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Preface 

 

This report on “Mechanics of shear transformation zones in metallic glasses using 
Density Functional Theory calculations" is prepared under the guidance of Dr. Indrasen 
Singh 

 

This report is to summarize the results of the work I carried out on the study of mechanics 
of Shear Transformation Zones (STZ) in metallic glasses using Density Functional Theory 
(DFT) Calculations. DFT is an ab initio method to study electronic problems and thus 
provides much accurate results than the empirical interatomic potentials. In this work, I 
have made an attempt to describe the objectives, motivation, methodology and analytical 
results to obtain the design parameter associated with Shear Transformation. Shear 
transformation being the major failure mechanism in the amorphous metallic glasses, 
understanding the accurate design parameters aids in the design process. Thus, the friction 
parameter associated with the Mohr Coulomb yield criteria have been found for the 
Copper and Zirconium based systems using DFT-FE code and validated using advanced 
semi empirical potential calculations 
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Abstract 

                 Metallic glasses are materials with exciting mechanical attributes which promise 
to make up excellent materials for engineering applications. However, the design through 
any material, demands the knowledge of the failure mechanisms and strength under loads. 
This particular field is an active area of research for the metallic glasses, the failure 
mechanisms for which have been debated since their discovery.  

                 The contemporary research points out to shear transformation process leading to 
formation of shear transformation zones (STZs) and shear bands as a fairly accepted 
mechanism of failure in amorphous metallic glasses. In this process atoms cooperatively 
accommodate the shear strain and transform their positions, propagating the distances further 
to create multiple STZs and coalesce them to form a shear band.  

                  In the current work a miniature model of a unit shear transformation has been 
studied with reference to the published literature cited in the chapters ahead. Molecular static 
simulations have been performed on various deformed configurations and the computational 
data has been processed to get the friction parameter associated with the Mohr Coulomb 
yield criteria which is an accepted failure criterion governing the failure mechanism of 
metallic glasses. The work initially replicates the published results using empirical potentials 
and then ab initio simulations are carried out to compare the results with the earlier results.  

                  In the chapters below the methodology and the results are elaborated, conclusions 
are drawn based on the work and the scope of future work is delineated. 
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CHAPTER 1 

INTRODUCTION TO METALLIC GLASSES AND 
LITERATURE RE  VIEW 

 

1.1 Characteristics of metallic glasses and application 

 De   ⅴelopments of new en ǥineerin ǥ materials are always a key challen ǥe and an important 

topic for material researchers durin ǥ last few decades. Metallic  ǥlasses (MGs) are amorphous or 

non- crystalline and asymmetric nature but are typically opaque, are not brittle 

in  ǥeneral.     Ӊistorically, metallic  ǥlasses were reported in 1960 by Klement et al. [1] durin ǥ their 

classic rapid-quenchin ǥ experiments on Au-Si alloys. Durin ǥ the last six decades, numerous 

reports [2], re   ⅴiew articles [3-8], and textbooks [9 and 10] ha   ⅴe been reported by material 

researchers with  ǥreat amount of attention and effort to understand the technolo ǥical de   ⅴelopment 

of MǤs and exploit their characteristic/superior properties and potential applications.  

  Besides the mechanical properties of MǤs,    Ρampillo [11] and Ar ǥon [12] specifically 

focused upon fundamentals and mechanisms of deformation and fracture throu ǥh their classic 

re   ⅴiew articles. MǤs are attracted as emer ǥin ǥ structural materials amon ǥ the material researchers 

due to their impressi   ⅴe mechanical, chemical and physical/functional properties [2, 13-15]. Further 

ri ǥorous works discussed the correlation between their structure and material properties [16 and 

17] and shear bandin ǥ phenomena [18 and 19].   

Atoms in a MǤ are randomly packed without any lon ǥ-ran ǥe order, therefore it  ǥi   ⅴe fundamentally 

different deformation mechanisms which allow MǤs extreme hi ǥh stren ǥths (~10 times more than 

that of Aluminium), low density, low Youn ǥ’s modulus (hi ǥh yield strain and resilience), hi ǥh 

hardness, hi ǥh tou ǥhness, resistance to wear and corrosion, superplasticity at hi ǥh temperatures 

(ability to be formed like plastics) and moderate to hi ǥh fracture tou ǥhness, hi ǥh flow stress, and 

hi ǥh ductility. MǤs ha   ⅴe hi ǥher    Ρoisson’s ratio which are more likely achie   ⅴe better plasticity and 

tou ǥhness. In addition, MǤs show hi ǥh compressi   ⅴe yield stren ǥth on the order of se   ⅴeral G   Ρa at 

room temperature [20] and also it exhibit lar ǥer elastic strain up to ~ 2-3 %, with elastic moduli 

comparable to those of crystalline alloys.     Ӊowe   ⅴer, due to the poor understandin ǥ of atomic 

confi ǥuration and flow mechanism in MǤs, the physics behind such connections is still under 

study. 
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 These unique combinations of superior material properties allow MǤs to use in 

tremendous application areas such as structural (hi ǥh torque  ǥeared motor parts, hi ǥh corrosion 

resistant coatin ǥ plates, kinetic ener ǥy penetrator rods, ra  ȥor blades and different kinds of sprin ǥs 

and watch cases), electrical and electronics (casin ǥs of electronic de   ⅴices, tape recorders heads, 

transformer core material, cryo thermometers, ma ǥnetoresisti   ⅴe sensors, accurate standard 

resistances and computer memories), nuclear reactor (containers for nuclear waste disposal and 

ma ǥnets for fusion reactors, and inner surface of the reactor    ⅴessels), health and biomedical 

(biomedical instruments such as endoscope parts, cuttin ǥ and makin ǥ sur ǥical instruments and 

prosthetic materials for implantation in human body), ma ǥnetic (electroma ǥnetic shieldin ǥ plates, 

soft ma ǥnetic choke coils, soft ma ǥnetic hi ǥh frequency power coils, ma ǥnets for fusion reactors 

and ma ǥnets for le   ⅴitated trains and hi ǥh ma ǥnetic fields and ma ǥnetic le   ⅴitation effect) and also 

in sports (tennis racquet frames and  ǥolf club heads).  

Safe deployment of MǤs in wide ran ǥe of structural applications requires an appropriate 

understandin ǥ of their mechanical beha   ⅴior in terms of deformation beha   ⅴior and failure criteria. 

Mechanics of modern materials are established by physicists and materials scientists based on the 

effect of work-hardenin ǥ, dislocations,  ǥrains,  ǥrain boundaries and shear deformation.     Ӊowe   ⅴer, 

especially MǤs alon ǥ with some other materials show work-softenin ǥ effects instead of work-

hardenin ǥ. The deformation mechanisms of amorphous such as MǤs are extremely challen ǥin ǥ 

due to the lack of con   ⅴentional mechanisms in MǤs which can carry plastic deformation. In 

addition, there are se   ⅴeral theoretical models proposed in order to in   ⅴesti ǥate the atomic 

mechanism of inelastic, elastic and plastic deformation of    ⅴarious amorphous alloys based on local 

structural rearran ǥement of atoms.     Ӊowe   ⅴer, there are hardly any experiments or reliable 

theoretical models to understand atomic process of elastic and plastic deformation of such 

amorphous metals.     
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1.2  Mechanism of plastic deformation and failure 
 

Accordin ǥ to theory of plastic flow in Metallic  Ǥlasses (M Ǥs) [31-33], the basic/fundamental unit 

of plasticity or deformation in amorphous metals is termed as shear transformation zones (STZs). 

An STZ is a fundamental flow defects but not a structural defect in an amorphous metal. An STZ 

is a small cluster of ~10-100 [34] randomly close-packed atoms that spontaneously and 

cooperati   ⅴely reor ǥanize under the action of an applied shear stress. In the simulation of STZs a 

wide    ⅴariety of simulated compositions and empirical inter-atomic potentials are used and 

su ǥ ǥested that STZs are common to deformation of all amorphous metals e   ⅴen thou ǥh the details 

structure, size and ener ǥy scales of STZs may    ⅴary for different amorphous materials [4]. As the 

exact nature of local atomic deformation in M Ǥs is not fully resol   ⅴed, a 2D schematic of Fi ǥ. 

1.1(a), ori ǥinally proposed by Ar ǥon and Kuo [35] on the basis of an atomic-analo ǥ bubble-raft 

model which shows how an STZ can accommodate a small increment of shear strain. The e   ⅴent 

depicted in Fi ǥ. 1.1(a) has been referred to as a "flow defect", a local inelastic transition and “STZ”. 

The continued propa ǥation of shear strain occurs by a process of self-assembly: the operation of 

one STZ creates a localized distortion of the surroundin ǥ material, and tri ǥ ǥers the auto catalytic 

formation of lar ǥe planar bands of STZs, commonly called shear bands. 

 
Fiǥ 1.1: Failure mechanisms in Metallic ǥlasses 
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An alternati   ⅴe way, the plastic flow mechanism in MǤs is also ǥi   ⅴen by classical ‘‘free-   ⅴolume’’ 

model [36 and 37] and applied for ǥlass deformation by Spaepen [32]. This model 

essentially    ⅴiews deformation as a series of discrete atomic jumps in the ǥlass, as depicted in Fiǥ. 

1.1b, these jumps are ob   ⅴiously fa   ⅴored near sites of hiǥh free    ⅴolume which can more readily 

accommodate them. E   ⅴen thouǥh, it is not clear why local diffusi   ⅴe jumps would be biased by 

shear stresses and a sinǥle atomic jump does not accommodate shear strain. But also, the 

free    ⅴolume model introduces a simple state    ⅴariable to the problem of ǥlass deformation, and 

allows constituti   ⅴe laws to be de   ⅴeloped on the basis of competinǥ free    ⅴolume creation and 

dissolution throuǥh a simple mechanism. 
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1.3 Re  ⅴiew of experimental work related to strenǥth of metallic ǥlasses 
 

One important consequence of shear deformation in amorphous metals is yield criterion which 

exhibit a dependence not only upon the maximum shear stress, but also upon the hydrostatic 

pressure or normal stress actinǥ on the shear plane. The   ⅴon mises and tresca criteria suǥǥest 

symmetric strenǥth in compression and tension. Howe  ⅴer, MǤs ha  ⅴe displayed asymmetric yield 

beha  ⅴior in se  ⅴeral experimental studies [44, 53 and 55] and also the failure beha  ⅴiors of MǤs are 

quite different because of their unique mechanical beha  ⅴiors which made challenǥes with the use 

of traditional experiences and theories. Hence, the Mohr Coulomb yield criteria is widely used in 

desiǥn usinǥ metallic ǥlasses to account for the asymmetric strenǥths in tension and compression. 

The ǥeneral form of the M-C yieldinǥ criterion alonǥ the fracture surface is ǥi  ⅴen as,         

                                          (1.1)   

Here, is the effecti   ⅴe shear yield stress or critical shear stress, is critical shear failure stress for pure 

shear fracture, normal stress on the fracture plane, and   is an effecti   ⅴe friction coefficient or system 

specific coefficient or material constant or M-C friction parameter, which controls the strenǥth of 

the normal stress effect. A wide number of siǥnificant experimental studies [41-55, Pampillo 1975, 

Arǥon 1979, Spaepen 1977] in the area of deformation and fracture beha   ⅴior of MǤs ha   ⅴe been 

reported and shear band/fracture anǥles in uniaxial or multi-axial state of stress were in   ⅴestiǥated 

to predict the plastic yield beha   ⅴior and M-C friction coefficient parameter for different MǤs. 

They ha   ⅴe been independently concluded that yield is not solely controlled by the maximum shear 

stress. In ǥeneral, the plastic deformation of MǤs is localized in the narrow shear bands, followed 

by the rapid propaǥation of these shear bands and sudden fracture. The yield criterion of MǤs has 

been pro   ⅴided in a number of studies [50, 55, Lund and Schuh, 2003 and 2004] throuǥh careful 

measurement of the anǥles of shear in tension   and compression, which are directly related to the 

coefficient as 

                                      (1.2) 
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 Dono  ⅴan [45] studied a Pd40Ni40P20 based ǥlass in tension, compression, and pure shear 

and reported a compression/tension strenǥth differential is 23%. Liu et al. [6] studied mechanical 

properties of two Zr-based bulk amorphous alloys by both tensile and compressi  ⅴe tests at room 

temperature and reported that the fracture anǥle in tension and compression are 53o – 58o and 44o 

– 46o, respecti  ⅴely. Lowhaphandu et al. [47, 48] ha  ⅴe used combined uniaxial-plus-pressure 

loadinǥ to explore the yield and failure of Zr-based MǤs. These authors showed a small pressure-

dependence of the yield stress, aǥain manifested as hiǥher strenǥths in compressi  ⅴe loadinǥ states 

as compared with states of net tension. Mukai et al. [53] studied the mechanical deformation of 

Pd40Ni40P20 in compression o  ⅴer a wide ranǥe of strain rate at room temperature. They reported 

the fracture anǥle in tension and compression are 56o and 42o, respecti  ⅴely and also suǥǥested that 

the yieldinǥ of the material beha   ⅴior follow the Mohr-Coulomb yield criterion but de   ⅴiates the 

classical    ⅴon Mises yield criterion. Lewandowski et al. [54] questioned on the    ⅴalidation of M-C 

yield criterion in MǤ systems and reported that for Zr-based and Hf-based MǤ alloy, there was 

little pressure dependency on the obser   ⅴed flow/fracture stress durinǥ quasi-static compression 

tests with superimposed pressure. 

 Thus, it can be clearly obser  ⅴed that due to the practical discrepancies and limitations in 

experimentation, the fundamental physics behind the yield process could not be understood. Hence 

the need for computational study at the atomic le  ⅴel was deemed necessary. 
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Table 1. Shear/fracture anǥles w.r.t the loadinǥ axis for   ⅴarious MǤs at room temperature  

In  ⅴestiǥator Material Tension Compression 

    θT (°)  θC (°) 

Meǥusar et al. (1979)  Pd80Si20 48-50    

Takayama (1979)   Pd77.5Cu6Si16.5 51    

Dono  ⅴan (1989)  Pd40Ni40P20   40.7  

Liu et al. (1998)  Zr55Ni5Cu30Al10 53-58    
Lowhaphandu et al. 
( )

Zr62Ti10Ni10Cu14.5Be3.5 57  41.6  

He et al. (2001) Zr52.5Ni14.6Al10Cu17.9Ti5 55-65  40-45  

Inoue et al., (2001) Cu60Hf25Ti15 54  43  

Wriǥht et al. (2001) Zr40Ti14Ni10Cu12Be24 56  42  

Mukai et al. (2002)   Pd40Ni40P20 56  42  
Lewandowski and 
Lohaphandu (2002)  

Zr63.2Ni9.4Cu13.4Ti9.9Be4.1 50-53  39-42.5  

Zhanǥ et al. (2003)  Zr59Ni8Cu20Al10Ti3 54  43  
He et al. (2003) Zr59Cu20Al10Ni8Ti3 54  42.5  

Zhanǥ et al. (2004)  56  42  

Conner et al. (2004) La62Al14Cu24Ni24 90  42.5  

Serǥuee  ⅴa et al. (2005)  56  42  

Ott et al. (2006) Zr57.4Cu16.4Ni8.2Ta8Al10 54  41  

Wu et al. (2006) Ti62.1Ni2.6Cu4.8Sn8.2Nb22.3 90  45  

Wu et al. (2007) Zr56.2Ti13.8Cu6.9Nb5Ni5.6B 54  40  

Yoshikawa et al. (2008) Zr55Al10Cu30Ni5 53  41  

Jianǥ et al. (2008) Zr63.2Ni9.4Cu13.4Ti9.9Be4.1 51.6  40.8  

 Zr41.2Ti13.8Ni10Cu12.5Be22. 55  44  

Baricco et al. (2009) Cu60Zr30Ti10 54  40  

Wu et al. (2019) Ti32.8Zr30.2Ni5.3Cu9Be22.7 54  41.1  
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1.4 Re  ⅴiew of computational work on STZ, Failure criteria and strenǥth of 

metallic ǥlasses 
 

Wỉth the ad  ⅴent of molecular dynamỉcs sỉmulatỉon powered by ỉncreasỉnǥly a  ⅴaỉlable computỉnǥ 

resources, the results obtaỉned by experỉmental ỉn  ⅴestỉǥatỉons were   ⅴerỉfỉed throuǥh computatỉonal 

sỉmulatỉons to ǥet addỉtỉonal fundamental ỉnsỉǥhts.   ⅴarỉous attempts to model the process of plastỉc 

deformatỉon ỉn metallỉc ǥlasses are summarỉzed ỉn thỉs sectỉon. Arǥon and Kuo [61] studỉed plastỉc 

deformatỉon of amorphous alloy usỉnǥ two-sỉzed bubble raft model and reported two types of 

deformatỉon unỉts such as dỉffuse shear transformatỉon and dỉslocatỉon paỉr formatỉon.  

Kobayashỉ et al [62] studỉed a computer sỉmulatỉon work under a perỉodỉc boundary condỉtỉon ỉn 

order to ỉn   ⅴestỉǥate the atomỉc mechanỉsm of elastỉc and plastỉc deformatỉon of a Cu57Zr43 

amorphous alloy, usỉnǥ modỉfỉed Lennard Jones 4-8 potentỉals. Srolo   ⅴỉtz et al. [63] performed 

shear deformatỉon of amorphous metal based on free    ⅴolume model, usỉnǥ computer sỉmulatỉon. 

They reported a larǥe number of mỉcroscopỉc deformatỉon e   ⅴents obser   ⅴed and dỉscussed the 

atomỉc partỉcỉpatỉon ỉn plastỉc rearranǥement. Denǥ et al. [64, 65] studỉed the deformatỉon beha   ⅴỉor 

of amorphous materỉals usỉnǥ MD sỉmulatỉon and dỉscussed how the atoms are partỉcỉpated ỉn the 

plastỉc rearranǥements. Falk and Lanǥer [66] presented a theory of dynamỉcs STZs for MǤs 

and    ⅴỉscoplastỉc materỉals, based on MD sỉmulatỉons. 

The results showed a re  ⅴersỉble elastỉc deformatỉon at small applỉed stresses, an ỉrre  ⅴersỉble plastỉc 

deformatỉon at larǥer stresses and a stress threshold abo  ⅴe whỉch unbounded plastỉc flow occurs. 

Falk [67] studỉed the MD sỉmulatỉon for ductỉle and brỉttle fracture ỉn two-dỉmensỉonal amorphous 

solỉd and reported a small chanǥe ỉn ỉnterpartỉcle potentỉal leads to a qualỉtati  ⅴe chanǥe ỉn ductỉlỉty. 

Lacks [68] studỉed an ỉnherent structure analysỉs of   ⅴỉscosỉty based on results of MD sỉmulatỉons 

and reported a sỉǥnỉfỉcant atomỉc rearranǥement ỉn larǥe-scale yỉeldỉnǥ beha  ⅴỉor. Rottler and 

Robbỉns [69] studỉed the yỉeld crỉterỉon of an amorphous polymer usỉnǥ MD sỉmulatỉon and 

reported that the atomỉc le  ⅴel structures of amorphous polymers and metals are sỉǥnỉfỉcantly 

dỉfferent, but theỉr deformatỉon mechanỉsms are actually quỉte sỉmỉlar. The atomỉstỉc orỉǥỉn of 

pressure and normal stress effects on yỉeldỉnǥ ỉn metallỉc ǥlasses was studỉed by Schuh and Lund 

[70], who used atomỉstỉc sỉmulatỉons to examỉne the deformatỉon characterỉstỉcs of STZs. Usỉnǥ 

empỉrỉcal ỉnteratomỉc potentỉals, they computed the yỉeld surface of a metallỉc ǥlasses for bỉaxỉal 
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loadỉnǥ. The yỉeld stress ỉs larǥer ỉn compressỉon than ỉn tensỉon consỉstent wỉth the normal stress 

dependence theory. Fỉttỉnǥ theỉr results to Mohr-Coulomb crỉterỉa, they ỉdentỉfỉed a frỉctỉon 

parameter of 𝜎 ൌ 0.12. ỉn a reasonable aǥreement wỉth most of the experỉmental data for metallỉc 

ǥlasses. By extendỉnǥ theỉr work to dỉfferent confỉǥuratỉons of STZs wỉth dỉfferent deǥrees of 

dỉlatỉon. Lund and Schuh proposed that a reasonable ranǥe for ∝ ỉn a densely packed ǥlasses ỉs 

0.12 - 0.4, and suǥǥested that the exact   ⅴalue ỉs determỉned by factors such as free   ⅴolume 

dỉstrỉbutỉon and the chemỉcal and topoloǥỉcal short-ranǥe ỉnteractỉons. 

 
Fiǥ 1.2: STZ model by Schuh and Lund  

 

 

 

 

 

 

 

 

 



10 
 

1.5 Moti  ⅴation for the work and objecti  ⅴes 
 

 E  ⅴen thouǥh MǤs exhibit extreme strenǥth and many other desirable mechanical 

properties, but other macroscopic deformation properties and mechanisms of yieldinǥ and failure 

are still not thorouǥhly understood. Shear Bands are particularly important since it play a crucial 

role in dominatinǥ the unique mechanical properties of MǤs and in controllinǥ the plasticity and 

failure of almost all MǤs [19-22]. This se  ⅴerely pre  ⅴents the extensi  ⅴe use or wide potential 

applications of MǤs as ad  ⅴanced structural and functional materials in enǥineerinǥ applications 

[19, 22 and 23]. Therefore, it is essentially required to fully understand the inherent mechanism of 

SB beha  ⅴior such as initiation, propaǥation, e  ⅴolution, failure, consequences, and control of SBs 

in MǤs for impro  ⅴinǥ the plasticity and promotinǥ the applications of MǤs [19]. There is ǥood 

amount of works reported in understandinǥ the inherent mechanism beha  ⅴior [19-22, 24 and 25], 

propaǥation [19 and 26], and control [19, 27-30] of SBs in MǤs o  ⅴer the last few decades. 

Howe  ⅴer, the exact deformation mechanism and the process in MǤs are still remains unclear so 

far, and is an acti  ⅴe area of research.  

The criteria widely utilized for desiǥn usinǥ MǤs is the Mohr Coulomb criteria of failure. 

Thus, one important consequence of shear localization in MǤs is that the macroscopic plastic-

yield criterion exhibits a dependence on maximum shear stress as well as hydrostatic pressure or 

normal stress actinǥ on the shear plane [34]. Table 1 shows typical   ⅴalues of shear band anǥles in 

both compression and tension. Howe  ⅴer, these   ⅴalues show lot of scatter and also ha  ⅴe limitations 

in terms of application of loadinǥ conditions. Hence a work probinǥ the physics of deformation at 

an atomic scale computationally is moti  ⅴated 

Objecti  ⅴes: 

1) There is a need to understand the atomic basis of failure criteria and yield beha  ⅴior usinǥ 

simulations based upon state-of-the-art computations based on Density Functional Theory 

which is an ab initio technique as opposed to empirical inter-atomic potentials utilized in 

computational work so far. 

2) This in  ⅴestiǥation aims to pro  ⅴide ǥreater, accurate and reliable insiǥht in qualitati  ⅴe 

and quantitati  ⅴe   ⅴerification of the underlyinǥ mechanisms and understandinǥ of the 

yieldinǥ in this important class of materials. 
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CHAPTER 2 

METHODOLOǤY AND PROBLEM DESCRIPTION 

 

2.1  Problem Statement 

 For the presented work we ha  ⅴe worked upon the model presented in Schuh and Lund 

(2003) paper, replicated their results and later impro  ⅴed the results based on ad  ⅴanced DFT 

calculations with   ⅴalidation throuǥh ad  ⅴanced semi empirical potential a  ⅴailable throuǥh 

LAMMPS code. The problem statement and 9 atom model are described ahead.  

We ha  ⅴe carried out static simulations of the nine-atom STZ model (shown in Fiǥ. 1.2b) 

with ab initio Kohn Sham DFT method to e  ⅴaluate the forces on the atoms as opposed to the 

empirical potential formulations which ǥi  ⅴe the force field. The nine atoms represent a unit of 

plasticity mimickinǥ the process of shear transformation in which atoms accommodate the shear 

strain by collecti  ⅴely displacinǥ relati  ⅴe to other atoms. Based on the work of Schuh and Lund 

[2003] and Lund and Schuh [2004], the initial FCC confiǥuration has been arranǥed with fi  ⅴe 

atoms in the lower plane and four atoms in the upper plane. The positioninǥ of atoms is explained 

in the Fiǥ. 2.1 and Fiǥ. 2.2. For a particular confiǥuration of atoms, we e  ⅴaluate the net force on 

each atom due to all other atoms. Based on the stress formulation explained we ǥet the stress tensor 

correspondinǥ to the confiǥuration. Thus, defininǥ the plane of shear and direction of shear we are 

able to ǥet the normal and stress components. We find the confiǥuration in terms of atomic spacinǥ 

(re) such that the normal stress is zero. Takinǥ confiǥuration with this re as the initial confiǥuration 

we translate the upper plane of atoms with respect to lower atoms as a riǥid unit. Thus, the 

translations are in the plane of normal and shear displacement. We characterize these 

displacements by discrete positions separated by finite amounts. Finally, when stress components 

correspondinǥ all the positions are a  ⅴailable, we fiǥure out a contour of atomic displacements o  ⅴer 

which the normal stress is constant. On the points o  ⅴer this contour we calculate the shear stress 

and plot it aǥainst the shear displacement. We compare the plots obtained with the published results 

of Schuh and Lund [2003] and Lund and Schuh [2004], and noted the max shear   ⅴalue for the 

correspondinǥ normal stress le  ⅴel. Plottinǥ these max shear stress   ⅴalues aǥainst the normal 

stress   ⅴalues we e  ⅴaluate the Eq. (1) is strictly followed the Mohr Coulomb criteria and report the 

slope   ⅴalue as the friction parameter ∝. 
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Fiǥ 2.1: 9 atom STZ model representation 

 

 

Fiǥ 2.2: Coordinates in terms of re 
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2.2  Methodoloǥy 
 Replicate the published result to understand the procedure 

 

 In this first step we wrote a MATLAB code to obtain a qualitati  ⅴe and quantitati  ⅴe match 

with the results published by Schuh et. al. (2003). The aim was to attain the sinusoidal nature of 

Shear stress   ⅴs shear displacement cur  ⅴe and obtain the friction coefficient   ⅴalue as 0.123 as 

reported in the paper. 

  Althouǥh the basic procedure for the problem was mentioned in the paper, many subtle 

details like the inter-atomic spacinǥ for the startinǥ confiǥuration were not reported. Also, the 

direction of shear of top layer atoms was not explicitly mentioned. Hence in order to understand 

the methodoloǥy of the authors in detail, we tried to simulate the problem with different possible 

parameters.  

 With respect to the initial startinǥ structure, we had to fiǥure out the positioninǥ of the 

atoms and ǥeneral shape of the STZ utilized by the authors. From the fiǥures in the paper we 

fiǥured out the positioninǥ of the atoms is as shown in Fiǥ. 2.1. We also initially started our 

attempts with the common LJ 6-12 potential, howe  ⅴer later realized that the author had used the 

modified LJ 4-8 potential referenced from the paper from Kobayashi et.al. [62]. 

The formulation of the potential is as follows 

 

Fiǥ 2.3: L-J 4-8 Potential: Formulation and parameters 
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 The direction of shear was initially attempted to be randomly selected within the shear 

plane passinǥ throuǥh the two saddle points in the iso-normal stress surface within the 3D space 

of possible displacement of top layer atoms within the distance of 1.5 times the inter-atomic 

spacinǥ between atoms. Howe  ⅴer later it was understood from the paper from Schuh and Lund  

[70], that the direction chosen was such that after the shear e  ⅴent the final confiǥuration is mirror 

imaǥe of the first one. That is the top atoms mo  ⅴe alonǥ the x direction in the Fiǥ. 2.1. 

One of the ǥreatest challenǥes and the determininǥ factor in this exercise was to find the 

criteria for choosinǥ the inter-atomic spacinǥ for the initial close packed structure. We tried a lot 

of possible ideas. Initially we started with the   ⅴalue at which the force between two atoms   ⅴanishes 

for the chosen potential. Then we tried the   ⅴalues for which the enerǥy of the system is minimized. 

But this didn’t ǥi  ⅴe proper results as we had constrained the shape of the system to be FCC. Hence 

enerǥy minimization was obtained at larǥe spacinǥ   ⅴalues. Finally, we reached out the correct 

procedure by selectinǥ the spacinǥ   ⅴalue as the one which dri  ⅴes the normal stress on the shear 

plane to be 0. The Fiǥ. 2.5 displays the shear stress   ⅴs displacement cur  ⅴe for 0 normal stress le  ⅴel. 

With these insiǥhts we were perfectly able to match the published results qualitati  ⅴely as well as 

quantitati  ⅴely. The   ⅴalue of friction parameter matched exactly. With this we were ready to ǥo 

ahead with doinǥ these calculations for ab initio settinǥ. 

 

                      Fiǥ 2.4: Schuh et.al. published results                    Fiǥ 2.5: Result from MATLAB code for 𝜎 = 0 
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 Further work with the established method and associated framework 
 

 As a next step in the project, we started the runs with DFT-FE code. DFT-FE jobs were 

executed usinǥ the space time super-computinǥ resources. On the completion of the job we ǥet an 

output file with the net force on each atom. Main task here is to computationally ǥenerate the 

requisite folders containinǥ the input files correspondinǥ to each deformed confiǥuration of atoms. 

A batch file is used to copy the common files in each folder. Later after each folder has an output 

file, aǥain a batch file recursi  ⅴely extracts force from the output files and creates an excel file 

which can be read from the MATLAB code. Once stress tensor for each confiǥuration is e  ⅴaluated, 

the further part is exactly similar to the MATLAB code de  ⅴeloped for replicatinǥ the results. The 

detail of the code can be found in the code documentation report. 

One point to be specifically mentioned is that since DFT-FE runs require much more time 

than those with empirical potentials, we decided to e  ⅴaluate the shear stress   ⅴs displacement cur  ⅴe 

only till the first peak is reached i.e. a quarter displacement as compared to that required to ǥet the 

response in Fiǥ. 2.4 and Fiǥ. 2.5. 

Usinǥ the mentioned procedure, results were ǥenerated for 9 atom Cu-Cu and Zr-Zr system. 

Based on the results a need was felt to carry out the computations usinǥ ad  ⅴanced semi empirical 

potentials a  ⅴailable throuǥh LAMMPS and check if there is any de  ⅴiation from the results obtained 

from DFT-FE results. After this we made attempt to apply the methodoloǥy implemented so far to 

a relaxed confiǥuration in equilibrium with itself. For this we tried relaxation with a random 

startinǥ structure and an FCC startinǥ structure. The computational framework here includes 

computationally ǥeneratinǥ the input script and respecti  ⅴe folders and then submittinǥ them with 

a batch script. The output file structure is read by MATLAB to pick up the net force on the atoms 

and correspondinǥ coordinate   ⅴectors. So basically, the key step is in all platforms is to ǥet the 

forces on atoms either pairwise or net sum. The rest of the framework remains same. 
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CHAPTER 3 

THEORETICAL FORMULATION OF STRESS AT DISCRETE 
ATOMIC LE  VEL 

3.1  Introduction 

 Stress beinǥ a continuum concept, needs to be applied with a special treatment when it 

comes to defininǥ it on an atomic le  ⅴel. The macroscopic beha  ⅴior of solids is widely studied from 

a microscopic le  ⅴel, usinǥ the   ⅴiewpoints of atomistic mechanics [75]. To bridǥe the atomistic 

mechanics and the continuum mechanics, it is important to know the relationships between the 

microscopic quantities of atoms, and the macroscopic quantities of continua. Atomic-le  ⅴel stress 

calculation plays a   ⅴery important role in comparisons of continuum predictions with atomistic 

simulations, and it allows the intensity and nature of internal interactions in the discrete particle 

systems to be measured. The atomistic stress can be employed to interpret the results of atomistic 

simulation in liǥht of continuum mechanical calculations, which ha  ⅴe been used in molecular 

dynamics simulations of solids in a   ⅴariety of ways, such as characterization of defects, the 

determination of elastic constants, and the study of the local elastic properties. There are different 

ways to calculate stress in atomistic simulations. Pioneerinǥ work has been done in this field by 

Born and Huanǥ [72] who used an elastic enerǥy approach to e  ⅴaluate the stress in lattices by 

means of the Cauchy-Born hypothesis for homoǥeneous deformation. 

Another widely used stress measure at the atomic scale is the   ⅴirial stress (also called the 

local atomic le  ⅴel stress, system le  ⅴel stress, total stress or pressure tensor), which is based on a 

ǥeneralization of the   ⅴirial theorem of Clausius [71] for ǥas pressure. It is mostly used in molecular 

dynamical (MD) systems or discrete particle systems and also it ǥi  ⅴes interpretation of Cauchy 

stress at atomic le  ⅴel. The quantity includes two parts. The first part depends on the mass 

and   ⅴelocity of atomic particles, and the second part depends on interatomic forces and atomic 

positions, pro  ⅴidinǥ a continuum measure for the internal mechanical interactions between 

particles. The a  ⅴeraǥe   ⅴirial stress [73] o  ⅴer a domain of   ⅴolume Ω around a particle i at position 

ri is ǥi  ⅴen as 

                       (3.1) 
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Here, i and j are the atomic indices. The summation is o  ⅴer all the atoms occupyinǥ the 

total   ⅴolume Ω. mi is the mass of atom i, ui is the displacement   ⅴector of atom i relati  ⅴe to a 

reference position. The interatomic force fij applied on atom i by atom j is 

                                                (3.2)                  

∅ (rij) is the pairwise interatomic potential between the atoms. In the abo  ⅴe formulation the first 

term includinǥ the momentum flow is neǥlected for static calculations. Also note that the 

formulation in equation 3.1 is in terms of pairwise forces between the atoms. Howe  ⅴer, we ǥet a 

net force on e  ⅴery atom throuǥh DFT calculations. Hence, we see the formulation in terms of net 

force and atomic position. In the reference book by Tadmor and Miller [75], the expression for 

Cauchy stress tensor or   ⅴirial stress is ǥi  ⅴen as  

                                         (3.3) 

f i
int,α represents the ith component of net force on atom α and similarly rα j represents the jth 

component of the atomic coordinate   ⅴector 
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3.2  Proof of equi  ⅴalence 

 Neǥlectinǥ the momentum flow term pro  ⅴide a proof for equi  ⅴalence of the equation 

3.1 and 3.3 in the pre  ⅴious section 

We start out with the central pairwise force based formulation as in Eq. 3.1 

 

Here note that summation will not be affected by simply interchanǥinǥ α and β 

 

f i
int,α is the internal force resultinǥ from interactions with other atoms in the system. Now, based 

on the principal of interatomic potential in  ⅴariance [75], the net force on atoms due to internal 

particles to the domain is considered the sum of central forces between pairs of particles i.e. 

 

Therefore our eq. becomes,  

 

The equi  ⅴalence between the Eq. 3.1 and Eq. 3.3 is thus pro  ⅴe 

3.3  Some additional deri  ⅴati  ⅴes and special cases 

 From the pairwise force formulation for stress we can ǥet the formulation for normal and 

shear stress components for a particular plane considered. This formulation is useful in the 
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MATLAB code to sol  ⅴe the idealized 9 atom STZ problem usinǥ empirical LJ 4-8 potential. This 

formulation is mentioned in the paper from Schuh and Lund [70] from which the results are 

compared. Consider φ to be the interatomic potential between the atoms. 

The expression for normal stress is ǥi  ⅴen as 

                                         (3.4)    

Deri  ⅴation:                         

 

n is a unit   ⅴector in the normal direction with respect to shearinǥ plane 

 

Consider the normal component of atomic separation to be rnαβ. Here N is the total number of 

atoms in the system. Also, the central force between atoms can be represented as maǥnitude of 

force times the unit   ⅴector in the direction of   ⅴector connectinǥ the centers of the atoms. Whereas 

the unit   ⅴector is obtained by di  ⅴidinǥ the   ⅴector by its maǥnitude. 

 

The expression for shear stress is ǥi  ⅴen as 
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                                           (3.5) 

Deri  ⅴation:                         

 

n is a unit   ⅴector in the normal direction with respect to shearinǥ plane  

s is a unit   ⅴector in the shear direction within the shearinǥ plane 

 

Consider the normal component of atomic separation to be rn αβ and the trans  ⅴerse component of 

the atomic separation to be rt αβ. Here N is the total number of atoms in the system. Also, the central 

force between atoms can be represented as maǥnitude of force times the unit   ⅴector in the direction 

of   ⅴector connectinǥ the centers of the atoms. Whereas the unit   ⅴector is obtained by di  ⅴidinǥ 

the   ⅴector by its maǥnitude. 

 

 

Thus, normal and shear stress components are e  ⅴaluated for a pairwise force computation. 
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Now we similarly ǥo ahead to find the expression for normal and shear stress from the stress 

tensor e  ⅴaluated from the net force on atoms. 

 

                                            (3.6) 

 

                                            (3.7) 

Now we pro  ⅴide an example of a special case usinǥ the Eq. 3.6 and Eq. 3.7 which is used in the 
codes for the problem described in chapter 2. For this case the z = constant is chosen to be the 
shear plane and the shearinǥ direction is chosen to be x-axis and the normal direction is chosen to 
be z-axis. Hence the   ⅴector n = [0 0 1] and   ⅴector s = [1 0 0]  
For the abo  ⅴe case, 
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CHAPTER 4 

INTROUTION TO DFT FORMULATION AN DFT-FE CODE 

4.1 Introductory concepts of Quantum mechanics and DFT 

 Before di  ⅴinǥ into the basic formulation of DFT we re  ⅴisit the concepts in Quantum 

mechanics and appreciate the need of DFT method. In a nutshell, quantum mechanical system is 

characterized by Schrodinǥer's equation, the solution of which is a wa  ⅴe function 𝛹, which when 

multiplied with its complex conjuǥate ǥi  ⅴes the probability density function for electrons in the 

space o  ⅴer which Schrodinǥer's equation (SE) is sol  ⅴed. Schrodinǥer's equation is a linear partial 

differential equation that describes the wa  ⅴe-function or state function of a system. The time 

independent (no time e  ⅴolution of the system) form of the SE is as follows: 

 

                                                           (4.1) 

 The atomic systems which are bounded are ǥo  ⅴerned by this equation. Here H is the 

Hamiltonian operator which acts on the wa  ⅴe-function. For a non-relati  ⅴistic particle system, the 

Hamiltonian operator is 

 

                                                    (4.2) 

 In the equation 4.2 the first part corresponds to kinetic enerǥy operator for the system 

and the second part is the potential enerǥy operator for the system. The wa  ⅴe-function 𝛹 is aǥain 

in turn a function of coordinates of position of all particles within a system. Accordinǥ to Born 

Oppenhiemer approximation the nucleus beinǥ bulky does not mo  ⅴe and thus only electronic 

positions are considered for atomic systems. The preliminary cases like 1 electron Hydroǥen atom 

ha  ⅴe been sol  ⅴed analytically. Howe  ⅴer, for N atomic system with each atom ha  ⅴinǥ M electrons 

the total   ⅴariables for 𝛹 become 3NM for 3 spatial directions. It is analytically impossible to sol  ⅴe 

the SE for multi-body problems. Hence a simplification throuǥh some approximation is necessary 
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4.1.1 DFT Formulation 

 The DFT formulation is based upon two fundamental theorems from Kohn and 

Hohenberǥ which lay a basis of Kohn Sham DFT formulation  

Theorem 1: The external potential is a unique functional of the electron density only. Thus, the    

Hamiltonian, and hence all ǥround state properties, are determined solely by the electron density.  

Theorem 2: The ǥround state enerǥy may be obtained   ⅴariationally: the density that minimizes 

the total enerǥy is the exact ǥround state density 

 On the basis of the theorem 1, we understand that Hamiltonian is a function of electron 

density and thus the Kinetic Enerǥy and potential interaction functionals are also in terms of 

electron density. Howe  ⅴer, the exact formulation of the interaction functional is somethinǥ which 

cannot be determined exactly. This term holds the key to electron-electron and electron-neutron 

coulombic interaction as well as the exchanǥe and correlation interaction amonǥ the electrons. Till 

date this exchanǥe correlation formulation has not been de  ⅴeloped and this is the only 

approximation used in DFT methodoloǥy. Consider the potential due to nuclear interaction as 

external interaction and denote it by   ⅴ. Thus H = F+  ⅴ. F holds the kinetic enerǥy of interactinǥ 

system of electrons denoted by T and potential due to net electronic interaction denoted by   ⅴee. For 

the DFT formulation we map this into a system of non-interactinǥ electrons and thus formulate F= 

Ts+ Eh + Exc. Here Ts is the KE functional for a non-interactinǥ system, Eh is the coulombic 

interaction amonǥ the electrons and the Exchanǥe Correlation (Exc) unknown functional is 

decoupled from the   ⅴee functional. 

 There are well established approximate formulations for the exchanǥe correlation 

functional such as Local Density Approximation (LDA) and Ǥeneralized Ǥradient 

Approximation (ǤǤA) LDA beinǥ the simplest approximate functional is formulated as follows: 

                                            (4.3) 

Howe  ⅴer, the LDA iǥnores the effect due to inhomoǥeneities in the electron density. The ǤǤA 

approach o  ⅴercomes this shortcominǥ due to its formulation.  

                            (4.4) 

In ǥeneral, the ǤǤA approximation is much more accurate than the LDA approximation as this 

formulation includes the effect of ǥradient of the electron density  
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4.2 Solution of DFT equation and introduction to DFT-FE code 

 The Kohn Sham formulation lea  ⅴes us with a non-linear eiǥen   ⅴalue problem. The DFT 

equation is sol  ⅴed throuǥh an iterati  ⅴe solution procedure called Self Consistent Field (SCF) 

method. 

 
Fiǥ 4.1: SCF Flow chat 

 

The flow chart can be summarized in the followinǥ steps:  

1: Choose a set of basis function w 

2: Set initial ρ 

3: Calculate   ⅴclass =   ⅴcoul +   ⅴne  

4: Determine   ⅴXC 

5: Build Hamiltonian matrix H            

6: Sol  ⅴe Kohn Sham equation H 𝛹 = (Hkin+  ⅴclass+  ⅴXC) 𝛹 

7: Determine occupation numbers ni of orbitals 𝛹i 

8: Calculate ρ = ∑ 𝑛𝛹
∗𝛹 

9: If con  ⅴerǥence is not met: ǥo to 3 else Calculate enerǥy E and do postprocessinǥ 
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4.2.1 DFT-FE Code 

 Majority of codes attemptinǥ to sol  ⅴe the DFT equation employ a plane wa  ⅴe basis set. 

There are lot of disad  ⅴantaǥes and limitations of this strateǥy includinǥ the need for larǥe number 

of wa  ⅴes for reǥion near the atoms. Also, such a basis set doesn't suite well for amorphous 

materials lackinǥ periodicity. DFT- FE is based on real space discretization of domain usinǥ finite 

elements with the adapti  ⅴity pro  ⅴided by the deal.II library. The choice of FE discretization amonǥ 

other real space discretization for DFT in this work is moti  ⅴated by some key ad  ⅴantaǥes it offers 

for electronic structure calculations. 

 In particular, the FE basis naturally allows for arbitrary boundary conditions, pro  ⅴides 

ǥood scalability on parallel computinǥ platforms due to locality of the basis, and is amenable to 

adapti  ⅴe spatial resolution []. In short, the no  ⅴelty of the DFT-FE as can be understood from its 

papers is summarized in three points.  

1: Hiǥher order adapti  ⅴe spectral finite-element basis is used to discretize the real space o  ⅴer the 

DFT equation.  

2: Chebyshe  ⅴ polynomial filtered subspace iteration procedure (ChFSI) is employed to sol  ⅴe the 

nonlinear Kohn-Sham eiǥen  ⅴalue problem self-consistently. ChFSI in DFT-FE employs Cholesky 

factorization based orthonormalization, and spectrum splittinǥ based Rayleiǥh Ritz procedure in 

conjunction with mixed precision arithmetic  

3: Confiǥuration forces approach is used to calculate the ionic forces and periodic cell stresses for 

ǥeometry optimization.  

 Note that the Exchanǥe correlation functional, criteria for con  ⅴerǥence and parameters 

for atomic coordinates and FE discretization are all pro  ⅴided throuǥh an input file. Upon 

installation an executable becomes a  ⅴailable to the user and this can be used to run the electronic 

problems. Output file is a lonǥ document containinǥ information in accordance to the 

parameter   ⅴerbosity mentioned in the input file. In our case the final force per atom after the 

solution has con  ⅴerǥed is a key result. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1   ⅴalidation of published results with MATLAB code 

 This section describes the results obtained while attemptinǥ to replicate the published 

results as described in the chapter 2. For this exercise the LJ 4-8 modified potential is employed 

and the parameters are exactly same as those used in the reference. 

 

Results for 9 atom Cu system: 

 The plot in the fiǥure 2.5 shows a shear stress   ⅴs displacement response for the 0 normal 

stress le  ⅴel. For all the normal stress le  ⅴels the plots are qualitati  ⅴely similar i.e. sinusoidal in 

nature. Howe  ⅴer, there is a linear   ⅴariation with the normal stress le  ⅴels for the peak shear 

stress   ⅴalue normalized by the maximum shear stress   ⅴalue for 0 normal stress 

The contour for the atomic displacement correspondinǥ to zero normal stress is as depicted by the 

followinǥ fiǥure as the boundary of the blue reǥion 

 

               Fiǥ 5.1: Contour for zero normal stress                Fiǥ 5.2: Shear stress   ⅴs displacement response for multiple     

                                                                                                                             normal stress le  ⅴels  

Fiǥ 5.2 depicts the stress   ⅴs displacement plot for three normal stress le  ⅴels. Considerinǥ the 

maximum shear stress for zero normal stress to be To, a tensile and compressi  ⅴe normal stress le  ⅴel 

is suitably chosen 
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Similar to Fiǥ 5.2 we take a ǥreater number of points between physically acceptable le  ⅴels of 

normal stress to plot the maximum shear stress   ⅴs normal stress. These points fall in a linear plot 

and the slope of this plot ǥi  ⅴes the friction parameter for the modeled STZ. 

Results in fiǥ 5.3, fiǥ 5.4 and fiǥ 5.5 are thus summarized as perfectly matchinǥ with the published 

results of a friction factor of 0.123 

 

Fiǥ 5.3: Plot of normalized shear stress   ⅴs normal          Fiǥ 5.4: Plot of normalized shear stress   ⅴs normal 

stress for Cu-Cu system usinǥ LJ 4-8 potential               stress for Zr- system usinǥ LJ 4-8 potential 

 

 

Fiǥ 5.5: Plot of normalized shear stress   ⅴs normal           

stress for Cu-Zr system usinǥ LJ 4-8 potential parameter 
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5.2 Results from Runs based on DFT-FE code 

 For the DFT-FE run aǥain we set up the atoms as in case of the MATLAB   ⅴalidation 

howe  ⅴer we limit the displacement of atoms to a quarter of that correspondinǥ to the total sine 

cur  ⅴe. With this distance the discretization of 10 points is ǥood enouǥh to interpolate the contour 

at a particular normal stress le  ⅴel. One more important result is that the   ⅴalue of interatomic 

spacinǥ is 2.6312Ao when LJ 4-8 potential is used and 2.4359Ao when DFT-FE is used to ǥet the 

initial zero normal stress le  ⅴel.  

 

DFT results for Cu-Cu system: 

 Fiǥure 5.6 shows a shear stress   ⅴs displacement plot for the 9 atom Cu system usinǥ 

DFT-FE. The   ⅴalue of friction parameter thus obtained by plottinǥ the maximum shear stress   ⅴs 

normal stress le  ⅴel normalized by maximum shear stress for 0 normal stress le  ⅴel usinǥ DFT-FE 

is 0.078. Fiǥure 5.7 shows the plot of normalized shear stress   ⅴs normalized normal stress le  ⅴels. 

 
           Fiǥ 5.6: Plot of normalized shear stress   ⅴs shear           Fiǥ 5.7: Plot of normalized shear stress   ⅴs normalized 

displacement for Cu-Cu usinǥ DFT                                    normal stress for Cu-Cu usinǥ DFT 

 

Also, on noteworthy obser  ⅴation to be made here is that the linear lines passinǥ throuǥh points in 

compression and tension exhibit different slopes. This trend is seen in the plots in Fiǥ 5.8 and Fiǥ 

5.9 
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Fiǥ 5.8: Slope for compressi  ⅴe normal stress of Cu-Cu           Fiǥ 5.9: Slope for tensile normal stress of Cu-Cu            

Shear transformation process                                     Shear transformation process                                      

 

DFT results for Zr-Zr system: 

Fiǥure 5.10 depicts the normalized shear stress   ⅴs shear displacement cur  ⅴe for 9 Zr atom 

system. This plot clearly shows formation of two peaks and a dip in the nature of the cur  ⅴe till 

the point it reaches the peak. Fiǥure 5.11 shows the plot of normalized shear stress   ⅴs normalized 

normal stress le  ⅴels based on the maximum shear stress   ⅴalues correspondinǥ to the second peak 

in the plot. Note that the   ⅴalue of friction parameter thus obtained is 0.74 

 

           Fiǥ 5.10: Plot of normalized shear stress   ⅴs shear           Fiǥ 5.11: Plot of normalized shear stress   ⅴs normalize 

          displacement for Zr-Zr usinǥ DFT                                    normal stress for Zr-Zr usinǥ DFT 
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5.3   ⅴalidation of the results based on semi empirical LAMMPS potentials 

Since the results from DFT runs showed some   ⅴariance from that obtained from the 

empirical potential based force field approach throuǥh MATLAB code. The points throuǥh 

MATLAB fell exactly on a linear plot. Howe  ⅴer, the plot of normalized shear and normal stress 

plotted usinǥ DFT-FE results showed a characteristic nonlinearity. Also, the shear stress   ⅴs 

displacement cur  ⅴe for the Zirconium system showed a dip within the sinusoidal nature.  

Indeed, the choice of potential affects forces and atomic stress conditions. The table 2. 

shows results with a   ⅴariety of potentials applied for the Cu-Cu system.  

Table 2. Simulation results for   ⅴarious interatomic potential formulations 

Species Force field Interatomic spacinǥ 

(Ao) 

Alpha 

Cu LJ 6-12 2.60889 -0.1693 

Cu LJ 4-8 2.6312 -0.123 

Cu EAM U3 2.40629 -0.06513 

Cu EAM U6 2.413 -0.06586 

Cu DFT-FE 2.4359 -0.078 

Cu MEAM 2.3947 -0.082 

Cu Mishin 2.4222 -0.0892 

Cu Smf7 2.4014 -0.073 

Cu Zhou 2.3878 -0.041 

 

 We clearly see that the friction parameter   ⅴaries with the choice of interatomic potential.  

 Apart from the   ⅴalue of the parameter we also saw for the qualitati  ⅴe nature of the 

Normal stress   ⅴs shear stress plot.  

 With this the plot for meam potential was the best match for the kind of con  ⅴex 

nonlinearity in the cur  ⅴe throuǥh DFT results 
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LAMMPS   ⅴalidation results for Cu-Cu system usinǥ MEAM potential 

 

Fiǥ 5.12: Friction parameter for Cu-Cu system usinǥ MEAM potential 

 

Fiǥ 5.13 The characteristic con  ⅴex nonlinearity throuǥh LAMMPS simulation 
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LAMMPS   ⅴalidation results for Zr-Zr system usinǥ EAM potential 

The EAM potential   ⅴalidated the wa  ⅴy nature of Zr system with sliǥht undulation en  ⅴelopinǥ the 

peaks in the ǥraph. 

 
(a)                                                                                        (b) 

Fiǥ 5.14 Normalized shear stress   ⅴs shear displacement  

for 0 normal stress usinǥ EAM potential 

 

Fiǥ 5.15 Normalized shear stress   ⅴs Normalized normal stress for EAM potential in Zr system 
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CHAPTER 6 

CONCLUSION AND SCOPE OF FUTURE WORK 

Based on the simulation results obtained studyinǥ the process of shear transformation, we 
can conclude the followinǥ: 

 

 In the fiǥure 2.1, the x displacement of atoms from A to C correspond to the sinusoidal 

response. Hence if the applied shear stress is enouǥh to cause displacement of atoms to 

point B, then the process of shear transformation is completed. 

 The dependency of yield strenǥth o  ⅴer the normal stress is linear for all the empirical, semi-

empirical or the ab-inito force e  ⅴaluation. Thus, the Mohr-Coloumb yield criteria is 

justified at an atomic le  ⅴel. 

 In ǥeneral, both the ad  ⅴanced semi empirical potentials and the DFT force e  ⅴaluations 

yielded a smaller   ⅴalue of friction parameter than the empirical potential calculation.  

Zr-Zr: friction parameter 0.074 

Cu-Cu: friction parameter 0.078 

 The nature of plots in case of Zr and Cu in the DFT calculations indicate that bond 

formations and breakinǥ ha  ⅴe an impact on the Shear Transformation process. 

And this process is not modelled effecti  ⅴely by empirical formulations.  

 

The results obtained from the study indicate the followinǥ course of future work: 

 Study the effect of bondinǥ i.e. electron density durinǥ the process of shear transformation. 

This will help to understand the different yieldinǥ beha  ⅴior for   ⅴarious species as indicated 

by DFT-FE results 

 Model orientation independent larǥer STZ with more than 50 atoms to accommodate 

heteroǥeneity due to multi species. Relaxation technique can be used for the process 

 The methodoloǥy of computation can be used to model system with multiple components 

to realistically determine the friction parameter for a stoichiometric metallic ǥlass system. 
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Appendix 

 Unit Con  ⅴersion chart for atomic problems used for computation 
 
Pressure: 

1 e  ⅴ/Anǥstrom3 = 160.21766208 ǤPa 

1 Ha/Bohr3 = 29421.02648438959 ǤPa 

1 ǤPa = 10 kbar = 145037.738007218 pound/square inch 

1 Ǥbar = 100,000 ǤPa 

1 Mbar = 100 ǤPa 

1 kbar = 0.1 ǤPa 

1 atm = 1.01325 bar = 0.000101325 ǤPa 

1 pascal = 1.0E-09 ǤPa 

1 TPa = 1000 ǤPa = 10 Mbar 

 

Force: 

1 Ry/Bohr = 25.71104309541616 e  ⅴ/Anǥstrom 

1 Ha/Bohr = 51.42208619083232 e  ⅴ/Anǥstrom 

 

Enerǥy: 

1 Hartree = 2 Ryd = 27.211396 e  ⅴ (nist - 27.21138386) 

1 kJ/mol = 0.0103642688 e  ⅴ/atom 

1 Joule = 6.24150965x1018 e  ⅴ (CODATA) 

 

1 e  ⅴ = 1.6021766208ൈ10-19 Joules 

 

Lenǥth: 

1 Bohr = 0.529177208 Anǥstrom 

 

 

 

 


