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This report on “Estimation of Short Channel Effects in Shell-Doped 

Nanowire MOSFET" is prepared under the guidance of Dr. Abhinav Kranti, 

Professor, Discipline of Electrical Engineering, IIT Indore. 

 

(I have given a detailed description of the derivation of an analytical model for a 

newly introduced unconventional transistor, shell-doped cylindrical nanowire 

junctionless MOSFET through this report. The derived model is verified using 

preliminary tests and the results obtained from the model are included in the 

report) 
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Abstract 

 

In this project, an analytical model is derived for a recently introduced unconventional transistor, 

cylindrical nanowire junctionless metal oxide semiconductor field effect transistor (CNW JL 

MOSFET). CNW JL MOSFET has emerged as a promising device which can overcome the 

challenges of downscaling associated with the conventional MOSFETs and junctionless 

transistors. Thus, the derived analytical model will help in understanding and optimizing the 

properties in the subthreshold regime of the device.  

The uniqueness of this work lies in introducing a new potential approximation function for 

deriving the potential model of the device as the existing method of parabolic approximation 

failed to give physically acceptable model for CNW JL MOSFET. The preliminary verification 

of the derived model was done by using some key indicators obtained during model 

development. Finally, the results obtained from the derived potential model were presented and 

analyzed. 
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Chapter 1 

INTRODUCTION 

 

1.1 Motivation 

Transistors are the key components in all modern electronics. The most widely used transistor is 

the metal–oxide–semiconductor field-effect transistor (MOSFET) with applications ranging from 

computers and electronics to communication technology [1]. Over several decades, the 

semiconductor industry has continuously scaled the transistor’s dimensions to fit more and more 

transistors on a single chip, with the smallest transistor reaching a size of around 10 nm [2]. 

However, continuous downscaling increases short channel effects (SCEs) and leads to poor 

subthreshold characteristics in a conventional MOSFET [2], [3]. Multi-gate device topologies 

like double gate, tri-gate and gate-all-around MOSFETs have continuously been introduced to 

offer better control over SCEs while keeping up the pace with Moore’s law scaling projections 

[2], [3]. Also, newer devices (e.g., junctionless transistors [3], [4]) have been widely investigated 

to obtain better performance than conventional MOSFETs. One such recent introduction in the 

list of unconventional MOSFETs is shell-doped nanowire MOSFET [6], [7]. 

A shell-doped cylindrical nanowire junctionless (CNW JL) transistor has two different doping 

regions [8]. The outer shell is heavily doped and the inner core is very lightly doped or undoped. 

The shell-doped nanowire junctionless (JL) MOSFET has shown significant improvement over 

the conventional nanowire JL MOSFET in achieving better SCEs [8]. The device has also shown 

potential of overcoming problems like band-to-band tunneling (BTBT) and random dopant 

fluctuations (RDFs) which are prevalent in a conventional JL MOSFET [8]-[10]. Thus, the 

project aims to develop an analytical model to estimate the channel potential in the subthreshold 

region of the device and analyze the SCEs using this channel potential expression. This work 

will help in understanding the device physics and performance, and in optimizing the device 

parameters for subthreshold logic applications. 
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1.2 Metal Oxide Semiconductor Field Effect Transistor 

1.2.1 Overview 

MOSFET is a core of the integrated circuit and the most common transistor in the semiconductor 

industry. It has applications in analog, digital and memory circuits [1]. Figure 1.1 shows an n-

channel MOSFET with source, drain, gate, and body terminals. There are four terminals in a 

MOSFET- source (S), drain (D), gate (G), and body (B) terminals. A dielectric layer of oxide 

insulates the channel from the gate terminal. The voltage applied on the gate terminal 

electronically controls the formation of channel between source and drain regions. When suitable 

drain to source bias is applied on the MOSFET terminals, the flow of charge carriers takes place 

in the channel from source to drain [1], [11]. 

 

MOSFET operates on the concept of metal-oxide-semiconductor (MOS) Capacitor. The 

conduction and valence bands’ positions  (relative to the Fermi level) at the semiconductor-oxide 

interface depends on the gate terminal voltage of the device, also referred to as the MOS 

capacitor voltage. By applying a proper MOS capacitor voltage, the semiconductor surface can 

be inverted from p-type to n-type in an n-channel MOSFET or from n-type to p-type in a p-

channel MOSFET [11]. The creation of the thin inversion charge density near the semiconductor 

surface is the basis of the operation and characteristics of the MOSFET [11]. 

 

Figure 1.1 Schematic diagram of n-channel MOSFET where Lg denotes the gate length 

n+ n+

p

Gate

Oxide
Source Drain

Body

Lg
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1.2.2 Challenges 

When the channel length of a MOSFET approaches the  widths of source and drain depletion 

layers, several SCEs like drain induced barrier lowering (DIBL), degradation in subthreshold 

swing, velocity saturation, surface scattering etc. come into effect [1], [11]. With the reduction in 

the channel length of the device, the potential, which is one-dimensional for a long channel 

device, becomes two-dimensional in nature. This results in the reduction of the MOSFET’s 

threshold voltage and it also leads to its dependence on the biasing voltages and gate length. The 

punch through effect also comes into picture which leads to failure of the current saturation [11]. 

All these short channel effects, therefore, put a limitation on the downscaling of the device. 

 

1.3 Junctionless Field Effect Transistor 

1.3.1 Overview 

The junctionless transistor was first introduced in 2010 by J.P. Colinge's group [5]. The 

conventional MOS devices known were based on pn junctions. These pn junctions are formed by 

adding dopant atoms into the base semiconductor material. As the process of downscaling 

continues to nanometre regime in modern devices, the distance between junctions has dropped 

below 10 nm [2]. As a result, high doping concentration gradients become necessary for the 

fabrication of modern devices with junctions. The statistical nature of the distribution of the 

dopant atoms and the laws of diffusion pose difficult fabrication challenges with these ultra-

sharp doping gradients. Therefore, the introduction of the junctionless transistors, with no 

junctions, helps in overcoming this fabrication difficulty [5]. 

 

Figure 1.2 shows the structure of an n-channel junctionless field effect transistor (JFET). 

Junctionless Field Transistor (JFET) is a heavily doped semiconductor device with uniform 

doping of 5×1018 to 1019 cm-3. The channel region concentration is controlled by the gate 

terminal which has a high work-function material [5]. The device can be switched off for zero 

bias with a suitable gate work-function. A JFET has full CMOS functionality [5]. As compared 

to the traditional MOSFET, the device shows better subthreshold characteristics with near-ideal 
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subthreshold slope, low leakage currents and less gate voltage-induced degradation of mobility 

[4],[5].  

 

Figure 1.2 Schematic diagram of n-channel JFET where Lg denotes gate length 

 

1.3.2 Challenges 

Due to the heavy doping in junctionless transistor, the JL device poses problems like RDFs 

which leads to variation in device characteristics [9]. This high doping also leads to off-state 

BTBT of carriers in the device, causing considerable rise in the leakage current [10]. 

 

1.4 Shell Doped Junctionless Transistor 

1.4.1 Overview 

Recently, a junctionless structure with shell-doping profile has been introduced [6],[7] that has 

shown significant improvement over the conventional junctionless FET in terms of SCEs, RDF 

and BTBT while retaining the simplicity of fabrication [8]. The device is, therefore, seen as a 

promising device which can offer a whole new scope of downscaling and process optimization. 
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1.4.2 Structure 

The shell doped junctionless MOSFET has a state-of-an transistor architecture and it can be seen 

as a structure formed by the combination of a conventional MOSFET and a junctionless field 

effect transistor [7]. The device, therefore, possess a complicated structure with different doping 

regions. 

 

Figure 1.3 Shell-doped transistor architecture as a combination of conventional MOSFET and 

Junctionless Field Effect Transistor (JFET) [7] 

 

1.4.3 Cylindrical Topology 

The cylindrical topology offers many advantages over the conventional planar structure of the 

device. The gate-all-around structure offers better electrostatic control over the channel which 

leads to suppressed SCEs and improved subthreshold characteristics in the device [3]. Thus, the 

project aims to develop an analytical model for shell-doped cylindrical nanowire junctionless 

(CNW JL) MOSFET in subthreshold region of operation to better understand the working of 

transistor and help in optimization. 
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A shell-doped CNW JL transistor has two different doping regions. The outer shell is heavily 

doped and the inner core is very lightly doped or undoped. Figure 1.4 shows the schematic of a 

shell doped CNW JL transistor. 

 

Figure 1.4 Schematic of shell-doped cylindrical nanowire junctionless MOSFET 
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Chapter 2 

MODEL DEVELOPMENT 

 

2.1  Literature Survey 

The existing work in the literature related to modeling of different devices was studied for 

conventional and junctionless MOSFETs (both planar and cylindrical structures) [12]-[15]. 

There are different methods by which analytical models for these devices are developed through 

the solution of Poisson’s equation. All methods were analyzed to finalize the approach for model 

development for the shell-doped CNW JL MOSFET. The modeling in the subthreshold region 

involves solving Poisson's equation to obtain the channel potential (ϕ(r,z)) expression. 

Two of the major approaches followed for solving the Poisson's equation are: 

(i) Parabolic approximation of potential [13] and  

(ii) Solution involving decomposition into long channel and short channel potentials [14].  

 

Salient features of both are outlined as follows: 

1. The first method assumes the potential to be a parabolic function along the radial direction 

having arbitrary coefficients a(z), b(z) and c(z) as functions of axial direction (z) [13], as 

follows: 

           𝜙(𝑟, 𝑧) = 𝑎(𝑧)𝑟2 + 𝑏(𝑧)𝑟 + 𝑐(𝑧)                                        (1) 

2. The second method of directly solving the Poisson's equation involves expressing the 2-D 

potential expression as a sum of long channel (V(r)) and short channel  (U(r,z)) potentials 

[14] as follows: 

𝜙(𝑟, 𝑧) = 𝑈(𝑟, 𝑧) + 𝑉(𝑟)                                              (2) 

Both the approaches have shown good results for conventional planar as well as cylindrical 

MOSFETs [12]-[15]. However, the decomposition method requires a series solution which is 

often approximated through first order terms [14] whereas the parabolic method is relatively 
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simpler and results in an expression for natural length [15]. This natural length characterizes 

short channel effects and acts as a crucial indicator for preliminary validation of the developed 

analytical model. Thus, the parabolic approximation method was finalized for solving the 

Poisson’s equation in CNW JL MOSFET to develop the analytical model for the device. 

 

2.2 Limitations of the parabolic approximation method 

The parabolic approximation method involves assumption of a parabolic function for the core 

and shell potential along radial direction as follows: 

( ) ( ) ( ) ( ) 2

210, , rzarzazazr mmmmShell ++=              (3) 

 
( ) ( ) ( ) ( ) 2

210, , rzbrzbzbzr mmmmCore ++=               (4) 

Here ϕShell(r,z)  is the potential in the shell region, ϕcore(r,z) is the potential in the core region, a0m, 

a1m, a2m, b0m, b1m, b2m are the arbitrary coefficients to be obtained using the appropriate boundary 

conditions along the radial direction. 

When (3) and (4) were used to solve the Poisson’s equations in CNW JL MOSFET, the derived 

model did not pass the preliminary tests for the validation of the model. Thus, the widely 

accepted parabolic approximation method showed limitations and thus, could not be used to 

derive the analytical model in this case. This is analyzed in detail in section 3.2.  

 

2.3 Model Development for Shell-doped CNW JL MOSFET 

2.3.1 Modeling Considerations 

Figure 2.1 and 2.2 show the circular and longitudinal cross-sectional view of the device 

respectively. The central region with radius RCore is lightly doped while the shell of thickness 

(RSi-RCore) is heavily doped. Lg and Tox indicate gate length and gate oxide thickness, 

respectively. Regions 1 and 3 in figure 2.2 denote the extensions on the source and drain side 
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respectively, where the gate electric field has influence beyond the gated region [16],[17]. LSext 

and LDext denote the lengths of these extensions on source and drain side respectively. Due to the 

gradient in the doping in the radial direction, the diffusion of the carriers also takes place in this 

direction [8]. The device potential ϕ(r,z,θ) is 3-D in nature but the device is symmetric in the   

direction as shown in figure 2.1. This makes the analytical modeling of the device 2-D in nature. 

 

Figure 2.1 Circular cross-sectional view of shell-doped CNW JL MOSFET 

 

 

 

Figure 2.2 Longitudinal cross-sectional view of shell-doped CNW JL MOSFET 
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2.3.1 Poisson’s Equations 

The development of the analytical model in the subthreshold regime involves solving of the 

Poisson’s equation to obtain the 2-D potential expression ϕ(r,z). The Poisson’s equations [13], 

[14] in the shell and core regions of the shell-doped CNW JL MOSFET are given as:  

A.) Shell: 

( ) ( ) ( )

si

DmShellmShellmShell Nq

z

zr

r

zr

rr

zr



 −
=




+




+




2

,

2

,

2

,

2 ,,1,
           (5) 

 

B.) Core: 

( ) ( ) ( ) ( ) ( )





















 −
−

−
=




+




+





T

fmCore

C

Corei

si

CmCoremCoremCore

V

zVzr

N

nNq

z

zr

r

zr

rr

zr ,
exp1

,,1, ,,

2

,

2

,

2

,

2 





   

(6) 

 

Here ϕShell(r,z)  is the 2-D potential in shell region, ϕcore(r,z) is the 2-D potential in the core 

region, m is 1, 2 or 3 depending on the region of the device as shown in figure 2.2, q is the 

charge of an electron, ԑsi is the silicon permittivity, ni,Core is the intrinsic carrier concentration of 

core-Si, VT is the thermal voltage (=KT/q) where K is the Boltzman’s constant and T is the 

temperature, Vf(z) is electron quasi-fermi potential. 

2.3.2 New Potential Function 

As the well established parabolic potential approximation [13] failed to give results for shell-

doped CNW JL MOSFET, a new function was considered for potential expression along the 

radial direction in shell and core regions of the device: 

 ( ) ( ) ( ) ( ) ( ) 2

210, ln, rzarzazazr mmmmShell ++=              (7) 

 
( ) ( ) ( ) ( ) ( ) 2

210, ln, rzbrzbzbzr mmmmCore ++=               (8) 

Here a0m, a1m, a2m, b0m, b1m, b2m are the arbitrary coefficients to be obtained using the appropriate 

boundary conditions along the radial direction in regions 1, 2 and 3. 
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2.3.3 Boundary Conditions along radial direction 

The following boundary conditions are applied suitably to the above potential expressions to 

obtain the values of arbitrary coefficients in (7) and (8): 

1.) Potential on the surface (r=RSi) and at the centre (r=0) in regions 1, 2 and 3: 

( ) ( )zzRr msSimShell ,, ,  ==
  

( ) ( )zzr mmCore ,0, ,0  ==
             (9) 

where m=1, 2 or 3 depending on the region as shown in figure 2.2. 

 

2.) Electric field at centre (r=0) in all the 3 regions: As the device is symmetric along the 

axis, 

( )
0

,

0

,
=





=r

mCore

r

zr

              (10)  

where m=1, 2 or 3 depending on the region as shown in figure 2.2. 

    
 

3.) Electric field at the surface (r=RSi) in regions 1 and 3: We neglect the outer fringing 

effect [18],[19], and thus, it can be approximated as 0. 

( )
0

,,






= SiRr

nShell

r

zr

             (11) 

Here, n is 1 or 3 depending on the device region.          

4.) Electric field at the surface (r=RSi) in region 2 [20]-[23]:  

( )
( )( )zVg

r

zr
sgs

Rr

Shell

Si

2,

'2, ,



−=





=             (12) 

where g= ԑox / ԑsi Rsi ln(1+Tox/RSi) , V’gs= Vgs-Vfb where ԑox and Tox are oxide permittivity 

and thickness respectively, Vgs is the gate bias with respect to source and Vfb is the 

flatband potential with respect to intrinsic Si. 

 

5.) Continuity of the vertical electric field and potential in regions 1, 2 and 3 at r=RCore : 
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( ) ( )zRrzRr CoremCoreCoremShell ,, ,, === 
 

( ) ( )

CoreCore Rr

mCore

Rr

mShell

r

zr

r

zr

==



=



 ,, ,, 

           (13) 

where m=1, 2 or 3 depending on the region of the device. 

 

2.3.4  Conversion to 1-D equation in central potential 

In the subthreshold regime, the potential along r=0 (ɸ0,m(z)) has the lowest value in the device 

and thus, it is the main determinant of the subthreshold characteristics of the device [12]. 

Therefore, to obtain a simplified analytical model for the analysis of subthreshold properties of 

the device, the above 2-D equations are converted into 1-D equation in terms of central potential 

ɸ0,m(z). This process also has the added advantage of providing some crucial key indicators 

which can be used for the preliminary verification of the derived model. This is discussed in 

detail in chapter 3. 

2.3.4.1 Central Potential in Gated Region 

The arbitrary coefficients in (7) and (8) are obtained for the gated region using appropriate 

boundary conditions from (9) to (13) in the radial direction. 

The potential expressions in shell and core part of the gated region are obtained as: 

( ) ( )
( ) ( )( ) ( ) ( )22

2

2
2,

'

2

2,2,
42

ln
2

, Si

Si

Core

Si

CD

Si

sgs

Si

Core

Si

CD
sShell Rr

R

RNNq

R

zVg

R

r
R

NNq
zzr −











 −
−

−
+

















 −
+=








(14)

 

( ) ( )
( )( ) ( ) 2

2

2
2,

'

2,02, 1
42

, r
R

RNNq

R

zVg
zzr

Si

Core

Si

CD

Si

sgs

Core





















−

−
−

−
+=






                  (15) 

The gated region (region 1) is fully depleted of mobile carriers in the subthreshold regime 

(ni,Core=0) and thus, (6) will change accordingly. Poisson’s equations (5) and (6) are solved 

simultaneously at r=RCore to obtain relation between ɸ0,2(z) and ɸs,2(z): 
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( )

( )
( )

( )21

ln
22

2'

2,0

2,

Si

Core

Si

Si

CoreCDgsSi

s
Rg

R

RRNNqVRg
z

z
+










−
++

=






          (16) 

Using (14)-(16) in equation (6) at r=0 gives 1-D differential equation in ɸ0,2(z): 

( ) ( )
2

2,0

2

2,0

2



 LVz

zd

zd −
=

              (17) 

Here,  

( )





































+

−
−+=

Core

Si

Si

CoreCD
D

si

gsL
R

R

R

RNN
N

q
VV ln

2

2 2

2

2

22
' 





 and 

( ) ggRR SiSi 42 2+=
 are the 

expressions of long channel potential and natural length respectively. These expressions act as 

crucial key indicators which can be used for primary verification of the derived model.
 

The general solution of (17) is given as: 

( ) ( ) ( ) LVzAzAz +−+=  expexp 212,0             (18) 

where A1 and A2 are arbitrary coefficients to be obtained using boundary conditions in the axial 

direction. 

2.3.4.2 Central Potential in Extension Regions 

On applying the appropriate boundary conditions from (9) to (13), (7) and (8) give the potential 

expressions in the shell and core part of the extension regions 1 and 3: 

( ) ( )
( ) ( )
( )

( ) ( )
( )

( )22

222

,,0,0,

,,
ln

ln
ln

, Si

CoreSiSi

nsn

SiCoreSi

nns
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Poisson’s equations (5) and (6) are solved simultaneously at r=RCore to obtain relation between 

ɸ0,n(z) and ɸs,n(z): 
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       (21) 

Using (19)-(21) in equation (6) at r=0 gives 1-D differential equation in ɸn,2(z). 

Using simulation, it was observed that the exponential term on the right hand side of (21) was 

very small as compared to the other term for all parameter values. Therefore, it can be neglected 

in this case to obtain the simplified 1-D differential equation in ɸn,2(z): 
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           (22) 

where N0=ND-(ND-NC)R2
Core/R

2
Si is termed as equivalent doping which denotes the doping 

concentration along r=0 and is another key indicator which can be used for primary verification 

of the derived model. 

The general solution of equation (22) in regions 1 and 3 repectively are given as [18]: 

( ) ( )2

01,0 )2/()( SextSiSextSS LzqNLzEVz +−+−= 
           (23) 

( ) ( ) ( )2

03,0 )2/( DextgSiDextgDD LLzqNLLzEVz −−−−−−= 
                     (24) 

Here, VS and ES are potential and electric field at z= -LSext and VD and ED are potential and 

electric field at z= Lg + LDext.
 

2.3.5 Boundary Conditions in axial direction 

The final expressions of central potential are obtained from (18), (23) and (24) by applying the 

following boundary conditions in the z-direction [18] and obtaining values of coefficients A1, A2, 

VS, ES, VD, ED, LSext and LDext. 

1. Potential at the end of the lateral extensions on source and drain side respectively are 

given as: 

ɸ0,1(-LSext)=Vbi    ɸ0,3(LDext+Lg)=Vbi+Vds        (25) 
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Here, Vds is the drain bias and Vbi is the effective built-in voltage [18]. The value of Vbi 

as used in [18] was used in this case due to the negligible difference observed in the value 

of Vbi for shell-doped double gate and cylindrical structure using simulation. 

2. Due to constant Vbi, the electric field at the end of the source and drain extensions is 0. 

( )
0

1,0
=
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

−= SextLz
z

z
  

( )
0

3,0
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+= gDext LLz
z

z
              (26) 

3. Continuity of potential and lateral electric field at the gate edges. 

ɸ0,1(0)= ɸ0,2(0)    ɸ0,2(Lg)= ɸ0,3(Lg)   
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        (27)       

Applying appropriate boundary conditions from (25)-(27), the final expressions of central 

potentials in region 1, 2 and 3 are given as: 

( ) ( )2
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The value of lateral extensions LSext and LDext can be obtained from the following equations: 
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                         (31) 
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where 

( )gLkc cosh2

21 =  
( ) gLkc sinh2 2

22 =     
( ) ( )( )( )1cosh2 23 −−−=  gLbids LVVVkc

 

( )gLkc sinh14 −=
     

( )gLkc cosh25 −=
      

( ) ( )gLbi LVVc sinh6 −=
 

( ) ( ) ( )( )( )1coshcosh2 27 −−+−=  gLbigds LVVLVkc
    

( ) ( )gLdsbi LVVVc sinh8 −+=
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Chapter 3 

RESULTS AND PRELIMINARY ANALYSIS 

 

3.1 Key indicators 

The natural length (λ), long channel potential (VL) and equivalent doping term (N0) obtained in 

equations in (17) and (22) can act as key indicators for preliminary validation of the derived 

analytical model. The model should satisfy the following conditions to be valid, as the derived 

model did for the case of shell-doped double gate JL MOSFET [18]: 

1.  The natural length obtained for the shell-doped CNW JL MOSFET should be identical to 

that obtained in the CNW JL MOSFET with uniform doping [22]. 

2. The long channel potential obtained for the shell-doped CNW JL MOSFET should be 

same as the potential obtained for a long channel device by solving the 1D Poisson’s 

equation along the radial direction. 

3. The equivalent doping concentration (N0) should not be less than core doping 

concentration (NC) and should not be more than shell doping concentration (ND). 

 

3.2 Parabolic Approximation Function 

When the analytical model was derived using the parabolic approximation method, the following 

information was obtained from the key indicators: 

1. Natural length (λ) is identical to those obtained for CNW JL with uniform doping 

(conventional case) [22],  

 where 

2. Derived long channel potential (VL) did not match with the long channel potential 

obtained using 1D Poisson’s equation along radial direction. 
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Obtained VL: ( )
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3. Equivalent doping at r = 0 (N0), which should have the value between core doping (NC) 

and shell doping (ND) was found to be much greater than the shell doping for some 

values of RCore. 
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These observations indicated that the derived model showed severe violation of physical 

phenomenon associated with the device. Thus, the parabolic approximation method failed to 

provide an analytical model for shell-doped CNW JL MOSFET. 

3.3 New Approximation Function 

With the new potential approximation function, the value of the key indicators was obtained as 

follows: 

1. Natural length (λ) is identical to those obtained for CNW JL with uniform doping 

(conventional case) [22],  

 where 

2. The long channel potential (VL) obtained from the derived model matched with the long 

channel potential obtained using 1D Poisson’s equation along radial direction. 

  

 

3. The equivalent doping (N0) concentration lied between the permissible range of core 

doping and shell doping for all cases. 
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3.4 Validity of New Function over Parabolic Function 

Figure 3.1 shows the plot of long channel potential for different values of RCore for the models 

derived using parabolic approximation function and new approximation function. The figure also 

shows the long channel potential obtained from 1D Poisson’s equation. It is observed that the VL 

obtained from new approximation function is identical to the expected value of VL for all values 

of RCore while the VL obtained from the parabolic approximation function shows deviation from 

the expected value and this deviation increases drastically for smaller values of RCore. 

 

 

Figure 3.1 Long channel potential (VL) for different values of RCore for derived models   

 

Figure 3.2 shows the plot of ratio of equivalent doping concentration (N0) and shell doping 

concentration (Nd) for different values of RCore for the models derived using parabolic 

approximation function and new approximation function. As N0 cannot be greater than Nd, the 

maximum permissible value of this ratio is 1. It is observed that N0 obtained using parabolic 

approximation function does not satisfy this condition for smaller values of RCore while the ratio 

obtained from model derived using new approximation function never exceeds the maximum 

limit of 1. 
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Figure 3.2 Ratio of equivalent doping (N0) and shell doping (Nd) for different values of RCore for 

derived models 

 

3.5 Modeled Results 

 

Figure 3.3 Variation of potential along radial direction at z=Lg/2 for different values of RCore 

Figure 3.3 shows the variation of the potential along radial direction at z=Lg/2 and figure 3.4 

shows the variation of central potential (ɸ0(z)) along axial direction for different values of RCore. 

It is observed that the value of potential decreases as RCore increases. This is because for a fixed 

value of device radius RSi, the shell thickness (RSi-RCore) decreases with increase in RCore.This 
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reduces the number of dopants available for screening of gate electric field, which increases its 

influence on the channel.  

 

Figure 3.4 Variation of central potential (ɸ0(z)) along axial direction for different values of RCore 

 

 

Figure 3.5 Comparison of channel potential of shell-doped DG JL MOSFET [18] and developed 

shell-doped CNW JL MOSFET. For DG JL MOSFET, Tsi = 2Rsi and Tcore =2Rcore. Other 

device parameters are identical as taken in Fig. 3 of ref. [18] 
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of the potential for CNW case is less than that for DG case for all values of r. This is because 

CNW has a gate-all-around structure and therefore, the influence of gate electric field on the 

channel is more in this case. This leads to reduced channel potential in the case of CNW as 

compared to the DG structure. 
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Chapter 4 

CONCLUSION AND SCOPE FOR FUTURE WORK 

 

4.1 Conclusion 

Newer devices and topologies are continuously being introduced in the semiconductor industry 

to carry on with the process of downscaling of transistors and fitting more and more transistors 

on a single chip. One such recent addition in this list of new unconventional transistor is the 

shell-doped MOSFET [6],[7] which has shown the potential of overcoming the challenges faced 

in downscaling of existing devices like conventional MOSFETs and JFETs. Therefore, to 

understand the physical properties of the device and optimize the device for various subthreshold 

applications, we developed an analytical model for shell-doped Cylindrical Nanowire 

Junctionless MOSFET. 

The existing methods for model development were analyzed. However, the model derived using 

the well-established Parabolic Approximation Method failed to give a physically acceptable 

model for the device. The natural length (λ), long channel potential (VL) and equivalent doping 

term (N0) acted as crucial key indicators which proved the invalidity of the model. The 

uniqueness of this work lies in using a new potential approximation function, which was used to 

derive the analytical model for CNW JL MOSFET. The derived model passed all the preliminary 

tests of validation and gave physically acceptable results as shown in chapter 3. 

The developed analytical model gives the potential expressions in the subthreshold regime 

throughout the device. This channel potential can be used to estimate and optimize the short 

channel effects (SCEs) like DIBL, subthreshold swing and subthreshold leakage current in the 

device. 

 4.2 Scope for Future Work 

To keep up with the pace of the Moore’s law scaling projections [8], [9], newer structures and 

devices will continue to emerge in the semiconductor industry. In order to exploit the properties 



24 
 

of these new devices, development of analytical models is necessary. In this project, a new 

potential approximation function is introduced which successfully gave the analytical model for 

CNW JL MOSFET. In the future, the application of this new approximation function can be 

extended to develop analytical models for other devices. 
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