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Abstract

Department of Electrical Engineering
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Estimation of Electricity Production from Photovoltaic Panel

The electricity grid is under a tremendous change where renewable energies are more and
more integrated.The centralised management of the grid is shifting to a more distributed in-
frastructure where smart grids with different scales take more importance. Using renewable
energies, however, requires either the use of a battery pack or to consume the electricity at the
time of production. Due to the limitation of storing the energy, shifting the consumption to
when the electricity is actually produced is necessary. This project deals with the estimation
of solar panel production in order to forecast when and how much electricity will be available.

We propose an Articial Neural Network (ANN)-based model to predict the hourly production
of photovoltaic (PV) plants. The neural network takes three different kinds of input features in-
cluding the static weather forecast data, the predicted irradiance values and the processed neigh-
bourhood minima, maxima and mean outputs for each hour. This enables the neural network to
generalize better for different types of days and climates. The models are then evaluated using
different standard error metrics such as the Normalized Mean Absolute Error (NMAE) and the
Weighted Mean Absolute Error (WMAE) over an hourly, daily and weekly time frame. We also
try to propose a qualitative method to nd the best possible timeframe for the training dataset
based on the ageing of the solar panels and the overall annual change in climate and other con-
ditions. These methods are applied to a large dataset of solar panel electricity production over a
period of seven years.
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Chapter 1

Introduction

1.1 Background

Different efforts worldwide are made in order to transform the traditional electricity system into
smart grid [b17]. The notion of smart grid may refer to a large set of features, but in the scope
of this thesis, we can define the smart grid as a system of distributed systems, including mi-
crogeneration units using renewable energies, and demand-side integration. Different use cases
drive smart grid deployment [b17]: to provide electricity to isolated lands (e.g. small islands
that are disconnected from the grid) [b20], to provide electricity in developing countries with
autonomous or inter-connected systems [b19], or to reduce the dependency on carbon and/or
nuclear energy in developed countries[b21, b22]. A lot of research is currently going on to pro-
vide efficient, reliable, resilient and flexible solutions.

Renewable energy is rapidly growing and it is important to integrate them into the electric
grid and not just use them as alternate sources. Despite the obvious advantages in the use of
renewable energy for the environment and sustainability, the major drawback is their instability.
Most renewable energy sources are dependant on the weather or other environmental phenom-
ena, such as tides or storms. This adds an intrinsic uncertainty in their production. These fluctu-
ations in production make it harder to integrate them into a traditional grid and go against the
aforementioned goals of reliability and resilience.

The smart grid comes with a communication framework in which components may ex-
change monitoring and control information [b24, b25, b26]. Through a unified and standardized
set of protocols, all objects talk the same language, and any of them can talk with any other one.
The smart meter is certainly the most popular communicating object in the smart grid [b23]. It al-
lows to remotely monitor the energy consumption in real time and may also be used to broadcast
price information. The innovation in this new communication framework is the bi-directional
nature of the communication, which allows devices to negotiate together. Interestingly, it allows
consumer devices to exchange information with production units, thus making the system flex-
ible: the consumer devices may adapt their behavior depending on the energy availability, to
some extent. For example, an electric car may advertise that it needs a given amount of energy,
in a given time frame. Depending on the energy availability, the grid may choose the best time
and source of energy for charging the car. To summarize, it is the combination of the three fea-
tures, namely the bi-directional communication framework, the demand-response-compatible
loads and the usage of renewable energy, that allow to better manage the energy service. In
order to fully take advantage of the smart grid, real time monitoring and control is not enough,
but predictions are needed [b13, b14, b20]. Accurate and reliable forecasting of the productions
can further feed the optimization problem to align the consumption with the production.

Let us now focus on solar energy, as this is one of the largest and fastest-growing sources
of renewable energy. Solar power plants are easy to install and require minimal maintenance
making them ideal for both small scale and large scale deployment. Just like all sources of
renewable energy, solar panel production also suffers from fluctuations and instability due to
climatic conditions. This is one of the main reasons why small scale PV plants are used for
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selective purposes such as water heating and lighting or as a source of backup power but are
not completely integrated into the grid. While the use of battery packs to store the produced
electricity is a viable option, it is costly and cannot be considered for extended periods of time.
Accurate forecasting of the production can help plan the electricity usage efficiently. Forecasts
can also help monitor and maintain solar power plants. While hourly and daily forecasts can
help examine the proper functioning of the plant, daily and weekly forecasts can help with
scheduling maintenance and long term planning.

Solar power plants range from a few connected solar panels for individual households or
small industries to larger PV parks where panels are spread over an area of a 2 - 5 square kilo-
meters. This thesis focuses on forecasting of production for solar microgrids. The microgrids are
harder to model using weather data since the weather forecasts are provided for areas accurate
up to a couple of square kilometers while the microgrids vary from a few square meters to a
couple of hundred square meters in area. For larger PV plants, the inaccuracies in the weather
forecasts are compensated by the large area of the power plant.

In this thesis, we propose a two-step neural network based model to forecast the hourly
production of solar power plants. The first step is the prediction of hourly irradiance values
based on the weather forecast. The second step is the hourly production forecast using a separate
model to forecast every hour of the day. The production forecast model uses a combination of
the weather forecast, irradiance forecast and neighbourhood data to predict the production of a
particular hour.

The remainder of the thesis is as follows. Next section deals with the related work and
discuss the most recent works on solar panel production forecast and the main differences with
our approach. Section III describes the data set used in this thesis, and gives an overview of
our model. Section IV indicates our choices regarding the selected artificial neural network and
section V finally presents our model. Section VI present the results we obtained, and section VII
concludes the thesis by giving some perspectives to this work.
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Literature Survey

The following chapter discusses different publications and works that have similar objectives to
the work described in this thesis. There has been a lot of works in the area of machine learning
for solar power production forecasting due to the increase in the urgency to shift to renewable
power sources. With the climate change and the price drop of solar panel, smart grids need
to better integrate this source of energy into the traditional grid. However, in order to provide
a smooth integration, we need to cope with the intermittent production and forecasting the
production is key to address this challenge.

2.1 Time series based model

Cococcioni et al.[b16] propose an interesting model in which the time series nature of the data
is exploited. In this model, a single neural network is trained to predict the output generation
of the PV plant at 15 minute intervals. The neural network considered for this approach is a
feedforward network with tapped delay lines. The neural network takes as input the irradiance
and output values of the previous day corresponding to the same hour. Depending on the
number and type of delay lines, the network may consider more observations from the previous
day or observations from more days to learn the trend in the irradiance and output values. It
then predicts the output production solely based on the time series characteristics of the data.
While this approach is suitable for large PV installations in regions with fairly stable weather,
smaller installations and locations with erratic weather conditions are not well modelled by this
approach.

2.2 Clear Sky Irradiance based model

Dolara et al. [b5] show an interesting approach to the problem. The paper proposes a hybrid
method to predict hourly power productions in a day-ahead manner. The proposed model con-
sists of a neural network which takes the weather forecast and some temporal features as input.
The model also takes the clear sky irradiance values that are calculated based on the determin-
istic Clear Sky Solar Radiation Algorithm (CSRM) [b18]. The neural network is trained to learn
the amount of irradiance actually used by the solar plant based on the various weather forecast
variables.

2.3 Average Input based model

Nespoli et al. [b10] propose a neural network model that takes the average temperature and
average measured irradiance of the previous day to predict the irradiance of the current day. It
produces 24 outputs corresponding to the irradiance forecast for 24 hours. The mean of these
values is then used to decide between two separate models for “sunny” and “cloudy” days
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based on the mean of the predicted irradiance. The second models then use the mean of irradi-
ance, temperature and production of the previous day to predict 24 values corresponding to the
hourly production of that day.

24 Neuro Fuzzy model

Grimaccia et al. [b3] consider a neuro-fuzzy model which feeds into the neural network the
weather forecast at 3 different points of the day all at once. The forecasts for 6 A.M., 12.P.M. and
6 P.M. are used together to predict the complete day’s production. The weather forecast supplied
to the network also includes a fuzzy logic pre-processed irradiance value for the 3 times of the
day.

Our approach draws from the two main publications that use weather forecast data to fore-
cast the PV production. The first one is an irradiance prediction based neural network model
[b10] and the second is a neuro-fuzzy predictive model based on weather forecast [b3].

In this project we propose a neural network based model to predict the hourly productions.
The model consists of two parts, where the first part uses hourly weather forecast data to predict
the irradiance and the second part uses the forecast irradiance values along with the weather and
some other processed data to predict the production. The hourly inputs were considered since
a lot of the hourly variation in data is lost if the average values are provided as proposed in the
first paper explained. The neural networks in the second part are specific for every hour. This
means that there are separate models trained to predict the particular hour’s production. This
helps the neural network to learn the structural and temporal features separately. Using the
same model to predict the value of different hours leads to too much variance in the data for the
model to accurately learn important features.
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Dataset and Overview

3.0.1 PV module and Dataset

As part of this thesis, we explore the various variables provided as part of the weather forecast
and study their correlation to the DC Power output of the PV plant in an attempt to select the
variables that provide the best production forecast. The dataset used for the research is part
of the project cited here [b1]. It consists of data from two separate sets of solar panels. The
following are the specifications of the solar power microgrid:

e Solar panel technology - silicon mono-crystalline

Panel Inclination - 15

Panel rating - 960 W

Total surface area - 5.52m?

Microgrid Location - Latitude of 4714"20”.76N and Longitude of 133’30” 24W

The first dataset contains approximately 1400 days of observations spread over 6 years from
2011 to 2017. The second dataset contains 1000 days of data over 4 years from 2014 to 2017. Both
datasets contain the measured irradiance values and the output DC Power. The weather fore-
cast data used contains various variables with an hourly frequency. While the weather forecast
provides various features such as the UV Index, Temperature, Wind Chill, Wind speed, precipi-
tation, humidity, pressure, visibility and cloud cover, only some of these variables are useful in
the forecasting of the hourly production.

Fig.1 is a scatter plot between the Irradiance and the DC Power variables. It can be seen that
there is some kind of linear relationship between the two variables. These kinds of plots help in
capturing the polynomial or periodic dependence between two variables. The Fig. 2 is a scatter
plot between the humidity and DC Power. It can be seen that there is no clear relationship
between the two variables. Such scatter plots where the points are scattered in a cloud show
that the two variables have minimal dependence. In fact, the irradiance feature is the most
correlated to the output. However, typical weather forecasts do not provide irradiance values.
This problem is tackled by predicting the irradiance based on the other weather variables. This
procedure is explained in detail in section V.C.

3.0.2 Overview

Fig. 3 gives a high level overview of the model. It shows the two step process involved in the
prediction of the hourly production values. It also shows the input data used for the various
models.

In this project, we propose a two step process to forecast hourly production values. In con-
trast to the first paper described in section II which uses the previous days recorded values for
the forecast, we use the weather forecast for the day that is intended to be forecast. This provides
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FIGURE 3.1: Scatter plot between DC Power (output) and the Irradiance(input)

a lot more correlation between the inputs and the output. The first step in the proposed method
is the prediction of hourly irradiance values from the hourly weather forecast. The second step
involves the feeding of the predicted irradiance values along with the weather forecast values
and some processed neighbourhood statistics to the hourly models. We propose the use of 15
hourly models to predict the forecast for every hour. This is especially useful in the case of pre-
dictions for microgrids. The hourly models also help in maintaining the inputs unconnected.
Providing more than one forecast at a time is recommended for predicting average values but
will “confuse” the network when trying to predict the hourly production. One more reason
for the hourly models is that a single model would require 15 output neurons to make hourly
predictions but in general, a single neural network with multiple outputs performs better when
the outputs are correlated while multiple neural networks with a single output are preferred for
uncorrelated outputs.

3.1 Artificial Neural Networks

Artificial Intelligence methods have become popular in predicting outputs that are complex non-
linear functions of the inputs. Artificial Neural Networks (ANNs) are a popular subclass of
machine learning models, which are loosely based on the learning model of a human brain.
Artificial Neural Networks are fairly straightforward systems, which process the data with
the help of artificial neurons and learn intrinsic features which help map the input to the output.
The word intrinsic is used here to stress the fact that the neural network learns without any
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FIGURE 3.2: Scatter plot between DC Power (output) and the Humidity(input)

a priori knowledge about the features. This means that it is not possible to clearly define the
features that the neural network uses to learn the problem.

The ANN method proposed in this project uses the Multi-Layer Perceptron (MLP) model.
An MLP generally consists of an input layer followed by several hidden layers and an output
layer. Each layer consists of a predefined number of artificial neurons depending on the type of
data being modelled. Every layer in an MLP starting from the input layer is generally densely
connected to the next layer meaning that every neuron in a layer is connected to every other
neuron in the next layer. The connections between neurons of consecutive layers carry weights
and the neurons then apply an activation function over the weighted inputs and pass it to the
next layer. The usual rule of thumb is that a wider neural network (more neurons per layer)
tends to memorize better and a deeper (more hidden layers) neural network is able to learn
highly nonlinear features better.

Training algorithms are then used to change the weights of the connections to learn the best
mapping between the inputs and the outputs. The best mapping between the input and the
output is the solution to the optimization problem of minimizing or maximizing a cost func-
tion depending on the type of data. The cost function can be considered to provide some prior
knowledge to the model about the kind of mapping. For regression problems, the most pop-
ular cost functions are the mean absolute error and the mean squared error. The most famous
training algorithm is the error backpropagation based on gradient descent. This algorithm is
computationally expensive but converges to a minima fairly easily with the proper learning rate
and batch size. One drawback of the gradient descent based backpropagation is the convergence
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to a local minima if the weights are not initialized properly. The backpropagation algorithm is,
however, suitable for the problem described in this thesis.



Chapter 4

Data and Normalization

4.0.1 Data Processing

The data used for the forecasting of the PV power plant productions can be divided into three.
o The static weather forecast data
e The irradiance prediction
e The DC output from observations with the closest weather conditions

The static weather forecast data is the most important of the three and provides the basis
for the predictions. It is mined for the particular location of the solar panels using the latitude
and longitude. The weather forecast used for this research was mined using the world weather
online API for python. The weather forecast consists of various variables out of which the most
suitable subset has been chosen. The weather variables used for the prediction are UV Index,
cloud cover, humidity, temperature and visibility.

The irradiance prediction value is obtained from a neural network model that is trained to
predict the irradiance values based on the weather forecast variables and past irradiance record-
ings. This is a way of guiding the neural network to use the features that are known to impact
the production of the panels. This intermediate step of predicting known features that affect the
production helps the neural network learn more meaningful patterns. Otherwise, the network
tends to learn abstract features which may not be suitable for the problem or may not be present
in the testing data.

The nearest weather neighbours are obtained by processing every weather input individ-
ually to find the 50 nearest data points from the training set that have the closest weather to
the forecast. The distance between two weather observations is calculated using the Euclidean
distance between them which is calculated as follows

d(p,q) = d(a,p) = /(g1 — P12+ + (gu — pu)? (4.1)

The power production of these 50 points is then retrieved and sorted. The sorted list of pro-
duction values is then reduced by removing the highest and lowest 10 points. This is done to
effectively remove outliers that may influence the output towards the outlier points. After the
reduction of the 50 values into a list of 30 values, the minimum, maximum and the mean values
of the list are taken as inputs to the final prediction model.

4.0.2 Data normalization

Neural networks tend to perform better when the inputs and outputs of the network are normal-
ized as shown by Sola et al. [b13]. Normalization generally increases the speed of convergence
of the error and does not affect the accuracy. Raw data tends to be in different scales and this
leads to different range of weights for different connections making it hard for the gradient de-
scent algorithm to smoothly descend into the minima.
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The dataset is divided into yearly training and testing sets, and each training set is scaled to
a range of 0 to 1 using a Min-Max scaler. The Min-Max Scaler subtracts the minimum values of a
feature from every value and divides it by the range (max - min) of the features. The same scaling
is then applied to the testing data. The training and testing data are scaled separately to avoid
data leakage. If the training and testing data are scaled together, it would lead to data leakage
wherein some information regarding the future data is used to predict it. This is especially true
when using scaling algorithms that involve the mean and variance of the data.
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FIGURE 4.1: Irradiance Prediction Model Architecture
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Chapter 5

Model Architecture

In this section, we detail our model architecture, which comprises two parts. The first part con-
sists of the irradiance model shown in Fig. 4 which takes the weather forecast data as input and
predicts the irradiance value. This model takes 7 input features including the 5 weather forecast
variables stated above and the corresponding temporal data (day of the year and the hour of the
day). It contains two hidden layers with 7 and 4 neurons each with the ReLU ( Rectified Linear
Unit) activation function. The output layer of the model contains a single neuron with a sigmoid
activation function since the values are scaled between 0 and 1. This model is trained with the
historic irradiance values to forecast future irradiance values as they are not provided as a part
of a typical weather forecast. The second part consists of feeding the forecast irradiance val-
ues into a second neural network along with the weather forecast data, the nearest neighbours
data and the previous day’s production value. Separate models for every hour are not required
for the irradiance prediction as we are considering the hourly models to learn the structural and
temporal features more accurately, and using them for both the irradiance and power generation
predictions will not improve the models accuracy.s Since the predictions are made hourly, we
considered separate models for every hour of the day. The alternative was to consider a network
with 24 outputs for every hour of the day but this lead to a decrease in the prediction accuracy
due to the increase in the number of features. This increases in the number of features paired
with densely connected MLP layers lead to the extraction of unwanted features from forecasts of
different hours thereby reducing the accuracy. To obtain a similar accuracy using a single model,
we had to use a much wider model which leads to an unnecessary increase in computation. The
hourly models are definitely a better option especially for microgrids as they are also able to
learn the periodic structural features such as shadows from buildings or obstructions which are
significant only during the early and late part of days. The input layer of the hourly models

Neuron | Variable Name

i Irradiance Predicted

in UV Index

i3 Cloud Cover

iy Humidity

is Temperature

i Minimum Neighbourhood output
iz Maximum Neighbourhood output
ig Mean Neighbourhood output

ig Day of the Year

i10 Previous output for the hour

Table 1. Inputs to the Hourly prediction model
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contains 10 features which are shown in Table 1. These hourly models contain two hidden lay-
ers with 4 neurons each and an output layer with a single neuron. The first hidden layer uses
a ReLU activation function while the second layer has a Tanh (Hyperbolic Tangent) activation
function. These activation functions were considered after trying different combinations and
evaluating the convergence and accuracy. The output layer has a sigmoid activation function to
keep in range with the scaled output values.
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Chapter 6

Results

The above described model architectures were considered after experimenting with a different
number of layers and neurons. The different iterations of the model were evaluated using mul-
tiple performance metrics. The performance metric that is most important for such data is the
Normalized Mean Absolute Error (NMAE). The NMAE is defined as

NMAE — l % ‘Pmeasured,n - Pfarecast,n| 100 6.1)
N i=1 Prated

where Pyeqsured is the actual power measured, Prorecst is the predicted power for the same hour
and P,y is the rated power(Maximum Power) of the plant. The summation range N is chosen
according to the time range considered. It will be the number of observations in a particular
day if considering daily NMAE or the number of observations in a week if considering weekly
NMAE.

The normalized mean absolute error calculates the error normalized to the size of the system
making it suitable to compare systems of different sizes. All other absolute errors cannot be used
to directly compare the performance of different systems, owing to the different sizes of solar
power plants.

One can observe from Fig. 5 that the weekly NMAE for 42 weeks averages at around 15%.
The weekly NMAE is calculated by carrying out the summation of the NMAE for all observa-
tions in a particular week. The Fig. 6 here shows the daily NMAE of the predictions. It can be
seen that the NMAE is below 20% for most days. The NMAE gives an idea on what percent of
error is observed in terms of the total rated power. While simpler models are able to predict with
an NMAE of less than 10% for power plants whose production is in the range of a few 100 KW,
they do not work well for smaller installations. Our model allows us to estimate the production
with a maximum error of 20%. This accurate predictions are suitable for all the different appli-
cations such as unit commitment, electricity market, maintenance scheduling and electricity dis-

patch planning involving a microgrid.
Mean NMAE %
Year | Type of Error | Dataset 1 | Dataset 2
S S -
2015 oty 1391134
e {10 s

Table 2. Yearly NMAE for the 2 datasets
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FIGURE 6.1: Weekly Normalized Mean Absolute Error

Fig. 7 shows the frequency distribution of the errors for the various hourly predictions. A pos-
itive Normalized Error% from this figure corresponds to an underestimated prediction while
a negative Normalized Error% corresponds to an overestimated prediction. The fact that the
model is underestimating more often than overestimating is of significance advantage as this
can give an estimate on the minimum production and can help in planning distributing for the
maximum production without overestimating.

Fig. 8 shows the actual and forecast daily energy productions for 100 days. The figure also
shows the percentage error in green. The percentage error in the plot is the Mean Absolute
Percentage Error (MAPE), which is calculated as follows

X — Xpredi
MAPE = Actual Predicted 100 (62)
Xuctual

It can be seen that the model underestimates most of the time. This is a desirable characteristic
in production prediction models as this allows the user to know the minimum production that
can be expected. It should also be noted that the MAPE is considerably high for certain points.
These points generally correspond to days with less production. MAPE tends to increase with
lesser production because it is expressed as a ratio of the production. This however does not
mean that the absolute error is high. When considering weekly or monthly productions, the
days with lesser productions are insignificant when compared to the total production. In turn,
the errors associated with those predictions are also not significant.

The model was also trained with different time frames of training data for a fixed testing
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data to evaluate the affect of the training data on the performance of the network. The best re-
sults were achieved when the training included the past 12-15 months for forecasting the future
6 months. It is also important to compare the hourly values for the training and the testing pe-
riods to check for consistency. Any new physical obstructions that might cast shadows on parts
of the system or degradation in the infrastructure must be considered while deciding the train-
ing period. The solar panels also tend to degrade over the years due to aging and/or improper
maintenance. It is therefore recommended not to train on data older than 2 years to avoid in-
consistencies between the training and testing data. Fig. 9 illustrates that the model is able to
accurately follow the measured power. The results are accurate considering that microgrids are
highly sensitive to minute weather and climatic changes.
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Chapter 7

Conclusions

In this thesis we have outlined the current state of the art in the prediction of solar power pro-
duction. We have described various papers and proposed a novel approach to predict hourly
production of PV plants. The model proposed consists of two parts where the first part involved
the use of neural networks to extract more appropriate features for the model. The second part
involved hourly models which are trained to predict the production for a particular hour using
the various input features as described in section V. The following sections reasoned in detail
the decisions that led to the proposed architecture and model.

In section VI we have evaluated the model for different time frames and applications. It is
important to note that the approach is tailored to predict the hourly production of micro and
nano grids. The size of the grid is a huge factor in the prediction model, in terms of choosing
the features and the model architecture. The proposed model is able to predict daily production
values with an average NMAE of 15%. This average is over a testing period of 400 days. The
weekly NMAE for over 42 weeks averages at 13%.

It can be concluded that the solar plant production has a certain dependency on the weather
conditions but it should be noted that there is a limit to the accuracy in forecasting that can be
achieved by using only the weather forecast data. This is especially true for microgrids due to
the inaccuracies in the weather forecast. Nevertheless, the accuracies of forecast obtained on an
hourly, daily and weekly basis are sufficient to benefit the short and medium term planning of
solar power plant.
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