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Preface

This report on “Light Weight Dilated CNN for Activity Classification
and Intent Recognition” is prepared under the guidance of Dr Apurva
Narayan and Dr Vivek Kanhangad. In this report, we highlight the
benefits of dilated convolutional networks and introduce the concept of
Human Intent Recognition. The report highlights the computational
efficiency of dilated CNNs and compares its performance with Recur-
rent Neural Networks like LSTM and GRU. Through this report we
have also described the procedure for creating the Intent Recognition
dataset and presented our results on this new dataset.
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Abstract

Time series data is available from a diverse set of sensors in real life.
It is of prime importance in the domain of machine learning and arti-
ficial intelligence to analyze such data and identify outliers or anoma-
lies, characteristic of the underlying activities and predict the future.
Traditionally, time-series analysis involves identifying features using
exploratory data analysis and using statistical approaches for classi-
fication and prediction. However, with the advent of convolutional
neural networks (CNN), our ability to extract features automatically
has substantially improved. In this project, we propose a novel light-
weight deep learning architecture of dilated CNN for classification and
predicting time series data sets. We evaluate our model on a real-world
human activity recognition time series data set and a synthetically
crafted pseudo-realistic dataset for human intent recognition. Our
model outperforms the state-of-the-art models and is light-weight.
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Chapter 1

Introduction

Today sensors are ubiquitous and can be found in almost any techni-
cal device ranging from washing machines to pacemakers and wearable
devices. These sensors produce large quantities of data in the form of
time series. Time series analysis finds application in a wide range of
fields such as health care [1], climate [2], robotics [3], and finance [4]. It
is of high value to consumers and manufacturers to leverage the large
quantity of data in real-time to make useful inferences from it. In the
domain of machine learning and artificial intelligence, we want to use
these time-series signals and either perform classification or regression
tasks that help us identify system behaviour, makes them safe, se-
cure and resilient. There is substantive evidence of machine learning
research in the domain of time series classification [5]. However, ei-
ther these techniques cannot handle big data or are not accurate for
the task, and the models are computationally expensive that cannot
execute on low power devices.

In this project, we propose a novel light weight deep learning ar-
chitecture of dilated CNN (dCNN) for time series classification. Our
work adapts the dCNN architecture from [6] where authors introduce
the concept of dilations and its effects on the convolution operation.
It highlights the benefits of dCNN for performing semantic segmenta-
tion. We evaluate the performance of our model on popular activity
recognition datasets Mobifall [7] and WISDM [8]. Moreover, we also
highlight the computational efficiency of dCNN when compared to
the state of the art models consisting of LSTMs and GRUs. We be-
lieve that this lightweight architecture could pave the way for running
highly accurate models on embedded systems for various applications
and would reduce the need for expensive systems.

The second major contribution of this project is the introduction
of the novel dataset for Human Intent Recognition(HIR) or Activity
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Prediction. HIR is an upcoming field of research which aims to recog-
nize the intent of a user based on a sequence of actions. HIR extends
Human Activity Recogntion (HAR) by predicting the final action of a
user that might happen in the future, unlike HAR, which recognizes
an activity after seeing the data. We introduce a novel pseudo-realistic
dataset created from an existing HAR dataset [8] for HIR. The dataset
has been carefully developed such that it reflects practical situations.
Each sample in the dataset combines activities from the HAR dataset
in different combinations which would help predict the final intent of
the user. We benchmark the performance of our dCNN model, LSTM
and GRU on this new dataset. These models are evaluated based on
computational complexity and predictive accuracy.

Chapter 1 Pranav Khanna 11



Chapter 2
Related Work

Analyzing data from sensors is same as performing time series analysis.
It is a well-studied problem and still remains the central component
in diverse areas of research. For instance, in [9] they combined the
statistical machine learning approach of auto-regressive and moving
average with artificial intelligence (Al) techniques to provide accurate
time-series predictions. In Al, recurrent neural networks are tradition-
ally considered a de-facto for modelling time series data. In [5] used a
recurrent neural network for time series forecasting whereas as [10] use
the modern variant of recurrent networks, the long-short term memory
networks for forecasting. Time series forecasting has been an active
area of research for deep learning researchers as well as where [11]
and [12] employed deep recurrent and deep convolutional neural net-
works for time series classification. There is also extensive research
in computational intelligence techniques such as fuzzy logic [13] and
Bayesian models [14] for time series forecasting.

Deep neural networks have found profound success in the domain
of computer vision and natural language processing with advances
in convolutional and recurrent neural networks. However, recently,
researchers are investigating the use of various variants and state-of-
the-art deep learning models in the domain of time series analysis.
In [15] they use the WaveNet model for multivariate time series pre-
diction where conditional dependence of each variate on the other is
given special consideration. In another work [16] designed a multi-
channel CNN where each channel handles a variable in a multivariate
time series. Time series classification plays a key role in numerous
industrial applications such as in [17] use a CNN for anomaly detec-
tion and diagnosis in semiconductor manufacturing. In [18] presented
a novel architecture of time series classification with each time se-
ries transformed to a 3-D tensor and subsequently processed through
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the network. A comprehensive survey on deep learning techniques for
time series forecasting is presented in [19], and a robust benchmark-
ing of algorithms is presented in [20]. Time series from the domain of
HAR has been studied in [21] where CNN is applied on the frequency
features of a time series.

Past research has explored the domain of HIR and is sometimes
referred to as plan recognition and goal recognition. In [22] uses goal
recognition to recognize a player’s high-level intentions using a com-
putational model trained on a player behaviour corpus. The project
highlights the advantages of deep LSTM based goal recognition mod-
els over single-layer LSTMs, n-gram encoded feedforward neural net-
works and Markov logic networks. In [23] authors have applied plan
recognition on the popular game Starcraft navigation and Monroe
Plan Corpus. The project presents a recursive neural network model
that learns such a decision model automatically. In [24] recursive
Bayesian approach has been used for HIR in the context of shared
control robotics. The recursive Bayesian filtering approach is fused
with multiple non-verbal observations to probabilistically reason about
the intended goal of the user. The project concludes that its approach
outperforms existing solutions and demonstrates that the probabilistic
fusion of multiple observations improves intent inference and perfor-
mance for shared control operation. In [25] developed HIR model in
the domain of Natural Language Processing (NLP) to retrieve rele-
vant information from a sentence for a voice-based human-machine
interface for modern intelligent vehicles. In another work [26] propose
a new model to predict intention of neighbouring vehicles from raw
sensor data for self-driving cars.

Chapter 2 Pranav Khanna 13



Chapter 3

Data Set and
Experiment

To evaluate the performance of our proposed model, we apply the
model to two publicly available datasets on human activity recog-
nition containing accelerometer data. We subsequently propose a
pseudo-synthetic dataset for human intent recognition adapted from
the Wisdm HAR dataset. The results are compared against the pub-
lished results on these datasets.

3.1 Human Activity Recognition datasets

3.1.1 Mobifall Dataset

The Mobifall dataset [7] contains data for three sensors. A accelerom-
eter, a gyroscope and an orientation sensor (a software-based sen-
sor and derives its data from the accelerometer and the geomagnetic
field sensor) of a smartphone. A Samsung Galaxy S3 device with
the LSM330DLC inertial module (3D accelerometer and gyroscope)
is used to capture the motion data. The accelerometer sensor gives
acceleration force along the x, y and z axes (including gravity). The
gyroscope sensor gives the rate of rotation around the x, y and z
axes (angular velocity) and finally, the orientation sensor gives angle
around the x, y and z axes.

The dataset consists of activities related to daily living and falls.
The daily activities include standing, walking, jogging, jumping, mov-
ing up the stairs, moving down the stairs, sitting on the chair, step-
ping in the car and stepping out of the car. The Fall activities include
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forward-lying, front-knees-lying, back-sitting-chair, sideward-lying.

3.1.2 Wisdm Dataset

The Wisdm dataset [27] contains data for the sensor, accelerometer.
The dataset was collected from users using an Android smartphone
who carried the phone in their trousers and asked to walk, jog, ascend
stairs, descend stairs, sit, and stand for specific periods of time. The
accelerometer data was collected at a rate of 20 samples per second.
The accelerometer sensor in this case also gives acceleration force along
the x, y and z axes (including gravity). The acceleration recorded
includes gravitational acceleration toward the centre of the Earth. The
dataset includes the activities walking, jogging, upstairs, downstairs,
sitting, standing.

Figure 3.1: Positions under consideration for the Intent Sitting to
Standing. The second and third positions correspond to the Transition
positions for the Intent Sitting to Standing

3.2 Human Intent Recognition Dataset

The HIR dataset includes the intents from sitting to standing, standing
to walking, and walking to jogging. The Wisdm HIR dataset is split
into a training dataset containing data from 11 users and a test dataset
containing data from 4 users.

3.2.1 Transition Positions

For every intent, there are three positions taken into consideration
in this project, two primary positions and one transition position.
These transition positions help us in identifying the final intent of
the person. The movement from one primary position to another

Chapter 3 Pranav Khanna 15
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A= Sensor values for Primary Position : A (1)
B = Sensor values for Primary Position : B ()
T = Sensor values for Transition Position ()
S = Sample of the HIR dataset (4)
T'=ANB (5)
K1 = Total Number of timestamps for which data for position A is recorded in a sample. (6)
K2 = Total Number of timestamps for which data for Transition position is recorded in a sample. ~(7)
K3 = Total Number of timestamps for which data for position B is recorded in a sample. (8)
K1=[18), K2=[1,5], K3=1(0.§ (9)

§= {An:(h An:h An:Qs ~~~~~ An:kl—l, An:kls Tn:kl-l—ls Tn:kl-l—Qv Tn:kl-l—Ss Tn:k1+k2—la Trt:kl+k21 (10)
Buzkiskatt Buskithoras Buzkishass, oo Buskiphos+ka-1, Baskishoshs)

primary position is a smooth continuous movement. The intermediate
positions between the two primary positions are collectively grouped
as transition positions for that intent. The overlapping sensor values of
the two primary positions are considered to be the values for transition
positions. Consider the positions in the Figure 3.1 which illustrate
the different positions taken into consideration for the intent Sitting
to Standing. The intermediate positions between the two primary
positions are collectively defined as transition positions for that intent.

3.2.2 Procedure

Equations 1 - 10 give an insight about the process of creating the HIR
dataset.

1. Equation 1, 2 and 3 represent the sensor values for different
positions. Equation 5 illustrates the method of obtaining the
sensor values for the transition position. The overlapping values
of the two primary positions in each dimension x, y, and z are
considered as the sensor values for the transition position.

2. Equation 6, 7, 8 describe the features of the HIR dataset sample.
Consider a sample with {K1 = 3, K2 = 5, K3 = 4}. The first
three timestamps of the sample contains the data for position
A, the next five timestamps for position T and the last four
timestamps for position B. The main feature of the HIR is its
ability to predict the intent irrespective of the number of events
happening before and after the transition and different values
of K1, K2 and K3 help reflect practical situations in the HIR
dataset samples.

Chapter 3 Pranav Khanna 16
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3. A special case arises when K3 = 0, which highlights the main
difference between HAR and HIR. Thus when K3 = 0, the sam-
ple does not contain the sensor data for the destination primary
position. This highlights that HIR is able to predict the final
position of the user on the basis of its starting and transition
position, which is however not the case in HAR which is only
able to recognise the position after it receives the sensor data for
that position.

Chapter 3 Pranav Khanna 17



Chapter 4
Dilations in CNN

Different stages of filter movement
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Figure 4.1: Different stages of filter movement across the input for
different dilation rates in 1d convolutions. The filter in this image is
of size three.

Till recently, Recurrent neural networks (RNNs) have been consid-
ered the most optimum neural network architectures for time series
analysis however recent studies show that convolutional neural net-
works can perform comparably or even better. Dilated convolutions
help one-dimensional convolutional neural networks to effectively learn
time series dependencies. CNNs have many advantages over RNN
based solutions. They are much more computationally efficient than
RNNs and are much more easier to train. Further hidden layers in
CNNs can be visualised which is not the case in RNNs and this helps
in the explaining the predictions of the model. Figure 4.1 illustrates
the effect of change in dilation rate on filter movement across the
input. The filter used for performing convolutions is of size three.
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Chapter 5
dCNN Module

T
—
- — —
= [y} —
< I --
~IE g ke
=k 3 Lk
-\\\ Fh —
< 1%
N e -
NS e \"
-~ \ I L
-\ -

L

! \

Dilated Convolutional Layer

T
\\‘»—
S —

Dilated Convolutional Layer  Fully connected layer with
d Conve , with dilation rate = 2 + Max dropout and Softmax
with dilation rate = 2 Pooling Output layer

L : ] \ : )

Figure 5.1: Block Diagram of the proposed Neural Network Archi-
tecture. The red shaded boxes illustrate filter operation on the layer
input.

Our proposed approach uses the dCNN Module. The dilated con-
volutional neural network (dCNN) module is composed of a sequence
of layers of dilated convolutional layers with ReLLU (Rectified Linear
Unit) activations. We apply a 1-dimensional dilated convolution to
extract features from the segments of the time series. In the dCNN
architecture presented in Figure 5.1, the first layer in the dCNN mod-
ule is the dilated convolutional layer; filters in this layer are of size = 2
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and slide over the sensor time series with stride = 1 and dilation rate
= 2 in the vertical direction. Moreover, employing dilations in the con-
volution layer allows one to learn features between the observations
that are far off.

The next layer in the dCNN module similar to the first layer that
performs dilated convolutions on the feature maps obtained from the
previous layers. It allows to extract features between much far off
sensor values. Subsequently, we have a max pooling layers that is
used to abstract the high-level features that are learnt by our dCNN
filters. Finally, we have the last fully-connected layer that is applied
to the outputs of the dCNN layers. The softmax layer computes the
probability values for the predicted class.

5.1 dCNN Architecture Analysis

The network designed for the task of human activity recognition and
prediction has four layers including: Dilated Convolution Layer 1 (No.
of filters = 8, Filter Size = 2, Dilation Rate = 2) = Dilated Con-
volution Layer 2 (No. of filters = 8, Filter Size = 2, Dilation Rate
= 4) = Max Pooling Layer and followed by a fully connected layer.
To train the network, we used batch size of 2000 on Google Cloud
Instance with 1 NVIDIA Tesla T4 GPU. We used the cross — entropy
loss function with the ADAM optimizer with 5; = 0.9 and [, = 0.999
and the learning rate was set to 107°. We used drop out at a rate of
0.5.

5.2 LSTM and GRU Architecture Anal-
ysis

We develop two architectures of single layer network of LSTMs and
GRUs to compare the effectiveness of our dCNN model. We use a
batch size of 2000 to train each network and use ADAM optimizer
with hyperparameter 51 = 0.9 and [y = 0.999. A softmax layer is the
terminating layer in each of the architecture for classification.

Chapter 5 Pranav Khanna 20



Chapter 6
Results

In this Section we present our results on the three datasets. Two for
activity recognition and one for pseudo-synthetic dataset for activity
prediction or intent recogntion. We compare state of the art methods
with our approach and demonstrate superiority in performance along
with the model being light weight enabling deployment on real-world
low power mobile devices.

We present our results on activity recognition. In Table 6.1 we
present our results for the Wisdm dataset on the recurrent neural
networks based on LSTM, GRU, and our dCNN model. We compare
the performance of our model on accuracy and size of the model (the
number of parameters in the model).

Model Name Accuracy # of

Parameters
LSTM 96.73% 94,214
GRU 96.12% 89,862
dCNN 94.95% 9,606

Table 6.1: Performance evaluation of the dCNN model on the WISDM
data set for activity recogniton

Similar to the results on the Wisdm dataset, we performed similar
experiments on another publicly available dataset, the Mobifall, to
evaluate the generalizability of our model. It turns out that results
are promising and reveal interesting insights about the process. In
Table 6.2 we present our results for the Mobifall dataset and compare
the results obtained from state-of-the-art models.

In both Table 6.1 and Table 6.2 the results follow a similar trend
where the dCNN model has better or nearly as good as state-of-the-
art performance however, the model has significantly low number of
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Model Name Accuracy 7# of
Parameters
LSTM 81.05 % 132,617
GRU 80.98% 128,265
dCNN 78.16% 7,257

Table 6.2: Performance evaluation of the dCNN model on the Mobifall
data set for activity recognition

parameters. The low number of parameters make the model modular
and portable in terms of devices with low memory and power.

We briefly introduced the notion of intent recognition as a problem
similar to predicting the activity instead of classifying it. We created
a pseudo-synthetic data set for researchers interested in the problem
of intent recognition.In Table 6.3, we present results and comparison
of the dCNN model for HIR. Our results are state-of-the-art at the
moment. Our dataset is opensource and we welcome researchers to
test their models and present results in the domain of human intent
recognition.

Model Name Accuracy # of

Parameters
LSTM 98.65 % 22,788
GRU 98.74% 18,436
dCNN 96.259% 452

Table 6.3: Performance evaluation of the dCNN model on the intent
recognition dataset

It may be noted from the results in Table 6.3 that although the
model’s performance is approximately 2% lower however there is a 40-
fold reduction in the model size. It is a very useful result and paves
way forward for real-time intent recognition algorithms that can be
use in health care and automotive industry.

Chapter 6 Pranav Khanna 22



Chapter 7

Summary

We have proposed a new convolutional neural network architecture for
sensor data classification and prediction. We present a novel dilated
CNN model for human activity recognition and human intent recogni-
tion. The dCNN architecture uses stacks of dilated convolutions. The
extracted features for classification task are obtained by considering
the inter and intra relation between variates. Our experiments show
that the proposed model is as effective as previous models working
with hand-crafted features such as spectrogram and statistical fea-
tures. In this project we also introduce a novel dataset of Human
Intent Recognition using Human Activity Recognition. We wish to
pursue further work in HIR which has the ability to expand the scope
of HAR to many other diverse applications and domains.
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