly adding them to species which were smaller than average (µavg) .

2.5. Differential Evolution for Multimodal Optimization With Species by
Nearest-Better Clustering 17

2.5.2 Mutate

Algorithm 9 Mutate (from [2])

Here, per is set as follows:

per = 1− (evals/MaxFEs)α (2.9)

where evals is the current number of evaluations consumed and MaxFEs is the maxi-
mum number of function evaluations allowed. α is a parameter that balances the ability
of exploration and exploitation.

• DE/rand/1
vi(g) = xr3(g) + F ∗ (xr1(g)− xr2(g)) (2.10)

• DE/rand/2

vi(g) = xr1(g) + F ∗ (xr2(g)− xr3(g)) + F ∗ (xr4(g)− xr5(g)) (2.11)

• DE/keypoint/1
vi(g) = xr3(g) + F ∗ (xr1(g)− xr2(g)) (2.12)

• DE/keypoint/2

vi(g) = xr1(g) + F ∗ (xr2(g)− xr3(g)) + F ∗ (xr4(g)− xr5(g)) (2.13)

Here, r1, r2, r3, r4, r5 are indices random individuals from the sub-population. The pa-
rameter F (which is between 0 to 1) controls the effect of difference vectors. xkp is an
individual randomly selected from the key-points in the species.
To calculate key-points of a species, the NBC (Algorithm 2) is applied on that species.

18 Chapter 2. Literature Review

Then the key-points are the resultant seeds, i.e. roots of the resultant subtrees.
When we execute NBC over a species, the parameter φ is denoted as φkp

2.6 A Niching Memetic Algorithm for Multi-Solution Trav-
eling Salesman Problem ([6])

The multi-solution travelling salesman problem is based on permutations rather than
continuous variables. We studied this paper to understand the formulation of this par-
ticular problem as well as to learn techniques that can be used to transform a continuous
optimization algorithm to solve discrete permutation based problems. Techniques in-
clude a discretization based method and a random key based method.

2.7. Comparison between DSDE & FBK-DE 19

2.7 Comparison between DSDE & FBK-DE

DSDE FBK-DE
Population

size 80 to 300 250 to 1334

Clustering Speciation clustering NBC-Minsize

Cluster
size M = rand(4,20)

Decided by species balance
strategy. Excess individuals are
deleted. Additional individuals

are generated.

Mutation
strategy

DE/current-to-rand/1,
DE/best/1

DE/rand/1, DE/rand/2,
DE/keypoint/1,
DE/keypoint/2

Mutation
strategy
selection

Based on inferior and superior
division according to fitness Random

Crossover
None in case of inferior

Recombination in case of
superior

Recombination

Selection
strategy

Affinity Propagation Clustering
followed by Adaptive Selection.

OR
Comparison with nearest

parental individual

Better among child and parent

Archival
strategy

Archive and reinitialise
stagnated individuals No archival

TABLE 2.1: Differences between DSDE and FBK-DE

21

Chapter 3

Design proposals

We’ll be using FBK-DE as a base for our algorithm.

3.1 Nearest better clustering with temperature: softmax
based cutting strategy

Assign a cutting probability to each edge which satisfies the cutting criteria (i.e. greater
than µ∗ average length of all edges) using a softmax function with a certain temperature.

p(i) =
e

f (i)
T

∑j e
f (j)
T

(3.1)

(Here T is the temperature and f (i) is the length of the i-th edge)

Algorithm 10 Softmax Algorithm

1: N is the number of Edges
2: S = 0
3: P = empty array of size N
4: for i in 1..N do
5: t = e length(Ei)

T
6: P[i] = t
7: S += t
8: for i in 1..N do
9: P[i] = P[i]/S

10: return P

22 Chapter 3. Design proposals

Algorithm 11 Permute Softmax Algorithm

1: N is the number of Edges
2: P = Softmax(E) (Algorithm 10)
3: L = Generate indices without replacement using P as the array of sampling proba-

bilities
4: ans = empty list
5: for i in 1..N do
6: c = Edges[Li]
7: add c to ans
8: return ans

Now instead of sorting the edges in descending order of length (as in NBC-minsize:
Algorithm 3), we sample from the edges (without replacement) using these probabili-
ties.

Algorithm 12 NBC-Minsize-Temperature

1: Apply NBC-minsize (Algorithm 3) but instead of sorting on the 5th step, permute
the edges using PermuteSoftmax (Algorithm 11)

FIGURE 3.1: Softmax with different temperatures (from [7])

As T → ∞, we get a "random" strategy as all edges have equal probability to be cut.
As T → 0, we recover the original strategy of cutting the longest edge.
T can be dynamic as well (i.e. it can vary throughout the course of the algorithm)

3.2 Archival

We can use an archival strategy (inspired by DSDE) to detect and preserve stagnated/converged
individuals in the archive. This saves additional function evaluations wasted in trying

3.3. Selection strategies 23

to mutate these individuals. The space freed by the archival of stagnated individuals
can be filled with randomly initialised individuals, thereby increasing exploration.

3.3 Selection strategies

FBK-DE has a simple selection strategy that chooses one individual between the parent
and the child. We can instead try to use selection strategies that work over the entire
population at once by taking 2 ∗ N individuals (old + new generation) as an input and
selecting N individuals out of them.
Example of such selection strategies include adaptive selector and parent-child selector
from the DSDE algorithm.

3.4 Stable mutation strategy

Algorithm 13 Stable Mutate algorithm

1: T = mutate(X) (Algorithm 9)
2: while T is not inside function domain do
3: T = mutate(X) (Algorithm 9)

The mutated individual can sometimes go outside the function domain. We can reini-
tialise such individuals using our generation strategy or repeat the mutation process
again until we get a suitable offspring.

3.5 Better new individual generation inspired by Multi-
armed bandits

xrest = sseed + N(0, 0.1)
xj

rest = max(xj
rest, sj

lb)

xj
rest = min(xj

rest, sj
ub)

(3.2)

The generation strategy (which is used to generate new individuals in a single species
when the size of the species is to be increased because of the balance strategy) used in
FBK-DE is naive as it simply takes the best individual in a species (the ‘seed’) and adds
some random noise to it. If the resulting individuals goes out of the species bounds, it is
simply brought in by projecting it to the boundary surface. The points which are fixed
in this way lie on the boundary, which adds a bias to the generation strategy.

24 Chapter 3. Design proposals

FIGURE 3.2: Illustration showing the fault in the original generate method

3.5.1 New Generate Method : NGM
xrest = sseed + N(0, 0.1)
xj

rest = max(xj
rest, Domainj

lb)

xj
rest = min(xj

rest, Domainj
ub)

(3.3)

Instead of bringing in the points based on the boundaries of the species, we can bring
the point in based on the domain of the function.

Algorithm 14 New Generate Algorithm

1: N = Number of individuals to be generated
2: sseed = Best individual in the specie
3: gen = []
4: for i in 1..N do
5: xrest = sseed + N(0, 0.1)
6: for j in 1 to dimensions do
7: xj

rest = max(xj
rest, Domainj

LowerBound)

8: xj
rest = min(xj

rest, Domainj
UpperBound)

9: append xrest to gen
10: return gen

3.5. Better new individual generation inspired by Multi-armed bandits 25

3.5.2 Multi-armed Bandit : M

Algorithm 15 Goodness (UCB)

1: V = average fitness of all individuals in this sub-specie.
2: Ni = number of individuals in this sub-specie
3: N = number of Individuals in total
4: return V +

√
2 log N/Ni

Algorithm 16 Best Sub-Specie Algorithm

1: Partition species using NBC (Algorithm 2)
2: Calculate goodness of each Sub-Specie (Algorithm 15)
3: return Best Sub-Specie

Algorithm 17 Multi Armed Bandit Generate Algorithm

1: N = Number of individuals to be generated
2: P = Select Best Sub-Specie using BSS (Algorithm 16)
3: gen = Generate new individuals using NGM(P, N) (Algorithm 14)
4: return gen

Instead of using a strategy that only uses the best individual, we can use a strategy that
takes into account all individuals.
Multi-armed bandit problem are about allocating a fixed set of resources between alter-
native choices in a way that maximizes the expected reward. Each choice’s properties
are only partially known at the time of allocation, and become better understood by allo-
cating resources to the choice [8][9]. This involves an exploration-exploitation trade-off
dilemma.
We can use the best known strategies for solving multi-armed bandit problem for gen-
erating new individuals in a species by partitioning a species spatially using NBC and
treating each partition as a different choice with different expected reward according
to the fitness of the individuals present in that partition. We can then generate a new
individual by sampling the partition chosen by a multi-armed bandit strategy, using
NGM.

3.5.3 Multi Armed Bandit Iterative : MI

Algorithm 18 Multi Armed Bandit Iterative Generate Algorithm

1: N is the number of individuals to be generated
2: S is the Specie
3: for i in 1..N do
4: gen = M(S,1) (Algorithm 17)
5: Add gen to S

26 Chapter 3. Design proposals

Instead of partitioning just once we can partition every time we generate a new individ-
ual, thus ensuring we are using the best estimates we have for all the clusters.
We can repeat this strategy the necessary number of times to add new individuals, this
strategy is called MI (Multiarmed bandit Iterative) from here.

3.5.4 Multi Armed Bandit Repeated : MR

Algorithm 19 Multi Armed Bandit Repeated Generate Algorithm

1: N is the number of individuals to be generated
2: S is the Specie
3: while Ssize > Maximum Acceptable Size do
4: T = BSS(S)
5: if Ssize − Tsize < Minimum Acceptable Rate then
6: break
7: S = T
8: gen = M(S,N) (Algorithm 17)
9: return gen

Instead of applying BSS just once we can repeatedly apply BSS to narrow down the
individuals we should select in our final cluster, stopping when number of selected in-
dividuals fall below maximum acceptable size, or when the rate of decrease falls below
a threshold minimum rate.

3.5.5 Multi Armed Bandit Iterative Repeated : MIR

Algorithm 20 Multi Armed Bandit Iterative Repeated Generate Algorithm

1: N is the number of individuals to be generated
2: S is the Specie
3: for i in 1..N do
4: gen = MR(S,1) (Algorithm 19)
5: Add gen to S

Combining both MR and MI, we can ensure we get the best clusters and we incorporate
all the data we have while making decisions about where to generate new individuals

3.6. Final algorithm 27

3.6 Final algorithm

After extensive experimentation (as described in Chapter 5), we determined the best
parameter combinations for low-dim problems (1-15) and for high-dim problems (16-
20). This is similar to how DSDE has 2 versions.

The two chosen versions (Final-1 and Final-2 respectively) are described below.

3.6.1 Flowchart

FIGURE 3.3: Flochart for the final algorithm

28 Chapter 3. Design proposals

3.6.2 Psuedocode

The entire algorithm can be summarized as follows :

Algorithm 21 Final algorithm

1: Set MaxGens to 200 if dim is less than 5 else 300
2: Set the population size NP to MaxFes/MaxGens
3: Randomly generate the initial population P
4: g = 0
5: while termination condition is not satisfied do
6: minsize = min(5 + f loor(g

2), max(10, 3 ∗ dim))
7: Obtain the species by clustering using NBC Minsize Temp (Algorithm 12)
8: Obtain the size of the species in array nums[] using balance(Algorithm 8)
9: for each species si do

10: for i=1 to min(len(s), nums(i)) do
11: Generate vi(g) using stable mutate(Algorithm 13)
12: Generate ui(g) using crossover equation(Algorithm 2.4)
13: Put the better into P(g + 1) using selection equation(Equation 2.5)
14: if nums(i) > len(s) then
15: Generate remaining individuals by using Generation Strategy(MI or

MIR)(Algorithms 18 and 20) depending on the no. of dimension
16: Insert the new individuals into P(g + 1)
17: for each individual x do
18: if x.StagnationCount >= T then
19: Move x and those among its minsize closest neighbors whose fitness val-

ues are worse than x to the archive
20: Reinitialize archived individuals
21: g = g + 1
22: end

φ (NBC in
generate)

Generation
strategy

Temperature
(NBC in

partitioning)
T (Archival)

Original - old ∞ ∞
Final-1

(dim<5 :
problems

1-15)

1 MI 0.5 30

Final-2
(dim>=5 :
problems

16-20)

2 MIR 0.5 60

TABLE 3.1: Parameters for final-1,final-2 and original

3.6. Final algorithm 29

Parameters Value

λ 2

φkp 2

α 0.5

CR 0.9

F 0.2 0.8 (one differential vector) 0.5 (two differential vectors)

Max Acceptable Size 5

Min Acceptable Rate 5

TABLE 3.2: Common parameters

3.6.3 Complexity analysis

Our proposed algorithm contains four significant mechanisms: NBC-minsize-temp, species
balance strategy, keypoint-based mutation operators used in stable mutate algorithm
and the multi armed bandits inspired generate strategy. Here, we analyze the time
complexity of each mechanism.

In NBC-minsize-temp (Algorithm 12), there are three time-consuming operations.
First is to construct a spanning tree which involves calculating the distance between
each pair of points. The time complexity of this operation is O(n2). The second is
to check whether an edge should be cut off according to minsize criteria. The time
complexity of this operation is O(n). The third is to calculate softmax (Algorithm 11)
over the array of edges. The number of edges in the spanning tree is n− 1, so calculating
softmax over the array takes O(n) time and then sampling according to the probabilities
(without replacement) takes O(n2) time. Thus, the complexity of NBC-minsize-temp is
O(n2).

From Algorithm 8, we can see that the time complexity of the species balance strat-
egy is O(n), as the number of species is certainly less than n.

In the keypoint-based mutation operators (Algorithm 9 as referenced in algorithm
13), we need execute the original NBC (Algorithm 2) to identify the keypoints. How-
ever, there is no need to calculate the distances again, as we already have the pairwise
distances obtained in NBC-minsize-temp. Because of this, the time complexity of find-
ing the keypoints is O(n), and DE operators over each species requires at most O(n).

Now consider the generation strategy. To generate m individuals, the new generate
method (NGM : Algorithm 14) takes O(m) time.

In what follows, note that s is the original species size and m is the number of new
individuals to be generated.

The Multi Armed Bandit Generate Algorithm (17) uses the original NBC over a
species of size s which takes time O(s) as the distances are already known. Further,
the average fitness of all sub-species is calculated which also takes time O(s) as the sum
of sizes of all subspecies is s. Finally, to generate m individuals, NGM is called which
takes time O(m). Thus the total time is O(m + s).

Now for the Multi Armed Bandit Iterative Generate Algorithm (18), the Algorithm
17 is called m times to generate 1 individual each time. This requires extra distance

30 Chapter 3. Design proposals

computations of order O(s + (s + 1) + ..(s + m)) which is O(m ∗ s + m2). In total, the
complexity is (O(1 + s) + ... + O(1 + (m + s))) + O(m ∗ s + m2) or equivalently O(m ∗
s + m2).

In the Multi Armed Bandit Repeated Generate Algorithm (19), the distances are al-
ready known and NBC is repeatedly applied giving time complexity O(s+(s−MAR)+
(s− 2 ∗MAR) + ...+ (MAS)) which is less than O(s2/MAR) (with MAR > 1). Finally,
to generate m individuals, NGM is called which takes time O(m). Thus the total time is
O(m + s2).

For the Multi Armed Bandit Iterative Repeated Algorithm (20), the Algorithm 19 is
called m times to generate 1 individual each time. This requires extra distance computa-
tions of order O(s + (s + 1) + ..(s + m)) which is O(m ∗ s + m2). In total, the complexity
is (O(1 + (s)2) + ... +O(1 + (m + s)2)) +O(m ∗ s + m2) or equivalently O(m3 + m ∗ s2).

In our proposed algorithm for low dimensional problems (Final1), we use Multi
Armed Bandit Iterative Generate Algorithm (18). The complexity of this was shown
to be O(m ∗ s + m2). For the worst case, m and s can be both of O(n), giving a worst case
complexity of O(n2). (Note however that this is the worst case, on average we expect
m << n and s to be O(n), giving an average case complexity closer to O(n).)

In our proposed algorithm for high dimensional problems (Final2), we use Multi
Armed Bandit Iterative Repeated Generate Algorithm (20). The complexity of this was
shown to be O(m3 + m ∗ s2). For the worst case, m and s can be both of O(n), giving a
worst case complexity of O(n3). (Note however that this is the worst case, on average
we expect m << n and s to be O(n), giving an average case complexity closer to O(n2).
)

Therefore, the worst case time complexity of Final1 is O(MaxGen ∗ n2) and that of
Final2 is O(MaxGen ∗ n3), where MaxGen is the maximum evolutionary generations
allowed and n is the population size.

31

Chapter 4

Implementation details

We implemented all the algorithms in Python 3. This includes the 3 current state of
the art algorithms: DSDE (Algorithm 4), DSDE-C (Algorithm 5), FBK-DE (Algorithm 7)
and our own proposed algorithm (Algorithm 21). We also used scientific computation
libraries such as numpy, scipy and scikit-learn.

Some parts were common in all three algorithms, so we separated them into a separate
module to facilitate reuse and reduce duplication of code. The common parts include:

1. Agent class to represent an individual

2. Uniform random initialization within the given bounds

3. Code used to interface with the CEC-2013 benchmarking suite

4. Crossover operator with a parameter

5. Termination condition exception

6. Code to save and load populations

7. Code for judging the final population.

We added auto-evaluation to the Agent class so that each individual’s fitness is cal-
culated as soon as it is initialized. We made individuals immutable and added a stag-
nation count property to the Agent class to keep track of the number of generations that
the individual has survived (this is used in archiving).

We parallelized the code using numpy matrices and arrays whenever possible. Data
structures like min-heaps were used to make the algorithms efficient. Scipy (a scientific
computation library) was used for fast calculation of softmax over arrays (used for de-
ciding the order in which to cut edges in NBC with temperature: Algorithm 12).

We implemented a tester function to test the algorithms on multiple functions, with dif-
ferent parameters. The tester function writes peak ratio and success ratio scores for all
accuracy levels on the specified problems to a file. A rolling average is used so that the
testing can be done for any number of runs.

33

Chapter 5

Experimentation

We performed extensive testing to determine the best combination of strategies and
parameters for our algorithm.

As part of our work we also created a framework to parallelize the testing on such a
big dataset. Testing was parallelized using python’s multiprocessing module. A 32
core server was used to run 32 instances of the algorithm at once. This provides a linear
speedup which helped us reduce our testing time by over 32 times. We added command
line arguments to our algorithm to test various parameter combinations and facilitate
parallel testing.

During initial experimentation, each combination of parameters was run 5 times and
the result was recorded in a separate file (whose name is simply the concatenation of all
parameter values).

The following details were recorded for each parameter combination: (These metrics
were described in Chapter 2, section 2.3.2)

1. Average peak ratios (see Equation 2.6) and associated variance for five different
accuracy levels

2. Average success ratios (see Equation 2.7) and associated variance for five different
accuracy levels

The following parameters were tested:

1. φgen (NBC in generate)

2. Generation strategy (old,new,m,mi,mir)

3. T (Archival)

4. Temperature (for softmax, used in NBC-minsize-temp)

5. α

6. Generation multiplier

7. M f actor (Archival): Decides the number of neighbours to consider when archiving
a stagnated individual. M = (1-M f actor) * minsize + M f actor* average size of species.

8. Maximum acceptable size (used in MIR generation strategy)

9. Minimum acceptable rate (used in MIR generation strategy)

34 Chapter 5. Experimentation

The results were analysed using various criteria:

1. Average PR: The average peak ratio obtained by a parameter combination across
all problems

2. Average relative PR (=actual-PR/fbk-de-PR): The average relative peak ratio (=actual-
PR/fbk-de-PR) obtained by a parameter combination across all problems. This
criteria considers relative improvement rather than absolute improvement.

3. Average rank: The average of all ranks obtained by a parameter combination on
all problems. The lesser the better. For example, if a parameter combination ranks
first on half the problems (i.e. it’s the best performing combination for those prob-
lems) and ranks second on the remaining half of the problems, then the average
rank for that parameter combination would be 1.5

4. Points (=number of problems where PR was better than that of fbk-de): This cri-
teria simply counts the number of times a particular parameter combination per-
formed better than normal FBK-DE.

Analysis was done by writing Python scripts. After this process, the best parameter
combinations were identified for low-dim problems (dim<5 : problems 1-15) and for
high-dim problems (dim>=5 : problems 16-20). This is similar to how DSDE has 2
versions.

The two chosen versions (Final-1 and Final-2 respectively) plus the replicated version of
FBK-DE were run over 30 times and the average peak ratios & associated variance for
five different accuracy levels and also the average success ratios & associated variance
for five different accuracy levels were recorded.

35

Chapter 6

Results

6.1 Performance of FBK-DE (replicated)

Here we present the results of our replication of the previous state of the art FBK-DE,
the values shown below are the averages after running each combination 30 times, to
reduce variance caused by randomness

6.1.1 Peak Ratios at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.907 0.904 0.898 0.896 0.896

F7 0.753 0.744 0.744 0.744 0.744

F8 0.590 0.581 0.573 0.569 0.563

F9 0.373 0.365 0.363 0.361 0.359

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.883 0.883 0.883 0.883 0.883

F13 1.000 1.000 1.000 1.000 1.000

F14 0.856 0.850 0.850 0.850 0.850

F15 0.658 0.654 0.654 0.650 0.650

F16 0.667 0.667 0.667 0.667 0.667

F17 0.569 0.569 0.569 0.569 0.569

F18 0.667 0.667 0.667 0.667 0.667

F19 0.500 0.472 0.472 0.472 0.472

F20 0.417 0.417 0.417 0.417 0.403

TABLE 6.1: FBK-DE (replicated): Peak Ratios at various accuracy levels

36 Chapter 6. Results

6.1.2 Success Ratios at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.100 0.100 0.067 0.067 0.067

F7 0.000 0.000 0.000 0.000 0.000

F8 0.000 0.000 0.000 0.000 0.000

F9 0.000 0.000 0.000 0.000 0.000

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.167 0.167 0.167 0.167 0.167

F13 1.000 1.000 1.000 1.000 1.000

F14 0.167 0.133 0.133 0.133 0.133

F15 0.000 0.000 0.000 0.000 0.000

F16 0.000 0.000 0.000 0.000 0.000

F17 0.000 0.000 0.000 0.000 0.000

F18 0.000 0.000 0.000 0.000 0.000

F19 0.000 0.000 0.000 0.000 0.000

F20 0.000 0.000 0.000 0.000 0.000

TABLE 6.2: FBK-DE (replicated): Success Ratios at various accuracy levels

6.2. Performance of Final-1 algo 37

6.2 Performance of Final-1 algo

Here, we present the results of Final-1 on the benchmark dataset, This algorithm per-
forms better than the previous state of the on low dimensional problems (dim<5 : prob-
lems 1-15). The values shown below are the averages after running each combination
30 times, to reduce variance caused by randomness.

6.2.1 Peak Ratios at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.998 0.998 0.998 0.996 0.989

F7 0.998 0.838 0.830 0.826 0.822

F8 0.712 0.707 0.703 0.699 0.697

F9 0.856 0.434 0.420 0.406 0.400

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.929 0.929 0.925 0.925 0.925

F13 1.000 1.000 1.000 1.000 1.000

F14 0.894 0.861 0.861 0.861 0.861

F15 0.829 0.717 0.717 0.717 0.717

F16 0.889 0.667 0.667 0.667 0.667

F17 0.625 0.625 0.625 0.625 0.625

F18 0.889 0.667 0.611 0.5 0.5

F19 0.583 0.417 0.417 0.417 0.417

F20 0.542 0.5 0.417 0.417 0.375

TABLE 6.3: Final-1 algo: Peak Ratios at various accuracy levels

38 Chapter 6. Results

6.2.2 Success Ratios at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.967 0.967 0.967 0.933 0.800

F7 0.967 0.000 0.000 0.000 0.000

F8 0.000 0.000 0.000 0.000 0.000

F9 0.067 0.000 0.000 0.000 0.000

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.433 0.433 0.400 0.400 0.400

F13 1.000 1.000 1.000 1.000 1.000

F14 0.367 0.167 0.167 0.167 0.167

F15 0.367 0.000 0.000 0.000 0.000

F16 0.000 0.000 0.000 0.000 0.000

F17 0.000 0.000 0.000 0.000 0.000

F18 0.000 0.000 0.000 0.000 0.000

F19 0.000 0.000 0.000 0.000 0.000

F20 0.000 0.000 0.000 0.000 0.000

TABLE 6.4: Final-1 algo: Success Ratios at various accuracy levels

6.2. Performance of Final-1 algo 39

6.2.3 Comparison between Final-1 and FBK-DE

FIGURE 6.1: Comparison between Final-1 and FBK-DE

From the comparison above we can see that Final-1 improves upon FBK-DE on the
first 16 problems, whenever FBK-DE didn’t already perfectly solve the problem.

40 Chapter 6. Results

6.3 Performance of Final-2 algo

Here we present the results of Final-2 on the benchmark dataset. This algorithm per-
forms better than the previous state of the art on high dimensional problems (dim>=5 :
problems 16-20). the values shown below are the averages after running each combina-
tion 30 times, to reduce variance caused by randomness.

6.3.1 PR at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.977 0.977 0.958 0.954 0.944

F7 0.833 0.833 0.833 0.833 0.833

F8 0.691 0.684 0.682 0.677 0.672

F9 0.494 0.443 0.414 0.390 0.379

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.906 0.906 0.906 0.906 0.906

F13 1.000 1.000 1.000 1.000 1.000

F14 0.931 0.903 0.903 0.903 0.903

F15 0.823 0.677 0.677 0.677 0.677

F16 0.907 0.685 0.685 0.685 0.685

F17 0.708 0.653 0.653 0.653 0.653

F18 0.796 0.667 0.667 0.667 0.667

F19 0.653 0.514 0.514 0.514 0.514

F20 0.458 0.444 0.444 0.444 0.444

TABLE 6.5: Final-2 algo: Peak Ratios at various accuracy levels

6.3. Performance of Final-2 algo 41

6.3.2 SR at various accuracy levels

1e−1 1e−2 1e−3 1e−4 1e−5

F1 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000

F6 0.750 0.750 0.417 0.333 0.250

F7 0.000 0.000 0.000 0.000 0.000

F8 0.000 0.000 0.000 0.000 0.000

F9 0.000 0.000 0.000 0.000 0.000

F10 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000

F12 0.250 0.250 0.250 0.250 0.250

F13 1.000 1.000 1.000 1.000 1.000

F14 0.667 0.500 0.500 0.500 0.500

F15 0.417 0.000 0.000 0.000 0.000

F16 0.667 0.000 0.000 0.000 0.000

F17 0.111 0.000 0.000 0.000 0.000

F18 0.222 0.000 0.000 0.000 0.000

F19 0.111 0.000 0.000 0.000 0.000

F20 0.000 0.000 0.000 0.000 0.000

TABLE 6.6: Final-2 algo: Success Ratios at various accuracy levels

42 Chapter 6. Results

6.3.3 Comparison between Final-2 and FBK-DE

FIGURE 6.2: Comparison between Final-2 algo and FBK-DE

From the comparison above we can see that Final-2 improves upon FBK-DE on high
dimensional problems.

6.4. Complete comparison at accuracy 10−4 43

6.4 Complete comparison at accuracy 10−4

Below we present the side by side comparison of Final-1 , Final-2 and FBK-DE (Orig-
inal), at the accuracy level of 10−4. As we can see, Final-1 performs the best on low
dim problems (dim<5 : problems 1-15) while Final-2 performs the best on high dim
problems (dim>=5 : problems 16-20) .

Final-1 Original Final-2

PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000

F2 1.000 1.000 1.000 1.000 1.000 1.000

F3 1.000 1.000 1.000 1.000 1.000 1.000

F4 1.000 1.000 1.000 1.000 1.000 1.000

F5 1.000 1.000 1.000 1.000 1.000 1.000

F6 0.996 0.933 0.896 0.067 0.954 0.333

F7 0.826 0.000 0.744 0.000 0.833 0.000

F8 0.699 0.000 0.569 0.000 0.677 0.000

F9 0.406 0.000 0.361 0.000 0.390 0.000

F10 1.000 1.000 1.000 1.000 1.000 1.000

F11 1.000 1.000 1.000 1.000 1.000 1.000

F12 0.925 0.400 0.883 0.167 0.906 0.250

F13 1.000 1.000 1.000 1.000 1.000 1.000

F14 0.861 0.167 0.850 0.133 0.903 0.500

F15 0.717 0.000 0.650 0.000 0.677 0.000

F16 0.667 0.000 0.667 0.000 0.685 0.000

F17 0.625 0.000 0.569 0.000 0.653 0.000

F18 0.500 0.000 0.667 0.000 0.667 0.000

F19 0.417 0.000 0.472 0.000 0.514 0.000

F20 0.417 0.000 0.417 0.000 0.444 0.000

TABLE 6.7: Comparison between Final-1, FBK-DE and Final-2

44 Chapter 6. Results

6.4.1 Comparison between Final-1, Final-2 and FBK-DE

FIGURE 6.3: Comparison between Final-1, FBK-DE and Final-2

Excluding the problems where FBK-DE performed perfectly, we obtain a 22% reduc-
tion in error on average and 9% improvement in Peak Ratio on average.

45

Chapter 7

Conclusion

We’ve studied evolutionary algorithm concepts. We’ve studied and implemented 3 al-
gorithms: DSDE, DSDE-C (Dual-Strategy Differential Evolution With Affinity Propagation
Clustering) & FBK-DE (formulation, balance, and keypoint - a Differential Evolution algorithm
using Nearest-Better Clustering).

We combined the concepts learned from the three algorithms that we’ve implemented
and propose novel strategies for clustering, generation & archival to create a new algo-
rithm.

Exhaustive testing was done for hyper-parameter optimization as well as for choosing
the best strategies.

We present a multi armed bandit inspired algorithm which furthers the state of the art
in solving multi-modal optimisation problems. We are releasing the source code of our
algorithm and also our reproduction of the previous state of the art.

We present two different versions of our algorithm which show different characteristics
on different kinds of problem types. In particular, the first version is suitable for low
dimensional problems while the latter one is meant for higher dimensional problems.

We are able to improve upon the replicated FBK-DE results. Excluding the problems
where FBK-DE performed perfectly (in which our algorithm also performs perfectly),
we obtain a 22% reduction in error on average and 9% improvement in Peak Ratio on
average.

We are also releasing accessible resources (this thesis as well as a presentation explain-
ing our project) that would help future researchers to learn about the problem and help
contribute to the field. Also, a research paper explaining our proposed algorithm is cur-
rently being worked on.

The current formulation of the algorithm requires careful hyperparameter tuning, find-
ing formulations that are hyperparameter insensitive is the future direction of research.
Another way to extend our work would be to try other kinds of multi armed bandit
strategies to further improve the performance.

47

Appendix A

The CEC-2013 benchmark suite

A.1 Description

In this section, we briefly describe the dataset used to test multimodal optimization
algorithms. We’ve used the CEC-2013 benchmark suite [3] for testing our algorithm as
it is the standard benchmark used in the field of evolutionary multimodal optimization.
It consists of 20 multimodal functions of different dimensions. Certain characteristics of
functions available in dataset are described in Table A.1.

The first 10 benchmark functions are simple, well known and widely used functions,
largely based on earlier studies. The remaining benchmark functions are more complex
and follow the paradigm of composition functions. All of them are maximization prob-
lems and have a given limit of maximum number of function evaluations (MaxFEs). The
benchmark also includes a method to check how many optima we found within a given
accuracy level. The peak height in the dataset is the height of the optimal solutions to be
found, while niche radius is the minimum distance between the two optimal solutions
such that two optimal solutions found can be differentiated.

Index Dimension Available Peaks Peak Height Niche Radius Max FEs
1 1D 2 200.0 0.01 5.0E+4
2 1D 5 1.0 0.01 5.0E+4
3 1D 1 1.0 0.01 5.0E+4
4 2D 4 200.0 0.01 5.0E+4
5 2D 2 1.03163 0.5 5.0E+4
6 2D 18 186.731 0.5 2.0E+4
7 2D 36 1.0 0.2 2.0E+4
8 3D 81 -2.0 0.5 4.0E+4
9 3D 216 0 0.2 4.0E+4
10 2D 12 0 0.01 2.0E+4
11 2D 6 0 0.01 2.0E+4
12 2D 8 0 0.01 2.0E+4
13 2D 6 0 0.01 2.0E+4
14 3D 6 0 0.01 4.0E+4
15 3D 8 0 0.01 4.0E+4
16 5D 6 0 0.01 4.0E+4
17 5D 8 0 0.01 4.0E+4
18 10D 6 0 0.01 4.0E+4
19 10D 8 0 0.01 4.0E+4
20 20D 8 0 0.01 4.0E+4

TABLE A.1: Function Characteristics

48 Appendix A. The CEC-2013 benchmark suite

A.2 Examples of functions (from [3])

In all these functions, the dimensionality refers to the number of dimensions in the
input. The output (called the ’fitness’) is always a 1 dimensional real number.

FIGURE A.1: F3 : Uneven Decreasing Maxima (1D)

FIGURE A.2: F5 : Six-Hump Camel Back (2D)

A.2. Examples of functions (from [3]) 49

FIGURE A.3: F6 : Shubert (2D)

FIGURE A.4: F12 : Composition Function 4 (2D version)

51

Bibliography

[1] Zi-Jia Wang et al. “Dual-Strategy Differential Evolution With Affinity Propagation
Clustering for Multimodal Optimization Problems”. In: IEEE Transactions on Evolu-
tionary Computation 22.6 (2018), 894–908. DOI: 10.1109/tevc.2017.2769108.

[2] Xin Lin, Wenjian Luo, and Peilan Xu. “Differential Evolution for Multimodal Op-
timization With Species by Nearest-Better Clustering”. In: IEEE Transactions on Cy-
bernetics (2019), 1–14. DOI: 10.1109/tcyb.2019.2907657.

[3] Xiaodong Li, Andries Petrus Engelbrecht, and Michael G. Epitropakis. “Benchmark
Functions for CEC’2013 Special Session and Competition on Niching Methods for
Multimodal Function Optimization’”. In: 2013.

[4] MIKE PREUSS. MULTIMODAL OPTIMIZATION BY MEANS OF EVOLUTION-
ARY ALGORITHMS. SPRINGER, 2016.

[5] Mikeagn. mikeagn/CEC2013. URL: https://github.com/mikeagn/CEC2013.

[6] Ting Huang et al. “A Niching Memetic Algorithm for Multi-Solution Traveling
Salesman Problem”. In: IEEE Transactions on Evolutionary Computation (2019), 1–1.
DOI: 10.1109/tevc.2019.2936440.

[7] Ravindra Kompella. Tap into the dark knowledge using neural nets - Knowledge distil-
lation. 2018. URL: https://towardsdatascience.com/knowledge-distillation-
and-the-concept-of-dark-knowledge-8b7aed8014ac.

[8] J. C. Gittins. Multi-armed bandit allocation indices. John Wiley and Sons, 1989.

[9] D. A. Berry and B. Fristedt. Bandit problems ; sequential allocation of experiments.
Chapman and Hall, 1985.

https://doi.org/10.1109/tevc.2017.2769108
https://doi.org/10.1109/tcyb.2019.2907657
https://github.com/mikeagn/CEC2013
https://doi.org/10.1109/tevc.2019.2936440
https://towardsdatascience.com/knowledge-distillation-and-the-concept-of-dark-knowledge-8b7aed8014ac
https://towardsdatascience.com/knowledge-distillation-and-the-concept-of-dark-knowledge-8b7aed8014ac

	Declaration of Authorship
	Certificate
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abbreviations
	Introduction
	Background
	Why do we need to find multiple optimas?
	Objectives
	Organization of this thesis

	Literature Review
	Standard evolutionary approach to solve MMOPs
	Initialization
	Partitioning (niching or clustering)
	Speciation clustering
	Nearest better clustering (NBC)
	Nearest better clustering with Minsize

	Evolution
	Mutation
	Crossover
	Selection

	Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization
	Plots (from bench)
	Metrics

	Dual-Strategy Differential Evolution With Affinity Propagation Clustering for Multimodal Optimization Problems
	DSDE
	DSDE-C (selection strategy)
	Adaptive selection

	Differential Evolution for Multimodal Optimization With Species by Nearest-Better Clustering
	Balance
	Mutate

	A Niching Memetic Algorithm for Multi-Solution Traveling Salesman Problem (travel)
	Comparison between DSDE & FBK-DE

	Design proposals
	Nearest better clustering with temperature: softmax based cutting strategy
	Archival
	Selection strategies
	Stable mutation strategy
	Better new individual generation inspired by Multi-armed bandits
	New Generate Method : NGM
	Multi-armed Bandit : M
	Multi Armed Bandit Iterative : MI
	Multi Armed Bandit Repeated : MR
	Multi Armed Bandit Iterative Repeated : MIR

	Final algorithm
	Flowchart
	Psuedocode
	Complexity analysis

	Implementation details
	Experimentation
	Results
	Performance of FBK-DE (replicated)
	Peak Ratios at various accuracy levels
	Success Ratios at various accuracy levels

	Performance of Final-1 algo
	Peak Ratios at various accuracy levels
	Success Ratios at various accuracy levels
	Comparison between Final-1 and FBK-DE

	Performance of Final-2 algo
	PR at various accuracy levels
	SR at various accuracy levels
	Comparison between Final-2 and FBK-DE

	Complete comparison at accuracy 10-4
	Comparison between Final-1, Final-2 and FBK-DE

	Conclusion
	The CEC-2013 benchmark suite
	Description
	Examples of functions (from bench)

	Bibliography

