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Abstract 

 

Application of Landslide models to improve the efficiency of Early 

Warning Systems 

 

Landslides are the most common and devastating natural disaster around the world. The 

damage caused due to landslides is leading to massive loss of life and property including 

agricultural land. The reduction of the related risk has become paramount for public authorities. 

The studies on landslides have drawn worldwide attention due to the rapid increase in 

urbanization in many of these hilly regions and thus its increasing impact on socio-economic 

aspects. Thus, there is a dire need for understanding landslides, estimating its occurrence 

potential and formulating strategies to minimize its impact. With 30% of the landslide events 

around the globe occurring in the Indian Himalayan region, one can say that it has been 

significantly affected by landslides.  

Kalimpong, situated in West Bengal is one of the most affected places in the Darjeeling-

Himalayas region. Rainfall is the primary triggering factor for landslides in this region. Shallow 

landslides are usually triggered by intense rainfall for shorter duration while the deep-seated 

failures are caused due to comparatively low intensity for longer duration of rainfall. During 

the study period (2010-2017) most of the landslides were triggered by incessant and high 

amount of monsoon rainfall. In this study, various relationships concerning rainfall, landslides 

and some other factors has been attempted. 

Firstly, the study deals with assessing landslide hazard using a traditional rainfall threshold 

model i.e. Antecedent model involving daily and cumulative values of antecedent rainfall for 

landslide events. A threshold equation was generated using the rainfall and landslide records 

for 2010-16. Later, SIGMA model has been applied for the region which deals with an 

algorithm consisting thresholds as multiples of standard deviations. Further, a hydrological 

model named SHETRAN is applied to get the estimates of soil moisture during the study period 

and integrated it with ED thresholds using Bayesian approach. Finally, an effort was made to 

increase the efficiency by adding soil moisture (generated from SHETRAN) to the algorithm 

and the model was named SIGMA-U. All the above-mentioned models were validated using 

real time sensor data of 2017. The statistics of validation indicated that SIGMA-U is the most 

reliable model with an efficiency of 98%, likelihood ratio of 33.33 and can be integrated with 

real time sensors to form an efficient Landslide Early Warning System (LEWS) for the region. 

Keywords: Kalimpong, Landslides, Rainfall, Early warning system. 
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Chapter 1 

 

Introduction 

 

The Indian Himalayan regions have been significantly affected due to the increase in the 

frequency of landslide occurrence. 30% of the worldwide landslide incidents occur in the 

Himalayan region with damage amounting to one billion US$ and the loss of 200 people every 

year. Estimates indicate loss of land due to landslides is up to 120 m/km/yr leading to yearly 

loss of about 2500 tons/sq.km (NDMA report, 2011). In a global database of landslide disasters 

given by Froude and Petley (2018), three – quarters of all landslide events between 2004 to 

2016 occurred in Asia, with substantial events in the Himalayas. Government records show 

that landslides in the Himalayan region kill at least one person per 100km and the average 

losses in this region is up to Rs 100 crore to Rs. 150 crores every year. One of the most affected 

regions in Darjeeling Himalayas is Kalimpong which is situated in the state of West Bengal. 

 

The primary triggering factor for landslides in the Himalayan sector is rainfall.  In a report by 

Geological Survey of India (GSI, 2016) it identified that 75% of the landslide occurrences in 

Darjeeling Himalayas during 2006-2013 was triggered by rainfall. Therefore, it is imperative 

to derive relationships between landslide incidences and rainfall conditions. There are mainly 

two types of methods to understand this relationship: physical and empirical. Physical process 

models are based on numerical models which study the relationship between rainfall, pore 

water pressure, soil type, and volumetric water content that can lead to slope instability. Such 

a study is usually site specific due to variation in soil properties [24]. It is a challenge to extend 

this approach to large areas, as the extensive data that is required are usually not available. On 

the other hand, empirical methods study the landslides that are caused by rainfall events – both 

the heavy downpour that triggers instantaneous landslides and the low but continuous 

antecedent rain that destabilizes the slope and triggers the landslide. Though this approach is 

based on a single parameter, precipitation rates, it is significant to note that rainwater is the 

cause of many changes in soil properties, pressure variations, etc and hence can be 

approximated to the changes in rainfall. 
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Figure 1 Flow diagram of rainfall threshold models 

 

During the last few decades, many attempts were made across the world to define critical 

rainfall thresholds based on a number of different rainfall parameter, but the most common are 

intensity and duration (I-D thresholds) (Caine 1980; Aleotti 2004; Guzzetti et al. 2007; Brunetti 

et al. 2010; Dikshit and Satyam 2018; Rosi et al. 2016) and total event rainfall and duration (E-

D thresholds) (Zhao et al. 2019; Teja et al. 2019; Melillo et al. 2018; Gariano et al. 2018; 

Peruccacci et al. 2017).However, the studies in this region are minimal. In this study , a total 

of four models namely Antecedent model, SIGMA model, SHETRAN model, SIGMA-U 

model were implemented. These models were calibrated for 2010-16 and validated using 2017 

real time sensor data.The methodology of the models is described in the further chapters of the 

thesis. 
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Chapter 2 

 

Study Area 
 

Kalimpong town is a part of the Kalimpong district of West Bengal state, India (Fig. 2). This 

hilly town belongs to Darjeeling Himalayas, hemmed between rivers Tista in the west and Relli 

in the east, with an elevation ranging from 355m to 1646m above mean sea level. The slopes 

in the western face of the town are steep in nature while the eastern slopes are gentle. The 

moderate temparature variation from 5 OC to 27 OC also makes this place attractive for tourists. 

The havocs associated with landslides are affecting both the agricultural and tourism sectors of 

the town affecting the economy of the locality. Loss of agricultural land and disruption of 

transportation facilities makes the monsoon season challenging for people of Kalimpong.  

 

 

Figure 2 Location details of study area: (a)India (b)West Bengal (c) Digital Elevation Model 

of Kalimpong [32] 
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Pre-cambrian high-grade gneiss and quartzite,calc-silicate and quarzite, high–grade schist 

phyletic etc are the dominant rock types found in the region[58]. Upper sedimentary layers of 

the young folded mountains gets eroded during heavy rainfalls. The area consists of several  

joints and cracks that intensifies the probability of decomposing and disintegrating the rock to 

form unconsolidated matter.The bedrock throughout the study area is composed of Daling 

series quartz mica shist of golden to silver color[48]. The inclination of bed towards the east 

and northeast varies from 20o near river Tista to about 40o towards town. Morphometrically, 

the slopes in this region can be classified into escarpment category A (>45o), steep slope 

category B (30◦-45◦) , moderate steep slope category C  (20◦-30◦) and gentle slope category D 

(10◦-20◦). Silt to medium grained sand and loam constitutes a major portion of the top soil of 

the area. According to GSI, more than 60% of the region comprises of colluvium followed by 

older debris (24%) and young debris (2.5%). 

 

From the historical landslide inventory reports, it was understood that rainfall is the major 

triggering factor of the landslide hazards in the region. The average annual precipitation in this 

area was observed to be 1872 mm during the study period and the drainage density of the region 

is also very high. The area is drained by numerous mountainous natural streams (kholas) and 

their tributaries (jhoras). The geology of the area allows rainwater to percolate, increasing the 

pore pressure, therefore the shear strength of the soil decreases. The change in water content 

due to intense rainfall leads to the saturation of material and a sudden increase in the unit 

weight. This mechanism reduces the stability and resistance of parent rocks. The precipitation 

with daily accuracy was collected for this study from the rain gauge maintained in Tirpai, 

Kalimpong [52]. The months from June to September are considered as monsoon period and 

the monthly rainfall from 2010-2017 is given in Table 1. 

          

Table 1 The rainfall data (mm) during the monsoon months in Kalimpong town (2010-2017) 

Month 2010 2011 2012 2013 2014 2015 2016 2017 

June 317 337 355 248 396 568 327 154 

July 666 678 433 424 371 534 870 812 

August 425 526 251 401 572 242 263 432 

September 268 384 467 113 265 331 367 288 

 
 

The catalogue prepared by Dikshit and Satyam ( 2017) from the reports of Geological Survey 

of India, newspapers and field surveys is taken for this study. The database contains the spatial 
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and temporal distribution of 61 rainfall induced landslide events during 2010-2016 (Figure 4). 

The catalogue did not mention the typology of landslides. The major fatal landslides happened 

in the region were shallow/rapid in nature, but there are some areas which experience 

continuous sinking because of deep seated movements, especially near major jhoras[52]. 

During the validation period (year 2017), ground displacements were observed on 7 days at 

two locations [38]. The annual cumulative rainfall for these years is plotted in Figure 3 and the 

temporal distribution of landslides along with the average rainfall is shown in Figure 5.  

 

 

 

 

 
Figure 3 Yearly Cumulative Rainfall 
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Figure 4 Spatial distribution of rain gauge and landslide events during study period 

 

 

 

  
Figure 5 The monthly distribution of landslide occurrence and average rainfall, (2010-2017) 

in mm 
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It is observed that  the number of landslide events is maximum in the month of July where the 

rainfall peak is recorded. From Figure 5, it is clear that the number of landslides is directly 

relalted to the rainfall amount. The temporal distribution of rainfall and landslide occurred in 

the study area during 2010-2016 has been considered for the detailed analysis and validation 

has been carried out for subsequent years. 
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Chapter 3 

 

Literature Survey 

 
The summary of all the literature that I’ve gone through to decide and implement my 

objectives is described in this chapter. 

 

3.1   I-D thresholds [35] 
In this paper, rainfall thresholds for landslide occurrence have been determined for the 

Kalimpong region of Darjeeling Himalayas, West Bengal. A threshold for landslide 

occurrences which describes intensity–duration threshold was estimated using the power law 

equation. 

                                                               I = αDβ      

 The relationship obtained for the region is I = 3.52 D−0.41, where I is rainfall intensity (mm/h) 

and D is duration (h). A rainfall intensity of 0.95 mm/h with a duration of 24 h have a high 

chance of landslide initiation in this region. According to the results obtained, for 10-day 

antecedent rainfall an intensity of 88.37 is required for landslide occurrence in this region.  

 

3.2   E-D thresholds [56] 
In this paper, the methodology uses an automated tool which determines ED thresholds for 

various exceedance probabilities. The equation of the ED curve is assumed to be in the form 

of power law. 

                                                               E = αDβ  

The relationship obtained for the region is E = 5.5 D-0.61, where E is the cumulative rainfall 

(mm) and D is the duration (h).The results show that a cumulated event rainfall of 36.7 mm 

over a rainfall event of 48 h can trigger a landslide in this region. 

 

3.3   Antecedent thresholds [24] 
In this paper, antecedent rainfall is used to determine the threshold equation. The antecedent 

period is determined by the relation between daily rainfall and antecedent rainfall for landslide 

occurring events and non-landslide occurring events. Later, a threshold equation is obtained 

for the region from the graph between daily rainfall and antecedent rainfall. The detailed 

procedure is explained in the Chapter 5 of the thesis. 
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3.4   SIGMA model [17] 
In this paper, an algorithm is designed to determine the criticality of a particular day. The 

algorithm uses the cumulative rainfall data ranging from 1-365 days. The thresholds are set as 

multiples of standard deviations, which are later optimised to remove the false alarms. The 

detailed procedure of the model is explained in the Chapter 6 of the thesis. 

 

3.5   SHETRAN model [59] 
In this paper, a hydrological model is used to simulate the soil moisture for the region which is 

calibrated by maximising the NSE value. The soil moisture thus obtained is integrated with ED 

thresholds using a Bayesian approach. The probability for the occurrence of landside for 

different conditions is obtained. The detailed procedure of the model is explained in the Chapter 

7 of the thesis. 

 

 

3.6   SIGMA-U model [55] 
In this paper, the algorithm designed in SIGMA model is modified by adding the soil moisture 

conditions. This helps in the reduction of false alarms and missed alarms thereby increasing 

the efficiency of the model. The detailed procedure of the model is explained in Chapter 8 of 

the thesis. 
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Chapter 4 

 

Objectives 
 

Rainfall being the most common triggering factor for landslides, early warning systems are 

usually based on empirical rainfall thresholds that describe the interaction between the primary 

cause (rainfall) and the final effect (landslide). In a few words, a triggering threshold is 

represented by a mathematical equation describing the critical rainfall condition above which 

landslides are triggered. The only input data used for the threshold definition are a dataset of 

rainfall recordings and a catalogue of landslides for which the time and location of occurrence 

are known with sufficient approximation. This approach completely bypasses the physical 

mechanism of triggering, thus simplifying the modelling effort, the computational resources 

required, and the amount of data needed for the analysis There have been few attempts to define 

rainfall thresholds for landslides using empirical methods. However, the efficiency of the 

models is not satisfactory. In this study, an attempt has been made to improve the efficiency of 

early warning systems. 

The objectives of the study are as follows: 

• To determine rainfall thresholds using the landslide forecasting models 

o Antecedent model 

o SIGMA model 

o SHETRAN model 

o SIGMA – U model 

• To validate the thresholds with real time tilt sensor data 

• To propose a Landslide Early Warning System (LEWS) by integrating forecasting 

models and monitoring data for Kalimpong 
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Chapter 5 

 

Antecedent model 
 

A threshold can be defined as the minimum level of some quantity for a process to change [20]. 

For rainfall induced landslides the minimum intensity or duration of rainfall for a landslide to 

occur is termed as rainfall threshold [25]. Rainfall thresholds have been proposed all over the 

globe on various scales and its determination can be considered as a preliminary step for 

landslide hazard assessment. The various threshold types along with their uses and limitations 

have been described in [10]. The threshold using rainfall intensity duration is the most 

recognised and well-established method [17]. The determination of rainfall threshold revolves 

around four variables, i.e., daily rainfall, antecedent rainfall, cumulative rainfall and normalised 

critical rainfall [24]. The determination of thresholds is dependent on the choice of parameters 

conditional to the landslide type [24]. 

 

Antecedent rainfall influences the soil suction leading to an increase in pore water pressure 

thereby causing slope instability. Majority of the landslide occurrences in the Himalayan region 

is due to the effect of antecedent rainfall [8].[35] established that antecedent rainfall is a 

significant factor for landslide occurrence in Kalimpong. 

 

The challenges in forecasting landslides using antecedent rainfall is to ascertain the number of 

days to be used [10]. Various authors have used different time periods to determine the 

correlation between antecedent rainfall and number of days for landslide triggering.[15] 

examined for 3, 4, 18 and 180 days respectively. [1] used 7, 10 and 15 days whereas [23] 

assessed 2, 5, 15 and 25 days. In this study, we considered 3, 7, 10, 15, 20 and 30 days and the 

results have been depicted in Fig. 3. 

 

The thresholds are determined by a scatter plot with daily rainfall data on the ordinate and the 

antecedent rainfall for various time periods on the abscissa. The red triangle denotes the 

landslide occurrences whereas the blue triangle shows the maximum annual precipitation in 

one day without any landslide event. 
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Figure 6  Relationship between daily and antecedent rainfall for 2010-2016 

 

In the relationships shown in the above-mentioned figure, 15-day graph shows the best 

distinction between landslide occurring events and non-landslide occurring events. Hence, 

15-day graph is chosen for threshold determination.  
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Figure 7 Rainfall Thresholds for Kalimpong region, Rth being the threshold rainfall and Ra15 

is the 15- day antecedent rainfall 

 

The equation for the threshold is obtained using the lower end of the plotted points. The 

distinction between the triggering and non-triggering landslide event for various days 

corresponds to the determination of the best antecedent rainfall period. The threshold 

equation from the analysis came out to be Rth= 66-0.07 Ra15          
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Chapter 6 

 

SIGMA model 

 

 

6.1    Methodology 
 

SIGMA model was developed for Emilia Romagna region in Italy [17]. This model uses the 

standard deviation of a statistical distribution as the key parameter for the analysis and defines 

thresholds as a function of standard deviation, predicting the potential of rainfall to initiate 

landslide events in the study area. The daily precipitation data were added at ‘n’ days, with an 

‘n’ day wide shifting window which moves at 1-day time steps throughout rainfall data. The 

values of ‘n’ will vary from 1 to 365. To calculate the cumulative probability distribution for 

each data set, a standard distribution, which is the target function is chosen as a model [41].This 

transformation relates the cumulative rainfall(z) with the target distribution (y = aσ) (‘σ’ is the 

standard deviation of the series and ‘a’ is a multiplication constant). For each ‘n’ day 

cumulative rainfall series, the values are sorted in ascending order such that  

𝑧1 < 𝑧2 < 𝑧3 < ⋯ < 𝑧𝑘 < ⋯ < 𝑧𝑛 

And a cumulative sample frequency is defined as 

𝑃𝑘 =  
𝑘

𝑛
−  

0.5

𝑛
= 𝐺(𝑦) 

 
 

                                                                                        where 1 ≤ 𝑘 ≤ 𝑛. 

The transformed value y on the original data z is obtained as : 

 

G-1(F(z)) → G-1(Pk) = y 

 

 

 

After applying the transformation function, from a particular value of standard deviation or its 

multiples, cumulative sample frequency and precipitation can be calculated. The same 

procedure is repeated for all values of n from 1 to 365 and precipitation curves (σ curves) are 

plotted. The probability curves derived are used as the input values in the algorithm. A level of 

warning is predicted for every day based on the rainfall thresholds. Rainfall recordings were 

cumulated with one day time steps for a particular time interval. These values are compared 

with the precipitation curves, from shorter to longer time frames [17]. In case of shallow 
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landslides, the analysis should focus on the immediate effect of rainfall:  the cumulative rainfall 

values up to 2 days before the day of analysis is considered. The decisional algorithm used is: 

𝐶1−3 =  [∑ 𝑃(𝑡 + 1 − 𝑖)

𝑛

𝑖=1

]

𝑛=1,2,3

≥ [𝑆𝑛(∆)]𝑛=1,2,3  

 

where Δ= a.σ, C1-3 is the vector of cumulated rainfall at the time of analysis t and 𝑆𝑛(∆) are 

the thresholds relative to Δ and number of days n [17]. In the case of deep-seated landslides, 

the algorithm ponders the effect of cumulative rainfall from 4 days up to 63 days [17]. The 

condition for crossing the threshold is given by: 

 

 𝐶4−63 =  [∑ 𝑃(𝑡 − 2 − 𝑖)𝑛+3
𝑖=1 ]𝑛=1,2,…60 ≥ [𝑆𝑛+3(∆)]𝑛=1,2,…60  

 

 

The definitions of vector C are kept the same and have been used in the study for the 

analysis. The analysis was carried out in the same method proposed by the developers of 

SIGMA model, to define the thresholds for Kalimpong town. 

 

6.2   Analysis 
The rainfall and landslide data (2010-2016) for Kalimpong town, has been used for developing 

rainfall thresholds for the region. For each day, ‘n’-day cumulative rainfall values were 

calculated with n ranging from 1-365. Cumulative probability distribution curves were plotted 

after sorting the values in ascending order. For small values of ‘n’, the distributions were found 

to be closer to log normal and for higher values of ‘n’, the distributions tend towards normal. 

The asymmetric distribution of data sets has been observed by other researchers as well [17]. 

Choosing Gaussian distribution as target function, cumulative values corresponding to 

multiples of sigma were calculated by applying the transformation as shown in Figure 8a. 

 

After applying the transformation, a probability of not overcoming a particular “aσ” value can 

be calculated using the reverse procedure. For each value of “aσ”, cumulative values for n-days 

varying from 1-365 were plotted as sigma curves. The values of standard curves were initially 

taken as 1.5σ, 1.75σ, 2σ and 2.5σ and are plotted in Figure 8b. 
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(a) 

 
(b) 

Figure 8 (a) Transformation of original cumulative distribution in the target distribution for 

Kalimpong town (b) An example of Sigma curves (σ curves) for cumulative periods up to 

100 days (2010-2016) 

 

 

From the probability distribution plots, sigma curves have been combined using an algorithm, 

which is the crucial part of SIGMA model. The algorithm defines four different levels of 

warning such as “High”, “Moderate”, “Ordinary” and “Absent”. These values are used to 

delineate exceptional rainfall values. The starting algorithm for the proposed model is as shown 
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in Figure 9. It considers the effect of short-term rainfall first and exceedance of threshold will 

give high criticality alert. If high criticality case does not exist, first moderate criticality and 

then ordinary criticality conditions were checked. If the result is negative in all cases, absent 

criticality is defined for a particular time period. The block diagram proposed in Figure 9 has 

to be considered as a starting point for the work, since it was then calibrated as described in the 

following paragraphs. 

 

 
Figure 9 Algorithm used for calibration of the SIGMA model for Kalimpong town. 

 

 

A threshold is considered to be exceeded if any of the elements in the vector crosses the value. 

Once a threshold is exceeded, the algorithm defines the level of warning on each day. These 

outputs were used to calibrate the model (data from 2010-2016). A trial and error procedure 

has been adopted in the optimization module of the algorithm which relates the daily warning 

levels with the occurrence of landslides, as in [17]. The value of threshold is progressively 

raised so that false alarms are avoided. A visualization of the procedure is shown in Figure 10 
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where standard sigma value of 1.75 was optimized to 1.8. Using the same procedure, other 

standard values of 1.5, 2 and 2.5 were optimized to 1.6, 2.1 and 2.75 respectively. The 

thresholds values were increased to minimize false alarms for each event such that no true 

alarms are missed. The execution of this module terminates once the algorithm catches an event 

with an observed warning level conforming to the considered threshold. The standard sigma 

curves remain the same, but the calibration process gives a modified set of sigma curves for 

the region.  

 
Figure 10  Visualization of calibration algorithm. The threshold value was raised till the 

cumulative rainfall curve of the event (F) is not crossing the threshold curve. (Standard 

Threshold of 1.75 is optimized to 1.80) 

 

 

 
Table 2 Optimisation results 

Former 

1.5 𝞼 

 

Former  

1.75 𝞼 

 

Former  

2 𝞼 

 

Former 

2.5 𝞼 

 

1.60 𝞼 

 

1.80 𝞼 

 

2.10 𝞼 

 

2.75 𝞼 
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Chapter 7 

 

SHETRAN model 

 

7.1   Methodology 

 

7.1.1   Soil Moisture Simulation using Hydrological model 
SHETRAN - Système Hydrologique Européen TRANsport, is a distributed hydrological 

model. SHETRAN has proved to be a reliable hydrological model and is applied in a wide 

range of catchments. Water flow, sediment transport and contaminant transport are the three 

main components of SHETRAN. However, this study only uses the water flow component. 

Precipitation, potential evapotranspiration, DEM, soil properties and land use are the inputs 

required. In this study the variation of land cover and soil properties are not taken into 

consideration. The model is calibrated using soil moisture data downloaded from MERRA-2 

dataset. The Nash-Sutcliffe Efficiency (NSE) is maximized by changing the parameters of 

vegetation and soil properties. The optimal value of NSE is 1.  

 

 
Table 3 Equations of hydrological processes in SHETRAN 

Process Equation 

Evaporation Penman - Monteith 

Canopy interception Rutter 

Subsurface flow Variably saturated flow equation 

Overland flow Saint - Venant 

Channel flow Saint - Venant 
 

 

 7.1.2   Definition of rainfall events and thresholds 
Firstly, rainfall events are to be reconstructed. A dry period of 1 day is set for both monsoon 

and non-monsoon season. After the reconstruction of rainfall events, cumulative rainfall (E) 

and duration (D) are obtained. Using Frequentist approach, ED rainfall threshold is determined 

which is assumed to be a power law: 

                                                          E = αDβ 

Where α and β are scaling constant and shape parameters respectively. 

Thresholds with different exceedance probabilities are evaluated. 
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7.1.3 Bayes Theorem 
Given the joint occurrence of two conditions, two-dimensional Bayesian analysis is used to 

evaluate the conditional probability of occurrence of a landslide. In this case, antecedent soil 

moisture conditions and severity of rainfall event are the two factors. The simulated soil 

moisture is scaled to (0,1). The moisture conditions are then classified into 5 categories. 

([0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]). Based on the severity level, rainfall events are 

divided into six categories: (Tmin, T5, T10, T20, T50). As a result, 30 cell conditions are formed 

for the analysis. 

 

Two-dimensional Bayesian probability can be defined as: 

                                                    P (A|B, C) = (P (B, C|A) P(A))/P (B, C) 

Where A – event of at least one landslide occurrence. 

           B, C – antecedent moisture conditions and severity of rainfall 

           P (B, C| A) – conditional probability of B, C given A. 

           P(A) – probability of A 

           P (B, C) – probability of B, C  

Consider number of rainfall episodes during period of particular time be NR; number of 

incidences of landslides during the same time period be NA, number of rainfall episodes and 

soil moisture of magnitude B, C be NB,C and the number of rainfall events causing landslides 

be N(B, C|A), 

 

           P(A)=NA/NR  

           P (B, C) =N (B, C)/NR      

           P (B, C|A) = N(B, C|A)/NA   

 

 

7.2   Analysis and Results 
The model is calibrated for the period 2010 to 2016. The value of NSE turned out to be 0.84 

which is optimal. The soil moisture simulated by SHETRAN varied between 0.6064 and 

0.9257, which is further scaled down to (0,1). The average soil moisture for the period 2010-

16 turned out to be 0.7331. A total of 208 rainfall events were reconstructed and their ED values 

are obtained, out of which 54 events resulted in landslides and are used for determining the ED 

threshold. 
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Table 4 Parameters of ED thresholds 

Label Probabilities α β 

T50 50 6.03 0.65 

T20 20 4.08 0.65 

T10 10 3.31 0.65 

T5 5 2.38 0.65 

Tmin 0 1.50 0.65 

 

 

 

 

 

 

 

 

Figure 11 The rainfall thresholds with exceedance probabilities of 5%, 10%, 20% and 50% 

(T5, T10,T20, T50) and the rainfall threshold without considering the exceedance probability 

(Tmin) 
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Figure 12 The distribution of landslide occurrence probability based on the two-dimensional 

Bayesian analysis. 

 

 

 

 

 
Later ED thresholds and soil moisture conditions are integrated using Bayesian approach which 

gives the conditional probability of occurrence of a landslide for different cell conditions. 

These values are plotted in the Figure 12. After analysing the results and the graph a probability 

of 0.667 is considered critical for the occurrence of landslide. 
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Chapter 8 

 

SIGMA – U 

 

8.1   Methodology 
In this model, an effort has been made to improvise the SIGMA model mentioned in chapter 

6. The idea is to integrate the soil moisture simulated from SHETRAN with the SIGMA 

algorithm. This results in the reduction of false alarms and also, the efficiency increases. 

Analysis of soil moistures on landslide events from 2010-16 is done and moisture thresholds 

are determined as a multiple of standard deviations (same as in SIGMA model). Rainfall for 

longer periods results in the accumulation of moisture in the soil. Therefore, the cumulative 

rainfall with longer periods in the SIGMA algorithm are replaced by soil moisture thresholds. 

Also, the soil moisture thresholds are introduced after the cumulative rainfall with periods 

ranging from 1-3 days, so as to remove the false alarms.  

The algorithm is mentioned in Figure 13. 

 

 

8.2   Results 
The algorithm is run for the period 2010-16. The results of back analysis are very encouraging. 

The statistics of the back analysis are as follows: 

 

Table 5 Back Analysis of SIGMA-U 

  SIGMA SIGMA-U Variation Variation % 

False Alarms High 

criticality 

1 0 -1 -100 

Moderate 

criticality 

5 3 -2 - 40 

Ordinary 

criticality 

124 47 -77 - 62.1 

Missed 

Alarms 

No of missed 

landslides 

34 32 -2 -6.25 

Hits No of 

predicted 

landslides 

27 29 2 7.41 
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Figure 13 Scheme of the SIGMA-U algorithm. C is cumulative rainfall, U is soil moisture, u' 

is average soil moisture and SD is standard deviation of soil moisture series. 
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Chapter 9 

 

Validation with tilt sensors 

 
For the validation of results, rainfall and landslide data of 2017 have been used. The alarms 

predicted by the landslide forecasting models was compared with the reported landslide events. 

The Chibo-Pashyor area of Kalimpong, which is called the ‘sinking zone’ experienced ground 

displacements during July-August 2017 [37]. These deep-seated movements were triggered by 

continuous rainfall during the monsoon season.  These instances were considered as events of 

ordinary criticality and used for the validation process. By using a confusion matrix (Figure 

14), the alarms and warning levels were verified using the observed data. 

 

 

 

 
Figure 14 Confusion matrix 

 

 

 

Correct predictions can be both true positives and true negatives, defined by the occurrence 

and non-occurrence of landslide event respectively. Missed alarms are counted as false 

negatives and false alarms are considered as false positives. Ground displacements were 

reported by tilt sensors at two locations in Chibo –Pashyor area for seven days: on 28th – 29th 

July, 2017 and 13th -17th August, 2017. 
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Table 6 The validation statistics of the forecasting models described in literature review 

Statistical Attributes ID [35] ED [56] 
ED (lower 

limit) [56] 

ED (upper 

limit) [56] 

a = True positives 1 1 1 1 

b = False positives 45 41 62 22 

c = False negatives 6 6 6 6 

d = True negatives 313 317 296 336 

Efficiency = (a + d) / 

(a + b + c + d) 
0.86 0.87 0.81 0.92 

Misclassification rate 

= (b + c) / (a + b + c + 

d) 

0.14 0.13 0.19 0.08 

Odds ratio = (a + d) / 

(b + c) 
6.16 6.77 4.37 12.04 

Positive predictive 

power = a / (a + b) 
0.02 0.02 0.02 0.04 

Negative predictive 

power = d / (c + d) 
0.98 0.98 0.98 0.98 

Sensitivity = a / (a + 

c) 
0.14 0.14 0.14 0.14 

Specificity = d / (b + 

d) 
0.87 0.89 0.83 0.94 

False positive rate = b 

/ (b + d) 
0.13 0.11 0.17 0.06 

False negative rate = c 

/ (a + c) 
0.86 0.86 0.86 0.86 

Likelihood ratio = 

Sensitivity / (1 – 

Specificity) 

1.14 1.25 0.82 2.32 
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Table 7 The validation statistics of the forecasting models described in this study 

Statistical Attributes Antecedent SHETRAN SIGMA SIGMA - U 

a = True positives 3 2 7 7 

b = False positives 10 20 22 11 

c = False negatives 4 5 0 0 

d = True negatives 104 338 336 347 

Efficiency = (a + d) / 

(a + b + c + d) 
0.885 0.93 0.94 0.97 

Misclassification rate 

= (b + c) / (a + b + c + 

d) 

0.115 0.068 0.06 0.03 

Odds ratio = (a + d) / 

(b + c) 
7.64 13.6 15.6 32.18 

Positive predictive 

power = a / (a + b) 
0.23 0.091 0.24 0.39 

Negative predictive 

power = d / (c + d) 
0.96 0.926 1 1 

Sensitivity = a / (a + 

c) 
0.43 0.286 1 1 

Specificity = d / (b + 

d) 
0.91 0.944 0.94 0.97 

False positive rate = b 

/ (b + d) 
0.087 0.056 0.06 0.03 

False negative rate = c 

/ (a + c) 
0.57 0.714 0 0 

Likelihood ratio = 

Sensitivity / (1 – 

Specificity) 

4.88 5.11 16.27 33.33 
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Chapter 10 

Conclusions and Future scope 
 

10.1   Conclusions 
Landslide forecasting has been carried out in the study area using four forecasting models. All 

the models were calibrated using the rainfall and landslide data from 2010-16 and validation is 

done using the 2017 tilt sensor data. Improving the efficiency of the Landslide Early warning 

system has been the driving force of the study. The statistics of the validation are encouraging. 

As shown in Table 6, the highest efficiency among all the models in the literature review is 

0.92 while the likelihood ratios are less than 2.5. The efficiencies of the models implemented 

in this study varied between 0.89 to 0.97 while the likelihood ratios reached as high as 33.33.  

The main conclusions of the study are: 

• The efficiencies of the 4 models gradually increased from 0.89 to 0.97. 

• The likelihood ratios of antecedent, Shetran, Sigma and Sigma – U are 4.88, 5.11, 

16.27, 33.33 respectively. 

• SIGMA – U is the best forecasting model that can be integrated with real time tilt 

sensors to form a reliable and efficient Landslide Early Warning System (LEWS). 

o SIGMA-U model is a simple and efficient tool which can be used for landslide 

early warning on regional scale. The model predicts warning levels associated 

with each day, which can be directly linked to the severity of landslide events 

predicted.  

o The algorithm correctly predicted ordinary criticality levels on all the sliding 

events reported in 2017. These events were the result of continuous rainfall over 

a longer time period. It can be concluded that this algorithm- based approach 

efficiently considers the effect of both long-term and short-term rainfall and 

even slow movements are predicted correctly, providing a performance better 

than traditional I-D and E-D thresholds. 

 

 

10.2   Future Scope 

• Electrical Resistivity Tomography (ERT) can be done for landslide monitoring and 

understanding the geology of landslide prone areas. 

• Field Survey can be done to get the soil properties which can used in physical models. 

• Landslide Hazard zonation map can be created by setting up a network of tilt sensors. 
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