
B.TECH. PROJECT
REPORT

On

Multi-label Classification
of Genome Data using Soft

Computing
BY

Sahaj Khandelwal, 160001052
&

Niranjan Joshi, 160001026

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

November, 2019

Multi-label Classification of Genome
Data using Soft Computing

PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Sahaj Khandelwal, 160001052
&

Niranjan Joshi, 160001026,

Discipline of Computer Science and Engineering,

Indian Institute of Technology, Indore

Guided by:

Dr. Aruna Tiwari,

Associate Professor,

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
November, 2019

iii

CANDIDATES’ DECLARATION

We hereby declare that the project entitled “Multi-label Classification of Genome Data
using Soft Computing” submitted in partial fulfillment for the award of the degree of
Bachelor of Technology in ‘Computer Science and Engineering’ completed under the
supervision of Dr. Aruna Tiwari, Associate Professor, Computer Science and Engi-
neering, IIT Indore is an authentic work.

Further, we declare that we have not submitted this work for the award of any other
degree elsewhere.

Sahaj Khandelwal Niranjan Joshi

CERTIFICATE by BTP Guide

It is certified that the above statement made by the student is correct to the best of my
knowledge.

Dr. Aruna Tiwari,
Associate Professor,

Discipline of Computer Science and Engineering,
IIT Indore

v

PREFACE

This report on "Multi-label Classification of Genome Data using Soft Computing" is
prepared under the guidance of Dr. Aruna Tiwari, Associate Professor, Computer Sci-
ence and Engineering, IIT Indore.

Through this report, we have tried to provide a detailed description of our approach,
design, and implementation of an innovative method to perform Multi-label Classifica-
tion for Genome Data. We tried to analyze the dataset and perform filtering through
various measures. While proposing improvements in the existing models to perform
the classification, we also devised a heuristic approach to handle the data imbalance
encountered during the classification of a multi-label dataset. The weight modulation
techniques used to improvise on the precision and recall of the individual label samples
have been thoroughly described.

We have tried our best to explain the proposed solution, along with the detailed
analysis of our devised heuristic approach to handle the data imbalance found in the
multi-label dataset used for classification.

vii

ACKNOWLEDGEMENTS

We want to thank our B.Tech Project supervisor Dr. Aruna Tiwari for her guid-
ance and constant support in structuring the project and providing valuable feedback
throughout the course of this project. Her overseeing the project meant there was a lot
that we learnt while working on it. We thank her for her time and efforts.

We are grateful to Mr. Vikas Chauhan, without whom this project would have been
impossible. He provided valuable guidance to handle the delicacies involved in the
project and also taught us how to write a scientific paper.

We are grateful to the Institute for the opportunity to be exposed to systemic re-
search, especially Dr. Aruna Tiwari’s Lab, for providing the necessary hardware utilities
to complete the project.

Lastly, we offer our sincere thanks to everyone who helped us complete this project,
whose name we might have forgotten to mention.

Sahaj Khandelwal & Niranjan Joshi,
B.Tech. 4th Year

Discipline of Computer Science and Engineering,
IIT Indore

ix

ABSTRACT

Biological data mining aims to extract meaningful information from DNA, RNA and
proteins. The information could pertain to clustering and classification rules between
functionalities and gene families. Classification of genome data is naturally a widely
studied and essential area of research nowadays, with a whole field of molecular bi-
ology and functional genomics dedicated to understanding the gene functions from
genome data.

Through this work, we propose an efficient method to classify the proteins into their
functional classes through multi-label classification using soft-computing techniques.
Along with achieving high efficiency in classifying the proteins, we propose a heuris-
tic approach to improve the precision and recall in predicting the individual functional
classes. The effectiveness of the proposed heuristics is evaluated through testing and
comparing with various models based on ANN architecture, using the performance
metrics such as precision, recall, AUC and subset accuracy. The proposed approach
is found to result in a substantial increase in the precision and recall of the individual
functional classes, also called labels.

Artificial neural networks (ANNs) have climbed up to popularity among various
machine learning tools, owing to the recent success achieved in image and sound pro-
cessing classification problems. Here, we apply ANNs to predict the functional classes
the proteins belong to, knowing their residue sequence. Through various experimen-
tation in the model architecture, we studied the variation of prediction effectiveness
with the properties of ANN. Here we present a new ANN with multi-label classifica-
tion ability, showing impressive accuracy when classifying protein sequences into 1665
Gene Ontology classes (AUC=99.94%).

The greatest challenge with multi-label classification is to handle the data imbalance,
which appears due to variance in frequencies of the labels. This is handled through
weight modulation in the loss function, to influence the learning process. The heuristic
approach proposed can further be extended to construct methodologies for performing
a better multi-label classification.

xi

Contents

CANDIDATES’ DECLARATION iii

CERTIFICATE by BTP Guide iii

PREFACE v

ACKNOWLEDGEMENTS vii

ABSTRACT ix

Contents xi

List of Tables xiii

List of Figures xv

List of Abbreviations xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem Specification . 2
1.3 Objectives . 3

2 Literature Survey 5
2.1 Multi-Label Classification . 5
2.2 Loss Function . 6
2.3 Model Performance Evaluation . 6

3 Analysis and Design 9
3.1 Data Representation . 9
3.2 1-D Convolution Algorithm . 10

4 Experiments and Results 11
4.1 Datasets . 11

4.1.1 Data Extraction . 11
4.1.2 Data Pre-Processing . 11

4.2 Experimental Setup . 12
4.2.1 Model Architecture . 12
4.2.2 Experimentation with model architecture 12

4.3 Results and Discussion: . 23
4.3.1 Loss function with weights . 23

xii

4.3.2 Heuristics to improve Precision and Recall 24
4.3.3 Summary of the results . 29

5 Conclusion and Future Work 31

Bibliography 33

xiii

List of Tables

3.1 Essential Amino Acids . 9
3.2 1-D convolution with kernel size 5 stride 1 10

4.1 model 0 . 12
4.2 model 1 . 13
4.3 model 2 . 14
4.4 model 3 . 14
4.5 model 4 . 15
4.6 model 5 . 16
4.7 model 6 . 17
4.8 model 7 . 18
4.9 model 8 . 19
4.10 model 9 . 20
4.11 model 10 . 21
4.12 Results after applying the above heuristic approach 26
4.13 Summary of the results . 29

5.1 Results . 31

xv

List of Figures

4.1 Precision of models . 21
4.2 Recall of models . 22
4.3 AUC of models . 22
4.4 Label Frequency Distribution . 23
4.5 Precision and Recall vs Label Frequency . 24
4.6 Plot of Recall for individual Labels for Models - 10,11 and 12. Model 12

obtained from substituting weights of Model 10 in Model 11. 26
4.7 Plot of Precision for individual Labels for Models - 10,11 and 13. Model

13 obtained from substituting weights of Model 11 in Model 10. 27
4.8 Plot of Recall for individual Labels for Models - 11,13 and 14. Model 14

obtained from substituting weights of Model 13 in Model 11. 27
4.9 Plot of Precision for individual Labels for Models - 11,13 and 15. Model

15 obtained from substituting weights of Model 11 in Model 13. 28
4.10 Plot of Precision for individual Labels for Models - 11,14 and 16. Model

16 obtained from substituting weights of Model 11 in Model 14. 28

xvii

List of Abbreviations

ANN Artificial Neural Network
CNN Convolutional Neural Network
TP True Positive
FP False Positive
TN True Negative
FN False Negative
AUC Area Under Curve
ROC Receiver Operating Characteristic
SA Subset Accuracy
avg average

1

Chapter 1

Introduction

1.1 Background

Genomics is an interdisciplinary field of biology focusing on the structure, function,
evolution, mapping, and editing of genomes. A genome is an organism’s complete set
of DNA, including all of its genes. Genes may direct the production of proteins with the
assistance of enzymes and messenger molecules. In turn, proteins make up body struc-
tures such as organs and tissues as well as control chemical reactions and carry signals
between cells. Genomics also involves the sequencing and analysis of genomes through
uses of high throughput DNA sequencing and bioinformatics to assemble and analyze
the function and structure of entire genomes.

Proteins are vastly studied in highly sophisticated laboratories, using advanced com-
putational approaches. One of the most important problems, revolving around protein
studies is the functional annotation/classification of proteins, using only structural in-
formation[1]. The problem of functionally annotating the proteins refers to classifying
proteins into various functional categories, based upon the available structural infor-
mation of the proteins. Classification of proteins based on the structural organization
takes place on four different levels: primary, secondary, tertiary, and quaternary struc-
ture. The sequence of amino acids in the polypeptide chain is referred to by the primary
structure of the protein. The secondary structure represents the highly regular local sub-
structures on the polypeptide backbone chain. There are two main types of secondary
substructure classification categories: the α-helix and the β-strand or β-sheets. Tertiary
structure refers to the three-dimensional geometry of the folded substructures. Quater-
nary structure is the three-dimensional structure consisting of the aggregation of two or
more individual polypeptide chains (subunits) that operate as a single functional unit.
Hence, the complexity of the protein structure increases from the primary structure to
the quaternary structure.

The problem of functional annotation of proteins elevates with a deficiency in the amount
of structural information available about the protein. With the knowledge of tertiary
and quaternary structures of protein, it is possible to find certain distinguishing char-
acteristics of the protein, that dictate its main functionalities. Whereas, only the knowl-
edge of the primary structure of the proteins makes it more challenging to make a cor-
rect functional annotation to the macro-molecules. This can be viewed as knowing only
a high-dimensional representation of the protein structure, where the dimension corre-
sponds to the length of the amino acid sequence.

2 Chapter 1. Introduction

One of the possible methods to do this annotation would be to apply a sequence align-
ment based similarity search between the input sequence and a properly chosen func-
tionally annotated database[1]. Many algorithms, such as the exact Smith-Waterman al-
gorithm[2, 3], BLAST[4], or hidden Markov-model based search[5, 6, 7] can be used for
sequence alignment. Once the most similar sequence to the input sequence is found in
the database, its functional annotation is assigned to the input sequence. In other words,
the input is assigned the function of the most similar sequence in a reference database.
One of the significant problems with this approach is that protein sequences have vary-
ing relevance in similarity based on the extent of how conservative their sub-sequences
are. Also, the 3-dimensional structure of the proteins is more conserved during the evo-
lution as compared to the primary structure, as a result of which two sequences could
have the same three-dimensional geometry, and hence, the same functionalities, but
have different primary structures. Due to this, the above approach would falter[8].

This marks the need for more sophisticated methods to perform classification than the
conventional sequence alignment search. A very fast-growing field of research in pro-
tein classification is the use of ANNs(Artificial Neural Networks). ANNs have been
applied frequently in numerous image and sound processing and classification prob-
lems[9, 10, 11, 12]. The basic building blocks of the ANNs are the artificial neurons[13],
that initially compute the weighted sum of the inputs, and then apply a non-linear func-
tion(also called the activation function) to the resultant. The output of one neuron is fed
as the input of the other. These neurons, usually work in layers, such that the output of
a layer is the input of the other. While applying to a classification problem, the output
classes are assigned a distinct neuron in the final layer, which is activated if the input
is successfully classified into the corresponding class. ANNs learn by modifying the
weights assigned to each neuron, in every cycle of training, eventually intending to min-
imize the loss function. Specifying an appropriate activation function, proper architec-
ture, and suitable loss function can help in better training of the neural network, hence
increasing the classification accuracy. Weights are updated through backward propaga-
tion mechanisms, some of which are Stochastic Gradient Descent(SGD)[14], RMSprop
or Adam[15, 16, 17]. When the input can be classified into multiple classes all at once, it
is a multi-label classification problem. Here, the protein can be classified into multiple
functional classes at once, and hence, the classification of proteins with their amino acid
sequence as the input, and the functional classes as outputs is a multi-label classification
problem.

1.2 Problem Specification

Proteins can be classified into four different structural levels based on the spatial ar-
rangements of the constituent amino acids. The classification is into the primary struc-
ture, secondary structure, tertiary structure and quaternary structure. The tertiary and
quaternary properties refer to the three-dimensional organization of the constituting
amino acids, which is crucial in determining the functional properties of the correspond-
ing protein. With the prior knowledge of the three-dimensional structural organization
of the protein, it is possible to find the distinguishing characteristics of the protein with
certainty. Whereas, with only the primary structural information available, it becomes

1.3. Objectives 3

more challenging to functionally annotate the protein.

Hence, the problem statement can be specified as functionally annotating the protein,
based on the available structural information (the primary structure, essentially the
amino acid sequencing of the protein).

The problem statement is thus broken down into the objectives described as in the fol-
lowing section.

1.3 Objectives

Multi-label classification is a generalization of multi-class classification, which is the
single-label problem of categorizing instances into precisely one of more than two classes;
in the multi-label problem, there is no constraint on how many of the classes the instance
can be assigned to. Formally, multi-label classification is the problem of finding a model
that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (la-
bel) in y).

The task of functionally annotating the proteins into various functional classes, relates
to being a multi-label classification, for a protein can be performing many functions,
and hence, being classified into multiple classes at once.
The main objectives of this project are:

• Understanding the Genome Data(SwissProt subset of the UniProt Dataset[18]) to
gain insights on the useful features which determine the functions of the proteins.
Finding the appropriate information is necessary for the task of classification in
order to incorporate the features of the proteins while still optimizing the amount
of data used.

• Once the dataset is understood and the suitable information identified, further
pre-processing needs to be done in order to make the data ready to be applied
to the neural network. For this, various filtering methods were applied before
encoding the protein sequence for mathematical realization.

• After the pre-processing is done, and the sequences have been mathematically
encoded, 1-D CNN (Convolutional Neural Network) is applied for the desired
multi-label classification of Genome Data.

The rest of the report is organized as follows. In chapter 3, we propose the Design
and Architecture of the 1-D CNN to be applied, discussing the advantages of using
convolutional neural networks and the suitability of CNN for the problem statement.
Chapter 4 describes the experimental setup, mentioning the pre-processing methods,
various models along with their performance metrics. The report concludes in Section
5.

5

Chapter 2

Literature Survey

The following chapter discusses literature pertaining to previously known methods of
protein classification/functional annotation, providing a short description of the method-
ology and the dataset used, filtering, and the accuracy attained.

2.1 Multi-Label Classification

The binary classification is a type of supervised learning problem, where the input is
classified into one out of two classes. Whenever there are more than two classes to
choose from, it becomes a multi-class classification problem. Here, the input can be
classified into one of many classes. Multi-label classification is the problem of assigning
the input to multiple classes all at once.

In the protein classification performed using neural networks in [19], the proteins were
stored in 20 x 20 bi-peptide matrices. The training was performed in an unsupervised
manner, as a result of which, self-organization of the activation of the neurons took place
into a topologically ordered map, such that the proteins belonging to a known family
were associated with the same neuron or one neighbouring it. This self-organization
into topologically ordered maps made the classification fast for new inputs. Filtering:
protein sequences with length greater than 50, dataset after filtering: 1758 protein se-
quences.

In [20], the protein sequences were encoded into the input vectors to the neurons by ap-
plying the n-gram hashing or SVD(singular value decomposition) method. The anno-
tated PIR(Protein Identification Resource) database was used, and the input was applied
to a three-layered, feed-forward neural network that employed the back-propagation
learning algorithm. The target classes were pairwise disjoint, and hence, this solution
did not solve the multi-label classification problem, whereas our work does that.

In [21], a hybrid neural network-sequence alignment search was applied for gene family
classification, whereas we use pure ANNs for achieving this. Using classification algo-
rithms over database search helps in improving the speed, as the search time now grows
linearly with the functional classes rather than the number of sequence entries. It also
helps in improving the sensitivity. The work in [22], divides the proteins in transmem-
brane and non-transmembrane groups using ANNs and, subsequently, [23] divides the
non-transmembrane proteins into 3 further classes. Hence, the eventual classification
takes place into 4 different functional classes. Here, we are classifying the whole dataset
into 1665.

6 Chapter 2. Literature Survey

In [24], the proteins were classified into 4 superfamilies only, and in [25], the classifica-
tion took place for 10 superfamilies through a neural network, for the proteins belonging
to the PIR database. In [26], a binary classification was performed into globin or non-
globin classes. In [27], the input was chosen from the Protein Data Bank[28] and was ap-
plied to multiple fully-connected multilayer perceptrons(MLPs) for function prediction,
with accuracy around 75%. The work of [29, 30] classifies into a maximum of 7 different
protein classes. Recently, the authors of [31] used proteins from the PIR database, and
classified them into 10 superfamilies with an accuracy of 93.69%.

The work in [32], deployed an ANN-based Gene Ontology functional classification,
with AUC less than 90% for one class, and 80% AUC for further 2 classes. Dataset:
30k sequences for Bos taurus and 15k sequences for Gallus gallus. In [33], DNA se-
quences were classified into a smaller number of classes(less than 10).

The work in [34] trained the neural network on 80% of the sequences of the SwissProt
subset of the UniProt Dataset and tested the performance on the remaining 20%, at-
taining a nearly 100% accuracy, classifying the proteins into only 4 different classes.
Filtering: sequence length limited between 10-1000 or 10-2000 as per the classes.

2.2 Loss Function

Let y be the target output vector and ŷ be the output vector predicted by the model. The
vectors y and ŷ both have length n = 1665. Let the total number of samples be m. The
loss function for multi-label classification if given by

L(y, ŷ) =
m

∑
i=1

n

∑
j=1
−yij log ŷij − (1− yij) log(1− ŷij) (2.1)

The above loss function penalizes the training algorithm if the output is FP or FN. The
next section will cover more about these performance metrics.

2.3 Model Performance Evaluation

The analysis of how the model has performs on a multi-label output requires a different
approach than binary or multi-class output. The conventional method of calculating
accuracy fails in multi-label classification when the number of TN is much greater than
the sum of TP, FP, FN.

accuracy =
TP + TN

TP + FP + FN + TN
(2.2)

The accuracy in this case is always close to 100%.This gives the motivation SA. For m
samples and n labels,

SA =
1
m

m

∑
i=1

(yi = ŷi) (2.3)

2.3. Model Performance Evaluation 7

Therefore, only exact match of y and ŷ are considered for each sample. The evaluation
of model based on precision and recall can be done by averaging over samples or labels.
For ith sample, let Yi be the labels of the target and Zi be the labels of the prediction.
Here,

Yi =
{

j : yij = 1, j ∈ {1, 2, ...n}
}

Zi =
{

j : ŷij = 1, j ∈ {1, 2, ...n}
}

The precision and recall averaged on samples is given by,

precision(”samples”) =
1
m

m

∑
i=1

|Yi ∩ Zi|
|Zi|

(2.4)

recall(”samples”) =
1
m

m

∑
i=1

|Yi ∩ Zi|
|Yi|

(2.5)

The HammingLoss is given by,

HammingLoss =
1
m

m

∑
i=1

1
n

n

∑
j=1

(
yij ⊕ ŷij

)
(2.6)

Let cj be the set of labels of all the samples for label j.

cj =
{

yij, i ∈ {1, 2, ...m}
}

TPj, FPj, FNj, TNj for jth label is calculated. The precision and recall averaged on
weights, also called support, is given by,

sj = TPj + FNj

precision(”weighted”) =
∑n

j=1 sj

(
TPj

TPj+FPj

)
∑n

j=1 sj
(2.7)

recall(”weighted”) =
∑n

j=1 TPj

∑n
j=1 sj

(2.8)

The weighted precision and recall takes into account the data imbalance. Along with this
the precision and recall for individual labels is also calculated. The AUC is used as an
evaluation metric by [1].

9

Chapter 3

Analysis and Design

3.1 Data Representation

Before designing the neural network architecture for multi-label classification, we need
to first understand the genome data. Genome data contains Gene Ontology classes,
and the sequence of constituent amino acids which form the given protein. The amino
acid sequence is obtained from DNA using transcription and translation mechanisms
by the cell. The naturally occurring proteins generally contain 20 essential amino acids.
These are represented by one letter each as follows-

Amino Acid 1-Letter code Amino Acid 1-Letter code
Alanine A Methionine M
Cysteine C Asparagine N
Aspartic Acid D Proline P
Glutamic Acid E Glutamine Q
Phenylalanine F Arginine R
Glycine G Serine S
Histidine H Threonine T
Isoleucine I Valine V
Lysine K Tryptophan W
Leucine L Tyrosine Y

TABLE 3.1: Essential Amino Acids

The structure and functions of the protein depend on the above amino acids and
their properties. These properties are-

• Charge

• Hydrophobicity

• Polarity

• Aromaticity

• Presence of Hydroxyl

• Presence of Sulphur

10 Chapter 3. Analysis and Design

The amino acids can be encoded mathematically into a one-hot vector of length 20. The
purpose of using one-hot encoding is to retain the individuality of each representation,
which would otherwise be called into question if the bit-wise representation would be
used. This is because batch normalization, which is being used further in the models,
calculates mean and variance over the batches. The presence of 6 properties can be
represented by a 6 length vector where 1 denotes that property is present, whereas 0
denotes that the property is absent. Therefore for every constituent amino acid in the
sequence of amino acids, we have a 26 length vectors. If the input sequence has length
l, the input to the model is a matrix of size 26× l. The protein sequences can be associ-
ated with 1665 Gene Ontology classes. An input sequence can belong to multiple classes
(hence, multi-label). The target output vector is encoded as 1665 length vector with 0
for absence and 1 for the presence of the label.

3.2 1-D Convolution Algorithm

Consider a sequence of amino acid

SPEYFREGLFSAKS...DVFSFGV

The kernel used is also 1 dimensional. The number of initial channels is 26, as each
amino acid is encoded as a vector of length 26.

SPEYF REGLFSAKS...DVFSFGV
S PEYFR EGLFSAKS...DVFSFGV
SP EYFRE GLFSAKS...DVFSFGV
SPEYFREGLFSAKS...DV FSFGV

TABLE 3.2: 1-D convolution with kernel size 5 stride 1

The 1-D convolution takes into consideration the type of amino acid as well as the
six properties which determine the protein structure while doing the convolution op-
eration. The effect produced by certain constituent amino acid only lasts in its neigh-
borhood and is not observed beyond it. The choice of the kernel size is hence used to
restrict the learning only to the neighborhood. The information extracted by this type
of convolution operation effectively calculates the aggregated effect of groups of amino
acids. With each pass through a convolution layer, the length of the sequence decreases
depending upon the kernel size and stride. Therefore, in this process, complex infor-
mation on neighborhood influence can be learned. This is then passed on to the fully
connected layers of the neural network.

11

Chapter 4

Experiments and Results

4.1 Datasets

4.1.1 Data Extraction

The SwissProt subset of the UniProt database[18] was used after being acquired from
http://uniprot.org as starting point (using the query “goa:(*) AND reviewed:yes”), con-
taining 535,119 sequences having Gene Ontology IDs at the date of download of 5 Au-
gust 2019.
The raw data acquired from UniProt has been stated as follows-

Sequence Samples : 535119
Label Samples : 535119
Max Sequence Length : 35213
Min Sequence Length : 2
Max Label Length : 258
Min Label Length : 1
Total Labels : 2970815
Total Unique Labels : 28234

Clearly, the amount of data was large enough to become a challenge for any kind of
deep neural networks. Hence, we had to filter and pre-process the data suitably. After
the raw data was ready, it was shuffled and split into train and test data, with the test
data containing 5000 entries, and the rest of the data being used for training purposes.

4.1.2 Data Pre-Processing

After obtaining the raw data, pre-processing had to be done, for which some filtering
measures were applied.
The filtering criteria for the train data were -

• Constraining the sequence length between 162 and 2000. This was largely deter-
mined by the available video memory on our GPU(Nvidia GP102 TITAN Xp 12
GB GPU). The lower limit was set to 162 so that the output of the last pooling
layer was at least one amino acid.

• The starting ’M’ (Methionine) character was removed from all the sequences.

• Once, protein sequences were filtered, the corresponding labels were filtered such
that every label had at least one protein sequence belonging to it.

12 Chapter 4. Experiments and Results

The filtering criteria for the test set were -

• Only sequences with length greater than 162 were considered, and longer se-
quences were cropped to a max length of 2000.

4.2 Experimental Setup

All the experiments have been conducted on Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz,
196 GB RAM, Nvidia GP102 TITAN Xp 12 GB GPU. Python v3.6.8 is used. The frame-
work used is PyTorch v1.2.0. The framework takes advantage of CUDA parallel com-
puting platform by Nvidia. CUDA compilation tools v9.1.85 are used. Supporting li-
braries like torchvision(0.4.0), numpy(1.16.5), sklearn are also required.

4.2.1 Model Architecture

The initial model architecture [1] was -

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.1: model 0

The Adam optimization algorithm was used for training the model.

4.2.2 Experimentation with model architecture

Experimental changes in the models were as follows -

4.2. Experimental Setup 13

• model 1: In each layer, the number of output channels is reduced by half. The
number of neurons in fully connected 1 layer is increased to 5000 units. Spatial
pyramid pooling layer is removed.

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.2: model 1

• model 2: Batch norm layer is removed from model 0.

14 Chapter 4. Experiments and Results

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=prelu)

dropout (p=0.5)
fully connected 2 (units=1665)

TABLE 4.3: model 2

• model 3: relu is used as activation function instead of prelu in model 0.

conv (size=6, stride=1, depth=128, padding=VALID, activation=relu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=relu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.4: model 3

4.2. Experimental Setup 15

• model 4: leaky_relu is used as activation function instead of prelu in model 0.

conv (size=6, stride=1, depth=128, padding=VALID, activation=leaky_relu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=leaky_relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=leaky_relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=leaky_relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=leaky_relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=leaky_relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)

fully connected 1 (units=1024, activation=leaky_relu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 2 (units=1665)

TABLE 4.5: model 4

• model 5: In model 0, the number of neurons in fully connected 1 layer is increased
to 4096 units. 1 fully connected layer with 2048 units and prelu activation function
is added after fully connected 1 along with dropout 0.5 and batch norm.

16 Chapter 4. Experiments and Results

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=4096, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1665)

TABLE 4.6: model 5

• model 6: 1 fully connected layer with 2048 units and prelu activation function is
added after fully connected 1 along with dropout 0.5 and batch norm in model 1.

4.2. Experimental Setup 17

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1665)

TABLE 4.7: model 6

• model 7: model 1 with number of output channels in each layer as model 0.

18 Chapter 4. Experiments and Results

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.8: model 7

• model 8: 1 fully connected layer with 2048 units and prelu activation function is
added after fully connected 1 along with dropout 0.5 and batch norm in model 7.

4.2. Experimental Setup 19

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1665)

TABLE 4.9: model 8

• model 9: In model 0, the number of neurons in fully connected 1 layer is increased
to 4096 units. Dropout is changed to 0.25.

20 Chapter 4. Experiments and Results

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=4096, activation=prelu)

dropout (p=0.25)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.10: model 9

• model 10: In model 7, the dropout is changed to 0.25.

4.2. Experimental Setup 21

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.25)
batch norm (scale=True)

fully connected 2 (units=1665)

TABLE 4.11: model 10

The results of each of the models are given below.

FIGURE 4.1: Precision of models

22 Chapter 4. Experiments and Results

FIGURE 4.2: Recall of models

FIGURE 4.3: AUC of models

Therefore, model 10 gives the best results.

4.3. Results and Discussion: 23

4.3 Results and Discussion:

4.3.1 Loss function with weights

The frequency of label was calculated for the entire data set. It was found that the
distribution of labels is skewed.

FIGURE 4.4: Label Frequency Distribution

For the labels with less frequency, learning is difficult. The solution to this problem
was to do over-sampling of labels with lower frequency or under-sampling of labels
with higher frequency or adding weights in the loss function. As the problem was
multi-label classification, over-sampling a label occurring few times can also lead to
over-sampling of a frequently occurring label. A similar case could be considered for
under-sampling. Hence, introducing weights associated with individual labels in the
loss function is a better approach. The loss function with weights is given by-

L(y, ŷ) =
m

∑
i=1

n

∑
j=1

wj
[
−yij log ŷij − (1− yij) log(1− ŷij)

]
(4.1)

24 Chapter 4. Experiments and Results

The mean label frequency is 1100. If training was done without weights (wj = 1.0) in
the loss function, it was observed that precision and recall was poor for label frequencies
smaller than mean frequency.

FIGURE 4.5: Precision and Recall vs Label Frequency

Hence the weights for labels with frequency less than the mean frequency need to
be increased. Let sj be the label frequency of the jth label. The weight wj is given by

wj = max

{
1, min

{
mean (s)

sj
, 5

}}
(4.2)

where, mean (s) is Mean Label Frequency. Here, we limit the weights to be in the range of
[1, 5] for practical purposes.

4.3.2 Heuristics to improve Precision and Recall

The training, according to the model specified in [1], resulted in good overall precision
and recall, but the precision and recall for individual labels were still quite poor. Cal-
culating the subset accuracy according to the model proposed in [1] to be around 44%
points to improving the individual precision and recall for the labels. As mentioned in
the previous section, improving the individual precision and recall of the labels can be
achieved through oversampling the labels with lower frequency, under-sampling of the
labels with high frequency or modifying the weights of the loss function so as to penal-
ize the error made in learning.

The heuristic approach applied to improve on the precision and recall for the individ-
ual labels relies largely upon the fact that modifying the weights of the loss function for
each instance influences the learning process. The idea was to import the weights from
a model performing better than the model at hand.

Following were the experiments performed, depicting the approach -

4.3. Results and Discussion: 25

Consider the model(Model 10) with architecture and weights according to [1]. On train-
ing, it achieves subset accuracy of 44.46% with 225 labels with precision lesser than 67%,
and 58 labels with recall lesser than 67%(a benchmark set for reference purposes). An-
other model(Model 11), was trained with no weights in the loss function, and achieved
subset accuracy of 50.85%, with 94 labels with precision lesser than 67%, and 113 labels
with recall lesser than 67%. Note that no change in architecture was performed during
this process.

• In Phase-I of crossing the weights, the individual recall could be improved in
Model 11, and individual precision in Model 10. Hence, the weights of Model 10
for the corresponding labels(labels whose recall for Model 11 is lesser than 67%)
were assigned to the same labels in Model 11, represented in Model 12. Similarly,
weights of Model 11 were assigned to the same labels in Model 10, for labels whose
precision for Model 10 was lesser than 67%, represented in Model 13.
Results for Model 12 -
Subset Accuracy : 48.20%, Number of labels with Precision lesser than 67% : 106,
Number of labels with Recall lesser than 67% : 107
Results for Model 13 -
Subset Accuracy : 49.44%, Number of labels with Precision lesser than 67% : 173,
Number of labels with Recall lesser than 67% : 58.

• In Phase-II, the same process was performed between Model 11 and Model 13(be-
cause of higher subset accuracy), resulting in Model 14(improving recall in Model
11) and Model 15(improving precision in Model 13).
Results for Model 14 -
Subset Accuracy : 50.16%, Number of labels with Precision lesser than 67% : 112,
Number of labels with Recall lesser than 67% : 64
Results for Model 15 -
Subset Accuracy : 49.31%.Number of labels with Precision lesser than 67% : 137,
Number of labels with Recall lesser than 67% : 85

• In the final Phase, the Model 11 and Model 14 were considered. Result for final
Model 16 -
Subset Accuracy : 55.43%, Number of labels with Precision lesser than 67% : 81,
Number of labels with Recall lesser than 67% : 87.

The heuristic approach to the improvement of the individual precision and recall is for-
malized as follows:

• Take 2 models, with the best subset accuracy available, say A and B.

• Calculate the number of labels for each with Precision lesser than 67% and Recall
lesser than 67%.

• If either of A or B, has a better of both precision and recall, then stop.

• Else if say, A has greater precision and B has a greater recall, then -

26 Chapter 4. Experiments and Results

– Sort the labels of A according to recall, and B according to precision.

– Substitute B’s weights in A for labels with recall lesser than 67%, and substi-
tute A’s weights in B for labels with precision lesser than 67%.

– This results in two new models, with different weights, which can be trained
further. Find their subset accuracy, and return to the starting step.

This can be continued till a satisfactory final model has been reached, with an improved
subset accuracy.

Precision Recall AUC SA
Final Model 92.37% 90.07% 99.94% 55.43%

TABLE 4.12: Results after applying the above heuristic approach

Results of performing the heuristic approach has been visualized as follows, by the
plots of Precision and Recall of individual label samples for the parent models and the
child model.

FIGURE 4.6: Plot of Recall for individual Labels for Models - 10,11 and 12.
Model 12 obtained from substituting weights of Model 10 in Model 11.

4.3. Results and Discussion: 27

FIGURE 4.7: Plot of Precision for individual Labels for Models - 10,11 and
13. Model 13 obtained from substituting weights of Model 11 in Model 10.

FIGURE 4.8: Plot of Recall for individual Labels for Models - 11,13 and 14.
Model 14 obtained from substituting weights of Model 13 in Model 11.

28 Chapter 4. Experiments and Results

FIGURE 4.9: Plot of Precision for individual Labels for Models - 11,13 and
15. Model 15 obtained from substituting weights of Model 11 in Model 13.

FIGURE 4.10: Plot of Precision for individual Labels for Models - 11,14 and
16. Model 16 obtained from substituting weights of Model 11 in Model 14.

As can be concluded from the above graphs, performing the substitution of weights
in the models, leads to improvement in Precision and Recall for the individual label
samples.

4.3. Results and Discussion: 29

4.3.3 Summary of the results

Model Precision Recall AUC SA
0 75.39% 62.38% 99.03% 29.88%
1 77.09% 75.97% 99.52% 29.02%
2 7.52% 4.75% 77.84% 0.01%
3 36.07% 20.24% 94.27% 3.64%
4 72.28% 59.92% 98.82% 27.23%
5 75.10% 66.01% 98.91% 30.67%
6 73.97% 66.09% 98.96% 29.96%
7 81.04% 80.23% 99.69% 34.57%
8 77.47% 69.80% 99.20% 33.36%
9 81.42% 75.50% 99.61% 33.37%
10 88.30% 86.97% 99.87% 44.46%
11 90.73% 89.23% 99.92% 50.86%
12 90.52% 87.80% 99.92% 48.20%
13 89.46% 89.79% 99.93% 49.44%
14 90.00% 89.56% 99.93% 50.17%
15 89.72% 88.68% 99.92% 49.31%
16 92.37% 90.07% 99.94% 55.43%

TABLE 4.13: Summary of the results

31

Chapter 5

Conclusion and Future Work

The objectives of this project were to

• Process the data obtained from UniProt [18], and make it suitable to be applied to
various neural network models.

• Propose variations to the model used by [1], in order to improve individual preci-
sion and recall of the label samples.

• Evaluate the performance of the variant models against existing methods, provid-
ing a heuristic approach.

• Showcase the statistical significance of our results.

In this project, we evaluated the SwissProt subset of the UniProt database[18] and tried
to incorporate the skewness of the label distribution into the learning process. Previ-
ously mentioned methods were performing sequence alignment based similarity search
or performing multi-label classification for very few classes. The work in [1], performed
the multi-label classification on the same subset of UniProt dataset [18] and considered
983 Gene Ontology classes, where we increased the number of Gene Ontology classes in
contention to 1665, meanwhile also improving on the individual precision and recall of
the label samples, and hence, increasing the overall subset accuracy from 44% to 55.43%.

We performed various modifications to models proposed in previously mentioned re-
search work by varying the number of neurons in the fully connected layers, changing
the activation function, and dropout. Over this, we modified the weights in the loss
function for individual labels by applying a heuristic approach to penalize the error in
learning for the less frequent labels, which eventually led to an increase in the overall
subset accuracy too. The results are discussed through various parameters and perfor-
mance metrics such as Precision, Recall, Hamming Loss, F1-score and AUC.

Precision Recall AUC SA
Final Model 92.37% 90.07% 99.94% 55.43%

TABLE 5.1: Results

The future work in this direction could be to extend the heuristic approach into a for-
mal evolutionary method, on improving the individual precision and recall of the label
samples, while also modifying the model architecture to a hybrid sequence matching
and ANN based structure.

33

Bibliography

[1] Balázs Szalkai and Vince Grolmusz. “Near Perfect Protein Multi-Label Classifica-
tion with Deep Neural Networks”. In: Methods 132 (Apr. 2017). DOI: 10.1016/j.
ymeth.2017.06.034.

[2] T. F. Smith and M. S. Waterman. “Identification of common molecular subse-
quences”. In: Journal of Molecular Biology. Vol. 147(1). Cargse, France., 1981, pp. 195–
197.

[3] Gabor Ivan, Daniel Banky, and Vince Grolmusz. “Fast and Exact Sequence Align-
ment with the Smith-Waterman Algorithm: The SwissAlign Webserver”. In: Gene
Reports 4 (Sept. 2013). DOI: 10.1016/j.genrep.2016.02.004.

[4] Stephen Altschul et al. “Basic Local Aligment Search Tool”. In: Journal of molecular
biology 215 (Nov. 1990), pp. 403–10. DOI: 10.1016/S0022-2836(05)80360-2.

[5] Sean Eddy. “A new generation of homology search tools based on probabilistic
inference”. In: Genome informatics. International Conference on Genome Informatics 23
(Oct. 2009), pp. 205–11. DOI: 10.1142/9781848165632_0019.

[6] Sean R. Eddy. “Accelerated Profile HMM Searches”. In: PLOS Computational Biol-
ogy 7.10 (Oct. 2011), pp. 1–16. DOI: 10.1371/journal.pcbi.1002195. URL: https:
//doi.org/10.1371/journal.pcbi.1002195.

[7] Balázs Szalkai et al. “The Metagenomic Telescope”. In: PLOS ONE 9.7 (July 2014),
pp. 1–9. DOI: 10.1371/journal.pone.0101605. URL: https://doi.org/10.1371/
journal.pone.0101605.

[8] Kristoffer Illergård, David Ardell, and Arne Elofsson. “Structure is three to ten
times more conserved than sequence-A study of structural response in protein
cores”. In: Proteins 77 (Nov. 2009), pp. 499–508. DOI: 10.1002/prot.22458.

[9] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958. URL:
http://jmlr.org/papers/v15/srivastava14a.html.

[10] Kaiming He et al. “Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition”. In: Computer Vision – ECCV 2014. Ed. by David Fleet et
al. Cham: Springer International Publishing, 2014, pp. 346–361. ISBN: 978-3-319-
10578-9.

[11] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification”. In: IEEE International Conference on Computer
Vision (ICCV 2015) 1502 (Feb. 2015). DOI: 10.1109/ICCV.2015.123.

[12] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: (Feb. 2015).

https://doi.org/10.1016/j.ymeth.2017.06.034
https://doi.org/10.1016/j.ymeth.2017.06.034
https://doi.org/10.1016/j.genrep.2016.02.004
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1142/9781848165632_0019
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pone.0101605
https://doi.org/10.1371/journal.pone.0101605
https://doi.org/10.1371/journal.pone.0101605
https://doi.org/10.1002/prot.22458
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/ICCV.2015.123

34 Bibliography

[13] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133. ISSN: 1522-9602. DOI: 10.1007/BF02478259. URL: https://doi.org/10.1007/
BF02478259.

[14] Shun ichi Amari. “Backpropagation and stochastic gradient descent method”. In:
Neurocomputing 5.4 (1993), pp. 185 –196. ISSN: 0925-2312. DOI: https://doi.org/
10 . 1016 / 0925 - 2312(93) 90006 - O. URL: http : / / www . sciencedirect . com /
science/article/pii/092523129390006O.

[15] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (Dec. 2014).

[16] Yann Dauphin, Harm de Vries, and Yoshua Bengio. “Equilibrated adaptive learn-
ing rates for non-convex optimization”. In: Advances in Neural Information Process-
ing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015, pp. 1504–1512.
URL: http://papers.nips.cc/paper/5870-equilibrated-adaptive-learning-
rates-for-non-convex-optimization.pdf.

[17] Yann Dauphin et al. “Equilibrated adaptive learning rates for non-convex opti-
mization”. In: NIPS. 2015.

[18] Amos Bairoch et al. “The Universal Protein Resource (UniProt) 2009”. In: Nucleic
Acids Research 37 (Jan. 2009). DOI: 10.1093/nar/gkn664.

[19] Edgardo A. Ferrán, Pascual Ferrara, and Bernard Pflugfelder. “Protein Classifica-
tion Using Neural Networks”. In: Proceedings. International Conference on Intelligent
Systems for Molecular Biology 1 (1993), pp. 127–35.

[20] Cathy Wu et al. “Neural networks for molecular sequence classification”. In: Pro-
ceedings / ... International Conference on Intelligent Systems for Molecular Biology ;
ISMB. International Conference on Intelligent Systems for Molecular Biology 1 (Feb.
1993), pp. 429–37.

[21] Cathy Wu and S. Shivakumar. “Gene family identification network design”. In:
June 1998, pp. 103 –110. ISBN: 0-8186-8548-4. DOI: 10.1109/IJSIS.1998.685426.

[22] Claude Pasquier and Stavros Hamodrakas. “An hierarchical neural network sys-
tem for the classification of transmembrane proteins”. In: Protein engineering 12
(Sept. 1999), pp. 631–4. DOI: 10.1093/protein/12.8.631.

[23] Claude Pasquier, Vasilis Promponas, and Stavros Hamodrakas. “PRED-CLASS:
Cascading Neural networks for generalized protein classification and genome
wide applications”. In: Proteins 44 (Aug. 2001), pp. 361–9. DOI: 10.1002/prot.
1101.

[24] Jason T. L. Wang et al. “Application of Neural Networks to Biological Data Min-
ing: A Case Study in Protein Sequence Classification”. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’00. Boston, Massachusetts, USA: ACM, 2000, pp. 305–309. ISBN: 1-58113-
233-6. DOI: 10.1145/347090.347157. URL: http://doi.acm.org/10.1145/
347090.347157.

[25] Dianhui Wang et al. “Protein Sequences Classification Using Modular RBF Neural
Networks”. In: Dec. 2002, pp. 477–486. DOI: 10.1007/3-540-36187-1_42.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
http://www.sciencedirect.com/science/article/pii/092523129390006O
http://www.sciencedirect.com/science/article/pii/092523129390006O
http://papers.nips.cc/paper/5870-equilibrated-adaptive-learning-rates-for-non-convex-optimization.pdf
http://papers.nips.cc/paper/5870-equilibrated-adaptive-learning-rates-for-non-convex-optimization.pdf
https://doi.org/10.1093/nar/gkn664
https://doi.org/10.1109/IJSIS.1998.685426
https://doi.org/10.1093/protein/12.8.631
https://doi.org/10.1002/prot.1101
https://doi.org/10.1002/prot.1101
https://doi.org/10.1145/347090.347157
http://doi.acm.org/10.1145/347090.347157
http://doi.acm.org/10.1145/347090.347157
https://doi.org/10.1007/3-540-36187-1_42

Bibliography 35

[26] Jinmiao Chen and Narendra Chaudhari. “Protein Family Classification Using Second-
Order Recurrent Neural Networks”. In: Genome Informatics 14 (Jan. 2003), pp. 520–
521.

[27] Wagner Rodrigo Weinert and Heitor Silvério Lopes. “Neural networks for pro-
tein classification”. In: Applied Bioinformatics 3.1 (2004), pp. 41–48. ISSN: 1175-5636.
DOI: 10.2165/00822942-200403010-00006. URL: https://doi.org/10.2165/
00822942-200403010-00006.

[28] Helen M. Berman et al. “The Protein Data Bank”. In: Nucleic Acids Research 28.1
(Jan. 2000), pp. 235–242. ISSN: 0305-1048. DOI: 10.1093/nar/28.1.235. eprint:
http://oup.prod.sis.lan/nar/article-pdf/28/1/235/9895144/280235.pdf.
URL: https://doi.org/10.1093/nar/28.1.235.

[29] Konstantinos Blekas, Dimitrios I. Fotiadis, and Aristidis Likas. “Protein Sequence
Classification Using Probabilistic Motifs and Neural Networks”. In: Artificial Neu-
ral Networks and Neural Information Processing — ICANN/ICONIP 2003. Ed. by
Okyay Kaynak et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 702–
709. ISBN: 978-3-540-44989-8.

[30] Konstantinos Blekas, Dimitrios Fotiadis, and Aristidis Likas. “Motif-Based Pro-
tein Sequence Classification Using Neural Networks”. In: Journal of computational
biology : a journal of computational molecular cell biology 12 (Feb. 2005), pp. 64–82.
DOI: 10.1089/cmb.2005.12.64.

[31] Jiuwen Cao and Lianglin Xiong. “Protein Sequence Classification with Improved
Extreme Learning Machine Algorithms”. In: BioMed research international 2014 (Mar.
2014), p. 103054. DOI: 10.1155/2014/103054.

[32] Davide Chicco, Peter Sadowski, and Pierre Baldi. “Deep autoencoder neural net-
works for gene ontology annotation predictions”. In: ACM BCB 2014 - 5th ACM
Conference on Bioinformatics, Computational Biology, and Health Informatics (Sept.
2014), pp. 533–540. DOI: 10.1145/2649387.2649442.

[33] Nguyen Ngoc Giang et al. “DNA Sequence Classification by Convolutional Neu-
ral Network”. In: Journal of Biomedical Science and Engineering 09 (Jan. 2016), pp. 280–
286. DOI: 10.4236/jbise.2016.95021.

[34] Xueliang Liu. “Deep Recurrent Neural Network for Protein Function Prediction
from Sequence”. In: ArXiv abs/1701.08318 (2017).

https://doi.org/10.2165/00822942-200403010-00006
https://doi.org/10.2165/00822942-200403010-00006
https://doi.org/10.2165/00822942-200403010-00006
https://doi.org/10.1093/nar/28.1.235
http://oup.prod.sis.lan/nar/article-pdf/28/1/235/9895144/280235.pdf
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1089/cmb.2005.12.64
https://doi.org/10.1155/2014/103054
https://doi.org/10.1145/2649387.2649442
https://doi.org/10.4236/jbise.2016.95021

	CANDIDATES' DECLARATION
	CERTIFICATE by BTP Guide
	PREFACE
	ACKNOWLEDGEMENTS
	ABSTRACT
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Problem Specification
	Objectives

	Literature Survey
	Multi-Label Classification
	Loss Function
	Model Performance Evaluation

	Analysis and Design
	Data Representation
	1-D Convolution Algorithm

	Experiments and Results
	Datasets
	Data Extraction
	Data Pre-Processing

	Experimental Setup
	Model Architecture
	Experimentation with model architecture

	Results and Discussion:
	Loss function with weights
	Heuristics to improve Precision and Recall
	Summary of the results

	Conclusion and Future Work
	Bibliography

