
I

Lateral Dynamics and Autonomous Navigation of

Ground Vehicles

A project report

Submitted in partial fulfillment of the

requirement for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

MECHANICAL ENGINEERING

 Submitted by

Gautam Kumar (160004017)

Under the Supervision of

Dr. Shanmugam Dhinakaran

Indian Institute of Technology Indore

November 2019

II

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Lateral Dynamics and Autonomous

Navigation of Ground Vehicles” submitted in partial fulfillment for the award

of the degree of Bachelor of Technology in ‘Mechanical Engineering’

completed under the supervision of Dr. Shanmugam Dhinakaran, Associate

Professor, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other

degree elsewhere.

Gautam Kumar (160004017) Date

__

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is correct to the best

of my knowledge.

Signature

Dr. Shanmugam Dhinakaran

Associate Professor,

Mechanical Engineering,

IIT Indore

III

Preface

This report on “Lateral Dynamics and Autonomous Navigation of Ground

Vehicles” is prepared under the guidance of Dr. Shanmugam Dhinakaran.

An Ackermann vehicle has been mathematically modeled and control

algorithms have been formulated to check its performance for various real-life

situations. Then an autonomous navigation has been implemented on a robot

and its efficiency has been realized through actual experimentation in indoor

environment.

The results obtained from the experiments and simulation has been tabulated as

well as presented in graphical form and a thorough study has been done.

Gautam Kumar (160004017)

B.Tech. IV Year

Discipline of Mechanical Engineering

IIT Indore

IV

Acknowledgment

First and foremost, I would like to thank my supervisor Dr. Shanmugam

Dhinakaran for guiding me thoughtfully and efficiently throughout this project,

giving me an opportunity to work at my pace while providing with useful

directions whenever necessary.

I would like to thank Dr. Upendra Kumar Singh, Director, Centre for

Artificial Intelligence and Robotics (CAIR), DRDO for giving me the

opportunity to do the project within the organization.

I am also highly indebted to Mr. Nitin Kumar Dhiman, Scientist ‘E’, CAIR,

DRDO, for providing me the facilities to accomplish this internship and guiding

me thoughtfully and efficiently throughout this project .

I would also like to thank all the people that worked along with me at CAIR,

DRDO with their patience and openness to create a better working environment.

Finally, I offer my sincere thanks to all other persons who knowingly or

unknowingly helped us in completing this project.

Gautam Kumar (160004017)

B.Tech. IV Year

Discipline of Mechanical Engineering

IIT Indore

V

Abstract

This project deals with the development of autonomous navigation in mobile robots which

are used for surveillance purposes. There are various types of inaccessible areas where human

safety is a major concern especially in border areas. To develop a complete robot which could

decide how to navigate through its surroundings, it deals with four aspects:

1. Sensing the environment

2. Localizing itself

3. Planning the path to reach its goal

4. Execution of velocity inputs to track the planned path

The first question is answered by mounting sensors on the robot. IMU (Inertial Measurement

Unit), GPS (Global Positioning System), wheel encoder and LiDAR (Light Detection and

Ranging) have been used to provide the information about the environment to the robot. A

cost effective way has been developed to get the position estimates of the robot by fusing

IMU and encoder data using EKF (extended kalman filter).

To localize the robot, a particle filter algorithm called AMCL (adaptive monte carlo

localization) have been used. Using the laser observations, the robot creates a map of its

surrounding. Using these map landmarks, it predicts its current position in the map.

Two path planner algorithms have been implemented: TEB (Timed-Elastic Band) and DWA

(Dynamic Window Approach). Their purpose is to detect the obstacle during the robot

navigation and plan out paths to avoid the obstacle. TEB is found out to be good for

Ackermann robots while DWA is suitable for differential-drive robots.

To track the path given to the robot two motion controllers, PID

(Proportional-Integral-Derivative) and SMC (Sliding Mode Controller), have been designed.

It has been found out that SMC can handle uncertainties which are prevalent when the robot

moves in real world. A non-linear dynamic mathematical model of the robot has also been

formulated to incorporate the non-linearities present in real world.

VI

Table of content

CANDIDATE’S DECLARATION .. II

CERTIFICATE by BTP Guide .. II

Preface .. III

Acknowledgment ... IV

Abstract ... V

List of figures..IX

List of table………………………………………………………………………………XII

Chapter 1: Introduction ... 1

 1.1 History and development .. 1

 1.2 Need for Autonomous vehicles .. 2

 1.3 Aspects of Autonomous Navigation ... 3

 1.4 Literature Review ... 4

 1.5 Challanges .. 8

 1.6 Motivation .. 8

 1.7 Objective.......……………….…………………………………………………….9

Chapter 2: Vehicle Modelling and Motion Control .. 10

 2.1 Vehicle Modelling Tools .. 10

 2.1.1 MATLAB & Simulink ...………………………………………………..10

 2.1.2 CarSim …………………………………………………………………..11

 2.2 Vehicle Models …………………………………………………………………11

 2.3 Mathematical modeling of Ackermann Steering Vehicles ……………………...13

 2.4 Mathematical modeling of Differential-drive Robot…………………………….17

 2.4.1 Forward and Inverse Kinematics………………………………………...19

 2.5 Motion Controllers………………………………………………………………22

 2.5.1 Proportional-Integral-Derivative Controller……………………………..23

VII

 2.5.2 Sliding Mode Controller………………………………………………..24

Chapter 3: Simulations & Experimental Setup …………………………………26

 3.1 Ackermann Vehicle Parameters Estimation……………………………………..26

 3.2 CarSim Simulation Environment………………………………………………..30

 3.3 0xDelta Series Robot…………………………………………………………….33

 3.4 Robot Operating System (ROS)…………………………………………………34

 3.5 Sensors…………………………………………………………………………..35

 3.5.1 Sensor Coordinate transformation……………………………………..36

 3.5.2 Orientation and Rotation………………………………………………36

 3.5.3 Pose Measurement Methods…………………………………………...37

 3.5.4 Sensors used in the Robot……………………………………………..38

 3.6 Setting up ROS Environment with Robot……………………………………….40

Chapter 4: Autonomous Navigation ……………………………………………….42

 4.1 Navigation Stack ...……………………………………………………………..42

 4.2 Software Packages ...……………………………………………………………44

 4.3 Dynamic Window Approach ..………………………………………………… 58

 4.4 Kalman Filter…………………………………………………………………... 61

 4.4.1 Kalman filter algorithm………………………………………………. 62

Chapter 5: Results and Discussions ………………………………………………...65

 5.1 Vehicle modelling …………………………………………………………….. 65

 5.1.1 Steering actuator consideration………………………………………..65

 5.1.2 Sensitive Analysis of Vehicle Parameters …………………………….67

 5.1.3 Motion Controllers ……………………………………………………69

 5.1.4 Linear and nonlinear model …………………………………………..73

 5.2 To find and reduce odometry error on the experimental vehicle ………………76

 5.2.1 Odometry Drift Calculation …………………………………………. 76

 5.2.2 Running Robot in Outdoor Environment and Kalman filter ………....78

5.3 Autonomous Navigation in Indoor Environment ……………………………...81

 5.3.1 Localisation……………………………………………………………81

 5.3.2 Path Planning Algorithm Results……………………………………...83

VIII

Chapter 6: Conclusion …………………………………………………………………90

References ………………………………………………………………………………...93

Appendix ………………………………………………………………………………….96

IX

List of Figures

Figure 2.1 Vehicle Axis System

Figure 2.2 Various vehicle models

Figure 2.3 2-DOF Bicycle model

Figure 2.4 Velocity vector

Figure 2.5 Differential drive kinematics

Figure 2.6 Block diagram of the vehicle

Figure 3.1 Test Vehicle

Figure 3.2 Schematic diagram of the steering actuator system

Figure 3.3 Simulation environment setup in CarSim

Figure 3.4 Setting up driver controls and variables

Figure 3.5 Import variables

Figure 3.6 Export variables

Figure 3.7 Setting up vehicle block in Simulink

Figure 3.8 0x Delta series robot

Figure 3.9 ROS communication block diagram

Figure 3.10 Sick LMS 100 2-D LiDAR

Figure 4.1 Basic Layout of Autonomous Vehicle

Figure 4.2. ROS Navigation Stack

Figure 4.3 transformation tree for the navigation stack

Figure 4.4 Cost map representing different layers

Figure 4.5 Inflation Layer

Figure 4.6 AMCL localization structure

X

Figure 4.7 Timed Elastic Band

Figure 4.8 DWA planner trajectory

Figure 4.9 Djisktra algorithm

Figure 4.10 Illustration of a robot navigation environment using DWA

Figure 4.11 Velocity map

Figure 4.11 Kalman Filter basic working layout

Figure 5.1 Comparison for 20˚ heading angle input when vehicle is moving at 3.2 m/s

Figure 5.2 Heading angle error without actuator dynamics and considering actuator dynamics

when the vehicle is moving at 3.2 m/s to achieve a desired heading angle of 20 degrees

Figure 5.3 Steering angle comparison when 20˚ heading angle step input is given for vehicle

running at 3.2 m/s.

Figure 5.4 Effect of Cornering Stiffness on the vehicle

Figure 5.5 Effect of mass on vehicle performance

Figure 5.6 PID controller best tuned with varying gains and speeds

Figure 5.7 SMC controller best tuned with varying speeds and gains

Figure 5.8 PI controller behaviour keeping gain constant with best tuned at 5 km/hr

Figure 5.9 SMC controller behaviour keeping gain constant with best tuned at 5 km/hr

Figure 5.10 Linear and Nonlinear model comparison at 3.2 m/s for 20˚ turn

Figure 5.11 Linear and Nonlinear model comparison at 3.2 m/s for 90˚ turn

Figure 5.12 Comparison of predicted model with CarSim simulation at 3.2 m/s for DLC

manoeuvre

Figure 5.13 Path tracking for DLC manoeuvre at 3.2 m/s

Figure 5.14 Robot running at 0.4 m/s for 15 m

Figure 5.15 Velocity analysis at 0.4 m/s for 15 m

XI

Figure 5.15 Representing GPS and raw wheel odometry data when the robot moved in a

closed path

Figure 5.16 Path tracking errors

Figure 5.17 comparison GPS data and Kalman filter data obtained from the fusion of

odometry and IMU

Figure 5.18 Map building environment in ROS

Figure 5.19 Complete map of the room

Figure 5.20 Footprint models

Figure 5.21 TEB local planner path behaviour

Figure 5.22 Global path (b) and Local path (a) followed by the vehicle using TEB

Figure 5.23 TEB local planner errors

Figure 5.24 DWA local planner path behaviour

Figure 5.25 Local path (a) and Global path (b) followed by vehicle using DWA

Figure 5.26 Velocity comparison of TEB and DWA local planner

Figure 5.27 Costmap Prohibition layer

XII

List of Tables

Table 3.1 Physical parameters of the vehicle

Table 3.2 Parameter of the tyre

Table 3.3 Specifications of steering actuator

Table 3.4 0x delta series robot specifications

Table 3.5 LiDAR sensor specification

Table 5.1 Results for vehicle running at 3.2 m/s with 20˚ step input heading angle response

Table 5.2 Comparison of best tuned SMC and PID controller

Table 5.3 Comparison of PID and SMC when best tuned at 5km/hr with increasing velocity

and constant gain

Table 5.4 Nonlinear and Linear model comparison with SMC at 3.2 m/s

Table 5.5 Predicted model errors for different speeds in DLC manoeuvre

Table 5.6 Path tracking errors when the robot is moved straight

1

 Chapter 1

Introduction

Asxthe autonomous cars have come into picture, there is a lot of enthusiasm about these running in real

world. It is expected that an autonomous cars could navigate around their environment without any

human intervention. After coming of optic vision guided Mercede-Benz robotic van in 1980, there have

been huge rise in advancement of autonomous cars. The main aim is to develop vision guided systems

using LiDAR, GPS, RADAR and computer vision. This has resulted into technologies like adaptive

cruise control, lane parking, steer assist etc. which have become keys for autonomous navigation. With

this pace several forecasts of automobile companies say that autonomous vehicles will become reality in

near future.

Currently a lot of technologies are in development in order to make the autonomous ground vehicles

(AGVs) work in a real world. This field is quite vast and there are many areas which are yet to be

explored. Safety, reliability, robustness and security are some of the key aspects which need to be

maintained for the AGVs. Motion controller and Path planning are one of the highly focussed fields and

there has been a lot of development in improving and establishing high performance motion control to

improve efficiency and safety factor in AGV’s design.

1.1 History and development

The firstxstepxtowards autonomousxcarsxwas a radioxcontrolled car, called LinriccanxWonder. It was

demonstratedxby Houdin Radio Control in NewxYorkxCity. It was basically ax1926xChandler consisting

ofxtransmitting antennae on itsxrear compartment and wasxoperated by anotherxcar that sent outxradio

impulses whilexfollowing it. RCAxLabs built axminiature car in 1953. It was controlledxand guided by

wiresxthat hadxbeenxlaid in a pattern on a laboratoryxfloor. Based onxadvanced models, in 1959, and

throughoutxthe 1960s, in Motoramax (which was an auto show by GM), Firebird had beenxshowcased by

General Motors, which was axseries of experimentalxcars which had an electronicxguide system which

couldxrush it over anxautomatic highwayxwithout driver’sxinvolvement.

DARPA, DefencexAdvanced ResearchxProjects Agency of the U.S. Departmentxof Defence is also

responsiblexfor the progressxin the fieldxof autonomous vehicles. AutonomousxGround Vehicle (AGV)

projectxin thexUnited States made use of the thenxtechnologies. Thesextechnologies had been developed

by thexCarnegie MellonxUniversity, the Environmental Research Institute of Michigan, Universityxof

Maryland, MartinxMarietta and SRI International. The ALVxproject achieved the firstxroad- following

demonstrationxthat used computer vision, LIDARxand autonomous controlxto guidexa robotic vehicle at

speeds of up to 3.1 km/h HRLxLaboratories (formerly Hughes Research Labs) exhibited the first off-road

2

mapxand sensor- based autonomous navigation on the ALV. The vehicle travelled over 610 m at 3.1 km/h

on complexxterrain with steep slopes, ravines, large rocks, vegetationxand other natural obstacles. [1]

In 1995 itself, thexCarnegie Mellon University’s NAVLABxproject achieved 98.2% autonomousxdriving

on a 5,000 kmxcross-country journey which was titled as "No HandsAcross America" or NHOA. [3] The

car had been made semi-autonomous byxnature: it used neuralxnetworks to control the steering wheel,

but throttle and brakesxwere still human-controlled. Anxadvanced autonomous vehiclexwas exhibited by

Alberto Broggi ofxthe University of Parma. ARGO Projectxlaunched by him, which worked on making a

modified LanciaxThema to followxpainted lane marks on a normalxhighway, in 1996. Thexapotheosis of

the project was a journeyxof 1,900 km xix days on the roads of northern Italy, with anxaverage velocity

of 90 km/h. Thexcar operated in complete automaticxmode for 94% ofxits journey, withxthexlongest

automatic stretch of 55 km. Thexvehicle had two low-cost videoxcameras on board and

usedxstereoscopic visionxalgorithms to analyse itsxenvironment.

In the early 2000s, the ParkShuttle, an autonomous public road transport system, became functional in the

Netherlands. USxgovernment alsoxbegan working on autonomousxvehicles, mostly for military purposes.

DemoxI (US Army), DemoxII (DARPA), and Demo III (US Army), were funded byxthe US Government

(Hong, 2000). The abilityxof autonomous ground vehicles toxnavigate autonomously miles of difficult

off-roadxterrain, avoiding obstaclesxsuchxas rocks and trees was demonstratedxby Demo III (2001).

1.2 Need for Autonomous Vehicles

Transportation accident isxone of the main causesxof death in the world. By 2026, this worldxcould

prevent 5xmillion human fatalities and 50 million serious injuries byxintroduction of latest and innovative

methodologies andxinvestments in road safety, from local toxinternational levels. ThexCommission for

Global Road Safety thinks that this is very necessary to stop this unacceptable and horrendous rise in road

accidents, andxinitiate year on year reductions. [25] Deshpandexet al. gavexa data of almost 3000 deaths

because of road injuries every day, with more than half of the passengers not travelling in a vehicle. Also,

it hasxbeen currently reported byxDeshpande et al. that if we don't take any paramountxand efficacious

action, transportationxinjuries are going to rise to 2.4xmillion per year, becoming thexfifth leading reason

ofxdeath in the world. It is believed that numberxof traffic collisions will drastically reduce duexto

increased reliabilityxand faster reaction time in an autonomous system asxcompared to human drivers.

Reduced traffic congestion is one bonus point, and thusxroadway capacity is increased sincexautonomous

vehicles will require a reduced needxof safety gaps and betterxtraffic flow management. Parkingxscarcity

have become axhistoric phenomenon with thexadvent of autonomous cars, asxcars could drop off

passengers, and park at best space, and thenxreturn back to pickxup the passengers. Thus, therexwould be

a huge decrease inxparking areas. Need of physicalxroad signage will decline as autonomous vehicle will

receive required informationxvia network. Autonomousxcars can surely reduce governmentxspending on

unnecessary thingsxlike traffic control officers. The need forxvehicle insurance will also decline, along

3

with reduction in thexincidents of car theft. We can be implement an efficientxcar sharing and goods

transportxsystems (as in case of taxisxand trucks respectively), with totalxelimination of redundant

passengers.xNot everyone is good at driving, so, xautonomous cars provide a reliefxfrom driving and

navigationxchores. [2]

In Defence it is notably necessary to implement intelligence in robots. These robots really cost a lot to the

government expenditure and its development is monitored thoroughly over a long time. These vehicles

are built to work for the surveillance in areas where there is a concern about their safety. Also, mapping

can be done using the robots in strategically important areas without any human intervention. This can

greatly improve the death tolls of soldiers protecting our borders.

1.3 Aspects of Autonomous Navigation

Autonomous navigation is stated as thexability of the mobilexrobot to determine itsxcurrent position within

the reference framexenvironmentxusing suitable sensors, plan itsxpath through the terrainxfrom the start

toward the goalxposition using high plannerxtechniques and perform the pathxusing actuators, all with a

very high level ofxautonomy. Robots arexone of the modern technologies that humans arexworking on for

many years. Allxthese years of scientific study andxresearch on robots have shownxalmost infinite

possible application ofxrobotic systems. In otherxwords, the robot duringxnavigation has to be able to

answer the followingxquestions:

 Where havexI been? It is solved usingxcognitive maps.

 Where amxI? It is determined by thexlocalization algorithm.

 Where am Ixgoing? It is done byxpath planning.

 How can Ixgo there? It isxperformed byxmotion controlxsystem

Navigation can be stated as the process by which we can accurately determine a system's position,

planningxand followingxa route. In the field of robotics, xnavigation means the way by which a robot finds

its way in the environmentxand is a common necessityxand requirement for almost any mobilexrobot.

Robot navigation is a vastxfield and can be divided intoxsubcategories for better understandingxof the

problemsxit addresses, the general problem of mobile robotxnavigation by four questions, each one

addressed for axsubcategory: Perception, Localization, Mapping and Path Planning

A. Perception. : Wheeled mobile robotsxneed to sense thexenvironment using sensors in orderxto

autonomouslyxperform their mission. Sensors are used to cope withxuncertainties andxdisturbances that

arexalways present in the environment and in all robotxsubsystems. Mobilexrobots do not have exact

knowledge ofxthe environment, andxthey also have imperfectxknowledge about their motionxmodels

(uncertainty of the map, unknownxmotion models, unknown dynamics, etc.). Thexoutcomes of thexactions

are also uncertainxdue to non-idealxactuators. The mainxpurpose of the sensors isxtherefore to lowerxthese

uncertainties and toxenable estimation of robot statescas well as the states of thexenvironment

4

B. LocalizationcandcMapping: AGVs in manufacturing typicallycneed to operatecin large facilities. They

can apply manycfeatures to solveclocalization andcnavigation. Quite often acrobust solution iscsensing

induction fromcthe electric wire in thecfloor or sensing magneticctape glued to the floor. Currentlycthe

most popular solution iscthe usage of markersc (active or passive) on knownclocation and thencAGVs

localize byctriangulation or trilateration. Theclatter is usually solved by aclaser range finder andcspecial

reflecting markers. Othercsolutions may include wallcfollowing by range sensors orccamera- or ceiling-

mounted markers. All of the mentionedcapproaches are usefullyccombined with odometry. However, cthe

recent modern solutionscapply algorithms for SLAMcwhich makes them morecflexible and easier tocuse in

new and/or dynamicallycchanging environments. They usecsensors to locate usuallycnatural features

incthe environment (e.g., flat surfaces, cborder lines, etc.). From features thatcwere already observedcand

are stored in the existingcmap the unit canclocalize, while newly observedcfeatures extend the map.

Obtained maps arecthen used for pathcplanning.

C. PathcPlanning: In environments that arecmostly static the robotsccan operate using a prioricplanned

routes. However, incdynamically changingcenvironments they need to plan routescsimultaneously. The

most usual path planning strategycapplies the combination of both mentionedcpossibilities where sensed

markers oncknown locations incthe environment enable accurateclocalization. When ancunexpected

obstacle iscdetected the AGVcneeds to find a waycaround the obstacle and then returncand continue on the

pre-plannedcpath.

D. MotioncControl: cMotion control of AGVs is mostly solvedcby trajectory tracking, pathcfollowing, and

point sequence followingcapproaches. cThese paths can be pre-computedcor better planned online using a

map of thecenvironment and path planning algorithms. Incsituations wherecmagnetic tape oncthe floor

marks desired roads ofcAGVs they can use simple linecfollowing algorithms with the abilitycto detect

obstacles, stop, and movecaround them. Efficiencycof AGVs in crowded areas greatly dependscon how the

obstaclecavoidance problem iscsolved.

1.4 Literature Review

Generally, the controlcalgorithms assume that the kinematic relationshipcof the vehicle is linear. When the

upper-limits on yaw rate andcsaturation constraints of steering actuators are not considered, the vehicle

become unstable. To avoid such problem, [4] proposes a pathcplanner based on optimized RRT (Rapid

Random Tree) and a speedcplanner decoupled from pathcto conduct smooth trajectory. Based on

longitudinal and lateral dynamics, a unifiedcconditional internal control law iscdevised to steering control

and driving torque/brake pressure. To execute the planned trajectory given by the user, it uses a

hierarchical motion controller which generates desiredcdriving torque/brake pressure and steering angle.

Experimental tests have been done on a modifiedcelectric intelligent car, which wascequipped with a

centralized drivecmotor, a steeringcmotor and an electronically controlledchydraulic brake system.

5

Environmentalcinformation was obtained by LiDARcand monocular cameras forcdecision making and

trajectory planning. Thecexact position of thecvehicle was obtained by RTK and IMU. Experiments of

turning left and right scenarioscwere carried out at ancintersection. The width of road is 3.5m. Due to the

large curvature during the turning process, a relative low uniform speed (10km/h) wascchosen.

M.Bergerman [5] proposed thecposition and heading control ofca robotic helicopter. Theyccascaded the

model based LQR to stabilizecthe poles of a testedcrobotic with the FeedbackcLinearization Controller

(FLC) to decouple andclinearize the system with acsimple linear PD controller. cSuppachai [6] proposes

double loop controller for vehicle’scheading control under the real environment. Theccontroller is

decoupled into 2 loops that are cascaded. The inner loop wascdone by PID position control algorithm and

the outer loopcwas done by PD headingccontrol algorithm. The combination ofcPD-PID controller could

improve the transient responsecof a vehicle while the desiredcheading changes abruptly. It uses transfer

function found out through experiments. The model parameterscwere estimated using Least Squares

Method.

In [7],xmultirate lane-keeping control scheme hasxbeen proposed to improve the lane-keeping efficiency

and to avoid undesirablexdisturbance in yaw rate which can make the vehicle ride uncomfortable as

chattering phenomena becomes higher. A virtual lane prediction algorithm was also considered in case of

any momentarily failure of sensors.

Reference [8] describes a fuzzy andxsliding mode control algorithm based on visualxpreview distance to

promote the performance of trackingxreference trajectory. The fuzzy control is quite effective in

alleviating the chattering caused by SMC.

Gilles [9] has used the super-twisting algorithm to reduce the lateralxdisplacement of the autonomous

vehicle with respect to a given referencextrajectory. It designs and experimental validation of a vehicle

lateral controller for autonomous vehicle based on a higher-order slidingxmode control. The advantage of

this strategy is to reduce the chattering level and handle the uncertainties and nonlinearities in the vehicle.

Alcala [10] presents thexcomparison of two nonlinear model-based controlxstrategies for autonomous

cars. A control orientedxmodel of vehiclexbased on a bicycle model has been used. The two control

strategies used a modelxreference approach. Using this approach, the error dynamicsxmodel has been

developed. The first controlxapproach is based on a non-linear control law that isxdesigned by means of

the Lyapunov directxapproach. The second approach uses a slidingxmode-control that defines a set of

slidingxsurfaces over which the errorxtrajectories is expected to converge. The mainxadvantage of the

sliding-control technique isxthe robustness against non-linearitiesxand parametric uncertainties in the

model. However, the mainxdrawback ofxfirst order sliding mode is thexchattering, so it has been

implemented axhigh order slidingxmode control.

Anil [11] proposed a lateral vehicle dynamicsxcontrol based on tyre force measurements. In this method,

active front steering is employed to uniformly distribute the required lateralxforce among the front left and

right tyres. The forcexdistribution is found numerically through the tyrexutilisation coefficients. In order to

6

consider the nonlinearitiesxand uncertainties of thexvehicle model, a gain schedulingxsliding-mode control

technique is used. In addition toxstabilising the lateral dynamics, the proposedxcontroller is good enough

to maintain maximum lateralxacceleration.

Kanghyun [12] proposedxa robust yawxstability control system to stabilizexthe vehicle yaw motion. , a

sliding mode controlxmethodology is implemented to makexvehicle yaw rate to track itsxreference with

robustness against modelxuncertainties andxdisturbances. xA parameter adaptationxlaw is used to estimate

varyingxvehicle parametersxwith respect to road conditions and is incorporated intoxsliding mode control

framework.

Hamed Tabatabaei [13] discussed thexeffects of the CorneringxStiffness (CS) variation on directional

stability of thexArticulated Heavy Vehicle. . A linearxplanar model of articulated vehicle is applied to

investigate the effectsxof CS variation on directionalxstability. xFurthermore, the results derived by this

analysis are verifiedxthrough lane change manoeuvre simulation by a fullxnonlinear planar model of the

articulatedxvehicle.

Sahoo [14] discusses about a realisticxmathematical model of the vehicle considering thexsteering actuator

dynamics. The cornering stiffness isxcalculated from the basicxtire information and the vertical load on

each tire. A heading anglexcontroller of the UGV has beenxapplied using the Point-to-Point navigation

algorithm. Then, xthese controllers have been implementedxon a test platform equippedxwith an Inertial

Measurement Unit (IMU) and axGlobal Positioning System (GPS).

In [15], Sahoo proposes axheading controller for an autonomousxground vehicle (AGV) to be designed

and implemented takingxinto account the dynamicxvehicle parameters. Thexwell-known ―bicycle model‖

approximation has beenxconsidered that considersxthe vehicle slip angle andxground-wheel interaction for

the wheeled groundxvehicle. Proportional andxproportional-integral (PI) controllers havexbeen designed,

simulated and implemented toxachieve the desiredxheading angle.

Zhengrong [16] proposes a newxautomated steering control methodxfor vehicle lane keeping. The design

of the steering controller is first found out to be established on the linear activexdisturbance rejection

control, and then the controllerxis tuned in the framework of the quantitativexfeedback theory to get the

required design related parameters on sensitivity andxclosed-loop stability. The parameterxuncertainties of

the vehiclexsystem are applied at the tuningxstage. The proposed steeringxcontroller is simulated and

tested on a reduced-scale vehicle. Both thexsimulation andxexperimental results establish that the scaled

vehiclexcontrolled by the proposedxcontroller performing the lane keeping.

Nakhaeinia [17] reviews various control architectures which are used extensively in autonomous

navigation of wheeled robots. The advantages, significance and drawbacks of the architectures are

thoroughly discussed andxcompared with each other. xThe controlxarchitectures can be seen into three

divisions: Deliberative (Centralized) xnavigation, Reactivex (Behaviour-based) navigationxand hybrid

(Deliberative - Reactive) xnavigation.

7

Chia-Feng [18] proposed axmethod that uses two wheeled, mobilexrobots to navigatexunknown

environments whilexcooperatively carrying an object. xIn the navigation method, a leaderxrobot and a

followerxrobot simultaneously perform either obstaclexboundary following (OBF) or targetxseeking (TS)

to reach a goal. The twoxrobots are controlled byxfuzzy controllers (FC) whose rules are accomplished

through an adaptive fusion ofxcontinuous and colonyxoptimization particle swarm optimization (AF

CACPSO), which reduces the time-consumingxtask of manually designing thexcontrollers.

Ghazi [19] proposes development of anxoverall routing system which uses input fromxcommon users via

a simple android application and as axresult directs thexnearest vacant Cabxtowards the passenger. Two

algorithms for theximplementation of the project havexbeen developed. The firstxalgorithm is an

autonomous route calculationxalgorithm in which a remote system has been used toxcalculate coordinates

at each roadxintersection between any two inputxcoordinates. The 2nd algorithm is axcontrol algorithm

that navigatesxthe prototype robots. It is done by usingxHaversine heading andxdistance formulae.

Tzafestas [20] provides a globalxoverview of mobile robot controlxand navigation methodologies

developed over the last decades. It considers the following levels of wheeled mobilexrobots: kinematic

modelling, xdynamic modelling, xconventional control, offline model-based control, invariant manifold-

based control, model reference adaptivexcontrol, sliding-mode control, fuzzyxand neural control, vision-

basedxcontrol, path and motionxplanning, localization andxmapping, and control andxsoftware

architectures.

Andreas [21] describes the fusionxof sensor data for the navigation ofxan autonomous vehicle as well as

two lateral controlxconcepts to track the vehicle along axdesired path. The fusion ofxnavigation data is

established on informationxprovided by multiple object-detectingxsensors. The objectxdata is fused to

increase thexaccuracy and to obtain the vehicle’sxstate from the relative movement with respect to the

objects.

Dieter Fox [22] proposes a new planner, Dynamic Window Approach (DWA), which generates velocities

by keeping account of three important parameters: goal-distance, path-tracking and robot velocities. This

algorithm has been devised for reactive collision avoidance. Itxdiffers from other approachesxin that for

finding commands which control the linear and rotationalxvelocity of the robot has been done directly in

the spacexof velocities. The advantage of this approach is that itxcorrectly and in anxelegant way

incorporates thexdynamics of the robot.

Guan M [23] presented an improved dynamicxwindow approach method withxcollision suppression cone

to handle the issue of axrobot avoiding moving obstacles in a partially knownxdynamic environment. The

conceptxof collisionxsuppression cone is firstly proposed to define a probablexcollision area. When

moving obstacles approachxthis area, xthe proposedxDWA-CSC will be triggered to allow the robot

avoiding thexobstacles smoothly and thusxpreventing collision with them by controlling its motion

direction and velocity, similar to that of obstacle avoidance done by human beings.

8

Garcia [24] proposed a sensorxfusion methodology which gives intelligent vehicles with augmented

environmentxinformation and knowledge, xenabled by vision-based system, laserxsensor and global

positioningxsystem. The above approach reaches roads safely by dataxfusion techniques, especially in

single-lanexcarriageways wherexcasualties are higher than in otherxroad classes, and focuses on the

interplay betweenxvehicle drivers and intelligent vehicles. The system has been built on the reliability of

laser scanner forxobstacle detection; thexuse of camera based identificationxtechniques and advanced

tracking and dataxassociation algorithms.

1.5 Challenges

Autonomous car seems to be a pretty good idea but still there need to be a lot of improvement and

research before it can be practically implemented. Although the notion has not been considered, but it is

believed that an advent of autonomous cars would lead to reduction in driving related jobs. Also,

conditions like inabilityxof drivers to regain control of their vehicles due to inexperience of drivers, etc.

are an important challenge. Lots of people enjoy driving, and it would be difficult for such people to

forfeit control of their cars. Autonomousxcars also face challenges while interacting with human-driven

cars on the same route. Again, one challenge to autonomous cars is that who should be held responsible

for damage- the manufacturing company, the government or the car’s driver/owner. Thus, implementing a

legalxframework and establishing governmentxregulations for autonomous vehicles is a major problem.

Apart from the above there are several technical challenges. Implementing intelligence in cars require a

lot of training given to them. Accumulating such huge chunks of data for different road environment

scenarios it poses a lot of challenges. Again adaptability of the vehicle is something where researchers

need to work a lot. The most basic problem, i.e., moving a vehicle from one goal point to other is itself a

big task because drift is always involved when a vehicle moves in straight line. These drifts get

accumulated as the vehicle proceeds tracking the desired path. Accumulation of the drifts causes a lot of

increase in the tracking error of the vehicle. The motion controllers designed for path tracking still pose a

problem for accuracy and adaptability to change in vehicle parameters.

1.6 Motivation

Working with the robots requires a lot of sensors and every process needs to be controlled in real time. To

use the sensors and actuators which need to be updated every 10-20 milliseconds, we need a type of

interface/framework that gives this kind of benefits. Robot Operating System (ROS) provides us exactly

with the same architecture to achieve this. It is open source and there are a lot of codes available from

good research institutes.

 Research institutes have come up with many algorithms which one can easily use and implement in their

own robots. Further robot’s engineers earlier didn't have a common platform for collaboration and

communication which resulted into a delay of the adoption of robotic butlers and other related

9

developments that could have been done in no time. The robotic innovation has quickly paced up as ROS

has come up since last decade wherein the engineers can readily build robotic apps and programs.

Autonomous navigation is a very wide field which most of the researchers are trying to implement in the

field of robotics. For a wheeled robot system to be autonomous, it has to analyse data from different

sensors and perform decision making in order to navigate in an unknown environment. ROS helps us in

solving different problems related to the navigation of the mobile robot and also the techniques are not

limited to a particular robot but can be reused in different research development projects in the field of

robotics.

1.7 Objective

This project has been completed in two phases. The first part deal with the development of mathematical

model for the vehicle while the second part deals with the implementation of various algorithms to

achieve autonomous navigation of the vehicle.

Firstly, the objective is to design a mathematical model for both the Ackermann vehicle and differential-

drive vehicle and then the motion controller has been designed considering the dynamic and kinematic

parameters of the vehicle. This is important as we can’t test our algorithms and motion controller schemes

each and every time on the robot. This seems practically not feasible as well as time consuming. So the

first part of my project is to formulate a mathematical model of the vehicle which can incorporate various

non-linearities and robustness of the vehicle so that we could closely predict the behaviour of the vehicle

when its parameter gets changed. I have performed a sensitive analysis on various parameters which

could affect vehicle’s performance.

Secondly, autonomous navigation has been implemented on a differential-drive robot to test the

efficiency of path planning algorithms. The desired objective is to make a robot completely autonomous

so that it can move around in environments where human accessible is not possible. The robot is expected

to localize its current position estimate and then based on the goal position, it should plan its path to

achieve it. If any obstacle comes in between achieving its goal, it should avoid that and find a suitable

path which can be taken. If no path is available, then it should stop its navigation and should not take

undesirable paths. The passenger and payload safety is the primary concern when designing this robot.

10

Chapter 2

Vehicle Modelling and Motion Control

When people coined the term ―vehicle model‖ around 90’s, what came to our thought was most likely a

vehicle prototype that was highly complex, very expensive, and difficult to build. Engineers need to drive,

and sometimes apply break, the then called ―vehicle model‖ of the early 90’s to gather data. Today, most

people would connect the term ―vehicle model‖ with a computer representation that can be simulated

under certain scenarios.

Some advantages ofxvehicle modelling are that the finalxproduct can be built quickly, it can be surely

betterx (in termsxof engineering requirements), and meanwhile reducingxcost. Building and simulating a

vehicle model in computers enables the engineers to analyse and determine if requirements are met for

each design like several powertrain configurations. If engineeringxrequirements are not met by a

powertrainxconfiguration, it is much easierxto change a parameter in a computerxmodel than it is to make

a change to a vehicle prototype that isxalready built. For example, it doesn’t take much effort to change

the power rating of anxelectric motor in a computer model, xbut we know itxcan be challenging to swap

motors in a real vehicle. Anotherxadvantage of vehicle modelling is that the engineers get a good idea of

the performance and energy consumptionsxaspects of a powertrain configuration from a vehicle model.

Finally, let’s notxforget that running computer simulation is fasterxand more cost effective thanxbuilding

and driving an actualxvehicle prototype.

2.1 Vehicle Modelling Tools

There have been several softwares developed for modelling the car. In this project MATLAB & Simulink

environment have been used for implementing the mathematical model and CarSim has been used to

validate the results.

2.1.1 MATLAB & Simulink

MATLAB (matrix laboratory) is a proprietaryxprogramming language and axmulti-paradigm numerical

computing environment developed by MathWorks. MATLAB allows us several features like plotting

mathematical functions and data, xmatrix manipulations, interface with other programs by interacting with

other programming languages, and create user interface and many more. In this environment we can

successfully implement the mathematical model developed for the vehicle. This method is quite fast and

is very helpful in finding the effect of various parameters. Thus diagnostics of problem is relatively easy

and fast.

Simulink is axgraphical programming environment for modelling, simulating, and analysing dynamic

systems. It provides built-in packages with formulated equations. We just need to add blocks to simulate a

11

vehicle. However, in this case it’s difficult to change the parameters of the vehicle. We might have to

change the transfer function of the entire block if we have to show variation of some parameters.

Though these methods are very simple but are not accurate. We have to take care of various uncertainties

and non-linearities. This could only be done if the mathematical model formulated for the vehicle handles

these. And to validate the built mathematical model we have to perform experiments on a real car.

2.1.2 CarSim

This software has been launched by Mechanical Simulation Corporation to simulate realistic vehicle

responses to ADAS (Advanced Driver Assistance Systems) controls in these scenarios. CarSim,

TruckSim, and BikeSim use vehicle data that describes suspension behaviour, powertrain properties,

active controller behaviours, tire properties, and also road slope, obstacles, weather conditions, and

asphalt type. At the core of the software is a simulation solver that can know in advance how the vehicle

will react, for example whether it will be tipped off or skid under specific conditions or whether it will

brake quickly enough on a wet surface. This software works on the data obtained from the real car

experiments and thus the results predicted by it are quite close to real world. The vehicle model used in

this software incorporates various non-linearities like friction, aerodynamic factors, non-linear tire

models, non-uniform mass distribution in the vehicle etc.

2.2 Vehicle Models

The coordinate systemxused in vehicle dynamics modelling will be according to SAE J670e [18] as

shown in Figure 2.1. Thexx-axis gives the forward direction or the longitudinal direction, the y-axis,

represents the lateral direction, is considered positivexwhen it points to the right of thexdriver, and the z-

axis represents the ground satisfied by the rightxhand rule.

Figure 2.1 Vehicle Axis Systems

In mostxstudies related to handling and directional control, only thexX-Y plane of the vehicle is

considered. The vertical axis, Z, is oftenxused in the study of ride, xpitch, and roll stability type problems.

The following list defines relevantxdefinitions for the variables associatedxwith this report.

12

In most cases related to handlingxand directional control, only the ground plane of the vehicle is

considered. The three stability criteria of ride, pitchxand roll stability is generally studied using the

analysis of the vertical axis, Z. The following list defines essential definitions for the variables associated

with this report.

Longitudinalxdirection: vehicle moving along the forwardxdirection. We can look at the forward direction

in two ways, one can be withxrespect to the vehicle body itself, and other can be withxrespect to a fixed

reference point.

Lateral direction: vehicle moving sideways direction. Again, we can look at the lateral direction in two

ways, one is withxrespect to the vehicle and the other is withxrespect to a fixed reference point.

Tire slip angle: This is same as heading in a particular direction but moving at an angle to a direction by

sideways displacing each foot laterally as we move along the ground.

There are various degrees of freedom associated with vehicle dynamics. The easiest vehicle dynamic

model is a two-degree-of-freedom, fig 2.2 (a), bicycle model, representing just the lateral and yaw

motions. The idea behind this model is that we just need to look along the lateral direction as dynamics is

not much affected along the longitudinal directions at very lower speeds. Thus the longitudinal dynamics

can't affect thexlateral or yaw stability of the car. A three-degree-of-freedom, fig 2.2 (b), model considers

longitudinalxacceleration to the model, therefore allows us to describe the complete vehicle motion in the

ground plane. In some cases, the rotational degreesxof freedom for the front and rear wheels are included

to the vehicle model to consider the effects of tire slip phenomena which increases as the vehicle speed

increases. This five-degree-of freedom, fig 2.2 (c), model enables onexto perform an in-depth study of

traction and braking forces on handling manoeuvres by includingxthe effects of wheel spin. An eight-

degree-of-freedom, fig 2.2 (d), model no longer assumes symmetry in dynamic behaviour between right

and leftxsides. In this vehicle model we consider rotational degree of freedom for each of the four tires

instead of two tires. This model isxwidely used in the suspension design or ridexcomfort analysis. This

model specifically looks at the effects ofxthese issues with respect to roll andxside-to-side load transfer.

13

Figure 1.2 various vehicle models [(a) 2-DoF (b) 3-DoF (c) 5-DoF (d) 8-DoF]

2.3 Mathematical Model of Ackermann Steering Vehicles

A simplexapproximation of the lateralxdynamics of land vehicles is the ―bicycle model‖. The two degrees

of freedom are representedxby the vehicle lateral position, y, and thexvehicle yaw angle, θ. The vehicle

lateral position is measured alongxthe lateral axis of thexvehicle and the vehicle yaw anglexis measured

with respect to thexglobal X-axis. The lateral forcexat the tire-road interface dependsxon the slip angle.

Figure 2.3 illustrates thexbicycle model for a vehicle withxno roll motion.

14

Figure 2.3 2-DOF Bicycle model

Nomenclature:

m: massxof the vehicle

mf : massxon the front axle

mr : mass on the rear axle

Iz: yaw moment inertia of vehicle

δ: steering angle

vf : front tire velocity

vr : rear tire velocity

vx: longitudinalxvelocity of the vehicle

vy: lateralxvelocity of the vehicle

Fyf: lateral force on the front wheel

Fyr: lateral force on the rear wheel

l: wheelbase length

lf : distance of front axle from vehicle CG

lr: diatance of rear axle from vehicle CG

θ: yaw angle

r : yaw rate

Cf : Corneringxstiffness of the front tire

Cr : Cornering xstiffness of the rear tire

15

Assumptions taken for our model:

 Left andxright axles are lumped into a single wheel.

 Side-slip angles are small for linearization

 Tires operate atxthe linear region in which thexslope of tire slip-angle and lateral force curve is

constant.

 Suspension movement, road inclination and aerodynamic drag are neglected.

 Frictional losses are neglected and ideal road condition is chosen,

 Masses on each wheel are calculated by considering point mass loads. Similarly, inertia moment is

calculated using above method.

 Only the front tires can be steered.

The lateral dynamics is sufficient to predict the vehicle behaviour for lower speeds and ideal road

conditions. The vehicle is considered to move with a constant velocity, i.e., traction forces and rolling

resistance are neglected. So it can be implied that Fxr and Fxf can be assumed to be zero.

The velocity vector ̇ ̂ ̂which can be further differentiated to get acceleration vector

 ̈ ̇ ̂ ̂̇ ̇ ̂ ̂̇

It can be demonstrated that

Figure 2.4 Velocity vector

 ̂ ̂

So

 ̈ (̇) ̂ (̇) ,̂

where ̇

Since we are only concerned with lateral dynamics of our vehicle during this analysis, we keep

longitudinal forces to be zero. Also we have already assumed longitudinal velocity to be constant.

16

By balancing forces along lateral direction, we have

 ()

()

By balancing moment about COG of vehicle, we have

 ̈

()

Tire side-slip angle (α) is definedxas the angle between the tire traveling directionxand the tire heading

directionxor the tirexrotation plane. xThe rigid body vehicle has twoxvelocity components: u in the

longitudinal (x) directionxand v in the lateralx (y) direction. The vehicle also considers an angular velocity

component around the centre of gravity. Consequently, eachxtire will have thexvelocity component of the

centre of gravity and the velocityxcomponent due to rotationxaround the centre of gravity.

The lateral forces are related to the slip angles by cornering stiffness.

Where slip angles are given by

By putting the values of α and solving equations by linearizing the parameters, we get the equation as

[
 ̇
 ̇

] [

(

)

 (

)

] [

] + [

]

 (2.3)

The non-linear equations are derived as:

 ̇

 (

()̇

()̇

)

̇

 ̇

 (

()̇

()̇

)

̇

(2.4)

17

2.4 Mathematical modelling of Differential-drive Robot

Differentialxdrive is a simply designed drivingxmechanism that is widely used in practice, especially for

smaller mobile robots used as surveillance and indoor environments. Robotsxwith this mechanism usually

consist of one or more castorxwheels to support the vehicle motion and prevent tilting. xBoth the drive

wheels are placed on axcommon axis. The angular velocityxof each wheel isxcontrolled by a separate

actuator.

Accordingxto Fig. 2.5 the input (control) variables are the velocity of the right wheel (t) and the

velocity of thexleft wheel (t). xOther variables in Fig 2.5 represent: r is thexradius of each wheel; L is the

axial distance between thexwheels and R (t) is the instantaneousxradius of the vehicle drivingxtrajectory,

can be called as the distance between the vehicle centre and ICR point. xIn each instance of time, it is

necessary that both wheels havexthe same angularxvelocity ω(t) around the ICR or it might cause

instability.

Figure 2.5 Differential drive kinematics

18

 ()

 ()

 ()

 ()

 (2.5)

From wherexω(t) and R(t) are found out to be

 ()
 () ()

 ()

 () ()

 () ()

(2.6)

Tangential vehiclexvelocity is then calculated as

 () () ()

Wheel tangential velocities are () () () () where () () are

right and left angular velocitiesxof the wheels around their axes joining the wheels, respectively.

Consideringxthe above relations the internalxrobot kinematics (in local coordinates) xcan be expressed as

[

 ̇

 ̇

 ̇

]

[

]

 [
 ()

 ()
]

The above relation, Eq.2.5, is important to understand how the robot is behaving internally but in

practical robots users give angular velocity about z-axis, ω and a longitudinal velocity (v) commands.

So, robot external kinematics is given by

[
 ̇
 ̇
 ̇
] [

 (())

 (())

] [
 ()
 ()

]

(2.7)

where v(t) andxω(t) are the control input variables.

19

Discretizing the above model, Eq. 2.6, usingxEuler integration and evaluated atxdiscrete time instants t=

k*Ts, k= 0,1,2 ….. where Ts is the followingxsampling interval:

 () () () (())

 () () () (())

 () () ()

(2.8)

2.4.1 Forward and inverse kinematics

Forwardxkinematics considers the use of the kinematicxequations of a robot to compute thexposition of the

end-effector fromxspecified values for the joint parameters.

However inversexkinematics considers the kinematics equations toxdetermine the joint parameters that

provide axdesired position for each of the robot's end-effectors.

The robot position at some time interval t is obtained by integrating the kinematic model, which is known

as odometry orxdead reckoning and is obtained in equations 2.9. Direct/Forward kinematics is the

determinationxof the robot position for given control input variables.

 () ∫ () (())

 () ∫ () (())

 () ∫ ()

(2.9)

Applying Euler integration on Eq.2.9 gives the same results as Eq. 2.8 we obtained above:

 () () () (())

 () () () (())

 () () ()

(2.10)

20

Trapezoidal rule gives a better approximation than the Euler’s method

 () () () (() ()

)

 () () () (() ()

)

 () () ()

(2.11)

Applying exact integration, we get the forward kinematics as:

 () ()
 ()

 ()
 ((() ()) (()))

 () ()
 ()

 ()
 ((() ()) (()))

 () () ()

(2.12)

where integration in above equation is done insidexthe sampling time interval wherexconstant velocities v

and ω are assumedxto obtain increments:

 () ()∫ (() ()())
()

 () ()∫ (() ()())
()

(2.13)

Developing the inverse kinematics of a robot isxa challenging task than the abovexcases of direct

kinematics. Wexuse inverse kinematics to know about control variablesxto drive the robot to the desired

robot posexor path trajectory. Robotsxare usually subjected toxnonholonomic constraints, whichxmean that

not all drivingxdirections are possible. Therexare also many possiblexsolutions to get to thexdesired

position.

One of the simplest solution to the inversexkinematics problem would be if the mobile differentialxrobot is

allowed to drive onlyxforward (vR(t) = vL(t) = vR ⇒ ω(t) = 0, v(t) = vR) or only perform on-spot rotation

(vR(t) = −vL(t) = vR ⇒ ω(t) = 2LvR , v(t) = 0) at constantxspeeds.

21

For rotation motionxequation simplifies to

 () ()

 () ()

 () ()

(2.14)

and for straightxmotion equation simplifies to

 () () (())

 () () (())

 () ()

 (2.15)

Motion strategyxcould then target to orient the robot to thextarget position by rotation and then drive the

robot to the goal position by a straightxmotion and finallyxalign (with rotation) the robot orientation with

the user defined orientation in thexdesired robot position. The desired controlxinput variables for each part

of motion (rotation, straight motion) can then easily be calculated from the equations derived above.

There are many other ways to drive thexrobot to thexdesired position usingxtrajectories that are smoothly

designed. The inversexkinematic problem becomes easier for the desired smooth targetxtrajectory as the

computation become really less and the robot follow such that itsxorientation is always tangent to the

trajectory computed. Trajectories are defined in timexinterval t ∈ [0, T]. Suppose that the robot’s initial

position is on trajectory, and there is a perfect kinematic model without non-linearities and disturbances,

then we can calculate required control input variables v(t) as follows:

 () √ ̇ ̇

(2.16)

where the positive/negative signxdepends on the direction(+ for forward and − for reverse) in which the

vehicle is supposed to be drived. Then the tangentxangle of each point on this trajectory is computed as

 () (() ())

(2.17)

22

where l ∈ {0, 1} defines thexdirection (0 for forward and 1xfor reverse) in which the vehicle is to orient

and the functionxarctan2 is stated as the four-quadrant inversextangent function.

By differentiating the orientation angle with respect to time in eq. (2.17) the robot’s angular velocity ω(t)

is obtained as:

 ()
 () () () ()

 () ()
 () ()

(2.18)

where κ(t) is the pathxcurvature. Using relations (2.14), (2.16) and the definedxdesired robot trajectory

x(t), y(t), and the robotxcontrol variables v(t) and ω(t) are calculated. One of the most important criteria is

that the path designed should be twice-differentiable and the tangential velocity v(t) should be non-zero.

If for some given time t thextangential velocity becomes v(t) = 0, the robot starts rotating at a fixed point

with thexangular velocity ω(t). And then anglexϕ(t) cannot be obtained from Eq. (2.14), and therefore, ϕ(t)

must bexgiven explicitly. Usually we use this approach to determine the feed forwardxpart of the control

supplementary variables to the feedback part which takesxcare of the inaccurate kinematic model,

disturbances, andxthe initial position errors which further leads to error accumulation.

2.5 Motion Controllers

Motionxcontrol of wheeled mobile robotsxin the environment is generally performedxby controlling

motion fromxsome start pose to somexgoal pose (classic control, wherexintermediate state trajectory is not

prescribed) or by referencextrajectory tracking.

To track the desiredxheading angle, a closed loopxnegative feedback system wasxconsidered, as shown in

Figure 2.8. This heading-angle controllerxwill compute the required steering anglexbased on the error in

the headingxangle of the vehicle. The design criteria ofxthe controller was to keep thexsteady-state error

withinxthe limit of 5% and the maximumxovershoot less than 10%, with axsettling-time requirement of

lessxthan 3 s.

23

Figure 2.6 Block diagram of the vehicle

θdes= input heading angle

Hδ
θ
= heading angle controller

GR= gear ratio

Gδ
θ
 = Vehicle plant model

HV
φ
= Steering angle controller

GV
φ
= Steering actuator system

The steering-angle input toxthe vehicle depends on the desiredxheading angle for the givenxspeed of the

vehicle. xThe controllerxdesigned for this systemxconsists of two loops. xThe inner-loop controller, the

transfer function of which is HV
φ
 (s), minimizesxthe error between the desiredxangular position and the

currentxangular position of the steering motor. xThe input of this loop isxa function of thexsteering angle

which isxcalculated on the basis ofxthe error in the heading anglexof the vehicle. The outer-loop controller,

the transferxfunction of which is Hδ
θ
 (s), decreasesxthe error between the desired heading angle and the

actual headingxangle of the vehicle. xThe transfer function Gδ
θ
 (s), whichxrelates the response of the

heading angle toxthe steering angle, wasxobtained using equationx (2.3,2.4). The steeringxactuator model

was derivedxanalytically from first principles in. xAxsaturation block was added to restrict the voltage

input from –20 V to + 20 V.

2.5.1 Proportional-Integral-Derivative (PID) Controller

This is a control loopxfeedback mechanism employedxin various systems to regulate the errors by

calculating the error in each loop and thus attempts toxdecrease the error values by adjusting control input

to the process.

PID controllers havexthree control modes:

 Proportional Control- It changes the controllerxoutput in proportion to the error. If thexerror gets

larger, the controlxaction gets larger. If the controller gain is set higher then the control loop will

start oscillating around the desired value and become unstable. If the controllerxgain is set very

low, it cannot respondxadequately to disturbances which might lead to large steady state errors.

24

 Integral Control- Integral actionxdrives the controller output far enough by integrating error values

over the period of time to reduce the error toxzero. If the error is very large, the integralxmode tries

to increment/decrement thexcontroller output faster to reduce the errors to zero. If the error values

are smaller, the controller changes will bexslower.

 Derivative Control- The derivativexcontrol mode produces an outputxbased on the rate of change

of the error. This mode produces morexcontrol input action if the error changesxat a faster rate by

looking at the derivatives of the error values. If there isxno change in the error, thexderivative

action is zero.

2.5.2 Sliding Mode Controller

Sliding modexcontrol (SMC) is a nonlinearxcontrol technique featuringxremarkable properties of

accuracy, xrobustness, xand easy tuningxand implementation. SMC systems are designed to drivexthe

system statesxonto a particular surface in thexstate space, namedxsliding surface. Oncexthe sliding surface

is reached, slidingxmode control keeps the statesxon the close neighbourhood of thex sliding surface.

Hence the sliding modexcontrol is a two part controller design. The first part involvesxthe design of a

sliding surface soxthat the sliding motion satisfiesxdesign specifications. The second is concernedxwith the

selection of axcontrol law that will make the switching surfacexattractive to the system state.

There are two main advantagesxof sliding modexcontrol. First is thatxthe dynamic

behaviour of thexsystem mayxbe tailored byxthe particular choice of the sliding function. Secondly, the

closed loop responsexbecomes totally insensitive to some particularxuncertainties. This principle extends

to model parameter uncertainties, disturbancexand nonlinearity that arex bounded. From axpractical point

of view SMC allowsxfor controlling nonlinearxprocesses subject to externalxdisturbances and heavy

modelxuncertainties.

The most typical choice for the sliding manifold is a linear combination given by

 ̇

From a geometrical point of view, the equation σ = 0 defines a surface in the error space, that is called

―sliding surface‖. The trajectories of the controlled system are forced onto the sliding surface, along

which the system behaviour meets the design specifications. A typical form for the sliding surface is the

following, which depends on just a single scalar parameter, p.

 (

)

Above model is first order sliding mode control. We used a saturation control law to avoid chattering.

The control is discontinuous across the manifold .

25

 {
 () |

|

 |

|

}

We use sigmoid function as the control law for input. Saturation and signum function gives a lot of

chattering around the sliding surface and thus are avoided. The sigmoid control law is given by

 ()

The above function helps in smoothening the path followed by the plant, thus reducing chattering a lot

and brings it around the sliding surface quickly.

26

Chapter 3

Simulations & Experimental Setup

After completing the mathematical modelling, various necessary parameters related to the vehicle were

found out. Two types of vehicle model have been discussed in the previous chapter- Ackermann steering

and differential drive. The simulations have been done for the Ackermann steering vehicle and sensitivity

analysis of its various parameters has been found out. Apart from that, two motion controllers have been

implemented in the simulation environment- PID controller and Sliding Mode Controller (SMC). Due to

some issues in research facility, it was first necessary to perform the experiments on a smaller vehicle

which is a differential drive and then move to the bigger Ackermann drive vehicle. So to validate our

mathematical model and efficiency of motion controller, simulations in MATLAB environment are

compared with CarSim results which provide gives data closer to the real world cars.

After the mathematical modelling, a differential drive robot has been setup for the autonomous navigation

and collision avoidance. This chapter discusses the necessary software and hardware requirements to

complete our setup. We also discuss the parameter estimation done for finding the parameters of our

Ackermann drive vehicle.

3.1 Ackermann Vehicle Parameters Estimation

It is quite challenging to find the dynamic parameters of the vehicle such that a perfect, error-free

simulation is achieved. But an applicable measure can be performed using some estimation. In order to

calculate vehicle’s mass (m) , moment of inertia (Iz) and centre of gravity (CG), split mass acting on each

wheel is considered namely given by mfl, mfr, mrl, mrr. The mass on front axle (mf) is sum of masses on

front left (mfl) and front right tire (mfr). Similarly, mass on rear axle, mr= mrr+mrl . Total mass of the

vehicle is combined sum of above four masses.

CG is calculated by considering point masses acting on the rear and front axle. Its position is given as:

from the front axle,

 (

) and from rear axle (

).

Moment of inertia about z-axis is calculated by considering two point masses joined by a mass-less rod.

27

Figure 3.1 Test Vehicle

Table 3.1 Physical parameters of the vehicle

Parameters Value Units

 1.31 m

 0.62 m

mfr 137 Kg

mfl 158 Kg

mrr 269 Kg

mrl 360 Kg

Iz 932.4 Kg-m
2

 1.93 M

W 0.9 M

Cf 134359 N/rad

Cr 134359 N/rad

Estimation of cornering stiffness of the vehicle

Accurate determination of the cornering stiffness of the tyres requires extensive experiments. It is

necessary for the tyre manufacturer to print certain information such as the wheel radius, the tyre width,

28

the aspect ratio (which is the ratio of the tyre section height to the tyre width expressed as a percentage),

the load index, the speed rate, the type of tyre construction and the maximum allowed inflation pressure,

on the tyre sidewall. From this basic tyre information, the cornering stiffness can be estimated by using a

mathematical tyre model. [27]

Considering the above model, final relation between the Cα and tire parameters is given by:

 [()]

(3.1)

Where L is given by

 () [(

)]

In the above formulation, E is the compression modulus of the belt, b is the thickness of the tyre belt, rw

is the radius of the wheels, w is the width of the belt, a is the tyre aspect ratio (the tyre section height

divide by the tyre section width), L is the contact patch length and s is the unitized percentage of the

sidewall vertical deflection when loaded.

Table 3.2 Parameter of the tyre

Parameter Value Units

Aspect ratio a of the tyre 0.5 -

Thickness b of the tyre belt 0.015 m

Compression modulus E of the belt 27.3*10
6

N/m
2

Radius rw of the wheel 0.254 m

Unitized percentage s of the sidewall

vertical deflection when loaded

15% -

Width w of the belt 0.205 m

Steering Actuator Dynamics

In order to maintain the vehicle heading angle, the steering wheels of the UGV should follow the

command signals received from the vehicle controller and maintain synchronization with the steering

actuator. To perform the simulation of the system, an appropriate actuator model needs to be established.

Therefore, the transfer function model is derived analytically from the electrical and mechanical

governing equations of the motor that is obtained from first principles. To model the steering actuator,

visualization, as shown in Figure 2.5, is considered. The steering motor torque T is related to the armature

29

current i, by a torque constant Kt. The governing equations based on the Newton’s law combined with the

Kirchhoff’s law are

 (3.2)

A steering controller has also been implemented in the vehicle model. This controller drives the steering

motor which steers the front wheels based on controller commands. That’s why required steering angle

has to be found out so that the vehicle follows the desired path. The steering control system uses a DC

motor (Maxon RE-40) with 156:1 reduction gear ratio to control heading direction. The motor is further

connected to the steering shaft with the help of spur gears with GR of 1.47 giving 156*1.47≈230 rotations

for one rotation of steering shaft. The standard rack and pinion gear has a GR of 15.5 and thus eventually

making GR between the front wheel and steering shaft to 230*15.5≈ 3555. A negative servo feedback is

implemented as per the tracking requirement. At steady state, angular velocity of steering motor remains

constant. Specification of the steering actuator has been specified in table 3.3.

Figure 3.2 Schematic diagram of the steering actuator system

30

Table 3.3 Specifications of steering actuator

Parameters Value Unit

Terminal resistance (R) 0.317 ohms

Terminal inductance (L) 0.0823 mH

Torque constant (Kt) 30.2 mNm/A

Speed constant 317

(33.196)

rpm/V

(rad/sec / V)

Back emf constant (Kb) 0.0301 V/rad /sec

Rotor inertia (J) 138 g.cm
2

Speed / torque gradient 3.33 rpm / mNm

Nominal speed (N) 6930 Rpm

Nominal torque (T)

(max. Continuous

torque)

170 mNm

Nominal voltage 24 V

3.2 CarSim Simulation environment

Considering the advantages of CarSim software discussed previously we simulated our vehicle model by

putting the dynamic parameters as that of the vehicle.

Figure 3.3 Simulation environment setup in CarSim

After which simulation were performed and plots for various parameters were recorded.

I implemented PI and SMC controller and then compared the results of MATLAB simulation with the

CarSim simulation. The vehicle modelling was replaced by the vehicle model exported to Simulink from

CarSim. This vehicle model includes all the parameters which are not taken into the account in

MATLAB. We have included suspension, brake system , road conditions, aerodynamic drag and various

31

other practical parameters. After exporting the model, we implemented the simulation with the existing

steering actuator model.

Using CarSim for simulation doesn’t take a lot of trouble but finding how to implement can take really a

long time if you haven’t used it before.

We need to first choose the vehicle model.

 In my case I have chosen a D-class minivan 2017 as my plant system. Then I went to its

properties and change its inertial and dimensional properties close to the vehicle I am currently

working on.

 I haven’t changed its aerodynamic, suspension and brake systems. However the tire parameters

are changed according to the current vehicle.

 Then for running the vehicle in a certain road condition, the procedure was changed to Driving-

>Constant speed with Roughness. The roughness was taken as 0.9. It can be defined as our own

path but that can be troublesome. It’s better to define the path trajectory in MATLAB if you want

plot and compare the data. Here you can also choose the time till which you want simulations to

be run.

Figure 3.4 Setting up driver controls and variables

At the same time we can also change speed at which vehicle is running and defines the plots you

want to see in the video.

 Then come to the home window and since we are going to work with MATLAB not the built-in

solvers. So change the No Linked Library to Models: Simulink by clicking on the Models

dropdown. At this time since we are working with just steering controls so go to dataset Steering

and Steering Controls and select Four wheel Steering System.

 Go to the Four Wheel Steering System tab.

32

Here we can set our own time step by which we are running the vehicle. I have taken same as

simulations performed in the MATLAB. Through Import Channels we decide the inputs to the

vehicle model. I have taken input as the steering commands to the front two wheels.

Figure 3.5 Import variables

Through Export Channels, we can change the output given by the vehicle model. In my case I

have taken four outputs steer controls to the front wheels, yaw rate (from here I calculated yaw

angle by integration in MATLAB) and longitudinal velocity to the vehicle.

Figure 3.6 Export variables

After deciding the inputs and outputs, our vehicle model is ready to be used in Simulink. Just

select Send to Simulink. Then just copy the vehicle model and paste it in your own Simulink

model and use it as normal transfer function block. If the block parameter of CarSim S-function is

not set then first set it as follows:

Figure 3.7 Setting up vehicle block in Simulink

33

3.3 0x delta Series Robot (Differential-drive robot)

These robots have been developed by NEX Robotics. They are a 4 wheel differential drive robot designed

mainly for research purposes. Different kind of sensors can be mounted on it for getting a better idea of

its surrounding. It has a very good performance on-board computer with high computational power. Its

mechanical design is efficient enough to support all sorts of terrain and heavy payload. Rugged

construction and safety critical design make it an ideal choice for outdoor environment.

These robots are widely used in research for autonomous navigation and mapping of the environment. It

provides a perfect hardware platform for testing of various machine learning algorithms. It provides the

facility for different add-ons as well. We can mount 2D/3D LiDAR, thermal camera and optical camera

for better sensing of the environment. It also supports robotic arms attachment which could give the robot

a more useful purpose like multi-floor navigation through lift.

The on-board PC supports is Intel Core i5 processor, 8GB DDR3 RAM. It supports Wi-Fi connectivity. It

supports various programming languages like C, C++ and python libraries. ROS packages are installed

for communicating with the remote systems.

For object manipulation, it supports 5-6 axes with payload 2-6 kgs at 900-150 mm. They also support

gripper and arms with precise control over them. But currently we are not using these optional features on

our robot.

Other technical specifications are mentioned below:

Table 3.4. 0x delta series robot specifications

Parameters Values

Dimensions (L x W x H) 58cm x 62cm x 30cm

Weight 34kg

Max Payload Weight 15kg

Wheel Diameter 26 cm

Axel Length 70 cm

Ground clearance 8.8cm

Maximum Speed 5 km/h

Vertical Obstacle 10cm

Power Supply 24V battery

Working Time 4 hours

Communication Secure 128 bit encrypted

34

Figure 3.8 0x Delta series robot

3.4 Robot Operating System (ROS)

The Robot Operating System (ROS) is a framework for writing robot software, an open-source, meta-

operating system for the robot. It provides same kind of services would be expected from an operating

system, including hardware abstraction, low-level device control, implementation of commonly-used

functionality, message-passing between processes, and package management. Basically ROS is a

collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust

robot behaviour across a wide variety of robotic platforms. This basically allows for code reuse, and

improves the quality of the code by having it tested by a large number of users and platforms.

Advantages of ROS are:

 Distributed computation

 Software reuse

 Rapid testing

 Supports various programming languages

35

Figure 3.9 ROS communication block diagram

Figure 3.4 showsxtwo programs marked as node 1 and node 2. When any of thexprograms start, a node

communicatesxto a ROSxprogram called thexROS master. Thexnode sends all its informationxto thexROS

master, includingxthe typexof data it sends or receives. The nodesxthat are sendingxa data are called

publisherxnodes, and thexnodes that are receivingxdata are calledxsubscriber nodes. xThe ROS Master has

all the publisherxand subscriberxinformation running on computers. If node 1 sendsxparticular data called

―A‖ and the same dataxis required by node 2, xthen the ROSxmaster sends the information to the nodes so

that they can communicatexwith each other. The ROS nodesxcan send different typesxof data toxeach

other, which includesxprimitive data types such as integer, float, string, and soxforth. Thexdifferent data

types beingxsent are called ROSxmessages. With ROSxmessages, wexcan send data with a singlexdata type

or multiple data with different dataxtypes. These messages arexsent through axmessage bus orxpath called

ROS topics.

3.5 Sensors

Wheeledxmobile robots need toxsense the environment usingxsensors in order toxautonomously perform

their mission. Sensors are used toxcope with uncertaintiesxand disturbances that arexalways present in the

environmentxandxin all robot subsystems. Mobilexrobots do not havexexact knowledgexof the

environment, and theyxalso have imperfectxknowledge aboutxtheir motion modelsx (uncertainty of the

map, unknownxmotion models, unknown dynamics, etc.). The outcomesxof the actions are also uncertain

due to non-idealxactuators. The mainxpurpose of the sensors is thereforexto lower these uncertainties and

to enablx estimation of robot states as well asxthe states of thexenvironment.

36

3.5.1 Sensor Coordinate transformation

Sensorsxthat are mounted on the robot are usually not inxthe robot’s centre orxin the originxof the robot’s

coordinatexframe. xTheir position andxorientation on the robotxis described by a translationxvector and

rotationxaccording to thexrobot’s frame. Those transformationsxare needed to relatexmeasured quantities

in the sensorxframe to robotxcoordinates. With these transformationsxwe can describe howxthe sensed

direction vectorx (e.g., accelerometer, xmagnetometer) or sensedxposition coordinatesx (e.g., laser range

scanner or camera) arexexpressed in thexrobot coordinates. Furthermore, mobilexrobots are moving in

space, and therefore, theirxposes or movements can be describedxby appropriate transformations.

tf is a package that allows the user keeps track of multiplexcoordinate frames overxtime. tf package

performs the function of maintaining the connection between coordinate frames in a tree structured

manner buffered in time with every other frames, and allows theeuser to transform points, vectors, etc.

betweenxany two local coordinate frames related to the robot at anyxdesired point in time. This package is

necessary for transformation of sensor coordinates to the robot frame.

Static_transform_publisher is the command line tool to publish a staticxcoordinate transform to tfxusing

an x/y/z offset in metres and yaw/pitch/roll in radians or in quaternions. View_frames creates a PDF graph

for the current transform tree for graphical debugging.

3.5.2 Orientation and Rotation

Orientation ofxsome local referencexframe (e.g., sensor) according to thexreference frame (e.g., robot) is

described by axrotation matrix R:

 [

]

(3.3)

where are orthonormal unit vectorsxof a local coordinatx system. The rows ofxR are components of

body unitxvectors along the reference coordinate unitxvectors x, y, and z. xThe elements of matrixxR are

cosine of the anglesxamong the axisxof both coordinatexsystems; therefore, matrixxR is alsoxcalled the

direction cosine matrixxor DCM. Basic rotationxtransformations are obtainedxby rotation around axis x, y,

and z by elementaryxrotation matrices:

 () [

]

(3.3)

37

 () [

]

(3.4)

 () [

]

(3.5)

where Raxis (angle) xis rotation around thexaxis for a given angle.

3.5.3 Pose Measurement Methods

There have been several methods to estimate robot pose in the environment using sensors. Dead

reckoning (also called deduced reckoning) gives the estimate of the robot’s (equipped with relative

positioning sensors) current position from the known previous position and relative to the measured

displacements from the previous position. These increments in position and angle (distance and

orientation) are calculated from measured linear and angular speeds over the completed time and heading.

Common to these approaches is the use of path integration to estimate the current pose; therefore, the

accumulation of different errors (error of integration method, measurement error, bias, noise, etc.)

typically appears.

Odometry is used to estimate the robot pose by integration of motion increments that can be measured or

gathered from applied motion commands. Relative motion increments are in mobile robotics usually

obtained from axis sensors (e.g., incremental encoder) that are attached to the robot’s wheels. Using an

internal kinematic model these wheel rotation measurements are related to the position and the orientation

changes of the mobile robot. The position and orientation changes given in the known time period

between successive measurements can also be expressed by robot velocities. However, due to the integral

nature of odometry, cumulative error occurs. The main source of the error consists of the systematic and

nondeterministic error sources. The former includes errors due to approximate kinematic models (e.g.,

wrong radius of the wheel), error due to accuracy of applied integration method, and measurement error

(unknown bias), and the latter includes slippage of the wheels, noise, and the like.

In Navigation using environmental features, Features are located at known locations. Therefore, their

observation can improve knowledge about mobile robot location (lower location uncertainty). The list of

features with their locations is called a map. This requires either an offline learning phase to construct a

map of features or online localization and map building (simultaneous localization and mapping

[SLAM]). The former approach is methodologically simpler but impractical in practice especially for

larger environments. It requires the use of some reference localization system to map observed features,

38

or this must be done manually. The latter approach builds a map simultaneously while localizing, and the

main idea is to localize from observed features that are already in the map and storing newly observed

features based on localized location.

3.5.4 Sensors used in the Robot

Wheel Encoders

They are electro-mechanical devices thatxconverts linear or angularxposition of a shaft to anxanalog or

digital signal, xmaking them the linear/angular transducer, measure position or speed of the wheels,

integrate wheel movements to get an estimation of thexposition i.e. odometry.

Opticalxencoders function by making use of a rotorxdisc composed of eitherxplastic or glass that consists

of several irregular patterns with transparent andxopaque areas that cax be detected as the disc attached

with wheel rotates betweenxa light source and an optical detector. Likexthe magnetic encoder, the simplest

configuration usually uses just one sensor and has one half of the disc transparent and the other half

opaque. But to obtain higherxresolution, the disc is usuallyxdivided into many morexsegments (often in

concentric rings) withxtwo or more sensors.

LiDAR

LiDAR are alsoxknown as the LightxDetection and Ranging, basically are laser range finders. It is a time

of flightxsensor that achieves significantximprovements over the ultrasonic range sensorxowing to the use

of laser lightxinstead ofxsound. It uses the light waves or the lightxsource to measure the distancexbetween

the object. The laser and thexdetector are the two of the main components inside this LIDAR system.

The laser in the pulse form is targeted on the object and the reflection or the scattering from the object it

is being measured by the detector. And at the detective side, the timing between thextransmitted pulse and

thexreceived pulses is measured.

Using thexlight waves, we can evenxdetective very small objects. xSo using the LIDAR system, xwe can

achievexthe much morexPrecision. So, becausexof its precision, these LIDARxsystems are used for the 3D

mappingxof the objectxor even for the surfacexscanning of the object.

39

Sensor specifications:

Table 3.5 LiDAR sensor specification

Application Indoor

Integrated application Protective field evaluation with flexible fields, output of measurement

data, Protective field evaluation with flexible fields, output of

measurement data

Working range 0.05 m ... 25 m

Aperture angle Horizontal (270°), Horizontal (270°)

Angular resolution 0.33°

Number of field sets 16

Enclosure rating IP67

Colour White

Digital outputs 3 (PNP, to display a protective field violation, additional 1 x ―Device

Ready‖)

Scanning frequency 15 Hz

Switching mode PTP

Figure 3.10 Sick LMS 100 2-D LiDAR

40

IMU

AnxInertial MeasurementxUnit, commonly known as an IMU, isxan electronic device thatxmeasures and

reportsxorientation, velocity, andxgravitational forces through the use ofxaccelerometers and gyroscopes

and oftenxmagnetometers. An IMU is a specific type of sensor that measuresxangular rate, force and

sometimesxmagnetic field. IMUs are important components of the inertial navigationxsystems used in

aircraft, autonomous ground vehicles, unmannedxaerial vehicles (UAVs) and otherxunmanned systems, as

well as missiles and evenxsatellites. IMU data is processed byxcomputers to track positionxthrough dead

reckoning. Commonxapplications for IMUs include control andxstabilization, navigation andxcorrection,

measurement andxtesting, unmanned systemsxcontrol, and mobilexmapping.

It consists of three motion sensors:

 Accelerometer: These are the most commonlyxused type of motionxsensor. Itxmeasures

acceleration (change of velocity) acrossxa single axis. Accelerometersxmeasure linear acceleration

in a particularxdirection whereas an accelerometer canxalso be used to measure gravityxas a

downward force. Integratingxacceleration once gives an estimate for velocity, and integrating

againxgives you an estimate forxposition.

 Gyroscope: Accelerometersxcan just measure linear acceleration but can’txmeasure twisting or

rotationalxmovement. Gyroscopes, however, measurexangular velocity about three axes: xpitch (x

axis), roll (y axis) and yaw (z axis). While axgyroscope has no initial frame ofxreference, user can

combine its data with dataxfrom an accelerometer toxmeasure angular position.

 Magnetometer: It measuresxmagnetic fields. It can detectxfluctuations in Earth’s magneticxfield,

by measuringxthe air’s magneticxflux density at the sensor’s point in space.

In our case Xsens MTI100 IMU has been mounted to the robotic platform. The datasheet of the same has

been attached in [26].

3.6 Setting up ROS environment with the robot

First ROS packages need to be installed in the Ubuntu system. Since we are using Ubuntu 16.0,ROS-

kinetic version is installed in the system. The tutorials related to ROS and its packages installation is

provided in the roswiki page which is easily understandable. All the dependencies need to be installed for

the proper function of the software.

The robot ―0x delta‖ has an in-built PC which supports Wi-Fi connectivity. All the sensors like 2-D

LiDAR, IMU are connected to this PC. This PC has Intel-core i5 processor, 8GB RAM, which controls

the vehicle motion. The ROS packages are built within to communicate with the remote system. To

41

communicate with the external device we connected this PC to a router through Ethernet cable. All the

sensors used in the robot have some IP address which should be in the same series. In our case the IP

addresses of various components are:

Robot PC: 192.168.101.31

Router: 192.168.101.3

LiDAR: 192.168.101.35

Velodyne (3-D LiDAR): 192.168.101.36

Remote System: 192.168.101.32

After setting up the necessary addresses of these components, we also have to configure the environment

in the remote PC. To do this, go to /etc folder in the main directory and then open a terminal window:

$ sudo gedit hosts

In this text file add the guest IP addresses of the system along with their name. One more thing to setup is

the .bashrc file. To setup this just open the bashrc file and check that if local host address is as per the

host system or not.

After this the robot could be seen connected to the remote system through the Wi-Fi. To see that the robot

is connected and our host system is receiving data from the robot, type the below command in the

terminal of the host system:

$ ping 192.168.101.31

Here 192.168.101.31 is the robot address and if connected properly the terminal should be displaying 64

bytes sent in some milliseconds. After this we need to run the robot and for that we have to access the

robot PC from our host system. To do that, type the below command:

$ ssh –X 192.168.101.31

Then it will ask for the password of the robot PC after which we can access the robot PC’s terminal. Then

all the packages built within the robot can be easily run remotely using our own host system.

For connecting the sensors to the robot, one should make sure that the port ID of the sensor is known. To

get an idea of that, I connected each sensor one-by-one and checked its port number by opening /dev

directory where the port no is in the form of ttyUSB0X, where X varies as the number of ports is

increased. These port numbers are required to be set while running the driver of sensors.

42

Chapter 4

AUTONOMOUS NAVIGATION

Autonomous navigation in mobile robots means that theyxare capable of navigating in an unknown and an

uncontrolledxenvironment. xAn autonomous robot performs its tasks with avery high degree of autonomy.

Axfully autonomous robot has the capability to obtainxinformation about itsxenvironment in which it is

navigating, work for longer period without humanxintervention and to avoidxsituations that could be

harmful to itsxenvironment or to itself. Anxautonomous navigation system isxan on-board, integratedxsuite

of sensors andxtechnology that enablesxperception, path planning and autonomousxnavigation capabilities.

Success inxnavigation requiresxsuccess at the four basic aspects of navigation: xperception, localization,

andxcognition andxmotion control.

Figure 4.1 Basic Layout of Autonomous Vehicle

4.1 Navigation Stack

It is a setxof algorithms that use thexsensors of the robot andxthe odometry, and we can controlxthe robot

using a standardxmessage. It can move our robotxwithout problemsx (for example, withoutxcrashing or

getting stuck in somexlocation, or getting lost) to anotherxposition.

43

We wouldxassume that this stack canxbe easily used with any robot. This is almostxtrue, but it is important

to tunexsome configuration files and writexsome nodes toxuse the stack.

The robot mustxsatisfy some conditions before it uses thexnavigation stack:

 The navigationxstack is able to only handle a differential drivexand holonomic wheeled robots.

The shape of the robot needs to be eitherxa square or a rectangle. However, xit can also perform

certain things withxbiped robots, such as robotxlocalization, as long asxthe robot does not move

sideways.

 It is required thatxthe robot continuously publishesxinformation about the relationshipsxbetween all

the joints andxsensors' position.

 The robotxmust send information with linear and angularxvelocities.

 A planarxlaser must be mounted on the robotxto create the map and perform localization.

Otherwise, we can also generate somethingxequivalent to severalxlasers or sonars, or we can

projectxthe values to thexground plane if they are mountedxin another place on thexrobot.

Figure 4.2 ROS Navigation Stack [ref: roswiki]

The following diagram 4.2 shows us how thexnavigation stacks arexorganized. We can see three groups of

boxesxwith colours (gray and white) andxdotted lines. The plainxwhite boxes indicatexthose stacks that are

provided byxROS, and they have all thexnodes to make ourxrobot really autonomous.

The navigation stack work properly when the transform relationships between different frames are

published properly. To check that the transforms are published correctly one should open rqt_tf_tree

usingxthe belowxcommand:

$ rosrun rqt_tf_tree rqt_tf_tree

The tf relation should show graph as given in figure 4.3.

44

Figure 4.3 transformation tree for the navigation stack

Here, mapxrepresents the coordinate frame fixed to the map.

odom – the self-consistent coordinate frame using the odometry measurements only. The map → odom

transform is published by amcl or gmapping.

base_link – the base link of the robot, placed at the rotational centre of the robot.

Laser- it represents the laser sensor scan.

4.2. Software Packages

ros0xrobot package

This package providesxROS interface for robot basesxin 0x series. 0xRobotCpp library from Nex

Robotics supports the ROS interface. Informationxfrom the robot base, velocity andxacceleration control,

is executed via axros0xrobot node, whichxpublishes topics providing data receivedxfrom the robot's

embeddedxcontroller by 0xRobotCppxlibrary, and this sets desiredxvelocity, acceleration andxother

commands in robotxwhen new commands arexreceived fromxcommand topics.

45

It contains the parameters which defines the robot kinematics. It has the wheel diameter, axel length,

counts per revolution for the robot. It has ros0xrobotnode which contains the kinematic equation for our

robot. It subscribes to cmd_vel to receive new velocity commands. By using these it publishes the

position of the robot using the pose topic. However, this package is only for communicating with 0x

series robots from nex Robotics.

lms1xx package

This package works with Sick LMS 1xx laser range finders. It publishes the laser scan data under the

topic /scan. It has the parameters to connect with the device using its host name or IP address.

Rviz

Rviz is axsimulator based on ROS in which we can visualize every kind of sensor data in the 3D

environment, like a kinect camera sensor data by mounting it in the Gazebo model or the LiDAR sensor

data to visualise the obstacles in 3D. From thexlaser scan data, we can build a map and it can be used for

auto navigation. Rviz gives access and graphically represent the values obtained from camera image, laser

scan etc.

By panel tab we get to view different tabs. The display window is used to views the different topics

currently published. We can add those topics by clicking on add options in the display window. By views

window we can adjust how to look over the rviz screen.

Costmap 2D

This package implements a 2D costmap that takes in the sensor data from the world, builds 2D or 3D

occupancy grid of the data obtained from the LiDAR and inflates costs in a 2D costmap based on the the

grids occupied on the map and a user specified inflation radius to include the critical distance from the

obstacle. This package also allows support for map_server based initialization of a costmap, rolling

window based costmap and parameter based subscription to and con figuration of sensor topics.

This package configures the environment and tells the robot where it can navigate in its environment. It

assigns values to the occupancy grid in the maps to know the occupied, unoccupied and unknown regions.

It uses sensor scan data and information, in our case a 2-D LiDAR data, to store information about the

position of obstacles in the form of static map using costmap_2d::Costmap2DROS object which provides

purely a purely two dimensional interface to its users.

46

Figure 4.4 Cost map representing different layers

In figure 4.4, we have a pentagonal robot footprint which represents the size of the robot. The footprint

significantly decides the path taken by robot when a goal point is given. The

costmap_2d::Costmap2DROS object maintains a lot of functionality using LayeredCostmap which is

used to keep track of different kind of layers. The costmap_2d::Costmap2D class implements the basic

structure to store and access the 2D Costmap representing the obstacles in the map.

There are specific symbols which assign the cost values related to robot. The sensors are used to marks

the cells in the maps and assign them the required cost values.

 ―LETHAL‖: represents an actual obstacle in the cell. In fig 3, the dark black thick lines represent

such cost values. In our case its cost value is assigned as ―255‖.

47

 ―INSCRIBED‖: it means that a cell is less than the robot's inscribed radius away from an actual

obstacle. So the robot is bound to be in collision with some obstacle if the robot centre is in that

particular cell that is at or above the inscribed cost provided by the algorithm.

 ―FREESPACE‖: it means there is nothing which can hinder the robot motion. It is assigned a

value of ―0‖.

 ―UNKNOWN‖: it means we don’t have sufficient information about that area. The robot doesn’t

have idea about the obstacle present in that area.

In our case, each cell is given three types of cost values, i.e., each cell can be either free, occupied, or

unknown. Each of the above status has a special numerical cost value assigned to it based in which it is

project into the costmap. Columns that have a certain number of occupied grids are assigned a

costmap_2d::LETHAL_OBSTACLE cost, columns consisting of certain number of unknown cells (see

unknown_threshold parameter) are assigned a costmap_2d::NO_INFORMATION cost, and other

columns are assigned a costmap_2d::FREE_SPACE cost.

Apart from that, for converting the sensor frame to base frame of the robot, the

costmap_2d::Costmap2DROS makes extensive use of the tf. It also uses map_server package so that a

user-generated static map can be used for informing the robot about its environment.

There are two divisions of costmaps in ROS:

 Global costmap- it is used for global navigation. In fig 5, the dark black thick lines represent the

global costmap. These obstacles have been detected by moving the robot in the environment. The

obstacles were detected using the laser scan and the cells in the map are marked as occupied and

given a high cost values. The robot is expected not to make a path through those areas. The

attributes defined in global costmap are defined in costmap_common_params.yaml and

global_costmap_params.yaml files. This has been depicted in the below figures.

 Local costmap: this is used for local path planning during the robot reaching its goal. In fig 5, the

yellow lines depict the local cost map present in the map. These are obtained by the current laser

scan readings and cells are marked as per the given commands. The parameters for local costmap

are defined on the local_costmap_params.yaml and costmap_common_params.yaml files.

Layer Specifications: There are three most common layers used in the costmap2d ros package:

 Static map layer: The static map incorporates mostly unchanging data from an external source,

especially a map. In our case the robot is first allowed to know its surrounding by teleoperation

and scanning the environment by a 2-D LiDAR. It subscribes the topic /map and gets the

information about the occupancy of the cell.

48

 Obstacle layer: The obstacle and voxel layers incorporate information from the sensors in the form

of PointClouds or LaserScans. The obstacle layer tracks the robot in two dimensions, whereas the

voxel layer tracks in three. The costmap subscribes to the laser data and updates according to the

obstacles detected by it. This uses point_cloud topic to update the costmap periodically.

 Inflation layer: it assigns the cost values to the cells according to their distance from the obstacles.

In figure 5, we observe that both static and dynamic obstacles are inflated by bright colours. This

inflation has been done for the safety of the vehicle, i.e., to avoid collision from the obstacles.

However there is also one possibility that if the inflation radius is increased, we might lose some

short and easy paths that a robot can take to reach the goal. Therefore the inflation radius should

be carefully decided in the parameters. There is one parameter, cost_scaling_factor, defined in the

inflation layer. A scaling factor is applied to get cost values during inflation. The cost function is

computed as given in figure 4.5 for all grids in the costmap further than the inscribed radius

distance given by costmap and less than the inflation radius distance away from a real obstacle.

Figure 4.5 Inflation Layer (ref: roswiki)

Configuring the Costmaps

The robot moves through the map using two types of navigation—global and local.

 The global navigation creates paths for a goal in the map or a far-off distance.

49

 The local navigation creates paths in the close distances and avoids obstacles, for example, a

square area of 3 x 3 meters around the mobile robot.

These modules use costmaps to keep every kind of the data on our map. The global costmap gives

information about the global navigation and the local costmap for local navigation.

The costmaps have parameters to configure the behaviours, and they have common parameters as well,

which are configured in a shared file. Configuration of Costmap basically consists of three files where we

can setup different parameters. These files are as mentioned here:

 costmap_common_params.yaml

 global_costmap_params.yaml

 local_costmap_params.yaml

Configuring the common parameters

The obstacle_range and raytrace_range attributes are used to indicate the maximum distance that the

sensor is able to read and introduce any other new information in the costmaps provided by navigation

stack. The obstacle_range is used for the obstacles. If the robot detects an obstacle around or less than 2.5

meters in our case, it will project the obstacle in the costmap. The raytrace range is used to clean/clear the

costmap and keeps on updating the free space in the map as the robot navigates. One thing to be noted is

that we can only detect the data of the laser or sonar with the obstacle, we are not able to perceive the

entire obstacle or object itself, but these simple approaches are enough to deal with obstacle

measurements. This greatly helps to build a complete map and localize the robot.

The footprint attribute indicates to the navigation stack the geometry of the robot. It will be used to keep

the right distance between the obstacles and the robot, or to know if the robot can move through a door

keeping a safe distance. The inflation_radius attribute defines how much should be the minimal distance

between the geometry of the robot and the obstacles.

The below line configures the sensor’s frame and the uses of data:

laser_scan_sensor: {sensor_frame: laser_base_link, data_type: LaserScan, topic: /base_scan/scan,

marking: true, clearing: true}

In the above code, sensor frame has been defined as ―laser base link‖ and the message received from the

LiDAR has a certain datatype LaserScan which his published on the topic name .base_scan/scan.

The laser configured is used to add and clear obstacles detected by LiDAR in the costmap. For example,

we could add a sensor with a very wide range to detect obstacles and then another sensor like ultrasonic

sensors to navigate and clear the obstacles around the environment. The topic's name has been configured

50

in the above line. It is important that we configure it the best, because the navigation stack could wait for

another topic and all this while, the robot might be moving around which could then crash into a wall or

an obstacle.

Configuring the global costmap

The global_frame and the robot_base_frame attributes define the transformation matrix between the map

and the robot. This transformation is for the global costmap.

We can configure the frequency of updates for the costmap. In this case, it is 1 Hz. The static_map

attribute is established for the global costmap to see a map. The map server is used to start the Costmap

with the maps configured. If we aren't using a static map, then this parameter is set to false.

Configuring the local costmap

The update_frequency, global_frame, static_map and robot_base_frame parameters are the same as

described in configuration of the global costmap file. The publish_frequency parameter defines the

frequency by which the information is published. The rolling_window parameter keeps the costmap

centered on the robot when it is navigating in its environment.

The transform_tolerance parameter configures the maximum latency for the transforms, in our case it is

0.2 s. With the help of planner_frequency parameter, we can configure the rate in Hz at which we have to

run the planning loop. The planner_ patience parameter configures how long the path planner will wait in

an attempt to find a valid plan where no obstacles are found, before space around it is cleared.

The dimension and the resolution of the costmap with the width, height, and resolution parameters are

configured in this file.

SLAM Gmapping

Simultaneous localization and mapping, or SLAM for short, helps us to create a map using a mobile robot

that navigates through its environment while using the map it creates. SLAM is the algorithm that works

for robot mapping or robotic cartography. An area is considered in which the robot is allowed to

navigate, but at the same time, it needs to figure out where its own self is located in the place. The process

of SLAM considers a complex array of computations, algorithms and sensory inputs to navigate through a

previously unexplored environment or to remap a previously known environment. SLAM helps to enable

the remote creation of GPS data in areas where the environment is too dangerous or congested for humans

to get into.

In a related way, a SLAM robot tries to map an unknown environment while figuring out where it is at.

The complexity arrives from doing both these things at once. The robot has to know its position before

51

answering the question of what the environment looks like. The robot also needs to figure out where it is

at without the benefit of already having a map. SLAM (Simultaneous localization and mapping),

developed by Hugh Durrant-Whyte and John L. Leonard, is a process of solving this problem using

specialized algorithms and techniques.

The basic requirement of SLAM is a range measuring device like SONAR or LiDAR which provides the

method for knowing the environment around the robot. A more commonly used form of measurement is a

laser scanner such as LiDAR. Laser scanners are quite easy to use and are very accurate. However, they

are also extremely costly. There are other options, though. Sonar can also be used, and this device is quite

useful for mapping environments under the water bodies but has a lower range than LiDAR. Camera

devices can also be used for SLAM. These optical readers come in 2D or even 3D formats. The

measurement device used depends on various variables, including preferences, costs, and availability.

Another very important component in the SLAM process is to acquire data about the environmental

surroundings of the robot. Just like a human, the robot considers landmarks to determine its current

position using its sensors, the laser, sonar, or whichever sensors have been used. A robot uses different

landmarks measured using sensors for different environments. However, there are certain conditions for

landmarks used in SLAM. Firstly, all these landmarks should be stationary. A robot is not able to

determine its own location if a nearby landmark is continuously moving. Additionally, landmarks should

be particular and easily distinguishable from the surrounding areas. These landmarks also need to be

plentiful and should view from many different angles.

Once the robot has sensed a landmark through the laser scan, it can then determine its own position by

extracting the sensory input through LiDAR and then identifying the different landmarks marked

previously. A method has to be placed in order for the robot to do this. This landmark extraction is

generally completed in a variety of ways from algorithms like Spike extraction to scan-matching. The

important factor to remember in our case is that the robot requires a way to identify a landmark. Robots

also use information from previously scanned landmarks and match them up with each other in order to

determine its location.

The GMapping package is used to create maps while our robot navigates in a given environment. It uses

Simultaneous Localization and Mapping(SLAM) to produce a 2D map from laser scan data. The

robot_state_publisher publishes the laser scan transformation from laser scan to base_link. The slam

gmapping package is used to create a map for the robot. The gmapping node contains a lot of parameters.

Important ones to follow are:

 particles- defines the number of particles in the particle filter.

 xmin,ymin,xmax,ymax- defines the map size in metres.

52

 deltamap- resolution of the map

 base_frame- frame attached to the robot base.

 map_frame- frame attached to the map.

 odom_frame- frame attached to the odometry system.

 srr- odometry error in translation as a function of translation’

 srt- Odometry error in translation as a function of rotation.

AMCL

This package helps the robot to decide its current position and using this current position information the

trajectory is planned. Using wheel odometry leads to inaccuracy in wheel spin calculation caused by lack

of traction. So longer we run the vehicle, more inaccuracies we get in the pose estimate. So amcl help to

compensate the mistakes committed by odometry. AMCL is a variant of the Monte Carlo Localisation

(MCL) which is widely used for localization. MCL uses particles to localise the robot pose. It has several

advantages over using Extended Kalman Filters (EKF) such as uses raw measurements (i.e. from lasers),

is not reliant on gaussian noise, is memory and time efficient, and can perform global localisation. This

node generally works with laser scans and laser maps. The AMCL package adaptively changes the

number of particles used based on the robot motion, which has the advantage of reducing the

computational overhead required. Each sample stores a position and orientation data which represents

robot’s current pose. Particles are all sampled randomly initially. When the robot moves, particles are

resampled based on their current state as well as robot’s action using recursive Bayesian estimation.

Topics subscribed:

 /scan- contains the laser scan information

 /tf- transforms incoming laser scans to the odometry frame.

 /initialpose- Meanxand covariancexwith which to (re-)initialize the particle filter. This describes

the parameters with which localization estimate amcl initially starts running with.

 /map- amcl package use this topic to get the map for laser-based localization.

Topics publishedx:

 amcl_pose- gives the robot’s estimatedxpose in the map with covariance.

 particlecloud- set of posexestimates being maintainedxby the filter.

 tf- publishes the transform from odom to map

We have observed that if some different pose estimate is given to the robot, it localizes itself at that

location but is not able to get the correct estimate. We need to move the robot around to get to know

about the landmarks detected in the map. Since the laser scan just provides data about the presence or

53

absence of obstacle. Similar occupancy grid might cause confusion about the currentxposition of the

robot. Besides, AMCLxdynamically adjusts thexnumber of particles over a period of time. This provides a

computational advantage over the traditional algorithm. The AMCL has a node that will define its

behaviour in RVIZ and parameters that will determine how effectively it can localize itself. In this stage,

topics are remapped to fit the AMCL specifications and the truth map is published to the RVIZ program.

Parameters used in AMCL package are basically related to filter, laser and odometry.

Filter parameters: The first two parameters that relate to the filter are min_particlesxand max_particles.

The maximumxnumber of particles starts off at the initial and then AMCL dynamically decreases the

number of particles toward the preset minimum. One important aspect of these parameters is that if the

maximum is too high, it might be too computationally extensive and lead to a laggard system. Update

_min_a and Update_min_d are defined as the translationalxmovement required before performingxa filter

update and the rotation movement requiredxbefore performing a filter update, respectively. Lowering

these values would result in more updates and thus more iterations which will have the effect of

increasing accuracy, while also increasing computation.

Laser parameters: Parameters for the laser can be changed to increase the amount of incoming data from

this sensor. The parameter laser max beams determine the amount of beamsxin each scan of laser to be

used when updating the filter. The laser max range parameter describes the maximum scan range of the

laser. The laser likelihoodxmax dist parameter determines the maximumxdistance to do obstaclexinflation

on map. Two other important parameters used to increase the accuracy of localization are the laser z hit

and the laser z rand which are weights for the z hit and z rand partxof the model.

Odometry parameters: Odometry parameters describe the movement of the robot and provide the AMCL

information about this movement. The odom_model_type is the diff_corrected type. There are also 4

odom alpha parameters. Each (in order) specifiesxthe expected noise in odometry’s rotationxestimate from

the rotation componentxof the robot’s motion, the expected xnoise in odometry’s rotation estimatexfrom

the translational componentxof the robot’s motion, the expected noise inxodometry’s translation estimate

from the translation component of thexrobot’s motion, and the expectedxnoise in odometry’s translation

estimatexfrom the rotation component of thexrobot’s motion, respectively.

In amcl localization, the transform is published between the global frame and the odometry frame and

thus accounting for the drift error that occur using dead reckoning. If the localization is done through

odometry, there is a possibility of lateral drift error which can give wrong pose estimate of the robot as

the error gets added cumulatively.

54

Figure 4.6 AMCL localization structure

Local Planner: Timed Elastic Band

The TEB primarily provides the time-optimal solution. The teb_local_plannerxpackage is a pluginxto the

base_local_plannerxof the 2D navigation stack. Thexunderlyingxmethod, Timed Elastic Band locally

optimizesxthe robot's planned path with respect to separation from obstacles, trajectoryxexecution time

and compliance with kino-dynamic constraints atxruntime. The optimalxtrajectory is readily computed by

solvingxa sparse scalarized multi-objectivexoptimization problem. We providexweights to

thexoptimization variables inxorder to know the behaviour in case of ant type of dubious objectives. This

package subscribes topics odom to get the odometry information to plan out the velocities so that desired

trajectory is followed. The topic obstacle provides customxobstacles as point-, line- orxpolygon-shaped

one. It publishes the global plan which it is trying to follow currently. It also helps to visualize both the

plans in rviz.

The teb_local_plannerxpackage helps the userxto set parameters in orderxto customize the behaviour.

These parametersxare classified intoxseveral classes: robotxconfiguration, goalxtolerance, trajectory

configuration, obstacles, xoptimization, planning in distinctivextopologies andxmiscellaneous parameters.

Robot configuration parameters: It consists of velocity limits, acceleration limits, footprint model and

turning radius as parameters. These parameters determine the vehicle velocity commands when a local

path is planned. Generally the y-direction is neglected and is put to a value of zero. Here we also

determine the footprint model to be used for optimizing the vehicle motion. The footprint model is quite

55

important as it determined the computation required for moving the vehicle. This package allows various

types of footprints like point, circular, line, two circles and polygon.

Goal tolerance parameters: It consists of parameters that allow a certain level of discrepancies while

reaching the goal. It is usual that the robot will show some errors while reaching a goal point. It can’t be

exactly move at the same point where the user desires it to be. If the tolerances are kept small, there is a

possibility that the robot will keep on showing some motion even if we see that it has reached its goal.

The xy goalxtolerance is the position tolerancexfor the controller when achieving a goal. This can be

lowered to increase the system accuracy, but will undoubtedly increase the time to reach the goal

destination. the yaw goalxtolerance is the tolerancexin orientation when achieving a goal. Again, this can

be lowered to increase system accuracy, but will undoubtedly increase the time to reach goal destination.

We generally keep free_goal_vel as false so that the robotxcan arrive at the goalxwith maximum speed.

Trajectory configuration parameters: These parameters take care of the trajectory planning.

max_global_plan_lookahead_dist defines the maximum lengthx (cumulative Euclideanxdistances) of the

entirexset of the globalxplan considered to be optimized. Then we determine the actual length by the

logicalxconjunction of the local costmap size and thisxmaximum bound. We set this distance to zeroxor

negative inxorder to deactivate thisxlimitation. It decides what kind of line or arc has to be taken while

deciding the path. It allows thexplanner to shrink the horizon temporaryx (50%) in casexof automatically

detectedxissues.

Obstacle parameters: It gives a clear idea of obstacle detection methods. min_obstacle_dist specifies

minimum desired separation from obstacles. costmap_obstacles_behind_robot_dist limits the occupied

localxcostmap obstacles taken intoxaccount for planning behind thexrobot. inflation_dist specifies buffer

zonexaround obstacles with non-zeroxpenalty costs.

Optimization parameters: It gives an optimization weightage for maximum allowed translational velocity,

maximum allowed angular velocity, maximum allowed translational acceleration and maximum allowed

angular acceleration. weight_obstacle defines optimizationxweight for keeping axminimum distance from

obstacles, xweight_inflation defines optimization weight for the inflation penalty,

weight_kinematics_forward_drive provides optimizationxweight for forcing the robotxto choose only

forward directions, and weight_kinematics_nh provides optimizationxweight for satisfying thexnon-

holonomic kinematics.

56

Figure 4.9 Timed Elastic Band

Local Planner: Dynamic Window Approach

The dwa_local_plannerxpackage allows a specific controller that drives axmobile base inxthe plane. This

controller’s job is to connectxthe path plannerxto the robot. The plannerxcreates a kinematicxtrajectory for

thexrobot using a map toxget from a start to a goalxlocation. Along the way, the plannerxkeeps on creating,

at leastxlocally around thexrobot, a value function, xrepresented in a grid map. This valuexfunction

calculates the costs of traversingxthrough the grid cells. xThe controller'sxjob is to make use of this value

function toxdetermine dx,dy,dtheta velocitiesxto send toxthe robot.

Figure 4.8. DWA planner trajectory

57

Velocityxsamples: vx sample, vyxsample determinexnumber of translationalxvelocity samples toxbe taken

in x, yxdirection forxprediction. vth sample controls the number ofxrotational velocitiesxsamples. In most

casesxwe prefer to set vthxsamples to be higherxthan translationalxvelocity samples, becausexturning is

generally a morexcomplicatedxcondition than movingxstraight ahead.

Trajectory Scoring: DWAxLocalxPlannerxmaximizes an objectivexfunction to obtain optimalxvelocity

pairs. In implementation, thexvalue of this objectivexfunction relies on three components: progress to goal,

clearancexfrom obstacles and forwardxvelocity. The objective is to get the lowestxcost. path distance bias

is thexmeasure forxhow much the local plannerxshould stay close to the globalxpath. A high value of this

parameter makes the local planner preferxtrajectories on global path. goal distance bias isxthe measure for

how much the robot should attempt to reach the local goal, with whatever path. Experiments show that

increasing thisxparameter makes the robot to be lessxattached to the global path and more to local. occdist

scale is the measure for how muchxthe robot should try to avoidxobstacles. A high valuexfor this

parameterxresults in indecisive robot that stuck xin place. Currently, we set path distancexbias to 32.0, goal

distancexbias to 20.0, occdist scalexto 0.02. They workxwell in simulation.

Goal distance tolerance:

 yaw goalxtolerance (double, default: 0.05): This defines tolerance inxradians for thexcontroller in

yaw/rotation whenxachieving itsxgoal.

 xy goalxtolerance (double, default: 0.10): Thisxdefines tolerance inxmeters for thexcontroller in

the x & y distance whenxachieving axgoal.

 latchxxy goal tolerance (bool, default: false) If goalxtolerance is latched, ifxthe robot ever reaches

the goal xyxlocation it will simplyxstart rotating onxthe spot, even if it ends upxoutside the goal

tolerancexwhile it isxperforming thexnavigation part.

Global Planner: Navfn

This package implements a fast, interpolatedxnavigation function that is used toxcreate efficient plansxfor

a wheeled mobile basexthrough the navfn::NavFnxclass. It also provides a ROSxWrapper for this class via

thexnavfn::NavfnROS object thatxadheres to the nav_core::BaseGlobalPlanner interfacexspecified in the

nav_corexpackage. The navfn::NavfnROS object isxalso very helpful as a globalxplanner pluginxfor the

move_basexnode.

Parameters in this package are:

allow_unknown: This specifies whetherxor not to allow navfn to create plans that goes in unknown space.

planner_window_x: Specifies the xxsize of anxoptional window to restrictxthe planner to. Thisxcan be

greatly used for restricting NavFn toxwork in axsmall window of axlargexcostmap.

58

planner_window_y: Specifiesxthe y sizexof an optional windowxto restrict the planner to. Thisxcan be

greatly used forxrestricting NavFn to work inxa small windowxof a large costmap.

default_tolerance: A tolerancexon the goal point for thexplanner. NavFn tries to create axplan that is as

close to thexspecified goal as possible but noxfurtherxthan default_tolerancexaway.

Figure 4.9 Djisktra algorithm

4.3 Dynamic Window Approach (DWA)

Dynamic Window Approach searches for commandsxcontrolling the robot by creating a search space for

velocities. In our case these inputs are rotational and translational velocity and these can be considered as

a velocity pair (v,w). Dynamics of the vehicle is included to search for just thosexvelocities which are

underxdynamic constraints and thus reducing the searchxspace.

59

Search Space- The possible paths of robot are uniquely defined by velocity pairs. Each path is having

curvature given by

 this resulting trajectory should not intersect with the obstacle.

Figure 4.10 Illustration of a robot navigation environment using DWA

The complete set ofxadmissible velocities (Va) is computed by axfunction Dist (v, w) that computesxthe

distance to the nearest obstacle for a given trajectory.

Dist(v,w)= min(dist(v,w,obs))

 {()
 √ () ̇

 √ () ̇
}

(4.1)

where v_maxxand w_max are the maximum linear and rotationalxaccelerations respectively. Vp is the

wholexspace of all possiblexvelocities for the robot. This is expressed as:

 {()
 ∈ []

 ∈ []
}

(4.2)

Due to dynamic constraints of body, there is a set of reachable velocity given by dynamic window Vd:

 {()
 [̇ ̇]

 [̇ ̇]
}

(4.3)

The resultant velocity search space is given by

60

Figure 4.11 Velocity map

From this resultant velocity search space, the controller chooses a velocity pair that maximizes our

objective function. The objective function can be written as a function of dependent parameters which

brings the vehicle close to its target.

 () (() () ())

(4.4)

Here is the scaling factor and are the tuning parameters.

The Dist function representsxthe distance to the nearest obstacle over a circular trajectory with a

curvature given by the velocities (v, w). From equation 1, we can reverse calculate the dist function.

If the path is clear, then the vehicle should move at high speed so as to minimise time to reach the target.

This is taken care by speed function. Though it has disadvantage like no orientation parameter is

involved.

Speed(v)= v/vmax

The orientation parameter takes care of the anamoly caused by the speed function. It gives a measure of

how much the vehicle is oriented towards the goal target.

Heading(w)=

We can define some other function which can be suited for our platform. Another objective function can

be defined as such:

61

 () (

) (

) ()

(4.5)

4.4 KALMAN FILTER

There are twoxbasic position-estimation methods widely used in navigationxsystem, i.e. absolute and

relativexpositioning. Absolute positioning uses navigationxbeacons, active or passivexlandmark, map

matching, or satellite-based navigationxsignal, where absolute positioningxsensors interact with dynamic

environment. Relativexpositioning is usually based onxodometry sensors, or inertial sensors.

There are two kinds of sensors: internalxand externalxsensors. Internal sensor utilises physicalxvariables

that can be measuredxon the vehicle. Typical examples arexgyroscopes, accelerometers, xcompasses,

encoders. Except forxcompasses, internal sensorsxpresent a typical drift that affects longxterm estimates.

However, short periodxmeasurements are quite accuratexmoreover, internal sensorsxgive immediate

responses.

External sensors keeps track of relationshipsxbetween the robot and somexnatural or artificial reference

objects: if somexcharacteristics of the referencexobjects (for instance, theirxposition in space) arexknown,

it is possible, by means of properxcomputations, to estimatexposition and orientation ofxthe robot with

respect to itsxenvironment. The computation step makesxan external sensor notxcontinuous; nevertheless,

estimationxerrors do not present drift, since precision doesn't depend on mission duration, but on position.

The type of internal sensors that are mostly used in navigation isxodometry sensor. They arexmounted on

the robot’s wheel shafts and xregister angular movements of the wheels. Thesexangular rotations are then

converted into linearxmovements. But this process hasxaxvery limited accuracy, for example, if slip

occurred on the wheel, then the odometry will register thexmovement, but in reality, the vehicle mayxstay

on its own position due to the lateral drift phenomena. In long run, due to the incremental motion of

odometry, this error will keep on accumulating while processing the positioning of the robot. However

one advantage of using odometry is that the data is continuously available.

GPS (Global Positioning System) is one of the external sensors which is used to give absolute position of

the robot but is not consistently available. At the same time its frequency of publishing data is less than

that of the odometry and IMU sensor.

Kalman filter uses the idea of using multi-sensor fusion for trajectory estimation by takingxadvantage of

both internal and external sensors: in particular, positionxand orientation are estimated, in short period, by

62

internalxsensors and their increasing errors arexperiodically limited by using external sensors. This also

involves weighting both internal and external estimates.

The robot external kinematics has been earlier defined in eq. 2.7 :

[
 ̇
 ̇
 ̇
] [

 (())

 (())

] [
 ()
 ()

]

4.4.1. Kalman filter algorithm

A kalman filter simply calculates state prediction given by mathematical model and measurement update

from the sensors over and over again.

First we have a state variable given by [] which is given an initial condition. In our case the

initial positional coordinated x,y is given by GPS and θ is given by IMU.

An uncertainty is given for the initial state by the covariance matrix P. In the one-dimensional case, the

variance is defined as a vector, but now is matrix of uncertainty for all states.

 [

]

This matrix is most likely to be altered during the filter passes. This gets changed in both the predicted

and corrected steps. The Matrices needs to be initialized on the basis of the sensor accuracy. If the sensor

is very accurate, we use small values. If the sensor is relatively inaccurate, large values needs to be used

to allow the filter to converge relatively quickly.

The core of the filter is the dynamics matrix A which we should set up with great understanding of the

physical context. We have previously defined in chapter 2 (eq. 2.11)

[

 () (() ()

)

 () (() ()

)

 ()]

As the movement of the can also be disturbed, we introduce the process noise co-variance matrix. The

filter information is obtained by this matrix, and how the system state can ―jump‖ from one step to the

next. If an acceleration command tries to affect the system state, then the physical dependence for it is

described in Q. This Q matrix is a co-variance matrix having following elements:

63

 [

 ()

]

The filter also need to be told what is to be measured and how it can relate to the state vector. This is done

by computing matrix H.

 [

]

If the sensors measure in a different steps or the size by detours, we need to map the relationships of the

measuring matrix in a formula.

The measurement uncertainty measured by measurement noise covariance matrix R indicates how much

one trusts the measured values of the sensors. If the sensor is very accurate, we use small values. For

higher inaccurate sensors, large values should be used here.

 [

]

After initialization of the state vector with a position and velocity, the dynamics can be used to make an

optimal prediction about the current location of the robot.

The co-variance also needs to be recalculated. In the predicted step uncertainty about the state of the

system increase, as we have seen in the one dimension case. In the multidimensional case, the

measurement uncertainty gets added up, so the uncertainty becomes more and more.

From the sensors we get current measurement values, with which an innovation factor (y) is obtained by

using the measurements, the state vector with the measuring matrix.

This determines the Kalman gain. This defines whether the readings or system dynamics should be more

familiar.

The Kalman Gain reduces if the readings (measurements) match the predicted system state. If the

measured values are different, the elements of matrix K become larger.

64

Figure 4.12 Kalman Filter basic working layout

65

Chapter 5

RESULTS AND DISCUSSIONS

As previously discussed the project has been completed on two phases: one of the part deals with the

vehicle modelling and motion controller implementation while the other part deals with the development

of autonomous vehicle and trajectory planning of the robot.

5.1 Vehicle modelling

The simulation considering various vehicle parameters in the mathematical model has been done. The

model has been already formulated in chapter 2 and the simulation has been carried out in MATLAB.

Generally the autonomous vehicle moves at a very low speed considering the safety of the surrounding

and the payload it carries. Besides, there can be cases which can’t be predicted earlier in the simulation.

So I have limited our speed up to 40 km/hr in the simulation and then have seen the changes.

5.1.1 Steering actuator consideration

There have been lot of papers published regarding the mathematical modelling of the vehicle where the

steering actuator dynamics was ignored. But there are known errors due to the exclusion of the steering

actuator. In real world, we don’t change the vehicle steering angle by applying force to the wheel, rather

we give voltage commands which turn the vehicle wheels by desired steering.

Figure 5.1 Comparison for 20˚ heading angle input when vehicle is moving at 3.2 m/s

66

Figure 5.2 Heading angle error without actuator dynamics and considering actuator dynamics when the

vehicle is moving at 3.2 m/s to achieve a desired heading angle of 20 degrees

We simulated the vehicle with and without taking the steering actuator dynamics into account and then

compared the results with CarSim. It has been found out that the test vehicle takes 7 seconds to reach a

constant velocity of 3.2 m/s. So, we gave the desired heading input to the vehicle starting from 7 seconds

and then simulated the outputs.

In each test, the vehicle is allowed to run with a constant velocity of 3.2 m/s in a straight path and after 7

seconds, a desired step input of 20˚ heading angle was given to the vehicle. The results have been

performed in CarSim and MATLAB. In MATLAB, we took two conditions. In first we considered the

role of steering actuator dynamics and in other we neglected its presence. There has been significant

deviation due to this assumption. With steering actuator in consideration, we have less values of settling

time and less steady state errors. Without steering actuator, the settling time reaches to 4.5 seconds as

compared to 2.5 seconds by taking steering dynamics into account as can be seen in figure 5.1.

In figure 5.1, we also observe a significant difference between the simulation results of CarSim and

MATLAB. We observe when the vehicle is simulated in CarSim, we have high settling time which is

comparable to a condition without actuator. These deviations can be attributed to the real life

environments provided by CarSim. The overshoot and steady state errors seem to be reduced in the

MATLAB simulation but in CarSim simulation, we have steady state error of 1.2% but there is no

significant overshoot. In figure 5.2, we can see the overall picture. It has been obtained by subtracting the

simulated and carsim results. We see that the heading error reaches to more than 10˚ when we don’t take

the steering dynamics into account. With steering actuator the error reduces to a value less than 7˚.

67

Figure 5.3 Steering angle comparison when 20˚ heading angle step input is given for vehicle running at

3.2 m/s.

In Fig.5.3, steering angle for the CarSim and MATLAB simulations has been compared. We observe that

the simulation considering the actuator shows a maximum steering value of 20˚, while the CarSim

simulation suggests a lower value, 9.5˚. By considering actuator we also come to find that it takes the

vehicle an almost 2 seconds to reach the steering value of 20˚. This is relatable to real-life condition

because we can’t get an instantaneous output. If some input is provided, it takes some amount of time to

give the output.

Table 5.1 Results for vehicle running at 3.2 m/s with 20˚ step input heading angle response

Scenario Heading angle response

(in ˚)

Steering angle response

(in ˚)

RMS error Steady state

error

RMS error Maximum

steering angle

With actuator 1.1075 0.049 1.2215 11.4

Without actuator 1.7769 0.065 1.8984 14.05

5.1.2 Sensitive Analysis of Vehicle Parameters

Considering a J-turn manoeuvre for the vehicle, a sensitive analysis on cornering stiffness has been done.

Generally there are three conditions when a vehicle performs a continuous rotation motion: oversteer,

neutral steer and understeer.

Oversteer is what occurs when a car turns (steers) by more than the amount commanded by the driver.

Conversely, understeer is what occurs when a car steers less than the amount commanded by the driver.

68

Since for different situation on real road cornering stiffness can change a lot, we have to model the

vehicle such that it can sustain those situations.

Figure 5.4 Effect of Cornering Stiffness on the vehicle

We observe that there is no such drastic change when we change the cornering stiffness value to

incorporate these driving conditions. The graphs seem to follow the same lines. This is something which

is actually predictable at lower velocities since the dynamics doesn’t come into play at these velocities.

Figure 5.5 Effect of mass on vehicle performance

69

From the figure 5.5, I have simulated the vehicle model by adding 100kg on each wheel separately. It is

being observed that there is no such effect on the vehicle even if we add more mass to it. The graph seems

to follow the same as before.

5.1.3 Motion Controllers

I have implemented two motion control schemes on the robot and checked the performance and

robustness of the vehicle. The simulations have been performed by taking various dynamic and kinematic

vehicle parameters into account. The vehicle is moved with five different velocities so that we can design

a controller which can track the vehicle path at every velocity. The controller should be such that it can

handle the vehicle at different road and driving conditions. Meanwhile, we also have to take care that the

tuning parameters should not be changed to make the vehicle performance better ,i.e., the vehicle should

adapt to the condition it is facing.

First of all I have tuned the controllers to the get the best possible results. This has been done for both

controllers for velocities 5, 10, 20, 30 and 40 km/hr. In addition we have also included the steering

actuator in our basic model.

Figure 5.6 PID controller best tuned with varying gains and speeds

Figure 5.6 shows the vehicle heading and steering angle change when I am manually tuning the

parameters of the PID controller. It is observed that as the velocities increase, settling time reduces and

70

the steady state remains within the desired limits. Also the gain values are recorded and tabulated for

reference. The maximum settling time is 4.3 seconds for velocity = 5 km/hr while the minimum settling

time is 1.8 seconds for velocity= 40 km/hr. The steering angle is also lower for higher velocities and

higher for lower velocities. For v=5 km/hr, maximum steering angle is obtained as 13.47˚ and for v=40

km/hr maximum steering angle is just 4.88˚. The steady state error in case of PI controller is less than 2%

for all the velocities.

Figure 5.7 SMC controller best tuned with varying speeds and gains

Figure 5.7 shows the vehicle performance when SMC controller has been implemented. I have kept the

same velocity range and the other vehicle parameters. The trend observed in settling time and steady state

error is same of the PID but it shows a better performance in those respects. This can be clearly seen from

the table 5.2.

Table 5.2 Comparison of best tuned SMC and PID controller

Speed

(in

km/hr)

PI SMC PI gain values SMC gain

values

settling

time (in

s)

steady state

error (in

%)

settling time

(in s)

steady state

error (in %)

kp ki ks a

5 4.47 1.57 4.22 0.029 0.66 0.002 1.6 0.9

10 3.25 1.32 3 0.029 0.45 0.004 1.7 0.99

20 2.36 1.06 2.19 0.029 0.3 0.003 1.9 1.6

30 2.21 0.43 2.01 0 0.23 0.001 2.3 3.6

40 2.09 0.38 1.79 0 0.182 0.0009 2.9 9.24

71

Generally, it is observed in the vehicles that the gain values can’t be changed as the vehicle changes its

speed. The change is so instantaneous that such a controller should be chosen so that could provide a very

slight deviation from the previously well-tuned gain values.

To incorporate this study, the simulation has been performed by keeping the gain values constant and

varying the velocities. First of all, both controllers were best tuned for velocity 5 km/hr and then the

simulation has been performed keeping the gain values constant.

Figure 5.8 PI controller behaviour keeping gain constant with best tuned at 5 km/hr

72

Figure 5.9 SMC controller behaviour keeping gain constant with best tuned at 5 km/hr

From the figure 5.8 we observe that as the best tuned PI controller for 5 km/hr velocity is applied to

higher velocities there is an increase in overshoot as the velocity increases. Also, the rise time decreases

with increase in velocity. The total time to achieve steady state significantly increase from 5 km/hr to 40

km/hr. This is because as the velocity increases, the overshoot increases significantly and thus the vehicle

keeps on trying to follow the path but is unable to reach the desired trajectory quickly and oscillates

around it.

This suggests that controller parameters tuned at 5 km/hr cannot be reliably used for controller at 40

km/hr. But controller tuned at 5 km/hr can be used for 10 km/hr. Therefore, the best tuned controller at a

particular velocity can be practically used in a small range of velocities as there is lesser deviation from

the performance of the best tuned one. This can be considered a disadvantage of PID controller as there

are a lot of undesirable situations on road like bumps or some sudden jerk which increases the vehicle

velocity significantly. In those cases the controller fails to give the desired control on the vehicle.

From the figure 5.9 we observe that as the best tuned SMC at 5 km/hr is applied for higher velocity the

settling time almost remains same. There was no sign of overshoot as the velocity increases.

SMC performs significantly better for higher velocities once tuned for lower velocity than the similar

tuned PI controller. This can be clearly observed from the table 5.3. In case of SMC I don’t get any

overshoot and even the settling time reduces with increasing speeds. So it can be said that this controller

doesn’t need to be tuned for a certain range of velocities and thus is able to handle uncertainties better

than the previous discussed controller PID.

73

Table 5.3 Comparison of PID and SMC when best tuned at 5km/hr with increasing velocity and constant

gain

speed (in

km/hr)

PID SMC

settling time

(in s)

Overshoot (in %) settling time (in s) Overshoot (in %)

5 4.47 0 4.22 0

10 5.89 11.3 4.03 0

20 6.07 21.06 3.82 0

30 6.78 35.6 3.67 0

40 7.41 48.7 3.33 0

5.1.4 Linear and nonlinear model

As discussed in chapter 2, I have formulated two mathematical models for the vehicle. One includes the

nonlinearities found in the model while the other one is linearized model. Here, I am going to compare

both the models by implementing SMC controller and steering actuator dynamics whose results have

been discussed above. Also these simulation results are compared with CarSim results for validation.

Finally a double change manoeuvre has been implemented in the simulation to get idea of the real path

tracking error.

Figure 5.10 Linear and Nonlinear model comparison at 3.2 m/s for 20˚ turn

74

Figure 5.11 Linear and Nonlinear model comparison at 3.2 m/s for 90˚ turn

The comparisons have been made for two angles turn, 20˚ (lower angle) and 90˚ (higher angle). Generally

the vehicle is run up to 5 km/hr. That’s why the simulation is carried at a test speed of 3.2 m/s. From the

figures 5.10 and *5.11, it can be seen that the vehicle can be better tracked by the non-linear model. There

is a significant deviation the linearized mathematical model from the CarSim results. This needs to be

avoided so that the trajectory tracking becomes consistent when the vehicle is moves on a real road. In

case of lower angle turn, the error in trajectory tracking by linearized model may be considered within

limits but for the right angle turn, the error is significantly large and can’t be ignored.

In the table 5.4 below, the results have been tabulated.

Table 5.4 Nonlinear and Linear model comparison with SMC at 3.2 m/s

Simulated

Model

Heading Angle RMS error (in deg) Steering Angle RMS error (in deg)

20˚ 90˚ 20˚ 90˚

Linear 1.3485 7.523 1.434 5.6318

Non-linear 0.661 1.7653 1.03 1.2897

75

After performing all the above simulation, we finally implemented the desirable controller and best

predicted model in the vehicle simulation and a double lane change (DLC) manoeuvre has been

implemented to find out the path tracking error.

Figure 5.12 Comparison of predicted model with CarSim simulation at 3.2 m/s for DLC manoeuvre

In figure 5.12, I observe that matlab simulation results are quite close to desired heading input. It takes

almost 3.2 seconds to reach a constant input of 20˚. Meanwhile in CarSim result, we observe that it takes

almost the same time to reach the desired input. The results seem to follow the model behaviour quite

closely. I have also performed the simulation for two more speeds 2 m/s and 5.55 m/s. The trend comes

out to be the same for those two as well. In those cases, I have kept the SMC gain values same as before

so as to take the real world situation into account. Finally the results have been tabulated in table ***.

Figure 5.13 Path tracking for DLC manoeuvre at 3.2 m/s

76

Figure 5.13 shows the path tracking comparison between the formulated model and the CarSim results.it

is observed that the actual car (CarSim model) seems to be a little deviated from the desired path. This

deviation has been quantitatively found out for all the three speeds. These errors increase as we increase

the speed. This can be actually expected on a real vehicle since there is always some drift error when a

vehicle is moved straight. These drift errors can be attributed to the tire slip caused due to non-linearities

in tire models. The below table 5.5 shows the path tracking errors for different speeds.

Table 5.5 Predicted model errors for different speeds in DLC manoeuvre

Vehicle velocity

(in m/s)

Heading Angle comparison Path tracking

RMS error (in

m) RMS error (in

deg)

Steady state

error (in deg)

Settling time (in

sec)

2 1.073 0.02 4.32 0.4512

3.2 0.687 2.56*e^-3 3.83 0.5123

5.55 3.657 1.09*e^-3 2.18 0.542

5.2 To find and reduce odometry error on the experimental vehicle

The experiments have been performed on 0xDelta series robot, a four wheeled differential-drive robot.

The controller codes have been implemented using ROS platform. The basic objective of this part is to

find the real problems when we move a robot in real world. As we know there are certain limitations for

every sensor so sensor fusion techniques using kalman filter has also been applied.

There are four sensors which have been put into use: IMU, wheel encoder and integrated GPS-INS.

Integrated GPS-INS provides a reference for the actual path and orientation taken by the robot. My

objective is to use wheel encoder and IMU data to get the corrected pose estimates of the robot in

outdoor. But the robot is also designed to perform indoor navigation where we can’t rely on GPS. So my

basic idea is to fuse odometry and IMU data to get the correct pose estimation in indoor environment.

Even the sensors publish data at different rates. So to incorporate those anomalies sensor fusion becomes

quite necessary.

5.2.1 Odometry drift calculation

Firstly the odometry drift has been quantitatively studied by moving the robot in a straight path with two

speeds. It is observed that as the robot moves forward, the drift gets accumulated. This should be avoided

as the odometry is publishing data in the robot as if it is moving in a straight path but in reality the robot

is having some lateral drift. This gives the wrong pose estimated to the controller and there is likely for

77

the robot to hit the walls or some obstacles. So, this makes it clear that the odometry data is not sufficient

to give the corrected pose estimate of the robot.

Figure 5.14 Robot running at 0.4 m/s for 15 m

Figure 5.15 Velocity analysis at 0.4 m/s for 15 m

78

Case
Desired linear

velocity (m/s)

Desired

distance

(m)

Actual

distance

covered (m)

RMS Error in

distance (m)

Linear

velocity RMS

error (m/s)

Lateral Drift

(m)

1 0.2 10 9.89 0.1380 0.0174 0.15

2 0.4 10 9.81 0.2684 0.0622 0.18

3 0.2 15 14.86 0.1819 0.0156 0.253

4 0.4 15 14.78 0.3260 0.0584 0.287

From the above experimental results, it can be observed that the lateral drift increases as the robot covers

more distance. This is because the error in odometry keeps on accumulating over the time and gets added

each time. This deviation is expected at every kind of surface. In this experiment the robot is moved on

tiles which are very smooth as compared to roads. As the surface becomes different, it is highly likely that

the robot will not show the same results as before. Also with increasing velocity, the lateral drift increases

due to increase in lateral tire forces. These tire forces are solely responsible for lateral drifts. Therefore

increasing the speed of the vehicle causes more deviation from the actual path.

5.2.2 Running robot in outdoor environment and Kalman filter

In the next set of experiments the robot is allowed to run in the outdoor environment where the data is

collected using the sensors mounted on the robot. Firstly the sensors have been transformed to the robot

base coordinates. So the pose estimation has been done in the robot frame. In this case the basic idea is to

know about the trajectory followed by the robot when it is given some velocity commands.

Table 5.6 Path tracking errors when the robot is moved straight

79

In the figure 5.15 the robot is moved to form a closed loop. It can be easily observed that the odometry

drift got accumulated shows very different results from the actual GPS data received. This should be

definitely avoided otherwise accidents are likely to occur due to wrong pose estimated by wheel

odometry. The distance RMS error calculated from these data has been found out to be around 11.50

Figure 5.15 Representing GPS and raw wheel odometry data when the robot moved in a closed path

Figure 5.16 Path tracking errors

80

metres. This error is quite large and is clearly not acceptable. In figure 5.16, the maximum error is found

out to be 24.56 m.

Data publishing rates of different sensors:

 GPS (Garmin):1.02 Hz

 IMU (Xsens): 97.8 Hz

 Wheel Odometry: 10 Hz

The kalman filter used in our case use a filter time parameter which publishes data with a frequency of 20

Hz. The odometry data is fused with IMU data to get the best possible position estimates.

From the figure 5.17, we can clearly see that the filtered data follows the GPS data quite accurately. The

RMS error is found out to be less than a metre (0.89m) and the maximum error is 2.45m. These errors are

within the acceptable range. Thus we can see that there is no need to rely only on GPS data rather we can

implement sensor fusion techniques which can predict a close behaviour. The kalman filter uses weight

parameters for different sensors. These parameters have been tuned to get the best possible result. If we

include GPS data into this sensor fusion the results are further better. We know that each sensor has

certain limitations: IMU gives just the orientation and acceleration data, Odometry gives drift errors and

GPS works well in outdoor but in certain places we can’t have a good GPS (for example, tunnels). So it is

good to use all the three data to get the best possible position estimates of the robot. This is a lot needed

when the localisation part is done on the robot. For performing autonomous navigation it is important that

Figure 5.17 comparison GPS data and Kalman filter data obtained from the fusion of odometry and

IMU

81

the robot should know its current position to the best accuracy because if wrong pose estimates will lead

to incorrect map building and the navigation might fail.

5.3 Autonomous Navigation in Indoor Environment

Finally after setting up the robot and calculating all sort of errors I implemented the navigation algorithm

for obstacle detection and obstacle avoidance. This is done in two phases: first phase deals with the

localisation part, i.e., map-building using SLAM and second phase deals with implementation of path

planning algorithms based on the map created and the laser scan received from the LiDAR.

5.3.1 Localisation

If one couldxattach an accurate GPS (global positioning system) sensor toxa mobile robot, much of the

localization problemxwould be obviated. The existing GPS network providesxaccuracy to within several

meters, whichxis unacceptablexfor localizing mobile robots. Furthermore, GPS technologiesxcannot

function indoors or inxobstructed areas and are thusxlimited in their workspace.

That’s why a map based approach is considered the best for indoor navigation of the mobile robots. It

includes both localization and cognition modules. In map-based navigation, the robot explicitly attempts

to localize by collecting sensor data, then updating some belief about its position with respect to a map of

the environment.

The robot constructs a two-dimensional geometric representation of its environment using the laser

scanner. It utilizes a combination of this geometric data and odometry information supplied through the

wheel encoders to determine its current location. It generates a point cloud where each point corresponds

to a location where it believes it could be based on available data. As the robot moves, it rules out

possible locations and the number of points in the cloud decreases. In this way, its number of belief states

rapidly converges to its true location. Thus, the robot achieves localization through probabilistic

inference. The below figure 5.18 depicts the map building in a closed room.

82

Here the robot is tele-operated to move all around the room and scan all kind of obstacle. The sensor used

to scan the environment in the above case is a 2-D LiDAR. This creates the map in a 2-D plane by

dividing them into grids called occupancy grids. On the basis of presence of any obstacle these occupancy

grids are assigned cost values to them. As discussed previously, there three markings to these grids:

Occupied, free and unknown. In the above figure, the dark black lines are the obstacles and the whitish

grey is free/unoccupied area and the rest is unknown space. After moving the robot in the entire room, the

final map created is shown in figure 5.19.

Figure 5.18 Map building environment in ROS

Figure 5.19 Complete map of the room

83

The robot mustxnot only create a map butxit must do so while moving and localizing toxexplore the

environment. This is oftenxcalled the simultaneousxlocalization and mapping (SLAM) problem. To get

the position estimates at every moment the robot is moving, adaptive montexcarlo localization (AMCL) is

used. This particle filter based on past coordinates and velocity commands predicts the currentxposition

of the robot in the form of particles. This also uses the laser scan and based on the landmarks observed

predict the current positionxof the robot.

5.3.2 Path Planning Algorithm Results

Oncexthere is map in place thexmobile robot tries to navigate through the map areaxkeeping map as a

reference. While navigatingxthe robot tries to followxglobal plan to plot a pathxto those desired

coordinates. There arexvarious global planners for navigating a robot acrossxa map area to name a few:

Dijkstra’sxalgorithm, A* algorithm. Oncexa global plan has been generated, the localxplanner translates

this pathxinto velocity commandsxfor the robot's motors. It does thisxby creating a value function around

the robot, samplingxand simulating trajectories within this space, scoringxeach simulated trajectory based

on its expected outcome, sendingxthe highest-scoring trajectory as axvelocity command xto the robot, and

repeating until the goalxhas been reached avoiding allxthe obstacle in the way.

Global path planning

In the experiments I have used Djisktra algorithm as the global planner and two local planners: Timed

Elastic Band and Dynamic Window Approach. Each has their own problems and their own advantage. .

Once the robot has localized successfully, it can be supplied with destination coordinates and uses a

global planner to plot a path to those coordinates. The global planner uses the static map created using the

LiDAR sensor and plans the most optimal path. The local planner takes care of the reactive obstacle

avoidance problem. If any sudden obstacle is detected by the laser scanner, it overwrites the global path

and plans a new path. It also checks that if there is any path possible or not. In case no valid path is found,

it sends no velocity commands to the vehicle and displays the message that no valid paths could be found.

Effect of footprint model

Footprint is thexcontour of the mobile base. In ROS, it isxrepresented by a two dimensionalxarray of the

formx [[x0, y0], [x1, y1], [x2, y2], ...], xno need to repeat the first coordinate. This footprint will be used

to compute the radius ofxinscribed circle and circumscribedxcircle, which are used to inflatexobstacles in

a way that fits this robot. Usuallyxfor safety, we want to havexthe footprint to be slightlyxlarger than the

robot’s realxcontour.

Toxdetermine the footprint of a robot, the mostxstraightforward way is to refer to thexdrawings of your

robot. Then we determine the centre of the mass of the robot by considering that the mass is uniformly

84

distributed. We consider this as our centre of the robot which becomes our base_link frame point. The

vertices of the robot are determined with respect toxthe centre of the robot.

Generally the robots are treated as circular objects. For a robot with circular footprint, path planning is

done by considering the robot as point robot and thexobstacles are inflated by the robot’s radius. At the

same time it can be done other way round as well. But all the robots are not circular, which has to be

taken into account. In our case the robot has a rectangular shape with a semi-circular top. When operating

inxcluttered spaces it thereforexbecomes important to evaluatexthe footprint of these robotsxagainst a cost

map. This evaluation xis one of thexmajorxcomputational burdens inxplanning for robots whose footprints

can’t bexassumed to bexcircular.

The footprint models used in the experimentation are:

 “point”: This footprint is considered useful when the robot has a circular shape. By considering

this footprint model, we observe that the robot takes path quite close to the obstacle. There are

certain regions which are thought to be bit crowded but the robot still planned those paths and

ultimately has to change its course during reaching its goal. The main advantage with the point

footprint model is the computation time. It shows really less computation power and time required

as compared to other footprint model. Thus decision making becomes really fast.

 “circular”: The circular type parameter represents the robot as a circular with the perimeter

circumscribing the entire robot. It isxnecessary to consider the centre of robot in this case as the

radius is decided on this basis. This footprint model provides an advantage by removing the need

for inflation radius. Meanwhile, it takes out the risk for the robot’s orientation in planning the

path. I observed that the velocities taken during this footprint model was not aggressive as

compared to the point footprint model.

 “line”: This type of footprint comes handy when we are working with a robot which has length

greater along one direction than the other. This is particularly the case in two-wheeled differential

robot. This is the case when we considered when the inflation radius was taking care of the

obstacle avoidance. But if we reduced the inflation reduce to provide low cost paths, we found

that the robot was hitting the obstacle (boxes) while achieving its goal. This situation could be

only avoided when the inflation radius also takes the robot dimension into account. This increases

risk for high computation power.

 “two_circles”: This type of footprint increases the computation complexity since the obstacle

distance has to be computed from both circles. Though this works well considering the safety of

the vehicle. The object avoidance is good since it is not hitting any obstacle coming in its way.

 ―polygon”: This footprint model can closely determine the robot size. However the problem can

come in case of robot’s orientation. There is always a chance that in case of on-spot rotation in an

85

obstacle surrounded area, it might not perform well. There have been occasions that it hit into

something while performing even the recovery behaviour. To avoid this, a proper value of

inflation radius has to be provided. With proper inflation, the robot behaviour has been more

efficient in the context that it could plan the shortest path. Though at the same time it takes the

highest compute.

Timed Elastic Band (TEB)

Based on the velocityxand acceleration limits of thexvehicle, the security distancexof the obstacles and

the geometric, and kinematicxand dynamic constraints x of the vehicle, it generates velocity command for

the vehicle. This planner generates a quite complex trajectory for reaching the goal.

In the experiment a goal position has been given to the vehicle in rviz window. Based on the map

provided to the robot and the laser scan received it generates a velocity command to build a global path

and xlocal path on which the vehicle is supposed to move. The landmarks scanned by laser gives the robot

an idea about the current position of the robot. Figure 5.21 depicts the path followed by the robot to

achieve the goal. The RMS error in the trajectory tracking is found out to be 0.535 m.

Figure 5.20 Footprint models [(a) circular (b) line (c) two_circles (d) polygon]

86

Figure 5.22 (a) depicts the local path followed by the TEB local planner to complete the goal given.

Based on the laser scans received it avoids the obstacle and plans an optimal path around the obstacle.

Figure 5.22 (b) depicts the global path planned by the robot considering the map data which has been fed

to the robot. If there is no obstacle present or inflated cost around the object, the robot is supposed to

follow just the global path. It is seen that the global path takes a lot of time in computing the path and

publishes the data at a lesser frequency than the local planner. It is important as the global path should

take care of the best optimal path based on map while the local planner is concerned for the instantaneous

obstacle coming in front of the robot.

Figure 5.21 TEB local planner path behaviour

Figure 5.22 Global path (b) and Local path (a) followed by the vehicle using TEB

87

Errors involved in TEB local planner: As some obstacle comes in between the goal and robot position it

takes a very complex trajectory to avoid it. This reduces the robustness of the vehicle and due to such

trajectory generation, shortest path is not taken by the robot. There are a lot of clear paths which are

avoided by the robot. This can be seen in the below figure 5.24.

In the figure 5.23 (a), the trajectory generation is very complicated while in (b) the trajectory generated

passes between the obstacles which is incorrect to proceed as the robot is likely to hit the obstacle.

Apart from that due to generation of backward velocities, it also hits the obstacle if kept at its rear side

where laser scan is not available. This can create an issue for the vehicle and passenger safety.

Dynamic Window Approach (DWA)

Based on the velocity search space and the cost values provided to the algorithm, this planner generates

the velocity commands. The main x advantage of this planner over TEB is that it doesn’t generate any

backward velocities and thus it improves the obstacle avoidance issues caused due to TEB.

Various situations have been tested using this planner. It is observed that the robot moves very close to

the obstacle. In that case footprint padding needs to be increased. Besides the cost weight parameters need

to be tuned for getting the best performance of the planner. Generally path_distance_bias has to be

considered as this parameter decides if the robot’s local planner will overwrite the path planned by the

global planner or not. goal_diatance bias parameter has to be increased in order to make the vehicle reach

to the correct goal position.

Figure 5.23 TEB local planner errors

88

Figure 5.25 depicts the path tracking when DWA algorithm is implemented on the robot. It can be seen

the path tracking is not efficient as compared to the TEB planner. The RMS error in path tracking has

been found out to be 0.86m which is 53% higher than the previous implemented planner. To be consistent

with the path tracking error, the vehicle dynamics need to be considered as in case of DWA there is on

spot rotation of the vehicle which increases the chance of vehicle slip. This vehicle slip leads to more

lateral drift which keeps on accumulating and thus the error gets added as the vehicle moves forward

towards reaching the goal.

Figure 5.24 DWA local planner path behaviour

Figure 5.25 Local path (a) and Global path (b) followed by vehicle using DWA

89

An advantage of this planner can be clearly seen in figure 5.26 where the local planner plans a very

simple trajectory and reduces the computation power and time. Even there is just one set of global planner

required considering there is no obstacle around and the local planner follows it perfectly.

Above figure 5.26 depicts the velocity comparison of both the local planner. Though the distribution

might seem random but it is clear that the TEB planner follows more regressive approach. It can be seen

in the linear velocity commands where a simple step velocity is given in DWA but it’s not the case in the

other planner.

Obstacle Avoidance

Using the above discussed algorithms, obstacle avoidance tests have been conducted on the robot. The

robot is given commands to go from one goal position to another. Static as well as dynamic obstacles

have been put in between the trajectory made by the robot. In all the cases, the robot seems to avoid these

obstacles successfully and plans out a safe path. If there are no paths available, the robot doesn’t make

any path and no velocity commands are executed.

We can also determine how closely the robot can avoid the obstacle by changing either footprint padding

or inflation radius. It is advisable to determine these two parameters carefully because if there is less

critical distance then the robot can hot the obstacles while if it has large values then some of low cost

paths are avoided which can reduce the efficiency of the vehicle.

Figure 5.26 Velocity comparison of TEB and DWA local planner

90

Costmap Prohibition Layer

This layer has been plugged into the global costmap and marks the areas within the coordinates as

prohibited areas. This works successfully in our platform. This layer comes into use when it is

undesirable for the vehicle to go into some areas. For example, suppose in the room an area is occupied

for a short period x of time and the obstacle doesn’t have height based dimension. In that case if the robot

tries to take the path around those regions, it can become troublesome.

In the above figure 5.27, it can be clearly seen though the robot has a short path available to it, it’s taking

a longer the path as it has been marked as occupied by the prohibition layer. This comes quite handy

when there is a temporary unavailability of certain routes in the map. I have also included inflation

around the perimeter which has been used to mark the entire area as occupied.

Figure 5.27 Costmap Prohibition layer

91

Chapter 6

Conclusion

Vehicle modelling and autonomous navigation on a wheeled mobile robot has been completed in this

project. Simulation and experiments have been performed to get the idea of vehicle behaviour under

different condition. Moreover some of the challenges faced in implementing autonomous navigation in

real world have been solved.

 A mathematical model which closely predicts the behaviour of a real vehicle has been formulated and

thus eliminating the need for actual experimentation on the vehicle. This helped to reduce the cost and

efforts put for the real experimentation. A non-linear mathematical model with steering actuator dynamics

has been tested and a sensitive analysis of various vehicle parameters affecting its performance has been

done. It has been found out that a non-linear mathematical model gives better results in terms of settling

time and steady state error than the linearized model. Especially, when the vehicle is taking large angle

turn, for example a right angle turn, the linearized model can’t handle the driving condition of the vehicle

whereas the non-linear model shows behaviour quite close to a real car model.

Two motion controllers, PID and SMC have been implemented on the vehicle model and their results

have been compared. It has been seen that the PID controller shows good results but when the vehicle

velocity changes it is not able to track the vehicle path as desired by the user. Since in real world driving

tuning parameters take time as well as high computation, SMC controller is preferred which can handle

vehicle uncertainties in different road conditions. To avoid chattering phenomena an adaptive high order

SMC with sigmoid control law has been implemented. It is found out that this controller handled the

vehicle parameters efficiently than the PID. There has been no overshoot when the vehicle velocity is

increased.

After the simulation results of mathematical model, experiments have been performed on a differential-

drive robot. The mathematical model for the same has been done as well and then the lateral drift has

been calculated by making the robot move in a closed path. The robot has been moved in outdoor

environment and GPS/INS data is taken as a reference for the paths followed by it. The wheel odometry

and IMU data is fused to get position estimates of the robot. This filtered data is compared with the

reference data received by GPS/INS. It is found that the pose estimation done with implementation of

kalman filter to fuse IMU and wheel odometry data follows the GPS data closely. So it is concluded that

rather than using a high cost GPS/INS sensor for localization of robot, a cost-effective way by sensor

fusion technique is possible. Apart from that GPS has a lot of limitations like it can’t work in indoor

environment or in road tunnels. So this fused data can be used in those areas to localize the robot.

92

The map building has been done using the gmapping technique which takes the laser scan reading and

build the map. This map is divided into small parts called the occupancy grid. These occupancy grids are

given the cost values on the basis of free or occupied area. An inflation layer is also added around the

obstacle so that the vehicle should not follow a path very close to the obstacle.

Two local planners have been tested on the robotic platform: TEB and DWA.TEB is very good for

obstacle avoidance but it has limitation because of the complex trajectory generation while DWA

performs the obstacle avoidance correctly and also it gives simple velocity commands to the controller. In

a crowded area, TEB behaviour is not acceptable due to generation of negative velocities because it can

hit the obstacle at the rear side of the vehicle (if there is no sensor mounted on the rear side). DWA does

an on spot rotation to visualize if the path is clear or not. After that it plans out the trajectory to be taken

to achieve its goal. A new layer called costmap prohibition layer has also been tested on the vehicle. In

this layer, a region has been marked as an occupied area. This is done because there are situations when

we don’t want the vehicle to plan its path around certain region even though that may be the shortest path.

After implementing this layer the robot is found to be taking the longer path as expected.

Future Scope

There are still a lot of challenges that need to be addressed in autonomous navigation of mobile robots.

The further work is towards building a 3-D occupancy grid map so that the vehicle can sense the

environment in all the directions. This is important when the robot is moving on a road and a bump or a

ditch comes in its way, it should sense the environment depth and avoid such obstacles. Apart from that

many non-linear factors like aerodynamic drag, dynamic road friction has been avoided in the

mathematical modelling of the vehicle. This can be included to get a complete picture of a real vehicle

performance. Roll over dynamics is also to be included to have a full 3-D stable model of the vehicle.

93

References

[1] Keshav Bimbraw, A Review of the Developments in the Last Century, the Present Scenario and the

Expected Future of Autonomous Vehicle Technology, DOI: 10.5220/0005540501910198 In Proceedings

of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-

2015), pages 191-198 ISBN: 978-989-758-122-9.

[2] Juan Rosenzweig ,Michael Bartl, A Review and Analysis of Literature on Autonomous Driving E

Journal: Making-of Innovation,THE MAKING-OF INNOVATION, E-JOURNAL OCTOBER 2015

[3] Mayur Rukhadbhai Hadiya, A Review paper on Development of Autonomous Vehicle,International

Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 01 | Jan 2019

[4] Zhiqiang Li, Lu Xiong, Dequan Zeng, Peizhi Zhang, Zhiqiang Fu, Jie Yao and Yi Zhou, Predictable

Trajectory Planner in Time-domain and Hierarchical Motion Controller for Intelligent Vehicles in

Structured Road, 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France. June 9-12, 2019.

[5] M.Bergerman, Omead Amidi, J.R.Miller, N.Vallidis, T.Dudek. ―Cascaded Position and Heading

Control of a Robotic Helicopter.‖ IEEE/RSJ International Conference on Intelligent Robots (IRS) and

Systems, Sandiego, CA, USA, Nov 2007.

[6] Horwimanporn Suppachai , Chaiyaporn Silawatchananai, Manukid Parnichkun, Chairit

Wuthishuwong, Double Loop Controller Design for the Vehicle’s Heading Control, Proceedings of the

2009 IEEE International Conference on Robotics and Biomimetics December 19 -23, 2009, Guilin,

China.

[7] Y. S. Son, W. Kim, S.-H. Lee, and C. C. Chung, ―Robust multirate control scheme with predictive

virtual lanes for lane-keeping system of autonomous highway driving,‖ IEEE Trans. Veh. Technol., vol.

64, no. 8,pp. 3378–3391, Aug. 2015.

[8] A. Merah, K. Hartani, and A. Draou, ―A new shared control for lane keeping and road departure

prevention,‖ Vehicle Syst. Dyn., vol. 54, no. 1, pp. 86–101, 2016.

[9] Gilles Tagne, Reine Talj, Ali Charara. Higher-Order Sliding Mode Control for Lateral Dynamics of

Autonomous Vehicles, with Experimental Validation. IEEE Intelligent Vehicles Symposium (IV 2013),

Jun 2013, Gold Coast, Australia. pp.678-683. ffhal-00858299

[10] Alcala, E., Sellart, L., Puig, V., Quevedo, J., Saludes, J., Vazquez, D., & Lopez, A. (2016).

Comparison of two non-linear model-based control strategies for autonomous vehicles. 2016 24th

Mediterranean Conference on Control and Automation (MED). doi:10.1109/med.2016.7535921

94

[11] Anil Kunnappillil Madhusudhanan, Matteo Corno & Edward Holweg (2015): Sliding mode-based

lateral vehicle dynamics control using tyre force measurements, Vehicle System Dynamics: International

Journal of Vehicle Mechanics and Mobility, DOI: 10.1080/00423114.2015.1066018.

[12] Kanghyun Nam, Sehoon Oh, Hiroshi Fujimoto, and Yoichi Hori. Design of Adaptive Sliding Mode

Controller for Robust Yaw Stabilization of In-wheel-motor-driven Electric Vehicles, World Electric

Vehicle Journal Vol. 5 - ISSN 2032-6653 - © 2012 WEVA

[13] Tabatabaei, S. H., Zahedi, A., & Khodayari, A. (2012). The effects of the Cornering Stiffness

variation on Articulated Heavy Vehicle stability, 2012 IEEE International Conference on Vehicular

Electronics and Safety (ICVES 2012). doi:10.1109/icves.2012.6294280.

[14] S Sahoo, SC Subramanian and S Srivastava, "Sensitivity Analysis of Vehicle Parameters for Heading

Angle Control of an Unmanned Ground Vehicle" In Proceedings of ASME International Mechanical

Engineering Congress and Exposition, Montreal, Quebec, Canada, November 14–20, 2014.

[15] Sahoo, S., Subramanian, S. C., & Srivastava, S. (2012). Design and implementation of a controller

for navigating an autonomous ground vehicle. 2012 2nd International Conference on Power, Control and

Embedded Systems. doi:10.1109/icpces.2012.6508073

[16] Zhengrong Chu, Christine Wu and Nariman Sepehri, Automated steering controller design for

vehicle lane keeping combining linear active disturbance rejection control and quantitative feedback

theory, Proc IMechE Part I: J Systems and Control Engineering 1–12 IMechE 2018.

[17] D. Nakhaeinia, S. H. Tang, S. B. Mohd Noor and O. Motlagh. A review of control architectures for

autonomous navigation of mobile robots, International Journal of the Physical Sciences Vol. 6(2), pp.

169-174, 18 January, 2011.

[18] Chia-Feng Juang, Min-Ge Lai, and Wan-Ting Zeng. Evolutionary Fuzzy Control and Navigation for

Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments, IEEE

TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 9, SEPTEMBER 2015.

[19] Ghazi, I., ul Haq, I., Maqbool, M. R., & Saud, S. (2016). GPS based autonomous vehicle navigation

and control system. 2016 13th International Bhurban Conference on Applied Sciences and Technology

(IBCAST). doi:10.1109/ibcast.2016.7429883 .

[20] Tzafestas, S. G. (2018). Mobile Robot Control and Navigation: A Global Overview. Journal of

Intelligent & Robotic Systems, 91(1), 35–58. doi:10.1007/s10846-018-0805-9.

[21] Andreas, S., Ina, S., Jan Becker, C., & Walter, S. (2000). Navigation and Control of an Autonomous

Vehicle. IFAC Proceedings Volumes, 33(9), 449–458. doi:10.1016/s1474-6670(17)38185-5.

95

[22] Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance.

IEEE Robotics & Automation Magazine, 4(1), 23–33. doi:10.1109/100.580977.

[23] Guan, M., Wen, C., Wei, Z., Ng, C.-L., & Zou, Y. (2018). A Dynamic Window Approach with

Collision Suppression Cone for Avoidance of Moving Obstacles. 2018 IEEE 16th International

Conference on Industrial Informatics (INDIN). doi:10.1109/indin.2018.8472029.

[24] Garcia, F., Martin, D., de la Escalera, A., & Armingol, J. M. (2017). Sensor Fusion Methodology for

Vehicle Detection. IEEE Intelligent Transportation Systems Magazine, 9(1), 123–133.

doi:10.1109/mits.2016.2620398.

[25] Deshpande, Pawan. "Road Safety and Accident Prevention in India: A review." Int J Adv Engg

Tech/Vol. V/Issue II/April- June 64 (2014): 68.

[26] Xsens MTI100 series: https://www.xsens.com/products/mti-100-series

[27] Hewson P. Method of estimating tyre cornering stiffness from basic tyre information. Proc IMechE

Part D: J Automobile Engineering 2005; 219(12): 1407–1412.

96

Appendix

1. Odometry Code

x #include <string>x

x #include <ros/ros.h>

#include <sensor_msgs/JointState.h>x

#include <tf/transform_broadcaster.h> x

#include <nav_msgs/Odometry.h> x

int main(int argc, char** argv) { x

ros::init(argc, argv, "state_publisher"); x

ros::NodeHandle n; x

ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", x

10); x

// initial position x

double x = 0.0; x

double y = 0.0; x

double th = 0; x

// velocity x

double vx = 0.4; x

double vy = 0.0; x

double vth = 0.4; x

ros::Time current_time; x

ros::Time last_time; x

current_time = ros::Time::now();x

last_time = ros::Time::now();x

tf::TransformBroadcaster broadcaster;

ros::Rate loop_rate(20); x

const double degree = M_PI/180;

// message declarations x

geometry_msgs::TransformStamped odom_trans; x

odom_trans.header.frame_id = "odom";

odom_trans.child_frame_id = "base_footprint";

while (ros::ok()) {current_time = ros::Time::now();x

double dt = (current_time - last_time).toSec();x

double delta_x = (vx * cos(th) - vy * sin(th)) * dt;

double delta_y = (vx * sin(th) + vy * cos(th)) * dt;

double delta_th = vth * dt; x

x += delta_x;

y += delta_y; x

th += delta_th; x

geometry_msgs::Quaternion odom_quat; x

odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th); x

// update transform

odom_trans.header.stamp = current_time; x

odom_trans.transform.translation.x = x;

odom_trans.transform.translation.y = y; x

odom_trans.transform.translation.z = 0.0;

odom_trans.transform.rotation = tf::createQuaternionMsgFromYa x

w(th); x

97

//filling the odometry

nav_msgs::Odometry odom;

odom.header.stamp = current_time; x

odom.header.frame_id = "odom";

odom.child_frame_id = "base_footprint"; x

// position

odom.pose.pose.position.x = x; x

odom.pose.pose.position.y = y;

odom.pose.pose.position.z = 0.0; x

odom.pose.pose.orientation = odom_quat;

// velocity

odom.twist.twist.linear.x = vx; x

odom.twist.twist.linear.y = vy;

odom.twist.twist.linear.z = 0.0;

odom.twist.twist.angular.x = 0.0; x

odom.twist.twist.angular.y = 0.0;

odom.twist.twist.angular.z = vth;

last_time = current_time; x

// publishing the odometry and the new tf x

broadcaster.sendTransform(odom_trans); x

odom_pub.publish(odom);

loop_rate.sleep();x

}

return 0; x

}

2. Rqt_graph: nodes communicating with each other

3. Controller codes

#include <ros/ros.h>

#include <sensor_msgs/JointState.h > x

#include <tf/transform_broadcaster.h>

#include <nav_msgs/Odometry.h>

98

#include <iostream>

using namespace std; x

double width_robot = 0.1;

double vl = 0.0;

double vr = 0.0;

ros::Time last_time; x

double right_enc = 0.0; x

double left_enc = 0.0;

double right_enc_old = 0.0;

double left_enc_old = 0.0; x

double distance_left = 0.0;

double distance_right = 0.0;

double ticks_per_meter = 100;

double x = 0.0; x

double y = 0.0;

double th = 0.0;

geometry_msgs::Quaternion odom_qua t; x

void cmd_velCallback(const geometry_msgs::Twist &twist_aux)

{

geometry_msgs::Twist twist = twist_aux;

double vel_x = twist_aux.linear.x; x

double vel_th = twist_aux.angular.z;

double right_vel = 0.0;

double left_vel = 0.0; x

if(vel_x == 0){

// turning

right_vel = vel_th * width_robot / 2.0; x

left_vel = (-1) * right_vel;

}else if(vel_th == 0){

// forward / backward x

left_vel = right_vel = vel_x;

}else{

// moving doing arcs x

left_vel = vel_x - vel_th * width_robot / 2.0; x

right_vel = vel_x + vel_th * width_robot / 2.0;

} x

vl = left_vel; x

vr = right_vel;

}

int main(int argc, char** argv){

ros::init(argc, argv, "base_controller"); x

ros::NodeHandle n;

ros::Subscriber cmd_vel_sub = n.subscribe("cmd_vel", 10, cmd_

velCallback); x

ros::Rate loop_rate(10);

while(ros::ok())

{

double dxy = 0.0;

double dth = 0.0; x

ros::Time current_time = ros::Time::now();

double dt;

99

double velxy = dxy / dt; x

double velth = dth / dt;

ros::spinOnce();

dt = (current_time - last_time).toSec();;x

last_time = current_time;

// calculate odomety x

if(right_enc == 0.0){

distance_left = 0.0;

distance_right = 0.0;

}else{

distance_left = (left_enc - left_enc_old) / ticks_per_meter; x

distance_right = (right_enc - right_enc_old) / ticks_per_

meter;

}

left_enc_old = left_enc;

right_enc_old = right_enc; x

dxy = (distance_left + distance_right) / 2.0;

dth = (distance_right - distance_left) / width_robot; x

if(dxy != 0){

x += dxy * cosf(dth);

y += dxy * sinf(dth); x

} x

if(dth != 0){

th += dth; x

}

odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);

loop_rate.sleep();x

}

}

4. Kalman filter matlab code

close all;

clear all;

clc;

r2d=180/pi;

gps=load('gps.txt');

gpst=gps(:,1)-gps(1,1);

gpsx=gps(:,2);

gpsy=gps(:,3);

gpshx=gps(:,4);

gpshy=gps(:,5);

odom=load('wheelodom.txt');

odomt=odom(:,1)-odom(1,1);

odomx=odom(:,2);

odomy=odom(:,3);

odomhx=odom(:,6);

odomhy=odom(:,7);

odomthetaerror=odom(:,8);

100

wheel_OdomZERO = zeros (length(odom));

q1=[wheel_OdomZERO(:,1) wheel_OdomZERO(:,2) odom(:,4) odom(:,5)];

wheelrot_data = quat2eul(q1);

wheelodom_pitch=wheelrot_data(:,2);

wheelodom_roll=wheelrot_data(:,1);

wheelodom_yaw=wheelrot_data(:,3);

imu=load('imu.txt');

imut=imu(:,1)-imu(1,1);

q=[imu(:,2) imu(:,3) imu(:,4) imu(:,5)];

r= quat2eul(q);

imu_pitch=r(:,2);

imu_roll=r(:,1);

imu_yaw=r(:,3);

imuthetaerror=0.1*odomthetaerror;

ofset = [gpsx(1);gpsy(1);0];

x_plot = [0];

y_plot = [0];

o_plot = [0];

prev = [0 0 0];

E_upd = eye(3).*0.01;

i = 1;

j = 1;

k = 1;

j=1;

for i=2:6635

 while odomt(i)>=imut(j) & j<length(imut)

 j=j+1;

 euang1=r(j-1,3);

 end;

 euang2=wheelrot_data(i,3);

 if(abs(euang1-euang2)<0.5)

 euang=euang1;

 else

 euang=euang2;

 end;

 %system variables

 del_trans = sqrt((odomx(i)-prev(1))^2+(odomy(i)-prev(2))^2);

 del_rot1 = atan2((odomy(i)-prev(2)),(odomx(i)-prev(1)))-prev(3);

 del_rot2 = euang-prev(3)-del_rot1;

 %state prediction

 x_pred = [x_plot(end) ; y_plot(end) ; o_plot(end)]+[(del_trans*cos(o_plot(end)+del_rot2)) ;

(del_trans*sin(o_plot(end)+del_rot2)) ; (del_rot1+del_rot2)];

 %state matrix

 A = [1 0 -del_trans*sin(o_plot(end)+del_rot2); 0 1 del_trans*cos(o_plot(end)+del_rot2); 0 0 1];

 prev = [odomx(i) odomy(i) euang];

 %covariance of system

 P = [odomhx(i) 0 0; 0 odomhy(i) 0; 0 0 odomthetaerror(i)];

101

 %covariance of prediction

 E_pred = A*E_upd*(A.') + P;

 x_upd = x_pred;

 E_upd = E_pred;

 if odomt(i)<=gpst(k+1)

 %covariance of measurement model

 Q = [gpshx(k) 0 0; 0 gpshy(k) 0; 0 0 5];

 %measurement model

 H = [1 0 0; 0 1 0; 0 0 1];

 %Kalman gain estimation

 K = E_pred*(H.')/(H*E_pred*(H.')+Q);

 %sensor values

 euang = r(j-1,3);

 z = [gpsx(k);gpsy(k);euang]-ofset;

% gpsx = cat(2, gpsx, z(1));

% gpsy = cat(2, gpsy, z(2));

 %state updation

 x_upd = x_pred + K*(z - x_pred);

 E_upd = (eye(3)- K*H)*E_pred;

 if(k<781)

 k = k + 1;

 end;

 end

 x(i)=x_upd(1);y(i)=x_upd(2);

 x_plot = cat(2, x_plot, x_upd(1));

 y_plot = cat(2, y_plot, x_upd(2));

 o_plot = cat(2, o_plot, x_upd(3));

end;

figure

plot(x_plot,y_plot,'-.',gpsx-ofset(1),gpsy-ofset(2),odomx,odomy,'--')

102

5. Rqt transformation tree

