B. TECH. PROJECT REPORT
On

Mechanics of Shear Transformation
Zone in metallic glasses using Density
Function Theory calculations

BY
Avadhoot Prashant Sinkar

DISCIPLINE OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019



Mechanics of Shear Transformation Zone in metallic
glasses using Density Function Theory calculations

A PROJECT REPORT

Submitted in partial fulfiliment of the
requirements for the award of the degrees

of
BACHELOR OF TECHNOLOGY
in

MECHANICAL ENGINEERING

Submitted by:
Avadhoot Prashant Sinkar

Guided by:
Dr. Indrasen Singh
Assistant Professor, Mechanical Engineering, II'T Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2019






CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Mechanics of shear transformation zones in
metallic glasses using Density Functional Theory calculations” submitted in partial
fulfillment for the award of the degree of Bachelor of Technology in ‘Mechanical Engineering’
completed under the supervision of Dr. Indrasen Singh, Assistant professor, Dept. of

Mechanical Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Avadhoot P. Sinkar

CERTIFICATE by BTP Guide(s)

It is certified that the above statement made by the students is correct to the best of my

knowledge.

Dr. Indrasen Singh
Assistant Professor,

Dept. of Mechanical Engineering, IIT Indore






Preface

This report on “Mechanics of shear transformation zones in metallic glasses using

Density Functional Theory calculations" is prepared under the guidance of Dr. Indrasen
Singh

This report is to summarize the results of the work | carried out on the study of mechanics
of Shear Transformation Zones (STZ) in metallic glasses using Density Functional Theory
(DFT) Calculations. DFT is an ab initio method to study electronic problems and thus
provides much accurate results than the empirical interatomic potentials. In this work, |
have made an attempt to describe the objectives, motivation, methodology and analytical
results to obtain the design parameter associated with Shear Transformation. Shear
transformation being the major failure mechanism in the amorphous metallic glasses,
understanding the accurate design parameters aids in the design process. Thus, the friction
parameter associated with the Mohr Coulomb yield criteria have been found for the
Copper and Zirconium based systems using DFT-FE code and validated using advanced
semi empirical potential calculations
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Abstract

Metallic glasses are materials with exciting mechanical attributes which promise
to make up excellent materials for engineering applications. However, the design through
any material, demands the knowledge of the failure mechanisms and strength under loads.
This particular field is an active area of research for the metallic glasses, the failure
mechanisms for which have been debated since their discovery.

The contemporary research points out to shear transformation process leading to
formation of shear transformation zones (STZs) and shear bands as a fairly accepted
mechanism of failure in amorphous metallic glasses. In this process atoms cooperatively
accommodate the shear strain and transform their positions, propagating the distances further
to create multiple STZs and coalesce them to form a shear band.

In the current work a miniature model of a unit shear transformation has been
studied with reference to the published literature cited in the chapters ahead. Molecular static
simulations have been performed on various deformed configurations and the computational
data has been processed to get the friction parameter associated with the Mohr Coulomb
yield criteria which is an accepted failure criterion governing the failure mechanism of
metallic glasses. The work initially replicates the published results using empirical potentials
and then ab initio simulations are carried out to compare the results with the earlier results.

In the chapters below the methodology and the results are elaborated, conclusions
are drawn based on the work and the scope of future work is delineated.
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CHAPTER 1

INTRODUCTION TO METALLIC GLASSES AND
LITERATURE REVIEW

1.1 Characteristics of metallic glasses and application

Developments of new engineering materials are always a key challenge and an important
topic for material researchers during last few decades. Metallic glasses (MGs) are amorphous or
non- crystalline and asymmetric nature but are typically opaque, are not brittle
in general. Historically, metallic glasses were reported in 1960 by Klement et al. [1] during their
classic rapid-quenching experiments on Au-Si alloys. During the last six decades, numerous
reports [2], review articles [3-8], and textbooks [9 and 10] have been reported by material
researchers with great amount of attention and effort to understand the technological development
of MGs and exploit their characteristic/superior properties and potential applications.

Besides the mechanical properties of MGs, Pampillo [11] and Argon [12] specifically
focused upon fundamentals and mechanisms of deformation and fracture through their classic
review articles. MGs are attracted as emerging structural materials among the material researchers
due to their impressive mechanical, chemical and physical/functional properties [2, 13-15]. Further
rigorous works discussed the correlation between their structure and material properties [16 and
17] and shear banding phenomena [18 and 19].

Atoms in a MG are randomly packed without any long-range order, therefore it give fundamentally
different deformation mechanisms which allow MGs extreme high strengths (~10 times more than
that of Aluminium), low density, low Young’s modulus (high yield strain and resilience), high
hardness, high toughness, resistance to wear and corrosion, superplasticity at high temperatures
(ability to be formed like plastics) and moderate to high fracture toughness, high flow stress, and
high ductility. MGs have higher Poisson’s ratio which are more likely achieve better plasticity and
toughness. In addition, MGs show high compressive yield strength on the order of several GPa at
room temperature [20] and also it exhibit larger elastic strain up to ~ 2-3 %, with elastic moduli
comparable to those of crystalline alloys. However, due to the poor understanding of atomic
configuration and flow mechanism in MGs, the physics behind such connections is still under

study.



These unique combinations of superior material properties allow MGs to use in
tremendous application areas such as structural (high torque geared motor parts, high corrosion
resistant coating plates, kinetic energy penetrator rods, razor blades and different kinds of springs
and watch cases), electrical and electronics (casings of electronic devices, tape recorders heads,
transformer core material, cryo thermometers, magnetoresistive sensors, accurate standard
resistances and computer memories), nuclear reactor (containers for nuclear waste disposal and
magnets for fusion reactors, and inner surface of the reactor vessels), health and biomedical
(biomedical instruments such as endoscope parts, cutting and making surgical instruments and
prosthetic materials for implantation in human body), magnetic (electromagnetic shielding plates,
soft magnetic choke coils, soft magnetic high frequency power coils, magnets for fusion reactors
and magnets for levitated trains and high magnetic fields and magnetic levitation effect) and also
in sports (tennis racquet frames and golf club heads).

Safe deployment of MGs in wide range of structural applications requires an appropriate
understanding of their mechanical behavior in terms of deformation behavior and failure criteria.
Mechanics of modern materials are established by physicists and materials scientists based on the
effect of work-hardening, dislocations, grains, grain boundaries and shear deformation. However,
especially MGs along with some other materials show work-softening effects instead of work-
hardening. The deformation mechanisms of amorphous such as MGs are extremely challenging
due to the lack of conventional mechanisms in MGs which can carry plastic deformation. In
addition, there are several theoretical models proposed in order to investigate the atomic
mechanism of inelastic, elastic and plastic deformation of various amorphous alloys based on local
structural rearrangement of atoms. However, there are hardly any experiments or reliable
theoretical models to understand atomic process of elastic and plastic deformation of such

amorphous metals.



1.2 Mechanism of plastic deformation and failure

According to theory of plastic flow in Metallic Glasses (MGs) [31-33], the basic/fundamental unit
of plasticity or deformation in amorphous metals is termed as shear transformation zones (STZs).
An STZ is a fundamental flow defects but not a structural defect in an amorphous metal. An STZ
is a small cluster of ~10-100 [34] randomly close-packed atoms that spontaneously and
cooperatively reorganize under the action of an applied shear stress. In the simulation of STZs a
wide variety of simulated compositions and empirical inter-atomic potentials are used and
suggested that STZs are common to deformation of all amorphous metals even though the details
structure, size and energy scales of STZs may vary for different amorphous materials [4]. As the
exact nature of local atomic deformation in MGs is not fully resolved, a 2D schematic of Fig.
1.1(a), originally proposed by Argon and Kuo [35] on the basis of an atomic-analog bubble-raft
model which shows how an STZ can accommodate a small increment of shear strain. The event
depicted in Fig. 1.1(a) has been referred to as a "flow defect", a local inelastic transition and “STZ”.
The continued propagation of shear strain occurs by a process of self-assembly: the operation of
one STZ creates a localized distortion of the surrounding material, and triggers the auto catalytic

formation of large planar bands of STZs, commonly called shear bands.

A 2D schematic of atomistic deformation
mechanisms in amorphous metals: (a) an STZ
[31] and (b) a local atomic jump [32].

Fig 1.1: Failure mechanisms in Metallic glasses



An alternative way, the plastic flow mechanism in MGs is also given by classical *‘free-volume™’
model [36 and 37] and applied for glass deformation by Spaepen [32]. This model

essentially views deformation as a series of discrete atomic jumps in the glass, as depicted in Fig.
1.1b, these jumps are obviously favored near sites of high free volume which can more readily
accommodate them. Even though, it is not clear why local diffusive jumps would be biased by
shear stresses and a single atomic jump does not accommodate shear strain. But also, the

free volume model introduces a simple state variable to the problem of glass deformation, and
allows constitutive laws to be developed on the basis of competing free volume creation and

dissolution through a simple mechanism.



1.3 Review of experimental work related to strength of metallic glasses

One important consequence of shear deformation in amorphous metals is yield criterion which
exhibit a dependence not only upon the maximum shear stress, but also upon the hydrostatic
pressure or normal stress acting on the shear plane. The von mises and tresca criteria suggest
symmetric strength in compression and tension. However, MGs have displayed asymmetric yield
behavior in several experimental studies [44, 53 and 55] and also the failure behaviors of MGs are
quite different because of their unique mechanical behaviors which made challenges with the use
of traditional experiences and theories. Hence, the Mohr Coulomb yield criteria is widely used in
design using metallic glasses to account for the asymmetric strengths in tension and compression.

The general form of the M-C yielding criterion along the fracture surface is given as,

Ty =Ty — Oy

(1.1)
Here, is the effective shear yield stress or critical shear stress, is critical shear failure stress for pure
shear fracture, normal stress on the fracture plane, and is an effective friction coefficient or system
specific coefficient or material constant or M-C friction parameter, which controls the strength of
the normal stress effect. A wide number of significant experimental studies [41-55, Pampillo 1975,
Argon 1979, Spaepen 1977] in the area of deformation and fracture behavior of MGs have been
reported and shear band/fracture angles in uniaxial or multi-axial state of stress were investigated
to predict the plastic yield behavior and M-C friction coefficient parameter for different MGs.
They have been independently concluded that yield is not solely controlled by the maximum shear
stress. In general, the plastic deformation of MGs is localized in the narrow shear bands, followed
by the rapid propagation of these shear bands and sudden fracture. The yield criterion of MGs has
been provided in a number of studies [50, 55, Lund and Schuh, 2003 and 2004] through careful
measurement of the angles of shear in tension and compression, which are directly related to the
coefficient as

cos 20 cos 20

o = —

sin 20 sin 20

(1.2)



Donovan [45] studied a Pd4oNi4oP20 based glass in tension, compression, and pure shear
and reported a compression/tension strength differential is 23%. Liu et al. [6] studied mechanical
properties of two Zr-based bulk amorphous alloys by both tensile and compressive tests at room
temperature and reported that the fracture angle in tension and compression are 53° — 58° and 44°
— 46°, respectively. Lowhaphandu et al. [47, 48] have used combined uniaxial-plus-pressure
loading to explore the yield and failure of Zr-based MGs. These authors showed a small pressure-
dependence of the yield stress, again manifested as higher strengths in compressive loading states
as compared with states of net tension. Mukai et al. [53] studied the mechanical deformation of
Pd4oNis0P20 in compression over a wide range of strain rate at room temperature. They reported
the fracture angle in tension and compression are 56° and 42°, respectively and also suggested that
the yielding of the material behavior follow the Mohr-Coulomb yield criterion but deviates the
classical von Mises yield criterion. Lewandowski et al. [54] questioned on the validation of M-C
yield criterion in MG systems and reported that for Zr-based and Hf-based MG alloy, there was
little pressure dependency on the observed flow/fracture stress during quasi-static compression
tests with superimposed pressure.

Thus, it can be clearly observed that due to the practical discrepancies and limitations in
experimentation, the fundamental physics behind the yield process could not be understood. Hence

the need for computational study at the atomic level was deemed necessary.



Table 1. Shear/fracture angles w.r.t the loading axis for various MGs at room temperature

Investigator Material Tension Compression
Or (°) Oc (°)

Megusar et al. (1979) PdsoSi20 48-50

Takayama (1979) Pd77.5CueSiie.s 51

Donovan (1989) Pd40Ni40P20 40.7

Liu et al. (1998) Zrs55NisCuszoAlio 53-58

Lowhaphandu et al. Zre2TioNioCuiasBess | 57 41.6

He et al. (2001) Zr52.5Ni14.6Al10Cu17.9Tis 55-65 40-45

Inoue et al., (2001) CueoHf>5Ti15 54 43

Wright et al. (2001) Zra0T114aN110Cu12Be24 56 42

Mukai et al. (2002) Pd4oNis0P20 56 42

Iii‘g;;f;gik(lggglz) Zr632Ni94Cuiz4TiooBesa: | 50-53 39-42.5

Zhang et al. (2003) Zrs9NisCu20Al10Tis 54 43

He et al. (2003) Zr59Cu20Al10NisTi3 54 42.5

Zhang et al. (2004) 56 42

Conner et al. (2004) Las2Al14Cu24Ni24 90 42.5

Sergueeva et al. (2005) 56 42

Ott et al. (20006) Zrs57.4Cui6.4Nis2TagAlo 54 41

Wu et al. (2006) Ti62.1N12.6Cu4.8Sns 2Nb22.3 | 90 45

Wu et al. (2007) Zrs562T113.8Cus 9NbsNis 6B | 54 40

Yoshikawa et al. (2008) | ZrssAlioCuzoNis 53 41

Jiang et al. (2008) Zr632Ni9.4Cuiz4TiooBes: | 51.6 40.8
Zra12T113.8Ni10Cui2sBe22. | 55 44

Baricco et al. (2009) CueoZr3oTi1o 54 40

Wu et al. (2019) Ti32.8Z1302Ni53Cu9Bex7 | 54 41.1




1.4 Review of computational work on STZ, Failure criteria and strength of
metallic glasses

With the advent of molecular dynamics simulation powered by increasingly available computing
resources, the results obtained by experimental investigations were verified through computational
simulations to get additional fundamental insights. various attempts to model the process of plastic
deformation in metallic glasses are summarized in this section. Argon and Kuo [61] studied plastic
deformation of amorphous alloy using two-sized bubble raft model and reported two types of

deformation units such as diffuse shear transformation and dislocation pair formation.

Kobayashi et al [62] studied a computer simulation work under a periodic boundary condition in
order to investigate the atomic mechanism of elastic and plastic deformation of a Cus7Zrs3
amorphous alloy, using modified Lennard Jones 4-8 potentials. Srolovitz et al. [63] performed
shear deformation of amorphous metal based on free volume model, using computer simulation.
They reported a large number of microscopic deformation events observed and discussed the
atomic participation in plastic rearrangement. Deng et al. [64, 65] studied the deformation behavior
of amorphous materials using MD simulation and discussed how the atoms are participated in the
plastic rearrangements. Falk and Langer [66] presented a theory of dynamics STZs for MGs

and viscoplastic materials, based on MD simulations.

The results showed a reversible elastic deformation at small applied stresses, an irreversible plastic
deformation at larger stresses and a stress threshold above which unbounded plastic flow occurs.
Falk [67] studied the MD simulation for ductile and brittle fracture in two-dimensional amorphous
solid and reported a small change in interparticle potential leads to a qualitative change in ductility.
Lacks [68] studied an inherent structure analysis of viscosity based on results of MD simulations
and reported a significant atomic rearrangement in large-scale yielding behavior. Rottler and
Robbins [69] studied the yield criterion of an amorphous polymer using MD simulation and
reported that the atomic level structures of amorphous polymers and metals are significantly
different, but their deformation mechanisms are actually quite similar. The atomistic origin of
pressure and normal stress effects on yielding in metallic glasses was studied by Schuh and Lund
[70], who used atomistic simulations to examine the deformation characteristics of STZs. Using

empirical interatomic potentials, they computed the yield surface of a metallic glasses for biaxial

8



loading. The yield stress is larger in compression than in tension consistent with the normal stress
dependence theory. Fitting their results to Mohr-Coulomb criteria, they identified a friction
parameter of ¢ = 0.12. in a reasonable agreement with most of the experimental data for metallic
glasses. By extending their work to different configurations of STZs with different degrees of
dilation. Lund and Schuh proposed that a reasonable range for o« in a densely packed glasses is
0.12 - 0.4, and suggested that the exact value is determined by factors such as free volume

distribution and the chemical and topological short-range interactions.

Schematic diagram of STZs in MGs
[40]: (a) a four-atom 2D model [38], and
(b) a nine-atom 3D model [39].

Fig 1.2: STZ model by Schuh and Lund



1.5 Motivation for the work and objectives

Even though MGs exhibit extreme strength and many other desirable mechanical
properties, but other macroscopic deformation properties and mechanisms of yielding and failure
are still not thoroughly understood. Shear Bands are particularly important since it play a crucial
role in dominating the unique mechanical properties of MGs and in controlling the plasticity and
failure of almost all MGs [19-22]. This severely prevents the extensive use or wide potential
applications of MGs as advanced structural and functional materials in engineering applications
[19, 22 and 23]. Therefore, it is essentially required to fully understand the inherent mechanism of
SB behavior such as initiation, propagation, evolution, failure, consequences, and control of SBs
in MGs for improving the plasticity and promoting the applications of MGs [19]. There is good
amount of works reported in understanding the inherent mechanism behavior [19-22, 24 and 25],
propagation [19 and 26], and control [19, 27-30] of SBs in MGs over the last few decades.
However, the exact deformation mechanism and the process in MGs are still remains unclear so
far, and is an active area of research.

The criteria widely utilized for design using MGs is the Mohr Coulomb criteria of failure.
Thus, one important consequence of shear localization in MGs is that the macroscopic plastic-
yield criterion exhibits a dependence on maximum shear stress as well as hydrostatic pressure or
normal stress acting on the shear plane [34]. Table 1 shows typical values of shear band angles in
both compression and tension. However, these values show lot of scatter and also have limitations
in terms of application of loading conditions. Hence a work probing the physics of deformation at

an atomic scale computationally is motivated
Objectives:

1) There is a need to understand the atomic basis of failure criteria and yield behavior using
simulations based upon state-of-the-art computations based on Density Functional Theory
which is an ab initio technique as opposed to empirical inter-atomic potentials utilized in
computational work so far.

2) Thisin Vv estigation aims to pro V ide greater, accurate and reliable insight in qualitati v e
and quantitati v e V erification of the underlying mechanisms and understanding of the

yielding in this important class of materials.

10



CHAPTER 2
METHODOLOGY AND PROBLEM DESCRIPTION

2.1 Problem Statement

For the presented work we have worked upon the model presented in Schuh and Lund
(2003) paper, replicated their results and later improved the results based on advanced DFT
calculations with validation through advanced semi empirical potential available through
LAMMPS code. The problem statement and 9 atom model are described ahead.

We have carried out static simulations of the nine-atom STZ model (shown in Fig. 1.2b)
with ab initio Kohn Sham DFT method to evaluate the forces on the atoms as opposed to the
empirical potential formulations which give the force field. The nine atoms represent a unit of
plasticity mimicking the process of shear transformation in which atoms accommodate the shear
strain by collectively displacing relative to other atoms. Based on the work of Schuh and Lund
[2003] and Lund and Schuh [2004], the initial FCC configuration has been arranged with five
atoms in the lower plane and four atoms in the upper plane. The positioning of atoms is explained
in the Fig. 2.1 and Fig. 2.2. For a particular configuration of atoms, we evaluate the net force on
each atom due to all other atoms. Based on the stress formulation explained we get the stress tensor
corresponding to the configuration. Thus, defining the plane of shear and direction of shear we are
able to get the normal and stress components. We find the configuration in terms of atomic spacing
(re) such that the normal stress is zero. Taking configuration with this re as the initial configuration
we translate the upper plane of atoms with respect to lower atoms as a rigid unit. Thus, the
translations are in the plane of normal and shear displacement. We characterize these
displacements by discrete positions separated by finite amounts. Finally, when stress components
corresponding all the positions are available, we figure out a contour of atomic displacements over
which the normal stress is constant. On the points over this contour we calculate the shear stress
and plot it against the shear displacement. We compare the plots obtained with the published results
of Schuh and Lund [2003] and Lund and Schuh [2004], and noted the max shear value for the
corresponding normal stress level. Plotting these max shear stress values against the normal
stress values we evaluate the Eq. (1) is strictly followed the Mohr Coulomb criteria and report the

slope value as the friction parameter .

11



Lower atoms

— — — Upper atoms

Fig 2.1: 9 atom STZ model representation
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Fig 2.2: Coordinates in terms of r.
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2.2 Methodology
> Replicate the published result to understand the procedure

In this first step we wrote a MATLAB code to obtain a qualitative and quantitative match
with the results published by Schuh et. al. (2003). The aim was to attain the sinusoidal nature of
Shear stress vs shear displacement curve and obtain the friction coefficient value as 0.123 as
reported in the paper.

Although the basic procedure for the problem was mentioned in the paper, many subtle
details like the inter-atomic spacing for the starting configuration were not reported. Also, the
direction of shear of top layer atoms was not explicitly mentioned. Hence in order to understand
the methodology of the authors in detail, we tried to simulate the problem with different possible
parameters.

With respect to the initial starting structure, we had to figure out the positioning of the
atoms and general shape of the STZ utilized by the authors. From the figures in the paper we
figured out the positioning of the atoms is as shown in Fig. 2.1. We also initially started our
attempts with the common LJ 6-12 potential, however later realized that the author had used the
modified LJ 4-8 potential referenced from the paper from Kobayashi et.al. [62].

The formulation of the potential is as follows

A B
Cu—Cu Cu—Zr Zr—7r
A fﬁ".-"-ﬁ.“j] 30,7744 717076 1403512
B (e‘iu'-iﬂ} T44 52 2708.56 831328
C (e‘iv'-ﬁa B —0.03276 —0.04808 —0.07023
D (eV) 0.21005 0330368 0.531656

Fig 2.3: L-J 4-8 Potential: Formulation and parameters

13



The direction of shear was initially attempted to be randomly selected within the shear
plane passing through the two saddle points in the iso-normal stress surface within the 3D space
of possible displacement of top layer atoms within the distance of 1.5 times the inter-atomic
spacing between atoms. However later it was understood from the paper from Schuh and Lund
[70], that the direction chosen was such that after the shear event the final configuration is mirror
image of the first one. That is the top atoms move along the x direction in the Fig. 2.1.

One of the greatest challenges and the determining factor in this exercise was to find the
criteria for choosing the inter-atomic spacing for the initial close packed structure. We tried a lot
of possible ideas. Initially we started with the value at which the force between two atoms vanishes
for the chosen potential. Then we tried the values for which the energy of the system is minimized.
But this didn’t give proper results as we had constrained the shape of the system to be FCC. Hence
energy minimization was obtained at large spacing values. Finally, we reached out the correct
procedure by selecting the spacing value as the one which drives the normal stress on the shear
plane to be 0. The Fig. 2.5 displays the shear stress vs displacement curve for 0 normal stress level.
With these insights we were perfectly able to match the published results qualitatively as well as
quantitatively. The value of friction parameter matched exactly. With this we were ready to go

ahead with doing these calculations for ab initio setting.

o
/ %
05 /" \\\
/ %
: O \\‘
Atormiic shear 2 / X
" displacement - / N /
% VA \ /
- e X /
= Ve
il Saddle point 1 =
gL d,= -5, B 0s 1 15
i Shear displacement (Angstrom)
Fig 2.4: Schuh et.al. published results Fig 2.5: Result from MATLAB code for o =0
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> Further work with the established method and associated framework

As a next step in the project, we started the runs with DFT-FE code. DFT-FE jobs were
executed using the space time super-computing resources. On the completion of the job we get an
output file with the net force on each atom. Main task here is to computationally generate the
requisite folders containing the input files corresponding to each deformed configuration of atoms.
A batch file is used to copy the common files in each folder. Later after each folder has an output
file, again a batch file recursively extracts force from the output files and creates an excel file
which can be read from the MATLAB code. Once stress tensor for each configuration is evaluated,
the further part is exactly similar to the MATLAB code developed for replicating the results. The
detail of the code can be found in the code documentation report.

One point to be specifically mentioned is that since DFT-FE runs require much more time
than those with empirical potentials, we decided to evaluate the shear stress vs displacement curve
only till the first peak is reached i.e. a quarter displacement as compared to that required to get the

response in Fig. 2.4 and Fig. 2.5.

Using the mentioned procedure, results were generated for 9 atom Cu-Cu and Zr-Zr system.
Based on the results a need was felt to carry out the computations using advanced semi empirical
potentials available through LAMMPS and check if there is any deviation from the results obtained
from DFT-FE results. After this we made attempt to apply the methodology implemented so far to
a relaxed configuration in equilibrium with itself. For this we tried relaxation with a random
starting structure and an FCC starting structure. The computational framework here includes
computationally generating the input script and respective folders and then submitting them with
a batch script. The output file structure is read by MATLAB to pick up the net force on the atoms
and corresponding coordinate vectors. So basically, the key step is in all platforms is to get the

forces on atoms either pairwise or net sum. The rest of the framework remains same.
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CHAPTER 3

THEORETICAL FORMULATION OF STRESS AT DISCRETE
ATOMIC LEVEL

3.1 Introduction

Stress being a continuum concept, needs to be applied with a special treatment when it
comes to defining it on an atomic level. The macroscopic behavior of solids is widely studied from
a microscopic level, using the viewpoints of atomistic mechanics [75]. To bridge the atomistic
mechanics and the continuum mechanics, it is important to know the relationships between the
microscopic quantities of atoms, and the macroscopic quantities of continua. Atomic-level stress
calculation plays a very important role in comparisons of continuum predictions with atomistic
simulations, and it allows the intensity and nature of internal interactions in the discrete particle
systems to be measured. The atomistic stress can be employed to interpret the results of atomistic
simulation in light of continuum mechanical calculations, which have been used in molecular
dynamics simulations of solids in a variety of ways, such as characterization of defects, the
determination of elastic constants, and the study of the local elastic properties. There are different
ways to calculate stress in atomistic simulations. Pioneering work has been done in this field by
Born and Huang [72] who used an elastic energy approach to evaluate the stress in lattices by
means of the Cauchy-Born hypothesis for homogeneous deformation.

Another widely used stress measure at the atomic scale is the virial stress (also called the
local atomic level stress, system level stress, total stress or pressure tensor), which is based on a
generalization of the virial theorem of Clausius [71] for gas pressure. It is mostly used in molecular
dynamical (MD) systems or discrete particle systems and also it gives interpretation of Cauchy
stress at atomic level. The quantity includes two parts. The first part depends on the mass
and velocity of atomic particles, and the second part depends on interatomic forces and atomic
positions, providing a continuum measure for the internal mechanical interactions between
particles. The average virial stress [73] over a domain of volume () around a particle i at position
ri is given as
1

virial (. _
o) = G

1. ;
E‘,[*!H,HL ® ”1 =+ EEJ(?L)V,U ® /«’J]
3.1)
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Here, i and j are the atomic indices. The summation is over all the atoms occupying the
total volume Q. mi is the mass of atom i, ui is the displacement vector of atom i relative to a

reference position. The interatomic force fij applied on atom i by atom j is

f _ a(f)(TU) Tij
o orij | rij |

(3.2)

@ (rij) is the pairwise interatomic potential between the atoms. In the above formulation the first
term including the momentum flow is neglected for static calculations. Also note that the
formulation in equation 3.1 is in terms of pairwise forces between the atoms. However, we get a
net force on every atom through DFT calculations. Hence, we see the formulation in terms of net
force and atomic position. In the reference book by Tadmor and Miller [75], the expression for

Cauchy stress tensor or virial stress is given as

] }31:(1‘ PJ{.X

O'ij R [ o .4 f:'.'.l.t,(k_r;r]

0

(3.3)
f i represents the i component of net force on atom o and similarly r* j represents the j®

component of the atomic coordinate vector
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3.2 Proof of equivalence

Neglecting the momentum flow term provide a proof for equivalence of the equation
3.1 and 3.3 in the previous section

We start out with the central pairwise force based formulation as in Eq. 3.1

/]

. 1 B o o Lo u o 76 RPN Y
g = QQLHEﬁ?‘uf X7 = 2£2Lu2;f?tn,f ® (7 r'Y)
] g ¥ (&% — (a1
= 20 Errxﬁ;f-u[(,f”ﬁ 3y '-"'ﬁ) — (f P KT )J
1 ¥ a1 ¥ e
= —5q Ra szl (f* @ 1) — (f*7 @ 1F)]

Here note that summation will not be affected by simply interchanging o and 3

1

e B RS af A rBa o
g = 20) >—J(rLH7‘n [(f QT ) (I QT )J
s of o raf o g
— _E}mbﬂy‘ﬂ[(.f . T ) + (f & T )]

1 N o (Y - ¥
— _ﬁbrvbﬁfﬂ[(.f P Xr )J

f " is the internal force resulting from interactions with other atoms in the system. Now, based
on the principal of interatomic potential invariance [75], the net force on atoms due to internal

particles to the domain is considered the sum of central forces between pairs of particles i.e.

f-f'.n.‘,,u - Eﬁ(?&rr).f”ﬁ

Therefore our €q. becomes,
l ! int,a o 4]
a = __8221”(;‘ TRr )

The equivalence between the Eq. 3.1 and Eq. 3.3 is thus prove

3.3 Some additional derivatives and special cases

From the pairwise force formulation for stress we can get the formulation for normal and

shear stress components for a particular plane considered. This formulation is useful in the
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MATLAB code to solve the idealized 9 atom STZ problem using empirical LJ 4-8 potential. This
formulation is mentioned in the paper from Schuh and Lund [70] from which the results are
compared. Consider ¢ to be the interatomic potential between the atoms.

The expression for normal stress is given as

1 Do (r)?
Op = _E;\LIEN ¥ (fu)

20 =ED G |y | (3.4)

Derivation:

o
T 20

op = (0 -n)-n = g;nn;

o xr}fxﬁ#lt,fﬂfj R ?,(.!,3

n is a unit vector in the normal direction with respect to shearing plane
1
20

. &
20

2l al 'n‘}:ﬁ. _rx[f)’} "
L(,Lﬁ.’cuf,i -'j ;1

al Bl 3 v 3 .
Lcr >_J,87‘cr fi(r, nrs n;

il'j

Consider the normal component of atomic separation to be r"**. Here N is the total number of
atoms in the system. Also, the central force between atoms can be represented as magnitude of
force times the unit vector in the direction of vector connecting the centers of the atoms. Whereas

the unit vector is obtained by dividing the vector by its magnitude.

1 g, 15F 8
- _x E!’ : T] 17{?1‘_?-?_"’”
2(} a4 " fz ” H 'f',:l’d || il
1 4 Jrul'a,}u,ﬁ s
= 5.5 7 —=—r;"
20 @ Fo ” i ” ” T;m’ || 7

Lo T_Ta,(x.[f

= i N (}L 1 ,rn_,uﬁ
— 252 G5 (s),rn;[-} ” '!"_?ﬁ ” 7

9() Ti=17=1F#) 5, | i |l

JTT.

The expression for shear stress is given as
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D (ri3) (i)
Jor I i | (3.5)

On = ENIL j=1(#i

2Q

Derivation:

1 . .
= N af o 0f
7= g ReNaraf T @

T = (0~ n) 8= 0Ny
n is a unit vector in the normal direction with respect to shearing plane
s is a unit vector in the shear direction within the shearing plane

1 ;
- aB_af
=30 YaXptaf; Ty Sim;

YaXpsta ;-a’ssi-r?ﬁnj

T 20

Consider the normal component of atomic separation to be r" ® and the transverse component of
the atomic separation to be r'®. Here N is the total number of atoms in the system. Also, the central
force between atoms can be represented as magnitude of force times the unit vector in the direction
of vector connecting the centers of the atoms. Whereas the unit vector is obtained by dividing

the vector by its magnitude.

S || £ [ o g
20 Tl
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Thus, normal and shear stress components are evaluated for a pairwise force computation.
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Now we similarly go ahead to find the expression for normal and shear stress from the stress

tensor evaluated from the net force on atoms.
1
g = — Qza(.f”u‘u ® ’F“)

on = (0 -n)-n=oynn,

t
Op = —_E“ fm Ney UH, N,
2
1
1 int,o
Op = _ﬁz‘u f,a, T ”_;
_ _12 (fint,(r e
On = Q7 ' Il)(I' ) Il)

T=(0-n) 8=0yn;8
1

int, n ne
T:—QL“}" NS
int, o o,
T = —QZ(,_)‘,; ST M
. 1 int, e «
T = —ﬁE“(f -s)(r" - n)

(3.6)

3.7)

Now we provide an example of a special case using the Eq. 3.6 and Eq. 3.7 which is used in the
codes for the problem described in chapter 2. For this case the z = constant is chosen to be the
shear plane and the shearing direction is chosen to be x-axis and the normal direction is chosen to

be z-axis. Hence the vector n =[0 0 1] and vector s =[1 0 0]
For the above case,

1

QE (flllt. (r)( )

On =

E”(fmt (r)( )
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CHAPTER 4
INTROUTION TO DFT FORMULATION AN DFT-FE CODE

4.1 Introductory concepts of Quantum mechanics and DFT

Before diving into the basic formulation of DFT we revisit the concepts in Quantum
mechanics and appreciate the need of DFT method. In a nutshell, quantum mechanical system is
characterized by Schrodinger's equation, the solution of which is a wave function ¥, which when
multiplied with its complex conjugate gives the probability density function for electrons in the
space over which Schrodinger's equation (SE) is solved. Schrodinger's equation is a linear partial
differential equation that describes the wave-function or state function of a system. The time

independent (no time evolution of the system) form of the SE is as follows:

H(V) = BV @1

The atomic systems which are bounded are governed by this equation. Here H is the
Hamiltonian operator which acts on the wave-function. For a non-relativistic particle system, the

Hamiltonian operator is

= %v'z FV(r)]
(4.2)

In the equation 4.2 the first part corresponds to kinetic energy operator for the system

and the second part is the potential energy operator for the system. The wave-function ¥ is again
in turn a function of coordinates of position of all particles within a system. According to Born
Oppenhiemer approximation the nucleus being bulky does not move and thus only electronic
positions are considered for atomic systems. The preliminary cases like 1 electron Hydrogen atom
have been solved analytically. However, for N atomic system with each atom having M electrons

the total variables for ¥ become 3NM for 3 spatial directions. It is analytically impossible to solve

the SE for multi-body problems. Hence a simplification through some approximation is necessary
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4.1.1 DFT Formulation

The DFT formulation is based upon two fundamental theorems from Kohn and
Hohenberg which lay a basis of Kohn Sham DFT formulation
Theorem 1: The external potential is a unique functional of the electron density only. Thus, the
Hamiltonian, and hence all ground state properties, are determined solely by the electron density.
Theorem 2: The ground state energy may be obtained variationally: the density that minimizes

the total energy is the exact ground state density

On the basis of the theorem 1, we understand that Hamiltonian is a function of electron
density and thus the Kinetic Energy and potential interaction functionals are also in terms of
electron density. However, the exact formulation of the interaction functional is something which
cannot be determined exactly. This term holds the key to electron-electron and electron-neutron
coulombic interaction as well as the exchange and correlation interaction among the electrons. Till
date this exchange correlation formulation has not been developed and this is the only
approximation used in DFT methodology. Consider the potential due to nuclear interaction as
external interaction and denote it by v. Thus H = F+v. F holds the kinetic energy of interacting
system of electrons denoted by T and potential due to net electronic interaction denoted by vee. For
the DFT formulation we map this into a system of non-interacting electrons and thus formulate F=
Tst En + Exe. Here Ts is the KE functional for a non-interacting system, En is the coulombic
interaction among the electrons and the Exchange Correlation (Exc) unknown functional is
decoupled from the vee functional.

There are well established approximate formulations for the exchange correlation
functional such as Local Density Approximation (LDA) and Generalized Gradient

Approximation (GGA) LDA being the simplest approximate functional is formulated as follows:

BL2A () = [ exclrin(rydr .

However, the LDA ignores the effect due to inhomogeneities in the electron density. The GGA

approach overcomes this shortcoming due to its formulation.

Ef?f"'[n(r)] — / n(?')f'}”}i‘ [n(r)|Fxc[n(r), Vn(r)|dr 4.4)

In general, the GGA approximation is much more accurate than the LDA approximation as this

formulation includes the effect of gradient of the electron density
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4.2 Solution of DFT equation and introduction to DFT-FE code

The Kohn Sham formulation leaves us with a non-linear eigen value problem. The DFT
equation is solved through an iterative solution procedure called Self Consistent Field (SCF)

method.

Self-consistent field method

Initial guess: n?
e.g. density

L

Calculate potential

Ve

A 4

Vit

A 4

Update potential Construct Hamiltonian

[ |

Obtain new eigenvalues,

n/*'= ni+f(An) eigenvectors, and density
I n
Update density / No
density matrix
(mixer, preconditioner)
Yes
Finished

Fig 4.1: SCF Flow chat

The flow chart can be summarized in the following steps:
: Choose a set of basis function w

: Set initial p

: Calculate Velass = Veoul + Vne

: Determine vxc

: Build Hamiltonian matrix H

: Solve Kohn Sham equation H ¥ = (HkintVclasstvxc) ¥
: Determine occupation numbers n;i of orbitals ¥;

: Calculate p =Y n;?;'¥;

O© 0 I O W»n B~ W N =

: If convergence is not met: go to 3 else Calculate energy E and do postprocessing
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4.2.1 DFT-FE Code

Majority of codes attempting to solve the DFT equation employ a plane wave basis set.
There are lot of disadvantages and limitations of this strategy including the need for large number
of waves for region near the atoms. Also, such a basis set doesn't suite well for amorphous
materials lacking periodicity. DFT- FE is based on real space discretization of domain using finite
elements with the adaptivity provided by the deal.II library. The choice of FE discretization among
other real space discretization for DFT in this work is motivated by some key advantages it offers
for electronic structure calculations.

In particular, the FE basis naturally allows for arbitrary boundary conditions, provides
good scalability on parallel computing platforms due to locality of the basis, and is amenable to
adaptive spatial resolution []. In short, the novelty of the DFT-FE as can be understood from its
papers is summarized in three points.

1: Higher order adaptive spectral finite-element basis is used to discretize the real space over the
DFT equation.

2: Chebyshev polynomial filtered subspace iteration procedure (ChFSI) is employed to solve the
nonlinear Kohn-Sham eigenvalue problem self-consistently. ChFSI in DFT-FE employs Cholesky
factorization based orthonormalization, and spectrum splitting based Rayleigh Ritz procedure in
conjunction with mixed precision arithmetic

3: Configuration forces approach is used to calculate the ionic forces and periodic cell stresses for
geometry optimization.

Note that the Exchange correlation functional, criteria for convergence and parameters
for atomic coordinates and FE discretization are all provided through an input file. Upon
installation an executable becomes available to the user and this can be used to run the electronic
problems. Output file is a long document containing information in accordance to the
parameter verbosity mentioned in the input file. In our case the final force per atom after the

solution has converged is a key result.

26



CHAPTER 5

RESULTS AND DISCUSSION
5.1 validation of published results with MATLAB code

This section describes the results obtained while attempting to replicate the published
results as described in the chapter 2. For this exercise the LJ 4-8 modified potential is employed

and the parameters are exactly same as those used in the reference.

Results for 9 atom Cu system:

The plot in the figure 2.5 shows a shear stress vs displacement response for the 0 normal
stress level. For all the normal stress levels the plots are qualitatively similar i.e. sinusoidal in
nature. However, there is a linear variation with the normal stress levels for the peak shear
stress value normalized by the maximum shear stress value for 0 normal stress
The contour for the atomic displacement corresponding to zero normal stress is as depicted by the

following figure as the boundary of the blue region

1.5

normal stress = -2T |

normal stress = 0
normal stress = 2T |

X displacement (Angstrom)
normalised shear stress

0 0.5 1 156 2 25 3 35 0 0.5 1 1.5

Z displacement (Angstrom) Shear displacement (Angstrom)
Fig 5.1: Contour for zero normal stress Fig 5.2: Shear stress vs displacement response for multiple

normal stress levels

Fig 5.2 depicts the stress vs displacement plot for three normal stress levels. Considering the
maximum shear stress for zero normal stress to be To, a tensile and compressive normal stress level

is suitably chosen
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Similar to Fig 5.2 we take a greater number of points between physically acceptable levels of

normal stress to plot the maximum shear stress vs normal stress. These points fall in a linear plot

and the slope of this plot gives the friction parameter for the modeled STZ.

Results in fig 5.3, fig 5.4 and fig 5.5 are thus summarized as perfectly matching with the published

results of a friction factor of 0.123
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Fig 5.3: Plot of normalized shear stress vs normal

stress for Cu-Cu system using LJ 4-8 potential
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Fig 5.4: Plot of normalized shear stress vs normal

stress for Zr- system using LJ 4-8 potential
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Fig 5.5: Plot of normalized shear stress vs normal

stress for Cu-Zr system using LJ 4-8 potential parameter
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5.2 Results from Runs based on DFT-FE code

however we limit the displacement of atoms to a quarter of that corresponding to the total sine
curve. With this distance the discretization of 10 points is good enough to interpolate the contour
at a particular normal stress level. One more important result is that the value of interatomic

spacing is 2.6312A° when LJ 4-8 potential is used and 2.4359A° when DFT-FE is used to get the

initial zero normal stress level.

DFT results for Cu-Cu system:

DFT-FE. The value of friction parameter thus obtained by plotting the maximum shear stress vs
normal stress level normalized by maximum shear stress for 0 normal stress level using DFT-FE

is 0.078. Figure 5.7 shows the plot of normalized shear stress vs normalized normal stress levels.

normalised shear stress

Also, on noteworthy observation to be made here is that the linear lines passing through points in

compression and tension exhibit different slopes. This trend is seen in the plots in Fig 5.8 and Fig

59
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Fig 5.6: Plot of normalized shear stress vs shear
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displacement for Cu-Cu using DFT
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For the DFT-FE run again we set up the atoms as in case of the MATLAB validation

Figure 5.6 shows a shear stress vs displacement plot for the 9 atom Cu system using
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Fig 5.7: Plot of normalized shear stress vs normalized

normal stress for Cu-Cu using DFT
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DFT results for Zr-Zr system:

Figure 5.10 depicts the normalized shear stress vs shear displacement curve for 9 Zr atom
system. This plot clearly shows formation of two peaks and a dip in the nature of the curve till
the point it reaches the peak. Figure 5.11 shows the plot of normalized shear stress vs normalized

normal stress levels based on the maximum shear stress values corresponding to the second peak

in the plot. Note that the value of friction parameter thus obtained is 0.74
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5.3 validation of the results based on semi empirical LAMMPS potentials

Since the results from DFT runs showed some variance from that obtained from the
empirical potential based force field approach through MATLAB code. The points through
MATLAB fell exactly on a linear plot. However, the plot of normalized shear and normal stress
plotted using DFT-FE results showed a characteristic nonlinearity. Also, the shear stress vs

displacement curve for the Zirconium system showed a dip within the sinusoidal nature.

Indeed, the choice of potential affects forces and atomic stress conditions. The table 2.

shows results with a variety of potentials applied for the Cu-Cu system.

Table 2. Simulation results for various interatomic potential formulations

Species Force field Interatomic spacing Alpha
(A°)

Cu LJ6-12 2.60889 -0.1693
Cu LJ4-8 2.6312 -0.123
Cu EAM U3 2.40629 -0.06513
Cu EAM U6 2413 -0.06586
Cu DFT-FE 2.4359 -0.078
Cu MEAM 2.3947 -0.082
Cu Mishin 24222 -0.0892
Cu Smf7 2.4014 -0.073
Cu Zhou 2.3878 -0.041

» We clearly see that the friction parameter varies with the choice of interatomic potential.

» Apart from the value of the parameter we also saw for the qualitative nature of the

Normal stress vs shear stress plot.

» With this the plot for meam potential was the best match for the kind of convex

nonlinearity in the curve through DFT results
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LAMMPS validation results for Cu-Cu system using MEAM potential
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Fig 5.12: Friction parameter for Cu-Cu system using MEAM potential
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Fig 5.13 The characteristic convex nonlinearity through LAMMPS simulation
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LAMMPS validation results for Zr-Zr system using EAM potential

The EAM potential validated the wavy nature of Zr system with slight undulation enveloping the

peaks in the graph.
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Fig 5.14 Normalized shear stress vs shear displacement
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CHAPTER 6
CONCLUSION AND SCOPE OF FUTURE WORK

Based on the simulation results obtained studying the process of shear transformation, we
can conclude the following:

» In the figure 2.1, the x displacement of atoms from A to C correspond to the sinusoidal
response. Hence if the applied shear stress is enough to cause displacement of atoms to
point B, then the process of shear transformation is completed.

» The dependency of yield strength over the normal stress is linear for all the empirical, semi-
empirical or the ab-inito force evaluation. Thus, the Mohr-Coloumb yield criteria is
justified at an atomic level.

» In general, both the advanced semi empirical potentials and the DFT force evaluations
yielded a smaller value of friction parameter than the empirical potential calculation.
Zr-Zr: friction parameter 0.074
Cu-Cu: friction parameter 0.078

» The nature of plots in case of Zr and Cu in the DFT calculations indicate that bond
formations and breaking have an impact on the Shear Transformation process.

And this process is not modelled effectively by empirical formulations.

The results obtained from the study indicate the following course of future work:

» Study the effect of bonding i.e. electron density during the process of shear transformation.
This will help to understand the different yielding behavior for various species as indicated
by DFT-FE results

» Model orientation independent larger STZ with more than 50 atoms to accommodate
heterogeneity due to multi species. Relaxation technique can be used for the process

» The methodology of computation can be used to model system with multiple components

to realistically determine the friction parameter for a stoichiometric metallic glass system.
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Appendix

e Unit Conversion chart for atomic problems used for computation

Pressure:

1 ev/Angstrom® = 160.21766208 GPa

1 Ha/Bohr® = 29421.02648438959 GPa

1 GPa =10 kbar = 145037.738007218 pound/square inch
1 Gbar = 100,000 GPa

1 Mbar = 100 GPa

1 kbar = 0.1 GPa

1 atm = 1.01325 bar = 0.000101325 GPa

1 pascal = 1.0E-09 GPa

1 TPa= 1000 GPa =10 Mbar

Force:
1 Ry/Bohr =25.71104309541616 ev/Angstrom
1 Ha/Bohr = 51.42208619083232 ev/Angstrom

Energy:
1 Hartree =2 Ryd =27.211396 ev (nist - 27.21138386)

1 kJ/mol = 0.0103642688 ev/atom
1 Joule = 6.24150965x10'® ev (CODATA)

1 ev=1.6021766208x10"° Joules

Length:
1 Bohr = 0.529177208 Angstrom
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