Lateral Dynamics and Autonomous Navigation of

Ground Vehicles

A project report
Submitted in partial fulfiliment of the

requirement for the award of the degree
of
BACHELOR OF TECHNOLOGY

IN
MECHANICAL ENGINEERING
Submitted by

Gautam Kumar (160004017)

Under the Supervision of

Dr. Shanmugam Dhinakaran

Indian Institute of Technology Indore
November 2019

CANDIDATE’S DECLARATION

| hereby declare that the project entitled “Lateral Dynamics and Autonomous
Navigation of Ground Vehicles” submitted in partial fulfillment for the award
of the degree of Bachelor of Technology in ‘Mechanical Engineering’
completed under the supervision of Dr. Shanmugam Dhinakaran, Associate

Professor, 11T Indore is an authentic work.

Further, I declare that | have not submitted this work for the award of any other

degree elsewhere.

Gautam Kumar (160004017) Date

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is correct to the best

of my knowledge.

Signature

Dr. Shanmugam Dhinakaran
Associate Professor,
Mechanical Engineering,

IIT Indore

Preface

This report on “Lateral Dynamics and Autonomous Navigation of Ground

Vehicles ” is prepared under the guidance of Dr. Shanmugam Dhinakaran.

An Ackermann vehicle has been mathematically modeled and control
algorithms have been formulated to check its performance for various real-life
situations. Then an autonomous navigation has been implemented on a robot
and its efficiency has been realized through actual experimentation in indoor

environment.

The results obtained from the experiments and simulation has been tabulated as

well as presented in graphical form and a thorough study has been done.

Gautam Kumar (160004017)

B.Tech. IV Year
Discipline of Mechanical Engineering
1T Indore

Acknowledgment

First and foremost, | would like to thank my supervisor Dr. Shanmugam
Dhinakaran for guiding me thoughtfully and efficiently throughout this project,
giving me an opportunity to work at my pace while providing with useful
directions whenever necessary.

| would like to thank Dr. Upendra Kumar Singh, Director, Centre for
Artificial Intelligence and Robotics (CAIR), DRDO for giving me the
opportunity to do the project within the organization.

| am also highly indebted to Mr. Nitin Kumar Dhiman, Scientist ‘E’, CAIR,
DRDO, for providing me the facilities to accomplish this internship and guiding
me thoughtfully and efficiently throughout this project .

| would also like to thank all the people that worked along with me at CAIR,
DRDO with their patience and openness to create a better working environment.
Finally, 1 offer my sincere thanks to all other persons who knowingly or

unknowingly helped us in completing this project.
Gautam Kumar (160004017)
B.Tech. IV Year

Discipline of Mechanical Engineering
1T Indore

Abstract

This project deals with the development of autonomous navigation in mobile robots which
are used for surveillance purposes. There are various types of inaccessible areas where human
safety is a major concern especially in border areas. To develop a complete robot which could

decide how to navigate through its surroundings, it deals with four aspects:

1. Sensing the environment

2. Localizing itself

3. Planning the path to reach its goal

4. Execution of velocity inputs to track the planned path

The first question is answered by mounting sensors on the robot. IMU (Inertial Measurement
Unit), GPS (Global Positioning System), wheel encoder and LiDAR (Light Detection and
Ranging) have been used to provide the information about the environment to the robot. A
cost effective way has been developed to get the position estimates of the robot by fusing

IMU and encoder data using EKF (extended kalman filter).

To localize the robot, a particle filter algorithm called AMCL (adaptive monte carlo
localization) have been used. Using the laser observations, the robot creates a map of its

surrounding. Using these map landmarks, it predicts its current position in the map.

Two path planner algorithms have been implemented: TEB (Timed-Elastic Band) and DWA
(Dynamic Window Approach). Their purpose is to detect the obstacle during the robot
navigation and plan out paths to avoid the obstacle. TEB is found out to be good for
Ackermann robots while DWA is suitable for differential-drive robots.

To track the path given to the robot two motion controllers, PID
(Proportional-Integral-Derivative) and SMC (Sliding Mode Controller), have been designed.
It has been found out that SMC can handle uncertainties which are prevalent when the robot
moves in real world. A non-linear dynamic mathematical model of the robot has also been

formulated to incorporate the non-linearities present in real world.

Table of content

CANDIDATE’S DECLARATION ...ttt Il
CERTIFICATE DY BTP GUIE ... Il
PIEIACE ... 11
ACKNOWIBAGMENT........ooii s vV
ADSEFACT ... \%
LIS OF FIQUIES ... IX
Listof table.........coo Xl
Chapter 1: INErodUCTION ..o 1
1.1 History and deVelOPMENT.cc.ooiiiiiiiieie e 1

1.2 Need for AUtONOMOUS VENICIEScoiiiiiiiic e 2

1.3 Aspects of AutonomMOouS NaVIGAtiON..........ccueieiirieiiniiesieeee e 3

1.4 LITErature REVIEWccuoiiiiiiiieeieiesteee ettt 4

L5 ChallaNGESveceeeieeeee et et 8

1.6 IMIOTIVALION ..ttt 8

L7 OOV e 9
Chapter 2: Vehicle Modelling and Motion Control.............ccccocovveiiviiericnnne, 10
2.1 Vehicle Modelling TOOIS.......ccoiiiiiie e 10

2L 1 MATLAB & SIMUIINK ..., 10

212 CarSIM .o 11

2.2 Vehicle Models ... 11

2.3 Mathematical modeling of Ackermann Steering Vehicles 13

2.4 Mathematical modeling of Differential-drive Robot.................................. 17

2.4.1 Forward and Inverse KinematiCs.............coooiiiiiiiiininiiiiiee 19

2.5 Motion Controllers. ... 22

2.5.1 Proportional-Integral-Derivative Controller........................oooini 23

A

2.5.2 Sliding Mode Controller............oooiiiiiiii e, 24

Chapter 3: Simulations & Experimental Setupooooon. 26
3.1 Ackermann Vehicle Parameters Estimation..............c.cocoviviiiiiiiinn 26

3.2 CarSim Simulation EnVironment.............oooiiiiiiiii e, 30

3.3 0xDelta Series RODOL.ouiieii 33

3.4 Robot Operating System (ROS).......oouiiriiiie e 34

3D SBINSONS. ...ttt 35

3.5.1 Sensor Coordinate transformation.................cooooviiiiiiiiiiininnn, 36

3.5.2 Orientation and ROtatioN.............coeiiiiiiiiiii e 36

3.5.3 Pose Measurement Methods.coveveiiiiiiiiii, 37

3.5.4 Sensors used inthe RODOL............oooiiiiiiiii 38

3.6 Setting up ROS Environment with Robot...............coooiiiii, 40
Chapter 4: Autonomous Navigationccooooviieiiiiiiiieeiiiieeecieeee, 42
4.1 Navigation StACKc.oiiiiiii 42

4.2 SOTtWAre PACKAQES ..v. vttt e 44

4.3 Dynamic Window APProachoieoriiiriiiiie e 58

4.4 Kalman FIlter. ... 61

4.4.1 Kalman filter algorithm...............o 62

Chapter 5: Results and DISCUSSIONScooiiiiiiiiiieiieie e 65
5.1Vehiclemodellingc.ooviriniii 65

5.1.1 Steering actuator consideration...............coeeviviiiiiiiiiiiienieeans 65

5.1.2 Sensitive Analysis of Vehicle Parametersccooviiiiinnn. 67

5.1.3 Motion Controllersoeieinii 69

5.1.4 Linear and nonlinear model ... 73

5.2 To find and reduce odometry error on the experimental vehicle 76

5.2.1 Odometry Drift Calculationcooviiiiiiien, 76

5.2.2 Running Robot in Outdoor Environment and Kalman filter78

5.3 Autonomous Navigation in Indoor Environmentcoiiiiiiiinnnnn. 81
5.3. 1 LOCalISALION. .. . et 81
5.3.2 Path Planning Algorithm Results.ccooiiiiiiiii e, 83

Vil

Chapter 6: CoNCIUSION ..o 20

RO O ENCES ..o 93

Appendix

VI

List of Figures

Figure 2.1 Vehicle Axis System

Figure 2.2 Various vehicle models

Figure 2.3 2-DOF Bicycle model

Figure 2.4 Velocity vector

Figure 2.5 Differential drive kinematics

Figure 2.6 Block diagram of the vehicle

Figure 3.1 Test Vehicle

Figure 3.2 Schematic diagram of the steering actuator system

Figure 3.3 Simulation environment setup in CarSim

Figure 3.4 Setting up driver controls and variables
Figure 3.5 Import variables
Figure 3.6 Export variables

Figure 3.7 Setting up vehicle block in Simulink

Figure 3.8 Ox Delta series robot

Figure 3.9 ROS communication block diagram

Figure 3.10 Sick LMS 100 2-D LiDAR

Figure 4.1 Basic Layout of Autonomous Vehicle
Figure 4.2. ROS Navigation Stack

Figure 4.3 transformation tree for the navigation stack
Figure 4.4 Cost map representing different layers

Figure 4.5 Inflation Layer

Figure 4.6 AMCL localization structure

Figure 4.7 Timed Elastic Band

Figure 4.8 DWA planner trajectory
Figure 4.9 Djisktra algorithm
Figure 4.10 Illustration of a robot navigation environment using DWA

Figure 4.11 Velocity map
Figure 4.11 Kalman Filter basic working layout

Figure 5.1 Comparison for 20° heading angle input when vehicle is moving at 3.2 m/s

Figure 5.2 Heading angle error without actuator dynamics and considering actuator dynamics

when the vehicle is moving at 3.2 m/s to achieve a desired heading angle of 20 degrees

Figure 5.3 Steering angle comparison when 20° heading angle step input is given for vehicle

running at 3.2 m/s.

Figure 5.4 Effect of Cornering Stiffness on the vehicle

Figure 5.5 Effect of mass on vehicle performance

Figure 5.6 PID controller best tuned with varying gains and speeds

Figure 5.7 SMC controller best tuned with varying speeds and gains

Figure 5.8 PI controller behaviour keeping gain constant with best tuned at 5 km/hr
Figure 5.9 SMC controller behaviour keeping gain constant with best tuned at 5 km/hr

Figure 5.10 Linear and Nonlinear model comparison at 3.2 m/s for 20° turn

Figure 5.11 Linear and Nonlinear model comparison at 3.2 m/s for 90° turn

Figure 5.12 Comparison of predicted model with CarSim simulation at 3.2 m/s for DLC

manoeuvre
Figure 5.13 Path tracking for DLC manoeuvre at 3.2 m/s

Figure 5.14 Robot running at 0.4 m/s for 15 m

Figure 5.15 Velocity analysis at 0.4 m/s for 15 m

Figure 5.15 Representing GPS and raw wheel odometry data when the robot moved in a

closed path
Figure 5.16 Path tracking errors

Figure 5.17 comparison GPS data and Kalman filter data obtained from the fusion of
odometry and IMU

Figure 5.18 Map building environment in ROS

Figure 5.19 Complete map of the room

Figure 5.20 Footprint models

Figure 5.21 TEB local planner path behaviour

Figure 5.22 Global path (b) and Local path (a) followed by the vehicle using TEB
Figure 5.23 TEB local planner errors

Figure 5.24 DWA local planner path behaviour

Figure 5.25 Local path (a) and Global path (b) followed by vehicle using DWA
Figure 5.26 Velocity comparison of TEB and DWA local planner

Figure 5.27 Costmap Prohibition layer

Xl

List of Tables
Table 3.1 Physical parameters of the vehicle
Table 3.2 Parameter of the tyre
Table 3.3 Specifications of steering actuator
Table 3.4 Ox delta series robot specifications
Table 3.5 LiDAR sensor specification
Table 5.1 Results for vehicle running at 3.2 m/s with 20° step input heading angle response
Table 5.2 Comparison of best tuned SMC and PID controller

Table 5.3 Comparison of PID and SMC when best tuned at 5km/hr with increasing velocity
and constant gain

Table 5.4 Nonlinear and Linear model comparison with SMC at 3.2 m/s
Table 5.5 Predicted model errors for different speeds in DLC manoeuvre

Table 5.6 Path tracking errors when the robot is moved straight

Xl

Chapter 1

Introduction

As the autonomous cars have come into picture, there is a lot of enthusiasm about these running in real
world. It is expected that an autonomous cars could navigate around their environment without any
human intervention. After coming of optic vision guided Mercede-Benz robotic van in 1980, there have
been huge rise in advancement of autonomous cars. The main aim is to develop vision guided systems
using LIDAR, GPS, RADAR and computer vision. This has resulted into technologies like adaptive
cruise control, lane parking, steer assist etc. which have become keys for autonomous navigation. With
this pace several forecasts of automobile companies say that autonomous vehicles will become reality in
near future.

Currently a lot of technologies are in development in order to make the autonomous ground vehicles
(AGVs) work in a real world. This field is quite vast and there are many areas which are yet to be
explored. Safety, reliability, robustness and security are some of the key aspects which need to be
maintained for the AGVs. Motion controller and Path planning are one of the highly focussed fields and
there has been a lot of development in improving and establishing high performance motion control to
improve efficiency and safety factor in AGV’s design.

1.1 History and development

The first step towards autonomous cars was a radio controlled car, called Linriccan Wonder. It was
demonstrated by Houdin Radio Control in New York City. It was basically a 1926 Chandler consisting
of transmitting antennae on its rear compartment and was operated by another car that sent out radio
impulses while following it. RCA Labs built a miniature car in 1953. It was controlled and guided by
wires that had been laid in a pattern on a laboratory floor. Based on advanced models, in 1959, and
throughout the 1960s, in Motorama (which was an auto show by GM), Firebird had been showcased by
General Motors, which was a series of experimental cars which had an electronic guide system which
could rush it over an automatic highway without driver’s involvement.

DARPA, Defence Advanced Research Projects Agency of the U.S. Department of Defence is also
responsible for the progress in the field of autonomous vehicles. Autonomous Ground Vehicle (AGV)
project in the United States made use of the then technologies. These technologies had been developed
by the Carnegie Mellon University, the Environmental Research Institute of Michigan, University of
Maryland, Martin Marietta and SRI International. The ALV project achieved the first road- following
demonstration that used computer vision, LIDAR and autonomous control to guide a robotic vehicle at
speeds of up to 3.1 km/h HRL Laboratories (formerly Hughes Research Labs) exhibited the first off-road

1

map and sensor- based autonomous navigation on the ALV. The vehicle travelled over 610 m at 3.1 km/h
on complex terrain with steep slopes, ravines, large rocks, vegetation and other natural obstacles. [1]

In 1995 itself, the Carnegie Mellon University’s NAVLAB project achieved 98.2% autonomous driving
on a 5,000 km cross-country journey which was titled as "No HandsAcross America" or NHOA. [3] The
car had been made semi-autonomous by nature: it used neural networks to control the steering wheel,
but throttle and brakes were still human-controlled. An advanced autonomous vehicle was exhibited by
Alberto Broggi of the University of Parma. ARGO Project launched by him, which worked on making a
modified Lancia Thema to follow painted lane marks on a normal highway, in 1996. The apotheosis of
the project was a journey of 1,900 km ix days on the roads of northern Italy, with an average velocity
of 90 km/h. The car operated in complete automatic mode for 94% of its journey, with the longest
automatic stretch of 55 km. The vehicle had two low-cost video cameras on board and
used stereoscopic vision algorithms to analyse its environment.

In the early 2000s, the ParkShuttle, an autonomous public road transport system, became functional in the
Netherlands. US government also began working on autonomous vehicles, mostly for military purposes.
Demo | (US Army), Demo Il (DARPA), and Demo Ill (US Army), were funded by the US Government
(Hong, 2000). The ability of autonomous ground vehicles to navigate autonomously miles of difficult
off-road terrain, avoiding obstacles such as rocks and trees was demonstrated by Demo I11 (2001).

1.2 Need for Autonomous Vehicles

Transportation accident is one of the main causes of death in the world. By 2026, this world could
prevent 5 million human fatalities and 50 million serious injuries by introduction of latest and innovative
methodologies and investments in road safety, from local to international levels. The Commission for
Global Road Safety thinks that this is very necessary to stop this unacceptable and horrendous rise in road
accidents, and initiate year on year reductions. [25] Deshpande et al. gave a data of almost 3000 deaths
because of road injuries every day, with more than half of the passengers not travelling in a vehicle. Also,
it has been currently reported by Deshpande et al. that if we don't take any paramount and efficacious
action, transportation injuries are going to rise to 2.4 million per year, becoming the fifth leading reason
of death in the world. It is believed that number of traffic collisions will drastically reduce due to
increased reliability and faster reaction time in an autonomous system as compared to human drivers.
Reduced traffic congestion is one bonus point, and thus roadway capacity is increased since autonomous
vehicles will require a reduced need of safety gaps and better traffic flow management. Parking scarcity
have become a historic phenomenon with the advent of autonomous cars, as cars could drop off
passengers, and park at best space, and then return back to pick up the passengers. Thus, there would be
a huge decrease in parking areas. Need of physical road signage will decline as autonomous vehicle will
receive required information via network. Autonomous cars can surely reduce government spending on

unnecessary things like traffic control officers. The need for vehicle insurance will also decline, along
2

with reduction in the incidents of car theft. We can be implement an efficient car sharing and goods
transport systems (as in case of taxis and trucks respectively), with total elimination of redundant
passengers. Not everyone is good at driving, so, autonomous cars provide a relief from driving and
navigation chores. [2]

In Defence it is notably necessary to implement intelligence in robots. These robots really cost a lot to the
government expenditure and its development is monitored thoroughly over a long time. These vehicles
are built to work for the surveillance in areas where there is a concern about their safety. Also, mapping
can be done using the robots in strategically important areas without any human intervention. This can
greatly improve the death tolls of soldiers protecting our borders.

1.3 Aspects of Autonomous Navigation
Autonomous navigation is stated as the ability of the mobile robot to determine its current position within
the reference frame environment using suitable sensors, plan its path through the terrain from the start
toward the goal position using high planner techniques and perform the path using actuators, all with a
very high level of autonomy. Robots are one of the modern technologies that humans are working on for
many years. All these years of scientific study and research on robots have shown almost infinite
possible application of robotic systems. In other words, the robot during navigation has to be able to
answer the following questions:

o Where have | been? It is solved using cognitive maps.

o Where am 1? It is determined by the localization algorithm.

e Where am | going? It is done by path planning.

o How can | go there? It is performed by motion control system
Navigation can be stated as the process by which we can accurately determine a system's position,
planning and following a route. In the field of robotics, navigation means the way by which a robot finds
its way in the environment and is a common necessity and requirement for almost any mobile robot.
Robot navigation is a vast field and can be divided into subcategories for better understanding of the
problems it addresses, the general problem of mobile robot navigation by four questions, each one
addressed for a subcategory: Perception, Localization, Mapping and Path Planning
A. Perception. : Wheeled mobile robots need to sense the environment using sensors in order to
autonomously perform their mission. Sensors are used to cope with uncertainties and disturbances that
are always present in the environment and in all robot subsystems. Mobile robots do not have exact
knowledge of the environment, and they also have imperfect knowledge about their motion models
(uncertainty of the map, unknown motion models, unknown dynamics, etc.). The outcomes of the actions
are also uncertain due to non-ideal actuators. The main purpose of the sensors is therefore to lower these

uncertainties and to enable estimation of robot states as well as the states of the environment

B. Localization and Mapping: AGVs in manufacturing typically need to operate in large facilities. They
can apply many features to solve localization and navigation. Quite often a robust solution is sensing
induction from the electric wire in the floor or sensing magnetic tape glued to the floor. Currently the
most popular solution is the usage of markers (active or passive) on known location and then AGVs
localize by triangulation or trilateration. The latter is usually solved by a laser range finder and special
reflecting markers. Other solutions may include wall following by range sensors or camera- or ceiling-
mounted markers. All of the mentioned approaches are usefully combined with odometry. However, the
recent modern solutions apply algorithms for SLAM which makes them more flexible and easier to use in
new and/or dynamically changing environments. They use sensors to locate usually natural features
in the environment (e.g., flat surfaces, border lines, etc.). From features that were already observed and
are stored in the existing map the unit can localize, while newly observed features extend the map.
Obtained maps are then used for path planning.

C. Path Planning: In environments that are mostly static the robots can operate using a priori planned
routes. However, in dynamically changing environments they need to plan routes simultaneously. The
most usual path planning strategy applies the combination of both mentioned possibilities where sensed
markers on known locations in the environment enable accurate localization. When an unexpected
obstacle is detected the AGV needs to find a way around the obstacle and then return and continue on the
pre-planned path.

D. Motion Control: Motion control of AGVs is mostly solved by trajectory tracking, path following, and
point sequence following approaches. These paths can be pre-computed or better planned online using a
map of the environment and path planning algorithms. In situations where magnetic tape on the floor
marks desired roads of AGVs they can use simple line following algorithms with the ability to detect
obstacles, stop, and move around them. Efficiency of AGVs in crowded areas greatly depends on how the

obstacle avoidance problem is solved.

1.4 Literature Review

Generally, the control algorithms assume that the kinematic relationship of the vehicle is linear. When the
upper-limits on yaw rate and saturation constraints of steering actuators are not considered, the vehicle
become unstable. To avoid such problem, [4] proposes a path planner based on optimized RRT (Rapid
Random Tree) and a speed planner decoupled from path to conduct smooth trajectory. Based on
longitudinal and lateral dynamics, a unified conditional internal control law is devised to steering control
and driving torque/brake pressure. To execute the planned trajectory given by the user, it uses a
hierarchical motion controller which generates desired driving torque/brake pressure and steering angle.
Experimental tests have been done on a modified electric intelligent car, which was equipped with a

centralized drive motor, a steering motor and an electronically controlled hydraulic brake system.
4

Environmental information was obtained by LiDAR and monocular cameras for decision making and
trajectory planning. The exact position of the vehicle was obtained by RTK and IMU. Experiments of
turning left and right scenarios were carried out at an intersection. The width of road is 3.5m. Due to the
large curvature during the turning process, a relative low uniform speed (10km/h) was chosen.
M.Bergerman [5] proposed the position and heading control of a robotic helicopter. They cascaded the
model based LQR to stabilize the poles of a tested robotic with the Feedback Linearization Controller
(FLC) to decouple and linearize the system with a simple linear PD controller. Suppachai [6] proposes
double loop controller for vehicle’s heading control under the real environment. The controller is
decoupled into 2 loops that are cascaded. The inner loop was done by PID position control algorithm and
the outer loop was done by PD heading control algorithm. The combination of PD-PID controller could
improve the transient response of a vehicle while the desired heading changes abruptly. It uses transfer
function found out through experiments. The model parameters were estimated using Least Squares
Method.

In [7], multirate lane-keeping control scheme has been proposed to improve the lane-keeping efficiency
and to avoid undesirable disturbance in yaw rate which can make the vehicle ride uncomfortable as
chattering phenomena becomes higher. A virtual lane prediction algorithm was also considered in case of
any momentarily failure of sensors.

Reference [8] describes a fuzzy and sliding mode control algorithm based on visual preview distance to
promote the performance of tracking reference trajectory. The fuzzy control is quite effective in
alleviating the chattering caused by SMC.

Gilles [9] has used the super-twisting algorithm to reduce the lateral displacement of the autonomous
vehicle with respect to a given reference trajectory. It designs and experimental validation of a vehicle
lateral controller for autonomous vehicle based on a higher-order sliding mode control. The advantage of
this strategy is to reduce the chattering level and handle the uncertainties and nonlinearities in the vehicle.
Alcala [10] presents the comparison of two nonlinear model-based control strategies for autonomous
cars. A control oriented model of vehicle based on a bicycle model has been used. The two control
strategies used a model reference approach. Using this approach, the error dynamics model has been
developed. The first control approach is based on a non-linear control law that is designed by means of
the Lyapunov direct approach. The second approach uses a sliding mode-control that defines a set of
sliding surfaces over which the error trajectories is expected to converge. The main advantage of the
sliding-control technique is the robustness against non-linearities and parametric uncertainties in the
model. However, the main drawback of first order sliding mode is the chattering, so it has been
implemented a high order sliding mode control.

Anil [11] proposed a lateral vehicle dynamics control based on tyre force measurements. In this method,
active front steering is employed to uniformly distribute the required lateral force among the front left and

right tyres. The force distribution is found numerically through the tyre utilisation coefficients. In order to
5

consider the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control
technique is used. In addition to stabilising the lateral dynamics, the proposed controller is good enough
to maintain maximum lateral acceleration.

Kanghyun [12] proposed a robust yaw stability control system to stabilize the vehicle yaw motion. , a
sliding mode control methodology is implemented to make vehicle yaw rate to track its reference with
robustness against model uncertainties and disturbances. A parameter adaptation law is used to estimate
varying vehicle parameters with respect to road conditions and is incorporated into sliding mode control
framework.

Hamed Tabatabaei [13] discussed the effects of the Cornering Stiffness (CS) variation on directional
stability of the Articulated Heavy Vehicle. . A linear planar model of articulated vehicle is applied to
investigate the effects of CS variation on directional stability. Furthermore, the results derived by this
analysis are verified through lane change manoeuvre simulation by a full nonlinear planar model of the
articulated vehicle.

Sahoo [14] discusses about a realistic mathematical model of the vehicle considering the steering actuator
dynamics. The cornering stiffness is calculated from the basic tire information and the vertical load on
each tire. A heading angle controller of the UGV has been applied using the Point-to-Point navigation
algorithm. Then, these controllers have been implemented on a test platform equipped with an Inertial
Measurement Unit (IMU) and a Global Positioning System (GPS).

In [15], Sahoo proposes a heading controller for an autonomous ground vehicle (AGV) to be designed
and implemented taking into account the dynamic vehicle parameters. The well-known “bicycle model”
approximation has been considered that considers the vehicle slip angle and ground-wheel interaction for
the wheeled ground vehicle. Proportional and proportional-integral (PI) controllers have been designed,
simulated and implemented to achieve the desired heading angle.

Zhengrong [16] proposes a new automated steering control method for vehicle lane keeping. The design
of the steering controller is first found out to be established on the linear active disturbance rejection
control, and then the controller is tuned in the framework of the quantitative feedback theory to get the
required design related parameters on sensitivity and closed-loop stability. The parameter uncertainties of
the vehicle system are applied at the tuning stage. The proposed steering controller is simulated and
tested on a reduced-scale vehicle. Both the simulation and experimental results establish that the scaled
vehicle controlled by the proposed controller performing the lane keeping.

Nakhaeinia [17] reviews various control architectures which are used extensively in autonomous
navigation of wheeled robots. The advantages, significance and drawbacks of the architectures are
thoroughly discussed and compared with each other. The control architectures can be seen into three
divisions: Deliberative (Centralized) navigation, Reactive (Behaviour-based) navigation and hybrid

(Deliberative - Reactive) navigation.

Chia-Feng [18] proposed a method that uses two wheeled, mobile robots to navigate unknown
environments while cooperatively carrying an object. In the navigation method, a leader robot and a
follower robot simultaneously perform either obstacle boundary following (OBF) or target seeking (TS)
to reach a goal. The two robots are controlled by fuzzy controllers (FC) whose rules are accomplished
through an adaptive fusion of continuous and colony optimization particle swarm optimization (AF
CACPSO), which reduces the time-consuming task of manually designing the controllers.

Ghazi [19] proposes development of an overall routing system which uses input from common users via
a simple android application and as a result directs the nearest vacant Cab towards the passenger. Two
algorithms for the implementation of the project have been developed. The first algorithm is an
autonomous route calculation algorithm in which a remote system has been used to calculate coordinates
at each road intersection between any two input coordinates. The 2nd algorithm is a control algorithm
that navigates the prototype robots. It is done by using Haversine heading and distance formulae.
Tzafestas [20] provides a global overview of mobile robot control and navigation methodologies
developed over the last decades. It considers the following levels of wheeled mobile robots: kinematic
modelling, dynamic modelling, conventional control, offline model-based control, invariant manifold-
based control, model reference adaptive control, sliding-mode control, fuzzy and neural control, vision-
based control, path and motion planning, localization and mapping, and control and software
architectures.

Andreas [21] describes the fusion of sensor data for the navigation of an autonomous vehicle as well as
two lateral control concepts to track the vehicle along a desired path. The fusion of navigation data is
established on information provided by multiple object-detecting sensors. The object data is fused to
increase the accuracy and to obtain the vehicle’s state from the relative movement with respect to the
objects.

Dieter Fox [22] proposes a new planner, Dynamic Window Approach (DWA), which generates velocities
by keeping account of three important parameters: goal-distance, path-tracking and robot velocities. This
algorithm has been devised for reactive collision avoidance. It differs from other approaches in that for
finding commands which control the linear and rotational velocity of the robot has been done directly in
the space of velocities. The advantage of this approach is that it correctly and in an elegant way
incorporates the dynamics of the robot.

Guan M [23] presented an improved dynamic window approach method with collision suppression cone
to handle the issue of a robot avoiding moving obstacles in a partially known dynamic environment. The
concept of collision suppression cone is firstly proposed to define a probable collision area. When
moving obstacles approach this area, the proposed DWA-CSC will be triggered to allow the robot
avoiding the obstacles smoothly and thus preventing collision with them by controlling its motion

direction and velocity, similar to that of obstacle avoidance done by human beings.

Garcia [24] proposed a sensor fusion methodology which gives intelligent vehicles with augmented
environment information and knowledge, enabled by vision-based system, laser sensor and global
positioning system. The above approach reaches roads safely by data fusion techniques, especially in
single-lane carriageways where casualties are higher than in other road classes, and focuses on the
interplay between vehicle drivers and intelligent vehicles. The system has been built on the reliability of
laser scanner for obstacle detection; the use of camera based identification techniques and advanced

tracking and data association algorithms.

1.5 Challenges

Autonomous car seems to be a pretty good idea but still there need to be a lot of improvement and
research before it can be practically implemented. Although the notion has not been considered, but it is
believed that an advent of autonomous cars would lead to reduction in driving related jobs. Also,
conditions like inability of drivers to regain control of their vehicles due to inexperience of drivers, etc.
are an important challenge. Lots of people enjoy driving, and it would be difficult for such people to
forfeit control of their cars. Autonomous cars also face challenges while interacting with human-driven
cars on the same route. Again, one challenge to autonomous cars is that who should be held responsible
for damage- the manufacturing company, the government or the car’s driver/owner. Thus, implementing a
legal framework and establishing government regulations for autonomous vehicles is a major problem.
Apart from the above there are several technical challenges. Implementing intelligence in cars require a
lot of training given to them. Accumulating such huge chunks of data for different road environment
scenarios it poses a lot of challenges. Again adaptability of the vehicle is something where researchers
need to work a lot. The most basic problem, i.e., moving a vehicle from one goal point to other is itself a
big task because drift is always involved when a vehicle moves in straight line. These drifts get
accumulated as the vehicle proceeds tracking the desired path. Accumulation of the drifts causes a lot of
increase in the tracking error of the vehicle. The motion controllers designed for path tracking still pose a

problem for accuracy and adaptability to change in vehicle parameters.

1.6 Motivation

Working with the robots requires a lot of sensors and every process needs to be controlled in real time. To
use the sensors and actuators which need to be updated every 10-20 milliseconds, we need a type of
interface/framework that gives this kind of benefits. Robot Operating System (ROS) provides us exactly
with the same architecture to achieve this. It is open source and there are a lot of codes available from
good research institutes.

Research institutes have come up with many algorithms which one can easily use and implement in their
own robots. Further robot’s engineers earlier didn't have a common platform for collaboration and

communication which resulted into a delay of the adoption of robotic butlers and other related
8

developments that could have been done in no time. The robotic innovation has quickly paced up as ROS
has come up since last decade wherein the engineers can readily build robotic apps and programs.
Autonomous navigation is a very wide field which most of the researchers are trying to implement in the
field of robotics. For a wheeled robot system to be autonomous, it has to analyse data from different
sensors and perform decision making in order to navigate in an unknown environment. ROS helps us in
solving different problems related to the navigation of the mobile robot and also the techniques are not
limited to a particular robot but can be reused in different research development projects in the field of

robotics.

1.7 Objective

This project has been completed in two phases. The first part deal with the development of mathematical
model for the vehicle while the second part deals with the implementation of various algorithms to
achieve autonomous navigation of the vehicle.

Firstly, the objective is to design a mathematical model for both the Ackermann vehicle and differential-
drive vehicle and then the motion controller has been designed considering the dynamic and kinematic
parameters of the vehicle. This is important as we can’t test our algorithms and motion controller schemes
each and every time on the robot. This seems practically not feasible as well as time consuming. So the
first part of my project is to formulate a mathematical model of the vehicle which can incorporate various
non-linearities and robustness of the vehicle so that we could closely predict the behaviour of the vehicle
when its parameter gets changed. | have performed a sensitive analysis on various parameters which
could affect vehicle’s performance.

Secondly, autonomous navigation has been implemented on a differential-drive robot to test the
efficiency of path planning algorithms. The desired objective is to make a robot completely autonomous
so that it can move around in environments where human accessible is not possible. The robot is expected
to localize its current position estimate and then based on the goal position, it should plan its path to
achieve it. If any obstacle comes in between achieving its goal, it should avoid that and find a suitable
path which can be taken. If no path is available, then it should stop its navigation and should not take

undesirable paths. The passenger and payload safety is the primary concern when designing this robot.

Chapter 2

Vehicle Modelling and Motion Control

When people coined the term “vehicle model” around 90’s, what came to our thought was most likely a
vehicle prototype that was highly complex, very expensive, and difficult to build. Engineers need to drive,
and sometimes apply break, the then called “vehicle model” of the early 90°s to gather data. Today, most
people would connect the term “vehicle model” with a computer representation that can be simulated
under certain scenarios.

Some advantages of vehicle modelling are that the final product can be built quickly, it can be surely
better (in terms of engineering requirements), and meanwhile reducing cost. Building and simulating a
vehicle model in computers enables the engineers to analyse and determine if requirements are met for
each design like several powertrain configurations. If engineering requirements are not met by a
powertrain configuration, it is much easier to change a parameter in a computer model than it is to make
a change to a vehicle prototype that is already built. For example, it doesn’t take much effort to change
the power rating of an electric motor in a computer model, but we know it can be challenging to swap
motors in a real vehicle. Another advantage of vehicle modelling is that the engineers get a good idea of
the performance and energy consumptions aspects of a powertrain configuration from a vehicle model.
Finally, let’s not forget that running computer simulation is faster and more cost effective than building

and driving an actual vehicle prototype.

2.1 Vehicle Modelling Tools
There have been several softwares developed for modelling the car. In this project MATLAB & Simulink
environment have been used for implementing the mathematical model and CarSim has been used to

validate the results.

2.1.1 MATLAB & Simulink

MATLAB (matrix laboratory) is a proprietary programming language and a multi-paradigm numerical
computing environment developed by MathWorks. MATLAB allows us several features like plotting
mathematical functions and data, matrix manipulations, interface with other programs by interacting with
other programming languages, and create user interface and many more. In this environment we can
successfully implement the mathematical model developed for the vehicle. This method is quite fast and
is very helpful in finding the effect of various parameters. Thus diagnostics of problem is relatively easy
and fast.

Simulink is a graphical programming environment for modelling, simulating, and analysing dynamic

systems. It provides built-in packages with formulated equations. We just need to add blocks to simulate a
10

vehicle. However, in this case it’s difficult to change the parameters of the vehicle. We might have to
change the transfer function of the entire block if we have to show variation of some parameters.

Though these methods are very simple but are not accurate. We have to take care of various uncertainties
and non-linearities. This could only be done if the mathematical model formulated for the vehicle handles
these. And to validate the built mathematical model we have to perform experiments on a real car.

2.1.2 CarSim

This software has been launched by Mechanical Simulation Corporation to simulate realistic vehicle
responses to ADAS (Advanced Driver Assistance Systems) controls in these scenarios. CarSim,
TruckSim, and BikeSim use vehicle data that describes suspension behaviour, powertrain properties,
active controller behaviours, tire properties, and also road slope, obstacles, weather conditions, and
asphalt type. At the core of the software is a simulation solver that can know in advance how the vehicle
will react, for example whether it will be tipped off or skid under specific conditions or whether it will
brake quickly enough on a wet surface. This software works on the data obtained from the real car
experiments and thus the results predicted by it are quite close to real world. The vehicle model used in
this software incorporates various non-linearities like friction, aerodynamic factors, non-linear tire

models, non-uniform mass distribution in the vehicle etc.

2.2 Vehicle Models

The coordinate system used in vehicle dynamics modelling will be according to SAE J670e [18] as
shown in Figure 2.1. The x-axis gives the forward direction or the longitudinal direction, the y-axis,
represents the lateral direction, is considered positive when it points to the right of the driver, and the z-

axis represents the ground satisfied by the right hand rule.

Figure 2.1 Vehicle Axis Systems

In most studies related to handling and directional control, only the X-Y plane of the vehicle is
considered. The vertical axis, Z, is often used in the study of ride, pitch, and roll stability type problems.

The following list defines relevant definitions for the variables associated with this report.

11

In most cases related to handling and directional control, only the ground plane of the vehicle is
considered. The three stability criteria of ride, pitch and roll stability is generally studied using the
analysis of the vertical axis, Z. The following list defines essential definitions for the variables associated
with this report.

Longitudinal direction: vehicle moving along the forward direction. We can look at the forward direction
in two ways, one can be with respect to the vehicle body itself, and other can be with respect to a fixed
reference point.

Lateral direction: vehicle moving sideways direction. Again, we can look at the lateral direction in two
ways, one is with respect to the vehicle and the other is with respect to a fixed reference point.

Tire slip angle: This is same as heading in a particular direction but moving at an angle to a direction by
sideways displacing each foot laterally as we move along the ground.

There are various degrees of freedom associated with vehicle dynamics. The easiest vehicle dynamic
model isa two-degree-of-freedom, fig 2.2 (a), bicycle model, representing just the lateral and yaw
motions. The idea behind this model is that we just need to look along the lateral direction as dynamics is
not much affected along the longitudinal directions at very lower speeds. Thus the longitudinal dynamics
can't affect the lateral or yaw stability of the car. A three-degree-of-freedom, fig 2.2 (b), model considers
longitudinal acceleration to the model, therefore allows us to describe the complete vehicle motion in the
ground plane. In some cases, the rotational degrees of freedom for the front and rear wheels are included
to the vehicle model to consider the effects of tire slip phenomena which increases as the vehicle speed
increases. This five-degree-of freedom, fig 2.2 (c), model enables one to perform an in-depth study of
traction and braking forces on handling manoeuvres by including the effects of wheel spin. An eight-
degree-of-freedom, fig 2.2 (d), model no longer assumes symmetry in dynamic behaviour between right
and left sides. In this vehicle model we consider rotational degree of freedom for each of the four tires
instead of two tires. This model is widely used in the suspension design or ride comfort analysis. This
model specifically looks at the effects of these issues with respect to roll and side-to-side load transfer.

12

Figure 1.2 various vehicle models [(a) 2-DoF (b) 3-DoF (c) 5-DoF (d) 8-DoF]

2.3 Mathematical Model of Ackermann Steering Vehicles

A simple approximation of the lateral dynamics of land vehicles is the “bicycle model”. The two degrees
of freedom are represented by the vehicle lateral position, y, and the vehicle yaw angle, 0. The vehicle
lateral position is measured along the lateral axis of the vehicle and the vehicle yaw angle is measured
with respect to the global X-axis. The lateral force at the tire-road interface depends on the slip angle.

Figure 2.3 illustrates the bicycle model for a vehicle with no roll motion.

13

Figure 2.3 2-DOF Bicycle model

Nomenclature:

m:

Mg .

mass of the vehicle

mass on the front axle

mass on the rear axle

yaw moment inertia of vehicle
steering angle

front tire velocity

rear tire velocity

longitudinal velocity of the vehicle
lateral velocity of the vehicle

lateral force on the front wheel

lateral force on the rear wheel
wheelbase length

distance of front axle from vehicle CG
diatance of rear axle from vehicle CG
yaw angle

yaw rate

Cornering stiffness of the front tire

Cornering stiffness of the rear tire

14

Assumptions taken for our model:

e Leftand right axles are lumped into a single wheel.

e Side-slip angles are small for linearization

e Tires operate at the linear region in which the slope of tire slip-angle and lateral force curve is
constant.

e Suspension movement, road inclination and aerodynamic drag are neglected.

o Frictional losses are neglected and ideal road condition is chosen,

e Masses on each wheel are calculated by considering point mass loads. Similarly, inertia moment is
calculated using above method.

e Only the front tires can be steered.

The lateral dynamics is sufficient to predict the vehicle behaviour for lower speeds and ideal road
conditions. The vehicle is considered to move with a constant velocity, i.e., traction forces and rolling
resistance are neglected. So it can be implied that F4 and Fy; can be assumed to be zero.

The velocity vector R = ui + vj which can be further differentiated to get acceleration vector

R =ui+ul +vj + vj

It can be demonstrated that

Figure 2.4 Velocity vector

Ai = rAtj and Aj = —rAti
So

R = —-rv)i+ @+ ru)j,
where r = 4

Since we are only concerned with lateral dynamics of our vehicle during this analysis, we keep
longitudinal forces to be zero. Also we have already assumed longitudinal velocity to be constant.

15

By balancing forces along lateral direction, we have

mx* (v +ur) = F, + Fy * cosé

By balancing moment about COG of vehicle, we have

Iz*észr*lr+Fyf*cos<$*lf

(2.1)

(2.2)

Tire side-slip angle (o) is defined as the angle between the tire traveling direction and the tire heading
direction or the tire rotation plane. The rigid body vehicle has two velocity components: u in the
longitudinal (x) direction and v in the lateral (y) direction. The vehicle also considers an angular velocity
component around the centre of gravity. Consequently, each tire will have the velocity component of the

centre of gravity and the velocity component due to rotation around the centre of gravity.

The lateral forces F,,. and F,,; are related to the slip angles by cornering stiffness.

Eyr =G * a,
Fyp =G xar
Where slip angles are given by
ar=p—-96 +lf7r
ay =—0 lrv

By putting the values of a and solving equations by linearizing the parameters, we get the equation as

- Cf;:Cr (mu + St Cflf Crl-,«
IZr'] - _(cflf—crlr) cfzf+crlr [] [(; *lf] *0
u
The non-linear equations are derived as:
, 1 (v, — 1, +6) (vy + L + 6)
v, =—V=*0 +E* (Cr *tan‘l% + Cf % cosé *tan‘ly#)
L, *6 v, + 1l %6
7= E* (C, * 1, *tan‘1¥ + Cr * lp % cos S * tan‘l%)

16

(2.3)

(2.4)

2.4 Mathematical modelling of Differential-drive Robot

Differential drive is a simply designed driving mechanism that is widely used in practice, especially for
smaller mobile robots used as surveillance and indoor environments. Robots with this mechanism usually
consist of one or more castor wheels to support the vehicle motion and prevent tilting. Both the drive
wheels are placed on a common axis. The angular velocity of each wheel is controlled by a separate

actuator.

According to Fig. 2.5 the input (control) variables are the velocity of the right wheel vg(t) and the
velocity of the left wheel v, (t). Other variables in Fig 2.5 represent: r is the radius of each wheel; L is the
axial distance between the wheels and R (t) is the instantaneous radius of the vehicle driving trajectory,
can be called as the distance between the vehicle centre and ICR point. In each instance of time, it is
necessary that both wheels have the same angular velocity w(t) around the ICR or it might cause
instability.

Figure 2.5 Differential drive kinematics

17

v, (t)

OB
_ _R (1)
R(D) +75
(2.5)
From where o(t) and R(t) are found out to be
w(t) = vR(t) ; v, ()
L vp(® 4,0
RO = @+ 0,
(2.6)

Tangential vehicle velocity is then calculated as
v(t) = w(t) * R(¢)

Wheel tangential velocities are v, (t) = w,(t) *r and vg(t) = wg(t) *r where w,(t) and wg(t) are
right and left angular velocities of the wheels around their axes joining the wheels, respectively.

Considering the above relations the internal robot kinematics (in local coordinates) can be expressed as

ml 12 2| ey
Al R e
L L

The above relation, Eq.2.5, is important to understand how the robot is behaving internally but in

practical robots users give angular velocity about z-axis, o and a longitudinal velocity (v) commands.

So, robot external kinematics is given by

JZC cos(p(t)) 0 v(t)
Y[= |sin(e(®) 0] * [w(t)
® 0 1

(2.7)
where v(t) and w(t) are the control input variables.

18

Discretizing the above model, Eqg. 2.6, using Euler integration and evaluated at discrete time instants t=

k*Ts, k=0,1,2 where Ts is the following sampling interval:
x(k+1) =x(k) +v(k) * T cos((p(k))

y(k + 1) = y(k) + v(k) * Ty sin(@(k))
plk+1) = (k) + wk) = T;
(2.8)
2.4.1 Forward and inverse kinematics

Forward kinematics considers the use of the kinematic equations of a robot to compute the position of the

end-effector from specified values for the joint parameters.

However inverse kinematics considers the kinematics equations to determine the joint parameters that

provide a desired position for each of the robot's end-effectors.

The robot position at some time interval t is obtained by integrating the kinematic model, which is known
as odometry or dead reckoning and is obtained in equations 2.9. Direct/Forward kinematics is the

determination of the robot position for given control input variables.

x(t) = ftv(t) * cos(<p(t)) dt
0
t

y(t) = J v(t) * sin((p(t)) dt
0

p(t) =f w(t)dt
0

(2.9)
Applying Euler integration on Eq.2.9 gives the same results as Eq. 2.8 we obtained above:
x(k+1) =x(k) +v(k) * T cos((p(k))
y(k+1) = y(k) + v(k) = T, sin(<p(k))
pk+1) =@k)+wlk) =T,
(2.10)

19

Trapezoidal rule gives a better approximation than the Euler’s method

x(k + 1) = x(k) + v(k) * Ty cos ((p(k) + w(k) * %)

T
y(k +1) = y(k) + v(k) * Ty sin ((p(k) + w(k) * ?)

pk+1) = k) + wlk) =T

(2.11)
Applying exact integration, we get the forward kinematics as:
v(k) :
x(k+1) =x(k) + * (sin(p (k) + w(k) * Ty) — sin(@(k)))
w (k)
v(k)
ylk+1) = y(0) + a5 (cos(p(k) + (k) = T5) = cos(p(k)))
ek +1) = @k) + wlk) *T;
(2.12)

where integration in above equation is done inside the sampling time interval where constant velocities v

and o are assumed to obtain increments:

(k+1)Ts
Ax(k) = v(k) cos(<p(k) + w(k)(t — kTs)) dt
KT
(k+1)Ts
Ay(k) = v(k) sin((p(k) + w(k)(t — kTS)) dt
KT

(2.13)

Developing the inverse kinematics of a robot isa challenging task than the above cases of direct
kinematics. We use inverse kinematics to know about control variables to drive the robot to the desired
robot pose or path trajectory. Robots are usually subjected to nonholonomic constraints, which mean that
not all driving directions are possible. There are also many possible solutions to get to the desired

position.

One of the simplest solution to the inverse kinematics problem would be if the mobile differential robot is
allowed to drive only forward (VR(t) = vL(t) = VR = o(t) = 0, v(t) = vR) or only perform on-spot rotation
(VR(t) = —vL(t) = VR = o(t) = 2LVR , v(t) = 0) at constant speeds.

20

For rotation motion equation simplifies to

x(t) = x(0)
y(@® = y(0)
o(6) = 9(0) + 2
(2.14)
and for straight motion equation simplifies to
x(£) = x(0) + vR cos((0))t
y(®) = y(0) + vR sin(9(0))t
b(O) = $(0)
(2.15)

Motion strategy could then target to orient the robot to the target position by rotation and then drive the
robot to the goal position by a straight motion and finally align (with rotation) the robot orientation with
the user defined orientation in the desired robot position. The desired control input variables for each part

of motion (rotation, straight motion) can then easily be calculated from the equations derived above.

There are many other ways to drive the robot to the desired position using trajectories that are smoothly
designed. The inverse kinematic problem becomes easier for the desired smooth target trajectory as the
computation become really less and the robot follow such that its orientation is always tangent to the
trajectory computed. Trajectories are defined in time interval t € [0, T]. Suppose that the robot’s initial
position is on trajectory, and there is a perfect kinematic model without non-linearities and disturbances,

then we can calculate required control input variables v(t) as follows:
v(t) = /%% + y?
(2.16)

where the positive/negative sign depends on the direction(+ for forward and — for reverse) in which the

vehicle is supposed to be drived. Then the tangent angle of each point on this trajectory is computed as
¢(t) = arctan2(y’'(t),x'(t)) + In

(2.17)

21

where | € {0, 1} defines the direction (0 for forward and 1 for reverse) in which the vehicle is to orient

and the function arctan2 is stated as the four-quadrant inverse tangent function.

By differentiating the orientation angle with respect to time in eq. (2.17) the robot’s angular velocity o(t)

is obtained as:

_x(@®)y(@) - yOx(t)
o x2(0+ Ty2()

w(t) v(O)x(t)

(2.18)

where «(t) is the path curvature. Using relations (2.14), (2.16) and the defined desired robot trajectory
X(t), y(t), and the robot control variables v(t) and w(t) are calculated. One of the most important criteria is
that the path designed should be twice-differentiable and the tangential velocity v(t) should be non-zero.
If for some given time t the tangential velocity becomes v(t) = 0, the robot starts rotating at a fixed point
with the angular velocity w(t). And then angle ¢(t) cannot be obtained from Eq. (2.14), and therefore, ¢(t)
must be given explicitly. Usually we use this approach to determine the feed forward part of the control
supplementary variables to the feedback part which takes care of the inaccurate kinematic model,

disturbances, and the initial position errors which further leads to error accumulation.

2.5 Motion Controllers

Motion control of wheeled mobile robots in the environment is generally performed by controlling
motion from some start pose to some goal pose (classic control, where intermediate state trajectory is not

prescribed) or by reference trajectory tracking.

To track the desired heading angle, a closed loop negative feedback system was considered, as shown in
Figure 2.8. This heading-angle controller will compute the required steering angle based on the error in
the heading angle of the vehicle. The design criteria of the controller was to keep the steady-state error
within the limit of 5% and the maximum overshoot less than 10%, with a settling-time requirement of

less than 3 s.

22

A J

v

0 b x 5 -
= S50 HY —>*:><;:—> HY > e GR 6o
X X |

Figure 2.6 Block diagram of the vehicle
04es= INput heading angle
Hs’= heading angle controller
GR= gear ratio
Gs’ = Vehicle plant model
H*= Steering angle controller
Gy*= Steering actuator system

The steering-angle input to the vehicle depends on the desired heading angle for the given speed of the
vehicle. The controller designed for this system consists of two loops. The inner-loop controller, the
transfer function of which is Hy? (s), minimizes the error between the desired angular position and the
current angular position of the steering motor. The input of this loop is a function of the steering angle
which is calculated on the basis of the error in the heading angle of the vehicle. The outer-loop controller,
the transfer function of which is Hs" (s), decreases the error between the desired heading angle and the
actual heading angle of the vehicle. The transfer function G;’ (s), which relates the response of the
heading angle to the steering angle, was obtained using equation (2.3,2.4). The steering actuator model
was derived analytically from first principles in. A saturation block was added to restrict the voltage
input from -20 V to + 20 V.

2.5.1 Proportional-Integral-Derivative (PID) Controller

This is a control loop feedback mechanism employed in various systems to regulate the errors by
calculating the error in each loop and thus attempts to decrease the error values by adjusting control input

to the process.
PID controllers have three control modes:

e Proportional Control- It changes the controller output in proportion to the error. If the error gets
larger, the control action gets larger. If the controller gain is set higher then the control loop will
start oscillating around the desired value and become unstable. If the controller gain is set very
low, it cannot respond adequately to disturbances which might lead to large steady state errors.

23

¢ Integral Control- Integral action drives the controller output far enough by integrating error values
over the period of time to reduce the error to zero. If the error is very large, the integral mode tries
to increment/decrement the controller output faster to reduce the errors to zero. If the error values

are smaller, the controller changes will be slower.

e Derivative Control- The derivative control mode produces an output based on the rate of change
of the error. This mode produces more control input action if the error changes at a faster rate by
looking at the derivatives of the error values. If there is no change in the error, the derivative

action is zero.
2.5.2 Sliding Mode Controller

Sliding mode control (SMC) is a nonlinear control technique featuring remarkable properties of
accuracy, robustness, and easy tuning and implementation. SMC systems are designed to drive the
system states onto a particular surface in the state space, named sliding surface. Once the sliding surface
is reached, sliding mode control keeps the states on the close neighbourhood of the sliding surface.
Hence the sliding mode control is a two part controller design. The first part involves the design of a
sliding surface so that the sliding motion satisfies design specifications. The second is concerned with the
selection of a control law that will make the switching surface attractive to the system state.
There are two main advantages of sliding mode control. First is that the dynamic
behaviour of the system may be tailored by the particular choice of the sliding function. Secondly, the
closed loop response becomes totally insensitive to some particular uncertainties. This principle extends
to model parameter uncertainties, disturbance and nonlinearity that are bounded. From a practical point
of view SMC allows for controlling nonlinear processes subject to external disturbances and heavy

model uncertainties.
The most typical choice for the sliding manifold is a linear combination given by
o =¢é+cye

From a geometrical point of view, the equation ¢ = 0 defines a surface in the error space, that is called
“sliding surface”. The trajectories of the controlled system are forced onto the sliding surface, along
which the system behaviour meets the design specifications. A typical form for the sliding surface is the

following, which depends on just a single scalar parameter, p.

(Ge+)

o=\— * e

ac " P

Above model is first order sliding mode control. We used a saturation control law to avoid chattering.

The control is discontinuous across the manifold, ¢ = 0.

24

o
~ sign(o), when |E| >1

o o
—,when |—| <1
£ £

We use sigmoid function as the control law for input. Saturation and signum function gives a lot of
chattering around the sliding surface and thus are avoided. The sigmoid control law is given by

2
=— 1
f(o) 1+e a0

The above function helps in smoothening the path followed by the plant, thus reducing chattering a lot

and brings it around the sliding surface quickly.

25

Chapter 3

Simulations & Experimental Setup

After completing the mathematical modelling, various necessary parameters related to the vehicle were
found out. Two types of vehicle model have been discussed in the previous chapter- Ackermann steering
and differential drive. The simulations have been done for the Ackermann steering vehicle and sensitivity
analysis of its various parameters has been found out. Apart from that, two motion controllers have been
implemented in the simulation environment- PID controller and Sliding Mode Controller (SMC). Due to
some issues in research facility, it was first necessary to perform the experiments on a smaller vehicle
which is a differential drive and then move to the bigger Ackermann drive vehicle. So to validate our
mathematical model and efficiency of motion controller, simulations in MATLAB environment are

compared with CarSim results which provide gives data closer to the real world cars.

After the mathematical modelling, a differential drive robot has been setup for the autonomous navigation
and collision avoidance. This chapter discusses the necessary software and hardware requirements to
complete our setup. We also discuss the parameter estimation done for finding the parameters of our

Ackermann drive vehicle.

3.1 Ackermann Vehicle Parameters Estimation

It is quite challenging to find the dynamic parameters of the vehicle such that a perfect, error-free
simulation is achieved. But an applicable measure can be performed using some estimation. In order to
calculate vehicle’s mass (m) , moment of inertia (I;) and centre of gravity (CG), split mass acting on each
wheel is considered namely given by mg, Mg, my, my. The mass on front axle (my) is sum of masses on
front left (mg) and front right tire (m¢). Similarly, mass on rear axle, m= my+m, . Total mass of the

vehicle is combined sum of above four masses.

CG is calculated by considering point masses acting on the rear and front axle. Its position is given as:

from the front axle,
lp=1+(1- %) and from rear axle [, = [= (1 — %).
Moment of inertia about z-axis is calculated by considering two point masses joined by a mass-less rod.

I, =me 17 +my + 17

26

3D laser scanner

Battery bank IMU GPS antenna 2D short range
. laser scanner
SBW
UPS
Thermal
imager

Figure 3.1 Test Vehicle

Table 3.1 Physical parameters of the vehicle

Parameters Value Units
Ly 1.31 m
L, 0.62 m
My 137 Kg
Mg 158 Kg
My 269 Kg
my 360 Kg
l, 932.4 Kg-m*

l 1.93 M
w 0.9 M
Cs 134359 N/rad
C 134359 N/rad

Estimation of cornering stiffness of the vehicle

Accurate determination of the cornering stiffness of the tyres requires extensive experiments. It is

necessary for the tyre manufacturer to print certain information such as the wheel radius, the tyre width,

27

the aspect ratio (which is the ratio of the tyre section height to the tyre width expressed as a percentage),
the load index, the speed rate, the type of tyre construction and the maximum allowed inflation pressure,
on the tyre sidewall. From this basic tyre information, the cornering stiffness can be estimated by using a

mathematical tyre model. [27]

Considering the above model, final relation between the C, and tire parameters is given by:

c - 8Ebw3
* " L2rn(r, + wa) — L]

(3.1)
Where L is given by

L = 2(1, + wa)sin |cos™1(1 — wa)]
S Ty +wa

In the above formulation, E is the compression modulus of the belt, b is the thickness of the tyre belt, rw
is the radius of the wheels, w is the width of the belt, a is the tyre aspect ratio (the tyre section height
divide by the tyre section width), L is the contact patch length and s is the unitized percentage of the

sidewall vertical deflection when loaded.

Table 3.2 Parameter of the tyre

Parameter Value Units
Aspect ratio a of the tyre 0.5 -
Thickness b of the tyre belt 0.015 m
Compression modulus E of the belt 27.3*10° N/m?
Radius rw of the wheel 0.254 m
Unitized percentage s of the sidewall 15% -
vertical deflection when loaded
Width w of the belt 0.205 m

Steering Actuator Dynamics

In order to maintain the vehicle heading angle, the steering wheels of the UGV should follow the
command signals received from the vehicle controller and maintain synchronization with the steering
actuator. To perform the simulation of the system, an appropriate actuator model needs to be established.
Therefore, the transfer function model is derived analytically from the electrical and mechanical
governing equations of the motor that is obtained from first principles. To model the steering actuator,

visualization, as shown in Figure 2.5, is considered. The steering motor torque T is related to the armature

28

current i, by a torque constant Kt. The governing equations based on the Newton’s law combined with the

Kirchhoff’s law are

d*¢ do .
]W +b E = Ktl
L di +Ri=V-K d¢
e T b at
(3.2)
R L /1
W\ oo /
+ JLr 'If f{_lﬂ' J
s . v ll' | 7
v [\) Vi= Kb @) , '|:F
B T\
\ be

Figure 3.2 Schematic diagram of the steering actuator system

A steering controller has also been implemented in the vehicle model. This controller drives the steering
motor which steers the front wheels based on controller commands. That’s why required steering angle
has to be found out so that the vehicle follows the desired path. The steering control system uses a DC
motor (Maxon RE-40) with 156:1 reduction gear ratio to control heading direction. The motor is further
connected to the steering shaft with the help of spur gears with GR of 1.47 giving 156%1.47~230 rotations
for one rotation of steering shaft. The standard rack and pinion gear has a GR of 15.5 and thus eventually
making GR between the front wheel and steering shaft to 230*15.5= 3555. A negative servo feedback is
implemented as per the tracking requirement. At steady state, angular velocity of steering motor remains

constant. Specification of the steering actuator has been specified in table 3.3.

29

Table 3.3 Specifications of steering actuator

Parameters Value Unit
Terminal resistance (R) 0.317 ohms
Terminal inductance (L) 0.0823 mH

Torque constant (Kt) 30.2 mNm/A
Speed constant 317 rpm/\V
(33.196) (rad/sec / V)
Back emf constant (Kb) 0.0301 V/rad /sec
Rotor inertia (J) 138 g.cm’
Speed / torque gradient 3.33 rpm / mNm
Nominal speed (N) 6930 Rpm
Nominal torque (T) 170 mNm
(max. Continuous
torque)
Nominal voltage 24 \Y

3.2 CarSim Simulation environment

Considering the advantages of CarSim software discussed previously we simulated our vehicle model by

putting the dynamic parameters as that of the vehicle.

Steering Column Properties Front steering type: power rack and pinion ¥ Rear steering type: no rear steering -

Front rack & pinion: variable ratio
E-Class, Sedan (2017) hd

Steering Linkage Kinematics
Rack to front wheels: Steer Kinematics
E-Class. Sedan 2017 -

Lateral coordinate of sprung mass center

1400

e Mass center of sprung mass
Define steer angles in venicle coordinates

v Rear Compliance: Steering Compliance

rque
E-Class Sedan 2017 v

aster angie 4afl Power Steering System
3 1L Front b
t 1
2 'Y J orsio
= F-i=

Figure 3.3 Simulation environment setup in CarSim

Miscellanecus:

After which simulation were performed and plots for various parameters were recorded.

I implemented Pl and SMC controller and then compared the results of MATLAB simulation with the
CarSim simulation. The vehicle modelling was replaced by the vehicle model exported to Simulink from
CarSim. This vehicle model includes all the parameters which are not taken into the account in
MATLAB. We have included suspension, brake system , road conditions, aerodynamic drag and various

30

other practical parameters. After exporting the model, we implemented the simulation with the existing

steering actuator model.

Using CarSim for simulation doesn’t take a lot of trouble but finding how to implement can take really a

long time if you haven’t used it before.

We need to first choose the vehicle model.

In my case | have chosen a D-class minivan 2017 as my plant system. Then | went to its
properties and change its inertial and dimensional properties close to the vehicle | am currently
working on.

I haven’t changed its aerodynamic, suspension and brake systems. However the tire parameters
are changed according to the current vehicle.

Then for running the vehicle in a certain road condition, the procedure was changed to Driving-
>Constant speed with Roughness. The roughness was taken as 0.9. It can be defined as our own
path but that can be troublesome. It’s better to define the path trajectory in MATLAB if you want

plot and compare the data. Here you can also choose the time till which you want simulations to

Driver Controls Start and Stop Conditions Plot Definitions
Constant target speed || 20 km/h Stop run at specified time or station - Ground Elevation vs. Station
[Account for engine braking in speed control Time (sec) Path station (m) Ground Elevation
[Braking: Brake Control v L2 0 Road Wheel Steer Angle
Stop: 15.002 320

Constant: 0 MPa Steering: Handwheel Angle

[0 Specify initialization details?
Shifting Control: Closed-Loop Shift Control

AT All Gears

Kingpin Torque

Steer Torque

44444

Steering: Driver Path Follower Jounce - Front

[p Qi 1 5= PhevE Miscallaneous: ~ Jounce - Rear
Additional Data Vertical Forces
Miscellaneous: ~ Vertical Accel. of CG's.
Pitch Angle of Sprung Masses
Miscellaneous: 7 Roall Angle of Sprung Masses
Sprung-mass Origin Vertical Position
Miscellaneous: 3D Road Ground Elevation vs. Station
1200 m, One Lane, Mu = 0.9
Miscellaneous: Roughness Profile
Example Road Roughness.
Miscellaneous: Generic Group Miscellaneous: 7
2 Adle - Fx, Fy, Fz

AR ENEENEEE KA E EN KN RN K

ENEIENERK]

Figure 3.4 Setting up driver controls and variables

At the same time we can also change speed at which vehicle is running and defines the plots you
want to see in the video.

Then come to the home window and since we are going to work with MATLAB not the built-in
solvers. So change the No Linked Library to Models: Simulink by clicking on the Models
dropdown. At this time since we are working with just steering controls so go to dataset Steering
and Steering Controls and select Four wheel Steering System.

Go to the Four Wheel Steering System tab.

31

Here we can set our own time step by which we are running the vehicle. | have taken same as
simulations performed in the MATLAB. Through Import Channels we decide the inputs to the

vehicle model. I have taken input as the steering commands to the front two wheels.

Variables Activated for Import

MName Mode Initial Value
1 IMP_STEER_L1 Replace ¥ 0.0
2 IMP_STEER_R1 Replace v 0.0

Figure 3.5 Import variables

Through Export Channels, we can change the output given by the vehicle model. In my case |
have taken four outputs steer controls to the front wheels, yaw rate (from here | calculated yaw

angle by integration in MATLAB) and longitudinal velocity to the vehicle.

Variables Activated for Export

i1, Steer L1
2. Steer_R1
3. AVz

4, Wx

Figure 3.6 Export variables

After deciding the inputs and outputs, our vehicle model is ready to be used in Simulink. Just
select Send to Simulink. Then just copy the vehicle model and paste it in your own Simulink
model and use it as normal transfer function block. If the block parameter of CarSim S-function is

not set then first set it as follows:

| 2=
Wehicle math model library (mask) (link)

The vehicle code on this S-Function determine which solver is used
for vehicle type that is simulated.

Simfile lists the names of the main files that will be read and written
by the solver program.

Parameters

Vehicle code (for instance i_i, i_s, i_i__ss):

Simfile name:

| simfile.sim ‘

OK Cancel Help Apply

Figure 3.7 Setting up vehicle block in Simulink

32

3.3 Ox delta Series Robot (Differential-drive robot)

These robots have been developed by NEX Robotics. They are a 4 wheel differential drive robot designed
mainly for research purposes. Different kind of sensors can be mounted on it for getting a better idea of
its surrounding. It has a very good performance on-board computer with high computational power. Its
mechanical design is efficient enough to support all sorts of terrain and heavy payload. Rugged

construction and safety critical design make it an ideal choice for outdoor environment.

These robots are widely used in research for autonomous navigation and mapping of the environment. It
provides a perfect hardware platform for testing of various machine learning algorithms. It provides the
facility for different add-ons as well. We can mount 2D/3D LiDAR, thermal camera and optical camera
for better sensing of the environment. It also supports robotic arms attachment which could give the robot

a more useful purpose like multi-floor navigation through lift.

The on-board PC supports is Intel Core i5 processor, 8GB DDR3 RAM. It supports Wi-Fi connectivity. It
supports various programming languages like C, C++ and python libraries. ROS packages are installed

for communicating with the remote systems.

For object manipulation, it supports 5-6 axes with payload 2-6 kgs at 900-150 mm. They also support
gripper and arms with precise control over them. But currently we are not using these optional features on

our robot.
Other technical specifications are mentioned below:

Table 3.4. Ox delta series robot specifications

Parameters Values
Dimensions (L x W x H) 58cm x 62cm x 30cm
Weight 34kg
Max Payload Weight 15kg
Wheel Diameter 26 cm
Axel Length 70 cm
Ground clearance 8.8cm
Maximum Speed 5 km/h
Vertical Obstacle 10cm
Power Supply 24V battery
Working Time 4 hours
Communication Secure 128 bit encrypted

33

Figure 3.8 Ox Delta series robot

3.4 Robot Operating System (ROS)

The Robot Operating System (ROS) is a framework for writing robot software, an open-source, meta-
operating system for the robot. It provides same kind of services would be expected from an operating
system, including hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. Basically ROS is a
collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust
robot behaviour across a wide variety of robotic platforms. This basically allows for code reuse, and
improves the quality of the code by having it tested by a large number of users and platforms.

Advantages of ROS are:

e Distributed computation
e Software reuse
e Rapid testing

e Supports various programming languages

34

Updating details of Node 2
in ROS Master

- ROS Master -

Updating details of Node 1
in ROS Master

-
-

/)

Service Name

Client Service

Service Message data
Node 2

Topic Name

Topic Message data
Publish Subscribe

Figure 3.9 ROS communication block diagram

Figure 3.4 shows two programs marked as node 1 and node 2. When any of the programs start, a node
communicates to a ROS program called the ROS master. The node sends all its information to the ROS
master, including the type of data it sends or receives. The nodes that are sending a data are called
publisher nodes, and the nodes that are receiving data are called subscriber nodes. The ROS Master has
all the publisher and subscriber information running on computers. If node 1 sends particular data called
“A” and the same data is required by node 2, then the ROS master sends the information to the nodes so
that they can communicate with each other. The ROS nodes can send different types of data to each
other, which includes primitive data types such as integer, float, string, and so forth. The different data
types being sent are called ROS messages. With ROS messages, we can send data with a single data type
or multiple data with different data types. These messages are sent through a message bus or path called
ROS topics.

3.5 Sensors

Wheeled mobile robots need to sense the environment using sensors in order to autonomously perform
their mission. Sensors are used to cope with uncertainties and disturbances that are always present in the
environment and in all robot subsystems. Mobile robots do not have exact knowledge of the
environment, and they also have imperfect knowledge about their motion models (uncertainty of the
map, unknown motion models, unknown dynamics, etc.). The outcomes of the actions are also uncertain
due to non-ideal actuators. The main purpose of the sensors is therefore to lower these uncertainties and

to enabl estimation of robot states as well as the states of the environment.

35

3.5.1 Sensor Coordinate transformation

Sensors that are mounted on the robot are usually not in the robot’s centre or in the origin of the robot’s
coordinate frame. Their position and orientation on the robot is described by a translation vector and
rotation according to the robot’s frame. Those transformations are needed to relate measured quantities
in the sensor frame to robot coordinates. With these transformations we can describe how the sensed
direction vector (e.g., accelerometer, magnetometer) or sensed position coordinates (e.g., laser range
scanner or camera) are expressed in the robot coordinates. Furthermore, mobile robots are moving in

space, and therefore, their poses or movements can be described by appropriate transformations.

tf is a package that allows the user keeps track of multiple coordinate frames over time. tf package
performs the function of maintaining the connection between coordinate frames in a tree structured
manner buffered in time with every other frames, and allows the user to transform points, vectors, etc.
between any two local coordinate frames related to the robot at any desired point in time. This package is

necessary for transformation of sensor coordinates to the robot frame.

Static_transform_publisher is the command line tool to publish a static coordinate transform to tf using
an x/y/z offset in metres and yaw/pitch/roll in radians or in quaternions. View_frames creates a PDF graph

for the current transform tree for graphical debugging.
3.5.2 Orientation and Rotation

Orientation of some local reference frame (e.g., sensor) according to the reference frame (e.g., robot) is

described by a rotation matrix R:

(3.3)

where u, v, w are orthonormal unit vectors of a local coordinat system. The rows of R are components of
body unit vectors along the reference coordinate unit vectors X, y, and z. The elements of matrix R are
cosine of the angles among the axis of both coordinate systems; therefore, matrix R is also called the
direction cosine matrix or DCM. Basic rotation transformations are obtained by rotation around axis X, v,

and z by elementary rotation matrices:

1 0 0
0 cosep sing
0 —sing cosg

Ry ((P) =

(3.3)

36

cos@ 0 siné
Ry(H) = 0 1 0
—sind 0 cos@

(3.4)
cosy sinyp 0
R,(¥) = [— sinyy cosy O]
0 0 1
(3.5)

where Raxis (angle) is rotation around the axis for a given angle.
3.5.3 Pose Measurement Methods

There have been several methods to estimate robot pose in the environment using sensors. Dead
reckoning (also called deduced reckoning) gives the estimate of the robot’s (equipped with relative
positioning sensors) current position from the known previous position and relative to the measured
displacements from the previous position. These increments in position and angle (distance and
orientation) are calculated from measured linear and angular speeds over the completed time and heading.
Common to these approaches is the use of path integration to estimate the current pose; therefore, the
accumulation of different errors (error of integration method, measurement error, bias, noise, etc.)

typically appears.

Odometry is used to estimate the robot pose by integration of motion increments that can be measured or
gathered from applied motion commands. Relative motion increments are in mobile robotics usually
obtained from axis sensors (e.g., incremental encoder) that are attached to the robot’s wheels. Using an
internal kinematic model these wheel rotation measurements are related to the position and the orientation
changes of the mobile robot. The position and orientation changes given in the known time period
between successive measurements can also be expressed by robot velocities. However, due to the integral
nature of odometry, cumulative error occurs. The main source of the error consists of the systematic and
nondeterministic error sources. The former includes errors due to approximate kinematic models (e.g.,
wrong radius of the wheel), error due to accuracy of applied integration method, and measurement error

(unknown bias), and the latter includes slippage of the wheels, noise, and the like.

In Navigation using environmental features, Features are located at known locations. Therefore, their
observation can improve knowledge about mobile robot location (lower location uncertainty). The list of
features with their locations is called a map. This requires either an offline learning phase to construct a
map of features or online localization and map building (simultaneous localization and mapping
[SLAM]). The former approach is methodologically simpler but impractical in practice especially for

larger environments. It requires the use of some reference localization system to map observed features,
37

or this must be done manually. The latter approach builds a map simultaneously while localizing, and the
main idea is to localize from observed features that are already in the map and storing newly observed

features based on localized location.
3.5.4 Sensors used in the Robot
Wheel Encoders

They are electro-mechanical devices that converts linear or angular position of a shaft to an analog or
digital signal, making them the linear/angular transducer, measure position or speed of the wheels,

integrate wheel movements to get an estimation of the position i.e. odometry.

Optical encoders function by making use of a rotor disc composed of either plastic or glass that consists
of several irregular patterns with transparent and opaque areas that ca be detected as the disc attached
with wheel rotates between a light source and an optical detector. Like the magnetic encoder, the simplest
configuration usually uses just one sensor and has one half of the disc transparent and the other half
opaque. But to obtain higher resolution, the disc is usually divided into many more segments (often in

concentric rings) with two or more sensors.
LiDAR

LiDAR are also known as the Light Detection and Ranging, basically are laser range finders. It is a time
of flight sensor that achieves significant improvements over the ultrasonic range sensor owing to the use
of laser light instead of sound. It uses the light waves or the light source to measure the distance between

the object. The laser and the detector are the two of the main components inside this LIDAR system.

The laser in the pulse form is targeted on the object and the reflection or the scattering from the object it
is being measured by the detector. And at the detective side, the timing between the transmitted pulse and

the received pulses is measured.

Using the light waves, we can even detective very small objects. So using the LIDAR system, we can
achieve the much more Precision. So, because of its precision, these LIDAR systems are used for the 3D

mapping of the object or even for the surface scanning of the object.

38

Sensor specifications:

Table 3.5 LiDAR sensor specification

Application

Indoor

Integrated application

Protective field evaluation with flexible fields, output of measurement
data, Protective field evaluation with flexible fields, output of

measurement data

Working range

0.05m...25m

Aperture angle

Horizontal (270°), Horizontal (270°)

Angular resolution 0.33°
Number of field sets 16

Enclosure rating IP67

Colour White

Digital outputs

3 (PNP, to display a protective field violation, additional 1 x “Device

Ready”)
Scanning frequency 15 Hz
Switching mode PTP

Figure 3.10 Sick LMS 100 2-D LiDAR

39

IMU

An Inertial Measurement Unit, commonly known as an IMU, is an electronic device that measures and
reports orientation, velocity, and gravitational forces through the use of accelerometers and gyroscopes
and often magnetometers. An IMU is a specific type of sensor that measures angular rate, force and
sometimes magnetic field. IMUs are important components of the inertial navigation systems used in
aircraft, autonomous ground vehicles, unmanned aerial vehicles (UAVs) and other unmanned systems, as
well as missiles and even satellites. IMU data is processed by computers to track position through dead
reckoning. Common applications for IMUs include control and stabilization, navigation and correction,

measurement and testing, unmanned systems control, and mobile mapping.

It consists of three motion sensors:

e Accelerometer: These are the most commonly used type of motion sensor. It measures
acceleration (change of velocity) across a single axis. Accelerometers measure linear acceleration
in a particular direction whereas an accelerometer can also be used to measure gravity as a
downward force. Integrating acceleration once gives an estimate for velocity, and integrating
again gives you an estimate for position.

e Gyroscope: Accelerometers can just measure linear acceleration but can’t measure twisting or
rotational movement. Gyroscopes, however, measure angular velocity about three axes: pitch (x
axis), roll (y axis) and yaw (z axis). While a gyroscope has no initial frame of reference, user can
combine its data with data from an accelerometer to measure angular position.

e Magnetometer: It measures magnetic fields. It can detect fluctuations in Earth’s magnetic field,
by measuring the air’s magnetic flux density at the sensor’s point in space.

In our case Xsens MTI1100 IMU has been mounted to the robotic platform. The datasheet of the same has
been attached in [26].

3.6 Setting up ROS environment with the robot

First ROS packages need to be installed in the Ubuntu system. Since we are using Ubuntu 16.0,ROS-
Kinetic version is installed in the system. The tutorials related to ROS and its packages installation is
provided in the roswiki page which is easily understandable. All the dependencies need to be installed for
the proper function of the software.

The robot “Ox delta” has an in-built PC which supports Wi-Fi connectivity. All the sensors like 2-D
LIiDAR, IMU are connected to this PC. This PC has Intel-core i5 processor, 8GB RAM, which controls

the vehicle motion. The ROS packages are built within to communicate with the remote system. To
40

communicate with the external device we connected this PC to a router through Ethernet cable. All the
sensors used in the robot have some IP address which should be in the same series. In our case the IP

addresses of various components are:
Robot PC: 192.168.101.31

Router: 192.168.101.3

LiDAR: 192.168.101.35

Velodyne (3-D LiDAR): 192.168.101.36
Remote System: 192.168.101.32

After setting up the necessary addresses of these components, we also have to configure the environment

in the remote PC. To do this, go to /etc folder in the main directory and then open a terminal window:
$ sudo gedit hosts

In this text file add the guest IP addresses of the system along with their name. One more thing to setup is
the .bashrc file. To setup this just open the bashrc file and check that if local host address is as per the

host system or not.

After this the robot could be seen connected to the remote system through the Wi-Fi. To see that the robot
is connected and our host system is receiving data from the robot, type the below command in the
terminal of the host system:

$ ping 192.168.101.31

Here 192.168.101.31 is the robot address and if connected properly the terminal should be displaying 64
bytes sent in some milliseconds. After this we need to run the robot and for that we have to access the

robot PC from our host system. To do that, type the below command:
$ssh —X192.168.101.31

Then it will ask for the password of the robot PC after which we can access the robot PC’s terminal. Then

all the packages built within the robot can be easily run remotely using our own host system.

For connecting the sensors to the robot, one should make sure that the port ID of the sensor is known. To
get an idea of that, I connected each sensor one-by-one and checked its port number by opening /dev
directory where the port no is in the form of ttyUSBOX, where X varies as the number of ports is

increased. These port numbers are required to be set while running the driver of sensors.

41

Chapter 4

AUTONOMOUS NAVIGATION

Autonomous navigation in mobile robots means that they are capable of navigating in an unknown and an
uncontrolled environment. An autonomous robot performs its tasks with avery high degree of autonomy.
A fully autonomous robot has the capability to obtain information about its environment in which it is
navigating, work for longer period without human intervention and to avoid situations that could be
harmful to its environment or to itself. An autonomous navigation system is an on-board, integrated suite
of sensors and technology that enables perception, path planning and autonomous navigation capabilities.

Success in navigation requires success at the four basic aspects of navigation: perception, localization,

and cognition and motion control.

o ﬂ'{}__n 'u'-_'al_l A 1__?.‘ R

g —— e e]
= e Great Swarialleys

. . N Global
Grieat Bell All o iy 0 "

KingsAns Yaid, Planner

/

Sensors — :
aypoint
{Cameras, GPS,) .) VP
erception iti
IMU, Encoders, :/f" P position
4G) decision

Self

Localization

Local Planner

Motion

Control

Figure 4.1 Basic Layout of Autonomous Vehicle

4.1 Navigation Stack

It is a set of algorithms that use the sensors of the robot and the odometry, and we can control the robot

using a standard message. It can move our robot without problems (for example, without crashing or

getting stuck in some location, or getting lost) to another position.

42

—

—

Obstacle

detection

Collision

Avoidance

We would assume that this stack can be easily used with any robot. This is almost true, but it is important

to tune some configuration files and write some nodes to use the stack.
The robot must satisfy some conditions before it uses the navigation stack:

e The navigation stack is able to only handle a differential drive and holonomic wheeled robots.
The shape of the robot needs to be either a square or a rectangle. However, it can also perform
certain things with biped robots, such as robot localization, as long as the robot does not move
sideways.

e Itis required that the robot continuously publishes information about the relationships between all
the joints and sensors' position.

e The robot must send information with linear and angular velocities.

e A planar laser must be mounted on the robot to create the map and perform localization.
Otherwise, we can also generate something equivalent to several lasers or sonars, or we can

project the values to the ground plane if they are mounted in another place on the robot.

" Impl " . .
e e Navigation Stack Setup
maove_base *map” PN,
¥ nav_msgs/GetMap NEE LR
‘ amcl global_planner -=—— global_costmap
A
[h P | T 1
" . sensor topics
sensor transforms internal SENsor sources
i titfiMessage Path recovery behaviors sensor_msgs/LaserScan |
v TRNLIRRSTS = l sensar_msgs/PointCloud ™
\\
odometry source "odom* local ol -
nav_msgs/Odometry ocal planner j=—/ local costmap

"emd_vel" | geometry_msgs/Twist
Y

base controller

optional provided node

provided node
platform specific node

Figure 4.2 ROS Navigation Stack [ref: roswiki]

The following diagram 4.2 shows us how the navigation stacks are organized. We can see three groups of
boxes with colours (gray and white) and dotted lines. The plain white boxes indicate those stacks that are

provided by ROS, and they have all the nodes to make our robot really autonomous.

The navigation stack work properly when the transform relationships between different frames are
published properly. To check that the transforms are published correctly one should open rqt_tf tree

using the below command:
$ rosrun rqt_tf tree rqt_tf tree

The tf relation should show graph as given in figure 4.3.

43

Recorded at time: 1491881866.18

Broadcaster: frobot_0/tf_initial_pose_broadcaster
Average rate: 11.103

Buffer length: 0.901

Most recent transform: 1491881866.18

Oldest transform: 1491881865.28

robot_O/odom

Broadcaster: /frobot_0/my_odom
Average rate: 11.11

Buffer length: 0.9

Most recent transform: 1491881866.13
Dldest transform: 1491881865.23

A 4

robot_O/base_footprint

Broadcaster: /robot_O/tf_basefootprint_baselink_broadcaster
Average rate: 11.101

Buffer length: 0.901

Most recent transform: 1491881866.26

Didest transform: 1491881865.35

y

A
A

Broadcaster: /robot_0/tf_laser_broadcaster
Average rate: 11.102

Buffer length: 0.901

Most recent transform: 1491881866.24
Dldest transform: 1491881865.34

y

Figure 4.3 transformation tree for the navigation stack

Here, map represents the coordinate frame fixed to the map.

odom — the self-consistent coordinate frame using the odometry measurements only. The map — odom

transform is published by amcl or gmapping.
base_link — the base link of the robot, placed at the rotational centre of the robot.

Laser- it represents the laser sensor scan.

4.2. Software Packages
rosOxrobot package

This package provides ROS interface for robot bases in Ox series. OxRobotCpp library from Nex
Robotics supports the ROS interface. Information from the robot base, velocity and acceleration control,
is executed via a rosOxrobot node, which publishes topics providing data received from the robot's
embedded controller by OxRobotCpp library, and this sets desired velocity, acceleration and other
commands in robot when new commands are received from command topics.

44

It contains the parameters which defines the robot kinematics. It has the wheel diameter, axel length,
counts per revolution for the robot. It has rosOxrobotnode which contains the kinematic equation for our
robot. It subscribes to cmd_vel to receive new velocity commands. By using these it publishes the
position of the robot using the pose topic. However, this package is only for communicating with 0x
series robots from nex Robotics.

Imsixx package

This package works with Sick LMS 1xx laser range finders. It publishes the laser scan data under the
topic /scan. It has the parameters to connect with the device using its host name or IP address.

Rviz

Rviz is a simulator based on ROS in which we can visualize every kind of sensor data in the 3D
environment, like a kinect camera sensor data by mounting it in the Gazebo model or the LIiDAR sensor
data to visualise the obstacles in 3D. From the laser scan data, we can build a map and it can be used for
auto navigation. Rviz gives access and graphically represent the values obtained from camera image, laser

scan etc.

By panel tab we get to view different tabs. The display window is used to views the different topics
currently published. We can add those topics by clicking on add options in the display window. By views

window we can adjust how to look over the rviz screen.
Costmap 2D

This package implements a 2D costmap that takes in the sensor data from the world, builds 2D or 3D
occupancy grid of the data obtained from the LIiDAR and inflates costs in a 2D costmap based on the the
grids occupied on the map and a user specified inflation radius to include the critical distance from the
obstacle. This package also allows support for map_server based initialization of a costmap, rolling

window based costmap and parameter based subscription to and con figuration of sensor topics.

This package configures the environment and tells the robot where it can navigate in its environment. It
assigns values to the occupancy grid in the maps to know the occupied, unoccupied and unknown regions.
It uses sensor scan data and information, in our case a 2-D LiDAR data, to store information about the
position of obstacles in the form of static map using costmap_2d::Costmap2DROS object which provides

purely a purely two dimensional interface to its users.

45

™ Interact | “6* Move Camera [Select 3 Focus Camera ©= Measure .~ 2D Pose Estimate

Obstacle layer
Inflation laver

static layer “w

Laser scan

Figure 4.4 Cost map representing different layers

In figure 4.4, we have a pentagonal robot footprint which represents the size of the robot. The footprint
significantly decides the path taken by robot when a goal point is given. The
costmap_2d::Costmap2DROS object maintains a lot of functionality using LayeredCostmap which is
used to keep track of different kind of layers. The costmap_2d::Costmap2D class implements the basic

structure to store and access the 2D Costmap representing the obstacles in the map.

There are specific symbols which assign the cost values related to robot. The sensors are used to marks

the cells in the maps and assign them the required cost values.

e “LETHAL”: represents an actual obstacle in the cell. In fig 3, the dark black thick lines represent

such cost values. In our case its cost value is assigned as “255”.

46

e “INSCRIBED”: it means that a cell is less than the robot's inscribed radius away from an actual
obstacle. So the robot is bound to be in collision with some obstacle if the robot centre is in that

particular cell that is at or above the inscribed cost provided by the algorithm.

e “FREESPACE”: it means there is nothing which can hinder the robot motion. It is assigned a

value of “0”.

e “UNKNOWN”: it means we don’t have sufficient information about that area. The robot doesn’t

have idea about the obstacle present in that area.

In our case, each cell is given three types of cost values, i.e., each cell can be either free, occupied, or
unknown. Each of the above status has a special numerical cost value assigned to it based in which it is
project into the costmap. Columns that have a certain number of occupied grids are assigned a
costmap_2d::LETHAL_OBSTACLE cost, columns consisting of certain number of unknown cells (see
unknown_threshold parameter) are assigned a costmap 2d::NO_INFORMATION cost, and other

columns are assigned a costmap_2d::FREE_SPACE cost.

Apart from that, for converting the sensor frame to base frame of the robot, the
costmap_2d::Costmap2DROS makes extensive use of the tf. It also uses map_server package so that a

user-generated static map can be used for informing the robot about its environment.
There are two divisions of costmaps in ROS:

e Global costmap- it is used for global navigation. In fig 5, the dark black thick lines represent the
global costmap. These obstacles have been detected by moving the robot in the environment. The
obstacles were detected using the laser scan and the cells in the map are marked as occupied and
given a high cost values. The robot is expected not to make a path through those areas. The
attributes defined in global costmap are defined in costmap_common_params.yaml and

global_costmap_params.yaml files. This has been depicted in the below figures.

e Local costmap: this is used for local path planning during the robot reaching its goal. In fig 5, the
yellow lines depict the local cost map present in the map. These are obtained by the current laser
scan readings and cells are marked as per the given commands. The parameters for local costmap

are defined on the local_costmap_params.yaml and costmap_common_params.yaml files.

Layer Specifications: There are three most common layers used in the costmap2d ros package:

e Static map layer: The static map incorporates mostly unchanging data from an external source,
especially a map. In our case the robot is first allowed to know its surrounding by teleoperation
and scanning the environment by a 2-D LIDAR. It subscribes the topic /map and gets the
information about the occupancy of the cell.

47

Obstacle layer: The obstacle and voxel layers incorporate information from the sensors in the form
of PointClouds or LaserScans. The obstacle layer tracks the robot in two dimensions, whereas the
voxel layer tracks in three. The costmap subscribes to the laser data and updates according to the

obstacles detected by it. This uses point_cloud topic to update the costmap periodically.

Inflation layer: it assigns the cost values to the cells according to their distance from the obstacles.
In figure 5, we observe that both static and dynamic obstacles are inflated by bright colours. This
inflation has been done for the safety of the vehicle, i.e., to avoid collision from the obstacles.
However there is also one possibility that if the inflation radius is increased, we might lose some
short and easy paths that a robot can take to reach the goal. Therefore the inflation radius should
be carefully decided in the parameters. There is one parameter, cost_scaling_factor, defined in the
inflation layer. A scaling factor is applied to get cost values during inflation. The cost function is
computed as given in figure 4.5 for all grids in the costmap further than the inscribed radius

distance given by costmap and less than the inflation radius distance away from a real obstacle.

cell cost l
lint]

‘|lethal® or "W-space" obstacle
e.0. cost_lethal =254 I range of costs meaning
definitely in callision

“inscribed” or "C-space" obstacle

e.g. cost_inscribed =251 - .3 range of Costs maaning
possibly in collision

*circumscribed” obstacle [depends an arientation)

@.9. cost_possibly circumscribad=128

range of costs meaning
definitely not in collision

also the range where (most] user
lowest non-freespace preferences should be axprassed

oost=1 -

freaspace —de - |

cost=d -

-
Inseribed circumee ribied inflation ; distance from
radius radius radius | closest W-space

obstacle cell

e _...—_—'" [double]
buffer zone created by costmap_2d around
abstacles, in order to make the robat prefer

paths that keep some minimum clearance
(this is & sort of default user preference)

Figure 4.5 Inflation Layer (ref: roswiki)

Configuring the Costmaps

The robot moves through the map using two types of navigation—global and local.

The global navigation creates paths for a goal in the map or a far-off distance.

48

e The local navigation creates paths in the close distances and avoids obstacles, for example, a

square area of 3 x 3 meters around the mobile robot.

These modules use costmaps to keep every kind of the data on our map. The global costmap gives
information about the global navigation and the local costmap for local navigation.

The costmaps have parameters to configure the behaviours, and they have common parameters as well,
which are configured in a shared file. Configuration of Costmap basically consists of three files where we

can setup different parameters. These files are as mentioned here:

e costmap_common_params.yaml
e global_costmap_params.yaml

e local_costmap_params.yaml
Configuring the common parameters

The obstacle_range and raytrace range attributes are used to indicate the maximum distance that the
sensor is able to read and introduce any other new information in the costmaps provided by navigation
stack. The obstacle_range is used for the obstacles. If the robot detects an obstacle around or less than 2.5
meters in our case, it will project the obstacle in the costmap. The raytrace range is used to clean/clear the
costmap and keeps on updating the free space in the map as the robot navigates. One thing to be noted is
that we can only detect the data of the laser or sonar with the obstacle, we are not able to perceive the
entire obstacle or object itself, but these simple approaches are enough to deal with obstacle

measurements. This greatly helps to build a complete map and localize the robot.

The footprint attribute indicates to the navigation stack the geometry of the robot. It will be used to keep
the right distance between the obstacles and the robot, or to know if the robot can move through a door
keeping a safe distance. The inflation_radius attribute defines how much should be the minimal distance

between the geometry of the robot and the obstacles.
The below line configures the sensor’s frame and the uses of data:

laser_scan_sensor: {sensor_frame: laser base link, data_type: LaserScan, topic: /base_scan/scan,

marking: true, clearing: true}

In the above code, sensor frame has been defined as “laser base link” and the message received from the

LiDAR has a certain datatype LaserScan which his published on the topic name .base_scan/scan.

The laser configured is used to add and clear obstacles detected by LiDAR in the costmap. For example,
we could add a sensor with a very wide range to detect obstacles and then another sensor like ultrasonic

sensors to navigate and clear the obstacles around the environment. The topic's name has been configured
49

in the above line. It is important that we configure it the best, because the navigation stack could wait for
another topic and all this while, the robot might be moving around which could then crash into a wall or

an obstacle.
Configuring the global costmap

The global_frame and the robot_base frame attributes define the transformation matrix between the map

and the robot. This transformation is for the global costmap.

We can configure the frequency of updates for the costmap. In this case, it is 1 Hz. The static_map
attribute is established for the global costmap to see a map. The map server is used to start the Costmap
with the maps configured. If we aren't using a static map, then this parameter is set to false.

Configuring the local costmap

The update_frequency, global_frame, static_map and robot_base frame parameters are the same as
described in configuration of the global costmap file. The publish_frequency parameter defines the
frequency by which the information is published. The rolling_window parameter keeps the costmap

centered on the robot when it is navigating in its environment.

The transform_tolerance parameter configures the maximum latency for the transforms, in our case it is
0.2 s. With the help of planner_frequency parameter, we can configure the rate in Hz at which we have to
run the planning loop. The planner_ patience parameter configures how long the path planner will wait in

an attempt to find a valid plan where no obstacles are found, before space around it is cleared.

The dimension and the resolution of the costmap with the width, height, and resolution parameters are

configured in this file.
SLAM Gmapping

Simultaneous localization and mapping, or SLAM for short, helps us to create a map using a mobile robot
that navigates through its environment while using the map it creates. SLAM is the algorithm that works
for robot mapping or robotic cartography. An area is considered in which the robot is allowed to
navigate, but at the same time, it needs to figure out where its own self is located in the place. The process
of SLAM considers a complex array of computations, algorithms and sensory inputs to navigate through a
previously unexplored environment or to remap a previously known environment. SLAM helps to enable
the remote creation of GPS data in areas where the environment is too dangerous or congested for humans

to get into.

In a related way, a SLAM robot tries to map an unknown environment while figuring out where it is at.

The complexity arrives from doing both these things at once. The robot has to know its position before

50

answering the question of what the environment looks like. The robot also needs to figure out where it is
at without the benefit of already having a map. SLAM (Simultaneous localization and mapping),
developed by Hugh Durrant-Whyte and John L. Leonard, is a process of solving this problem using
specialized algorithms and techniques.

The basic requirement of SLAM is a range measuring device like SONAR or LiDAR which provides the
method for knowing the environment around the robot. A more commonly used form of measurement is a
laser scanner such as LIiDAR. Laser scanners are quite easy to use and are very accurate. However, they
are also extremely costly. There are other options, though. Sonar can also be used, and this device is quite
useful for mapping environments under the water bodies but has a lower range than LIiDAR. Camera
devices can also be used for SLAM. These optical readers come in 2D or even 3D formats. The

measurement device used depends on various variables, including preferences, costs, and availability.

Another very important component in the SLAM process is to acquire data about the environmental
surroundings of the robot. Just like a human, the robot considers landmarks to determine its current
position using its sensors, the laser, sonar, or whichever sensors have been used. A robot uses different
landmarks measured using sensors for different environments. However, there are certain conditions for
landmarks used in SLAM. Firstly, all these landmarks should be stationary. A robot is not able to
determine its own location if a nearby landmark is continuously moving. Additionally, landmarks should
be particular and easily distinguishable from the surrounding areas. These landmarks also need to be

plentiful and should view from many different angles.

Once the robot has sensed a landmark through the laser scan, it can then determine its own position by
extracting the sensory input through LiDAR and then identifying the different landmarks marked
previously. A method has to be placed in order for the robot to do this. This landmark extraction is
generally completed in a variety of ways from algorithms like Spike extraction to scan-matching. The
important factor to remember in our case is that the robot requires a way to identify a landmark. Robots
also use information from previously scanned landmarks and match them up with each other in order to

determine its location.

The GMapping package is used to create maps while our robot navigates in a given environment. It uses
Simultaneous Localization and Mapping(SLAM) to produce a 2D map from laser scan data. The
robot_state publisher publishes the laser scan transformation from laser scan to base link. The slam
gmapping package is used to create a map for the robot. The gmapping node contains a lot of parameters.

Important ones to follow are:

e particles- defines the number of particles in the particle filter.

e Xmin,ymin,xmax,ymax- defines the map size in metres.

51

e deltamap- resolution of the map

e base frame- frame attached to the robot base.

e map_frame- frame attached to the map.

e odom_frame- frame attached to the odometry system.

e Srr- odometry error in translation as a function of translation’

e srt- Odometry error in translation as a function of rotation.
AMCL

This package helps the robot to decide its current position and using this current position information the
trajectory is planned. Using wheel odometry leads to inaccuracy in wheel spin calculation caused by lack
of traction. So longer we run the vehicle, more inaccuracies we get in the pose estimate. So amcl help to
compensate the mistakes committed by odometry. AMCL is a variant of the Monte Carlo Localisation
(MCL) which is widely used for localization. MCL uses particles to localise the robot pose. It has several
advantages over using Extended Kalman Filters (EKF) such as uses raw measurements (i.e. from lasers),
is not reliant on gaussian noise, is memory and time efficient, and can perform global localisation. This
node generally works with laser scans and laser maps. The AMCL package adaptively changes the
number of particles used based on the robot motion, which has the advantage of reducing the
computational overhead required. Each sample stores a position and orientation data which represents
robot’s current pose. Particles are all sampled randomly initially. When the robot moves, particles are

resampled based on their current state as well as robot’s action using recursive Bayesian estimation.
Topics subscribed:

e /scan- contains the laser scan information

e /tf- transforms incoming laser scans to the odometry frame.

¢ /initialpose- Mean and covariance with which to (re-)initialize the particle filter. This describes
the parameters with which localization estimate amcl initially starts running with.

e /map- amcl package use this topic to get the map for laser-based localization.
Topics published :

e amcl_pose- gives the robot’s estimated pose in the map with covariance.
e particlecloud- set of pose estimates being maintained by the filter.

o tf- publishes the transform from odom to map

We have observed that if some different pose estimate is given to the robot, it localizes itself at that
location but is not able to get the correct estimate. We need to move the robot around to get to know
about the landmarks detected in the map. Since the laser scan just provides data about the presence or

52

absence of obstacle. Similar occupancy grid might cause confusion about the current position of the
robot. Besides, AMCL dynamically adjusts the number of particles over a period of time. This provides a
computational advantage over the traditional algorithm. The AMCL has a node that will define its
behaviour in RVIZ and parameters that will determine how effectively it can localize itself. In this stage,
topics are remapped to fit the AMCL specifications and the truth map is published to the RVIZ program.

Parameters used in AMCL package are basically related to filter, laser and odometry.

Filter parameters: The first two parameters that relate to the filter are min_particles and max_particles.
The maximum number of particles starts off at the initial and then AMCL dynamically decreases the
number of particles toward the preset minimum. One important aspect of these parameters is that if the
maximum is too high, it might be too computationally extensive and lead to a laggard system. Update
_min_a and Update_min_d are defined as the translational movement required before performing a filter
update and the rotation movement required before performing a filter update, respectively. Lowering
these values would result in more updates and thus more iterations which will have the effect of

increasing accuracy, while also increasing computation.

Laser parameters: Parameters for the laser can be changed to increase the amount of incoming data from
this sensor. The parameter laser max beams determine the amount of beams in each scan of laser to be
used when updating the filter. The laser max range parameter describes the maximum scan range of the
laser. The laser likelihood max dist parameter determines the maximum distance to do obstacle inflation
on map. Two other important parameters used to increase the accuracy of localization are the laser z hit

and the laser z rand which are weights for the z hit and z rand part of the model.

Odometry parameters: Odometry parameters describe the movement of the robot and provide the AMCL
information about this movement. The odom_model_type is the diff_corrected type. There are also 4
odom alpha parameters. Each (in order) specifies the expected noise in odometry’s rotation estimate from
the rotation component of the robot’s motion, the expected noise in odometry’s rotation estimate from
the translational component of the robot’s motion, the expected noise in odometry’s translation estimate
from the translation component of the robot’s motion, and the expected noise in odometry’s translation

estimate from the rotation component of the robot’s motion, respectively.

In amcl localization, the transform is published between the global frame and the odometry frame and
thus accounting for the drift error that occur using dead reckoning. If the localization is done through
odometry, there is a possibility of lateral drift error which can give wrong pose estimate of the robot as

the error gets added cumulatively.

53

Odometry Localization

D=ad
Fackoning

Tra fion

/odom_frame /base_frame

Drien lli;\n

AMCLMap Localization

Odometry Diead
Dinift Reckoning

lodom_frame

Estimated by AMCL

Figure 4.6 AMCL localization structure

Local Planner: Timed Elastic Band

The TEB primarily provides the time-optimal solution. The teb_local_planner package is a plugin to the
base local_planner of the 2D navigation stack. The underlying method, Timed Elastic Band locally
optimizes the robot's planned path with respect to separation from obstacles, trajectory execution time
and compliance with kino-dynamic constraints at runtime. The optimal trajectory is readily computed by
solvinga sparse scalarized multi-objective optimization problem. We provide weights to
the optimization variables in order to know the behaviour in case of ant type of dubious objectives. This
package subscribes topics odom to get the odometry information to plan out the velocities so that desired
trajectory is followed. The topic obstacle provides custom obstacles as point-, line- or polygon-shaped
one. It publishes the global plan which it is trying to follow currently. It also helps to visualize both the

plans in rviz.

The teb_local_planner package helps the user to set parameters in order to customize the behaviour.
These parameters are classified into several classes: robot configuration, goal tolerance, trajectory

configuration, obstacles, optimization, planning in distinctive topologies and miscellaneous parameters.

Robot configuration parameters: It consists of velocity limits, acceleration limits, footprint model and
turning radius as parameters. These parameters determine the vehicle velocity commands when a local
path is planned. Generally the y-direction is neglected and is put to a value of zero. Here we also

determine the footprint model to be used for optimizing the vehicle motion. The footprint model is quite

54

important as it determined the computation required for moving the vehicle. This package allows various

types of footprints like point, circular, line, two circles and polygon.

Goal tolerance parameters: It consists of parameters that allow a certain level of discrepancies while
reaching the goal. It is usual that the robot will show some errors while reaching a goal point. It can’t be
exactly move at the same point where the user desires it to be. If the tolerances are kept small, there is a
possibility that the robot will keep on showing some motion even if we see that it has reached its goal.
The xy goal tolerance is the position tolerance for the controller when achieving a goal. This can be
lowered to increase the system accuracy, but will undoubtedly increase the time to reach the goal
destination. the yaw goal tolerance is the tolerance in orientation when achieving a goal. Again, this can
be lowered to increase system accuracy, but will undoubtedly increase the time to reach goal destination.

We generally keep free_goal_vel as false so that the robot can arrive at the goal with maximum speed.

Trajectory configuration parameters: These parameters take care of the trajectory planning.
max_global _plan_lookahead_dist defines the maximum length (cumulative Euclidean distances) of the
entire set of the global plan considered to be optimized. Then we determine the actual length by the
logical conjunction of the local costmap size and this maximum bound. We set this distance to zero or
negative in order to deactivate this limitation. It decides what kind of line or arc has to be taken while
deciding the path. It allows the planner to shrink the horizon temporary (50%) in case of automatically

detected issues.

Obstacle parameters: It gives a clear idea of obstacle detection methods. min_obstacle dist specifies
minimum desired separation from obstacles. costmap_obstacles_behind_robot_dist limits the occupied
local costmap obstacles taken into account for planning behind the robot. inflation_dist specifies buffer

zone around obstacles with non-zero penalty costs.

Optimization parameters: It gives an optimization weightage for maximum allowed translational velocity,
maximum allowed angular velocity, maximum allowed translational acceleration and maximum allowed
angular acceleration. weight_obstacle defines optimization weight for keeping a minimum distance from
obstacles, weight_inflation defines optimization weight for the inflation penalty,
weight_kinematics_forward_drive provides optimization weight for forcing the robot to choose only
forward directions, and weight_kinematics_nh provides optimization weight for satisfying the non-

holonomic kinematics.

55

WP 2/426301
A
MA
. o
Y77, dostadie B
o LAY we
AN ;“ AN
e | @ TNR H N
"~ Obstacje Ad F" QI} N
1
17
(o
WP 1

Figure 4.9 Timed Elastic Band

Local Planner: Dynamic Window Approach

The dwa_local_planner package allows a specific controller that drives a mobile base in the plane. This
controller’s job is to connect the path planner to the robot. The planner creates a kinematic trajectory for
the robot using a map to get from a start to a goal location. Along the way, the planner keeps on creating,
at least locally around the robot, a value function, represented in a grid map. This value function
calculates the costs of traversing through the grid cells. The controller's job is to make use of this value

function to determine dx,dy,dtheta velocities to send to the robot.

Figure 4.8. DWA planner trajectory

56

Velocity samples: vx sample, vy sample determine number of translational velocity samples to be taken
in X, y direction for prediction. vth sample controls the number of rotational velocities samples. In most
cases we prefer to set vth samples to be higher than translational velocity samples, because turning is

generally a more complicated condition than moving straight ahead.

Trajectory Scoring: DWA Local Planner maximizes an objective function to obtain optimal velocity
pairs. In implementation, the value of this objective function relies on three components: progress to goal,
clearance from obstacles and forward velocity. The objective is to get the lowest cost. path distance bias
is the measure for how much the local planner should stay close to the global path. A high value of this
parameter makes the local planner prefer trajectories on global path. goal distance bias is the measure for
how much the robot should attempt to reach the local goal, with whatever path. Experiments show that
increasing this parameter makes the robot to be less attached to the global path and more to local. occdist
scale is the measure for how much the robot should try to avoid obstacles. A high value for this
parameter results in indecisive robot that stuck in place. Currently, we set path distance bias to 32.0, goal
distance bias to 20.0, occdist scale to 0.02. They work well in simulation.

Goal distance tolerance:

e yaw goal tolerance (double, default: 0.05): This defines tolerance in radians for the controller in
yaw/rotation when achieving its goal.

e Xy goal tolerance (double, default: 0.10): This defines tolerance in meters for the controller in
the x & y distance when achieving a goal.

e latch xy goal tolerance (bool, default: false) If goal tolerance is latched, if the robot ever reaches
the goal xy location it will simply start rotating on the spot, even if it ends up outside the goal
tolerance while it is performing the navigation part.

Global Planner: Navfn

This package implements a fast, interpolated navigation function that is used to create efficient plans for
a wheeled mobile base through the navfn::NavFn class. It also provides a ROS Wrapper for this class via
the navfn::NavfnROS object that adheres to the nav_core::BaseGlobalPlanner interface specified in the
nav_core package. The navfn::NavfnROS object is also very helpful as a global planner plugin for the

move_base node.
Parameters in this package are:
allow_unknown: This specifies whether or not to allow navfn to create plans that goes in unknown space.

planner_window_x: Specifies the x size of an optional window to restrict the planner to. This can be
greatly used for restricting NavFn to work in a small window of a large costmap.
57

planner_window_y: Specifies the y size of an optional window to restrict the planner to. This can be

greatly used for restricting NavFn to work in a small window of a large costmap.

default_tolerance: A tolerance on the goal point for the planner. NavFn tries to create a plan that is as

close to the specified goal as possible but no further than default_tolerance away.

16|15
15
G 14
13112
12
11
10

w
o | 1] 1

ta| =]
s | 1] s i 18
va| =] e
) T

w
| = ||

1 [25]z4]2s 125|zd]23[22]20]22 25 [24]25) 25[24]23]22]21]22

2524|2324 |25 25024 |23)27 |21 |0{21 25|24 23 2425 125 |24 |23 | 22|21 |20]21
S| 2S 22| 23 [2425 | 2 AS | 222N [0 19] 20 2524|2322 |23 |24 |25)24 [23[2 2|21]|20]19] 20
2512412322130 |Z31233 | 24|33 23|31 [F0|19]18]19
T EEE (e e
16|15 16[17|1B[19]20)21 23|22 16|17
15| 14) 15|16 17 (1819130 124 |23 24 15|16
14 {13 14]15|16]17|1E|19 24| Cr 14|15
13]12]13|14[15[16[17]18 13|14
1Z|10)12|13| 14 {15]16(17 12]13

| & || i
e | = | e | |
bl | bt | o | R | e
() 1)) =
o |l | e | | O
Ll 0 R L= e |
o | e 0| e
el | | B
|
=

i | L | O

Figure 4.9 Djisktra algorithm

4.3 Dynamic Window Approach (DWA)

Dynamic Window Approach searches for commands controlling the robot by creating a search space for
velocities. In our case these inputs are rotational and translational velocity and these can be considered as
a velocity pair (v,w). Dynamics of the vehicle is included to search for just those velocities which are

under dynamic constraints and thus reducing the search space.

58

Search Space- The possible paths of robot are uniquely defined by velocity pairs. Each path is having

curvature given by ¢ = % this resulting trajectory should not intersect with the obstacle.

IS e B e BN

Corridor

Circular trayectories “--.: Circular trayectories

of backward movements_.--7% of forward movements

¥

Figure 4.10 Illustration of a robot navigation environment using DWA

The complete set of admissible velocities (Va) is computed by a function Dist (v, w) that computes the
distance to the nearest obstacle for a given trajectory.

Dist(v,w)= min(dist(v,w,0bs))

v < /2 % Dist(V, W) * Vmax }

V,= ’
{(v Wl W < /2 * Dist(v, W) * Wy, /C
(4.1)

where v_max and w_max are the maximum linear and rotational accelerations respectively. Vp is the

whole space of all possible velocities for the robot. This is expressed as:

V,= {(v, o)l , Ev[e 19, V] }

—Wmax, wmax]
(4.2)
Due to dynamic constraints of body, there is a set of reachable velocity given by dynamic window Vy:

= [v, — Vv *dt, v, + ¥ * dt] }

v
Vd _{(v;w)lwz [wc—w*dt’wc+w*dt]

(4.3)

The resultant velocity search space is given by

59

Right
frontal
door

Left
frontal
door

: ”Inl u .I' u .III

Figure 4.11 Velocity map

From this resultant velocity search space, the controller chooses a velocity pair that maximizes our
objective function. The objective function can be written as a function of dependent parameters which

brings the vehicle close to its target.
G(v,w) = o * (a * Dist(v,w) + B * speed(v,w) + y * heading (v, w))
(4.4)
Here o is the scaling factor and a, 8 & y are the tuning parameters.

The Dist function represents the distance to the nearest obstacle over a circular trajectory with a

curvature given by the velocities (v, w). From equation 1, we can reverse calculate the dist function.

If the path is clear, then the vehicle should move at high speed so as to minimise time to reach the target.
This is taken care by speed function. Though it has disadvantage like no orientation parameter is

involved.
Speed(V)= V/Vmax

The orientation parameter takes care of the anamoly caused by the speed function. It gives a measure of

how much the vehicle is oriented towards the goal target.
Heading(w)=1 — |c — w * dt|/m

We can define some other function which can be suited for our platform. Another objective function can

be defined as such:

60

v — vl lw — w] .
CGww)=p *|1———]+ Uy * (1 — 77— | + p3 x dist(v, w)

2 x VUmax 2 % Wmax

(4.5)

4.4 KALMAN FILTER

There are two basic position-estimation methods widely used in navigation system, i.e. absolute and
relative positioning. Absolute positioning uses navigation beacons, active or passive landmark, map
matching, or satellite-based navigation signal, where absolute positioning sensors interact with dynamic

environment. Relative positioning is usually based on odometry sensors, or inertial sensors.

There are two kinds of sensors: internal and external sensors. Internal sensor utilises physical variables
that can be measured on the vehicle. Typical examples are gyroscopes, accelerometers, compasses,
encoders. Except for compasses, internal sensors present a typical drift that affects long term estimates.
However, short period measurements are quite accurate moreover, internal sensors give immediate

responses.

External sensors keeps track of relationships between the robot and some natural or artificial reference
objects: if some characteristics of the reference objects (for instance, their position in space) are known,
it is possible, by means of proper computations, to estimate position and orientation of the robot with
respect to its environment. The computation step makes an external sensor not continuous; nevertheless,

estimation errors do not present drift, since precision doesn't depend on mission duration, but on position.

The type of internal sensors that are mostly used in navigation is odometry sensor. They are mounted on
the robot’s wheel shafts and register angular movements of the wheels. These angular rotations are then
converted into linear movements. But this process has a very limited accuracy, for example, if slip
occurred on the wheel, then the odometry will register the movement, but in reality, the vehicle may stay
on its own position due to the lateral drift phenomena. In long run, due to the incremental motion of
odometry, this error will keep on accumulating while processing the positioning of the robot. However

one advantage of using odometry is that the data is continuously available.

GPS (Global Positioning System) is one of the external sensors which is used to give absolute position of
the robot but is not consistently available. At the same time its frequency of publishing data is less than

that of the odometry and IMU sensor.

Kalman filter uses the idea of using multi-sensor fusion for trajectory estimation by taking advantage of

both internal and external sensors: in particular, position and orientation are estimated, in short period, by

61

internal sensors and their increasing errors are periodically limited by using external sensors. This also

involves weighting both internal and external estimates.

The robot external kinematics has been earlier defined in eq. 2.7 :

X1 [cos(p(8)) O
y sm((p(t)) 0] [w(0)
®

4.4.1. Kalman filter algorithm

A kalman filter simply calculates state prediction given by mathematical model and measurement update

from the sensors over and over again.

First we have a state variable given by x = [x y 8] which is given an initial condition. In our case the

initial positional coordinated x,y is given by GPS and 6 is given by IMU.

An uncertainty is given for the initial state by the covariance matrix P. In the one-dimensional case, the

variance is defined as a vector, but now is matrix of uncertainty for all states.

10 0 O
P=10 10 O

0 0 10

This matrix is most likely to be altered during the filter passes. This gets changed in both the predicted
and corrected steps. The Matrices needs to be initialized on the basis of the sensor accuracy. If the sensor
is very accurate, we use small values. If the sensor is relatively inaccurate, large values needs to be used

to allow the filter to converge relatively quickly.

The core of the filter is the dynamics matrix A which we should set up with great understanding of the

physical context. We have previously defined in chapter 2 (eq. 2.11)

[v(k) * Tg cos ((p(k) + w(k) * %)]

A= v(k) * T sin ((p(k) + w(k) * %)

w (k) * T

As the movement of the can also be disturbed, we introduce the process noise co-variance matrix. The
filter information is obtained by this matrix, and how the system state can “jump” from one step to the
next. If an acceleration command tries to affect the system state, then the physical dependence for it is
described in Q. This Q matrix is a co-variance matrix having following elements:

62

_ 2 2
Q = |0yx Oy Oye
2 2 2

Opx” 0Ogy~ 0p°(0)

The filter also need to be told what is to be measured and how it can relate to the state vector. This is done

by computing matrix H.

01 0

H:[o 0 1

If the sensors measure in a different steps or the size by detours, we need to map the relationships of the

measuring matrix in a formula.

The measurement uncertainty measured by measurement noise covariance matrix R indicates how much
one trusts the measured values of the sensors. If the sensor is very accurate, we use small values. For

higher inaccurate sensors, large values should be used here.
_[10 o
R=[y 1l
After initialization of the state vector with a position and velocity, the dynamics can be used to make an
optimal prediction about the current location of the robot.
xt+1 = xt + A

The co-variance also needs to be recalculated. In the predicted step uncertainty about the state of the
system increase, as we have seen in the one dimension case. In the multidimensional case, the

measurement uncertainty gets added up, so the uncertainty becomes more and more.

From the sensors we get current measurement values, with which an innovation factor (y) is obtained by

using the measurements, the state vector with the measuring matrix.
S=H=*«P+H +R

This determines the Kalman gain. This defines whether the readings or system dynamics should be more

familiar.
K=PxH %S

The Kalman Gain reduces if the readings (measurements) match the predicted system state. If the

measured values are different, the elements of matrix K become larger.

63

Previous position | Measurements |
+ error estimate l

Prediction > Update |
Predicted position New position I
+ error estimate + error estimate

Figure 4.12 Kalman Filter basic working layout

64

Chapter 5
RESULTS AND DISCUSSIONS

As previously discussed the project has been completed on two phases: one of the part deals with the
vehicle modelling and motion controller implementation while the other part deals with the development

of autonomous vehicle and trajectory planning of the robot.

5.1 Vehicle modelling

The simulation considering various vehicle parameters in the mathematical model has been done. The

model has been already formulated in chapter 2 and the simulation has been carried out in MATLAB.

Generally the autonomous vehicle moves at a very low speed considering the safety of the surrounding
and the payload it carries. Besides, there can be cases which can’t be predicted earlier in the simulation.

So I have limited our speed up to 40 km/hr in the simulation and then have seen the changes.
5.1.1 Steering actuator consideration

There have been lot of papers published regarding the mathematical modelling of the vehicle where the
steering actuator dynamics was ignored. But there are known errors due to the exclusion of the steering
actuator. In real world, we don’t change the vehicle steering angle by applying force to the wheel, rather

we give voltage commands which turn the vehicle wheels by desired steering.

20 T e -

pur
W
T

heading angle (in degrees)
) =
T T

/ CarSim Simulation

e = Matiab Simulation without actuator
/ Matiab Simulation with actuator
— — —desired heading angle

0 5 10 15
time (in seconds)

Figure 5.1 Comparison for 20° heading angle input when vehicle is moving at 3.2 m/s

65

with actuator
wilhoul actuator

heading angle emor (in deg)

lird (in S8c)

Figure 5.2 Heading angle error without actuator dynamics and considering actuator dynamics when the
vehicle is moving at 3.2 m/s to achieve a desired heading angle of 20 degrees

We simulated the vehicle with and without taking the steering actuator dynamics into account and then
compared the results with CarSim. It has been found out that the test vehicle takes 7 seconds to reach a
constant velocity of 3.2 m/s. So, we gave the desired heading input to the vehicle starting from 7 seconds

and then simulated the outputs.

In each test, the vehicle is allowed to run with a constant velocity of 3.2 m/s in a straight path and after 7
seconds, a desired step input of 20° heading angle was given to the vehicle. The results have been
performed in CarSim and MATLAB. In MATLAB, we took two conditions. In first we considered the
role of steering actuator dynamics and in other we neglected its presence. There has been significant
deviation due to this assumption. With steering actuator in consideration, we have less values of settling
time and less steady state errors. Without steering actuator, the settling time reaches to 4.5 seconds as
compared to 2.5 seconds by taking steering dynamics into account as can be seen in figure 5.1.

In figure 5.1, we also observe a significant difference between the simulation results of CarSim and
MATLAB. We observe when the vehicle is simulated in CarSim, we have high settling time which is
comparable to a condition without actuator. These deviations can be attributed to the real life
environments provided by CarSim. The overshoot and steady state errors seem to be reduced in the
MATLAB simulation but in CarSim simulation, we have steady state error of 1.2% but there is no
significant overshoot. In figure 5.2, we can see the overall picture. It has been obtained by subtracting the
simulated and carsim results. We see that the heading error reaches to more than 10° when we don’t take

the steering dynamics into account. With steering actuator the error reduces to a value less than 7°.

66

CarSim Simulation
————— Matlab Simulation without actuator
! Matlab Simulation with actuator

steering angle (in degrees)

0 5 10 15
time (in seconds)

Figure 5.3 Steering angle comparison when 20° heading angle step input is given for vehicle running at
3.2mls.

In Fig.5.3, steering angle for the CarSim and MATLAB simulations has been compared. We observe that
the simulation considering the actuator shows a maximum steering value of 20°, while the CarSim
simulation suggests a lower value, 9.5°. By considering actuator we also come to find that it takes the
vehicle an almost 2 seconds to reach the steering value of 20°. This is relatable to real-life condition

because we can’t get an instantaneous output. If some input is provided, it takes some amount of time to

give the output.

Table 5.1 Results for vehicle running at 3.2 m/s with 20° step input heading angle response

Scenario Heading angle response Steering angle response
(in) (in °)
RMS error | Steady state | RMS error Maximum
error steering angle
With actuator 1.1075 0.049 1.2215 11.4
Without actuator 1.7769 0.065 1.8984 14.05

5.1.2 Sensitive Analysis of Vehicle Parameters
Considering a J-turn manoeuvre for the vehicle, a sensitive analysis on cornering stiffness has been done.
Generally there are three conditions when a vehicle performs a continuous rotation motion: oversteer,

neutral steer and understeer.

Oversteer is what occurs when a car turns (steers) by more than the amount commanded by the driver.

Conversely, understeer is what occurs when a car steers less than the amount commanded by the driver.
67

Since for different situation on real road cornering stiffness can change a lot, we have to model the

vehicle such that it can sustain those situations.

25 T T

Neutral steer
— — - Over steer
under steer

2

heading angle (in deg)

time (in sec)

Figure 5.4 Effect of Cornering Stiffness on the vehicle

We observe that there is no such drastic change when we change the cornering stiffness value to
incorporate these driving conditions. The graphs seem to follow the same lines. This is something which

is actually predictable at lower velocities since the dynamics doesn’t come into play at these velocities.

25 T T

20 [7 1
B
) /
o /
£ 15 [1
2 |
U’ |
c f
] ,
o
S 10 1
o
©
[}
=

5| [No weight added
[— — —100 kg on front-left wheel
‘ 100 kg on front-right wheel
100 kg on rear-left wheel
J 100 kg on resr-right wheel
O L
0 5 10 15

time (in sec)

Figure 5.5 Effect of mass on vehicle performance

68

From the figure 5.5, | have simulated the vehicle model by adding 100kg on each wheel separately. It is
being observed that there is no such effect on the vehicle even if we add more mass to it. The graph seems

to follow the same as before.

5.1.3 Motion Controllers

I have implemented two motion control schemes on the robot and checked the performance and
robustness of the vehicle. The simulations have been performed by taking various dynamic and kinematic
vehicle parameters into account. The vehicle is moved with five different velocities so that we can design
a controller which can track the vehicle path at every velocity. The controller should be such that it can
handle the vehicle at different road and driving conditions. Meanwhile, we also have to take care that the
tuning parameters should not be changed to make the vehicle performance better ,i.e., the vehicle should

adapt to the condition it is facing.

First of all 1 have tuned the controllers to the get the best possible results. This has been done for both
controllers for velocities 5, 10, 20, 30 and 40 km/hr. In addition we have also included the steering

actuator in our basic model.

25
520 o -
[0} 7
© I S
= /s /
=BT !
= J 4 v=5 km/hr
c i >
o i v=10 kmvhr
= 101 It /,-" v=20 km/hr
b Wit — — —-v=30 kmthr
o il i S —#— v=40 km/hr
= B iy desired heading angle | |
£os
O N N) N W - W W - L
0 6 10 15
time (in sec)
15
v=5 km/hr
= A v=10 kmvhr
5 v=20 kmvhr
S0t o — = —-v=30 kmihr| |
7 #— v=40 km/hr
S / \
= / \
@© / \
® £ X, \
‘ \
0+ Ml
0 5 10 15
time (in sec)

Figure 5.6 PID controller best tuned with varying gains and speeds

Figure 5.6 shows the vehicle heading and steering angle change when | am manually tuning the

parameters of the PID controller. It is observed that as the velocities increase, settling time reduces and

69

the steady state remains within the desired limits. Also the gain values are recorded and tabulated for

reference. The maximum settling time is 4.3 seconds for velocity = 5 km/hr while the minimum settling

time is 1.8 seconds for velocity= 40 km/hr. The steering angle is also lower for higher velocities and

higher for lower velocities. For v=5 km/hr, maximum steering angle is obtained as 13.47° and for v=40

km/hr maximum steering angle is just 4.88°. The steady state error in case of PI controller is less than 2%

for all the velocities.

2
220 i R
g i S
; /
£ / i/
P 15
© /
& ,-‘/ v=5 km/hr
gior W v=10 kmvhr
B i/ v=20 km/hr
2 B] — — —-v=30 km/hr
[¥—v=40 km/hr
,'c" 3 desired heading angle
0 f— e L 1
0 5 10
time (in sec)
15
v=5 km/hr
— ‘_"‘\\ v=10 km/hr
4 Y v=20 km/hr
Cof VAl ———-v=30kmthr| A
= /. ‘\ v=40 km/hr
@ \
=2 11 “.
c / \
o / %
2 5y A %
) K
w ; \,\
/ \\
0% ! .' X ik bk =k
0 5 10
time (in sec)

Figure 5.7 SMC controller best tuned with varying speeds and gains

Figure 5.7 shows the vehicle performance when SMC controller has been implemented. | have kept the

same velocity range and the other vehicle parameters. The trend observed in settling time and steady state

error is same of the PID but it shows a better performance in those respects. This can be clearly seen from

the table 5.2.
Table 5.2 Comparison of best tuned SMC and PID controller

Speed Pl SMC PI gain values SMC gain
(in values

km/hr) | settling | steady state | settling time steady state kp Ki ks a

time (in error (in (ins) error (in %)
S) %)

5 4.47 1.57 4.22 0.029 0.66 0.002 1.6 0.9
10 3.25 1.32 3 0.029 0.45 0.004 1.7 10.99
20 2.36 1.06 2.19 0.029 0.3 0.003 1.9 1.6
30 2.21 0.43 2.01 0 0.23 0.001 2.3 3.6
40 2.09 0.38 1.79 0 0.182 | 0.0009 29]9.24

70

Generally, it is observed in the vehicles that the gain values can’t be changed as the vehicle changes its
speed. The change is so instantaneous that such a controller should be chosen so that could provide a very

slight deviation from the previously well-tuned gain values.

To incorporate this study, the simulation has been performed by keeping the gain values constant and
varying the velocities. First of all, both controllers were best tuned for velocity 5 km/hr and then the

simulation has been performed keeping the gain values constant.

35 T T

[+
[==}
T

=)
@
)
::c_', 20+ I-' —
@ BEIE
g‘ 15 ’ q
Dt v=5 km/hr |
5 e y= 10 kmihr
@ s v=20 kmvhr 4
= — — — -v=30 kmvhr
0 —#— v=40 km/hr 4
»— desired heading angle

0 5 10 15
lime (in sec)

15 '
v=35 km/hr
e = 10 kehE

ol w=20 kmvhr |]
; ' — — — -y=30kmhr
£ # #— w=40 kmihr
—_- 5 - |
@O
2 i+
c
© . i sy ¥
g Q%
@
2
w 5 |

-10 : I

: 5 10 1

time (in sec)

Figure 5.8 PI controller behaviour keeping gain constant with best tuned at 5 km/hr

71

20 - et b o g e e s b o
ﬁ’}'_,ﬁ.--r/' L | :
A

w=5 kmdhr
oo w=10 kmihr

heading angle {in deg)
2
T
1

N
5 |- pii s v=20 kmhr
A — — —-y=30kmhr
f/ —#—v=40 kmhr
f/ ; —|>— desired heading angle

e
4] 5 10 15
time (in sec)

steering angle (in deg)
[=-]
T

4t Avy 1
ot B
SN _
/ W, 9 .
g :.‘.’r e e
0 5 10 15
time (in sec)

Figure 5.9 SMC controller behaviour keeping gain constant with best tuned at 5 km/hr

From the figure 5.8 we observe that as the best tuned PI controller for 5 km/hr velocity is applied to
higher velocities there is an increase in overshoot as the velocity increases. Also, the rise time decreases
with increase in velocity. The total time to achieve steady state significantly increase from 5 km/hr to 40
km/hr. This is because as the velocity increases, the overshoot increases significantly and thus the vehicle
keeps on trying to follow the path but is unable to reach the desired trajectory quickly and oscillates

around it.

This suggests that controller parameters tuned at 5 km/hr cannot be reliably used for controller at 40
km/hr. But controller tuned at 5 km/hr can be used for 10 km/hr. Therefore, the best tuned controller at a
particular velocity can be practically used in a small range of velocities as there is lesser deviation from
the performance of the best tuned one. This can be considered a disadvantage of PID controller as there
are a lot of undesirable situations on road like bumps or some sudden jerk which increases the vehicle

velocity significantly. In those cases the controller fails to give the desired control on the vehicle.

From the figure 5.9 we observe that as the best tuned SMC at 5 km/hr is applied for higher velocity the

settling time almost remains same. There was no sign of overshoot as the velocity increases.

SMC performs significantly better for higher velocities once tuned for lower velocity than the similar
tuned PI controller. This can be clearly observed from the table 5.3. In case of SMC I don’t get any
overshoot and even the settling time reduces with increasing speeds. So it can be said that this controller
doesn’t need to be tuned for a certain range of velocities and thus is able to handle uncertainties better

than the previous discussed controller PID.
72

Table 5.3 Comparison of PID and SMC when best tuned at 5km/hr with increasing velocity and constant

gain
speed (in PID SMC
km/hr) settling time | Overshoot (in %) settling time (in s) Overshoot (in %)
(in's)
5 4.47 0 4,22 0
10 5.89 11.3 4.03 0
20 6.07 21.06 3.82 0
30 6.78 35.6 3.67 0
40 7.41 48.7 3.33 0

5.1.4 Linear and nonlinear model

As discussed in chapter 2, | have formulated two mathematical models for the vehicle. One includes the
nonlinearities found in the model while the other one is linearized model. Here, | am going to compare
both the models by implementing SMC controller and steering actuator dynamics whose results have
been discussed above. Also these simulation results are compared with CarSim results for validation.
Finally a double change manoeuvre has been implemented in the simulation to get idea of the real path

tracking error.

20 . - ——

15 /

5L { ,." CarSim Simulation
/ — — — Non-linear model

heading angle (in degrees)
S

/

Linear model
Input

10

time (in seconds)

15

15

10

steering angle (in degrees)

CarSim Simulation
— — —Non-linear model
Linear model

5 10 1
time (in seconds)

5

Figure 5.10 Linear and Nonlinear model comparison at 3.2 m/s for 20° turn

73

100

heading angle (in degrees)

-20

o [}
o Q

steering angle (in degrees)
W
(=]

(=}

80

60 [

40

20

CarSim Simulation

— — —Non-linear model

Linear model
Input

time (in seconds)

1
10

15

N
o
T

-
o
T

CarSim Simulation
— — — Non-linear model
Linear model

time (in seconds)

10

15

Figure 5.11 Linear and Nonlinear model comparison at 3.2 m/s for 90° turn

The comparisons have been made for two angles turn, 20° (lower angle) and 90° (higher angle). Generally

the vehicle is run up to 5 km/hr. That’s why the simulation is carried at a test speed of 3.2 m/s. From the

figures 5.10 and *5.11, it can be seen that the vehicle can be better tracked by the non-linear model. There

is a significant deviation the linearized mathematical model from the CarSim results. This needs to be

avoided so that the trajectory tracking becomes consistent when the vehicle is moves on a real road. In

case of lower angle turn, the error in trajectory tracking by linearized model may be considered within

limits but for the right angle turn, the error is significantly large and can’t be ignored.

In the table 5.4 below, the results have been tabulated.

Table 5.4 Nonlinear and Linear model comparison with SMC at 3.2 m/s

Simulated Heading Angle RMS error (in deg) Steering Angle RMS error (in deg)
Model
20° 90° 20° 90°
Linear 1.3485 7.523 1.434 5.6318
Non-linear 0.661 1.7653 1.03 1.2897

74

After performing all the above simulation, we finally implemented the desirable controller and best
predicted model in the vehicle simulation and a double lane change (DLC) manoeuvre has been

implemented to find out the path tracking error.

30 : T - T T T T
Carsim Simulation
—-—-—Model behaviour
20 —— \ input -
.5/ W\
m /
& /
o
o 10 f \ =
D ‘I’
© A’ \
£
5 /
=) e T
c k¢
© /f
o
= \ /
o -10 i i .
© \ /]
) \\ /
I \ \/.'
. y
-20 — / 3
_30 1 1 1 1 1
0 5 10 15 20 25 30

time (in seconds)

Figure 5.12 Comparison of predicted model with CarSim simulation at 3.2 m/s for DLC manoeuvre

In figure 5.12, | observe that matlab simulation results are quite close to desired heading input. It takes
almost 3.2 seconds to reach a constant input of 20°. Meanwhile in CarSim result, we observe that it takes
almost the same time to reach the desired input. The results seem to follow the model behaviour quite
closely. I have also performed the simulation for two more speeds 2 m/s and 5.55 m/s. The trend comes
out to be the same for those two as well. In those cases, | have kept the SMC gain values same as before

S0 as to take the real world situation into account. Finally the results have been tabulated in table ***,

15 T T - T T T T T T T
Carsim Simulation
—-—-— Predicted path by mathematical model

Y (in m)
($)]
T
N
7

0 10 20 30 40 50 60 70 80 90 100
X (in m)

Figure 5.13 Path tracking for DLC manoeuvre at 3.2 m/s

75

Figure 5.13 shows the path tracking comparison between the formulated model and the CarSim results.it
is observed that the actual car (CarSim model) seems to be a little deviated from the desired path. This
deviation has been quantitatively found out for all the three speeds. These errors increase as we increase
the speed. This can be actually expected on a real vehicle since there is always some drift error when a
vehicle is moved straight. These drift errors can be attributed to the tire slip caused due to non-linearities

in tire models. The below table 5.5 shows the path tracking errors for different speeds.

Table 5.5 Predicted model errors for different speeds in DLC manoeuvre

Vehicle velocity Heading Angle comparison Path tracking
(in m/s) RMS error (in
RMS error (in Steady state | Settling time (in m)
deg) error (in deg) sec)
2 1.073 0.02 4.32 0.4512
3.2 0.687 2.56%e"-3 3.83 0.5123
5.55 3.657 1.09%e"-3 2.18 0.542

5.2 To find and reduce odometry error on the experimental vehicle

The experiments have been performed on OxDelta series robot, a four wheeled differential-drive robot.
The controller codes have been implemented using ROS platform. The basic objective of this part is to
find the real problems when we move a robot in real world. As we know there are certain limitations for

every sensor so sensor fusion techniques using kalman filter has also been applied.

There are four sensors which have been put into use: IMU, wheel encoder and integrated GPS-INS.
Integrated GPS-INS provides a reference for the actual path and orientation taken by the robot. My
objective is to use wheel encoder and IMU data to get the corrected pose estimates of the robot in
outdoor. But the robot is also designed to perform indoor navigation where we can’t rely on GPS. So my
basic idea is to fuse odometry and IMU data to get the correct pose estimation in indoor environment.
Even the sensors publish data at different rates. So to incorporate those anomalies sensor fusion becomes

quite necessary.
5.2.1 Odometry drift calculation

Firstly the odometry drift has been quantitatively studied by moving the robot in a straight path with two
speeds. It is observed that as the robot moves forward, the drift gets accumulated. This should be avoided
as the odometry is publishing data in the robot as if it is moving in a straight path but in reality the robot

is having some lateral drift. This gives the wrong pose estimated to the controller and there is likely for

76

the robot to hit the walls or some obstacles. So, this makes it clear that the odometry data is not sufficient

to give the corrected pose estimate of the robot.

0.15 T - T T

0.1 1

Desired path
e M

Y (inm)
/

i i

Actual path S\\ i[i
0.15 [d ' 2

i
0.2]
0.25 . =
03[b

O 35 1 1 1
0 5 10 15
X (in m)

Figure 5.14 Robot running at 0.4 m/s for 15 m
I I I

I
= = =desired velocity

0.45

actual velocity

0.4 -

0.35

e
w

0.25

Velocity (m/s)
o
N

o
-
(5]

0.1

-0.05 | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Time (sec)

Figure 5.15 Velocity analysis at 0.4 m/s for 15 m

77

Table 5.6 Path tracking errors when the robot is moved straight

Case | DeSred lnear | Ol | disance | RMSEMTOrin oy | Lateral rif
(m) covered (m) error (m/s)

1 0.2 10 9.89 0.1380 0.0174 0.15

2 0.4 10 9.81 0.2684 0.0622 0.18

3 0.2 15 14.86 0.1819 0.0156 0.253

4 0.4 15 14.78 0.3260 0.0584 0.287

From the above experimental results, it can be observed that the lateral drift increases as the robot covers
more distance. This is because the error in odometry keeps on accumulating over the time and gets added
each time. This deviation is expected at every kind of surface. In this experiment the robot is moved on
tiles which are very smooth as compared to roads. As the surface becomes different, it is highly likely that
the robot will not show the same results as before. Also with increasing velocity, the lateral drift increases
due to increase in lateral tire forces. These tire forces are solely responsible for lateral drifts. Therefore

increasing the speed of the vehicle causes more deviation from the actual path.
5.2.2 Running robot in outdoor environment and Kalman filter

In the next set of experiments the robot is allowed to run in the outdoor environment where the data is
collected using the sensors mounted on the robot. Firstly the sensors have been transformed to the robot
base coordinates. So the pose estimation has been done in the robot frame. In this case the basic idea is to

know about the trajectory followed by the robot when it is given some velocity commands.

78

100 T T T T T T

GPS data
2 S et — — —Odomeltry data
80 f , S -
e IR e o -
60 r (' ! ‘r—l 7
', {
—_ 40 / { 3
E |
- |
20 1 -
| ‘r\< s
| Y,/’ pL
or 1\ = 7— de 1
|'| .. : /
1 -~ _
20 F S [BSES I ——_/---v-/]
.40 1 1 1 1 1 1 1 1
-120 -100 -80 -60 -40 -20 0 20 40 60

X (m)

Figure 5.15 Representing GPS and raw wheel odometry data when the robot moved in a closed path

25 T T T T T T T
20 | \
\§
— ‘ll
£ "
S 151 \
5
5
® 9
= \
9 107 |{
N |
5 ({ ." .
| \
| M "\l |
f \
O 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time (in sec)

Figure 5.16 Path tracking errors

In the figure 5.15 the robot is moved to form a closed loop. It can be easily observed that the odometry

drift got accumulated shows very different results from the actual GPS data received. This should be

definitely avoided otherwise accidents are likely to occur due to wrong pose estimated by wheel

odometry. The distance RMS error calculated from these data has been found out to be around 11.50
79

metres. This error is quite large and is clearly not acceptable. In figure 5.16, the maximum error is found

out to be 24.56 m.
Data publishing rates of different sensors:

e GPS (Garmin):1.02 Hz
e IMU (Xsens): 97.8 Hz
e Wheel Odometry: 10 Hz

The kalman filter used in our case use a filter time parameter which publishes data with a frequency of 20

Hz. The odometry data is fused with IMU data to get the best possible position estimates.

100 T T T

—-—-—filtered data
—GPS data
Odeometry data
80 7
60 [2
! f
| i
_. 40 | f
£ ! [
£ ! A
- |
20F |
oF | ;I
\ '/_/"’4
_20 | L o S . ESSNCIELY ,_Srne ‘:"
.40 1 1 1 1 1 1 1 1
-120 -100 -80 -60 -40 -20 0 20 40 60
X (in m)
Figure 5.17 comparison GPS data and Kalman filter data obtained from the fusion of odometry and
IMU

From the figure 5.17, we can clearly see that the filtered data follows the GPS data quite accurately. The
RMS error is found out to be less than a metre (0.89m) and the maximum error is 2.45m. These errors are
within the acceptable range. Thus we can see that there is no need to rely only on GPS data rather we can
implement sensor fusion techniques which can predict a close behaviour. The kalman filter uses weight
parameters for different sensors. These parameters have been tuned to get the best possible result. If we
include GPS data into this sensor fusion the results are further better. We know that each sensor has
certain limitations: IMU gives just the orientation and acceleration data, Odometry gives drift errors and
GPS works well in outdoor but in certain places we can’t have a good GPS (for example, tunnels). So it is
good to use all the three data to get the best possible position estimates of the robot. This is a lot needed

when the localisation part is done on the robot. For performing autonomous navigation it is important that

80

the robot should know its current position to the best accuracy because if wrong pose estimates will lead

to incorrect map building and the navigation might fail.

5.3 Autonomous Navigation in Indoor Environment

Finally after setting up the robot and calculating all sort of errors | implemented the navigation algorithm
for obstacle detection and obstacle avoidance. This is done in two phases: first phase deals with the
localisation part, i.e., map-building using SLAM and second phase deals with implementation of path

planning algorithms based on the map created and the laser scan received from the LIDAR.
5.3.1 Localisation

If one could attach an accurate GPS (global positioning system) sensor to a mobile robot, much of the
localization problem would be obviated. The existing GPS network provides accuracy to within several
meters, which is unacceptable for localizing mobile robots. Furthermore, GPS technologies cannot

function indoors or in obstructed areas and are thus limited in their workspace.

That’s why a map based approach is considered the best for indoor navigation of the mobile robots. It
includes both localization and cognition modules. In map-based navigation, the robot explicitly attempts
to localize by collecting sensor data, then updating some belief about its position with respect to a map of

the environment.

The robot constructs a two-dimensional geometric representation of its environment using the laser
scanner. It utilizes a combination of this geometric data and odometry information supplied through the
wheel encoders to determine its current location. It generates a point cloud where each point corresponds
to a location where it believes it could be based on available data. As the robot moves, it rules out
possible locations and the number of points in the cloud decreases. In this way, its number of belief states
rapidly converges to its true location. Thus, the robot achieves localization through probabilistic

inference. The below figure 5.18 depicts the map building in a closed room.

81

File Panels Help

) interact | % Move Camera [JSelect <> FocusCamera == Measure . 2DPoseEstimate .~ 2DNavGoal @ Publish Point =
CJ Displays.
~ @ Global Options
Fixed Frame map
Background Color W 48; 48; 48
Frame Rate 30
Default Light V|
¥ v Global Status: Ok
v Fixed Frame OK
» @ Grid v
» I map
» @ image
» < LaserScan
» / Pose
» 7\ Odometry

REERE

Map
Displays an occupancy grid on the ground plane from a
nav_msgs::OccupancyGrid. More Information.

Figure 5.18 Map building environment in ROS

Here the robot is tele-operated to move all around the room and scan all kind of obstacle. The sensor used
to scan the environment in the above case is a 2-D LiDAR. This creates the map in a 2-D plane by
dividing them into grids called occupancy grids. On the basis of presence of any obstacle these occupancy
grids are assigned cost values to them. As discussed previously, there three markings to these grids:
Occupied, free and unknown. In the above figure, the dark black lines are the obstacles and the whitish
grey is free/lunoccupied area and the rest is unknown space. After moving the robot in the entire room, the
final map created is shown in figure 5.19.

Figure 5.19 Complete map of the room

82

The robot must not only create a map but it must do so while moving and localizing to explore the
environment. This is often called the simultaneous localization and mapping (SLAM) problem. To get
the position estimates at every moment the robot is moving, adaptive monte carlo localization (AMCL) is
used. This particle filter based on past coordinates and velocity commands predicts the current position
of the robot in the form of particles. This also uses the laser scan and based on the landmarks observed

predict the current position of the robot.
5.3.2 Path Planning Algorithm Results

Once there is map in place the mobile robot tries to navigate through the map area keeping map as a
reference. While navigating the robot tries to follow global plan to plot a path to those desired
coordinates. There are various global planners for navigating a robot across a map area to name a few:
Dijkstra’s algorithm, A* algorithm. Once a global plan has been generated, the local planner translates
this path into velocity commands for the robot's motors. It does this by creating a value function around
the robot, sampling and simulating trajectories within this space, scoring each simulated trajectory based
on its expected outcome, sending the highest-scoring trajectory as a velocity command to the robot, and

repeating until the goal has been reached avoiding all the obstacle in the way.
Global path planning

In the experiments | have used Djisktra algorithm as the global planner and two local planners: Timed
Elastic Band and Dynamic Window Approach. Each has their own problems and their own advantage. .
Once the robot has localized successfully, it can be supplied with destination coordinates and uses a
global planner to plot a path to those coordinates. The global planner uses the static map created using the
LiDAR sensor and plans the most optimal path. The local planner takes care of the reactive obstacle
avoidance problem. If any sudden obstacle is detected by the laser scanner, it overwrites the global path
and plans a new path. It also checks that if there is any path possible or not. In case no valid path is found,

it sends no velocity commands to the vehicle and displays the message that no valid paths could be found.
Effect of footprint model

Footprint is the contour of the mobile base. In ROS, it is represented by a two dimensional array of the
form [[xO0, y0], [x1, y1], [X2, y2], ...], no need to repeat the first coordinate. This footprint will be used
to compute the radius of inscribed circle and circumscribed circle, which are used to inflate obstacles in
a way that fits this robot. Usually for safety, we want to have the footprint to be slightly larger than the

robot’s real contour.

To determine the footprint of a robot, the most straightforward way is to refer to the drawings of your

robot. Then we determine the centre of the mass of the robot by considering that the mass is uniformly

83

distributed. We consider this as our centre of the robot which becomes our base_link frame point. The

vertices of the robot are determined with respect to the centre of the robot.

Generally the robots are treated as circular objects. For a robot with circular footprint, path planning is

done by considering the robot as point robot and the obstacles are inflated by the robot’s radius. At the

same time it can be done other way round as well. But all the robots are not circular, which has to be

taken into account. In our case the robot has a rectangular shape with a semi-circular top. When operating

in cluttered spaces it therefore becomes important to evaluate the footprint of these robots against a cost

map. This evaluation is one of the major computational burdens in planning for robots whose footprints

can’t be assumed to be circular.

The footprint models used in the experimentation are:

“point”’: This footprint is considered useful when the robot has a circular shape. By considering
this footprint model, we observe that the robot takes path quite close to the obstacle. There are
certain regions which are thought to be bit crowded but the robot still planned those paths and
ultimately has to change its course during reaching its goal. The main advantage with the point
footprint model is the computation time. It shows really less computation power and time required
as compared to other footprint model. Thus decision making becomes really fast.

“circular”: The circular type parameter represents the robot as a circular with the perimeter
circumscribing the entire robot. It is necessary to consider the centre of robot in this case as the
radius is decided on this basis. This footprint model provides an advantage by removing the need
for inflation radius. Meanwhile, it takes out the risk for the robot’s orientation in planning the
path. 1 observed that the velocities taken during this footprint model was not aggressive as
compared to the point footprint model.

“line”: This type of footprint comes handy when we are working with a robot which has length
greater along one direction than the other. This is particularly the case in two-wheeled differential
robot. This is the case when we considered when the inflation radius was taking care of the
obstacle avoidance. But if we reduced the inflation reduce to provide low cost paths, we found
that the robot was hitting the obstacle (boxes) while achieving its goal. This situation could be
only avoided when the inflation radius also takes the robot dimension into account. This increases
risk for high computation power.

“two_circles”: This type of footprint increases the computation complexity since the obstacle
distance has to be computed from both circles. Though this works well considering the safety of
the vehicle. The object avoidance is good since it is not hitting any obstacle coming in its way.
“polygon”. This footprint model can closely determine the robot size. However the problem can

come in case of robot’s orientation. There is always a chance that in case of on-spot rotation in an

84

obstacle surrounded area, it might not perform well. There have been occasions that it hit into
something while performing even the recovery behaviour. To avoid this, a proper value of
inflation radius has to be provided. With proper inflation, the robot behaviour has been more

efficient in the context that it could plan the shortest path. Though at the same time it takes the

s ‘Q“‘x\ A :
(@}) @
.'l i T ="

highest compute.

@ (@

Figure 5.20 Footprint models [(a) circular (b) line (c) two_circles (d) polygon]

Timed Elastic Band (TEB)

Based on the velocity and acceleration limits of the vehicle, the security distance of the obstacles and
the geometric, and kinematic and dynamic constraints of the vehicle, it generates velocity command for

the vehicle. This planner generates a quite complex trajectory for reaching the goal.

In the experiment a goal position has been given to the vehicle in rviz window. Based on the map
provided to the robot and the laser scan received it generates a velocity command to build a global path
and local path on which the vehicle is supposed to move. The landmarks scanned by laser gives the robot
an idea about the current position of the robot. Figure 5.21 depicts the path followed by the robot to

achieve the goal. The RMS error in the trajectory tracking is found out to be 0.535 m.

85

— — —actual path followed
predicted filtered path

X (in m)

Figure 5.21 TEB local planner path behaviour

10 10
| h —
g 9 —
81 sl
7r 7|
= T
£ 6 £ 6
> >
5r 5 L
4 r 4
3 3 ————
2 - P i \ s s \
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
X (inm) X (inm)
(a) (b)

Figure 5.22 Global path (b) and Local path (a) followed by the vehicle using TEB

Figure 5.22 (a) depicts the local path followed by the TEB local planner to complete the goal given.
Based on the laser scans received it avoids the obstacle and plans an optimal path around the obstacle.
Figure 5.22 (b) depicts the global path planned by the robot considering the map data which has been fed
to the robot. If there is no obstacle present or inflated cost around the object, the robot is supposed to
follow just the global path. It is seen that the global path takes a lot of time in computing the path and
publishes the data at a lesser frequency than the local planner. It is important as the global path should
take care of the best optimal path based on map while the local planner is concerned for the instantaneous

obstacle coming in front of the robot.

86

Errors involved in TEB local planner: As some obstacle comes in between the goal and robot position it
takes a very complex trajectory to avoid it. This reduces the robustness of the vehicle and due to such
trajectory generation, shortest path is not taken by the robot. There are a lot of clear paths which are

avoided by the robot. This can be seen in the below figure 5.24.
» @ i s
' +

global,path

VE T SN

(@) (b)

Figure 5.23 TEB local planner errors

In the figure 5.23 (a), the trajectory generation is very complicated while in (b) the trajectory generated

passes between the obstacles which is incorrect to proceed as the robot is likely to hit the obstacle.

Apart from that due to generation of backward velocities, it also hits the obstacle if kept at its rear side

where laser scan is not available. This can create an issue for the vehicle and passenger safety.
Dynamic Window Approach (DWA)

Based on the velocity search space and the cost values provided to the algorithm, this planner generates
the velocity commands. The main advantage of this planner over TEB is that it doesn’t generate any

backward velocities and thus it improves the obstacle avoidance issues caused due to TEB.

Various situations have been tested using this planner. It is observed that the robot moves very close to
the obstacle. In that case footprint padding needs to be increased. Besides the cost weight parameters need
to be tuned for getting the best performance of the planner. Generally path_distance bias has to be
considered as this parameter decides if the robot’s local planner will overwrite the path planned by the
global planner or not. goal_diatance bias parameter has to be increased in order to make the vehicle reach
to the correct goal position.

87

8
— — —actual path followed
" o i e R S predicted path
//
-
(7
[
i
T
’g \
£4 <
> P
3k a9
2t B
1F
0 ;
6 5 4 -3 2 1 0
X (inm)
Figure 5.24 DWA local planner path behaviour
17 17
16 SRR 6

£ ~ £
> 12 _\ > 12
g
—
11 S 11
——
——
10 " 10
\.}:\\‘
9 : 9
8 i i i { i | 8 i i i i
10 1 12 13 14 15 16 17 10 11 12 13 14 15 16 17
X (in m) X (in m)
@ (b)

Figure 5.25 Local path (a) and Global path (b) followed by vehicle using DWA

Figure 5.25 depicts the path tracking when DWA algorithm is implemented on the robot. It can be seen
the path tracking is not efficient as compared to the TEB planner. The RMS error in path tracking has
been found out to be 0.86m which is 53% higher than the previous implemented planner. To be consistent
with the path tracking error, the vehicle dynamics need to be considered as in case of DWA there is on
spot rotation of the vehicle which increases the chance of vehicle slip. This vehicle slip leads to more
lateral drift which keeps on accumulating and thus the error gets added as the vehicle moves forward

towards reaching the goal.

88

An advantage of this planner can be clearly seen in figure 5.26 where the local planner plans a very

simple trajectory and reduces the computation power and time. Even there is just one set of global planner

required considering there is no obstacle around and the local planner follows it perfectly.

o A DWA velocily 0:5 ' :
‘(l — — —TEB velocity DWA VEIO(?'W
[| — — —TEB velocity
L |
0.4 ‘ '\ 04 A o " ‘
[\ ‘ [\
" ===l iy
—_ e \lt Ih‘(“l “‘\ » 03 . ‘ M l) :"“» ‘l ‘I4 i
2 | b e |l 1 R
@© L \‘11 1| | l 1l ‘ /| - 0 3
< ofyiy ! -'mn'r’{u iy ‘ - il \ ‘“ , sl
’g }"«I‘l ‘ ' J‘".',“"J “.L ’“\ [/ % 02Hh l m ._'}
$ T . i |
gozp 10 ¥ 1§]
2 \f h ‘\ £ p1t ¥ ‘
© (| I ’
041 ' | l ‘
| | ol ! |
i |
06[.'
"*' _D 1 1 1 1
0 5 10 15 20 25 30
0.8 . : : " . -
0 5 10 15 20 25 3¢ time (in sec)
time (in sec)
@ ®)

Figure 5.26 Velocity comparison of TEB and DWA local planner

Above figure 5.26 depicts the velocity comparison of both the local planner. Though the distribution
might seem random but it is clear that the TEB planner follows more regressive approach. It can be seen
in the linear velocity commands where a simple step velocity is given in DWA but it’s not the case in the

other planner.
Obstacle Avoidance

Using the above discussed algorithms, obstacle avoidance tests have been conducted on the robot. The
robot is given commands to go from one goal position to another. Static as well as dynamic obstacles
have been put in between the trajectory made by the robot. In all the cases, the robot seems to avoid these
obstacles successfully and plans out a safe path. If there are no paths available, the robot doesn’t make

any path and no velocity commands are executed.

We can also determine how closely the robot can avoid the obstacle by changing either footprint padding
or inflation radius. It is advisable to determine these two parameters carefully because if there is less
critical distance then the robot can hot the obstacles while if it has large values then some of low cost

paths are avoided which can reduce the efficiency of the vehicle.

89

Costmap Prohibition Layer

This layer has been plugged into the global costmap and marks the areas within the coordinates as
prohibited areas. This works successfully in our platform. This layer comes into use when it is
undesirable for the vehicle to go into some areas. For example, suppose in the room an area is occupied
for a short period of time and the obstacle doesn’t have height based dimension. In that case if the robot
tries to take the path around those regions, it can become troublesome.

restricted area

marked by ”

user

Figure 5.27 Costmap Prohibition layer

In the above figure 5.27, it can be clearly seen though the robot has a short path available to it, it’s taking
a longer the path as it has been marked as occupied by the prohibition layer. This comes quite handy
when there is a temporary unavailability of certain routes in the map. | have also included inflation

around the perimeter which has been used to mark the entire area as occupied.

90

Chapter 6

Conclusion

Vehicle modelling and autonomous navigation on a wheeled mobile robot has been completed in this
project. Simulation and experiments have been performed to get the idea of vehicle behaviour under
different condition. Moreover some of the challenges faced in implementing autonomous navigation in

real world have been solved.

A mathematical model which closely predicts the behaviour of a real vehicle has been formulated and
thus eliminating the need for actual experimentation on the vehicle. This helped to reduce the cost and
efforts put for the real experimentation. A non-linear mathematical model with steering actuator dynamics
has been tested and a sensitive analysis of various vehicle parameters affecting its performance has been
done. It has been found out that a non-linear mathematical model gives better results in terms of settling
time and steady state error than the linearized model. Especially, when the vehicle is taking large angle
turn, for example a right angle turn, the linearized model can’t handle the driving condition of the vehicle

whereas the non-linear model shows behaviour quite close to a real car model.

Two motion controllers, PID and SMC have been implemented on the vehicle model and their results
have been compared. It has been seen that the PID controller shows good results but when the vehicle
velocity changes it is not able to track the vehicle path as desired by the user. Since in real world driving
tuning parameters take time as well as high computation, SMC controller is preferred which can handle
vehicle uncertainties in different road conditions. To avoid chattering phenomena an adaptive high order
SMC with sigmoid control law has been implemented. It is found out that this controller handled the
vehicle parameters efficiently than the PID. There has been no overshoot when the vehicle velocity is

increased.

After the simulation results of mathematical model, experiments have been performed on a differential-
drive robot. The mathematical model for the same has been done as well and then the lateral drift has
been calculated by making the robot move in a closed path. The robot has been moved in outdoor
environment and GPS/INS data is taken as a reference for the paths followed by it. The wheel odometry
and IMU data is fused to get position estimates of the robot. This filtered data is compared with the
reference data received by GPS/INS. It is found that the pose estimation done with implementation of
kalman filter to fuse IMU and wheel odometry data follows the GPS data closely. So it is concluded that
rather than using a high cost GPS/INS sensor for localization of robot, a cost-effective way by sensor
fusion technique is possible. Apart from that GPS has a lot of limitations like it can’t work in indoor

environment or in road tunnels. So this fused data can be used in those areas to localize the robot.

91

The map building has been done using the gmapping technique which takes the laser scan reading and
build the map. This map is divided into small parts called the occupancy grid. These occupancy grids are
given the cost values on the basis of free or occupied area. An inflation layer is also added around the

obstacle so that the vehicle should not follow a path very close to the obstacle.

Two local planners have been tested on the robotic platform: TEB and DWA.TEB is very good for
obstacle avoidance but it has limitation because of the complex trajectory generation while DWA
performs the obstacle avoidance correctly and also it gives simple velocity commands to the controller. In
a crowded area, TEB behaviour is not acceptable due to generation of negative velocities because it can
hit the obstacle at the rear side of the vehicle (if there is no sensor mounted on the rear side). DWA does
an on spot rotation to visualize if the path is clear or not. After that it plans out the trajectory to be taken
to achieve its goal. A new layer called costmap prohibition layer has also been tested on the vehicle. In
this layer, a region has been marked as an occupied area. This is done because there are situations when
we don’t want the vehicle to plan its path around certain region even though that may be the shortest path.

After implementing this layer the robot is found to be taking the longer path as expected.

Future Scope

There are still a lot of challenges that need to be addressed in autonomous navigation of mobile robots.
The further work is towards building a 3-D occupancy grid map so that the vehicle can sense the
environment in all the directions. This is important when the robot is moving on a road and a bump or a
ditch comes in its way, it should sense the environment depth and avoid such obstacles. Apart from that
many non-linear factors like aerodynamic drag, dynamic road friction has been avoided in the
mathematical modelling of the vehicle. This can be included to get a complete picture of a real vehicle
performance. Roll over dynamics is also to be included to have a full 3-D stable model of the vehicle.

92

References

[1] Keshav Bimbraw, A Review of the Developments in the Last Century, the Present Scenario and the
Expected Future of Autonomous Vehicle Technology, DOI: 10.5220/0005540501910198 In Proceedings
of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-
2015), pages 191-198 ISBN: 978-989-758-122-9.

[2] Juan Rosenzweig ,Michael Bartl, A Review and Analysis of Literature on Autonomous Driving E
Journal: Making-of Innovation,THE MAKING-OF INNOVATION, E-JOURNAL OCTOBER 2015

[3] Mayur Rukhadbhai Hadiya, A Review paper on Development of Autonomous Vehicle,International

Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 01 | Jan 2019

[4] Zhigiang Li, Lu Xiong, Dequan Zeng, Peizhi Zhang, Zhigiang Fu, Jie Yao and Yi Zhou, Predictable
Trajectory Planner in Time-domain and Hierarchical Motion Controller for Intelligent Vehicles in
Structured Road, 2019 IEEE Intelligent Vehicles Symposium (1V), Paris, France. June 9-12, 2019.

[5] M.Bergerman, Omead Amidi, J.R.Miller, N.Vallidis, T.Dudek. “Cascaded Position and Heading
Control of a Robotic Helicopter.” IEEE/RSJ International Conference on Intelligent Robots (IRS) and
Systems, Sandiego, CA, USA, Nov 2007.

[6] Horwimanporn Suppachai , Chaiyaporn Silawatchananai, Manukid Parnichkun, Chairit
Wouthishuwong, Double Loop Controller Design for the Vehicle’s Heading Control, Proceedings of the
2009 IEEE International Conference on Robotics and Biomimetics December 19 -23, 2009, Guilin,
China.

[7] Y. S. Son, W. Kim, S.-H. Lee, and C. C. Chung, “Robust multirate control scheme with predictive
virtual lanes for lane-keeping system of autonomous highway driving,” IEEE Trans. Veh. Technol., vol.
64, no. 8,pp. 3378-3391, Aug. 2015.

[8] A. Merah, K. Hartani, and A. Draou, “A new shared control for lane keeping and road departure
prevention,” Vehicle Syst. Dyn., vol. 54, no. 1, pp. 86101, 2016.

[9] Gilles Tagne, Reine Talj, Ali Charara. Higher-Order Sliding Mode Control for Lateral Dynamics of
Autonomous Vehicles, with Experimental Validation. IEEE Intelligent Vehicles Symposium (IV 2013),
Jun 2013, Gold Coast, Australia. pp.678-683. fthal-00858299

[10] Alcala, E., Sellart, L., Puig, V., Quevedo, J., Saludes, J., Vazquez, D., & Lopez, A. (2016).
Comparison of two non-linear model-based control strategies for autonomous vehicles. 2016 24th
Mediterranean Conference on Control and Automation (MED). doi:10.1109/med.2016.7535921

93

[11] Anil Kunnappillil Madhusudhanan, Matteo Corno & Edward Holweg (2015): Sliding mode-based
lateral vehicle dynamics control using tyre force measurements, Vehicle System Dynamics: International
Journal of Vehicle Mechanics and Mobility, DOI: 10.1080/00423114.2015.1066018.

[12] Kanghyun Nam, Sehoon Oh, Hiroshi Fujimoto, and Yoichi Hori. Design of Adaptive Sliding Mode
Controller for Robust Yaw Stabilization of In-wheel-motor-driven Electric Vehicles, World Electric
Vehicle Journal VVol. 5 - ISSN 2032-6653 - © 2012 WEVA

[13] Tabatabaei, S. H., Zahedi, A., & Khodayari, A. (2012). The effects of the Cornering Stiffness
variation on Articulated Heavy Vehicle stability, 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012). doi:10.1109/icves.2012.6294280.

[14] S Sahoo, SC Subramanian and S Srivastava, "Sensitivity Analysis of Vehicle Parameters for Heading
Angle Control of an Unmanned Ground Vehicle" In Proceedings of ASME International Mechanical

Engineering Congress and Exposition, Montreal, Quebec, Canada, November 14-20, 2014.

[15] Sahoo, S., Subramanian, S. C., & Srivastava, S. (2012). Design and implementation of a controller
for navigating an autonomous ground vehicle. 2012 2nd International Conference on Power, Control and
Embedded Systems. doi:10.1109/icpces.2012.6508073

[16] Zhengrong Chu, Christine Wu and Nariman Sepehri, Automated steering controller design for
vehicle lane keeping combining linear active disturbance rejection control and quantitative feedback
theory, Proc IMechE Part I: J Systems and Control Engineering 1-12 IMechE 2018.

[17] D. Nakhaeinia, S. H. Tang, S. B. Mohd Noor and O. Motlagh. A review of control architectures for
autonomous navigation of mobile robots, International Journal of the Physical Sciences Vol. 6(2), pp.
169-174, 18 January, 2011.

[18] Chia-Feng Juang, Min-Ge Lai, and Wan-Ting Zeng. Evolutionary Fuzzy Control and Navigation for
Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments, IEEE
TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 9, SEPTEMBER 2015.

[19] Ghazi, I., ul Hag, I., Magbool, M. R., & Saud, S. (2016). GPS based autonomous vehicle navigation
and control system. 2016 13th International Bhurban Conference on Applied Sciences and Technology
(IBCAST). doi:10.1109/ibcast.2016.7429883 .

[20] Tzafestas, S. G. (2018). Mobile Robot Control and Navigation: A Global Overview. Journal of
Intelligent & Robotic Systems, 91(1), 35-58. doi:10.1007/s10846-018-0805-9.

[21] Andreas, S., Ina, S., Jan Becker, C., & Walter, S. (2000). Navigation and Control of an Autonomous
Vehicle. IFAC Proceedings Volumes, 33(9), 449-458. doi:10.1016/s1474-6670(17)38185-5.

94

[22] Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance.
IEEE Robotics & Automation Magazine, 4(1), 23—-33. doi:10.1109/100.580977.

[23] Guan, M., Wen, C., Wei, Z., Ng, C.-L., & Zou, Y. (2018). A Dynamic Window Approach with
Collision Suppression Cone for Avoidance of Moving Obstacles. 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN). doi:10.1109/indin.2018.8472029.

[24] Garcia, F., Martin, D., de la Escalera, A., & Armingol, J. M. (2017). Sensor Fusion Methodology for
Vehicle Detection. IEEE Intelligent Transportation Systems Magazine, 9(1), 123-133.
doi:10.1109/mits.2016.2620398.

[25] Deshpande, Pawan. "Road Safety and Accident Prevention in India: A review." Int J Adv Engg
Tech/Vol. V/lssue 11/April- June 64 (2014): 68.

[26] Xsens MTI100 series: https://www.xsens.com/products/mti-100-series

[27] Hewson P. Method of estimating tyre cornering stiffness from basic tyre information. Proc IMechE
Part D: J Automobile Engineering 2005; 219(12): 1407-1412.

95

Appendix

1. Odometry Code

#include <string>

#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
int main(int argc, char** argv) {
ros::init(argc, argv, "state_publisher");
ros::NodeHandle n;
ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom",
10);
/l initial position

double x = 0.0;
double y =0.0;
double th = 0;

I velocity
double vx = 0.4;
double vy = 0.0;
double vth = 0.4;

ros::Time current_time;

ros::Time last_time;

current_time = ros::Time::now();

last_time = ros::Time::now();

tf:: TransformBroadcaster broadcaster;

ros::Rate loop_rate(20);

const double degree = M_P1/180;

I/l message declarations

geometry _msgs::TransformStamped odom_trans;
odom_trans.header.frame_id = "odom";
odom_trans.child_frame_id = "base_footprint";
while (ros::ok()) {current_time = ros::Time::now();
double dt = (current_time - last_time).toSec();
double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
double delta_th = vth * dt;

X +=delta_x;

y +=delta_y;

th += delta_th;

geometry_msgs::Quaternion odom_quat;
odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);
// update transform

odom_trans.header.stamp = current_time;
odom_trans.transform.translation.x = x;
odom_trans.transform.translation.y = y;
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYa
w(th);

96

/ffilling the odometry
nav_msgs::Odometry odom;
odom.header.stamp = current_time;
odom.header.frame_id = "odom";
odom.child_frame_id = "base_footprint™;
I/ position

odom.pose.pose.position.x = X;
odom.pose.pose.position.y = y;
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = odom_quat;
I/ velocity

odom.twist.twist.linear.x = vx;
odom.twist.twist.linear.y = vy;
odom.twist.twist.linear.z = 0.0;
odom.twist.twist.angular.x = 0.0;
odom.twist.twist.angular.y = 0.0;
odom.twist.twist.angular.z = vth;
last_time = current_time;

I/ publishing the odometry and the new tf

broadcaster.sendTransform(odom_trans);
odom_pub.publish(odom);
loop_rate.sleep();

}

return O;

}

2. Rqt_graph: nodes communicating with each other

fodom

femd_vel

/delta_robot

/map_server

/map

/move_base/local_costmap/footprint

/Laser_link1_broadcaster

/move_base /move_base/global_costmap/footprint

Jtf_static

Iworld2odomOtf

/move_base/goal

/scan

i

3. Controller codes

#include <ros/ros.h>

#include <sensor_msgs/JointState.h >
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>

97

#include <iostream>

using namespace std;

double width_robot = 0.1,

double vl = 0.0;

double vr = 0.0;

ros::Time last_time;

double right_enc = 0.0;

double left_enc = 0.0;

double right_enc_old = 0.0;

double left_enc_old = 0.0;

double distance_left = 0.0;

double distance_right = 0.0;

double ticks_per_meter = 100;

double x = 0.0;

double y =0.0;

double th =0.0;
geometry_msgs::Quaternion odom_qua t;
void cmd_velCallback(const geometry _msgs:: Twist &twist_aux)
{

geometry_msgs:: Twist twist = twist_aux;
double vel_x = twist_aux.linear.x;

double vel_th = twist_aux.angular.z;
double right_vel = 0.0;

double left_vel = 0.0;

if(vel_x == 0){

// turning

right_vel = vel_th * width_robot / 2.0;
left_vel = (-1) * right_vel,

Yelse if(vel_th == 0){

I/ forward / backward

left_vel = right_vel = vel _x;

Yelse{

// moving doing arcs

left_vel = vel_x - vel _th* width_robot/ 2.0;
right_vel = vel_x + vel_th * width_robot / 2.0;

¥

vl = left_vel;
vr = right_vel;
¥

int main(int argc, char** argv){
ros::init(argc, argv, "base_controller");
ros::NodeHandle n;
ros::Subscriber cmd_vel_sub = n.subscribe("cmd_vel", 10, cmd_
velCallback);
ros::Rate loop_rate(10);
while(ros::ok())
{
double dxy = 0.0;
double dth = 0.0;
ros::Time current_time = ros::Time::now();
double dt;
98

double velxy = dxy / dt;

double velth = dth / dt;

ros::spinOnce();

dt = (current_time - last_time).toSec();;

last_time = current_time;

/I calculate odomety

if(right_enc == 0.0){

distance_left = 0.0;

distance_right = 0.0;

Yelse{

distance_left = (left_enc - left_enc_old) / ticks_per_meter;
distance_right = (right_enc - right_enc_old) / ticks_per_
meter;

¥

left_enc_old = left_enc;

right_enc_old = right_enc;

dxy = (distance_left + distance_right) / 2.0;

dth = (distance_right - distance_left) / width_robot;
if(dxy = 0){

X +=dxy * cosf(dth);

y += dxy * sinf(dth);

¥

if(dth '=0){

th += dth;

}

odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);
loop_rate.sleep();

¥
¥

4. Kalman filter matlab code

close all;
clear all;
clc;
r2d=180/pi;

gps=load('gps.txt);

gpst=gps(:,1)-gps(1,1);
gpsx=gps(:,2);
gpsy=gps(:,3);
gpshx=gps(:,4);
gpshy=gps(:,5);

odom=load(‘wheelodom.txt);
odomt=o0dom(:,1)-odom(1,1);
odomx=odom(:,2);
odomy=odom(:,3);
odomhx=odom(:,6);
odomhy=odom(:,7);
odomthetaerror=odom(:,8);

99

wheel_OdomZERO = zeros (length(odom));
gl=[wheel_OdomZERO(:,1) wheel OdomZERO(:,2) odom(:,4) odom(:,5)];

wheelrot_data = quat2eul(ql);
wheelodom_pitch=wheelrot_data(:,2);
wheelodom_roll=wheelrot_data(:,1);
wheelodom_yaw=wheelrot_data(:,3);

imu=load('imu.txt’);
imut=imu(:,1)-imu(1,1);

g=[imu(:,2) imu(:,3) imu(:,4) imu(:,5)];
r=quat2eul(q);

imu_pitch=r(:,2);

imu_roll=r(:,1);

imu_yaw=r(:,3);
imuthetaerror=0.1*odomthetaerror;

ofset = [gpsx(1);gpsy(1);0];
x_plot =[0];

y_plot = [0];

o_plot = [0];

prev=[000];

E_upd =eye(3).*0.01,;
i=1;
=L
k=1

=1
for i=2:6635
while odomt(i)>=imut(j) & j<length(imut)
=ity
euangl=r(j-1,3);
end,
euang2=wheelrot_data(i,3);
if(abs(euangl-euang2)<0.5)
euang=euangl;
else
euang=euangz;
end,
%system variables
del_trans = sqrt((odomx(i)-prev(1))*2+(odomy(i)-prev(2))2);
del_rotl = atan2((odomy(i)-prev(2)),(odomx(i)-prev(1)))-prev(3);
del_rot2 = euang-prev(3)-del_rotl;
Y%state prediction
x_pred = [x_plot(end) ; y_plot(end) ; o_plot(end)]+[(del_trans*cos(o_plot(end)+del_rot2)) ;
(del_trans*sin(o_plot(end)+del_rot2)) ; (del_rotl+del_rot2)];
Y%state matrix
A =[1 0 -del_trans*sin(o_plot(end)+del_rot2); 0 1 del_trans*cos(o_plot(end)+del_rot2); 0 0 1];
prev = [odomx(i) odomy(i) euang];
%covariance of system
P = [odomhx(i) 0 0; 0 odomhy(i) O; 0 0 odomthetaerror(i)];

100

%covariance of prediction
E_pred = A*E_upd*(A.) + P;
x_upd = x_pred;
E_upd = E_pred,
if odomt(i)<=gpst(k+1)
%covariance of measurement model
Q = [gpshx(k) 0 0; 0 gpshy(k) 0; 0 0 5];
%measurement model
H=[100;010;001];
%Kalman gain estimation
K = E_pred*(H.")/(H*E_pred*(H.)+Q);
%sensor values
euang = r(j-1,3);
z = [gpsx(K);gpsy(k);euang]-ofset;
% gpsx = cat(2, gpsx, z(1));
% gpsy = cat(2, gpsy, z(2));
%state updation
x_upd = x_pred + K*(z - x_pred);
E_upd = (eye(3)- K*H)*E_pred;
if(k<781)
k=k+1;
end;
end
X(i)=x_upd(1);y(i)=x_upd(2);
x_plot = cat(2, x_plot, x_upd(1));
y_plot = cat(2, y_plot, x_upd(2));
o_plot = cat(2, o_plot, x_upd(3));
end;

figure
plot(x_plot,y_plot,-." gpsx-ofset(1),gpsy-ofset(2),odomx,odomy,'--")

101

5. Rqt transformation tree

Recorded at time: 1573534758.59

Dldest transform: 0.0

Broadcaster: /delta_robot

Average rate: 10.258

Buffer length: 4.094

ost recent transform: 1573534758.55
Dldest transform: 1573534754.46

Broadcaster: /Laser_link1l_broadcaster
Average rate: 10000.0

Buffer length: 0.0

Most recent transform: 0.0

Oldest transform: 0.0

102

