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          PREFACE 
 

 
This report on “Performance Comparison of Two Algorithms for Partial Fingerprint 

Matching” is prepared under the guidance of Dr. Somnath Dey, Associate Professor, 

Discipline of Computer Science and Engineering, IIT Indore. 

 

Through this report, we have tried to provide a detailed description of a partial fingerprint 

matching algorithm based on minutiae and ridge shape features. We have implemented 

this algorithm in Python and C++ and performed an in-depth comparison against the 

results obtained from a standard tool (bozorth3) which uses minutiae as the only feature. 

We have tried to explain every step of our project in a simple and lucid manner. 
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   Abstract 
 
 

The sensing area in modern mobile devices like smartphones, tablets etc. is very small for 

capturing the full fingerprint image. The partial fingerprints captured by these sensors 

give unreliable results when used with full fingerprint matching algorithms using 

minutiae as the only feature. So, in order to make a robust partial fingerprint recognition 

system, matching algorithm for partial fingerprints should consider other features along 

with minutiae.   

 

In this project, we implemented a research paper (Lee et al. [1]) which uses additional 

features (here referred to as  ridge shape features (RSFs)) along with minutiae for partial 

fingerprint matching and performed an in-depth performance comparison with the 

standard algorithm called bozorth3 implemented by NBIS (NIST Biometric Image 

Software) which uses minutiae as the only feature. 

  

We used mindtct (a tool by NBIS) for extracting minutiae features and implemented the 

algorithm (Lee et al. [1]) in C++ and Python for extracting RSFs and final matching 

score. We created partial fingerprints from the standard dataset FVC2004 and used 

various parameters like cumulative genuine matches, false acceptance rate (FAR), false 

rejection rate (FRR), number of master prints and ROC curve for in-depth performance 

comparison. 

 

Though this algorithm outperforms bozorth3 in most cases, the result obtained was not as 

good as claimed by the paper (Lee et al. [1]).  
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CHAPTER 1 

Introduction 

 

Fingerprint identification system is one of the oldest and the most reliable biometric 

recognition system which takes a fingerprint image from an individual, extract different 

features from it, and then compares them against extracted features from fingerprints already 

present in the database as shown in Fig. 1.1. It is one of the most widely used and well-

known biometrics. Some of the reasons for their extensive use are uniqueness, consistency 

over time, inherent ease in acquisition, numerous sources (ten fingers per subject) available 

for collection. 

 

 

Fig. 1.1 Fingerprint Authentication System 

 

In the beginning, It was mainly used for criminal identification purposes by law enforcement 

agencies. But in the last few years, it has been implemented in almost every field where a 

person’s identification is important such as banking, college attendance, airport security, 

mobiles, laptops, etc. Modern mobile devices like smartphones, tablets, laptops have started 

to adopt miniaturized fingerprint scanners which capture only small partial fingerprint 

images. 

 

Since the number of features to be extracted depends on the area of fingerprint scanned, the 

algorithms used for full fingerprint matching does not perform well with partial fingerprints. 

Generally, full fingerprint matching algorithm uses minutiae as the only feature for matching 



2 
 

and for a successful match, it needs more than 12 matched minutiae pairs. However, partial 

fingerprint images scanned by miniaturized fingerprint scanners contain less than the 

required number of minutiae to make a robust decision. In order to make a robust partial 

fingerprint identification system, other features should be considered along with minutiae.  

 

1.1  General Fingerprint Matching Algorithm 

 

Fingerprint matching algorithm is the soul of any fingerprint identification system. The 

general steps of every fingerprint matching algorithm are very similar up to some extent as 

shown in Fig. 1.2. It takes two images (Template and Query) as input, applies image 

enhancement on them, extracts features, then finally applies a matching algorithm on 

extracted features to determine the extent of similarity between both images. Fingerprint 

matching algorithms may differ in how each step has been implemented, i.e. they may differ 

in how and what features are being extracted, how the images are being enhanced, etc.  

 

 

 

Fig. 1.2 General Fingerprint Matching Algorithm 

 

The working of a fingerprint matching algorithm is divided into following major steps : 

 

1. Image Enhancement: The images obtained from fingerprint scanners are generally 

not fit for feature extraction. They are processed to remove noise, improve image 

contrast and perform some minor reconstructions. 
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2. Feature Extraction: A fingerprint image is constituted of a set of ridgelines which 

generally run parallel, sometimes terminate and bifurcate. These ridge terminations 

and bifurcations are referred to as minutiae. The minutiae points obtained from both 

enhanced template and query image are passed to the matching algorithm for 

matching score calculation. 

 

3. Matching Algorithm: The features obtained from template and query image are 

passed as input to an algorithm which generally uses the position and orientation of 

these points for finding the matching pairs in order to determine the extent of 

similarity between both images.  

 

 

1.2 Partial Fingerprints and Need for Additional Features 

 

Most modern mobile devices like smartphones, tablets and laptops have started to adopt a 

miniaturized fingerprint scanner, which captures small partial fingerprint images. The 

algorithm used for full fingerprint matching generally relies on minutiae as the only feature 

and needs more than 12 matched minutiae pairs for a successful match. The partial 

fingerprint matching algorithm needs to consider additional features along with minutiae 

because the number of minutiae extracted from it is not enough to make a robust decision.  

Since only minutiae points cannot be relied upon for partial fingerprint matching,  additional 

features called ridge shape features (RSFs)  along with minutiae points are used for 

establishing the similarity between two partial fingerprint images. 
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1.3 Objectives 

 

This project aims to achieve the following objectives : 

 

1. Implementation of RSF extractor (Lee et al. [1]) in Python 

 

2. Implementation of feature matching algorithm (Lee et al. [1]) in Python and then in 

C++ for higher efficiency and speed.  

 

3. Generation of partial fingerprints from full fingerprints in FVC2004 dataset and 

calculation of matching scores for every pair of partial fingerprints using both 

algorithms, minutiae-based (here bozorth3) as well as minutiae + RSFs based (Lee et 

al. [1]). 

 

4.  In-depth performance comparison between the two algorithms using parameters like 

cumulative genuine matches, FAR (False Acceptance Rate), FRR (False Rejection 

Rate), number of master prints and ROC Curve. 
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CHAPTER 2 

Literature Review 

 

The major portion of our project was devoted to the implementation of a partial fingerprint 

matching algorithm based on minutiae and ridge shape features proposed by Lee et al.[1]. The 

complete algorithm involves different critical steps like image enhancement, feature 

extraction, pattern matching algorithm, etc., and all steps are not discussed in detail in this 

paper. In order to have a robust implementation, we had to study various works already done 

in this field. 

Hong et al. [2] proposed a very efficient and fast algorithm for fingerprint image 

enhancement in order to improve the overall accuracy of a fingerprint verification system. The 

clarity of a fingerprint image’s ridges and valleys structures is improved based on the pre-

estimated local ridge orientation and frequency. A fingerprint image is normalized using it’s 

local mean and variance followed by calculation of local orientation and the local frequency at 

each ridge point. Gabor filter tuned with local ridge orientation and ridge frequency is applied 

at each ridge point on the normalized image in order to improve its clarity. 

Zhao et al. [3] proposed an algorithm for skeleton-based fingerprint minutiae 

extraction. It computes the binary image from the input grayscale fingerprint image using an 

adaptive threshold algorithm followed by computing skeletonized image. Unlike most other 

algorithms, it uses the fingerprint valley instead of ridge for computing binarized and thinned 

images. Finally, minutiae points are computed from thinned image using the Rutovitz Crossing 

Number. It removes all the noises like spurious islands, spurs and bridges the image during 

binarization process only which allows detection of maximum number of minutiae points. 

Lee et al. [1] proposed a partial fingerprint matching algorithm which uses new 

features called ridge shape features (RSFs) along with the conventional minutiae features. The 

ridge segments which can be categorized into concave or convex segments are considered as 

ridge shape features. It finally proposes a matching algorithm incorporating RSFs along with 

minutiae in two stages i.e., minutiae matching and RSFs matching stages. In the minutiae 
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matching stage, each minutiae is redefined with its neighboring minutiae and RSFs called as 

its local structure and minutiae matching pairs are finally determined by comparing their local 

structures. Overlapped region with highest similarity between template and query images is 

further determined using matched minutiae pairs. RSF matching is further applied on this 

overlapped region in order to improve the overall matching accuracy. The scores obtained 

from both matching stages are combined to produce a final matching score which indicates the 

extent of similarity between template and query images. 

Chikkerur et al. [4] proposed a fingerprint matching algorithm based on graph 

matching principles. It defines a new representation called k-plet to encode the local structure 

of each minutiae. It also defines a CBFS (Coupled Breadth-First Search) algorithm to 

determine an overlapping region between query and template regions. CBFS algorithm is a 

dual graph traversal algorithm which is used to collect all the local adjacent matches, and 

these collected matched minutiae pairs further define the overlapped region. In order to sort 

out the ambiguities in matching minutiae pairs, it uses dynamic programming based 

optimizing approach.  

Tico et al. [6] proposed a fingerprint matching algorithm which uses an 

unconventional way to describe a minutiae. It uses orientation-based minutiae descriptor to 

represent the local structure of a minutiae. In order to define local structure of a central 

minutiae mc, it takes k concentric circles of different radii and then for each neighborhood 

minutiae which falls under any of these k concentric circles, relative orientation is estimated, 

and these neighborhood minutiae further define local structure of the central minutiae. The 

orientation-based descriptor for each minutiae pair is further used to estimate the similarity 

between template and query images. 

Zhang et al. [5] proposed an algorithm for high resolution partial fingerprint alignment 

using pore-valley descriptors. It utilizes the fact that even partial fingerprints contain enough 

pores to be considered as reliable features. At first, it extracts pores using a difference of 

Gaussian filtering approach and then defines a pore-valley descriptor for each pore feature 

using its local orientation and location. It further proposed a matching algorithm based on 

pore-valley descriptor in order to estimate the similarity between template and query images.  
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 Cappelli et al. [10] discusses performance evaluation for fingerprint verification 

systems in detail. It starts with in-depth description of FVC2004 database for full fingerprints 

and then further goes on to discuss testing protocols and important terms like genuine match, 

imposter match, false matching rate, false non-matching rate, etc. It also discusses about the 

performance evaluation method i.e., how the accuracy of a fingerprint verification system can 

be determined using different graph plots like ROC Curve, error rate vs threshold, cumulative 

matching curve (CMC), etc. 

Kenneth et al. [9] provides a detailed description about NIST Biometric Image Software 

(NBIS). It describes every detail about NBIS from installation process to algorithmic overview 

of each tool provided by it. It discusses some of the tools in great detail like mindtct (used for 

minutiae extraction), pcasys (fingerprint pattern classifier), imgtools (general purpose image 

utilities). It also provides an overview about bozorth3 (a fingerprint matching tool). 

 

  Algorithms and techniques described in these research papers helped us in some way in 

completing our project. Jain et al. [7] and Sharma et al. [8] provided us with great introduction 

to biometric and fingerprint verification systems respectively. Our aim was to implement 

partial fingerprint matching algorithm proposed by Lee et al. [1]. We had to refer to other 

research papers in order to implement different steps of the algorithm proposed by Lee et al. 

[1]. We implemented image enhancement algorithm proposed by Hong et al. [2] to generate an 

enhanced image and implemented thinning algorithm proposed by Zhao et al. [3] to generate 

skeleton image from the enhanced image. The skeleton image is further used to extract RSFs. 

We referred Kenneth et al. [9] for the details about mindtct and bozorth3. We used mindtct to 

extract minutiae features and bozorth3 as base fingerprint matching algorithm against which we 

performed an in-depth performance comparison of our implemented algorithm (Lee et al. [1]).  

We implemented CBFS algorithm proposed by Chikkerur et al. [4] in order to estimate 

overlapped regions between template and query images (it is an intermediate step in our 

implemented algorithm). We referred Cappelli et al. [10] for various protocols and parameters 

used in performance analysis of our implemented algorithm.  
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CHAPTER 3 

Partial Fingerprint Matching 

 

This chapter documents algorithmic overview of each step involved in partial fingerprint 

matching.  

 

3.1  Image Enhancement 

Feature extraction is a very critical step in any fingerprint identification system. However, 

the reliability and performance of a feature extraction algorithm depend heavily on the 

quality of the input fingerprint images. In order to make a robust fingerprint identification 

system, it becomes inevitable to incorporate image enhancement algorithm which ensures 

reliable feature extraction. 

 

Due to variations in impression conditions, skin conditions, acquisition devices (fingerprint 

scanners), etc., acquired fingerprint images are in general of poor quality. An ideal 

fingerprint image consists of ridges and valleys, which are alternate and flow in a locally 

constant direction. Thus, the goal of any image enhancement algorithm is to make a 

fingerprint image as ideal as possible.  

 

                          

    (a)            (b)   (c)            (d)   

Fig. 3.1.  Steps involved in Image enhancement algorithm and their outputs  (a) Input Image  (b) 

Normalized Image   (c) Enhanced Image  (d) Thinned/Skeletonized Image 
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In general, an image enhancement algorithm takes a fingerprint image as input, applies several 

preprocessing steps on it and finally produces an enhanced image with improved clarity of the 

ridge structures. 

 

We have tried to keep the details about our image enhancement algorithm to as minimum as 

possible. For detailed description, refer to Hong et al. [2] as we have followed this for our 

implementation. 

 

Steps : 

● Input 

It takes a grayscale image (size: 150x150) as input. 

 

● Normalization 

The foreground of input grayscale fingerprint image is segmented using the mean and 

variance of local pixel blocks so that it has prespecified mean and variance. 

 

● Local Orientation and Frequency Image Estimation 

The local orientation and frequency image represent intrinsic properties of the 

fingerprint images and define invariant coordinates for ridges and valleys in a local 

neighborhood. These are then fed to Gabor filter which filters the normalized image in 

order to produce the enhanced image. 

 

● Filtering 

Gabor filter which is tuned to local ridge orientation and ridge frequency is applied to 

the normalized image to produce the enhanced fingerprint image (refer to Fig. 3.1 (c)).  

 

● Skeletonization 

Ridges in the enhanced image are generally thick, i.e. many curved lines together form 

a ridge. The aim of skeletonization is to preserve the general structure and connectivity 

of each ridge but at the same time reduce the thickness of each ridge to one, i.e. now 
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only one curved line defines a ridge and this curved line is fully connected too (refer to 

Fig. 3.1(d)). 

 

3.2  Feature Extraction 

 

The fingerprint matching algorithm relies completely on the features extracted from a 

fingerprint image. Thus, the number of features extracted heavily affects the accuracy and 

performance of a fingerprint identification system. In general, full fingerprint image has more 

than 40 minutiae points, but partial fingerprint image has very less number of minutiae (< 

15). This is the reason why fingerprint identification system which deals with full fingerprint 

image considers minutiae as the only feature and still gives reliable performance.  

 

In order to ensure robust partial fingerprint identification system, other features must be 

considered if the matching algorithm relies completely on extracted features. This algorithm 

considers RSFs (ridge shape features) along with minutiae.   

 

3.2.1  Minutiae 

Minutiae are specific points on ridges of a fingerprint image. Generally, this includes points 

such as ridge bifurcation or ridge ending as shown in Fig. 3.2. 

 

Types of Minutiae : 

● Ridge bifurcation 

● Ridge ending 

 
Fig. 3.2 Minutiae 
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We have used mindtct (a tool by NBIS aka NIST Biometric Image Software) to detect 

minutiae points. Any fingerprint image which yields less than ten minutiae is ignored. 

Each minutiae point is described by its location (X-Y coordinates), orientation and degree of 

confidence. Here, the degree of confidence refers to how reliable the extracted minutiae point 

is.  

  

 

3.2.2  Ridge Shape Features 

 

When analyzing a fingerprint image, it can be seen that there are some segments of a ridge 

which are significantly wider or thinner as compared to their neighbors, these segments can 

be considered as convex and concave respectively as shown in Fig. 3.3. Each ridge point is 

determined to be either convex or concave in order to extract ridge shape features (RSF). 

These ridge features are actually continuous convex or concave ridge points and identifiable 

even if the images are of low resolution. We have tried to explain the process of extracting 

these features in detail. 

 

 

Fig. 3.3 convex and concave ridge segments (Lee et al. [1]) 
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Extraction of RSFs : 

1. Ridge Width Calculation 

● It needs enhanced image, thinned image and ridge orientation image as inputs. 

These images are calculated during image enhancement process. 

● For a particular ridge point 𝑅௣, 

○  determine the direction perpendicular to its local orientation 

○ travel in the upward direction of this perpendicular until a valley point 

(white pixel) 𝑉ଵ is encountered 

○ travel in the downward direction of this perpendicular until a valley 

point 𝑉ଶ is encountered 

○ Its ridge width 𝑟ௗ is the Euclidean distance between 𝑉ଵ and 𝑉ଶ. 

 

Fig. 3.4 shows how ridge width is determined.  

 

Fig.3.4 Ridge Width 

  

2. Estimation of Type for Each Ridge Point (Convex or Concave) 

After obtaining the ridge width at each point of the thinned ridgeline, each ridge point 

is determined whether it belongs to concave or convex segment by comparing its 

width with that of its neighboring ridge points (refer to Fig. 3.5 (a)).  Let 𝑥 be a ridge 

point on the thinned (skeletonized) image. The ridge width at point 𝑥 is compared 

with the ridge width of 𝑁 (ℎ𝑒𝑟𝑒, 𝑁 =  10) neighboring points on both sides, as 

shown in Fig 3.5. Each of these neighboring points 

𝑊௜ , 𝑖 = {1,2,3, . . , 𝑛} is categorized into one of the following categories. 

 



14 
 

 

𝑆(𝑖) = ቐ

𝑛,   𝑊௜ ≤ 𝑊௫ − 𝑇௪ (𝑛𝑎𝑟𝑟𝑜𝑤𝑒𝑟)
𝑠,  𝑊௫ − 𝑇௪ < 𝑊௜ < 𝑊௫ + 𝑇௪  (𝑠𝑖𝑚𝑖𝑙𝑎𝑟)

𝑤, 𝑊௫ + 𝑇௪ ≤ 𝑊௜ (𝑤𝑖𝑑𝑒𝑟)
 

 

Where, 

𝑊௫ is ridge with a point 𝑥. 

𝑊௜ is ridge width a neighboring point. 

𝑇௪ is threshold for comparing ridge widths. 

 

 

                                      (a)                                                                         (b) 

Fig 3.5 (a) Comparison of ridge width (b) convex and concave ridge segments (Lee et al. [1]) 

 

𝑆(𝑖) is assigned as 𝑛, 𝑤 or 𝑠 to each of the neighboring points based on the values  𝑊௜, 𝑊௫ 

and 𝑇௪ 

 

This is used to classify a ridge point as convex or concave. If more than half of 𝑁 neighbors 

are of type 𝑤, then point 𝑥 is classified as concave and if more than half of 𝑁 neighbours are 

of type 𝑛, then point 𝑥 is classified as convex. 

 

𝑇(𝑥) which denotes the type of ridge point is determined as follows : 
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𝑇(𝑥) =  

⎩
⎪
⎨

⎪
⎧𝑐𝑜𝑛𝑐𝑎𝑣𝑒,   ෍[𝑆(𝑖) = 𝑤] >

𝑁

2

ே

௜ୀଵ

𝑐𝑜𝑛𝑣𝑒𝑥, ෍[𝑆(𝑖) = 𝑛] >
𝑁

2

ே

௜ୀଵ

 

 

 

If we get a consecutive set of points which are either concave or convex, then they constitute 

a ridge segment which is our RSF (or ridge shape feature) as can be seen in Fig. 3.5 (b). We 

have considered that at least two consecutive points should belong to either concave or 

convex to consider the segment as RSF.  

 

An RSF 𝑟௞  is represented by a central ridge point in the RSF segment as follows : 

𝑟௞ = (𝑥௞, 𝑦௞, 𝜃௞, 𝑡௞) 

 

here, (𝑥௞, 𝑦௞) represents the position of the central ridge point of the segment, 𝜃௞ represents 

the ridge orientation at that position 𝑡௞  denotes the type of RSF (concave or convex). 

 

 

3.3  Matching Algorithm Using Minutiae and RSF 

 

 

 

Fig. 3.6 Matching algorithm flowchart 

  

This matching algorithm (refer to Fig. 3.6) incorporates RSFs along with minutiae to improve 

the accuracy of partial fingerprint matching. Using the local structure of each minutia, the 

algorithm first finds matched minutiae pairs. The linear transformation and the overlapped 

region are further determined using the top few matched pairs. Subsequently, the RSF 
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matching is performed in the overlapped region. Finally, the matching score is calculated 

using both minutiae-matching score and rsf-matching score. 

  

 

3.3.1  Local Structure Estimation 

 

In case of full fingerprints, the local structure of minutiae is typically determined using a 

fixed number of its nearest minutiae. Since the number of minutiae in a typical partial 

fingerprint image is not enough to determine its local structure, this algorithm uses RSFs 

along with minutiae.  

 

 

 Fig. 3.7. Local structure of a minutia (a) Red circles are minutiae (b) Blue triangles are RSFs 

 

 

 

Given a particular minutia, the sequential steps to determine its local structure are: 

 

● Consider this particular minutia as the center (denoted by 𝑚௖) of two concentric 

circles of radius 𝑅ଵ and 𝑅ଶ (𝑅ଵ > 𝑅ଶ) as shown in Fig. 3.7. We considered 𝑅ଵ = 60 

and 𝑅ଶ = 40. 

● Each minutia and RSF which lies inside the circle of radius 𝑅ଵ and 𝑅ଶ respectively is 

considered as its neighbor. 

● Each neighbor (denoted by 𝑛௞) is represented by  (𝛿௖,௞, 𝜃௖,௞, 𝜑௖,௞, 𝜏௞) 
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where,  

𝛿𝒄,𝒌 is the Euclidean distance between 𝑛௞ and 𝑚௖ 

𝜃௖,௞ is the orientation difference between 𝑛௞ and 𝑚௖  

𝜑
௖,௞

 is the directional difference between 𝑛௞ and 𝑚௖  

𝜏௞ is  the type of 𝑛௞ (0: minutia, 1: convex RSF,  -1: concave RSF) 

● Set of all 𝑁 neighbors of 𝑚௖ represented as (𝛿௖,௞ , 𝜃௖,௞, 𝜑௖,௞ , 𝜏௞) where 1 ≤ 𝑘 ≤ 𝑁, 

defines its local structure.  

It can be represented as 

𝐿(𝑚௖) = ൛(𝛿௖,௞ , 𝜃௖,௞ , 𝜑௖,௞, 𝜏௞൯ | 1 ≤ 𝑘 ≤ 𝑁} 

 

 

3.3.2 Optimal Similarity Score Calculation 

 

The goal of the matching algorithm for a minutiae pair is to align their local structures in 

such a way that matching minutiae pairs in their local structure produces maximum similarity 

score.  

We have used dynamic programming to get all the matching pairs and the maximum 

similarity score by comparing their local structures. The maximum similarity score here is 

called the optimal similarity score. 

 

The similarity score of minutiae pair (𝑚் , 𝑚ொ) can be defined as : 

 

𝑆௟௠(𝑚் , 𝑚ொ) =
𝑆௠(𝑚் , 𝑚ொ) + 𝑆௥(𝑚் , 𝑚ொ)

2
 

 

where, 

𝑆௞(𝑚், 𝑚ொ) =
2∑𝑀𝐶𝑆൫𝑛௜

், 𝑛௝
ொ൯

𝑁் + 𝑁ொ
 , 𝑘 = {𝑚, 𝑟} 

  

Here, 𝑆௞(𝑚் , 𝑚ொ) is the similarity and 𝑀𝐶𝑆(𝑛௜
், 𝑛௝

ொ
) is the matching certainty score, as 

explained below:  
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● Matching Certainty Score 

The matching certainty score between 𝑛௜
்and 𝑛௝

ொ (neighbors of 𝑚் and 𝑚ொ 

respectively) depends directly on the difference of their representation, i.e. 

topological properties with respect to the central minutiae. 

 It is calculated as follows: 

 

𝑀𝐶𝑆൫𝑛௜
், 𝑛௝

ொ൯ = ቐ
𝑇 − ห𝑛௜

் − 𝑛௝
ொห

𝑇
,   𝑖𝑓 ห𝑛௜

் − 𝑛௝
ொห < 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where, 

 𝑇 is the threshold for matching certainty. 

● Similarity 

The similarity is always calculated between any minutiae pair (𝑚் , 𝑚ொ) by matching 

neighboring minutiae or neighboring RSF denoted by 𝑆௠ and 𝑆௠ respectively. 

  

 

 

3.3.3  Minutiae Matching Rate and Overlapped Region 

 

After calculating optimal similarity scores for each minutiae pair (𝑚் , 𝑚ொ),  top 𝑁 (in our 

experiment, 𝑁 = 7) matched pairs are selected as the initially matched minutiae pairs which 

are further used to determine 𝑁 overlapped regions. Each region has its own score called 

minutiae matching rate (𝑚𝑚𝑟) as given by : 

 

𝑚𝑚𝑟 =
2 ∑ 𝑆௟௠(𝑚௨

் , 𝑚௨
ொ

)
ெ೘
௨ୀଵ

(𝑁௠,௢
் + 𝑁௠,௢

ொ
)

 

 

 

where, 

𝑁௠,௢
்  and 𝑁௠,௢

ொ
 are the total number of minutiae within the overlapped region of 

template and query image. 
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𝑀௠ is the number of matched minutiae in the overlapped region. 

𝑆௟௠(𝑚௨
் , 𝑚௨

ொ) is the similarity of matched minutiae pair ൫𝑚௨
் , 𝑚௨

ொ൯. 

 

We implemented central breadth-search algorithm (Chikkerur et al. [4]) in order to determine 

the overlapped region. In this algorithm, we start with one matched minutiae pair and 

incrementally find other matching minutiae pairs. These matching pairs finally decide the 

overlapped region between template and query images. 

 

The matched minutiae pairs within the overlapped region are further used to calculate linear 

transformation for each region. 

 

3.3.4  RSF Matching 

 

The overlapped region with highest 𝑚𝑚𝑟 is further used for RSF matching. For each RSF 

point 𝑅் in the template image, we take its projection on the query image using the linear 

transformation. It is very unlikely that 𝑅்ᇱ
 would match exactly with any of the RSF point 𝑅ொ 

on the query image. In order to determine the corresponding projection of 𝑅் in the query 

image, we take all neighboring RSF 𝑅ொ of 𝑅்ᇱ
 within the distance of 𝑅௖ (𝑅௖ = 20 in our 

experiment) and find similarity between all RSF pairs (𝑅், 𝑅ொ) just like we did with minutiae. 

 

Let 𝑀௠ be the set of all matched minutiae pairs within the overlapped region. The local 

structure of each minutiae 𝑅ொ or 𝑅் is calculated as follows : 

● Choose 𝐾 nearest minutiae of 𝑅்  among the matched minutiae pairs in the template 

region. 

 𝐾 =  𝑚𝑖𝑛(5, |𝑀௠|) 

● Represent the local structure of 𝑅் as a set of 𝐾 nearest minutiae in the relative form, 

i.e., relative distance, radial angle and the orientation difference. 

● Now, In order to determine the local structure of 𝑅ொ, take corresponding matched 

minutiae of 𝐾 nearest neighbor of 𝑅் in the query image and represent its local 

structure just like 𝑅். 
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After calculating local structure for RSF pair (𝑅், 𝑅ொ), calculate its similarity using the 

following formula: 

 

𝑆௟௥(𝑅், 𝑅ொ) =
∑ 𝑀𝐶𝑆(𝑚௝

் , 𝑚௝
ொ

)௞
௝ୀଵ

𝑘
 

 

where,  

𝑘 is the number of neighbours as explained above. 

(𝑚௝
், 𝑚௝

ொ) is a matched minutia pair. 

𝑀𝐶𝑆൫𝑚௝
் , 𝑚௝

ொ൯ is the Matching Certainty Score for minutiae pair (𝑚௝
் , 𝑚௝

ொ
). This is 

similar to the one explained for minutiae. 

 

Let’s denote 𝑅௠ as the set of matched minutiae pairs and initially it is empty. Now, apply the 

greedy approach to find all the matched RSF pairs.  

Steps to find matching RSF pairs: 

● Sort all the RSF pairs based on its similarity in descending order. 

● .Now, for each RSF pair (𝑅் , 𝑅ொ), check if any of 𝑅் or 𝑅ொ is in the 𝑅௠. 

○ If yes, then ignore it and process the next RSF pair in the sorted list 

○ else, put this pair in 𝑅௠  and process the next RSF pair in the sorted list 

 

 

3.3.5  Fusion of Matching Scores 

 

Now, we have the overlapped region with highest minutiae matching rate denoted by 𝑚𝑚𝑟, a 

set of matched minutiae and RSF pairs in this overlapped region dented by  𝑀௠ and 𝑅௠ 

respectively. In order to find the final matching score which will determine the extent of 

similarity between the template and query image, we combine 𝑆௠ (minutiae-matching score) 

and 𝑆௥௦௙ (RSF-matching score) using a weighing factor 𝜆.  
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Minutiae-matching score (𝑆௠) can be calculated as : 

𝑆௠ = 𝑚𝑚𝑟 ⋅
2𝑀௠

൫𝑁௠,௧
் + 𝑁௠,௧

ொ ൯
 

 

where,  

𝑁௠,௧
்  and 𝑁௠,௧

ொ  are the total number of minutiae in template and query image, 

respectively. 

 

The RSF matching score (𝑆௥௦௙) is similarly calculated as : 

 

𝑆௥௦௙ =
2 ∑ 𝑆௟௥(𝑟௩

் , 𝑟௩
ொ

)
ெೝ
௩ୀଵ

𝑁௥,௢
் + 𝑁௥,௢

ொ ⋅
2𝑀௥

𝑁௥,௧
் + 𝑁௥,௧

ொ  

 

where, 

𝑆௟௥(𝑟௩
் , 𝑟௩

ொ
) is the similarity score of matched RSF pair (𝑟௩

், 𝑟௩
ொ

). 

𝑀௥ is the number of matched RSF pairs. 

𝑁௥,௢
்  and 𝑁௥,௢

ொ  are the total number of RSFs in the overlapped region of template and 

query images. 

𝑁௥,௧
்  and 𝑁௥,௧

ொ  are the total number of RSFs in template and query images. 

 

Final score 𝑆௧௢௧௔௟  can be calculated as : 

 

𝑆௧௢௧௔௟ = 𝜆 ⋅ 𝑆௠ + (1 − 𝜆) ⋅ 𝑆௥௦௙  

where, 

𝜆 is the weighing factor and 0 <= 𝜆 <= 1. 

 

𝜆 can be calculated as follows : 

 

𝜆 =
𝑁௠,௧

் + 𝑁௠,௧
ொ

൫𝑁௠,௧
் + 𝑁௠,௧

ொ ൯ + 𝛼௥௦௙(𝑁௥,௧
் + 𝑁௥,௧

ொ )
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where, 

𝛼௥௦௙ is the weight of the RSF which assigns relative importance of RSF to the 

minutiae feature.  

In our experiment, 𝛼௥௦௙ = 0.2. 

 

3.4  Matching Algorithm Using Minutiae Only (bozorth3) 

 

We have used bozorth3 (a tool by NBIS) which only minutiae as the feature to calculate 

matching score between query and template images. It is one of the standard tools used in the 

full fingerprint identification system. Since we have implemented this algorithm, we won’t 

discuss it in detail in this report. 

 

We have used bozorth3 client provided with NBIS package to calculate the score between 

each pair of partial fingerprint images in each database used for performance analysis (refer 

to NBIS documentation for how to use bozorth3). 
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CHAPTER 4 

Performance Analysis 

 

This section contains an in-depth performance analysis of two algorithms for partial 

fingerprint matching. We have already discussed the minutiae + RSF based algorithm in 

detail in chapter 3. As another one of the two algorithms, we have used bozorth3, a tool for 

fingerprint matching by NIST Biometric Image Software (NBIS),  which uses minutiae as the 

only feature. We have created results for the same dataset using both of these algorithms and 

tried to analyze using various parameters. 

 

For the remaining part of this chapter, we will refer the minutiae + RSF based algorithm as 

rsfAlgo and the other algorithm as bozorth3. 

 

4.1 Dataset 

 

The databases used for performance analysis of both algorithms are taken from FVC2004. It 

has four databases namely DB1, DB2, DB3 and DB4. Each one has two sets A and B like 

DB1_A and DB1_B. Set A of each database contains fingerprints of 100 users with each user 

having eight samples of the same fingerprint resulting in 800 (100x8) fingerprint images. Set 

B has fingerprints for only ten users with each user having eight samples of the same 

fingerprint. 

    

We have used databases DB1 and DB2  to create results using both of the algorithms. Since 

all these databases contain full fingerprint images, we had to create partial fingerprint images 

from these full images as discussed below. 

 

The partial fingerprints which are used for testing both algorithms are taken to be of (150 X 

150) pixels in size. We take each sample of every subject and generate 150 X 150 partial 

fingerprints from it in the following way: 
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1. Take a 150 X 150 square image from the top left corner of the full fingerprint image. 

Iterate row-wise as well as column-wise taking jumps of 75 pixels. Include all of 

these images as the partial fingerprints for testing. 

 

2. The partial fingerprints generated are checked for the number of minutiae points 

using mindtct. If the number of minutiae points in a partial fingerprint comes out to 

be less than 10, then that partial fingerprint is not considered and rejected from the 

database. 

 

All the partial fingerprints generated from each sample of all subjects with greater than or 

equal to 10 minutiae points are used for testing purposes. 

 

 

4.2 Performance Parameters and Protocols 

 

This section explains all the parameters and protocols used for performance analysis further 

in section 3 of this chapter.  

 

 

4.2.1 Performance Parameters 

 

Genuine Score: The score obtained by comparing two samples of the same fingerprint is 

considered as a genuine score. 

 

Imposter Score: When a score is not genuine, it is considered to be an imposter score. 

 

FAR (False Acceptance Rate): False Acceptance Rate shows the likelihood that a biometric 

identification system will accept an access attempt by an unauthorized user. 

OR 

𝐹𝐴𝑅 =
𝐼𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
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FRR (False Rejection Rate): False rejection rate shows the likelihood that a genuine user is 

rejected access by a biometric identification system. 

 

OR 

𝐹𝑅𝑅 =
𝐺𝑒𝑛𝑢𝑖𝑛𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 

 

 

EER (Equal Error Rate): EER is the point where False Acceptance Rate is equal to False 

Rejection Rate. 

 

4.2.2 Protocol 

 

FVC protocol has been used for calculation of FAR (False Acceptance Rate) and FRR (False 

Rejection Rate). The categorization of genuine and imposter is done in the following way 

when using FVC protocol. 

 

One partial fingerprint of a sample is compared with all partial fingerprints of some other 

sample of the same subject. Maximum of the comparison scores is taken for comparison with 

the threshold to decide whether it’s a match or not. This constitutes a single genuine match.  

 

One partial fingerprint of a sample of some subject when compared with a partial fingerprint 

of the same sample of some other subject, then it constitutes a single imposter match. 
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Fig. 4.1 Sample Testing Database 

 

 

The above Fig. 4.1 shows a sample database in which each partial fingerprint is represented in 

subjectId_sampleId_partialfingerprintId format. 

 

Let’s consider genuine and imposter matches for 1_1_1. 1_1_1 will act as our probe fingerprint 

image, which will be compared with fingerprint images of the same subject as well as with the 

fingerprint images of other subjects and same sampleId, these constitutes the gallery fingerprint 

images. 1_1_1 is compared with 1_2_1, 1_2_2, 1_2_3 and 1_2_4, the maximum score out of 

these four is taken for comparison with threshold and this constitutes a single genuine. So we 

will have two genuine matches for 1_1_1, one with sample 2 and another with sample 3 of the 

same subject. 
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1_1_1 will be compared with all partial fingerprints of the same sample but different 

subjects. 1_1_1 will be compared with x_1_y,  where 2<=x<=3 and 1<=y<=4. So there will 

be eight imposter matches for 1_1_1.   

 

The genuine and imposter matches are then used for calculation of FAR and FRR for 

performance comparison. 

 

4.3 Results 

 

4.3.1 Cumulative Genuine Matches 

 

A fingerprint is considered to have a cumulative genuine match for a rank N, if we take its 

top N matches and at least X (here, X=1) of these N matches are genuine. 

 

We have plotted the graph for N vs total percentage of partial fingerprints (provided it 

follows FVC protocol) which have cumulative genuine matches if we consider top N 

matches for each fingerprint. We have taken N from 1 to 20. 

Since an algorithm is considered better if it has more number of cumulative genuine matches 

for a rank N, the rsfAlgo outperforms bozorth3 in this regard but not to the same extent as 

expected. 

 

As we can see from the graphs below (Fig. 4.2), rsfAlgo has higher value for cumulative 

percentage of genuine match for almost all ranks as compared to bozorth3 for both 

databases. Both algorithms show greater changes in around smaller ranks, then the graphs 

flatten out after rank 10. 
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   (a)             (b) 

Fig 4.2 Cumulative percentage (a) DB1_A (b) DB2_A 

 

 

Tabular Representation 

DB1_A 

N 1 2 3 4 5 6 7 8 9 10 

bozorth
3 

71.86 79.74 83.68 85.93 87.43 88.93 90.43 91.37 91.74 92.87 

rsfAlgo 73.73 80.11 83.86 86.49 88.18 89.31 91.37 91.93 92.68 93.62 

Table 4.1 Cumulative percentage DB1_A  

 

DB2_A 

N 1 2 3 4 5 6 7 8 9 10 

bozorth
3 

70.83 76.33 80.67 83.83 85.67 87.17 88.17 89.17 89.50 90.50 

rsfAlgo 70.67 78.83 82.83 84.33 85.67 88.00 89.17 90.00 91.00 91.67 

Table 4.2 Cumulative percentage DB2_A 
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4.3.2 Master Fingerprints 

 

A fingerprint is considered to be a master fingerprint for a rank N, if we take its top N 

matches and at least X (here, X=4) of these N matches are imposter provided all of these X 

imposter matches belong to different user’s fingerprint. 

 

One of the main goals of any partial fingerprint matching algorithm is to limit imposter 

matches to a minimum, and this parameter indicates how well it has achieved the goal. An 

algorithm is considered to be better if it has lesser number of master fingerprints for a rank N. 

The rsfAlgo outperforms bozorth3 in this regard too.  

 

We have plotted the graph for N vs the total number of master fingerprints found if we 

consider top N matches for each fingerprint (provided it follows FVC protocol). We have 

taken N from X to X+10, i.e. 4 to 10.  

 

As can be seen from the graphs below (Fig. 4.3), both algorithms perform almost equally 

well, as the number of master fingerprints found are almost the same for different ranks in 

both databases. The number of master fingerprints increases almost linearly up to rank 12 for 

both algorithms, then the graph flattens out. 

 

             

 

   (a)            (b) 

Fig. 4.3 Master Fingerprints (a) DB1_A (b) DB2_A 
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Tabular representation 

 

N 4 5 6 7 8 9 10 11 12 13 

bozorth
3 

56 124 167 205 261 311 354 385 429 454 

rsfAlgo 41 99 155 215 269 311 353 393 422 450 

Table 4.3 Master Fingerprints (DB1_A) 

 

N 4 5 6 7 8 9 10 11 12 13 

bozorth
3 

69 153 202 257 319 371 410 443 473 494 

rsfAlgo 71 150 209 261 320 370 414 454 486 519 

Table 4.4 Master Fingerprints (DB2_A) 

 

 

4.3.3 FAR and FRR vs Threshold 

 

A fingerprint identification system always accepts or rejects a user based on the predetermined 

threshold (To). It accepts only if the matching score is greater than or equal to To.  

 

One of the main goals of a fingerprint identification system is to minimize the false acceptance 

rate (FAR) and false rejection rate (FRR). The point where FAR and FRR are equal is called 

equal error rate (EER). The overall accuracy of a fingerprint system is determined by EER. 

 

 

In order to determine To, we plot FAR and FRR vs threshold on the same graph. The threshold 

for which FAR and FRR are equal is called To. 

 

As can be seen from the graphs below (Fig. 4.4 and Fig. 4.5), with increasing threshold the 

FAR (False Acceptance Rate) decreases and FRR (False Rejection Rate) increases. The desired 
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result is to have minimum percentage for both FAR and FRR, and the threshold value where 

both these values are minimum (point where FAR and FRR curves intersect in graphs below) is 

used by any fingerprint authentication system. 

 

The graphs obtained for rsfAlgo are smoother as compared to those obtained from bozorth3 

as the score values obtained using bozorth3 are integer and because of that we used only 

integer values threshold, but with decimal score values of rsfAlgo fine tuning of threshold 

values was possible. Both algorithms perform almost similarly in both databases.       

                

 

 

                                     (a)      (b) 

Fig 4.4 FAR and FRR vs Threshold (a) DB1_A (bozorth3) (b) DB1_A (rsfAlgo) 

 

 

 

Fig 4.5 FAR and FRR vs Threshold (a) DB2_A (bozorth3) (b) DB2_A (rsfAlgo) 
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 DB1_A(bozorth3) DB1_A(rsfAlgo) DB2_A(bozorth3) DB2_A(rsfAlgo) 

EER 0.29 0.31 0.31 0.34 

Threshold (To) 5.2 0.29 5.4 0.28 

Table 4.5 EER and Threshold (To) 

 

4.3.4  ROC Curve 

 

Plot of FAR (accepted imposter attempts) on the x-axis and FRR (rejected genuine attempts) 

on the y-axis as a parametric function of threshold t is called ROC(t) (Receiver Operating 

Characteristic). EER (Equal Error Rate) can easily be found using ROC curve. Since EER is 

the point where FAR and FRR are equal, we can get this point just by plotting y=x line. ROC 

curve here indicates that bozorth3 has better accuracy than rsfAlgo i.e. bozorth3 has lower 

FAR and FRR than rsfAlgo. 

 

The graphs below (Fig. 4.6) can be used to calculate the EER (Equal Error Rate) – point 

where FAR is equal to FRR. bozorth3 performs better as compared to rsfAlgo with less value 

of EER (point where y=x line intersects the curves) for both databases. 

 

 
Fig 4.6 ROC Curve (a) DB1_A  (b) DB2_A 
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CHAPTER 5 

Conclusion 

      

This project work includes the robust implementation of a partial fingerprint matching 

algorithm based on minutiae and ridge shape features (Lee et al. [1]) followed by a detailed 

performance comparison of this algorithm with bozorth3 which uses minutiae as the only 

feature. We used FVC2004 full fingerprint database to generate partial fingerprints of size 

150x150, which were further used for performance analysis. 

 

The algorithm based on RSF and minutiae features (rsfAlgo) gives an error rate of ~32% 

where as bozorth3 which uses only minutiae features gives an error rate of ~30%. Bozorth3 

clearly outperforms rsfAlgo based on accuracy but rsfAlgo produces better result if we 

consider other parameters like minimization of master fingerprints, cumulative genuine 

matches, etc. The score distribution in both of these algorithms differ greatly. In case of 

bozorth3, we have encountered scores in the range of 0 to 200, most of the scores (>99%) 

falling under 50. In case of rsfAlgo, we have encountered scores in a very compact range i.e., 

0 to 20 and most of them falling under 2. 

 

Our implementation of rsfAlgo definitely does stand up to the result claimed by Lee et al. [1]. 

The difference in performance may be due to how partial fingerprints were generated for 

result analysis. 

 

We believe that ridge shape features may be very promising in order to make a robust partial 

fingerprint identification system as it increases the number of extracted features immensely. 

The importance to RSF in Lee et al. [1] was very low in comparison with minutiae 

(importance ratio = 1:4). So, we believe that increasing its importance in the feature matching 

algorithm may increase the overall accuracy of the partial fingerprint verification systems. 
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