

B. TECH PROJECT REPORT

On
Performance Comparison of Two

Algorithms for Partial Fingerprint
Matching

BY

Chinmay Anand

DISCIPLINE OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

NOVEMBER 2019

2

Performance Comparison of Two
Algorithms for Partial Fingerprint

Matching

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Chinmay Anand (160001018)

Guided by:

Dr. Somnath Dey,

Associate Professor,

Discipline of Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
November 2019

i

 CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Performance Comparison of Two Algorithms

for Partial Fingerprint Matching” submitted in partial fulfillment for the award of the

degree of Bachelor of Technology in ‘COMPUTER SCIENCE AND ENGINEERING’

completed under the supervision of Dr. Somnath Dey, Associate Professor, Discipline

of Computer Science and Engineering, IIT Indore is an authentic work.

 Further, we declare that we have not submitted this work for the award of any

other degree elsewhere.

Signed:

Chinmay Anand

 CERTIFICATE

This is to certify that the B.Tech Project entitled, “Performance Comparison of Two

Algorithms for Partial Fingerprint Matching” and submitted by Chinmay Anand in

partial fulfillment of the requirements of B.Tech Project embodies the work done by him

under my supervision.

Dr. Somnath Dey,

Associate Professor,

Discipline of Computer Science and Engineering,

 IIT Indore

ii

iii

 PREFACE

This report on “Performance Comparison of Two Algorithms for Partial Fingerprint

Matching” is prepared under the guidance of Dr. Somnath Dey, Associate Professor,

Discipline of Computer Science and Engineering, IIT Indore.

Through this report, we have tried to provide a detailed description of a partial fingerprint

matching algorithm based on minutiae and ridge shape features. We have implemented

this algorithm in Python and C++ and performed an in-depth comparison against the

results obtained from a standard tool (bozorth3) which uses minutiae as the only feature.

We have tried to explain every step of our project in a simple and lucid manner.

 Chinmay Anand

 B.Tech IV Year,

 Discipline of Computer Science and Engineering,

 IIT Indore

iv

v

 Acknowledgements

I wish to express our heartfelt gratitude to Dr. Somnath Dey for his sincere guidance and

kind support in completing this project.

I am extremely thankful to Mr. Mahesh Joshi for his cooperation and guidance

throughout the project.

I also thank my project partners as well as my friends who contributed to the making of

this project.

 Chinmay Anand
 B.Tech. IV Year
 Discipline of Computer Science and Engineering
 IIT Indore

vi

vii

 Abstract

The sensing area in modern mobile devices like smartphones, tablets etc. is very small for

capturing the full fingerprint image. The partial fingerprints captured by these sensors

give unreliable results when used with full fingerprint matching algorithms using

minutiae as the only feature. So, in order to make a robust partial fingerprint recognition

system, matching algorithm for partial fingerprints should consider other features along

with minutiae.

In this project, we implemented a research paper (Lee et al. [1]) which uses additional

features (here referred to as ridge shape features (RSFs)) along with minutiae for partial

fingerprint matching and performed an in-depth performance comparison with the

standard algorithm called bozorth3 implemented by NBIS (NIST Biometric Image

Software) which uses minutiae as the only feature.

We used mindtct (a tool by NBIS) for extracting minutiae features and implemented the

algorithm (Lee et al. [1]) in C++ and Python for extracting RSFs and final matching

score. We created partial fingerprints from the standard dataset FVC2004 and used

various parameters like cumulative genuine matches, false acceptance rate (FAR), false

rejection rate (FRR), number of master prints and ROC curve for in-depth performance

comparison.

Though this algorithm outperforms bozorth3 in most cases, the result obtained was not as

good as claimed by the paper (Lee et al. [1]).

viii

 Contributions

The major contributions made by me are as follows:

1. Implementation of RSF extractor

 Calculation of ridge width at each ridge point

 Estimation of concave and convex ridge segments

2. Implementation of partial fingerprint matching algorithm based on minutiae and

RSF features in Python and C++.

 Algorithm to calculate RSF matching score for the overlapped region

 Fusion of minutiae matching and RSF matching scores

3. Performance analysis

 FAR and FRR

 Master Fingerprints

I would also like to appreciate the contributions made by partner. The major contributions

made by them include:

1. Implementation of partial fingerprint matching algorithm based on minutiae and

RSF features in Python and C++ (remaining parts).

2. Image enhancement of partial fingerprint images

3. Performance analysis

 cumulative genuine matches

 ROC curve

4. Partial fingerprint generation from databases of FVC2004.

5. Generation of xyt files for above partial fingerprints using mindtct.

6. Calculation of matching score between every pair of partial fingerprints using

bozorth3.

ix

 Table of Contents

Sl. No. Topic Page No.

1 Candidate’s Declaration……………………………………………….. i

2 Certificate……………………………………………………………….. i

3 Preface…………………………………………………………………... iii

4 Acknowledgements……………………………………………………... v

5

6

Abstract………………………………………………………………….

Contributions……………………………………………………………

vii

ix

7 List of Figures…………………………………………………………... x

8

9

List of Tables…………………………………………………………….

List of Abbreviations……………………………………………………

xi

0

10 Chapter 1: Introduction………………………………………………...

1.1 General Fingerprint Matching Algorithm………………...

1.2 Partial Fingerprints and Need for Additional Features….

1.3 Objectives……………………………………………………

1

2

3

4

11 Chapter 2: Literature Review…………………………………………. 5

12 Chapter 3: Partial Fingerprint Matching……………………………..

3.1 Image Enhancement………………………………………...

3.2 Feature Extraction………………………………………….

3.2.1 Minutiae…………………………………………...

3.2.2 Ridge Shape Features……………………………..

3.3 Matching Algorithm Using Minutiae and RSF…………...

3.4 Matching Algorithm Using Minutiae Only (bozorth3)…...

9

9

11

11

12

15

22

13 Chapter 4: Performance Analysis……………………………………...

4.1 Dataset……………………………………………………….

4.2 Performance Parameters and Protocol……………………

4.3 Results……………………………………………………….

23

23

24

27

14 Chapter 5: Conclusion…………………………………………………. 33

15 References………………………………………………………………. 35

x

List of Figures

Sl. No Description Page No.

1 Figure 1.1 Fingerprint Authentication System……………... 1

2 Figure 1.2 General Fingerprint Matching Algorithm………. 2

3 Figure 3.1 Steps Involved in Fingerprint Enhancement……. 9

4 Figure 3.2 Minutiae………………………………………… 11

5 Figure 3.3 Concave and Convex Ridge Segments…………. 12

6 Figure 3.4 Ridge Width……………………………………. 13

7 Figure 3.5 Comparison of Ridge Width with Convex and

Concave Segments…………………………………………..

14

8 Figure 3.6 Matching Algorithm Flowchart………………… 15

9 Figure 3.7 Local Structure of a Minutiae…………………... 16

10 Figure 4.1 Sample Testing Database……………………….. 26

11 Figure 4.2 Cumulative Percentage (a)DB1_A (b)DB2_A…. 28

12 Figure 4.3 Master Fingerprints (a)DB1_A (b)DB2_A……... 29

13 Figure 4.4 FAR and FRR vs Threshold (a) DB1_A

(bozorth3) (b)DB1_A (rsfAlgo)……………………………..

31

14 Figure 4.5 FAR and FRR vs Threshold (b) DB2_A

(bozorth3) (b)DB2_A (rsfAlgo)……………………………..

31

15 Figure 4.6 ROC Curve (a) DB1_A (b) DB2_A……………. 32

xi

List of Tables

Sl. No. Description Page No.

1 Table 4.1 Cumulative Percentage DB1_A……………………………… 28

2 Table 4.2 Cumulative Percentage DB2_A……………………………… 28

3 Table 4.3 Master Fingerprints DB1_A………………………………….. 30

4 Table 4.4 Master Fingerprints DB2_A………………………………….. 30

5 Table 4.5 EER and Threshold (To)……………………………………… 32

0

List of Abbreviations

● RSF- Ridge Shape Features

● FVC- Fingerprint Verification Competition

● FAR- False Acceptance Rate

● FRR- False Rejection Rate

● BFS- Breadth First Search

● CBFS- Coupled Breadth First Search

● NIST- National Institute of Standards and Technology

● NBIS- NIST Biometric Image Software

● MCS- Matching Certainty Score

● ERR- Equal Error Rate

1

CHAPTER 1

Introduction

Fingerprint identification system is one of the oldest and the most reliable biometric

recognition system which takes a fingerprint image from an individual, extract different

features from it, and then compares them against extracted features from fingerprints already

present in the database as shown in Fig. 1.1. It is one of the most widely used and well-

known biometrics. Some of the reasons for their extensive use are uniqueness, consistency

over time, inherent ease in acquisition, numerous sources (ten fingers per subject) available

for collection.

Fig. 1.1 Fingerprint Authentication System

In the beginning, It was mainly used for criminal identification purposes by law enforcement

agencies. But in the last few years, it has been implemented in almost every field where a

person’s identification is important such as banking, college attendance, airport security,

mobiles, laptops, etc. Modern mobile devices like smartphones, tablets, laptops have started

to adopt miniaturized fingerprint scanners which capture only small partial fingerprint

images.

Since the number of features to be extracted depends on the area of fingerprint scanned, the

algorithms used for full fingerprint matching does not perform well with partial fingerprints.

Generally, full fingerprint matching algorithm uses minutiae as the only feature for matching

2

and for a successful match, it needs more than 12 matched minutiae pairs. However, partial

fingerprint images scanned by miniaturized fingerprint scanners contain less than the

required number of minutiae to make a robust decision. In order to make a robust partial

fingerprint identification system, other features should be considered along with minutiae.

1.1 General Fingerprint Matching Algorithm

Fingerprint matching algorithm is the soul of any fingerprint identification system. The

general steps of every fingerprint matching algorithm are very similar up to some extent as

shown in Fig. 1.2. It takes two images (Template and Query) as input, applies image

enhancement on them, extracts features, then finally applies a matching algorithm on

extracted features to determine the extent of similarity between both images. Fingerprint

matching algorithms may differ in how each step has been implemented, i.e. they may differ

in how and what features are being extracted, how the images are being enhanced, etc.

Fig. 1.2 General Fingerprint Matching Algorithm

The working of a fingerprint matching algorithm is divided into following major steps :

1. Image Enhancement: The images obtained from fingerprint scanners are generally

not fit for feature extraction. They are processed to remove noise, improve image

contrast and perform some minor reconstructions.

3

2. Feature Extraction: A fingerprint image is constituted of a set of ridgelines which

generally run parallel, sometimes terminate and bifurcate. These ridge terminations

and bifurcations are referred to as minutiae. The minutiae points obtained from both

enhanced template and query image are passed to the matching algorithm for

matching score calculation.

3. Matching Algorithm: The features obtained from template and query image are

passed as input to an algorithm which generally uses the position and orientation of

these points for finding the matching pairs in order to determine the extent of

similarity between both images.

1.2 Partial Fingerprints and Need for Additional Features

Most modern mobile devices like smartphones, tablets and laptops have started to adopt a

miniaturized fingerprint scanner, which captures small partial fingerprint images. The

algorithm used for full fingerprint matching generally relies on minutiae as the only feature

and needs more than 12 matched minutiae pairs for a successful match. The partial

fingerprint matching algorithm needs to consider additional features along with minutiae

because the number of minutiae extracted from it is not enough to make a robust decision.

Since only minutiae points cannot be relied upon for partial fingerprint matching, additional

features called ridge shape features (RSFs) along with minutiae points are used for

establishing the similarity between two partial fingerprint images.

4

1.3 Objectives

This project aims to achieve the following objectives :

1. Implementation of RSF extractor (Lee et al. [1]) in Python

2. Implementation of feature matching algorithm (Lee et al. [1]) in Python and then in

C++ for higher efficiency and speed.

3. Generation of partial fingerprints from full fingerprints in FVC2004 dataset and

calculation of matching scores for every pair of partial fingerprints using both

algorithms, minutiae-based (here bozorth3) as well as minutiae + RSFs based (Lee et

al. [1]).

4. In-depth performance comparison between the two algorithms using parameters like

cumulative genuine matches, FAR (False Acceptance Rate), FRR (False Rejection

Rate), number of master prints and ROC Curve.

5

CHAPTER 2

Literature Review

The major portion of our project was devoted to the implementation of a partial fingerprint

matching algorithm based on minutiae and ridge shape features proposed by Lee et al.[1]. The

complete algorithm involves different critical steps like image enhancement, feature

extraction, pattern matching algorithm, etc., and all steps are not discussed in detail in this

paper. In order to have a robust implementation, we had to study various works already done

in this field.

Hong et al. [2] proposed a very efficient and fast algorithm for fingerprint image

enhancement in order to improve the overall accuracy of a fingerprint verification system. The

clarity of a fingerprint image’s ridges and valleys structures is improved based on the pre-

estimated local ridge orientation and frequency. A fingerprint image is normalized using it’s

local mean and variance followed by calculation of local orientation and the local frequency at

each ridge point. Gabor filter tuned with local ridge orientation and ridge frequency is applied

at each ridge point on the normalized image in order to improve its clarity.

Zhao et al. [3] proposed an algorithm for skeleton-based fingerprint minutiae

extraction. It computes the binary image from the input grayscale fingerprint image using an

adaptive threshold algorithm followed by computing skeletonized image. Unlike most other

algorithms, it uses the fingerprint valley instead of ridge for computing binarized and thinned

images. Finally, minutiae points are computed from thinned image using the Rutovitz Crossing

Number. It removes all the noises like spurious islands, spurs and bridges the image during

binarization process only which allows detection of maximum number of minutiae points.

Lee et al. [1] proposed a partial fingerprint matching algorithm which uses new

features called ridge shape features (RSFs) along with the conventional minutiae features. The

ridge segments which can be categorized into concave or convex segments are considered as

ridge shape features. It finally proposes a matching algorithm incorporating RSFs along with

minutiae in two stages i.e., minutiae matching and RSFs matching stages. In the minutiae

6

matching stage, each minutiae is redefined with its neighboring minutiae and RSFs called as

its local structure and minutiae matching pairs are finally determined by comparing their local

structures. Overlapped region with highest similarity between template and query images is

further determined using matched minutiae pairs. RSF matching is further applied on this

overlapped region in order to improve the overall matching accuracy. The scores obtained

from both matching stages are combined to produce a final matching score which indicates the

extent of similarity between template and query images.

Chikkerur et al. [4] proposed a fingerprint matching algorithm based on graph

matching principles. It defines a new representation called k-plet to encode the local structure

of each minutiae. It also defines a CBFS (Coupled Breadth-First Search) algorithm to

determine an overlapping region between query and template regions. CBFS algorithm is a

dual graph traversal algorithm which is used to collect all the local adjacent matches, and

these collected matched minutiae pairs further define the overlapped region. In order to sort

out the ambiguities in matching minutiae pairs, it uses dynamic programming based

optimizing approach.

Tico et al. [6] proposed a fingerprint matching algorithm which uses an

unconventional way to describe a minutiae. It uses orientation-based minutiae descriptor to

represent the local structure of a minutiae. In order to define local structure of a central

minutiae mc, it takes k concentric circles of different radii and then for each neighborhood

minutiae which falls under any of these k concentric circles, relative orientation is estimated,

and these neighborhood minutiae further define local structure of the central minutiae. The

orientation-based descriptor for each minutiae pair is further used to estimate the similarity

between template and query images.

Zhang et al. [5] proposed an algorithm for high resolution partial fingerprint alignment

using pore-valley descriptors. It utilizes the fact that even partial fingerprints contain enough

pores to be considered as reliable features. At first, it extracts pores using a difference of

Gaussian filtering approach and then defines a pore-valley descriptor for each pore feature

using its local orientation and location. It further proposed a matching algorithm based on

pore-valley descriptor in order to estimate the similarity between template and query images.

7

 Cappelli et al. [10] discusses performance evaluation for fingerprint verification

systems in detail. It starts with in-depth description of FVC2004 database for full fingerprints

and then further goes on to discuss testing protocols and important terms like genuine match,

imposter match, false matching rate, false non-matching rate, etc. It also discusses about the

performance evaluation method i.e., how the accuracy of a fingerprint verification system can

be determined using different graph plots like ROC Curve, error rate vs threshold, cumulative

matching curve (CMC), etc.

Kenneth et al. [9] provides a detailed description about NIST Biometric Image Software

(NBIS). It describes every detail about NBIS from installation process to algorithmic overview

of each tool provided by it. It discusses some of the tools in great detail like mindtct (used for

minutiae extraction), pcasys (fingerprint pattern classifier), imgtools (general purpose image

utilities). It also provides an overview about bozorth3 (a fingerprint matching tool).

 Algorithms and techniques described in these research papers helped us in some way in

completing our project. Jain et al. [7] and Sharma et al. [8] provided us with great introduction

to biometric and fingerprint verification systems respectively. Our aim was to implement

partial fingerprint matching algorithm proposed by Lee et al. [1]. We had to refer to other

research papers in order to implement different steps of the algorithm proposed by Lee et al.

[1]. We implemented image enhancement algorithm proposed by Hong et al. [2] to generate an

enhanced image and implemented thinning algorithm proposed by Zhao et al. [3] to generate

skeleton image from the enhanced image. The skeleton image is further used to extract RSFs.

We referred Kenneth et al. [9] for the details about mindtct and bozorth3. We used mindtct to

extract minutiae features and bozorth3 as base fingerprint matching algorithm against which we

performed an in-depth performance comparison of our implemented algorithm (Lee et al. [1]).

We implemented CBFS algorithm proposed by Chikkerur et al. [4] in order to estimate

overlapped regions between template and query images (it is an intermediate step in our

implemented algorithm). We referred Cappelli et al. [10] for various protocols and parameters

used in performance analysis of our implemented algorithm.

8

9

CHAPTER 3

Partial Fingerprint Matching

This chapter documents algorithmic overview of each step involved in partial fingerprint

matching.

3.1 Image Enhancement

Feature extraction is a very critical step in any fingerprint identification system. However,

the reliability and performance of a feature extraction algorithm depend heavily on the

quality of the input fingerprint images. In order to make a robust fingerprint identification

system, it becomes inevitable to incorporate image enhancement algorithm which ensures

reliable feature extraction.

Due to variations in impression conditions, skin conditions, acquisition devices (fingerprint

scanners), etc., acquired fingerprint images are in general of poor quality. An ideal

fingerprint image consists of ridges and valleys, which are alternate and flow in a locally

constant direction. Thus, the goal of any image enhancement algorithm is to make a

fingerprint image as ideal as possible.

 (a) (b) (c) (d)

Fig. 3.1. Steps involved in Image enhancement algorithm and their outputs (a) Input Image (b)

Normalized Image (c) Enhanced Image (d) Thinned/Skeletonized Image

10

In general, an image enhancement algorithm takes a fingerprint image as input, applies several

preprocessing steps on it and finally produces an enhanced image with improved clarity of the

ridge structures.

We have tried to keep the details about our image enhancement algorithm to as minimum as

possible. For detailed description, refer to Hong et al. [2] as we have followed this for our

implementation.

Steps :

● Input

It takes a grayscale image (size: 150x150) as input.

● Normalization

The foreground of input grayscale fingerprint image is segmented using the mean and

variance of local pixel blocks so that it has prespecified mean and variance.

● Local Orientation and Frequency Image Estimation

The local orientation and frequency image represent intrinsic properties of the

fingerprint images and define invariant coordinates for ridges and valleys in a local

neighborhood. These are then fed to Gabor filter which filters the normalized image in

order to produce the enhanced image.

● Filtering

Gabor filter which is tuned to local ridge orientation and ridge frequency is applied to

the normalized image to produce the enhanced fingerprint image (refer to Fig. 3.1 (c)).

● Skeletonization

Ridges in the enhanced image are generally thick, i.e. many curved lines together form

a ridge. The aim of skeletonization is to preserve the general structure and connectivity

of each ridge but at the same time reduce the thickness of each ridge to one, i.e. now

11

only one curved line defines a ridge and this curved line is fully connected too (refer to

Fig. 3.1(d)).

3.2 Feature Extraction

The fingerprint matching algorithm relies completely on the features extracted from a

fingerprint image. Thus, the number of features extracted heavily affects the accuracy and

performance of a fingerprint identification system. In general, full fingerprint image has more

than 40 minutiae points, but partial fingerprint image has very less number of minutiae (<

15). This is the reason why fingerprint identification system which deals with full fingerprint

image considers minutiae as the only feature and still gives reliable performance.

In order to ensure robust partial fingerprint identification system, other features must be

considered if the matching algorithm relies completely on extracted features. This algorithm

considers RSFs (ridge shape features) along with minutiae.

3.2.1 Minutiae

Minutiae are specific points on ridges of a fingerprint image. Generally, this includes points

such as ridge bifurcation or ridge ending as shown in Fig. 3.2.

Types of Minutiae :

● Ridge bifurcation

● Ridge ending

Fig. 3.2 Minutiae

12

We have used mindtct (a tool by NBIS aka NIST Biometric Image Software) to detect

minutiae points. Any fingerprint image which yields less than ten minutiae is ignored.

Each minutiae point is described by its location (X-Y coordinates), orientation and degree of

confidence. Here, the degree of confidence refers to how reliable the extracted minutiae point

is.

3.2.2 Ridge Shape Features

When analyzing a fingerprint image, it can be seen that there are some segments of a ridge

which are significantly wider or thinner as compared to their neighbors, these segments can

be considered as convex and concave respectively as shown in Fig. 3.3. Each ridge point is

determined to be either convex or concave in order to extract ridge shape features (RSF).

These ridge features are actually continuous convex or concave ridge points and identifiable

even if the images are of low resolution. We have tried to explain the process of extracting

these features in detail.

Fig. 3.3 convex and concave ridge segments (Lee et al. [1])

13

Extraction of RSFs :

1. Ridge Width Calculation

● It needs enhanced image, thinned image and ridge orientation image as inputs.

These images are calculated during image enhancement process.

● For a particular ridge point 𝑅௣,

○ determine the direction perpendicular to its local orientation

○ travel in the upward direction of this perpendicular until a valley point

(white pixel) 𝑉ଵ is encountered

○ travel in the downward direction of this perpendicular until a valley

point 𝑉ଶ is encountered

○ Its ridge width 𝑟ௗ is the Euclidean distance between 𝑉ଵ and 𝑉ଶ.

Fig. 3.4 shows how ridge width is determined.

Fig.3.4 Ridge Width

2. Estimation of Type for Each Ridge Point (Convex or Concave)

After obtaining the ridge width at each point of the thinned ridgeline, each ridge point

is determined whether it belongs to concave or convex segment by comparing its

width with that of its neighboring ridge points (refer to Fig. 3.5 (a)). Let 𝑥 be a ridge

point on the thinned (skeletonized) image. The ridge width at point 𝑥 is compared

with the ridge width of 𝑁 (ℎ𝑒𝑟𝑒, 𝑁 = 10) neighboring points on both sides, as

shown in Fig 3.5. Each of these neighboring points

𝑊௜ , 𝑖 = {1,2,3, . . , 𝑛} is categorized into one of the following categories.

14

𝑆(𝑖) = ቐ

𝑛,  𝑊௜ ≤ 𝑊௫ − 𝑇௪ (𝑛𝑎𝑟𝑟𝑜𝑤𝑒𝑟)
𝑠,  𝑊௫ − 𝑇௪ < 𝑊௜ < 𝑊௫ + 𝑇௪  (𝑠𝑖𝑚𝑖𝑙𝑎𝑟)

𝑤, 𝑊௫ + 𝑇௪ ≤ 𝑊௜ (𝑤𝑖𝑑𝑒𝑟)

Where,

𝑊௫ is ridge with a point 𝑥.

𝑊௜ is ridge width a neighboring point.

𝑇௪ is threshold for comparing ridge widths.

 (a) (b)

Fig 3.5 (a) Comparison of ridge width (b) convex and concave ridge segments (Lee et al. [1])

𝑆(𝑖) is assigned as 𝑛, 𝑤 or 𝑠 to each of the neighboring points based on the values 𝑊௜, 𝑊௫

and 𝑇௪

This is used to classify a ridge point as convex or concave. If more than half of 𝑁 neighbors

are of type 𝑤, then point 𝑥 is classified as concave and if more than half of 𝑁 neighbours are

of type 𝑛, then point 𝑥 is classified as convex.

𝑇(𝑥) which denotes the type of ridge point is determined as follows :

15

𝑇(𝑥) =

⎩
⎪
⎨

⎪
⎧𝑐𝑜𝑛𝑐𝑎𝑣𝑒,  ෍[𝑆(𝑖) = 𝑤] >

𝑁

2

ே

௜ୀଵ

𝑐𝑜𝑛𝑣𝑒𝑥, ෍[𝑆(𝑖) = 𝑛] >
𝑁

2

ே

௜ୀଵ

If we get a consecutive set of points which are either concave or convex, then they constitute

a ridge segment which is our RSF (or ridge shape feature) as can be seen in Fig. 3.5 (b). We

have considered that at least two consecutive points should belong to either concave or

convex to consider the segment as RSF.

An RSF 𝑟௞ is represented by a central ridge point in the RSF segment as follows :

𝑟௞ = (𝑥௞, 𝑦௞, 𝜃௞, 𝑡௞)

here, (𝑥௞, 𝑦௞) represents the position of the central ridge point of the segment, 𝜃௞ represents

the ridge orientation at that position 𝑡௞ denotes the type of RSF (concave or convex).

3.3 Matching Algorithm Using Minutiae and RSF

Fig. 3.6 Matching algorithm flowchart

This matching algorithm (refer to Fig. 3.6) incorporates RSFs along with minutiae to improve

the accuracy of partial fingerprint matching. Using the local structure of each minutia, the

algorithm first finds matched minutiae pairs. The linear transformation and the overlapped

region are further determined using the top few matched pairs. Subsequently, the RSF

16

matching is performed in the overlapped region. Finally, the matching score is calculated

using both minutiae-matching score and rsf-matching score.

3.3.1 Local Structure Estimation

In case of full fingerprints, the local structure of minutiae is typically determined using a

fixed number of its nearest minutiae. Since the number of minutiae in a typical partial

fingerprint image is not enough to determine its local structure, this algorithm uses RSFs

along with minutiae.

 Fig. 3.7. Local structure of a minutia (a) Red circles are minutiae (b) Blue triangles are RSFs

Given a particular minutia, the sequential steps to determine its local structure are:

● Consider this particular minutia as the center (denoted by 𝑚௖) of two concentric

circles of radius 𝑅ଵ and 𝑅ଶ (𝑅ଵ > 𝑅ଶ) as shown in Fig. 3.7. We considered 𝑅ଵ = 60

and 𝑅ଶ = 40.

● Each minutia and RSF which lies inside the circle of radius 𝑅ଵ and 𝑅ଶ respectively is

considered as its neighbor.

● Each neighbor (denoted by 𝑛௞) is represented by (𝛿௖,௞, 𝜃௖,௞, 𝜑௖,௞, 𝜏௞)

17

where,

𝛿𝒄,𝒌 is the Euclidean distance between 𝑛௞ and 𝑚௖

𝜃௖,௞ is the orientation difference between 𝑛௞ and 𝑚௖

𝜑
௖,௞

 is the directional difference between 𝑛௞ and 𝑚௖

𝜏௞ is the type of 𝑛௞ (0: minutia, 1: convex RSF, -1: concave RSF)

● Set of all 𝑁 neighbors of 𝑚௖ represented as (𝛿௖,௞ , 𝜃௖,௞, 𝜑௖,௞ , 𝜏௞) where 1 ≤ 𝑘 ≤ 𝑁,

defines its local structure.

It can be represented as

𝐿(𝑚௖) = ൛(𝛿௖,௞ , 𝜃௖,௞ , 𝜑௖,௞, 𝜏௞൯ | 1 ≤ 𝑘 ≤ 𝑁}

3.3.2 Optimal Similarity Score Calculation

The goal of the matching algorithm for a minutiae pair is to align their local structures in

such a way that matching minutiae pairs in their local structure produces maximum similarity

score.

We have used dynamic programming to get all the matching pairs and the maximum

similarity score by comparing their local structures. The maximum similarity score here is

called the optimal similarity score.

The similarity score of minutiae pair (𝑚் , 𝑚ொ) can be defined as :

𝑆௟௠(𝑚் , 𝑚ொ) =
𝑆௠(𝑚் , 𝑚ொ) + 𝑆௥(𝑚் , 𝑚ொ)

2

where,

𝑆௞(𝑚், 𝑚ொ) =
2∑𝑀𝐶𝑆൫𝑛௜

், 𝑛௝
ொ൯

𝑁் + 𝑁ொ
 , 𝑘 = {𝑚, 𝑟}

Here, 𝑆௞(𝑚் , 𝑚ொ) is the similarity and 𝑀𝐶𝑆(𝑛௜
், 𝑛௝

ொ
) is the matching certainty score, as

explained below:

18

● Matching Certainty Score

The matching certainty score between 𝑛௜
்and 𝑛௝

ொ (neighbors of 𝑚் and 𝑚ொ

respectively) depends directly on the difference of their representation, i.e.

topological properties with respect to the central minutiae.

 It is calculated as follows:

𝑀𝐶𝑆൫𝑛௜
், 𝑛௝

ொ൯ = ቐ
𝑇 − ห𝑛௜

் − 𝑛௝
ொห

𝑇
,   𝑖𝑓 ห𝑛௜

் − 𝑛௝
ொห < 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where,

 𝑇 is the threshold for matching certainty.

● Similarity

The similarity is always calculated between any minutiae pair (𝑚் , 𝑚ொ) by matching

neighboring minutiae or neighboring RSF denoted by 𝑆௠ and 𝑆௠ respectively.

3.3.3 Minutiae Matching Rate and Overlapped Region

After calculating optimal similarity scores for each minutiae pair (𝑚் , 𝑚ொ), top 𝑁 (in our

experiment, 𝑁 = 7) matched pairs are selected as the initially matched minutiae pairs which

are further used to determine 𝑁 overlapped regions. Each region has its own score called

minutiae matching rate (𝑚𝑚𝑟) as given by :

𝑚𝑚𝑟 =
2 ∑ 𝑆௟௠(𝑚௨

் , 𝑚௨
ொ

)
ெ೘
௨ୀଵ

(𝑁௠,௢
் + 𝑁௠,௢

ொ
)

where,

𝑁௠,௢
் and 𝑁௠,௢

ொ
 are the total number of minutiae within the overlapped region of

template and query image.

19

𝑀௠ is the number of matched minutiae in the overlapped region.

𝑆௟௠(𝑚௨
் , 𝑚௨

ொ) is the similarity of matched minutiae pair ൫𝑚௨
் , 𝑚௨

ொ൯.

We implemented central breadth-search algorithm (Chikkerur et al. [4]) in order to determine

the overlapped region. In this algorithm, we start with one matched minutiae pair and

incrementally find other matching minutiae pairs. These matching pairs finally decide the

overlapped region between template and query images.

The matched minutiae pairs within the overlapped region are further used to calculate linear

transformation for each region.

3.3.4 RSF Matching

The overlapped region with highest 𝑚𝑚𝑟 is further used for RSF matching. For each RSF

point 𝑅் in the template image, we take its projection on the query image using the linear

transformation. It is very unlikely that 𝑅்ᇱ
 would match exactly with any of the RSF point 𝑅ொ

on the query image. In order to determine the corresponding projection of 𝑅் in the query

image, we take all neighboring RSF 𝑅ொ of 𝑅்ᇱ
 within the distance of 𝑅௖ (𝑅௖ = 20 in our

experiment) and find similarity between all RSF pairs (𝑅், 𝑅ொ) just like we did with minutiae.

Let 𝑀௠ be the set of all matched minutiae pairs within the overlapped region. The local

structure of each minutiae 𝑅ொ or 𝑅் is calculated as follows :

● Choose 𝐾 nearest minutiae of 𝑅் among the matched minutiae pairs in the template

region.

 𝐾 = 𝑚𝑖𝑛(5, |𝑀௠|)

● Represent the local structure of 𝑅் as a set of 𝐾 nearest minutiae in the relative form,

i.e., relative distance, radial angle and the orientation difference.

● Now, In order to determine the local structure of 𝑅ொ, take corresponding matched

minutiae of 𝐾 nearest neighbor of 𝑅் in the query image and represent its local

structure just like 𝑅்.

20

After calculating local structure for RSF pair (𝑅், 𝑅ொ), calculate its similarity using the

following formula:

𝑆௟௥(𝑅், 𝑅ொ) =
∑ 𝑀𝐶𝑆(𝑚௝

் , 𝑚௝
ொ

)௞
௝ୀଵ

𝑘

where,

𝑘 is the number of neighbours as explained above.

(𝑚௝
், 𝑚௝

ொ) is a matched minutia pair.

𝑀𝐶𝑆൫𝑚௝
் , 𝑚௝

ொ൯ is the Matching Certainty Score for minutiae pair (𝑚௝
் , 𝑚௝

ொ
). This is

similar to the one explained for minutiae.

Let’s denote 𝑅௠ as the set of matched minutiae pairs and initially it is empty. Now, apply the

greedy approach to find all the matched RSF pairs.

Steps to find matching RSF pairs:

● Sort all the RSF pairs based on its similarity in descending order.

● .Now, for each RSF pair (𝑅் , 𝑅ொ), check if any of 𝑅் or 𝑅ொ is in the 𝑅௠.

○ If yes, then ignore it and process the next RSF pair in the sorted list

○ else, put this pair in 𝑅௠ and process the next RSF pair in the sorted list

3.3.5 Fusion of Matching Scores

Now, we have the overlapped region with highest minutiae matching rate denoted by 𝑚𝑚𝑟, a

set of matched minutiae and RSF pairs in this overlapped region dented by 𝑀௠ and 𝑅௠

respectively. In order to find the final matching score which will determine the extent of

similarity between the template and query image, we combine 𝑆௠ (minutiae-matching score)

and 𝑆௥௦௙ (RSF-matching score) using a weighing factor 𝜆.

21

Minutiae-matching score (𝑆௠) can be calculated as :

𝑆௠ = 𝑚𝑚𝑟 ⋅
2𝑀௠

൫𝑁௠,௧
் + 𝑁௠,௧

ொ ൯

where,

𝑁௠,௧
் and 𝑁௠,௧

ொ are the total number of minutiae in template and query image,

respectively.

The RSF matching score (𝑆௥௦௙) is similarly calculated as :

𝑆௥௦௙ =
2 ∑ 𝑆௟௥(𝑟௩

் , 𝑟௩
ொ

)
ெೝ
௩ୀଵ

𝑁௥,௢
் + 𝑁௥,௢

ொ ⋅
2𝑀௥

𝑁௥,௧
் + 𝑁௥,௧

ொ

where,

𝑆௟௥(𝑟௩
் , 𝑟௩

ொ
) is the similarity score of matched RSF pair (𝑟௩

், 𝑟௩
ொ

).

𝑀௥ is the number of matched RSF pairs.

𝑁௥,௢
் and 𝑁௥,௢

ொ are the total number of RSFs in the overlapped region of template and

query images.

𝑁௥,௧
் and 𝑁௥,௧

ொ are the total number of RSFs in template and query images.

Final score 𝑆௧௢௧௔௟ can be calculated as :

𝑆௧௢௧௔௟ = 𝜆 ⋅ 𝑆௠ + (1 − 𝜆) ⋅ 𝑆௥௦௙

where,

𝜆 is the weighing factor and 0 <= 𝜆 <= 1.

𝜆 can be calculated as follows :

𝜆 =
𝑁௠,௧

் + 𝑁௠,௧
ொ

൫𝑁௠,௧
் + 𝑁௠,௧

ொ ൯ + 𝛼௥௦௙(𝑁௥,௧
் + 𝑁௥,௧

ொ)

22

where,

𝛼௥௦௙ is the weight of the RSF which assigns relative importance of RSF to the

minutiae feature.

In our experiment, 𝛼௥௦௙ = 0.2.

3.4 Matching Algorithm Using Minutiae Only (bozorth3)

We have used bozorth3 (a tool by NBIS) which only minutiae as the feature to calculate

matching score between query and template images. It is one of the standard tools used in the

full fingerprint identification system. Since we have implemented this algorithm, we won’t

discuss it in detail in this report.

We have used bozorth3 client provided with NBIS package to calculate the score between

each pair of partial fingerprint images in each database used for performance analysis (refer

to NBIS documentation for how to use bozorth3).

23

CHAPTER 4

Performance Analysis

This section contains an in-depth performance analysis of two algorithms for partial

fingerprint matching. We have already discussed the minutiae + RSF based algorithm in

detail in chapter 3. As another one of the two algorithms, we have used bozorth3, a tool for

fingerprint matching by NIST Biometric Image Software (NBIS), which uses minutiae as the

only feature. We have created results for the same dataset using both of these algorithms and

tried to analyze using various parameters.

For the remaining part of this chapter, we will refer the minutiae + RSF based algorithm as

rsfAlgo and the other algorithm as bozorth3.

4.1 Dataset

The databases used for performance analysis of both algorithms are taken from FVC2004. It

has four databases namely DB1, DB2, DB3 and DB4. Each one has two sets A and B like

DB1_A and DB1_B. Set A of each database contains fingerprints of 100 users with each user

having eight samples of the same fingerprint resulting in 800 (100x8) fingerprint images. Set

B has fingerprints for only ten users with each user having eight samples of the same

fingerprint.

We have used databases DB1 and DB2 to create results using both of the algorithms. Since

all these databases contain full fingerprint images, we had to create partial fingerprint images

from these full images as discussed below.

The partial fingerprints which are used for testing both algorithms are taken to be of (150 X

150) pixels in size. We take each sample of every subject and generate 150 X 150 partial

fingerprints from it in the following way:

24

1. Take a 150 X 150 square image from the top left corner of the full fingerprint image.

Iterate row-wise as well as column-wise taking jumps of 75 pixels. Include all of

these images as the partial fingerprints for testing.

2. The partial fingerprints generated are checked for the number of minutiae points

using mindtct. If the number of minutiae points in a partial fingerprint comes out to

be less than 10, then that partial fingerprint is not considered and rejected from the

database.

All the partial fingerprints generated from each sample of all subjects with greater than or

equal to 10 minutiae points are used for testing purposes.

4.2 Performance Parameters and Protocols

This section explains all the parameters and protocols used for performance analysis further

in section 3 of this chapter.

4.2.1 Performance Parameters

Genuine Score: The score obtained by comparing two samples of the same fingerprint is

considered as a genuine score.

Imposter Score: When a score is not genuine, it is considered to be an imposter score.

FAR (False Acceptance Rate): False Acceptance Rate shows the likelihood that a biometric

identification system will accept an access attempt by an unauthorized user.

OR

𝐹𝐴𝑅 =
𝐼𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

25

FRR (False Rejection Rate): False rejection rate shows the likelihood that a genuine user is

rejected access by a biometric identification system.

OR

𝐹𝑅𝑅 =
𝐺𝑒𝑛𝑢𝑖𝑛𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

EER (Equal Error Rate): EER is the point where False Acceptance Rate is equal to False

Rejection Rate.

4.2.2 Protocol

FVC protocol has been used for calculation of FAR (False Acceptance Rate) and FRR (False

Rejection Rate). The categorization of genuine and imposter is done in the following way

when using FVC protocol.

One partial fingerprint of a sample is compared with all partial fingerprints of some other

sample of the same subject. Maximum of the comparison scores is taken for comparison with

the threshold to decide whether it’s a match or not. This constitutes a single genuine match.

One partial fingerprint of a sample of some subject when compared with a partial fingerprint

of the same sample of some other subject, then it constitutes a single imposter match.

26

Fig. 4.1 Sample Testing Database

The above Fig. 4.1 shows a sample database in which each partial fingerprint is represented in

subjectId_sampleId_partialfingerprintId format.

Let’s consider genuine and imposter matches for 1_1_1. 1_1_1 will act as our probe fingerprint

image, which will be compared with fingerprint images of the same subject as well as with the

fingerprint images of other subjects and same sampleId, these constitutes the gallery fingerprint

images. 1_1_1 is compared with 1_2_1, 1_2_2, 1_2_3 and 1_2_4, the maximum score out of

these four is taken for comparison with threshold and this constitutes a single genuine. So we

will have two genuine matches for 1_1_1, one with sample 2 and another with sample 3 of the

same subject.

27

1_1_1 will be compared with all partial fingerprints of the same sample but different

subjects. 1_1_1 will be compared with x_1_y, where 2<=x<=3 and 1<=y<=4. So there will

be eight imposter matches for 1_1_1.

The genuine and imposter matches are then used for calculation of FAR and FRR for

performance comparison.

4.3 Results

4.3.1 Cumulative Genuine Matches

A fingerprint is considered to have a cumulative genuine match for a rank N, if we take its

top N matches and at least X (here, X=1) of these N matches are genuine.

We have plotted the graph for N vs total percentage of partial fingerprints (provided it

follows FVC protocol) which have cumulative genuine matches if we consider top N

matches for each fingerprint. We have taken N from 1 to 20.

Since an algorithm is considered better if it has more number of cumulative genuine matches

for a rank N, the rsfAlgo outperforms bozorth3 in this regard but not to the same extent as

expected.

As we can see from the graphs below (Fig. 4.2), rsfAlgo has higher value for cumulative

percentage of genuine match for almost all ranks as compared to bozorth3 for both

databases. Both algorithms show greater changes in around smaller ranks, then the graphs

flatten out after rank 10.

28

 (a) (b)

Fig 4.2 Cumulative percentage (a) DB1_A (b) DB2_A

Tabular Representation

DB1_A

N 1 2 3 4 5 6 7 8 9 10

bozorth
3

71.86 79.74 83.68 85.93 87.43 88.93 90.43 91.37 91.74 92.87

rsfAlgo 73.73 80.11 83.86 86.49 88.18 89.31 91.37 91.93 92.68 93.62

Table 4.1 Cumulative percentage DB1_A

DB2_A

N 1 2 3 4 5 6 7 8 9 10

bozorth
3

70.83 76.33 80.67 83.83 85.67 87.17 88.17 89.17 89.50 90.50

rsfAlgo 70.67 78.83 82.83 84.33 85.67 88.00 89.17 90.00 91.00 91.67

Table 4.2 Cumulative percentage DB2_A

29

4.3.2 Master Fingerprints

A fingerprint is considered to be a master fingerprint for a rank N, if we take its top N

matches and at least X (here, X=4) of these N matches are imposter provided all of these X

imposter matches belong to different user’s fingerprint.

One of the main goals of any partial fingerprint matching algorithm is to limit imposter

matches to a minimum, and this parameter indicates how well it has achieved the goal. An

algorithm is considered to be better if it has lesser number of master fingerprints for a rank N.

The rsfAlgo outperforms bozorth3 in this regard too.

We have plotted the graph for N vs the total number of master fingerprints found if we

consider top N matches for each fingerprint (provided it follows FVC protocol). We have

taken N from X to X+10, i.e. 4 to 10.

As can be seen from the graphs below (Fig. 4.3), both algorithms perform almost equally

well, as the number of master fingerprints found are almost the same for different ranks in

both databases. The number of master fingerprints increases almost linearly up to rank 12 for

both algorithms, then the graph flattens out.

 (a) (b)

Fig. 4.3 Master Fingerprints (a) DB1_A (b) DB2_A

30

Tabular representation

N 4 5 6 7 8 9 10 11 12 13

bozorth
3

56 124 167 205 261 311 354 385 429 454

rsfAlgo 41 99 155 215 269 311 353 393 422 450

Table 4.3 Master Fingerprints (DB1_A)

N 4 5 6 7 8 9 10 11 12 13

bozorth
3

69 153 202 257 319 371 410 443 473 494

rsfAlgo 71 150 209 261 320 370 414 454 486 519

Table 4.4 Master Fingerprints (DB2_A)

4.3.3 FAR and FRR vs Threshold

A fingerprint identification system always accepts or rejects a user based on the predetermined

threshold (To). It accepts only if the matching score is greater than or equal to To.

One of the main goals of a fingerprint identification system is to minimize the false acceptance

rate (FAR) and false rejection rate (FRR). The point where FAR and FRR are equal is called

equal error rate (EER). The overall accuracy of a fingerprint system is determined by EER.

In order to determine To, we plot FAR and FRR vs threshold on the same graph. The threshold

for which FAR and FRR are equal is called To.

As can be seen from the graphs below (Fig. 4.4 and Fig. 4.5), with increasing threshold the

FAR (False Acceptance Rate) decreases and FRR (False Rejection Rate) increases. The desired

31

result is to have minimum percentage for both FAR and FRR, and the threshold value where

both these values are minimum (point where FAR and FRR curves intersect in graphs below) is

used by any fingerprint authentication system.

The graphs obtained for rsfAlgo are smoother as compared to those obtained from bozorth3

as the score values obtained using bozorth3 are integer and because of that we used only

integer values threshold, but with decimal score values of rsfAlgo fine tuning of threshold

values was possible. Both algorithms perform almost similarly in both databases.

 (a) (b)

Fig 4.4 FAR and FRR vs Threshold (a) DB1_A (bozorth3) (b) DB1_A (rsfAlgo)

Fig 4.5 FAR and FRR vs Threshold (a) DB2_A (bozorth3) (b) DB2_A (rsfAlgo)

32

 DB1_A(bozorth3) DB1_A(rsfAlgo) DB2_A(bozorth3) DB2_A(rsfAlgo)

EER 0.29 0.31 0.31 0.34

Threshold (To) 5.2 0.29 5.4 0.28

Table 4.5 EER and Threshold (To)

4.3.4 ROC Curve

Plot of FAR (accepted imposter attempts) on the x-axis and FRR (rejected genuine attempts)

on the y-axis as a parametric function of threshold t is called ROC(t) (Receiver Operating

Characteristic). EER (Equal Error Rate) can easily be found using ROC curve. Since EER is

the point where FAR and FRR are equal, we can get this point just by plotting y=x line. ROC

curve here indicates that bozorth3 has better accuracy than rsfAlgo i.e. bozorth3 has lower

FAR and FRR than rsfAlgo.

The graphs below (Fig. 4.6) can be used to calculate the EER (Equal Error Rate) – point

where FAR is equal to FRR. bozorth3 performs better as compared to rsfAlgo with less value

of EER (point where y=x line intersects the curves) for both databases.

Fig 4.6 ROC Curve (a) DB1_A (b) DB2_A

33

CHAPTER 5

Conclusion

This project work includes the robust implementation of a partial fingerprint matching

algorithm based on minutiae and ridge shape features (Lee et al. [1]) followed by a detailed

performance comparison of this algorithm with bozorth3 which uses minutiae as the only

feature. We used FVC2004 full fingerprint database to generate partial fingerprints of size

150x150, which were further used for performance analysis.

The algorithm based on RSF and minutiae features (rsfAlgo) gives an error rate of ~32%

where as bozorth3 which uses only minutiae features gives an error rate of ~30%. Bozorth3

clearly outperforms rsfAlgo based on accuracy but rsfAlgo produces better result if we

consider other parameters like minimization of master fingerprints, cumulative genuine

matches, etc. The score distribution in both of these algorithms differ greatly. In case of

bozorth3, we have encountered scores in the range of 0 to 200, most of the scores (>99%)

falling under 50. In case of rsfAlgo, we have encountered scores in a very compact range i.e.,

0 to 20 and most of them falling under 2.

Our implementation of rsfAlgo definitely does stand up to the result claimed by Lee et al. [1].

The difference in performance may be due to how partial fingerprints were generated for

result analysis.

We believe that ridge shape features may be very promising in order to make a robust partial

fingerprint identification system as it increases the number of extracted features immensely.

The importance to RSF in Lee et al. [1] was very low in comparison with minutiae

(importance ratio = 1:4). So, we believe that increasing its importance in the feature matching

algorithm may increase the overall accuracy of the partial fingerprint verification systems.

34

35

References

[1] Lee, W., Cho, S., Choi, H., & Kim, J. (2017). Partial fingerprint matching using minutiae and ridge

shape features for small fingerprint scanners. Expert Systems with Applications, 87, 183-198.

[2] Hong, L., Wan, Y., & Jain, A. (1998). Fingerprint image enhancement: algorithm and performance

evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 777-789.

[3] Zhao, F., & Tang, X. (2007). Preprocessing and postprocessing for skeleton-based fingerprint

minutiae extraction. Pattern Recognition, 40(4), 1270-1281.

[4] Chikkerur, S., Cartwright, A. N., & Govindaraju, V. (2006, January). K-plet and coupled BFS: a

graph based fingerprint representation and matching algorithm. In International Conference on

Biometrics (pp. 309-315). Springer, Berlin, Heidelberg.

[5] Zhao, Q., Zhang, D., Zhang, L., & Luo, N. (2010). High resolution partial fingerprint alignment using

pore–valley descriptors. Pattern Recognition, 43(3), 1050-1061.

[6] Tico, M., & Kuosmanen, P. (2003). Fingerprint matching using an orientation-based minutia

descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1009-1014.

[7] Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE

Transactions on Circuits and Systems for Video Technology, 14(1).

[8] Sharma, R., Mishra, N., & Yadav, S. K. (2013). Fingerprint recognition systems and techniques: A

survey. International Journal of Scientific & Engineering Research, 4(6), 1670.

[9] Ko, Kenneth. User's guide to nist biometric image software (nbis). No. NIST Interagency/Internal

Report (NISTIR)-7392. 2007.

[10] Cappelli, R., Maio, D., Maltoni, D., Wayman, J. L., & Jain, A. K. (2005). Performance evaluation

of fingerprint verification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(1), 3-18.

