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Abstract

In this project, a Cyber Twin has been proposed that can be applied anywhere in
the manufacturing industries and possibly, other industries as well. In order to
develop the system, literature has been reviewed extensively for identifying most
appropriate degradation indicators and for developing models. These models
collectively are referred to as Cyber Twin of the actual machines. Using the cyber
twin, machines can be simulated to study its behaviour in the near future. In order
to make the models dynamic, algorithms have been developed for updating the

models with real field data.
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Chapter 1

Introduction

Contents:

1.1  Smart Manufacturing
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1.1.2 Pillar 2: Materials
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1.1.4 Pillar 4: Predictive Engineering

1.1.5 Pillar 5: Sustainability

1.1.6 Pillar 6: Resource Sharing and Networking
1.2 Cyber Twin

1.1.1 Step 1: Build the virtual representation of the Physical Product

1.1.2 Step 2: Process data to facilitate design decision-making

1.1.3 Step 3: Simulate product behaviours in the virtual environment

1.1.4 Step 4: Command the physical product to perform recommended
behaviours

1.1.5 Step 5: Establish real-time, two-way, and secure connections between
physical and virtual product

1.1.6 Step 6: Collect all kinds of product-related data from different sources
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1.1 Smart Manufacturing:

Smart manufacturing is a broad category of manufacturing that employs
computer-integrated manufacturing, high levels of adaptability and rapid design changes, digital
information technology, and more flexible technical workforce training. Other goals sometimes
include fast changes in production levels based on demand, optimization of the supply chain,
efficient production and recyclability. In this concept, as smart factory has interoperable systems,
multi-scale dynamic modelling and simulation, intelligent automation, strong cyber security, and
networked sensors.

Smart manufacturing utilizes big data analytics, to refine complicated processes and
manage supply chains. Big data analytics refers to a method for gathering and understanding
large data sets in terms of what are known as the three V's, velocity, variety and volume.
Velocity informs the frequency of data acquisition, which can be concurrent with the application
of previous data. Variety describes the different types of data that may be handled. Volume
represents the amount of data. Big data analytics allows an enterprise to use smart manufacturing
to predict demand and the need for design changes rather than reacting to orders placed.

Smart manufacturing can also be attributed to surveying workplace inefficiencies and
assisting in worker safety. Efficiency optimization is a huge focus for adopters of "smart"
systems, which is done through data research and intelligent learning automation. For instance
operators can be given personal access cards with inbuilt Wi-Fi and Bluetooth, which can
connect to the machines and a Cloud platform to determine which operator is working on which
machine in real time. An intelligent, interconnected 'smart' system can be established to set a
performance target, determine if the target is attainable, and identify inefficiencies through failed
or delayed performance targets. In general, automation may alleviate inefficiencies due to human
error. And in general, evolving Al eliminates the inefficiencies of its predecessors.

Smart manufacturing has been inspired by the concepts largely developed in the realm of
computing. Though manufacturing will continue to benefit from these concepts and other ideas
that will emerge (e.g. quantum computing could be a major disruptor), it has its own identity
captured in six pillars that are discussed next (see Figure 1). They are neither exhaustive nor
stationary. The ultimate pillars will be defined by the research, technology development and

applications that will emerge in the future. The ultimate pillars could be formally defined in a
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number of ways, including clustering of the research papers, industrial reports and information

about new technology with text and data mining algorithms.

Materials Data

Manufacturing Predictive

technology and Smart manufacturing engineering
processes

Resource
sharing and Sustainability
networking

Figure 1. Six pillars of Smart Manufacturing

The six pillars of smart manufacturing are manufacturing technology and processes,
materials, data, predictive engineering, sustainability and resource sharing and networking. The
names and the degree of importance of these six pillars have been changing, however, they have
been around manufacturing throughout its history. For example, data has been an integral part of
manufacturing. In the era of smart manufacturing it has become big data. Production planning

and forecasting have preceded predictive engineering versed in data science of today.

Pillar 1: Manufacturing technology and processes

The emergence of manufacturing technologies and processes are expected in future years. New
materials, components and products will emerge (Kusiak 2016a). Additive manufacturing can
serve as an example of a new technology that has prompted the development of new materials,
impacted the design and manufacture of products and opened doors to new applications such as
biomanufacturing. Manufacturing tools have been designed to integrate various operations, e.g.
machines that are capable of horizontal and vertical milling as well as drilling (a machining

centre). New hybrid processes will emerge, e.g. hybrids of traditional and additive processes,
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laser and net-shape manufacturing. Greater integration of processes will occur, e.g. integration of
new materials, product design, manufacturing processes, such as discovery of a chemical
compound leading to design of a new medication and a delivery device, as well as the
manufacture of medication and the device. Big and small area additive manufacturing will
expand its prominence in the factories. New generation of low cost robots will enhance factory
automation. Sensors and software capabilities will make the new manufacturing equipment

smarter and amenable to factory and beyond communication.

Pillar 2: Materials

Smart manufacturing does not make a special call for the development of smart materials, e.g.
shape memory alloys or functionally graded materials. It may well be that smart materials and
smart products will follow their own development paths. Smart manufacturing is open to all
types of materials, including organic-based materials and biomaterials, needed to produce future
products. The significance of recovering materials from products at the end of their lifecycle will
increase. It is conceivable that landfills will become new mines of various materials. Some new
materials will require novel processes that must be developed and incorporated in smart
manufacturing. Additive manufacturing alone will be a great contributor to the search for new

materials and their mixes.

Pillar 3: Data

We are witnessing the renaissance of data in manufacturing. Some of it has been triggered by
deployment of sensors, wireless technology and the progress in data analytics. Greater collection
of data from diverse sources, ranging from material properties and process parameters to
customers and suppliers has begun. The data will be used to power any application to be
envisioned, including building predictive models. Moreover, it will be the best source for

preserving and extraction of past and new knowledge related to manufacturing.

Pillar 4: Predictive engineering

Predictive engineering is one of the latest additions to the space of manufacturing solutions that

will lead to an anticipatory rather than reactive enterprise. Traditionally, the manufacturing
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industry has focused on using data for analysis, monitoring and control, e.g. productivity
analysis, process monitoring and quality control. Six sigma and other data-analysis concepts
have had tremendous impact on advances in the quality of manufactured products and services.
However, for the most part, traditional efforts have emphasised the past over the future states of
manufacturing processes and systems. Predictive engineering offers a new paradigm of
constructing high-fidelity models (digital representations) of the phenomena of interest. Such
models will allow exploring future spaces, some within the realm of the existing technology and
others that have not been seen previously. In the future, today’s models will be enriched with
both limited-scope models (e.g. behaviour of a supply chain) and those that involve multiple
systems (e.g. models that integrate productivity, product quality, energy and transport) to support
decisions concerning future production and market conditions. Such wide-scope models may
contribute to restructuring the manufacturing industry. It is conceivable that some manufacturing
will become highly distributed and some may be centralised. For example, products that are
sensitive to the transportation cost, time-to-market and customisation could be produced at

locations in proximity to the customers.
Pillar 5: Sustainability

Sustainability will be of paramount importance in manufacturing. The goals of sustainability
efforts will be materials, manufacturing processes, energy and pollutants attributed to
manufacturing. The entry points of any major sustainability effort are the product and the market.
There is no doubt that the greatest sustainability gains are accomplished when the development
of products and processes is guided by the sustainability criteria. Examples of possible scenarios
include: (i) sustainable product design will drive manufacturing, (ii) sustainable manufacturing
processes will impact the design of products and (iii) simultaneous development of sustainable
materials, products and processes will take place. Additive manufacturing represents the second

scenario in which a process has resulted in new designs of components and products.

Sustainability is not about what is manufactured but how it is performed. It is the main force
behind providing equal footing for remanufacturing, reconditioning and reuse with

manufacturing. Because of sustainability, the line between manufacturing and service will
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remain blurry. For example, reconditioning a used product is not a traditional manufacturing

activity, however, it may enter the new manufacturing dictionary.

Pillar 6: Resource sharing and networking

As manufacturing is becoming digital and virtual, much of the creative and decision-making
activities will take place in the digital space. While at some level the digital space may be highly
transparent, the physical manufacturing assets with their know-how will be protected. This
digital-physical separation will allow for shared use of resources across businesses, including the

ones that compete.

1.2 Cyber Twin:

The vision of the Cyber Twin itself refers to a comprehensive physical and functional
description of a component, product or system, which includes more or less all information
which could be useful in all—the current and subsequent—Ilifecycle phases. In this chapter we
focus on the simulation aspects of the Cyber Twin. Today, modelling and simulation is a
standard process in system development, e.g. to support design tasks or to validate system
properties. During operation and for service first simulation-based solutions are realized for
optimized operations and failure prediction. In this sense, simulation merges the physical and
virtual world in all life cycle phases. Current practice already enables the users (designer,
SW/HW developers, test engineers, operators, maintenance personnel, etc) to master the
complexity of mechatronic systems.

As shown in Figure 2, given an existing physical product, in general, it takes six steps to
create a fully functional digital twin. It should be made explicit though, in practice,
manufacturers may not strictly follow the sequence to build DTs. It is also possible that these

steps can be carried out concurrently.

Step (1): Build the virtual representation of the physical product:

The enabling technologies of this step are computer-aided design (CAD) and 3D modelling. Both
are commonly used technologies in product design. The virtual product includes three aspects:

elements, behaviours, and rules. At the level of elements, the virtual product model mainly
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includes the geometric model and physical model of the product, user and environment, etc. At
the level of behaviour, the authors not only analyse the behaviour of products and users, but also
focus on the analysis of the product and user interaction generated by the behaviour and
modelling. At the rules level, it mainly includes the evaluation, optimisation and forecasting

models established following the law of product operation.

Reflection from the digital world to the physical world
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Reflection from the physical world to the digital world

Figure 2. Enabling Technology of Cyber Twin

Step (2): Process data to facilitate design decision-making:

Data collected from different sources (i.e. mainly from the physical product, and also from the
Internet) are analysed, integrated and visualised. Firstly, data analytics is necessary to convert
data into more concrete information that can be directly queried by designers for

decision-making. Secondly, since product data are collected from diverse sources, data
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integration is useful for discovering the hidden patterns that cannot be uncovered based on a
single data source. Thirdly, data visualisation technologies are incorporated to present data in a
more explicit fashion. Finally, advanced artificial intelligence techniques can be incorporated to
enhance a DT’s cognitive ability (e.g. reasoning, problem solving and knowledge

representation), so that certain relatively simple recommendations can be made automatically.

Step (3): Simulate product behaviours in the virtual environment:

The enabling technologies of this step include simulation and virtual reality (VR). The former is
used to simulate key functions and behaviours of the physical product in the virtual world. In the
past, simulation technologies are widely used in product design. On the other hand, virtual reality
(VR) technologies play the role of involving designers and even users to ‘directly’ interact with
the virtual product in the simulated environment. Recently, VR technologies are increasingly
employed to support virtual prototyping and product design. Many readily available VR

hardware devices can be directly adopted for digital twin.

Step (4): Command the physical product to perform recommended behaviours

Based on the recommendations of DT, the physical product is equipped with a capability, by
means of various actuators, to adaptively adjust its function, behaviour and structure in the
physical world. Sensors and actuators are the two technological backbones of a digital twin. The
former plays the role in sensing the external world, whereas the latter plays the role in executing
the desirable adjustments requested by DT. In practice, the commonly used actuators that are
suitable for consumer products include, for example, hydraulic, pneumatic, electric, and
mechanical actuators. In addition, augmented reality (AR) technologies can be used to reflect
some parts of the virtual product back to the physical world. For example, AR enables end users
to view the real-time state of their products. Recently, AR technologies are increasingly applied

in the factory domain production engineering.

Step (5): Establish real-time, two-way, and secure connections between physical and virtual

product
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The connections are enabled using a number of technologies, such as network communication,
cloud computing and network security. Firstly, networking technologies enable the product to
send its ongoing data to the ‘cloud’ to power the virtual product. The feasible networking
technologies for consumer products include, for example, Bluetooth, QR code, barcode, Wi-Fi,
Z-Wave, etc. Secondly, cloud computing enables the virtual product to be developed, deployed
and maintained completely in the ‘cloud’, so that it can be conveniently accessed by both
designers and users from anywhere with an Internet access. Lastly, since product data are
directly and indirectly concerning user-product interactions, it is critical to guarantee the security
of connections. In light of the Internet of Things, much effort has been devoted to connecting the

physical and virtual product, which can be adapted for the DT research.

Step (6): Collect all kinds of product-related data from different sources

Generally speaking, there are three types of product-related data that should be processed by DT.
For ordinary products, physical product data is usually divided into product data, environmental
data, customer data and interactive data. Product data contains customer comments, viewing and
download records. Interactive data consist of user-product-environment interaction, such as
stress, vibration, etc. Using the sensor technology and IoT technology can collect some of the
above data in real time, and analyse from the product manual, web page customer browsing
records, download records, evaluation feedback, etc.can obtain the rest of the data. The collected
data are fed to the Step (1) in order to close the loop towards building more functional virtual

product.
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Chapter 2

Experimental Setup

Contents:

2.1  Tabletop CNC Machine(Milling)
2.2 Data Acquisition System
2.3 Sensor Selection

2.3.1 Literature Review

2.4  Roughness Measurement System
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2.1 Tabletop CNC Machine(Milling):

Computer numerical control (CNC) has been incorporated into a variety of new
technologies and machinery. Perhaps the most common type of machine that is used in this realm
is known as a CNC mill.

CNC milling is a certain type of CNC machining. Milling is a process that is quite similar
to drilling or cutting, and milling can perform these processes for a variety of production needs.
Milling utilizes a cylindrical cutting tool that can rotate in various directions. Unlike traditional
drilling, a milling cutter can move along multiple axes. It also has the capability to create a wide
array of shapes, slots, holes, and other necessary impressions. Plus, the work piece of a CNC mill
can be moved across the milling tool in specific directions. A drill is only able to achieve a single

axis motion, which limits its overall production capability.

T we\\

Figure 3. Tabletop CNC machine used in the Setup
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Specifications of the Tabletop CNC Machine(VPL-CNC-2010) used:
1. Travel:
a. X-axis: 229mm
b. Y-axis: 178 mm
c. Z-axis: 137 mm
2. Spindle motor voltage: 90V DC
3. Spindle RPM range: 90-2800 rpm
4. Spindle Nose Thread: 3/4-16 T.P.I

2.2 Data Acquisition System:

Data acquisition (DAQ) is the process of measuring an electrical or physical phenomenon
such as voltage, current, temperature, pressure, or sound with a computer. A DAQ system
consists of sensors, DAQ measurement hardware, and a computer with programmable software.
Compared to traditional measurement systems, PC-based DAQ systems exploit the processing
power, productivity, display, and connectivity capabilities of industry-standard computers
providing a more powerful, flexible, and cost-effective measurement solution.

Such a Data Acquisition System is desirable which can sample signals over a wide range

of sampling rate and must be easily programmable.

Sensor DAQ Device Computer
==
f l
‘ = ‘{\/&\,,
Signal Analog-to-Digital Driver Application
Conditioning Converter Software Software

Figure 4. Parts of a DAQ system

The DAQ system used for the experimental setup is NI DAQ(cDAQ-9188XT). The
drivers are easily available and also, its Python library is open source so it is easily

programmable. The only downside is that the library is poorly documented.
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2.3 Sensor Selection:
2.3.1 Literature Review:

Real-time health monitoring of cutting tools help in capturing valuable information
concerning the current health state of the tool and accordingly leads to preventive maintenance
activities that secure the tool more efficiently against failures. Consequently, an efficient tool
condition monitoring is essential to improve machine system availability, reducing downtime
costs and enhancing operating reliability. The TCM systems require systematic methods of
cutting tools diagnostics and prognostics. Diagnostics involves estimating the health condition,
and prognostics involve assessment of the remaining useful life of the tool. The available TCM
methodologies can be broadly classified as direct and indirect methods. Direct methods are
offline, such as computer vision, etc., and used for wear estimation. Indirect methods are online
and correlate appropriate measurable process signals(viz. Cutting forces, vibration and acoustic
emission, etc.) to tool wear. Since the late 1980s , numerous investigations have been dedicated
to the development of direct and indirect method based TCM systems. In particular, this review
emphasizes on four fundamental aspects that have traditionally been examined separately: a)
approximating the cutting tool degradation progression, b) diagnosing the health status of the
cutting tool, ¢) predicting the RUL and d) integrating the effects of operating profiles on cutting
tools deterioration.

The main line of research is focused on the analysis of real-time degradation signals viz.
Cutting forces(Muhammad et al., 2013), vibrations(Serra and Rmili, 2016), acoustic
emission(Bhuiyan et al., 2016), etc. measured during cutting processes. Herein, the degradation
signal derives solitary from an explicit sensor or their combinations and correlated with tool
wear/state. In this, the relationship between degradation signal and tool wear/state is mapped
using data driven approaches(coupled with various feature selection approaches) viz. Artificial
neural networks and regression models. For instance, Chen and Li(2009) and Rizal et al.(2013)
presented tool wear prediction models by quantifying the cutting forces deviations in various
machining processes. Nadgir and Ozel(2000) formulated a flank wear prediction system
explicitly based on force signal analysis. Wang et al. (2014a)proposed a tool wear evaluation
model utilizing vibration investigation. Several characteristic measures indicative of tool wear
were extracted from the processed vibration measurements and a strong relationship with tool

wear is recognised. However, efficient utilization of these approaches require s placement of
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costly accelerometers close to the tool-workpiece interface which becomes cumbersome with
tools subjected to rotating motion. Consequently, Bhuiyan et al. (2012)and Ren et al. (2014)
investigated aspects of Acoustic Emission in the machining process and developed new tool
wear monitoring methods. Ambhore et al. (2015) verified that the data from the acoustic
emission sensors alone is inadequate to provide an efficient wear monitoring. Accordingly, the
multi-sensors fusion techniques have received tremendous applications in recent studies. Like,
Vallejo et al. (2006), and Elangovan et al. (2011) developed diagnostic models using vibration
and acoustic measurements for classifying the tool health conditions.

However, in the experimental setup employed, we have used only vibration sensor as AE
sensor did not show any significant change in amplitude of signals with progression of tool wear.
Also, there was no significant change in power consumption by the spindle motor. In Figure 5,

placement of sensors and other devices is shown.

Tri-axial
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Figure 5. Experimental Setup
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2.4 Roughness Measurement Setup:

Surface roughness often shortened to roughness, is a component of surface texture. It is
quantified by the deviations in the direction of the normal vector of a real surface from its ideal
form. If these deviations are large, the surface is rough; if they are small the surface is smooth. In
surface metrology, roughness is typically considered to be the high-frequency, short-wavelength
component of a measured surface. However, in practice it is often necessary to know both the
amplitude and frequency to ensure that a surface is fit for a purpose.

An HANDYSURF E-25A/B portable surface roughness device was utilized to quantify
the product quality in terms of average surface roughness parameter(R,), according to ISO ‘97 /

JIS ‘01 / DIN. Figure 6 shows the setup for measuring surface roughness.

2010/01/20
101897

Figure 6. Surface Roughness Measurement Setup
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Chapter 3

Diagnostic and Prognostic Models

Contents:

3.1

3.2
33
3.4
3.5

Machine Learning Algorithms
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3.1.2 Random Forest

3.1.3 Support Vector Machine
3.1.4 Decision Tree

3.1.5 K-Nearest Neighbours
3.1.6 Gaussian Naive Bayes
Selection of Features
Diagnostic Models

Prognostic Models

Hidden Markov Model
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3.1 Machine Learning Algorithms:
3.1.1 Logistic Regression:

Logistic regression is a statistical model that in its basic form uses a logistic function to
model a binary dependent variable, although many more complex extensions exist. In regression
analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model
(a form of binary regression). Mathematically, a binary logistic model has a dependent variable
with two possible values, such as pass/fail which is represented by an indicator variable, where
the two values are labeled "0" and "1". In the logistic model, the log-odds (the logarithm of the
odds) for the value labeled "1" is a linear combination of one or more independent variables
("predictors"); the independent variables can each be a binary variable (two classes, coded by an
indicator variable) or a continuous variable (any real value). The corresponding probability of the
value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value "1"),
hence the labeling; the function that converts log-odds to probability is the logistic function,
hence the name. The unit of measurement for the log-odds scale is called a logit, from logistic
unit, hence the alternative names. Analogous models with a different sigmoid function instead of
the logistic function can also be used, such as the probit model; the defining characteristic of the
logistic model is that increasing one of the independent variables multiplicatively scales the odds
of the given outcome at a constant rate, with each independent variable having its own

parameter; for a binary dependent variable this generalizes the odds ratio.

3.1.2 Random Forest:

Random forests or random decision forests are an ensemble learning method for
classification, regression and other tasks that operates by constructing a multitude of decision
trees at training time and outputting the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees. Random decision forests correct for decision
trees' habit of overfitting to their training set.

An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who
registered "Random Forests" as a trademark (as of 2019, owned by Minitab, Inc.). The extension

combines Breiman's "bagging" idea and random selection of features, introduced first by Ho and
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later independently by Amit and Geman in order to construct a collection of decision trees with

controlled variance.

3.1.3 Support Vector Machine:

In machine learning, support-vector machines (SVMs, also support-vector networks[1])
are supervised learning models with associated learning algorithms that analyze data used for
classification and regression analysis. Given a set of training examples, each marked as
belonging to one or the other of two categories, an SVM training algorithm builds a model that
assigns new examples to one category or the other, making it a non-probabilistic binary linear
classifier (although methods such as Platt scaling exist to use SVM in a probabilistic
classification setting). An SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear gap that is as wide
as possible. New examples are then mapped into that same space and predicted to belong to a

category based on the side of the gap on which they fall.

3.1.4 Decision Tree:

In statistics, Decision tree learning uses a decision tree (as a predictive model) to go from
observations about an item (represented in the branches) to conclusions about the item's target
value (represented in the leaves). It is one of the predictive modeling approaches used in
statistics, data mining and machine learning. Tree models where the target variable can take a
discrete set of values are called classification trees; in these tree structures, leaves represent class
labels and branches represent conjunctions of features that lead to those class labels. Decision
trees where the target variable can take continuous values (typically real numbers) are called

regression trees.

3.1.5 K-Nearest Neighbours:

In statistics, Decision tree learning uses a decision tree (as a predictive model) to go from
observations about an item (represented in the branches) to conclusions about the item's target
value (represented in the leaves). It is one of the predictive modeling approaches used in

statistics, data mining and machine learning. Tree models where the target variable can take a
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discrete set of values are called classification trees; in these tree structures, leaves represent class
labels and branches represent conjunctions of features that lead to those class labels. Decision
trees where the target variable can take continuous values (typically real numbers) are called

regression trees.

3.1.6 Gaussian Naive Bayes:

Naive Bayes has been studied extensively since the 1960s. It was introduced (though not
under that name) into the text retrieval community in the early 1960s, and remains a popular
(baseline) method for text categorization, the problem of judging documents as belonging to one
category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies
as the features. With appropriate pre-processing, it is competitive in this domain with more
advanced methods including support vector machines. It also finds application in automatic
medical diagnosis.

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the
number of variables (features/predictors) in a learning problem. Maximum-likelihood training
can be done by evaluating a closed-form expression, which takes linear time, rather than by

expensive iterative approximation as used for many other types of classifiers.

3.2 Selection of Features:

In machine learning and pattern recognition, a feature is an individual measurable
property or characteristic of a phenomenon being observed. Choosing informative,
discriminating and independent features is a crucial step for effective algorithms in pattern
recognition, classification and regression. Features are usually numeric, but structural features
such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is
related to that of explanatory variables used in statistical techniques such as linear regression.

The initial set of raw features can be redundant and too large to be managed. Therefore, a
preliminary step in many applications of machine learning and pattern recognition consists of
selecting a subset of features, or constructing a new and reduced set of features to facilitate

learning, and to improve generalization and interpretability.
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Pre-processing of data was performed by converting raw signals into more informative
features or parameters. In specific, 31 statistical features were extracted by each MCU. This was
followed by the feature screening. In this work, Pearson correlation methodology was applied for
feature screening. It helps in identifying highly correlated features. Correlation value near -1 and
1 considered as strongly correlated and value near to 0 was considered as unrelated features. It
was inferred that highly correlated features give the same information about the system.
Therefore, it helps in eliminating redundant features. In this way, 18 features for force MCU, 16
features for vibration MCU and 11 features for acoustic emission MCU were retained for further
analysis. Three methods viz. logistic regression, random forest classifier, and decision tree
classifiers are applied for identifying most relevant features. Accuracy of the results was
calculated for each method (refer Table 1). Top 5 features based on the most accurate method for

a particular MCU are then used for further diagnostics and prognostics. These features are listed

in Table 2.

Force MCU Vibration MCU AE MCU
Logistic 88.33% 88.60% 86.82%
Regression
Random Forest 84.39% 81.40% 84.08%
Decision Tree 89.65% 79.82% 89.55%

Table 1. Accuracy Predicted for all MCUs(for feature selection)

Force MCU Vibration MCU AE MCU

Mean Crest Factor Kurtosis

Median Skewness Crest Factor

RMS Range of Values Coefficient of Variance
Entropy K-factor Energy Operator
Kurtosis Mode Residual Kurtosis

Table 2. Selected Features for Modelling

31



3.3 Diagnostic Models:

To diagnose the health-state of the tool machine learning classification algorithms have

been trained on the acquired data using selected features. Accuracies of different classifiers have

been reported in Table 3.

Force Vibration AE ALL
Logistic 74.47% 70.21% 57.45% 63.83%
Regression
Random Forest | 76.6% 70.21% 59.57% 74.47%
Support Vector | 74.47% 68.09% 55.32% 55.32%
Decision Tree 78.72% 70.21% 59.57% 72.34%
K-neighbours 80.85% 53.19% 51.06% 65.96%

Table 3. Diagnostic Models Accuracy

3.4 Prognostic Models:

To predict the RUL of the end milling cutter used in the experiment machine learning

regression models have been trained and tested using selected features. Accuracies of different

regression models have been reported in Table 4.

Force Vibration AE ALL
Random Forest | 5.66 3.82 6.99 4.15
Support Vector | 14.76 15.42 18.97 19.04
Decision Tree 13.12 9.486 12.2 11.87
K-neighbours 11.05 12.96 18.29 17.06

Table 4. Prognostics Models Accuracy
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3.5 Hidden Markov Model:

Hidden Markov Model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobservable (i.e. hidden) states. In simpler
Markov models (like a Markov chain), the state is directly visible to the observer, and therefore
the state transition probabilities are the only parameters, while in the hidden Markov model, the
state is not directly visible, but the output (in the form of data or "token" in the following),
dependent on the state, is visible. Each state has a probability distribution over the possible
output tokens. Therefore, the sequence of tokens generated by an HMM gives some information
about the sequence of states; this is also known as pattern theory, a topic of grammar induction.
The adjective hidden refers to the state sequence through which the model passes, not to the
parameters of the model; the model is still referred to as a hidden Markov model even if these
parameters are known exactly.

Consider a system with states S,. Since these states are not directly observable, they need to be
identified or detected using indirect measurement. This can be done by using sensors to monitor
parameters that can indicate the state of the system. These parameters are called observations.
Let these observations be O;. One step transition probability table can be used to calculate the
probability of the system being in a particular state after ‘N’ cuts or time steps. Similarly,
Conditional probability transition table can be used to find probabilities of discrete states given

an observation.

t+1-> S1 S2 S3 S4
S1 0.96 0.04 0 0

S2 0 0.91 0.029 0.057
S3 0 0 0.94 0.059
S4 0 0 0 1

Table 5. One Step Transition Probability Table
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01 02 03 04 (0
S1 0.19 0.69 0.12 0 0
S2 0 0.59 0.29 0.085 0.034
S3 0 0.06 0.76 0.18 0

Table 6. Conditional probability transition table
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Chapter 4

Integration in Cyber Twin

Contents:

4.1 The Concept

4.2  Features
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4.1 The Concept:
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Figure 7. Final Implementation

Figure 7 shows the final implementation concept of the proposed setup for Cyber Twin. The
pretrained models reside on the central server that predicts the current state of the tool. Digital
twins integrate internet of things, artificial intelligence, machine learning and software analytics
with spatial network graphs to create living digital simulation models that update and change as
their physical counterparts change. A digital twin continuously learns and updates itself from
multiple sources to represent its near real-time status, working condition or position. This
learning system, learns from itself, using sensor data that conveys various aspects of its operating
condition; from human experts, such as engineers with deep and relevant industry domain
knowledge; from other similar machines; from other similar fleets of machines; and from the
larger systems and environment in which it may be a part of. A digital twin also integrates
historical data from past machine usage to factor into its digital model. In various industrial
sectors, twins are being used to optimize the operation and maintenance of physical assets,
systems and manufacturing processes. They are a formative technology for the Industrial Internet

of Things, where physical objects can live and interact with other machines and people virtually.
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4.2 Features:

The proposed Cyber Twin setup will have following features:

1.

o =N kWD

Showing current machining parameters.

Showing the current health state and RUL.

Communication with other machines in a manufacturing environment.
Optimizing Process Quality control parameters

Optimizing quality of the finished jobs.

Predicting the RUL to help in maintenance planning.

The data and current health state that can be accessed locally or remotely.

Making process parameters and current health state available to other departments

as well.
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Chapter 5

Conclusion and Future Work

Contents:

5.1  Multi-state Fault Diagnosis and Prognosis
5.2 Dynamic Optimization of Process Quality Control

5.3 Conclusion
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5.1 Multi-State Fault Diagnosis and Prognosis:

There are two main tasks, namely diagnosis and prognosis, dichotomized the prediction
process in TCM system. The previous studies have mostly focused on either diagnosis or
prognosis in TCM. Diagnosis is to estimate what the current health state is. Prognosis is to
predict what will happen next. Prognostics is the study as to show how the tool condition
degrades and to estimate the remaining useful life (RUL) of the tool. With effective and reliable
estimation of RUL, TCM can reduce overall downtime of the manufacturing processes. Although
prognosis plays an important role in TCM, it still a lukewarm research area with few reported
studies. In a TCM system, the tool wear estimation forms the basis of tool RUL estimation. In
this paper, we would like to focus on tool state estimation as the main diagnostics task and tool
wear estimation as the main prognosis task. The performance of prognosis can be improved
based on more accurate current health state estimation. Because the degradation trends of the
system/components may be different based on different current health states, the results of
diagnostics and prognosis are tightly related with the overall performance of the TCM system.
Since the distribution of data in different health states are naturally multifarious, any single
model is quite hard to handle them. We consider that multi-state diagnosis and prognosis
framework distinguishes health states in finer details, that allows us to apply different models
according to the diagnostic data attributes. We have a good reason to believe that such
multimodal approach offers better performance.

In the experimental setup prepared, other faults can also be introduced carefully and then
vibration signals be investigated to find the signature of the fault introduced artificially.
Furthermore, Machine Learning and Deep Learning models can be trained on the acquired data
to predict the introduced faults, which then, further, can be integrated in Cyber Twin to facilitate
scheduling of jobs and maintenance of the machine.

Also, the prognosis of motors and bearings can be done in order to prepare a closely
simulated Cyber Twin of the CNC machine. Other sensors can also be introduced at different
places on machine for more accurate modelling and to include as many faults and failures
possible to detect and predict possible. Definitely, it will help in a much sophisticated design of

Cyber Twin and it will be most helpful in job scheduling and maintenance planning.
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5.2 Dynamic Optimization of Process Quality Control:

In today’s progressive industrial environment, achieving operational excellence is a
challenge. Thus, shop floor efficiency and effectiveness have become a high priority for
manufacturing industries. Process quality control and maintenance planning are the key shop
floor operational policies. These policies are interrelated, for example, the efficacy and quality of
the machine output are influenced by maintenance. Whereas unnecessary maintenance leads to
excessive costs, delaying the maintenance might increase the process variability viz., increase in
rejections. Lad and Kulkarni showed that if the failure of a machine arises, it may not stop the
machine immediately, but may also adversely affect the quality of the goods being produced on
the machine. Although, the integration of quality with maintenance has been investigated in the
literature, one that integrates for machines deteriorating with time, viz., cutting tools is missing.
According to Kurada and Bradley, cutting tool failures usually takes around 20% of the
downtime of a manufacturing system. To manage higher shop floor effectiveness, a good
understanding of interdependence among process quality control, maintenance planning, and
real-time health state of the system is therefore lucrative. Despite the fact that the connection
among these fields is not absent, further examination is required in this course. However, the
integration of quality and maintenance considering real-time health state of the system eludes
literature, and hence offers an excellent opportunity for investigation. In this regard, the aim of
this work is to present a novel methodology for dynamic and simultaneous optimization of
process quality control and maintenance planning while considering the real-time health state of
the system deteriorating with time. Modern manufacturing industries rely on the optimum and
efficient design of their shop floor operational policies; process quality control and maintenance
planning are fundamental. Since the 1950s, investigation in these areas has attracted substantial
attention. However, these policies are used in isolation. Montgomery presented a comprehensive
review of process quality control policies, while Pierskalla and Voelker reviewed the literature
on maintenance planning. It is realized that the use of these policies in isolation provides
suboptimal solutions, as they are interrelated . Consequently, the integrated optimization of
process quality control and maintenance planning is receiving the much needed momentum. For
example, Cassady et al., Linderman et al. simultaneously optimized the process quality control
and maintenance planning policy to reduce the overall cost. Zhou and Zhu suggested a method

for process quality control and maintenance planning to examine the expense of the joint
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modeling for obtaining optimum design parameters. Panagiotidou and Nenes attempted an
integration of the variable-parameter Shewhart control chart. Mehdi et al. developed a combined
model designed for conforming and nonconforming items.. Most of these integrated models are
built on the assumption that the health state of the machine changes from working to failure with
a constant failure rate. In other words, no degradation phenomenon is present except breakdown.
However, many times machine may degrade to an undesirable working condition before failure.
Such assumption restricts the applicability of these integrated models for systems deteriorating
with time (having an increasing failure rate), viz., cutting tools, etc. where the failure rate

increases over time due to degradation.

5.3 Conclusion:

The project concluded in the development of a system for converting the CNC machine
into intelligent systems supported with external intelligence in the form of a cyber twin. This
system has the capability to extract using data from the machine is through the data acquisition
interface. The data obtained can be analyzed by the models in the form of distributions
represented by a set of parameters.The Cyber Twin has the capability to update the models by
updating the parameter values using the new data received by the system.This makes the system
dynamic and responsive in nature. The outcomes of the research in this work advances the
existing body of knowledge by developing an autonomous decision-support system and methods
for systematic expansion of intelligent manufacturing in dynamic and diverse real-world
production environments. The accuracy of degradation prediction models so obtained in this
research is better than those reported in the literature. In addition, comparative studies on
prediction performances of distinctive models show that the developed model is superior to
different conventional models. The study solved one of the standing and non-trivial problems of
literature viz., prognosis under dynamic operating profiles. The proposed generic prognostics
approach encompasses all real-world industrial scenarios.

The research work done in this project can equip manufacturing industries with
intelligence that allows responding to the time-variant operating profiles and adaptable under

various real-world production environments.
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