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PREFACE

This report on A Scalable Data Science Platform for Healthcare Product Research and
Reliability is prepared under the guidance of Dr. Srivathsan Vasudevan, Associate Professor,
Discipline of Electrical Engineering, IIT Indore and Mr. Pavan Burbure, Sr. Software Archi-
tect, GE Healthcare, Bengaluru.

Through this report, I have tried to give a detailed description of the project I have worked
on, in GE Healthcare, Bengaluru for six months as a part of my B.Tech. project. I have ex-
plained the data flow and the architecture which I have developed at GE Healthcare, Bengaluru.
I further have explained the working of the developed solution with the help of the results that
were generated using a working prototype.

I have tried to the best of my abilities and knowledge to explain the content of my project
in a lucid manner. I have also added figures explaining the working of the developed platform
to make my description more illustrative.
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ABSTRACT

Healthcare equipment is critical for patients, and therefore, the reliability of this equipment is
of high importance. During their operation, equipment’s health and usage data are generated
and recorded. Due to the large size, high velocity, and lack of structure, processing and analysis
of this data is a key challenge for engineers.

A scalable data science platform was designed and developed to address the above mentioned
problem. Relevant literature was studied during the course of this project to learn modern
techniques in data engineering. I have used workflow orchestration tool- Apache Airflow for
workflow scheduling, No-SQL database Elasticsearch for data storage and Kibana for Visual-
ization.

The developed platform creates a data lake to store this real-time data. This platform also
provides robust analytics in near real-time for product research and reliability.
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ABBREVIATIONS

IGS - Image Guided System

ETL - Extract, Transform, Load
DAG - Directed Acyclic Graph
JSON - JavaScript Object Notation
UI - User Interface
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Chapter 1

Introduction

In this project, a scalable data science platform was developed for product research and re-
liability of Interventional Image Guided System (IGS) at Wipro GE Healthcare, Bengaluru,
India.

1.1 Company Background

GE Healthcare is a leading global medical technology company that manufactures and markets
medical equipment. The Company offers medical imaging, information technology, medical
diagnostics, patient monitoring systems, and bio-pharmaceutical manufacturing technology.
GE Healthcare has offices in many countries, including India.

1.2 Interventional Image Guided System

The Interventional Image Guided System (IGS) is equipment which uses X-Ray for imaging
and is designed to support a variety of procedures such as interventional radiology, pediatrics,
electrophysiology, neuro interventions, and body imaging procedures [1]. Figure 1.1 shows GE
Interventional Image Guided System

Figure 1.1: GE Healthcare Image Guided System
[1]
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1.3 Product Research and Reliability

Reliability is the characteristic of equipment or software that relates to the integrity of the sys-
tem and the ability to maintain trouble free operation to insure against failure. To ensure the
reliability of a system, simulation of actual operation of the system is implemented, and equip-
ment operations data is recorded, later this data is analyzed for potential faults.

Once equipment is installed at the Hospital, equipment usage data containing information
like configuration of the machine, sensor data is used to monitor this equipment remotely.
Monitoring of medical equipment is of high significance as this data provides information about
equipment health, usage and helps to take preventive measures to avoid faults in the future. The
data fetched from this equipment is used for analytics and research purposes.

1.4 Current Practices

At present, the central monitoring of IGS is a manual process. Due to the complex nature of
the data from the equipment, these manual techniques are slow and unable to provide analytics
in real-time. Furthermore, a large amount of data from multiple sources and preprocessing of
the data make it difficult for engineers to analyze the data manually. A single day usage of the
equipment alone generates a large volume of data making it impossible to monitor all the data
manually in real-time.

1.5 Challenges in Product Research and Reliability

Interventional Image Guided Systems are located at different geographic locations around the
world which uploads machine operations data at a fixed interval. Central monitoring of these
machines will assist in product research and reliability. There are multiple challenges involved
in building a central monitoring system:

e Data uploaded by the equipment may contain missing information, the information in
local languages, the same information in different formats by different equipment

e Network issue or database connection issue may result in the failure of data ingestion

e Due to the large size, high velocity, and unstructured data, it is near impossible to analyze
this big data manually

e Analytics on this data need to be done on a regular basis or as per need, the process to
obtain final results constitutes of multiple steps and therefore there is need for automation

1.6 Scope of Study

The above mentioned problem is an excellent case for scalable data science platform where
the scalable platform will provide automatic near real-time analytics on the data fetched from
equipment.

As there was no existing data pipeline to fetch and store data from the equipment. I contributed
to the development of a data pipeline to fetch and clean the raw data. A study is carried out
to decide tools for building a data pipeline. Once data is cleaned, and relevant data is merged
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together, it is stored in a distributed No-SQL database. The platform also provides tools for
visualization and statistical analysis of the stored data.

1.7 Area of Concentration

For this thesis, the chosen area of concentration is to explore workflow schedulers and to design
and develop the architecture of the platform. Apache airflow was chosen for building a data
pipeline because of its rich tracking and monitoring capabilities, scalable distributed architec-
ture, and active community support. Study of the chosen workflow scheduler- Apache Airflow
and NoSQL database Elasticsearch. For this project, Kibana was used as a visualization tool.

1.8 Purpose and Goal

The objective of this project is to build a data science platform for Interventional Image Guided
System (IGS) Usage Research and Reliability. IGS is critical for patients as it is used during
surgery, and therefore, its reliability is highly important. A platform is developed, and its
architecture is detailed in this report.

1.9 Methodology

In this project, a study is first carried out to identify the common tools and techniques for
developing a platform. Tools are selected from available options based on factors like data
privacy, cost, community support. Implementation of data fetching, cleaning, and storage is
implemented in Python. The platform architecture is designed, ensuring low cost and high
speed.

1.10 Outline

There are four chapters in this thesis. The first chapter introduces the background and purpose
of this platform, while Chapter 2 gives a brief description of related theories and tools used in
the industry. The third chapter focuses on the developed platform architecture and working.
Chapter 4 discusses further work that can be explored in the future and concludes the report.
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Chapter 2

Relevant Theory

This chapter explains briefly the relevant theory related to the project.

2.1 Extract, Transform, Load (ETL)

Extraction, Transform, Load popularly called ETL are used by organization with multiple data
databases to store different types of data. The ETL process is used to integrate data that was
spread across these databases. As the number of different data formats, sources, and systems
have expanded, ETL has now become a standard in organization to integrate all these data. It
has now become a core component of an organization data science tool kit [5].

2.2 Data Engineering Tools

There are multiple tools available to implement a data engineering solution. For this project
I have studies two main tools: Apache Airflow and Elasticstack. Apache Airflow is used for
workflow orchestration. Data storage, search, and dashboards are implemented using Elastic
stack. The following subtopic will describe both tools in brief:

2.2.1 Apache Airflow

Apache Airflow is an open-source workflow orchestration tool. Airflow is used to programmat-
ically author, schedule, and monitor workflows. Airflow was started in October 2014 at Airbnb.
Apache Software Foundation announced Airflow as a Top-Level Project in January 2019 [2].

Airflow Task

Airflow Task is a defined unit of required work which needs to be implemented. The required
work is implemented in python.

Airflow Directed Acyclic Graph (DAG)

In Airflow, the workflow is designed as a Directed Acyclic Graph (DAG). A Directed Acyclic
Graph or DAG in Airflow is a collection of all the tasks which need to be executed. DAG
reflects the relationships and dependencies between all the tasks which constitute the Airflow
DAG. Basically, Airflow DAG is a directed graph which does not contain any cycle and nodes
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of this graph are tasks. It describes how different tasks are executed and is not concerned with
what constituent tasks do.

2.3 Elastic stack

Elastic Stack constitutes of two components Elasticsearch and Kibana.

2.3.1 Elasticsearch

In this project, Elasticsearch was used to store, search, and analyze data in near real-time.
Elasticsearch is a NoSQL database build on top of Apache Lucene, which is an open-source
search engine library [3]. It stores data as structured JSON documents.

2.3.2 Kibana

For visualization and analytics on stored data, Kibana was used in this project. Kibana is an
open source data exploration and visualization tool [4]. It provides powerful features to build
interactive graphs like histograms, pie charts, and heat maps. It has geospatial support as well,
which is useful in this project as these data are collected from different locations. Kibana
integrates strongly with Elasticsearch and therefore provides near real-time visualization of
data stored in Elasticsearch.
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Chapter 3

Platform Architecture Development

In this chapter, the first section explains the architecture developed, the subsequent section
describes developed DAG, data flow between various components, hardware setup for deploy-
ment, and the last section explains the working of the proposed solution.

3.1 Platform Architecture

Developed architecture constitutes three main components- Data Lake, Apache Airflow, Elastic
stack. Figure 3.1 shows high level connections of all components of the architecture.

O

Data Lake

.f/,.-"_ _'-..\\\.
Fa Airflow
Python tasks N .
Data fetch » mem elastic stack
Data transform =
“ Data load
\

Figure 3.1: High Level Connection between Various Components of Platform Architecture

Data is fetched from data lake on a regular basis or as per need and injected into Elastic-
search. Elasticsearch provides near real time search operations on this data. Kibana, a data
visualization and exploration tool, is used to build dashboards containing interactive dynamic
graphs for analytics on this stored data.

Scheduling and monitoring of each step from fetching data from different sources to injecting it
into Elasticsearch is implemented using airflow, workflow orchestration tool, airflow provides
Airflow User Interface (Airflow UI) to monitor and manually manage DAG. Since airflow exe-
cution is distributed, it can run tasks in parallel and therefore decreasing the overall execution
time.

Detailed architecture with the flow of data is shown in figure 3.2:
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Figure 3.2: Developed Platform Architecture

Working of the developed architecture is as follows:
Data is fetched from multiple sources in batches and stored in the local server, fetched data is
cleaned and relevant information in the data from different sources is merged, the last stage is
injecting cleaned and merged data into Elasticsearch. These stages are implemented on a daily
basis and can also be implemented as per need. The daily execution of the developed platform
is implemented using Apache Airflow DAG. Each stage is programmatically author in airflow
DAG as Task. Each Task is a custom python script written to implement the logic of each stage.

3.2 Data Flow

In this section, the data flow between the different components is explained. A popular concept
called Extract, Transform, Load (ETL) is used in this project. Implementation of ETL pro-
cess means the extraction of data from multiple sources, transforming the extracted data into
required formats, and then loading the data into desired storage. Figure 3.3 explains the flow
of data in the developed platform as ETL process.

Postgres

Getting Data from . Injecting Data into
Different Database I:{> Da#ﬁ‘::?;ﬁ:"g Elasticsearch
Extract Load

Database access through API

Oracle

Figure 3.3: Extract, Transform, Load (ETL)
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3.3 Directed Acyclic Graph (DAG)

In computer science and mathematics, a directed acyclic graph (DAG) is a graph that is directed
and contains no cycles connecting the other edges. The edges of the directed graph only go in
one way. In airflow, DAG nodes are the tasks and edges are the connection between tasks.
Airflow DAG also defines the dependencies of tasks with each other.

Figure 3.4 shows developed DAG.

(PythonOperator) running skipped | (up_for_reschedule [ up_for_retry no_status

task_extract_data_src_2 task_clean_data_src_2

7

task_merge_data_src_1_and_2

task_extract_data_src_4 task_clean_data_src_4

task_inject_merged_data_src_1_and_2_into_elastic
task_merge_data_src_1_and_4 task_inject_merged_data_src_1_and_4_into_elastic \\
task_email_injestion_statistics

/

task_clean_data_src_1

task_merge_data_src_1_and_3

task_inject_merged_data_src_1_and_3_into_elastic

task_extract_data_src_3 task_clean_data_src_3

AT

T T T T

task_merge_data_src_1_and 5 task_inject_merged_data_src_1_and_5_into_elastic

S S g g g

[ task_extract_data_src_1

E

task_extract_data_src_5 task_clean_data_src_5

Figure 3.4: Developed DAG

Developed DAG contains tasks with functionality as follows

task_extract_data_src_1: This task fetches data from source 1

task_extract_data_src_3: This task fetches data from source 3

task_extract_data_src_4: This task fetches data from source 4

task_extract_data_src_5: This task fetches data from source 5

task_clean_data_src_1: This task cleans data fetched from source 1

task _clean_data_src_2: This task cleans data fetched from source 2

task_clean_data_src_3: This task cleans data fetched from source 3

task_clean_data_src_4: This task cleans data fetched from source 4

task_clean_data_src_5: This task cleans data fetched from source 5
task_merge_data_src_1_and_2: This task merges the data fetched from source 1 and source 2
task_merge_data_src_1_and_3: This task merges the data fetched from source 1 and source 3
task_merge_data_src_1_and_4: This task merges the data fetched from source 1 and source 4

task_merge_data_src_1_and_5: This task merges the data fetched from source 1 and source 5
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task_inject_merged_data_src_1 _and_src_2_into_elastic: This task injects merged data from source
1 and source 2 into Elasticsearch

task_inject_merged_data_src_1_and_src_3_into_elastic: This task injects merged data from source
1 and source 3 into Elasticsearch

task_inject_merged_data_src_1_and_src_4 _into_elastic: This task injects merged data from source
1 and source 4 into Elasticsearch

task_inject_merged_data_src_1_and_src_5_into_elastic: This task injects merged data from source
1 and source 5 into Elasticsearch

task_email_ingestion_statistics: This task sends an email to the engineer containing statistics
about data, it also informs engineer regarding successful completion of the pipeline.

3.4 Hardware Setup

This section describes the setup used for the deployment of developed architecture. Figure 3.5
shows the configuration of Hardware used for deployment.

' . It
Elastic cluster

Server 1 Server 2 Server 3
4-8GE RAM

[scale up to 32GB)

4-8GB RAM 4-8GB RAM

{scale up to B} {scale up to 32GB)

100GB Storage 100GB Storage
{scale up to 1TE) {scale up to 1TB)

100GB Storage
[scale up to 1TB)

elasticsearch elasticsearch

" . elasticsearch
ERE airflow . -

Figure 3.5: Deployment Setup

It consists of three node cluster, Elasticsearch is distributed in each node i.e. node 1, 2, and
3. Kibana runs on node 1 and airflow on node 2. Each node has 4 GB RAM, which can be
extended up to 32 GB. Each node has 100 GB storage, which is extendable up to 1TB.
In the future, as the need for more storage will increase, new nodes can be added to the cluster.
Since Elasticsearch is distributive, it runs on all the three nodes and as it is scalable in future
more nodes can be added to increase storage capacity.
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3.5 Working of the setup

Working of the setup is explained in two parts: Part I explains the overall working of the
architecture and Part II explains the working of the developed DAG.

3.5.1 PartI: Overall working of the setup

Figure 3.6 shows the data flow graph. Data is fetched from the database through the Airflow
Task, which contains python code for connection to the database and fetching of the data.

A
Image Guided
System

h 4

Remote
Database

FH . o DAG

h

Local Storage

b

Elasticsearch

¥

Data Wrangling

Reliability Team / Product Management
/ Data Scientist

Figure 3.6: System Architecture

Fetched data is cleaned and then injected into Elasticsearch. Kibana contains dashboards
which constitute of various graphs and metric build on the data. These dashboards are available
to product management, reliability team, and data scientists.

3.5.2 Part II: Working of DAG
In this sub-section working of the developed DAG is explained. Refer figure 3.7 and 3.8.
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= T
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~

task_clean data src 2 } -

)

task_extract_data_src_3 { task_clean_data_src_3

P
task_merge data src 1_and S J—‘ task_injact_merged data_src_1_and 5 into_slastc =

[ task_extract_data_src_1 -
[ lask_extract_data_src 5H tlask_clean_data_src_5 }"

. J L J
A 'ﬁ—) C i Y ] E

B D

Figure 3.7: Developed DAG

A | Tasks to fetch data from multiple sources

B | Tasks to clean fetched data

C | Task to merge relevant data together

D | Task to inject data into Elasticsearch

E | Task to send an email on the successful run of DAG to engineer

Figure 3.8: Description of Tasks of DAG

task_extract_data_src_1 constitutes of a custom python script to fetch data from source 1 and
store it in the local server. Similarly, other 4 tasks from A in figure 3.7 constitute of a custom
python script to fetch data from the sources 2,3,4, and 5. When the DAG starts execution at
the scheduled time, these five tasks run in parallel. task clean_data_src_1 constitute of a custom
code in python, whose objective is to clean the data fetched from source 1.

The arrow in the DAG represents the dependencies of a task over others. In the developed
DAG subsequent tasks will run only when all connected preceding tasks are successfully com-
pleted. It is intuitive to understand that tasks to clean data will run only after when data is
fetched from the source. In the case of failure of a task, Airflow provides feature to only re-
run the failed tasks and not the entire DAG, this rerun of only failed task and not the entire
DAG saves execution time in case of failure of any task. This concept is explained through an
example, as shown in figure 3.9
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(PythonOperator)

inped | (upfor_reschedul) (up_fo_rery ro_status

task_extract_data_src_2 H task_clean_data_src_2 ]\

task_merge_data_src_1_and_2 task_inject_merged_data_src_1_and_2_into_elastic

task_merge_data_src_1_and_4 H task_inject_merged_data_src_1_and_4_into_elastic

s

task_extract_data_src_1 H task_clean_data_src_1 }<

[ task_email_injestion_statistics ]

[ task_extract_data_src_4 H task_clean_data_src_4

t
task_extract_data_src_3 H task_clean_data_src_3 ]\L\

ask_merge_data_src_1_and_3 H task_inject_merged_data_src_1_and_3_into_elastic

[ task_extract_data_src_5 task_clean_data_src_5

task_merge_data_src_1_and_5 H task_inject_merged_data_src_1_and_5_into_elastic

!

If task _inject_merged_data_src_1_and_3_into_elastic failed which also results in failure of the
dependent task, in this example which is task_email _injestion_statistics, this failure may be due
to network connection failure to Elasticsearch or Elasticsearch server is not running. DAG is
developed to accommodate failure cases and the scheduler will rerun only the failed task after
a specified time interval, if it failed after specified multiple reruns, Airflow will send an email
to engineer with email containing a description of failure.

Figure 3.10 shows DAG execution statistics. Our developed DAG is set to run daily. Airflow
provides color code to display the status of each task. It shows the status of each task of DAG
execution for each day. This DAG execution statistics is very helpful for the engineer to analyze
the working of each task.

Figure 3.9: DAG with failed Task
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Figure 3.10: Screenshot of Developed DAG Monitoring using Airflow Ul
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Chapter 4

Future Work and Conclusion

This chapter discusses the future work of the project. In this project, the developed platform
provides near real time analytics and access to clean, structured data. Developed platform
opens many possibilities of work that can be done in the domain of predictive analytics. The
next stage of this project is to build predictive analytics on top of this platform using machine
learning techniques. Multiple learning algorithms can be implemented using data from the
platform for training. The developed platform can be extended to other critical equipment.

In conclusion, the scalable platform build on open source technologies provides organization
access to structured, clean data and analytics on this data in near real time which significantly
helps engineers in improving reliability and quality of the equipment.
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