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SYNOPSIS 

Early-stage cancer detection is a crucial step towards successful cancer 

treatment as well as for improving the patient survival rate. In recent years, 

molecular imaging has gained tremendous interest in early-stage cancer 

diagnosis. Nowadays, for molecular imaging scientific community has 

started to use the exogenous contrast agents to improve the detection ability 

of the existing imaging modalities. Especially, the use of exogenous near-

infrared fluorescence (NIRF) contrast agents has improved the quality of 

NIR optical bioimaging. It helps in visualization of deeply buried 

inhomogeneities inside the tissue due to less scattering, low endogenous 

absorption, and almost zero auto-fluorescence in the NIR wavelength range. 

Additionally, it enables researchers to study the deep-seated abnormalities 

with an enhanced signal-to-noise ratio (SNR).  

Indocyanine green (ICG) is the only U. S. Food and Drug 

Administration (FDA) approved NIRF dye that is being used in clinics for 

the last approximately 60 years. However, the use of ICG to the fullest has 

been limited due to its short blood circulation time, non-specific binding 

within the body, undesirable aggregation, poor aqueous stability, poor 

cellular uptake, and poor optical and thermal stability. These limitations of 

the ICG could be addressed by the nanoencapsulation of ICG within a 

carrier for site-specific delivery. To date, various nanocarriers have been 

developed, such as micelles, liposomes, polymers, metals, and composites, 

etc. However, none of them has reached clinical practice due to limitations 

such as non-biodegradability and non-biocompatibility, which leads to short 

and long-term cellular toxicity. Keeping these limitations in mind, the 

primary focus of this thesis has been to encapsulate ICG within 

biocompatible and biodegradable nanocarriers. A green chemistry-based 

two-step self-assembly method has been developed to fabricate these 

nanoparticles. The ICG loaded nanoparticles demonstrated an improved 

efficiency of ICG delivery in cells in comparison with the free form of ICG.  
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In addition, the nonlinear excitation properties of ICG and its application 

for multiphoton bioimaging has been studied for the first time. As shown in 

Figure a, apart from ICG well-known NIR absorption at 780 nm, it also 

shows two absorption bands with peak intensity at ~400 nm and ~230 nm.  

However, there was negligible information available in the literature about 

the origin of these absorption bands and their possible applications. 

Therefore, in this thesis, an effort has been made to understand the origin of 

these bands and their potential applications. The results obtained in this 

thesis suggest that ICG could be used as an exogenous contrast agent for 

multiphoton bioimaging. 

Moreover, the effect of nanoencapsulation of ICG on multiphoton 

bioimaging has also been studied in this thesis. The amino acid-based 

nanoparticles developed here provide a glimpse of the nanoencapsulated 

ICG for NIR and multiphoton bioimaging applications.  These findings can 

start the ICG mediated preclinical and clinical multiphoton bioimaging. 

 

Figure a. Absorption spectrum of the aqueous solution of free ICG where 

ICG is indocyanine green, S0, is ground state and S1, S2, and S3 is first, 

second and third excited singlet state. 
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The main objectives of the presented study are as following:  

❖ A novel green chemistry-based synthesis of ICG loaded biocompatible 

and biodegradable poly-l-lysine (PLL) nanoparticles for NIR 

bioimaging. 

❖ To study the nonlinear excitation of ICG to S2 and S3 states and its 

application in multiphoton bioimaging. 

❖ To study the effect of nanoencapsulation of ICG on multiphoton 

bioimaging. 

The Ph.D. thesis is divided into six chapters, as mentioned below.  

Chapter 1 gives the introduction of indocyanine green (ICG) and provides 

a comprehensive review of the literature for various applications of ICG. 

Additionally, a detailed discussion of the ICG optical properties and its 

various biomedical applications has been provided. This is followed by a 

summary of the work presented in the thesis. 

Chapter 2 describes the details of the materials and methods used in this 

thesis.  In this chapter, the principles and specifications of the instruments 

used in the research work have been explained. 

Chapter 3 introduces the drawbacks of the ICG, which limits its application 

in the clinics. The conventional delivery of the ICG results in non-specific 

binding of ICG with various plasma proteins causing a short residence time 

in the bloodstream. This problem can be addressed by protecting ICG within 

nanocarriers. In this chapter, green chemistry-based two-step 

nanoencapsulation of ICG is shown within the essential amino acid-based 

nanoparticles. Followed by the complete biophysical and biochemical 

characterization of the nanoparticles. The NIR bioimaging application of 

these nanoparticles will also be demonstrated.  
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The fourth chapter of this thesis is focused on understanding the 

mechanism of higher energy absorption peaks of ICG and its possible 

application. Both optical absorption spectroscopy and fluorescence 

spectroscopy are used to understand the origin of these high energy 

absorption peaks. It was found that these absorption peaks are due to the 

transition of electrons from the ground state (S0) to higher energy states such 

as second and third excited singlet states (S2 and S3respectively). In 

addition, in this chapter, nonlinear excitation of ICG to the higher energy 

states, followed by an emission, is demonstrated. This nonlinear excitation 

to the higher excited states followed by an emission was used for ICG 

mediated bioimaging. These experimental results suggest that ICG could be 

used for in-vivo multiphoton bioimaging applications in the future.  

Chapter 5 discuss the effect of ICG nanoencapsulation on multiphoton 

bioimaging. To study this, the ICG was nanoencapsulated in the arginine 

based homopeptide using a simple two-step self-assembly process in 

aqueous solution. Motivated by the results of our previous in-vitro studies, 

we extended our investigations to evaluate the effectiveness of 

nanoencapsulated ICG for multiphoton bioimaging. It was found that 

nanoencapsulated ICG showed superior nonlinear two-photon imaging 

ability than the free ICG formulation. Our results also indicate that ICG-

doped PLA NPs are not cytotoxic.  

Chapter 6 conclude the finding and summarizes the salient features of the 

entire work of the thesis and envisions the possible future steps. The outlook 

of the story also discusses the possible way to broadening the application of 

ICG in preclinical and clinical trials. 
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modulator, D.M. is a dichroic mirror, RXD1 is BA 420 

– 460 nm, RXD2 is BA 495 – 540 nm, RXD3 is BA 

380 – 560 nm, and  RXD4 is BA 575 – 630 nm. 
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Figure 2.11 Schematic representations of the MTT 
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Figure 3.3 Morphological characterization of ICG PLL 

NPs (a) FESEM image of ICG PLL NPs, the inset 

shows the green pellet of the NPs (b) Frequency 

diameter distribution of ICG PLL NPs using IMAGE J 

software. (c) DLS measurement of synthesized ICG 

PLL NPs shows the average hydrodynamic diameter 
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Figure 3.4 Variation in ICG PLL NPs size due to 

change in salt pH (a) effect of pH on particle size by 

DLS (b) Respective FESEM images. 
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Figure 3.5 Variation in ICG PLL NPs size due to 

change in the MCR (a) effect of MCR on particle size 

by DLS (b) Respective FESEM images. 
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Figure 3.6 Biochemical characterizations of free 

indocyanine green (ICG) and poly-l-lysine 

nanoparticles (PLL NPs). (a) Absorption spectra of free 

ICG and PLL NPs. (b) Absorption spectra curve fitting 
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of free ICG with R2 = 99.8 %. (c) Absorption spectra 

curve fitting of PLL NPs with R2 = 99.4 %. (d) 

Emission spectra of free ICG and PLL NPs. 
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Figure 3.7 Interaction of the PLL and ICG (a) CD 

spectra of PLL and its interaction with salt and ICG (b) 

3D structure of PLL and ICG used for docking (c) 

Complex of PLL and ICG show its favorable docking 

site (d) Docking results with two hydrogen bonds. 

Carbon atoms of ICG are grey, oxygen-red, hydrogen 

white, and sulfur–yellow, carbon atoms of PLL are 

cyan, nitrogen is blue, and hydrogen is white.  
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Figure 3.8 Release mechanism (a) ICG release 

mechanism, (b) Absorption spectra showing free ICG 

spectra recovery after incubation with a proteolytic 

enzyme. 

 

 

 

72 

Figure 3.9 Release study of the ICG from polypeptide 

NPs (a) pictorial visualization of the pellet after every 

hour release study (b) enzymatic cleavage of the NPs 

and in-vitro release study in the presence of trypsin for 

24 h. 
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Figure 3.10 Photostability of the ICG PLL NPs (a) ICG 

PLL NPs vs. free ICG in ambient light exposure at 

room temperature (b) ICG PLL NPs stability in the 

presence of culture media. 
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Figure 3.11 Cellular viability and NIR imaging of 
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and ICG encapsulated poly-l-lysine nanoparticles (PLL 

NPs). (a) The cellular viability of two different 

concentrations of PLL NPs with positive and negative 

control. (b) NIR imaging of HeLa cells, where (i-iii) 

were control cells, (iv-vi) free ICG treated cells, and 

(vii-xii) were treated with two different concentrations 

of PLL NPs. The DAPI staining nuclei are denoted in 

blue, and ICG emission was denoted in red color. Scale 

bar: 20 µm. (c) Fluorescence intensity quantification by 

IMAGE J software. 
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Figure 4.2 Indocyanine green optical characteristics (a) 

optical absorption spectra (b) Jablonski diagram 

showing transitions of ICG. 
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Introduction and Background Research 

1.1  Introduction 

Synthetic organic dyes have been known and being synthesized since 

the middle of the 18th century.[1] These dyes are playing an important 

role in our day-to-day life, with their primary application in the textile 

industry.[2] The fascination of humans with colored objects inspired 

them to develop different synthetic dyes for various applications in the 

last 150 years.[3] There is still a high demand for colored molecules, 

not only for decorative or cosmetic purposes, but for all kinds of 

technologies that require strong absorption and emission of light. 

Additionally, Dyes have also been used for various biomedical 

applications, especially for the labeling and visualization of biological 

samples and in therapy.[4, 5] Further, dyes have been gained interest to 

be used in different imaging modalities and cancer therapy. The most 

commonly used dye in clinics is indocyanine green (ICG), which was 

approved for in-vivo clinical applications by the United States Food 

and Drug Administration (U.S. FDA) almost six decades ago. In this 

chapter, the background of the cyanine dyes specially ICG, its 

properties, and its various biological applications, have been discussed.  

1.2  Background Research 

Cyanine dyes are organic molecules containing a chain of conjugated 

methine groups between two nitrogen atoms with a delocalized charge. 

Carbocyanine dyes were first reported by C. H. G. Williams in 1856, 

where it was reported that the reaction between crude quinoline with 1-

iodopentane in excess ammonia resulted in the discovery of vibrant 

blue-colored dye.[6] After that, it is generally termed as ‘cyanine,’ 

originating from its Greek word cyanos (meaning dark blue). Cyanine 
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dyes have dominated in the field of photography and other 

sophisticated areas of dye applications.[6, 7] Cyanine dyes belong to 

the family of the polymethine dyes. Generally, the polymethine dyes 

have two nitrogen in the center, where one of the nitrogen atoms is 

positively charged and is linked by a conjugated chain of an odd 

number of carbon atoms to the other nitrogen atom. The generic 

molecular structure of cyanine dyes is shown in Figure 1.1. The two-

nitrogen atoms (denoted by blue color) are linked by a polymethine 

chain with variable chain length (n, denoted by red color). As it was 

known that organic molecules containing conjugated –electrons 

typically have molecular orbitals levels, which allow the absorption of 

light. Similarly, cyanine dyes have been reported for a range of 

absorption between the visible and infrared wavelength range of the 

electromagnetic spectrum. Under different excitation, they give rise to 

distinct fluorescent emission of a particular wavelength, due to the 

presence of delocalized charge between two nitrogen atom, functioning 

as both electron acceptor and donor that are connected by the 

polymethine chain.[8–10]  

Quantum mechanically, the cyanine dyes –electrons in a 

polymethine chain can be described by the one-dimensional particle in 

a box model, as shown in Figure 1.2.[11] The energy difference (E) 

between the highest occupied molecular orbital (HOMO) and the 

lowest unoccupied molecular orbital (LUMO) in a linear conjugated 

system is given by Equation. 1.1.  

∆𝐸 =  
ℎ2 (𝑛+1)

8𝑚𝐿2 …………..……Equation. 1.1 

Figure 1.1 General molecular structure of the polymethine cyanine dyes. 
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where h is the Planck’s constant, L is the length of the box (i.e., length 

of the conjugated system), m is the mass of an electron and n is the 

number of electrons in the box (i.e., the number of –electrons in the 

conjugated system).[12] The two parameters n and L are both related 

to the number of carbon atoms (N) in the system, and the HOMO–

LUMO energy difference is decreasing with increasing size of the 

conjugated system: E ~ 1/N.[13, 14] One can easily calculate the 

wavelength, λ, corresponding to the energy gap between the HOMO- 

and the LUMO-* level from the particle-in-the-box model.  A 

decreasing energy difference between the HOMO and LUMO suggests 

the redshift of the absorption, i.e., from ultraviolet (UV) to visible 

(Vis) light, then blue to redshift, and finally into the nearinfrared (NIR) 

region. 

Several cyanine dyes have been reported with different 

structures, polymethine chain length, and various functional groups in 

the past. Lately, a new nomenclature was introduced, i.e., ′Cy-dye′, 

which was used to refer to a range of symmetric carbocyanine 

dyes.[15] Cy-dyes are named according to the number of methine 

groups (n = 0, 1, 2, 3) in their polymethine chain. If n = 0, 1, 2, or 3, 

 

Figure 1.2 Cyanine dyes energy level diagram for a particle in a box 

as a function of chain length (L). 
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they would be named as monomethine (Cy1), trimethine (Cy3), 

pentamethine (Cy5), and heptamethine (Cy7) cyanine dyes 

respectively. Terms like Cy3, Cy5, or Cy7 have been widely used in 

the literature to describe various cyanine derivatives possessing 

different structures and substitutions. 

 Generally, monomethine cyanine dyes exhibit absorption in the 

visible wavelength region. However, the addition of a vinylene unit 

(CH=CH) in the polyene-chain causes a redshift (bathochromic; shifts 

to longer wavelength) of about 100 nm.[16, 17] In general, Cy3 

molecules absorb in the visible region, whereas there is a systematic 

redshift in the absorption for Cy7 (NIR region), as shown in Figure 

1.3.[12, 18] The cyanine dyes which have small bandgap and sharp 

absorption band in the NIR region are desirable. Such cyanine dyes are 

of great interest for various biological applications. 

 Also, the spectral characteristics and electronic properties of 

polymethine cyanine dye can be modified by incorporating terminal 
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Figure 1.3 The influence of the chain length (n) on the absorption 

spectra of cyanine dyes. The addition of the vinylene unit in 

chromophore leads to a regular bathochromic shift of the band 

maxima. 
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substituents with electron-donating or electron-accepting capabilities. 

Moreover, most of the polymethine chains are commonly substituted at 

both ends with heterocyclic groups like indolenines, benzoxazoles, 

benzothiazoles, 2-quinolines, 4-quinolones, etc. as shown in Figure 

1.4.[19–22] Cyanine dyes have been used to enhance the spectral 

sensitivity of silver halide in photographic emulsions since the 18th 

century. They exhibit unique optical properties such as high molar 

extinction coefficients and tunable absorption. At the same time, they 

are easy to synthesize and offer great possibilities for structural 

modifications, so that these can be tailored to have desired properties. 

Substituents at various positions in the structure allow for the tuning of 

solubility, optical, and electrochemical properties, as well as the 

introduction of functional groups that react with specific targets.  

Nowadays, the class of cyanine dyes has grown exponentially and has 

been used widely as an exogenous dye for various applications due to 

their fluorescence properties. Additionally, there has been a dramatic 

increase in research on fluorescent cyanine dyes due to their 

applications in biology and medicine. 

1.3  Introduction to ICG 

Several cyanine dyes have been synthesized and used for medical 

applications due to their absorption and fluorescent emission 

properties.[23–27] However, the most popular cyanine dye for medical 

applications is ICG. It is the only U. S. FDA approved NIR exogenous 

Figure 1.4 Examples of heterocyclic rings that have been used to 

make polymethine cyanine dyes (a) indolenines, (b) benzoxazoles, (c) 

benzothiazoles, (d) 2-quinolines and (e) 4-quinolones. 
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chromophore that has been used for various clinical applications since 

1959.[28, 29] It has been utilized for measuring cardiac output, 

determining plasma volume, studying ophthalmic angiography, hepatic 

function and object localization in tissue, etc.[29–31] 

1.3.1 Structure and Physiochemical Properties of ICG 

ICG is one of the water soluble heptamethine cyanine dye, which has 

strong absorption and emission in the NIR region. The molecular 

structure of the ICG is shown in Figure 1.5, where the value of n is 3 

in generic cyanine structure (generally called as Cy7). Also, both the 

ends are substituted with two indolenine rings connected by 

polymethine chain. The molecular weight of ICG is 775 Da. The 

molecule is composed of two polycyclic moieties (red shaded) at both 

ends, which gives ICG lipophilic property. However, the sulfate groups 

(blue dash circle), which are connected to the polycyclic ring, endows 

it with the hydrophilic nature. Altogether, it is an amphiphilic 

molecule, which is advantageous for clinical applications. 

1.3.2  Photophysical Properties of ICG 

The absorption and emission spectrum of cyanine dyes is a 

consequence of the delocalization of the π-electrons across the 

polymethine unsaturated bridge system. Figure 1.6 shows the 

absorption and emission spectra of aqueous ICG. ICG has the 

Figure 1.5 Molecular structure of free ICG. 
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Figure 1.6 Absorption (red) and emission (blue) spectra of ICG. 

absorption maxima at ~780 nm, which represents the monomeric form. 

The shoulder peak at ~ 710 nm represents the ICG dimeric form. ICG 

gives emission with maxima at ~810 nm upon 780 nm excitation.[32] 

Until now, the ICG has been widely used due to its NIR absorption and 

emission properties, but the higher energy optical properties of ICG 

were never discussed in the literature. In this thesis, chapter 4 describes 

the higher energy spectral characteristics of the ICG and its 

applications in biology. Generally, the spectral properties of ICG in 

aqueous solution depends directly on the dye concentration, 

temperature, light exposure, and the solvent polarity. It is prone to 

form aggregates at higher concentrations. The aggregates in solution 

exhibit distinct changes in the absorption and emission band compared 

to that of the monomeric form.[33] 

1.3.3 Aggregation of ICG in Solution 

Like other cyanine dyes, ICG tends to form aggregates, due to its 

tendency to possess strong intermolecular Van der Waals forces. The 

aggregation process depends on the concentration and solvent of the 

ICG. In aqueous solution, ICG monomers are prominent at lower 

concentrations (below ~15 µM); however, at higher concentration 
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dimers and oligomers are prominent.[33, 34] In comparison to the 

monomeric species, the dimeric and higher-order aggregates exhibit 

distinct changes in the NIR absorption band in the solution. The 

dimeric aggregation process influences the shape of the ICG 

absorption spectrum in an aqueous solution that progressively takes on 

a mirror image, as shown in Figure 1.7.[35] The dimerization of the 

dye has been considered as the first step of aggregation.  

 In the aqueous solution, ICG has the tendency to form higher-

order aggregates. The formation of higher-order aggregates is 

intrinsically associated with the spectral changes of the monomeric 

form of the ICG absorption band, as shown in Figure 1.8. Higher-

order aggregates in ICG, which exhibit a hypsochromic shift (towards 

the blue) compared to the monomer band and termed as H-aggregates 

(‘H’ for hypsochromic).[36] Conversely, aggregates showing a 

bathochromic shift (towards the red) compared to the monomer 

spectrum of ICG is denoted as J-aggregates (‘J’ is named after Jelly, 

who was among the first to investigate these shifts).[37] The J 

aggregates were made up of the parallel arrangement of the ICG 

Figure 1.7 Absorption spectra of the monomeric and dimeric state of 

the ICG dye. 
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molecules, i.e., stacked end-to-end forming a head-to-tail arrangement 

(J-dimer).[38] Similarly, the H-aggregates stacked in a plane-to-plane 

manner, forming a sandwich-type arrangement  (H-dimer), as shown in 

Figure 1.8.[39] The formation of the H-aggregated results in the 

hypochromic effect in fluorescence emission and also results in poor 

photochemical and thermal stability. For H-aggregates, the absorption 

spectrum is blue-shifted relative to the monomer (green).  The H-

aggregates can undergo a non-radiative relaxation to the lower excited 

state,  the fluorescence from this state is forbidden. Therefore H-

aggregates are usually non-fluorescent. However, for J-aggregates 

(red), the absorption spectrum is red-shifted relative to the monomer, 

and the fluorescence is intense. 

1.3.4 Applications of ICG 

ICG is a U. S. FDA approved water soluble heptamethine cyanine dye. 

The amphiphilic nature of ICG facilitates the enhancement of its 

solubility in physiological fluids and its bioavailability. At first, ICG 

was developed by Brooker and introduced by Fox et al. for measuring 

Figure 1.8 Schematic illustration of the changes in absorption (red) 

and fluorescence (blue) spectra during H and J-aggregates formation.  



 

10 
 

the cardiac output using an indicator dilution technique.[40–42] 

However, in the human body, ICG circulation time is very short, i.e., 

nearly 3-5 minutes, which is due to the binding of plasma albumin and 

high-density lipoproteins such as alpha lipoprotein, etc. This results in 

exclusive clearance by the liver, which helps to utilize it to study 

hepatic function since 1958.[28, 29, 43–49] Additionally, due to its 

NIR absorption and fluorescence emission, it is also used for 

ophthalmic angiography since 1972.[30, 35, 50] Lately, ICG has been 

employed for controlling the thermal coagulation of the biological 

tissues using a diode laser.[51] Due to lower light scattering, minimal 

auto-fluorescence and, higher tissue penetration in biological samples, 

ICG (as  NIR dye) has also achieved notable attention in many other 

fields of medicine. Nowadays, ICG has been widely employed for 

numerous diagnostic and therapeutic applications by virtue of its NIR 

optical properties. Here, biological applications of the ICG are briefly 

discussed for disease diagnosis and therapy.  

1.3.4.1 NIR Photoacoustic Imaging 

Photoacoustic imaging is a non-invasive imaging technique that brings 

together the significant features of optical and ultrasound 

techniques.[52] In contrast to other optical imaging techniques, where 

light must travel in and out of the biological tissue, in photoacoustic 

imaging, light travels only into the tissue, followed by conversion of 

light in pressure wave (photoacoustic effect) due to the presence of 

Figure 1.9 General mechanism of photoacoustic imaging, where due to 

light incident on biological samples, there is a rise in temperature, 

results in thermal expansion and generation of photoacoustic signals. 
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endogenous optical absorbers in the body.[53] It is a non-invasive and 

non-ionization imaging technique that could unveil different diseased 

states, including cancer.[54] When the laser light is incident on the 

biological samples, it results in the thermoelastic expansion in the 

sample volume generating the acoustic wave, as shown in Figure 

1.9.[55] The image reconstruction is done after detecting acoustic 

signals by ultrasonic array transducers. The reconstructed image shows 

the optical absorption of the tissue. The use of UV-Vis wavelength 

range for imaging results in limited penetration depth, which is due to 

the presence of intrinsic chromophores and autofluorescence.  

However, the NIR illumination could help in the visualization of the 

deep-seated inhomogeneities due to minimal absorption and scattering 

from the tissue in this range. In various studies, ICG has been used as 

an exogenous contrast agent for photoacoustic imaging.[56–58] These 

studies report the significant improvement in the signal-to-noise ratio 

(SNR) and the contract of the imaging for early-stage cancer 

detection.[59] Some research studies have also shown the application 

of nanoencapsulated ICG for photoacoustic imaging.[60, 61] ICG in 

the conjugation with other metals was also employed for photoacoustic 

imaging.[62, 63] In 2012, ICG-enhanced single-wall carbon nanotubes 

were employed for photoacoustic imaging, which gave significantly 

high contrast in photoacoustic imaging from the animal model.[64] 

Additionally, various ICG loaded polymeric nanoparticles (NPs) were 

utilized for the photoacoustic therapy of the cancer cells.[65, 66] Huina 

Wang et al. have reported the in-vivo photoacoustic imaging of breast 

carcinoma using ICG loaded polylactic-co-glycolic acid (PLGA)-lipid 

NPs that were decorated with folate receptors for enhanced 

photoacoustic imaging.[67] Further, tissue targeting ICG loaded 

nanoliposomes were used for in-vivo clinical photoacoustic imaging by 

Beziere and co-workers.[68] Therefore, free and nanoencapsulated 

ICG has been used as a photoacoustic agent for photoacoustic imaging 

and therapy in recent years.[69–71] 
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1.3.4.2 ICG as an Exogenous Contrast Agent for NIR 

Imaging 

Among available technologies, optical fluorescence imaging has 

emerged out as an effective non-invasive technique for the cancer 

diagnosis[72]. However, imaging with UV and Vis wavelengths suffer 

from the low SNR due to the interference of strong scattering and 

endogenous absorption of the biomolecules in this range[73]. On the 

other hand, imaging in the NIR wavelength range has been widely used 

due to the significantly lower scattering and least endogenous 

absorption by biological tissues in the wavelength range from 650 nm 

to 1100 nm, which is termed as tissue diagnostic window[5, 74]. 

Moreover, this wavelength range has almost zero endogenous 

fluorescence from biological tissues, which makes it a suitable region 

for deep tissue fluorescence imaging due to high SNR.[75–81] ICG has 

been used as a NIR exogenous dye for cancer diagnosis applications. 

The extensive use of ICG in molecular labeling is due to the low 

autofluorescence of biological tissue in the NIR spectrum and good 

biological compatibility of ICG as compared to other NIR dyes. 

Erythrocyte-derived optical nanoprobes doped with ICG demonstrated 

an enhanced capability of fluorescence imaging in comparison to free 

ICG, which can serve as potentially effective nanoprobes for the 

disease diagnosis.[82] Similarly, several other nanoformulations of 

ICG have been used for NIR imaging.[83–87] 

1.3.4.3 ICG Application in Multimodal Bioimaging 

Conventional imaging techniques like computed tomography, 

magnetic resonance imaging (MRI), ultrasound, and optical imaging 

(OI) are unable to provide complete structural and functional 

information, which leads to the emergence of multimodal imaging. In 

multimodal imaging, two or more imaging techniques are employed in 

a single examination to co-register complementary images.[88] NIR 

optical imaging, in combination with MRI, provides three dimensional 

(3D) anatomical and molecular information of the tissue with high 
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spatial resolution and virtually no limit on penetration depth.[89] A 

combination of molecular imaging with exogenous contrast agents 

provides high-resolution images, which helps in the early detection of 

cancer.[90] A variety of molecular probe has been developed for MRI 

and NIR fluorescence imaging. Exogenous contrast agent for both the 

imaging modalities was employed for better SNR.[91] MRI/NIR 

optical multimodal imaging is one of the best techniques due to its high 

sensitivity and use of nonradioactive materials.[92] Recently, 

utilization of the magnetic NPs as an exogenous contrast agent for 

MRI has been reported to enhance its sensitivity and contrast.[93] 

Additionally, ICG loaded magnetic resonance nanomaterials have been 

used for the MRI/optical concurrent imaging.[94, 95] In 2002, Lee 

Josephson used protease achievable iron oxide/ICG NPs as an 

exogenous MRI/NIR optical contrast agent for multimodal 

imaging.[96] Considerable interest has been shown towards MRI/NIR 

diffusion optical tomography imaging was done after the 

administration of the ICG for the precise imaging of cancer.[97]  

1.3.4.4 NIR Optical Imaging Assisted Surgery 

NIR fluorescence imaging is one of the potential imaging modalities in 

life sciences for the visualization of diseased cells and tissues, both in-

vitro and in-vivo. Locating a positive margin of the diseased tissue 

during the surgical procedure is required for the complete removal of 

the diseased tissue and decrease their reoccurrence. NIR optical 

imaging assisted surgery is simple and provides real-time information 

on the diseased tissue.[98, 99] This technique combines a microscope-

integrated NIR light source for the illumination of the operating area 

for visualization of the diseased tissue for resection.[100] In 2010, ICG 

mediated video angiography was used during a surgical procedure for 

localizing a fistula and confirm its disconnection.[101] In 2012, 

Fabrice P. Navarro et al.. report the fabrication of the 30 nm lipid NP 

encapsulating ICG for tumor diagnosis and lymph node resection.[102] 

NIR molecular imaging-guided surgery revolutionized the clinical 

oncology for the precision of the surgery, which maximizing tumor 
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excision, and minimizing the risk of metastasis or recurrence.[103–

108] 

1.3.4.5 Tissue Welding and Soldering 

Laser tissue welding or soldering is a sutureless method of wound 

closure or fusing two-piece of tissue that has been used successfully in 

nerve, skin, and arterial anastomoses.[109] After heat generation by 

laser exposure, an adhesive substance is formed at the tissue edges, 

which form a weld upon cooling.[110] The advantages of laser 

welding over traditional wound closure are no foreign body reaction, 

less scar formation, no leakage due to suture holes, and shorter 

operating times.[110] However, traditional methods of laser welding 

have a minimal surface area of tissue to weld, such as in 

anastomoses.[111] The excess heating occurs with the use of 

traditional surgical continuous waves (CW) lasers such as the Argon 

and CO2 lasers. These studies used an artificial biomaterial made 

mostly of elastin and fibrin to weld to the porcine aorta, which allowed 

greater surface area for welding and measurement of optical properties 

of the weld site. Later a pulsed diode laser was used to maintain 

thermal confinement and therefore minimizes excess heating. [112] 

Photosensitive dyes with high absorption at the laser wavelength are 

added to the weld site to increase heating and to minimize thermal 

damage to surrounding unstained tissue. ICG has shown its property to 

be utilized as a photosensitizer to assist laser welding or 

soldering.[113–115] Moreover, the ICG packed nano shell scaffold-

based laser tissue soldering has shown the significant improvement of 

tissue fusion.[116] Additionally, the combination of metal and 

photosensitizer (gold with ICG) was used for tissue soldering, and 

various parameters for these techniques were optimized for effective 

outcomes such as laser power density, time, number of scans, etc.[114] 

Therefore, ICG could also be used as a photosensitizer for tissue 

welding applications. 
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1.3.4.6 Photothermal and Photodynamic Therapy 

Photothermal therapy (PTT) is a promising laser-based approach for 

targeted cancer therapy by laser ablation.[117, 118] In this technique, 

due to the absorption of laser light of a particular wavelength, there is a 

localized rise in temperature.[119] The rise in temperature results in 

cell death, as shown in Figure 1.10. Several investigations have 

demonstrated the ability to destroy diseased cells by introducing 

exogenous photothermal agent, which improves the therapeutic 

efficiency.[120] The desirable characteristics of the agent should 

include a strong absorption coefficient, efficient heat conversion 

property, high photostability, and inherent low toxicity. The short 

circulation time and no visible toxicity of ICG prompted an 

investigation of its capability to be used as a photosensitizer for 

therapeutic applications.[121, 122] Due to the inherent capability of 

producing heat upon irradiation of NIR light, ICG acts as a 

photothermal agent for cancer therapy.[123, 124] However, due to the 

Figure 1.10 ICG mediated photothermal and photodynamic therapy. 
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rapid degradation of the optical properties of ICG  in aqueous solution, 

its application is limited in the clinical settings. Several reports have 

been published showing significant improvement in the efficiency of 

the encapsulated ICG for PTT, such as PLGA encapsulated ICG 

NPs.[125]  Self-assembled ICG in phospholipid-polyethylene glycol 

(PL-PEG) makes a sufficient increase in temperature in contrast to free 

ICG. Additionally, the targeting ability of these nanocarriers was 

improved by conjugating integrin αvβ3 monoclonal antibody (mAb) on 

these NPs.[126] Similarly, targeted NPs encapsulating ICG and 

decorated with anti-epidermal growth factor receptor (anti-EGFR) 

antibodies have been reported as a proof of principle for PTT of cancer 

upon irradiation of 3 W/cm2.[127] Moreover, there are several reports 

which show the theranostic application of ICG.[128–132] Dextran-

based ICG NPs and of erythrocytes derived ICG NPs show their 

effectiveness for NIR imaging and PTT of cancer.[133, 134] Surface 

modification of NPs improves the specificity of cells, such as folic acid 

conjugated ICG NPs shows improved efficiency for PTT than free ICG 

and ICG NPs.[135]  

In contrast to PTT, photodynamic therapy (PDT) uses a 

photosensitizer, which produces reactive oxygen species (ROS) upon 

exposure to light, which results in cell death at a particular site.[136] 

The mechanism of PDT is shown in Figure 1.10. ICG is a NIR active 

chromophore, which generates ROS upon laser irradiation results in 

cancer therapy.[137–139] The phototoxic effect of ICG was studied 

when irradiated with 809 nm diode laser on MDA-MB 231 breast 

cancer cell line.[140] Due to poor optical stability, ICG has not been 

used as a photosensitizer in clinics. Various research groups showed 

improved optical stability and effectiveness when ICG is delivered by 

nanocarriers. In this direction, many efforts have been made to 

encapsulate ICG in biocompatible and biodegradable material such as 

in polymeric, micelles, metallic, and composite NPs.[141–146] ICG 

loaded composite NPs have shown promising efficiency of targeting 

leukemia cells and have been improved the lives of leukemia 
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patients.[147] Further advancement has been made for targeted PDT; 

the nanoencapsulated ICG surface was modified with targeting 

moieties for targeted delivery of the ICG, which further improves the 

effectiveness of PDT.[148]Furthermore, ICG has been used as a 

photosensitizer for combinational therapy consist of photothermal and 

photodynamic therapies, which achieved significantly improved 

therapeutic efficiency.[149–152] 

1.4 Focus of the Thesis 

During the twenty-first century, the applications of the ICG have been 

remarkably increased, confirming the multifunctional role of ICG in 

medicine. As discussed above, ICG has been widely used as an 

exogenous NIR contrast agent for various biomedical applications. 

Despite numerous applications, the use of ICG in clinical applications 

is still limited. The main drawback of ICG is non-specific binding to 

the plasma lipoproteins resulting in the rapid elimination of ICG 

through the liver.[153] Additionally, the off-site delivery, undesirable 

aggregation, poor aqueous optical and thermal stability, and poor 

cellular uptake. Due to these limitations, ICG has not been used to the 

fullest for disease diagnosis. Nanotechnology played an important role 

to overcome the limitations of the ICG. However, the available ICG 

NPs are not completely biocompatible and showing long- and short-

term toxicity. Therefore, one of the main objectives of this thesis is the 

development of a new fabrication technique for the reformulation of 

ICG in biocompatible and biodegradable NPs. A simple two-step green 

chemistry-based nanoencapsulation of the ICG has been done using 

amino acid-based homopolymers. The fabrication was done at room 

temperature without the involvement of any toxic reagents. The 

rationale behind this encapsulation is to enhance the optical stability 

and efficient delivery of ICG in the cells. In this thesis, ICG containing 

essential amino acid-based carrier has been developed. The results 

shown in this thesis suggest that amino acid based nanoencapsulated 

ICG could be used in clinics. Additionally, apart from the development 

of NIR active NPs for NIR bioimaging, the other major objective of 
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this thesis is to understand the origin of the higher energy absorption 

peaks of ICG and their applications. The high energy absorption bands 

are due to the transition of electrons to the higher energy states, namely 

S2 and S3. The electrons could be excited to these states in a nonlinear 

fashion and give emission upon relaxation to S0 state. This is the first-

ever study on the nonlinear excitation of the ICG and its biological 

applications for two-photon (2P) and three-photon(3P) bioimaging. 

Further, the effect of nanoencapsulation on multiphoton imaging has 

also been studied in this thesis.  

1.5  Thesis Organization 

This thesis contains six chapters. Chapter 2 describes the detailed 

information of the materials, methods, and working principles of used 

instrumentations. The cell culture technique has also been 

demonstrated in this chapter. Chapter 3 introduces the new formulation 

of the ICG to overcome its limitation for NIR bioimaging. In Chapter 

4, the newly found optical properties of the ICG have been reported. 

These newly found optical properties of ICG have been used for the 

multiphoton bioimaging applications. Chapter 5 shows the effect of 

nanoencapsulation on multiphoton imaging. Whereas chapter 6 

concludes the thesis by summarizing the results of the present study 

with the scope of future work.   
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Materials, Methodology, and Instrumentations 

2.1  Introduction  

This chapter gives information about the materials and methods used 

for the successful completion of this thesis. This chapter also provides 

a detailed account of all the characterization techniques used to carry 

out the experiments presented in this thesis. Additionally, the detailed 

information about the cell culture methods such as viability assay and 

cellular uptake study have been described here.   

2.2  Materials 

ICG was purchased from Sigma-Aldrich Inc., Burlington, 

Massachusetts. The stock solution of ICG (645 μM) was prepared by 

dissolving the powder in deionized (DI) water (Millipore 18.2 MΩ, 

Sartorius system) and was stored at –80ºC to minimize the thermal 

degradation. All experiments were performed at room temperature, and 

freshly prepared ICG solutions were used for all the experiments. Poly-

l-lysine (PLL, Molecular weight (Mw) = 120 kDa, ~574 lysine unit, 

one HBr per lysine residual) was procured from Polysciences 

(Warrington, Pennsylvania, U.S.). Trisodium citrate dihydrate and 

ethylenediaminetetraacetic acid (EDTA) were purchased from Merck 

(Darmstadt, Germany). Poly-l-arginine (PLA, Mw = 70 kDa, ~365 

arginine unit, one HCl per arginine residual), sodium phosphate dibasic 

heptahydrate, and fluoromount mounting media were procured from 

Sigma-Aldrich (St. Louis, Missouri, U.S.) and were used as received. 

The stock solutions of the chemicals were prepared in DI water and 
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stored at 4ºC. The human cervical cancer cell (HeLa) line was 

procured from the National Centre for Cell Science (NCCS) Pune, 

India. Dulbecco’s Modified Eagle Medium (DMEM), Fetal Bovine 

Serum (FBS), Coverslips, penicillin-streptomycin, 0.25% trypsin-1mM 

EDTA and 2.5% trypsin without phenol red were procured from 

Gibco, Thermo Fisher Scientific. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide (MTT), and 2-(4-amidinophenyl) indole-

6-carboamidine-dihydrochloride (DAPI) were procured from Himedia 

(India) and Tokyo chemical industry (TCI) respectively.  

2.3  Methodology and Instrumentation 

2.3.1 Absorption Spectroscopy  

When light interacts with matter, it may undergo various processes 

such as absorption, reflection, scattering, transmission, and emission 

(fluorescence/phosphorescence), as shown in Figure 2.1(a). The light 

absorbed by the molecule could be used to excite an electron from the 

ground (S0) state to the respective excited singlet states such as S1, 

Figure 2.1 Interaction of light with matter (a) processes involve after 

the incident of light on matter (b) transition of electrons from 

respective states. The abbreviation are as follows: FL is fluorescence, 

PL is photoluminescence, S0 is ground state, S1, and Sn is first and nth 

excited singlet state respectively. 
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S2…. Sn, as shown in Figure 2.1(b). The transfer of electrons from a 

lower energy level to a higher energy level or from higher energy 

levels back down to a lower energy level is known as transitions. The 

energy of the photons absorbed by the molecule for single-photon 

phenomena must be greater than or equal to the difference in energy 

between two energy levels for a transition to occur. As such, the 

electron will quickly fall back to the lower energy level, and when it 

does so, it emits a photon with less than the difference in energy levels 

called fluorescence emission.  

In this work, the absorption of the molecules was measured by 

spectrophotometer. In principle, when the light is irradiated on a 

sample, it passes through or gets reflected. Therefore, the amount of 

light absorbed by the sample is calculated by the incident radiation (Io) 

and the transmitted radiation (IT), as shown in Figure 2.2. 

Quantitatively, absorbance is described by an equation known as Beer-

Lambert law, as given below in Equation 2.1.[1] 

A = -log (T) = -log (IT/Io) = ɛcl……………Equation. 2.1 

In the above equation, A is absorbance or optical density (a unitless 

quantity), T is transmittance, Io, and IT are the intensity of incident and 

  

Figure 2.2 The ray diagram and working principle of the UV-Vis-NIR 

absorption spectroscopy. The abbreviation are as follows: I0 is incident 

light, and I is the transmitted light. 
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transmitted light respectively for a given wavelength. However, ɛ is the 

molar extinction coefficient (a constant unique to each compound, 

given in units of M-1cm-1), c is a molar concentration of the sample (M, 

or mol/L), and l is the path length of the sample cell (in cm). In 

general, a UV-Vis-NIR spectrometer comprises of a light source (to 

generate the broad wavelength light) and a lens to focus that light on 

the grating, which breaks the white light into the light of different 

wavelengths. Further, the wavelength selector (slit) selects the 

individual wavelength of light, which is radiated on the sample. The 

absorbed wavelengths by the sample are recorded by photomultiplier 

tubes detector (PMT), which converts the light into an electrical signal. 

All absorption spectra shown in this thesis have been measured using a 

Perkin Elmer (Lambda 35) UV-Vis-NIR spectrometer. For 

measurements, a quartz cuvette of (10 mm × 10 mm) or (10 mm × 2 

mm) has been used. The absorption data were collected with a 1 nm 

slit width and 480 nm/min scan rate. Al the data has been plotted and 

analyzed with the Origin software. 

2.3.2 Fluorescence Spectroscopy 

Generally, the electrons that are excited to higher energy states after 

the absorption of light are not stable and come back to the S0 state by 

the radiative or non-radiative process. Fluorescence is a process of 

emission of radiation, where the transition of the molecule occurs from 

a higher singlet electronic (Sn) state to S0 state. In general, the 

fluorescence emission always has a redshift with respect to the 

absorption wavelength due to loss of energy, and this wavelength shift 

is called the Stokes shift. The fluorescence and phosphorescence 

processes have been shown in Figure 2.3 using a Jablonski diagram, 

where the transition of electrons from the higher singlet state S1 to S0 

state is fluorescence emission, and transition from higher triplet state to 

S0 state is called phosphorescence.[2] The lifetime of the absorption 

process is in the order of femtoseconds, the lifetime of fluorescence 

varies from picosecond to nanoseconds, and the lifetime of 
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phosphorescence is from microsecond to hours.[3]  The fluorescence 

process always follows the Kasha’s rule, which suggests that 

fluorescence always occurs when an electron from the lowest 

vibrational level of the first excited singlet state relaxes back to the S0 

state.[4] However, the fluorescence emission depends upon the 

molecule and its chemical environment. Fluorescence gives 

information about the electronic states and the molecule's relaxation 

dynamics.  

All the steady-state fluorescence measurements were taken 

using a research-grade fluorometer (HORIBA, Jobin Yvon, model 

FL3-12). A 400-Watt Xenon lamp was used as an excitation source for 

all the fluorescence measurements. These measurements were carried 

out in a right-angle geometry with an excitation/emission slit width of 

5 nm, and the samples were kept in a four sides clear quartz cuvette 

(10 mm X 2 mm or 10 mm X 10 mm). The spectra were collected 

using inbuilt software of spectrofluorimeter, i.e., FluorEssence 

Figure 2.3 Jablonski diagram is showing all possible transitions. The 

abbreviation are as follows: S0 is ground state, S1 and S2 is first and 

second excited singlet state and T1 is first excited triplet state. 
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software, which merges fluorometer data-acquisition directly to the 

origin 8.0 software for further data analysis. 

2.3.3 Circular Dichroism (CD) Spectroscopy 

Circular dichroism (CD) spectroscopy is a technique, which measures 

the difference in the absorption between left and right-handed 

circularly polarized light of the chiral molecules. It is a well-known 

biophysical method to study the secondary structure (e.g., helices, 

beta-sheets, turns, etc.) of nucleic acids, and peptides, which have 

distinct CD bands in far-UV and UV-Vis range. In this method, the 

instrument has a light source that was converted to monochromatic 

light using monochromator and slit, which is further irradiated on a 

photoelastic modulator (PEM). PEM converts horizontally polarized 

light to circularly polarized light. Also, the optically active sample was 

irradiated by this signal, and the detector detected the CD signal, as 

shown in Figure 2.4.  

Here, CD spectroscopy has been used to study the 

  

  

Figure 2.4 The ray diagram and the working principle of the CD 

spectroscopy. The abbreviation are as follows: PEM is a photoelastic 

modulator, and PMT is a photomultiplier tube, the CD is circular 

dichroism, I is Incident intensity, AL and AR is the absorption of left 

and right-handed circularly polarized light, and HV is high voltage. 
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conformational changes of homopeptide, and perturbation occurred on 

its confirmation after interaction with ICG. Every peptide molecule 

gives a signature CD spectrum, which reflects its conformation. 

Generally, all possible conformations of the peptide structures such as 

parallel, antiparallel, mixed, and random could be determined from the 

position and magnitude of the CD spectra bands. CD spectroscopy was 

used to study interactions between homopeptide, salts, and 

drug/contrast agents during self-assembly. Generally, small molecules 

do not exhibit a CD signal in solution. All the homopeptides used in 

this thesis are titrated with a non-chiral molecule. It must be pointed 

here that the changes observed in the UV region could be directly 

related to the interaction of the homopeptide with the small molecule.  

All CD spectra measurements were done on a 

spectropolarimeter (JASCO, model J-815, Tokyo, Japan) equipped 

with a Peltier junction temperature controller.  Far-UV spectra of 

solutions were recorded between 180 to 250 nm with 0.1 nm intervals, 

1 nm slit width, 20 nm/min scanning speed, and a response time of 1 

second. A quartz cuvette (Hellma GmbH & Co., Müllheim, Germany) 

with a 2 mm path length was used for the CD measurements. Samples 

were prepared by diluting the homopeptide in DI water to get final 

concentration as stated in CD spectra. Every spectrum was obtained by 

averaging three scans and was corrected by subtracting the blank 

spectrum of the solvent (DI water). The temperature of the 

measurements was maintained at 25 ºC using a Peltier temperature 

controller. 

2.3.4 Time-Correlated Single Photon Counting (TCSPC) 

TCSPC has been widely used for time-resolved spectroscopy, it tells 

about the fluorescence lifetime of chromophores in solutions. In this 

method, the fluorophore is excited by the pulsed laser, and the 

fluorescence intensity is monitored as a function of time. In simple 

words, the fluorescence lifetime of a molecule is the average time 

electrons spend in the excited state. The lifetime of the molecule 
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depends on the molecular structure and its local environment.[5] 

Generally, the excited state decays in an exponential manner, as 

mentioned below in Equation 2.2.  

I(t) = Io exp(-t/)…………………Equation 2.2 

Where Io is the incident light intensity, I(t) is the intensity of light at a 

given time t and  is the fluorescence lifetime or the time for the 

intensity decay to 1/e of its initial value. The fluorescence lifetime 

measurement has an advantage over steady-state fluorescence intensity 

measurement, as it is an “absolute” measurement, rather than “relative” 

steady-state measurement. It provides information about the dynamic 

processes occurring on a time scale as short as picoseconds. It detects a 

single photon of a pulsed laser signal and constructs the decay curves 

from each time measurement of an individual photon. In this 

technique, a pulsed excitation source (light-emitting diode (LED) or 

laser diode) is used for measurement. A pulse of light produces a 

Figure 2.5 Schematic diagram of TCSPC system depicting the 

fluorescence lifetime measurement principle. 
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“start” timing signal, which gives input into timing electronics 

(digitizer as shown in Figure 2.5). The light excites the sample, which 

gives emission due to the relaxation process of the fluorophores. This 

emission pulse is incident on the detector, which then provides a “stop” 

signal to the timing electronics. The difference between these two 

signals is plotted with the help of a histogram. This process is repeated 

several times, which builds up the histogram, with the number of 

counts in histogram “time bin” is proportional to the intensity of the 

decay at that time, as long as single-photon timing conditions are 

observed.[6]  

In this thesis, all TCSPC measurements were performed on a 

nanosecond TCSPC system (Horiba, Jobin Yvon, model: Fluorocube-

01-NL). For our studies, a 2 mL solution of the samples was prepared 

in a quartz cuvette (1 cm X 1 cm), and the samples were excited at 

different excitation wavelengths (279 nm and 405 nm for the whole 

work) by picosecond or nanosecond diode laser (model DD-280 and 

DD-405L). The decays were collected with the emission polarizer at a 

magic angle of 54.7° by a photomultiplier tube (TBX-07C) with a dark 

count of less than 20 cps. The instrument response functions (IRF, 

FWHM~140 ps) were recorded using a ludox solution. The 

fluorescence decays were analyzed using IBH DAS (version 6.0, 

HORIBA Scientific, Edison, NJ) decay analysis software by the 

iterative reconvolution method, and the goodness of the fit was judged 

by reduced χ2 value. 

2.3.5 Photoluminescence (PL) Spectroscopy 

Emission characteristics from the samples, a qualitative analysis was 

done using photoluminescence (PL) spectroscopy. Photoluminescence 

measurements were done using a PL spectrometer (DongWoo Optron, 

DM 500i, Japan), affixed with a 20 mW continuous wave He-Cd laser 

(excitation wavelength of 325 nm, TEM00 mode) 320 mm and 150 

mm focal length monochromators,  chopper, a lock-in amplifier, and a 

PMT detector, were deployed to conduct optical studies. All 
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measurements were performed at room temperature. The schematic of 

the PL measurement system is shown in Figure 2.6. The output of a 

laser light source (325 nm) is passed through the excitation slit, and the 

sample is placed in the path of the monochromatic light with an angle 

of 90°. When the sample is optically excited, it emits light in all 

directions at various wavelengths, depending on molecular structure. A 

small portion of the emitted light passes through the emission slit and 

filtered by the monochromator. Typically, the remaining optical signal 

has a very low intensity; hence, a PMT detector is used to measure 

low-intensity optical signals. To get the spectral distribution of the 

emitted light, the emission monochromator scans the desired 

wavelength spectrum, and the light intensity measured by the detector 

is recorded. 

2.3.6 Dynamic Light Scattering (DLS) Spectroscopy 

Particles suspended in liquids are in Brownian motion due to random 

collisions of the molecules with the solvent molecules. This Brownian 

motion causes the particles to diffuse through the medium. The 

Figure 2.6 Schematic diagram of the PL measurement system. The 

abbreviation are as follows: ADC is analog-to-digital converter and 

PMT is a photomultiplier tube. 



49 
 

diffusion coefficient, D, is inversely proportional to the particle size 

according to the Stokes-Einstein equation (Equation 2.3).[7] 

D = kB T / 3πηod……………….…Equation 2.3 

Where D is a diffusion coefficient, kB is Boltzmann’s constant, T is 

temperature, η0 is the viscosity, and d is the hydrodynamic diameter. 

This equation shows that, for large particles, D will be relatively small, 

and thus, the large particles will move slowly. While for the smaller 

particles, D will be larger, so the particles will move faster. Therefore 

by observing the motion and determining the diffusion coefficient of 

particles in liquid media, it is possible to determine their size.[8]  

In DLS, the time-dependent intensity fluctuations of the scattered 

light are collected by the detector. This data is used to calculate the 

autocorrelation function, which is finally used to calculate the size of 

the particles. Figure 2.7 shows the schematic of the dynamic light 

scattering setup. When laser light is focused onto the sample in the 

cuvette, the sample in the focused volume scatters the light in all 

directions. This volume is defined by the scattering angle and detection 

apertures. However, the observed intensity of the scattered light at any 

instant will be a result of the interference of scattered light by the 

particles, and this will depend on the relative positions of the particles. 

Figure 2.7 The basic working principle of DLS for obtaining diffusion 

coefficient and particle size information. 
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If the particles are in motion in solution, the relative positions of the 

particles will change with time, and thus fluctuations in the scattered 

light intensity will be observed. Since particles are in Brownian motion 

and move randomly, the scattered light intensity fluctuations are 

random. The fluctuations will occur rapidly for smaller, faster-moving 

particles and slowly for larger, slow-moving particles. The light 

intensity data is acquired over a period of time and is controlled by the 

digital correlator. The raw data is used to calculate the autocorrelation 

function; this information is further used to calculate the mean 

diameter or the size distribution of the particles. This method provides 

the hydrodynamic diameter of the particles. Further, the measurement 

of the zeta (ζ) potential was also done using DLS. Particles dispersed 

in a liquid have a net positive or negative charge. In liquid, the ions 

that have an opposite charge to the particle surface, get adsorbed on the 

surface of the particle to keep it electrically neutral. This phenomenon 

is known as the formation of an electrical double layer and is shown in 

Figure 2.8. The concentration of the counterions is high near the 

particle surface and gradually decreases with increasing distance from 

the surface. Equal numbers of positive and negative ions exist in the 

area far from the particle surface so that electrical neutrality is 

maintained. This ion distribution is called a diffuse electrical double 

layer. The diffuse electrical double layer can be divided into two 

layers: the layer of ions near the particle surface, which is called the 

Figure 2.8 Schematic diagram of an electrical double layer. 



51 
 

Stern layer. The ions in the Stern layer are strongly attracted to the 

surface of the particle. The layer outside the Stern layer is called the 

diffuse layer. In this layer, the ions are diffused. The stability of the 

dispersing particles is influenced by their surface charge. Ζeta potential 

is used as the index of the surface charge of the particles. It is assumed 

that the particles are undergoing Brownian motion in a liquid and 

move not only with the ions in the Stern layer where the ions are 

attracted strongly near the particle surface but also with a part of the 

diffuse layer. The electric field from which this movement takes place 

is called the (slipping plane). Zeta potential is considered to be the 

potential at the slipping plane, and the potential at the position far from 

the particle surface is defined as zero. If ζ potential is high, the 

particles are monodisperse/ not aggregate due to high electrostatic 

repulsion between particles. On the contrary, a low ζ value 

(approaching zero) increases the probability of particles colliding and 

thus forming particle aggregates. Therefore, ζ is used as an index of the 

dispersion stability of the particles. In this thesis, all ζ measurements 

were done with a NanoPlus-3 zeta/nanoparticle analyzer 

(Micromeritics Instrument).   

2.3.7 Fluorescence Microscopy Study  

The basic principle of fluorescence microscopy is the same as 

fluorescence spectroscopy. In this thesis, all fluorescence microscopic 

measurements were performed using an inverted microscope (Nikon, 

model Eclipse Ti–U).  The mercury, Xenon, and halogen lamps were 

used as the sources for the illumination. The filters cubes used for the 

selection of the excitations and emission wavelength. The DAPI filter 

covers an excitation wavelength ranges between 349 - 380 nm, 

whereas the collection was done by bandpass filters, which allow 435 - 

485 nm. Likewise, the Fluorescein isothiocyanate (FITC) covers an 

excitation wavelength range between 465 - 495 nm with an emission 

collection window between 515 – 555 nm. Tetramethyl rhodamine 

(TRITC) filter allows excitation range between 540 ± 12.5 nm with 
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band allow filter for collection window between 605 ± 55 nm. Most 

importantly, the NIR excitation filter allows 775 ± 25 nm, whereas the 

collection window allows 845 ± 27.5 nm.    The images were analyzed 

with ImageJ software (Version 1.46r, National Institutes of Health 

(NIH)). 

2.3.8 Field-Emission Scanning Electron Microscopic (FESEM) 

FESEM has been used in this thesis to visualize the morphological 

structure of the fabricated nanoparticles. In SEM, a beam of 

accelerated electrons as a source of illumination is used for the 

imaging. It gives higher resolving power than light microscopy and can 

reveal the structure of nanometer size particles. In SEM, the electron 

beam interacts with the sample and loses its energy by various 

processes.[9] The energy loss is converted into alternative forms such 

as heat, emission of low-energy secondary electrons (< 50 eV, from 

which the SEM images are obtained), Auger electrons (surface 

contamination analysis, top 50 Å), and high-energy backscattered 

electrons (which are used to determine crystal structures and 

Figure 2.9 Working principle of the FESEM (a) Interaction of electron 

beam with the sample (b) Schematic representation of the FESEM 

instrumentation. The abbreviation are as follows: CL is 

cathodoluminescence, and SE is secondary electrons. 
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orientations of minerals), light emission (cathodoluminescence (CL)) 

and X-rays (used for elemental analysis) as shown in Figure 2.9(a). 

Backscattered electrons and secondary electrons emitted from the 

sample are commonly used for the imaging application in SEM. 

Secondary electrons are most important for producing morphology and 

topography of samples (acquire from inelastic scattering electrons 

close to the surface), while backscattered electrons (acquire from 

elastically scattered electrons, higher energy) are most essential for 

illustrating contrasts in the composition of multiphase samples. In a 

typical SEM, as shown in Figure 2.9, an electron beam is 

thermionically emitted from an electron gun coupled with a tungsten 

filament cathode. Tungsten is generally used because it has the highest 

melting point and lowest vapor pressure of all metals, thereby making 

it suitable for electron emission. The anode, which is positive with 

respect to the filament, forms powerful, attractive forces for electrons. 

This causes electrons to accelerate toward the anode. The anode is 

arranged as an orifice through which electrons would pass down to the 

column where the sample is held. In the electron microscope, the 

electron beam with energy typically between 1-10 keV is focused by a 

lens system into a spot of 1-10 nm diameter on the sample surface. The 

focused electron beam is rastered across the surface of the sample 

through the condenser lens to a spot size of about 0.4 nm to 5 nm 

diameter. The emitted/scattered electrons after the electron-sample 

interactions are collected by a detector and converted to voltage, and 

finally, the SEM image is formed from a two-dimensional density 

distribution of detected electrons. A variety of signals can be detected, 

including secondary electrons, backscattered electrons, X-rays, CL, 

and sample current. This technique is useful for producing relatively 

quick qualitative impressions of the sample surface. The samples must 

be viewed in a vacuum, as the molecules in the air would scatter the 

electrons. SEM is operating in conventional high vacuum mode and 

usually imaging conductive samples; therefore, non-conductive 

materials require conductive coating (gold/palladium alloy, carbon, 

and osmium, etc.). However, in FESEM, the FE gun is used to produce 
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an electron beam that is smaller in diameter, more coherent, and up to 

three orders of magnitude greater current density or brightness. In this 

thesis, all FESEM measurements were performed using a Carl Zeiss 

Microscope (model-Supra 55) equipped with energy-dispersive X-ray 

spectroscopy (EDS, Oxford Instruments, X-MAX, 51-XMX1025). The 

secondary electron images (SEI) were taken between 2-10 kV electron 

beam with a working distance of ~10 mm. For FESEM measurements, 

the nanoparticle pellet was dried in a lyophilizer (Alpha 1-2 LD plus, 

Labmate). Following lyophilization, the dried samples were placed on 

a double-sided sticky carbon tape mounted on an aluminum stub. 

Before visualization in SEM, the samples were sputter-coated with 

gold by direct current (DC) sputter coater (Quorem (Q-150RES)) for 

better electron conductivity. The subsequent SEM images were 

analyzed using IMAGE J software (NIH, Bethesda, MD, U. S.).  

2.3.9 Multiphoton Microscopy 

Confocal microscopy, which uses lasers for excitation of the samples, 

offers several advantages over conventional optical microscopy, 

including the elimination of out-of-focus glare and the ability to collect 

serial optical sections from thick specimens.[10] In the biomedical 

sciences, a major application of confocal microscopy involves imaging 

of labeled samples with one or more fluorescent probes. This technique 

could be used for live cells, fixed cells, and tissue samples. The 

multiphoton experiments were performed on a laser scanning 

multiphoton confocal system (Olympus, model no. FV1200MPE, IX-

83, Japan). The multiphoton confocal imaging system is equipped with 

the femtosecond negative chirped infra-red laser. Figure 2.10 shows 

the schematic of the multiphoton imaging system used in this thesis. A 

mode-locked Ti-Sapphire laser (MaiTai, Deep-See, Spectra-Physics) 

was used as an excitation light source, which provides a pulse with the 

pulse width ~ 70 fs at 80 MHz repetition rate with the wavelength 

ranging from 690 nm to 1064 nm. The wavelength selection was made 

with the help of an acousto-optic modulator. 
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Docking Studies and Molecular Modeling Simulation  

Molecular docking is a useful tool not only for the development and 

designing of new drugs but also for predicting the interaction between 

the small molecule and homopeptide.  We have used AutoDock 4.2 

(graphical user interface) in our study, in which docking is done by 

pre-calculating energy grids created around the site of interest.[11] 

ChemDraw Ultra 12 and Chem3D Pro 12 were used to generate the 3D 

structure of homopeptide and ICG. The energy was minimized using 

density functional theory.[12] For docking, the preparation of the 

target macromolecule was done with AutoDock Tools, which involves 

Figure 2.10 Schematic setup of multiphoton Olympus confocal laser 

scanning microscope equipped with MaiTai laser for multiphoton 

imaging. The abbreviation are as follows: AOM is acoustic optical 

modulator, DM is dichroic mirror, RXD1 is BA 420 – 460 nm, RXD2 

is BA 495 – 540 nm, RXD3 is BA 380 – 560 nm, and  RXD4 is BA 

575 – 630 nm. 
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the addition of polar hydrogen atoms, and partial charge correction to 

the target molecule. In the final step, Gasteiger charges were calculated 

for each atom of the macromolecule. A grid of 40 Å x 40 Å x 40 Å 

with a grid spacing of 1 Å was positioned around the macromolecule. 

Docking calculations consist of 25 million energy evaluations 

(ga_num_evals) using the Lamarckian Genetic Algorithm Local 

Search (GALS) method. All other parameters were set to defaults, the 

maximum number of generation (ga_num_generation) was 27,000, and 

the maximum number of iterations per local search was set to 100. The 

6 and 7 Docking results were clustered based on the free energy of 

binding and hydrogen bond interactions. Finally, the University of 

California, San Francisco (UCSF)-Chimera, visualization software was 

used to visualize and analyses the integration of the PLL and ICG.[13] 

2.3.10 Cell Culture 

The HeLa cells were cultured and maintained at 37 ºC with 5% CO2 in 

Dulbecco`s Modified Eagle Media culture medium containing 10% 

heat-inactivated fetal bovine serum, 1% penicillin, and streptomycin. 

Cultures at approximately 80% confluence were routinely split in the 

ratio of 1:3 in 60 mm cell culture dish as follows. Initially, cells were 

washed in phosphate buffer saline (PBS). One milliliter (1 mL) of PBS 

containing 0.25% (w/v) of trypsin was added to the 60 mm dish and 

placed at 37 ºC for 5 min for cell detachment. After the cells were 

detached from the dishes, 1 mL of pre-warmed culture medium was 

added, and the cells were transferred to a 15 mL falcon tube. Cells 

were spun down at 1200 rpm for 2 minutes and plated in a new 60 mm 

dish with fresh culture medium for imaging experiment. HeLa cells 

(105 cells/mL) were grown on 18 × 18 mm square glass coverslips in 

six-well plates. For labeling, HeLa cells were incubated with ICG at 37 

ºC for 4 hours. Following the incubation, HeLa cells were washed 

thrice with PBS and fixed for 10 minutes at room temperature with 4% 

paraformaldehyde and further washed with PBS. Coverslips were 
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subsequently washed in PBS and mounted on glass slides using 

fluoromount aqueous mounting media. 

2.3.11 Cells Viability Assay  

Cell-based colorimetry assays are used in this thesis for the 

determination of the cytotoxic effects of the nanoparticles. MTT assay, 

i.e., 3-(4,5-dimethylthiazol-2-yl)-2,5-tetrazolium bromide, is one of the 

quantitative colorimetric assays used for determination of mammalian 

cell survival and proliferation.[14] This assay is based on the principle 

of reduction of MTT from a pale-yellow tetrazolium salt to a dark 

purple formazan product by mitochondrial succinate dehydrogenase 

when incubated with metabolically active cells that are live cells as 

shown in Figure 2.11. The principle of MTT assay is the 

quantification of the mitochondrial activity of the cells. Mitochondrial 

activity for all the viable cells is almost constant.[15] Therefore, an 

increase or decrease in the number of viable cells linearly relates to the 

mitochondrial activity of the cells. The mitochondrial activity of cells 

is equivalent to the conversion of the MTT salt into the formazan 

crystals, which can be solubilized for homogenous measurement. MTT 

enters the cells and reaches to mitochondria, where it is reduced to an 

Figure 2.11 Schematic representations of the MTT assay principle. 
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insoluble, dark purple formazan product. These formazans were 

solubilized with an organic solvent (e.g., isopropanol or dimethyl 

sulfoxide); thus, any increase or decrease in viable cell number can be 

detected by measuring formazan concentration using a microplate 

reader. In our study, we have performed MTT assay to determine the 

cytotoxicity of fabricated NPs using HeLa cells, a cancer cell line. For 

performing MTT assay, 10×103 cells/well were seeded in a 96-well 

flat-bottomed microplate (Eppendorf) and allowed to grow in the 

complete growth medium. Serial dilutions of compounds were added 

to each well with the solvent as a control.  The microplate was 

incubated in a humidified incubator at 37 °C with  5%  CO2 supply, for 

4 or 24 h.  After incubation, 10 µL of MTT (5 mg/mL in PBS) was 

added to each well and further incubated for an additional 4 h at 37 °C 

to allow intracellular reduction of the soluble yellow MTT to insoluble 

purple formazan crystals.  

Cellular Viability (%) = 

{
𝐴𝑏𝑠.  𝑜𝑓 𝑁𝑃𝑠 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑀𝑇𝑇 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡− 𝐴𝑏𝑠.  𝑜𝑓 𝑁𝑃𝑠 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝑇𝑇

𝐴𝑏𝑠.  𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑀𝑇𝑇 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡− 𝐴𝑏𝑠.  𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝑇𝑇
} ∗

100 ………………………………………………..…...…Equation 2.4 

Where Abs. is absorbance, these crystals were dissolved by adding 200 

µL of DMSO, and the absorbance was read at 570 nm and 690 nm 

using a microplate reader (Synergy H1, multi-mode microplate reader). 

Cells viability was determined by the formula mentioned in Equation 

2.4.   
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Fabrication of the Biodegradable and 

Biocompatible Essential Amino-acid Based 

Nanoparticles for NIR Bioimaging 

3.1  Introduction 

Cancer is one of the deadliest diseases worldwide.[1] An early-stage 

cancer diagnosis is an extremely crucial step towards successful 

treatment as well as for improving the patient survival rate.[1] The 

ability to visualize the deep-seated inhomogeneities in the biological 

samples is a crucial step for early-stage cancer diagnosis. Fluorescence 

based optical imaging permits non-invasive assessment of the tissue 

inhomogeneities for evaluation of the disease progression. However, 

the visualization of the deep-seated inhomogeneity within the tissue is 

challenging due to the presence of endogenous absorber, 

autofluorescence, tissue thickness, and light scattering by biological 

tissue samples. The use of exogenous contrast agents in the NIR region 

offers advantages for deep tissue imaging due to the least light 

absorption and scattering, results in a higher number of photons 

penetration inside the tissue.  

ICG is the only U. S. FDA approved NIR fluorescent dye, 

which is used for various clinical applications such as liver function 

monitoring, cardiac output, and hepatic function measurement, etc.[2, 

3] Despite its several clinical applications, ICG has not been used to 

the fullest for deep tissue imaging in its free-form. The free form of 

ICG suffers from off-site delivery, non-specific binding with plasma 
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proteins, concentration-dependent aggregation, and poor optical and 

thermal stability.[4, 5] These limitations restrain the application of ICG 

to be used as an exogenous contrast agent for in-vivo deep-tissue 

bioimaging. Nanobiotechnology is an appropriate approach to address 

these shortcomings. Nanoencapsulation has been found to improve the 

molecule’s half-life and the effective concentration of the therapeutic 

dose due to the site-specific delivery, which reduces the side-effects of 

the drug/contrast agents.[6–9] In recent years, various nanocarriers 

have been developed as drug carriers such as metal nanoparticles 

(NPs), polymer-based NPs and liposomes, etc. as shown in Figure 

3.1.[10–16] However, the major constraint of most NPs is their poor 

biocompatibility, non-biodegradability, and long and short-term tissue 

toxicity.[17–20] As a result, considerable interests have been shown 

towards the fabrication of the NPs using biomacromolecules such as 

lipids, amino acids, and proteins for the delivery of drugs and contrast 

agents.[21–24] Here, in this chapter, the new formulation ICG was 

done utilizing essential amino-acid based homopolymers to overcome 

the limitations of free ICG for NIR imaging. 

 PLL is a homopolymer of an essential amino-acids, Lysine, 

which plays a vital role in the body.[25] The body utilizes it for bone 

development, protein synthesis, and the production of collagen by 

promoting absorption of calcium.[26, 27] Also, it helps in the 

production of various hormones, antibodies and enzymes, and tissue 

repair.[28] It is a cationic homopeptide, generally being used for cell 

adhesion in the cell culture plates from the last four decades.[29] 

Recently, it has gained the significant attention of the scientific 

Figure 3.1 Various types of nanocarriers. 



 
63 

 

community in the domain of gene therapy and surface coating of metal 

particles.[30–35]  The PLL composite with metals gained interest as a 

potential carrier for drug delivery. Wu et al. encapsulated theranostic 

molecule in triblock copolymer micelles of poly(ethylene glycol)-b-

poly(L-lysine)-b-poly(L-leucine) (PEG-PLL-PLLeu), and Wang et al. 

used a composite of PLL with Pt(II)-porphyrins.[36, 37] However, 

these composites of the PLL are not completely biodegradable, and 

their fabrication process requires organic solvents, which might have 

toxic effects. Here, we used a simple two-step green chemistry-based 

method to fabricate biodegradable nanocarriers from PLL in an 

aqueous medium.  

In the present study, we demonstrate a simple green chemistry-

based new formulation of ICG within PLL forming ICG PLL NPs, 

which has the potential for NIR bioimaging. In comparison to other 

NPs, these ICG PLL NPs are completely biodegradable and 

biocompatible. The in-vitro cellular uptake study result shows that ICG 

PLL NPs incubated cells had significantly higher NIR fluorescence 

emission in comparison to the free-form of ICG. To the best of our 

knowledge, this is the first report on the green chemistry-based 

fabrication of ICG encapsulating protease responsive ICG PLL NPs for 

NIR bioimaging. In addition to ICG, these NPs could also be used for 

the encapsulation of various theranostic agents such as hydrophobic 

anticancer molecules and chemotherapeutic drugs, etc. for targeted 

drug delivery. 

3.2  Results and Discussion 

Here ICG was encapsulated within PLL via a two-step self-assembly 

method. It is pertinent to note that the assembly of ICG PLL NPs was 

accomplished in an aqueous medium by mixing of the essential amino-

acid homopeptide, ICG, and multivalent anionic salts. All components 

used for the fabrication were nontoxic for biological samples. 

  



 
64 

 

3.2.1 Synthesis of ICG Loaded ICG PLL NPs 

The nanoencapsulation of ICG within PLL NPs was done using a 

simple two-step self-assembly process. The schematic illustration of 

the fabrication process where ICG was encapsulated within PLL 

forming ICG PLL NPs is shown in Figure 3.2. Concisely, 20 µL of 

PLL solution (3 mg/mL) was taken in a 1.5 mL microcentrifuge tube, 

which was gently mixed with the cocktail of salts, i.e., 13.2 µL tri-

sodium citrate (0.01 M) and 2 µL disodium phosphate heptahydrate 

(0.01 M) for 10 seconds. The clear solution turns turbid, which 

indicates the initiation of the nucleation process. In the next step, 200 

μL ICG was added to the cloudy polymer/salt colloidal solution. The 

reaction was completed by adding 1 mL of deionized water (DI) to the 

suspension. Fabricated ICG PLL NPs were then aged for 30 minutes at 

4°C.  For the fabrication of the stable and monodispersed NPs, the 

molar charge ratio (MCR) of the solution was set to be 2. The MCR 

was calculated using Equation 3.1.  

MCR = 
𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑖𝑜𝑛𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑝𝑒𝑝𝑡𝑖𝑑𝑒
………Equation 3.1 

After 30 minutes of aging, the ICG PLL NPs suspension was 

differentially centrifuged three times at 6,500 rotations per minute 

(RPM) for 1 min followed by centrifugation at 6,000 RPM for 30 min, 

and 5,500 RPM for 60 min to get monodisperse NPs.  

Figure 3.2 Schematic diagram representing the fabrication process of 

nanoencapsulation of the ICG in the ICG PLL NPs. 
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3.2.2 Biophysical Characterization 

The biophysical characterization of the ICG PLL NPs was done and 

shown in Figure 3.3. The morphology and size distribution of the ICG 

PLL NPs are determined by FESEM. For FESEM, the NPs were 

subjected to the freeze-drying step, yet no damage was observed in the 

NPs, this suggests the robustness of the NPs. The ICG PLL NPs were 

nearly spherical in shape without any aggregation, as shown in Figure 

3.3(a). The inset of Figure 3.3(a) shows the image of the NPs pellet, 

which was used for FESEM characterization. Diameter distribution of 

lyophilized ICG PLL NPs, analyzed from FESEM images and plotted 

using IMAGE J software, is shown in Figure 3.3(b). The NPs mean 

Figure 3.3 Morphological characterization of ICG PLL NPs (a) 

FESEM image of ICG PLL NPs, the inset shows the green pellet of the 

NPs (b) frequency diameter distribution of ICG PLL NPs using 

IMAGE J software. (c) DLS measurement of synthesized ICG PLL 

NPs shows the average hydrodynamic diameter ranging between 251-

300 nm. (d) zeta (ζ) potential of ICG PLL NPs. 
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diameter was found to be ~225 ± 30 nm. 

Additionally, the hydrodynamic diameter and the ζ potential of 

the ICG PLL NPs in the aqueous solution were measured by DLS. As 

shown in Figure 3.3(c), the hydrodynamic diameter of ICG PLL NPs 

ranges between 251 to 300 nm. These NPs also exhibit a high degree 

of monodispersity with a polydispersity index (PDI) of 0.22. In 

addition, the ζ potential, which is a function of the particle surface 

charge and also indicates the stability of the NP, is found to be +16.25 

mV, as shown in Figure 3.3(d). These results suggest that these 

particles are stable in the DI water without showing any aggregation. 

3.2.3 Effect of pH and MCR on the Particles Size 

The self-assembly process for NPs synthesis depends on several 

factors, such as the concentration of the constituents used for synthesis, 

pH of the salt solution, incubation time, and MCR, etc. The condition 

for ICG PLL NPs fabrication was optimized by varying multiple 

parameters. Here, we have shown the effect of variation of parameters 

such as pH and MCR of the system, on the size of ICG PLL NPs. For 

studying the pH effect, the samples were prepared by varying the pH 

value of the salts (ranging from 4.5 to 12). The particle size 

measurements were carried out by using DLS. As shown in Figure 

3.4(a), the diameter of the ICG PLL NPs varies with a change in the 

pH values of the salts. The optimal pH value of the salt solution was 

Figure 3.4 Variation in ICG PLL NPs size due to change in salt pH (a) 

effect of pH on particle size by DLS (b) respective FESEM images. 
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found to be ~7 (neutral pH) for the fabrication, which produced 

perfectly spherical ICG PLL NPs of ~229 nm diameter, and the PDI 

value of 0.31 shows the monodispersity of the formed NPs. The basic 

pH value of the salt solution (such as 10.4 and 11.6) produced larger 

size NPs with a particle diameter of more than ~312 nm with lower 

PDI values. This is due to the variation of the charge ratio of Lysine in 

this pH. On the other hand, the acidic pH value resulted in the 

formation of a bit larger ICG PLL NPs with ~260 nm diameter and 

0.22 PDI value. This experiment suggests that the neutral pH value of 

salt solution would give the smallest and most uniform size NPs 

without aggregation. In addition, to the DLS measurement, the FESEM 

images of the synthesized NPs at different pH values are shown in 

Figure 3.4(b). 

Similarly, the MCR value of the system plays a crucial role in 

the fabrication of these NPs. To study the effect of MCR on the size 

and polydispersity of the NPs, the NPs were fabricated at following 

MCR values, i.e., 0.5, 1, 1.4, 2, 3, 4, 5, 6, and 7. The size of the NPs 

was measured by DLS at different MCR values. It was observed that 

the NPs were not formed when the MCR of the solution was either ≤1 

or ≥7 (as shown in solid red circles Figure 3.5(a)). However, the stable 

Figure 3.5 Variation in ICG PLL NPs size due to change in the MCR 

(a) effect of MCR on particle size by DLS (b) respective FESEM 

images. 



 
68 

 

NPs were formed when the MCR was within the range of 1 to 7. 

Different values of the MCR resulted in the different sizes of ICG PLL 

NPs.  The smallest size of the (~222 nm) particles was obtained when 

the MCR was set to be 2. Further, it was observed that with increasing 

MCR, there is a linear increase in the particle size. For all the different 

values of MCR, the PDI was below 0.35, which shows the 

monodisperse nature of the NPs in aqueous solution. The SEM images 

of the synthesized NPs at different values of MCR are also shown in 

Figure 3.5(b).  

3.2.4 Spectroscopic Characterization 

The optical absorption and fluorescence emission spectra of the free 

ICG and ICG PLL NPs are shown in Figure 3.6. The absorption 

spectrum of the free ICG shows a monomeric peak centered at 782 nm 

and a smaller aggregated vibrionic shoulder peak at 732 nm[38]. A 

Figure 3.6 Biochemical characterizations of free indocyanine green 

(ICG) and poly-l-lysine nanoparticles (PLL NPs). (a) Absorption spectra 

of free ICG and PLL NPs. (b) Absorption spectra curve fitting of free 

ICG with R2 = 99.8 %. (c) Absorption spectra curve fitting of PLL NPs 

with R2 = 99.4 %. (d) Emission spectra of free ICG and PLL NPs. 
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significant reduction and noticeable broadening in the absorption 

spectra are observed for ICG PLL NPs in comparison with the free 

ICG, as shown in Figure 3.6(a). A Gaussian peak fitting was used to 

differentiate the contribution of the monomeric and aggregated forms 

of ICG molecules in its free and nanoencapsulated form (ICG PLL 

NPs), as shown in Figure 3.6(b and c). Further, the peak fitted 

absorption spectrum of ICG PLL NPs in Figure 3.6(c), shows the blue 

and redshift in these two major peaks of the ICG molecules. The red 

and blue shift in the absorption peaks indicates the possible H and J 

aggregation; therefore, this result confirms the encapsulation of the 

ICG in the aggregated form within ICG PLL NPs. Additionally, a 

significant broadening of the monomeric peak by 45 nm is observed in 

the case of ICG PLL NPs in comparison to the free form of the ICG. 

This suggests that along with aggregates, there might be a significant 

number of ICG molecules in the monomeric form as well.  

In summary, the spectral peak shifting, broadening, and 

absorption reduction (as shown in Figure 3.6(a)) indicate the 

encapsulation of ICG molecules might be in the aggregated form 

within ICG PLL NPs. To further confirm the ICG aggregation within 

ICG PLL NPs, the NIR fluorescence emission of the free ICG and the 

ICG PLL NPs were collected and compared. The fluorescence 

emission was recorded from 750 nm to 850 nm after excitation of the 

samples at 680 nm. The fluorescence spectrum of ICG PLL NPs shows 

a decrease in fluorescence emission as compared with the free ICG, as 

shown in Figure 3.6(d). This decrease in fluorescence emission of ICG 

within ICG PLL NPs could be attributed to aggregation-caused 

quenching (ACQ). 

3.2.5 Interaction Study of Salt, ICG, and Polymer 

The constituents of NPs are PLL, ICG, and salts, which form 

nanostructure via self-assembly mechanism. Their ability to interact 

with each other and form complex is the fundamental basis for the 
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fabrication of these NPs (Figure 3.7). We used circular dichroism 

(CD) spectroscopy to probe the influence of salt and ICG in ICG PLL 

NPs fabrications. Figure 3.7(a) shows the CD spectra of aqueous PLL, 

PLL with a salt solution, and ICG PLL NPs. The CD spectrum of PLL 

exhibits one negative band in the ultraviolet region at ~207 nm and one 

positive band at ~218 nm, which confirms its random coil 

conformation.[39] Figure 3.7(a) shows an increase in the band 

intensity at 207 nm and a decrease in band intensity at 218 nm after the 

addition of the salt solution, which corresponds to the interaction of 

PLL molecules with salts. Further, the addition of ICG to the complex 

of PLL and salt increases the intensity of the peak at ~207 nm and a 

reduction of the peak at ~218 nm. These changes in CD spectra 

confirm the formation of the nanostructure, as shown earlier by the 

SEM imaging. This result suggests that ICG actively interacts with 

PLL molecules and contributes to the formation of the stable 

nanostructure.  

To further understand the role of ICG in nanostructure 

formation, in-silico studies were carried out on the PLL and ICG 

complexation. Docking studies are generally carried out to obtain 

detailed information about the binding interactions involved during the 

complexation of the macromolecule with the ligand.[40] There have 

been numerous experimental studies on the self-assembly process for 

the fabrication of NPs. However, there is rarely any report to show the 

in-silico interaction of ligand and macromolecule during the self-

assembly process. In this study, PLL was used as a macromolecule, 

and ICG was used as a ligand for the in-silico studies to show the 

interaction between them during NP formation. This result shows that 

the net negative charge on ICG plays an important role in the self-

assembly process and contributes to the formation of stable ICG PLL 

NPs. The docking results show that there is active binding between 

ICG (ligand) and PLL (macromolecule). Specifically, the binding 

between ICG and PLL is due to the interaction between the lysine 

residues of PLL and sulfonate groups of ICG, as shown in Figure 3.7(c 
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and d). It was found that the docked ligand is close to Lysine and lies 

within the hydrogen bonding distance with the sulfonate group. The 

distance from Lysine residue of PLL to the adjacent oxygen atom of 

ICG lies in the range of 1.8 Å to 2.2 Å, which is calculated by the 

University of California, San Francisco (UCSF) chimera Viewer. Our 

study reveals that the docked ICG makes two hydrogen bonds with 

Lysine, and the bond length was < 2.2 Å, thus suggests a possible 

aggregation of ICG molecule within PLL/salt aggregates. The free 

energy change of binding of the most populated energy cluster 

obtained from blind docking of the PLL using AutoDock is found to be 

-ve 3.28 kcal mol-1 at 298 K. This study confirms the experimental 

findings of CD measurements of ICG-PLL complex formation. This 

also confirms the active participation of the ICG in the formation of 

ICG PLL NPs via the self-assembly method.  

Figure 3.7 Interaction of the PLL and ICG (a) CD spectra of PLL and 

its interaction with salt and ICG (b) 3D structure of PLL and ICG used 

for docking (c) complex of PLL and ICG show its favorable docking 

site (d) docking results with two hydrogen bonds. Where the carbon 

atoms of ICG are grey, oxygen-red, hydrogen white and sulfur–yellow, 

carbon atoms of PLL are cyan, nitrogen is blue, and hydrogen is white. 
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3.2.6 Encapsulation Efficiency 

As seen above, due to the possible aggregation of ICG molecules 

within ICG PLL NPs, these NPs might have higher encapsulation 

efficiency. The encapsulation efficiency of ICG within ICG PLL NPs 

was estimated using Equation 3.2.  

EE % =  

(
The concentration of ICG after disassembly of NPs

The total concentration of ICG used for the synthesis
) ∗ 100….Equation 3.2 

This method provides a molar concentration of entrapped ICG within 

the ICG PLL NPs. For the concentration estimation, ICG PLL NPs 

were dissolved in DMSO, which causes the instant release of the ICG 

from the NPs. Following the addition of DMSO, the ICG content was 

quantified by measuring the absorption at 798 nm in the UV-Vis-NIR 

spectrophotometer. The ICG encapsulation efficiency was found to be 

43.4 ± 5%. 

3.2.7 In-vitro Release Study 

Smart nanostructure, which could release its cargo under a specific 

environment are promising carriers for drug delivery.[41, 42] These 

NPs are designed to deliver the cargo in a specific environment, such 

Figure 3.8 Release mechanism (a) ICG release mechanism (b) 

Absorption spectra showing free ICG specra recovery after incubation 

with proteolytic enzyme. 
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as pH, a proteolytic enzyme, etc. It has been shown that PLL degrades 

in the presence of proteolytic enzymes.[43, 44] The design rationale of 

protease responsive NPs lies in the fact that the proteolytic enzymes 

are present in the lysosomal compartment, which hydrolyze these NPs 

and triggers the release of encapsulated cargo.[39, 45, 46] Similarly, 

the advantage of ICG PLL NPs is that the cargo release will be 

governed by the proteolytic enzymes. Therefore, ICG PLL NPs would 

only release ICG when taken up into the cells via endocytosis and 

trafficked to lysosomes, where proteolytic enzymes degrade ICG PLL 

NPs, as shown in Figure 3.8(a). However, the degradation byproducts 

of these NPs are the fragments of Lysine, salts, and the free form of 

ICG. These byproducts would be utilized by the cells without showing 

any toxic effect, whereas the ICG would be used to stain the cells for 

NIR bioimaging. The recovery of free ICG absorption spectra (Figure 

3.8(b)) after proteolytic enzyme incubation confirms our hypothesis, 

ICG PLL NPs are readily taken up by the cells via endocytosis and get 

degraded in the presence of a proteolytic enzyme in the lysosomes of 

the cells, which subsequently results in the release of the free-form of 

the ICG from NPs. The schematic of a proposed mechanism for the in-

vitro release study of the ICG from ICG PLL NPs is shown in Figure 

Figure 3.9 Release study of the ICG from polypeptide NPs (a) 

pictorial visualization of the pellet after every hour release study (b) 

enzymatic cleavage of the NPs and invitro release stydy in presence of 

trypsin for 24 h. 
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3.9(a). As evident from the emission measurements, the fluorescence 

emission from ICG PLL NPs is significantly lower than the free form 

of the ICG due to ACQ termed as “OFF state.”  However, the 

hydrolysis of ICG PLL NPs via proteolytic enzyme results in the 

fragments of Lysine, salts, and free form of the ICG termed as 

activated ICG “ON state.” The released activated ICG within the cells 

is in monomeric form in comparison with an aggregated form within 

ICG PLL NPs. Thus, the loaded ICG is protected within ICG PLL NPs 

under the physiological and gets delivered to the cells. The in-vitro 

release behavior of the ICG from ICG PLL NPs was studied after the 

incubation of NPs with a proteolytic enzyme, which mimics the 

condition of lysosomes. Under this condition, the ICG release kinetics 

from ICG PLL NPs was observed and is shown in Figure 3.9(b and 

c). Figure 3.9 (b- (i, ii, and iii)) shows the digital picture of the 

Eppendorf tube showing ICG release from ICG PLL NPs when 

incubated with a proteolytic enzyme (trypsin) for 5 minutes, 4 

hours(h), and 24 h respectively. As seen in Figure 3.9(b-i), 5 minutes 

incubation of ICG PLL NPs with proteolytic enzyme results in very 

less release of the ICG. After 4 h of the incubation, more than 90% of 

ICG was released from the NPs, and a tiny NP pellet was observed. 

However, no pellet was observed after 24 h of the incubation. Figure 

3.9(c) shows the ICG release kinetics at different time points. As seen 

in Figure 3.9(c), an initial abrupt release of about 38 % of ICG from 

ICG PLL NPs was observed within 30 minutes of trypsin incubation. 

In the next 4 h, more than 90 % of ICG was released, which confirms 

the enzymatic degradation property of ICG PLL NPs. This enzymatic 

degradation of ICG PLL NPs within cells would help them for a 

controlled release only within cells and would protect ICG while in 

circulation. 

3.2.8 Photo-Stability of Free ICG and ICG PLL NPs 

Free ICG is an unstable chromophore; its optical properties get 

deteriorated when stored or exposed to ambient light. Therefore, for 
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the imaging-based biomedical applications, it is important to protect 

free ICG from the exposure of ambient light. The nanoencapsulation of 

ICG might protect it from unwanted exposure of light and maintain its 

optical properties. The effect of nanoencapsulation on the optical 

stability of ICG was studied and compared with the free ICG. To study 

the effect of light exposure, both the samples were exposed to ambient 

light at room temperature (RT) for 45 h. At each time point, the 

absorbance of ICG PLL NPs and free ICG was measured by 

spectrophotometer. As shown in Figure 3.10(a), ICG PLL NPs are 

more optically stable than free ICG under ambient light exposure at 

RT. Moreover, the free ICG almost lost ~40% of its optical activity 

when exposed to ambient light. This result suggests that the 

nanoencapsulation of free ICG also protects it from optical 

degradation. Similarly, the stability of ICG PLL NPs in the 

physiological environment was studied by incubating them in cell 

culture media for 24 h at 37 ° C. As shown in Figure 3.10(b), ICG 

PLL NPs were 93 % stable in the physiological condition. According 

to the results, ICG PLL NPs are stable nanocarriers for ICG delivery in 

the cells.   

3.2.9 Cellular toxicity and uptake study 

 
Figure 3.10 Photostability of the ICG PLL NPs (a) ICG PLL NPs vs. 

free ICG in ambient light exposure at room temperature (b) ICG PLL 

NPs stability in the presence of culture media. 
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For biomedical applications, the safety of these NPs needs to be 

established. The in-vitro cytotoxicity of ICG PLL NPs was evaluated 

through MTT assay, and cellular imaging was done on HeLa cells, as 

shown in Figure 3.11. The result of cell viability where HeLa cells 

were incubated with different concentrations of ICG PLL NPs for 24 h, 

as shown in Figure 3.11(a). The cells incubated with 2 μL and 5 μL 

concentration of ICG PLL NP show more than 94 % viability at both 

concentrations. However, the cells incubated with 10 μL and 20 μL 

ICG PLL NPs were also found to be safe and showed ~89 % and ~82 

% cellular viability, respectively. A decrease in the cellular viability 

was observed when cells were incubated with 50 μL of ICG PLL NPs; 

these cells showed ~60 % cellular viability. The HeLa cells without 

 

Figure 3.11 Cellular viability and NIR imaging of HeLa cells treated 

with free indocyanine green (ICG) and ICG encapsulated poly-l-lysine 

nanoparticles (PLL NPs). (a) The cellular viability of two different 

concentrations of PLL NPs with positive and negative control. (b) NIR 

imaging of HeLa cells, where (i-iii) were control cells, (iv-vi) free ICG 

treated cells and (vii-xii) were treated with two different 

concentrations of PLL NPs. The DAPI staining nuclei are denoted in 

blue, and ICG emission was denoted in red colour. Scale bar: 20 µm. 

(c) Fluorescence intensity quantification by IMAGE J software. 
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any treatment were used as a positive control. The cells incubated with 

Triton x were used as a negative control and showed less than 10 % 

cell viability. This result suggests that ICG PLL NPs are safe to be 

used as a delivery vehicle, as reported for biomedical applications. 

Following the cell viability study, experiments were carried out to 

study the potential of ICG PLL NPs for drug or contrast agent delivery 

applications. For the bioimaging experiment, HeLa cells were 

incubated with free ICG, two concentrations of ICG PLL NPs, and 

PBS (as control) for 4 h. Results of cellular imaging are shown in 

Figure 3.11(b), where column 1 shows the nuclei of the cells stained 

with DAPI (blue), column 2 shows the NIR fluorescence emission 

from ICG (red) and column 3 shows the merged image of the channel 

1 and 2. The rows represent the following treatment; the first row 

shows control. The second row shows free ICG, and two different 

concentrations of ICG PLL NPs are shown in third and fourth rows, 

respectively. As expected, no fluorescence emission was detected from 

control HeLa cells, and a weak fluorescence is observed from free ICG 

incubated cells. This indicates that free ICG was not readily taken up 

by the cells in 4 h incubation. However, significantly higher 

fluorescence emission was observed from ICG PLL NPs treated cells. 

In addition, if the concentration of ICG PLL NPs is increased, the 

higher fluorescence emission from the cells is observed.  

Cellular imaging results confirm the significantly higher 

fluorescence emission from ICG PLL NPs treated cells than free ICG 

treated cells, which shows the effectiveness of ICG PLL NPs for NIR 

imaging. It is pertinent to note that fluorescence emission is emitted 

from the cytosol of the cells, this is possible due to proteolytic 

degradation of ICG PLL NPs in the lysosomes.  To quantify the 

fluorescence emission from the different treatments, the mean 

fluorescence intensity (MFI) of NIR fluorescence emission from HeLa 

cells was calculated using IMAGE J software (shown in Figure 

3.11(c)). It is important to note that control cells showed no 

fluorescence, and ICG PLL NP treated cells showed the highest NIR 
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fluorescence. This result supports our in-vitro release study, which 

indicates that ICG PLL NPs are efficient biological nanocarrier for 

delivering ICG to the cells for enhanced SNR of NIR imaging.  In 

addition to the delivery of ICG to the cells, the ICG PLL NPs can also 

be used to encapsulate and deliver the therapeutic agents to the 

targeted cells and tissues. 

3.3 Conclusion 

In summary, we have demonstrated the green chemistry-based 

fabrication of ICG encapsulated ICG PLL NPs. The ICG loaded ICG 

PLL NPs were fabricated using a self-assembly method at room 

temperature without using any organic or toxic solvents. The NPs have 

a spherical morphology and high encapsulation efficiency of ICG. 

These NPs are highly monodispersed with positive zeta potential and 

without aggregation. The cellular viability studies showed that more 

than 95 % of ICG PLL NPs treated cells were viable after 24 h of 

incubation. In addition, the release of the cargo was facilitated only 

inside the cells via proteolytic enzymatic degradation. The 

biocompatibility (with zero toxicity) and biodegradability of these NPs 

make them a suitable carrier for drug delivery and the delivery of 

exogenous contrast agents. Therefore, these ICG PLL NPs may serve 

as a potential nanocarrier for various theranostic applications. 
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Nonlinear Optical Properties of ICG for 

Multiphoton Bioimaging 

4.1 Introduction 

Conventionally ICG is being used as a NIR imaging probe due to its 

absorption and emission in the NIR wavelength range. However, it also 

shows absorption in the near UV and visible wavelength range, which 

are not studied and explored for any application. In this chapter, efforts 

have been made to study the unexplored optical characteristics of ICG 

and their possible applications in the field of medicine and biology.  

Over the past few decades, multiphoton fluorescence imaging 

has received much attention due to its several advantages over the NIR 

fluorescence imaging technique.[1] It provides the 3D imaging 

capability of thick tissues (few hundred micrometers) with reduced 

photobleaching and photodamage to the nearby tissues.[2, 3] 

Additionally, it has the potential to detect early-stage cancer.[1] 

Generally, researchers have relied upon the endogenous molecules for 

the contrast in multiphoton imaging. However, it has been shown that 

the inclusion of exogenous imaging probe could further enhance 

imaging contrast, sensitivity, and SNR for multiphoton imaging.[2, 3] 

Development of exogenous multiphoton imaging probe could lead 

researchers to envision a new age of cancer diagnosis by multiphoton 

imaging.  

In this chapter, the nonlinear excitation properties of ICG have 

been studied thoroughly for the first time. It has been observed that 
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apart from the well-known NIR absorption peak at 780 nm ICG shows 

two additional absorption bands at ~400 nm and ~230 nm. There was 

negligible information available in the literature about the origin of 

these absorption bands and their possible applications. Therefore, in 

this thesis, an effort has been made to understand the origin of these 

bands and their potential applications. The results described in this 

thesis suggest that ICG could be used as an exogenous contrast agent 

for multiphoton bioimaging.    

4.2 Optical Characteristics of ICG 

The optical properties of ICG were studied by absorption and 

fluorescence emission spectroscopy. ICG is a polymethine dye 

comprising two aromatic nitrogen-containing heterocycles bridged by 

the heptamethine chain with a molecular weight of 774.96 Da, as 

shown in Figure 4.1(a).[4] It is an amphiphilic molecule with a 

hydrophilic sulfonate group and a lipophilic polycyclic group.  The 

absorption spectra of ICG in aqueous solution from UV to NIR 

wavelength range is shown in Figure 4.1(b). Apart from the well-

known NIR peak, at ~780 nm with a shoulder peak at ~710 nm, ICG 

also exhibits peaks at ~400 nm and ~230 nm. Following is the in-depth 

study of the origin and possible applications of these absorption bands.  

Figure 4.1 Optical characteristics and molecular structure of ICG (a) 

molecular structure of ICG (b) absorption spectrum of free ICG. 
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4.2.1 ICG as a Two-photon (2P) Imaging Probe for 

Multiphoton Bioimaging Application  

4.2.1.1 Absorption Spectroscopy 

In this section, the application and utility of the peak at 400 nm have 

been discussed thoroughly. As shown in Figure 4.2(a), the presence of 

an absorption peak at ~780 nm excites electrons of the ICG from the 

ground (S0) state to the first excited singlet (S1) state (S0 ➔ S1). Apart 

from the NIR absorption band, ICG also shows a significant absorption 

peak at ~393 nm. To obtain more information about these different 

absorption peaks of ICG, peak fitting-based deconvolution was 

performed on the absorption spectrum, as shown in Figure 4.2(a). The 

peak fitting parameters show the presence of three major peaks 

centered at ~780 nm (Full Width at Half Maxima; FWHM: 50 nm, 

Area: 36.69 a.u.), ~710 nm (FWHM: 53 nm, Area: 69.06 a.u.), and 

~393 nm (FWHM: 109.53 nm, Area: 08.14 a.u.) with R2 value 

~99.99%. Therefore, the presence of an absorption peak at ~393 nm 

excites ICG electrons from S0 to the second excited singlet (S2) state 

(S0 ➔ S2), as shown in Figure 4.2(b). 

Figure 4.2 Indocyanine green optical characteristics (a) optical 

absorption spectra (b) Jablonski diagram showing transitions of ICG. 
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4.2.1.2 Fluorescence Spectroscopy 

Further, the ICG fluorescence emission was measured after the 

excitation at the 680 nm and 400 nm. As shown in Figure 4.3(a), a 

well-known emission peak was observed at ~810 nm, when ICG was 

excited by 680 nm. This emission was due to the relaxation of the ICG 

electrons from S1 ➔ S0 state following a 680 nm excitation. The 

emission-excitation matrix (EEM) spectra of free ICG was measured to 

study the finer details that how the fluorescence properties vary with 

excitation wavelength. Figure 4.3(b) shows the EEM of the free ICG 

when excited between 620 nm to 750 nm. The ICG EEM reveals the 

fluorescence intensity as a function of wavelength and shows a 

Figure 4.3 Fluorescence emission (a) emission spectra after excitation 

at 680 nm (b) excitation-emission matrix  (EEM) after excitation in 

the range of 620 to 750 nm (c) emission spectra after excitation at 400 

nm (b) EEM of ICG after excitation in the range of 340 to 365 nm. 

Here S0 is Ground state, S1 and S2 is first and second excited singlet 

state, EM is Emission, and EX is Excitation. 
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maximum excitation ranges between 675 nm - 690 nm with emission 

maxima ranges between 800 nm – 810 nm. Similarly, the fluorescence 

emission was measured after the excitation at 400 nm. Interestingly, 

the emission peak was observed at ~575 nm (Figure 4.3(c)), showing 

ICG dual emission property. This emission was peculiar, which makes 

ICG a molecule that violates the Kasha’s rule. The Kasha’s rule is a 

general principle governing the photophysics of electronically excited 

molecules. It states that fluorescence occurs from the lowest excited 

states with the lowest energy of a given multiplicity.  Although 

Kasha’s rule has general acceptance, however, there are few 

compounds such as azulenes, cyclazine, and aromatic acenes, which 

are an exception to this rule and violate Kasha’s rule by showing 

emission from higher excited energy states simultaneously along with 

lowest excited energy state.[5, 6] Also, a sharp peak at 500 nm is also 

observed, which is the characteristic Raman peak of water molecules. 

Figure 4.4 Jablonski diagram of the ICG transitions. 
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It is pertinent to note that the newly found emission of ICG from ICG 

is due to the transition of electrons from S2 ➔ S0 state. Similarly, the 

EEM for this transition was also measured after excitation from 340 

nm to 440 nm, as shown in Figure 4.3(d). The matrix suggests that 

maximum emission could be achieved after excitation between 340 

nm–365 nm. Briefly, the absorption and emission mechanism of ICG is 

explained in the Jablonski diagram shown in Figure 4.4.  Jablonski 

diagram shows all the possible absorption and relaxation pathways of 

two electronic excitations, i.e., S1 and S2 state, respectively. 

Particularly, if ICG was excited by 680 nm and 400 nm, the transition 

of electrons from S0 to S1 and S2 state occurs, respectively. It is 

important to note that, when ICG molecules are excited by 400 nm, the 

possible emissions can occur either by the direct transition from S2 ➔ 

S0 state or by first undergoing internal conversion (non-radiative) from 

S2 ➔ S1 state followed by fluorescence emission from S1 ➔ S0 state. 

However, a little is known about the S2 excitation and its 

corresponding fluorescence emission by ICG molecules. This peculiar 

direct transition from S2 ➔ S0 state causing fluorescence emission of 

ICG, which is not a typical phenomenon and has never been discussed 

for biomedical applications, especially for two-photon imaging.  

4.2.1.3 Lifetime Measurement 

Figure 4.5 Lifetime measurement of the ICG S2 state. 
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The fluorescence lifetimes of the S2 state was calculated from TCSPC. 

For measurement, a laser of 405 nm was used. The data analysis was 

done using IBH DAS-6 decay analysis software, and the χ2 test was 

used to evaluate the goodness of the fitting. The fluorescence lifetime 

of S2 states of ICG was estimated upon excitation at ~405 nm, which 

was found to be 209 picoseconds (ps), as shown in Figure 4.5. 

4.2.1.4 Nonlinear Spectroscopy 

The aqueous solution of the ICG was irradiated with 790 nm 

wavelength of a femtosecond laser, which is nearly two times of 

visible absorption peak of ICG (~400 nm). The fluorescence emission 

was recorded between 412 – 620 nm. Figure 4.6(a) shows, an 

emission peak at ~556 nm was observed after 790 nm excitation, 

which resembles the emission peak after single-photon S2 ➔ S0 state 

transition. Also, the fluorescence intensity of ICG was plotted as a 

function of the femtosecond laser power, as shown in Figure 4.6(b). 

The log-log plot of fluorescence intensity as a function of the 

femtosecond laser power at 575 nm exhibits a slope of 2.02, indicating 

nonlinear 2P excitation of ICG. The nonlinear excitation was described 

here with the help of the Jablonski diagram showing its working 

mechanism. Following absorption of 790 nm photons, which excites 

Figure 4.6 Nonlinear excitation spectra of aqueous ICG (a) 

fluorescence emission collected from 470 nm to 625 nm after 

multiphoton excitation by 790 nm femtosecond laser (b) fluorescence 

emission intensity versus femtosecond laser power. 



92 
 

electrons of ICG from S0 ➔ S2 state, as shown in Figure 4.7.  This 

excitation is followed by the direct relaxation of the electrons from S2 

➔ S0 state, giving fluorescence emission with the peak intensity at 

~575 nm. However, some of these electrons could also follow S2 ➔ S1 

state transition via internal conversion, but due to instrument 

limitation, the S1 ➔ S0 state transition could not be recorded. 

4.2.1.5 Two-photon Bioimaging 

The presence of an absorption peak of ICG at 400 nm could excite ICG 

to the S2 state, but till now, no report is available, which shows ICG 

application for multiphoton bioimaging. However, Yang Pu et al. 

reported that ICG could be excited S2 state by absorbing two-photons 

of ~800 nm wavelength, but they did not report the direct transition 

from S2 ➔ S0 state causing fluorescence emission.[7, 8] They observed 

fluorescence emission only from S1 ➔ S0 state at ~695 nm after 

population transfer from S2 ➔ S1 state via interconversion (non-

radiative relaxation). For the first time, in this thesis, it has been 

Figure 4.7 Jablonski diagram showing nonlinear excitation working 

mechanism of the ICG. 
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reported that this newly discovered direct S2 ➔ S0 state transition 

property of ICG could be used for a multiphoton biomedical imaging 

application. Figure 4.8 shows single-photon confocal fluorescence 

images of ICG incubated HeLa cells, along with bright field and 

merged images of the cells. According to the results obtained, ICG 

incubated cells display fluorescence emission due to direct emission 

from the S2 state upon excitation by 559 nm wavelength. These results 

confirm direct fluorescence emission from S2 state upon single-photon 

excitation of ICG. Further, the wavelength dependence of the 2P 

excitation property of ICG was studied. 

For the imaging, ICG treated HeLa cells were excited by 

femtosecond laser with varying wavelength from 740 nm to 860 nm. 

Figure 4.9 shows the fluorescence images (due to direct S2 state 

emission) of HeLa cells upon 2P excitation at different wavelengths 

from 740 nm to 860 nm. Emitted fluorescence due to direct S2 ➔ S0 

state transition was collected in the emission window from 575 to 630 

nm, where non-descanned detectors (NDD) were used to detect the 

emission. As observed from images, the 790 nm wavelength excitation 

Figure 4.8 Confocal images of HeLa cells incubated with ICG 

showing emission while excited at 559 nm. (scale bar = 10 µm).  
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gives the most intense emission, and this wavelength is approximately 

double of the ~393 nm (the peak wavelength of the absorption band). 

In addition, the line intensity profile of the 2P images was measured, as 

shown in Figure 4.9(b). Figure 4.9(c) shows the direct S2 state 

fluorescence intensity variation of HeLa cells at different excitation 

wavelengths calculated using IMAGE J, suggesting that 790 nm 

excitation shows the maximum emission from the cells. Overall, our 

result suggests that ICG gets excited to the S2 state after simultaneous 

absorption of the 2P of ~790 nm wavelength. This property of ICG 

would further help in probing deeply buried inhomogeneity in the 

biological tissues, thereby making a revolutionary change in the 2P 

fluorescence microscopy. Conclusively, in this section, the biomedical 

imaging application of unexplored direct fluorescence emission from 

S2 ➔ S0 state transition at ~572 nm following 2P absorption has been 

demonstrated for the first-ever. This work shows that the aqueous ICG 

 

Figure 4.9 Two-photon (2P) imaging of ICG incubated HeLa (a) 

wavelength dependence excitation from 740 nm to 860 nm; where the 

scale bar is 10 µm. (b) line intensity of 2P image of HeLa cell (c) 

Fluorescence intensity versus wavelength plot. 
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can proficiently emit fluorescence from S2 state following 2P 

excitation, which is maximum with the excitation at wavelength ~790 

nm. This interesting optical property of ICG makes it a biocompatible 

exogenous contrast agent for 2PFM in clinical and preclinical 

applications.  

 4.2.2 ICG as a Three-photon (3P) Imaging Probe for 

Multiphoton Bioimaging Application  

4.2.2.1 Absorption Spectroscopy 

As discussed earlier that apart from the well-known NIR excitation 

peak at 780 nm, ICG also has peaked at 400 nm and 230 nm. The 

application and origin of the visible wavelength peak have been 

discussed in the previous section. Here, for the first time, the 

application and origin of an unexplored peak at 230 nm will be 

discussed in this section. For better understanding, each component of 

the ICG has been highlighted in Figure 4.10(a). The molecular 

structure of the ICG is a combination of the donor (D) – acceptor (A) 

system, where D is an electron donor (N+) and A, is electron acceptor 

(N) in polymethine -electron system.[9] In addition, at the end of the 

N atoms, two indolenine groups are present. 

The measured absorption spectrum of ICG is shown in Figure 

4.10(b), where the whole absorption spectrum is divided into three 

 

Figure 4.10 ICG (a) molecular structure of the ICG (b) absorption 

spectrum. 
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different regions. The major absorption peak of ICG at ~780 nm is 

attributed to the transition of electrons between S0 ➔ S1 states and is 

due to the transfer of polymethine chain 𝜋-electrons between two 

nitrogen atoms (shaded region by light pink).[9] In addition to this 

transition, the absorption at ~400 nm excited ICG electrons to the S0 

➔ S2 state. Moreover, the presence of higher energy level transitions is 

also observed, but their origin has never been investigated. At higher 

energy, the absorption spectrum shows peak maxima at ~230 nm, 

which is, therefore, excite ICG electrons from S0 ➔ S3 states. 

Moreover, due to the presence of this peak at ~230, ICG could also be 

used as a UV active biocompatible chromophore for various 

applications. 

4.2.2.2 Fluorescence Emission and Lifetime 

Measurement 

The fluorescence emission spectra of ICG were collected upon 

Figure 4.11 ICG spectroscopic studies (a) fluorescence emission (b) 

Jablonski diagram (c) EEM contour plot for S3 state (d) TCSPC 

measurement. 
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excitation at ~280 nm, which gives rise to a distinct fluorescence 

emission peak, as shown in Figure 4.11(a). Along with the emission at 

~810 nm and ~575 nm after respective excitation, when ICG gives 

emission at 380 nm after excitation at ~280 nm. Figure 4.11(b) shows 

that the excitation at 280 nm results in the transition of the electrons 

from S0 ➔ S3 state. Following excitation ICG gives emission at 380 

nm is due to the transition of electrons from S3 ➔ S0 state. 

Additionally, the EEM contour plots were also recorded to find all 

possible combinations of excitation and emission wavelengths for all 

possible transitions of the ICG for S3 state. As shown in Figure 

4.11(c),  the S3 state transition of ICG has excitation and emission 

maxima at ~300/380 nm, respectively. The fluorescence lifetimes of 

the S3 state transition was calculated from TCSPC. For lifetime 

measurement, a picosecond light-emitting diode (LED) of 279 nm was 

used.  

  The data analysis was done using IBH DAS-6 decay analysis 

software, and the χ2 test was used to evaluate the goodness of the 

fitting. The fluorescence lifetime of the S3 state was found to be 5.7 

Figure 4.12 The synchronous scan spectrum of the ICG and its 

components (a) synchronous scan spectrum of the ICG inset: zoom of 

the spectra from 500 to 850 nm. (b, and c) showing plausible 

components responsible for the emission in the ICG molecules. 
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nanoseconds upon 279 nm excitation, as shown in Figure 4.11(d). For 

these lifetime measurements, the fitting parameter χ2 was ≤ 1.2. This 

optical property of ICG could be used in various medical, optical, and 

electronics applications.[10–13] 

To further understand the origin of different emissions from 

ICG, the synchronous fluorescence scan was performed. The 

synchronous fluorescence scan gives an idea about the number of 

components present in the molecule, which are responsible for the 

multicolor emissions. As shown in Figure 4.12, four major peaks were 

reported with a central peak at 380 nm with a shoulder peak at ~420 

nm, ~600 nm, ~710 nm, and 800 nm. The peak at ~380 could be due to 

the presence of two indolenine groups at both ends of the ICG 

molecular structure (blue shaded region, as shown in Figure 

4.12(b)).[14, 15] Further, the shoulder peak at 420 nm is due to 

vibrionic relaxation from S3 ➔ S0 state. Moreover, the peak at ~600 

nm, is possibly due to the movement of electrons in the green shaded 

region as shown in Figure 4.12(c) and the peaks at 710 nm and 800 

nm is due to the movement of electrons of polymethine chain 𝜋-

electrons between two nitrogen atoms shaded in Figure S1(d). This 

result confirms the presence of three major components in the ICG, 

which are mainly responsible for multicolor emission. This result 

confirms the origin of the emission due to the presence of three 

different components in the ICG molecule and from different excited 

singlet states.  

4.2.2.3 Nonlinear Fluorescence Spectroscopy 

The nonlinear excitation measurement of the ICG molecules has been 

achieved by a femtosecond laser. The aqueous solution of the ICG was 

irradiated with 790 nm wavelength of a femtosecond laser, which is 

nearly three times of UV absorption peak of ICG (~260 nm). 

Following absorption of ~790 nm photons, ICG gives emission at ~412 

nm, as shown in Figure 4.13(a). This emission range resembles with 

the emission coming after the transitions of ICG electrons from S3 ➔ 
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S0 state suggesting the nonlinear process has occurred. Furthermore, 

the fluorescence intensity of ICG was also plotted as a function of the 

femtosecond laser power. Figure 4.13(b) shows the log-log plots of 

fluorescence intensity as a function of the femtosecond laser power at 

412 nm. The log-log plot of the peak at ~412 nm exhibits slope 2.5, 

indicating nonlinear 3P excitation of the ICG.  

4.2.2.4 ICG as a 3P Bioimaging Agent  

To the best of our knowledge, the emission at 380 nm of ICG has 

never been reported, nor utilized for any application in the past. Here, 

ICG nonlinear excitation from S0 ➔ S3 state and its direct emission 

from S3 ➔ S0 state has been used for the 3P bioimaging probe for 

diagnosis. The 3P excitation to the S3 state has never been reported and 

is expected to achieve a higher spatial resolution than ICG mediated 2P 

bioimaging.[16] For imaging, cervical cancer (HeLa) cells were used. 

ICG treated HeLa cells were excited by a range of wavelengths from 

700 – 900 nm femtosecond laser and the fluorescence images were 

collected in the window of 420 - 460 nm corresponding to S3 ➔ S0 

transition (3P). The wavelength-dependent fluorescence emission from 

HeLa cells was collected for 3P excitation. Figure 4.14(a-i) shows the 

Figure 4.13 Multiphoton excitation spectra of aqueous ICG (a) 

fluorescence emission collected from 395 nm to 430 nm after 790 nm 

excitation by femtosecond laser (b) fluorescence emission intensity 

versus femtosecond laser power. 



100 
 

bright field image of the HeLa cells, and Figure 4.14(a (ii-xviii)) 

shows fluorescence emission images after the respective excitation. 

The fluorescence intensity versus laser wavelength plot is shown in 

Figure 4.14(b), which indicates that at 790 nm, excitation highest 

fluorescence emission is collected. These findings give an insight into 

the nonlinear excitation property of ICG, which makes it a 

biocompatible FDA approved exogenous contrast agent for 3P 

bioimaging. 

4.3 Conclusion 

Conclusively, this chapter discussed the newly found absorption 

properties of ICG. The absorption bands at ~400 nm and ~230 nm are 

due to the transition of electrons from S0 state to S2 and S3 states, 

respectively. In addition to single-photon excitation to S2 and S3 states, 

electrons can also be excited to these higher excited states in a 

nonlinear fashion. Additionally, it has been demonstrated that the 

application of ICG as a novel S2 state mediated 2P bioimaging, and S3 

Figure 4.14 Multiphoton imaging of the HeLa cells (a-i) bright field 

of hela cells (a (ii-xviii) shows the emission of ICG when excited by 

absorption of 3P from femtosecond laser (b) the fluorescence intensity 

versus wavelength of excitation. 
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state mediated 3P excitation probe for the multiphoton bioimaging. 

These results could help in reducing the photobleaching and photon-

induced toxicity to the cells while probing the deeper inhomogeneity 

with superior SNR. We believe that these newly identified optical 

properties of ICG would open doors to new possibilities to utilize ICG 

in various fields. 
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Effect of Nanoencapsulation of ICG on Multiphoton 

Bioimaging 

5.1 Introduction 

As shown in chapter 3, the nanoencapsulation of ICG overcomes the 

limitations of free ICG for NIR bioimaging. The ICG PLL NPs were 

found to be safe for the cells. However, they had a mean diameter of ~225 

nm. It is generally believed that sub 100 nm diameter particles have a 

higher probability of targeting the cancerous tissues via passive targeting 

mechanism exploiting the enhanced permeability and retention (EPR) 

effect. Hence, in this chapter, the fabrication of arginine based 

biocompatible sub 100 nm diameter nanoparticles for the encapsulation of 

ICG is introduced.  

Poly-l-arginine (PLA) is a homopeptide of L-arginine, which has been 

used in medical applications for many centuries due to its cellular 

penetrating properties.[1–7] It is a semi-essential amino-acid with various 

roles in cell metabolism, such as wound healing, protein synthesis, and 

shows antimicrobial and antitumor activity.[8–13] In particular, owing to 

the favourable properties of arginine, NPs comprised of PLA gained 

considerable interest in the delivery of small molecules. [14–16] ICG PLA 

NPs are expected to improve the optical and aqueous stability of ICG and 

cellular delivery. 

The fabrication of ICG loaded PLA NPs (ICG PLA NPs) its effect on 

optical properties and multiphoton imaging ability are studied in this 
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chapter. The fabrication of these NPs was done via a similar two-step self-

assembly method described earlier in chapter 3. The in-vitro cellular study 

suggests that both free and nanoencapsulated ICG get endocytosed within 

the cells. In comparison with free ICG, ICG PLA NPs has been shown 

significant enhancement in cellular delivery. Additionally, 

nanoencapsulated ICG treated cells show enhanced contrast for 2P 

bioimaging in comparison with free ICG. In conclusion, biocompatible 

and biodegradable ICG PLA NPs could be used for improved 2P 

bioimaging. 

5.2 Result and Discussions  

Effect of ICG nanoencapsulation on 2P fluorescence bioimaging is studied 

and discussed in this chapter. For this purpose, we have used PLA, a 

biocompatible and biodegradable cationic peptide, to encapsulate ICG.  

5.2.1 Fabrication of the ICG PLA NPs 

The ICG PLA NPs were fabricated through a simple two-step self-

assembly process in an aqueous solution without any organic solvent. A 

complete green chemistry-based fabrication process was used for this 

synthesis. The schematic representation of the fabrication process is 

illustrated in Figure 5.1. For fabrication, an aqueous solution of PLA was 

mixed with the salt solution followed by the addition of free ICG, and this 

results in the initiation of the self-assembly process and the fabrication of 

Figure 5.1 Schematic representation of the ICG PLA NPs fabrication. 
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ICG PLA NPs. Briefly, 10 µL of PLA solution (2 mg/mL) was gently 

mixed with the 4 µL of the EDTA salts (0.1 M) for 20 seconds. 

Immediately after the mixing, the clear solution turns turbid, which 

indicates the initiation of the nucleation process. Followed by the addition 

of the 250 μL of the ICG (645 µM) to the colloidal solution. Then the 1 

mL of DI water was added to the suspension and aged for 1 hour to form 

ICG PLA NPs. The systematic mixing of these precursors results in the 

fabrication of the ICG PLA NPs. 

5.2.2 Biophysical Characterization of the ICG PLA NPs  

The morphological characterization of these NPs was done via FESEM 

and DLS, as shown in Figure 5.2(a). Diameter distribution of the 

lyophilized ICG PLA NPs, as determined by analysis of FESEM images, 

is shown in Figure 5.2(b). The average particle diameter was ~61 ± 20 nm 

having a spherical shape. Similarly, the DLS study shows that ICG PLA 

NPs have a mean hydrodynamic diameter of ~154 ± 20 nm shown in 

Figure 5.3(a). The polydispersity index (PDI) was found to be 0.23, 

which suggests that these NPs were monodisperse in aqueous solution. 

The difference between the mean diameter in the dry state (SEM 

measurements) and aqueous state (DLS measurements) could be due to the 

Figure 5.2 Characterization of the ICG PLA NPs (a) FESEM images; 

Inset: a pellet of the NPs (b) diameter frequency distribution of the 

particles. 
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shrinkage of NPs in the dry state. Additionally, the zeta (ζ) potential of 

these NPs was found to be -41.64 mV(Figure 5.3(b)), which shows the 

stability of the NPs in the aqueous solution, and ICG PLA NPs will not 

aggregate in the aqueous environment.  

5.2.3 Spectroscopic Characterization of the Free ICG and ICG PLA 

NPs 

The effect of nanoencapsulation of the ICG on its optical properties is 

studied and shown in Figure 5.4. The free ICG has two major absorption 

peaks at 780 nm with a shoulder peak at 710 nm and 400 nm, respectively, 

as shown in Figure 5.4(a). All possible excitation and emission transition 

were shown using the Jablonski diagram depicting the possible excitation 

and emission from the ground to higher excited states and vice versa. The 

presence of an absorption peak at 780 nm and 400 nm leads to the 

transition of ICG electrons from S0 ➔ S1 and S0 ➔ S2 states, respectively. 

Following excitation, ICG releases its energy in the form of the 

fluorescence emission via the transition of electrons from S1 ➔ S0 (800 

nm) and S2 ➔ S0 (565 nm) state, as shown in the Jablonski diagram. Due 

to the S2 ➔ S0 state transition, ICG could be one of the molecules that 

violate Kasha’s rule. 

Figure 5.3 Characterization of the ICG PLA NPs (a) hydrodynamic 

diameter of the NPs (b) zeta potential of the NPs.  
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In comparison with the absorption spectrum of free ICG, the 

nanoencapsulated ICG showed significant suppression of the 780 nm peak 

with a line broadening without any shift in peak position, as shown in 

Figure 5.4(a). However, a minor increase in the absorption at 400 nm is 

observed in ICG PLA NPs, which could be highly advantageous for 2P 

excitation to the S2 state. Similarly, the fluorescence emission of free and 

nanoencapsulated ICG is measured. ICG emits at 800 nm after 680 nm 

excitation, as shown in Figure 5.5(a), this transition is attributed to the 

transition of electrons from S1 ➔ S0 state. In comparison to the free ICG, 

the nanoencapsulated ICG shows a significant reduction in the 

Figure 5.5 Spectroscopic analysis of the free ICG and ICG PLA NPs (a) 

emission spectra after 680 nm excitation (b) emission spectra after 420 nm 

excitation. 

Figure 5.4 Spectroscopic analysis of the free ICG and ICG PLA NPs (a) 

Absorption spectra (b) Jablonski diagram showing all possible transitions. 
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fluorescence emission peak at 800 nm without any peak shift. Also, when 

ICG was excited by 420 nm it gives emission at ~565 nm as shown in 

Figure 5.5(b), this transition is due to the transition of electrons from S2 

➔ S0 state. In comparison with free ICG, the nanoencapsulated ICG 

shows a reduction in emission peak intensity with a shift of the peak 

towards red wavelength, as shown in Figure 5.5(b). It has been shown in 

the past that ICG emission gets quenched when ICG is inbounded state, 

[17] due to energy resonance transfer among the bound fluorochromes. 

Similarly, here both the emission from ICG gets quenched during 

nanoencapsulation of the ICG in the cationic polymer. However, these 

spectroscopic results suggest that the fluorescence emission due to S2 ➔ 

S0 state transition does not get much affected after the nanoencapsulation 

of ICG. Therefore, it might be used as an exogenous contrast agent in 2P 

bioimaging. 

To further confirm the findings of steady-state fluorescence 

emission, the time-resolved fluorescence measurements on free and 

nanoencapsulated ICG were carried out. The fluorescence lifetime 

measurements of the free and nanoencapsulated ICG were measured upon 

405 nm excitation. The fluorescence lifetimes of free and 

nanoencapsulated ICG for S2 state were found to be 209.4 and 92 ps, 

Figure 5.6 Time-resolved studies and CD analysis of the free ICG and 

ICG PLA NPs (a) TCSPC of the free ICG and ICG PLA NPs at 575 nm 

upon 405 nm excitation (b) CD spectra of the PLA, PLA/salt and ICG 

PLA NPs. 
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respectively, as shown in Figure 5.6(a). These results further confirm the 

quenching of the fluorescence emission of ICG in nanoencapsulated form. 

The fitting parameter χ2 was ≤ 1.3 for all the fitting. To further understand 

the role of ICG during self-assembly of the NPs, CD measurements were 

carried out. Figure 5.6(b) shows the CD spectra of aqueous PLA, PLA 

and salt aggregates, and ICG PLA NPs. The CD spectra of an aqueous 

solution of PLA exhibits one negative peak at ~ 204 nm and one positive 

peak at ~217 nm. This suggests the presence of a random structure for the 

aqueous solution of PLA homopeptide, as shown in Figure 5.6(b). 

However, the PLA CD spectral alterations due to PLA/salt aggregation is 

reflected by the changes in the intrinsic CD spectrum of PLA. The peak at 

~ 204 nm and ~217 nm got suppress due to the interaction of PLA with 

salt. Similarly, the PLA/salt aggregates have a small magnitude of two 

negative peaks at ~212 nm and ~236 nm, which further got suppressed 

after the addition of ICG. This suggests the complexation of PLA 

homopeptide largely depends on the amino acid residues, which function 

as the binding ligands for a small molecule to encapsulate. Initially, the 

complexation of the PLA is done with the EDTA salt at a fixed molar 

charge ratio (MCR=9), which results in the complexation between two 

guanidinium groups and salt. Further, the addition of the ICG in this 

reaction resulted in the formation of the ICG PLA NPs, which provides 

more stability to this self-assembled structure, as shown by the red curve 

in Figure 5.6(b). The CD result strongly suggests that the two-

guanidinium groups of PLA, act as a ligand, which makes a complex with 

salt and dye to form stable NPs.  

5.2.4 ICG Release, Biosafety and Stability Study of ICG PLA NPs 

The nanoencapsulated ICG was shielded from any external factors, which 

deteriorate its optical properties in free form. However, efficient delivery 

of ICG to the cellular level is required for improved multiphoton imaging. 

Here, ICG was nanoencapsulated within salt cross-linked PLA NPs via the 
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self-assembly method. However, in the nanoencapsulated state, ICG 

emission was quenched due to energy resonance transfer among the bound 

fluorochromes and could be regained after enzymatically degradation of 

the polymer, as shown in Figure 5.7(a and b). The in-vitro ICG release 

study was done in the presence of a proteolytic enzyme at 37 ℃ using a 

dispersion method. [18] The sample was prepared and aliquoted in 5 tubes 

and then centrifuged to collect the NPs. A commonly used protease 

enzyme trypsin was used to study the ICG release from ICG PLA NPs. 

The freshly prepared NPs were incubated 1 mL 0f 250 μg/mL of trypsin at 

37 ℃ for 24 hours. At different time intervals, the samples were 

centrifuged, and the absorbance of the supernatant was measured at 778 

Figure 5.7 Release and cellular toxicity of the ICG PLA NPs. (a) 

schematic showing the principle of the ICG PLA NPs as a protease 

responsive NPs (b) mechanism of the fluorescence activation (c) in-vitro 

release study over 24 hours (d) cellular viability of the ICG PLA NPs 

over the range. 
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nm using a UV-Vis-NIR spectrophotometer to quantify ICG release. The 

NPs were then placed back into the same incubation conditions. The 

release of ICG form ICG PLA NPs was monitored for over 24 hours. The 

amount of released ICG was calculated using Equation 5.1. 

Cumulative % release ={
Absorption of supernatant after every time point

The total concentration of ICG used for the synthesis
} 

*100.........................................................................................Equation 5.1 

The amount of released ICG was determined by measuring the intensity of 

the absorbance (778 nm) using free ICG as the standard. The ICG release 

experiments were performed in triplicate, and the results presented are the 

average data over 24 hours. The instant release of 43 % of ICG from ICG 

PLA NPs was observed upon 30 minutes of incubation. Therefore, these 

NPs are protease responsive, where fluorescence signal increased due to 

cleavage of PLA homopeptide on carboxy-terminal in the presence of the 

protease as depicted in Figure 5.7(b). This results in small fragments of 

amino-acid residues,[19] salt, and free ICG. However, within 5 hours of 

trypsin incubation, nearly 94 % of ICG was released following 98 % 

released after 24 hours of incubation, as shown in Figure 5.7(c). To 

explore the biomedical application of the nanoencapsulated ICG, the 

cellular viability of these NPs was tested using MTT assay over the range 

of concentration. As shown in Figure 5.7(d), no significant cytotoxicity 

was observed even at a very high concentration of these NPs. Hence, this 

indicates that these NPs are safe and biocompatible nanocarrier for 

biomedical applications.  

5.2.5 Stability Assessment of the Nanoencapsulated and Free ICG 

The optical stability of the nanoencapsulated ICG is a vital parameter for 

bioimaging applications. Here, the optical stability of the free and 

encapsulated ICG in physiological conditions was monitored. It is well 

known that the optical properties of ICG are dependent on temperature, 
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time, and long-term optical exposure. Due to these factors, optical 

properties degrade gradually. The effect of optical exposure on the optical 

properties of free and nanoencapsulated ICG over a period of time at 

physiological temperature was monitored. The free ICG and ICG PLA 

NPs were incubated at 37 °C for 72 hours in ambient light exposure. As 

shown in Figure 5.8(a), the optical property of ICG PLA NPs was found 

to be significantly more stable in comparison with the free ICG. The 

optical property of free ICG started degrading after 30 minutes of the 

incubation; on the other hand, ICG PLA NPs were stable up to 72 hours, 

as shown in Figure 5.8(a). The stability of ICG PLA NPs in the 

physiological environment was studied by incubating them in cell culture 

media for 24 hours at 37 ℃. As shown in Figure 5.8(b), ICG PLA NPs 

were 95 % stable in the physiological condition. According to the results, 

ICG PLA NPs are stable nanocarriers for ICG delivery in the cells. 

5.2.6 Encapsulation Efficiency 

To determine the ICG loading efficiency, a batch of ICG-PLA NPs were 

synthesized and collected via centrifugation. The collected pellet was 

exposed to dimethyl sulfoxide (DMSO) for the complete disruption of the 

Figure 5.8 Stability of the ICG PLA NPs (a) optical stability at 37 ℃ of 

ICG PLA NPs and free ICG (b) ICG PLA NPs media stability over 24 

hours.  
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NPs, resulting in release free ICG. The encapsulation efficiency of the 

ICG within ICG PLA NPs was calculated using Equation 5.2.  

EE = (
The concentration of ICG after disassembly of NPs

The total concentration of ICG used for the synthesis
) ∗ 100.....Equation 5.2 

For calculation, the absorption spectra of disintegrated ICG-PLA NPs 

were measured at 792 nm as ICG in DMSO shows a peak at 792 nm due 

to the solvent effect. Further, the ICG concentration within these NPS was 

calculated by the calibration curve. A total of 56 % of ICG was loaded in 

one batch of the ICG PLA NPs. 

5.2.7 Multiphoton Imaging 

The multiphoton imaging ability of the nanoencapsulated ICG was studied 

after staining the HeLa cells. Previously, our group had reported the 

nonlinear excitation of free ICG to the S2 state, followed by its direct 

relaxation to S0 state, causing an emission and used for the multiphoton 

imaging applications.[20] However, the use of the free form of ICG has 

limitations such as poor photostability and cellular uptake. Herein, ICG 

PLA NPs were used to overcome the limitations of free ICG, and its 

nonlinear excitation to the S2 state followed by emission was reported for 

2P bioimaging. These ICG PLA NPs are promising vectors for 

intracellular drug delivery as they can be taken up by the cells via 

endocytosis.[21] Figure 5.9(a) shows the bright field, and corresponding 

2P images of the HeLa cells treated with free ICG and ICG PLA NPs, 

cells without any treatment were considered as a negative control. The 

images collected here for 2P ICG emission were due to S2 ➔ S0 state 

transition is shown in the first, and second respectively. However, the first, 

second, and third rows show the control, free ICG, and ICG PLA NPs 

treated cells, respectively. As clearly evident by Figure 5.9(a), the ICG 

PLA NPs treated cells showed significantly higher emission in comparison 

with free ICG treated cells. These results (Figure 5.9(a)) suggest that ICG 

PLA NPs are efficiently taken up by the cells in comparison with free 

ICG. This also indicates that the PLA NPs are highly efficient to deliver 
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ICG to the cells, and it could be attributed to PLA, which is a known cell-

penetrating peptide. Furthermore, for better quantification of the 2P (S2 ➔ 

S0 state) emission, integral fluorescence intensity was calculated using 

ImageJ and plotted, as shown in Figure 5.9(b). According to the results, 

the ICG PLA NPs showed considerably higher multiphoton emission than 

free ICG multiphoton images and corresponding 1P images. Further, 

nanoencapsulated ICG has nearly five-fold increases in its fluorescence 

emission in comparison to free ICG for 2P. For bioimaging applications, 

the biosafety of these nanoparticles was also assessed using cellular 

viability assay. For cell viability experiments, untreated cells, bare PLA 

nanoparticle-treated cells, and ICG PLA NPs treated cells were studied. 

As seen in Figure 5.9 (b), the bare PLA nanoparticle treated, and ICG 

PLA NPs treated cells show excellent biosafety with more than 98 % 

cellular viability. These results collectively confirmed the effectiveness of 

Figure 5.9 Cellular uptake, localization and viability studies (a) Single 

photon (1P) and 2P imaging (b) cellular viability of the bare and ICG 

PLA NPs used for the experiment (c) Integral intensity of the 1P and 2P 

imaging. Where, I.I is integral intensity. 
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ICG PLA NPs as a biocompatible and biodegradable exogenous contrast 

agent for a 2P cellular imaging application. 

5.3 Conclusion 

We have successfully encapsulated ICG within  PLA based nanoparticles, 

which were used to study the effect of nanoencapsulation on the two-

photon imaging ability of ICG. The nanoparticle synthesis was performed 

by a simple two-step self-assembly process in an aqueous environment 

without using any organic solvent. It was found that ICG PLA NPs exhibit 

excellent biosafety and does not show any toxicity to the cells at tested 

concentrations. The ICG PLA NPs show surprisingly high cellular uptake 

for two-photon bioimaging. These NPs can be used as a highly efficient 

and biologically safe exogenous multiphoton contrast agent with 

remarkably improved photostability in comparison to free ICG.  
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Conclusion and Scope of Future Work 

6.1 Conclusion 

Nanotechnology in the medical field is going to play an important role 

in the diagnosis and treatment of various diseases. The present thesis 

provides an in-depth and systematic study of nanoencapsulation of the 

ICG within essential amino-acids based homopolymers. In particular, 

PLL, which is a cationic homopolymer of lysine, has been used to 

reformulate ICG in ICG PLL NPs. The results suggested that the 

reformulated ICG PLL NPs were more optically stable, biologically 

safe, and effectively taken up by the cells in comparison with the free 

form of ICG. Thus the ICG PLL NPs could be used as an exogenous 

contrast agent for NIR bioimaging. 

It must be noted here that ICG, which is the only U. S. FDA 

approved exogenous contrast agent, has been explored only for its NIR 

excitation and emission in the literature. Most importantly, in this 

thesis, for the first time, an effort has been dedicated towards 

unraveling several exciting properties of ICG, i.e., violation of Kasha’s 

rule, nonlinear excitation to higher-lying excited states and utilization 

of ICG as an exogenous contrast agent for multiphoton bioimaging. 

Apart from a well-known NIR absorption peak at ~780 nm, ICG also 

shows two distinct peaks in the visible and near UV wavelength range. 

The presence of an absorption peak at ~400 nm excites ICG electrons 

to the S0 ➔ S2 state. Followed by this excitation, ICG gives emission 

at 575 nm during relaxation from S2 ➔ S0 state. 

Moreover, in this thesis, the nonlinear excitation of ICG 
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electrons to the S2 state has been shown and utilized for the S2 state 

mediated 2P bioimaging. In addition to that, the presence of the 

absorption peak in the near UV range at ~230 nm has also been 

investigated, which excites ICG electrons from S0 ➔ S3 state. 

Followed by this excitation, ICG gives emission at ~380 nm due to the 

direct transition of electrons from S3 ➔ S0 state.  The nonlinear 

excitation to the S3 state has also been shown and utilized for the S3 

state mediated 3P bioimaging. Thus the measurement of absorption of 

ICG  near the whole optical range from near UV region to NIR region 

unraveled several new exciting properties,  which could be promising 

for multiphoton imaging.  

Despite its application, ICG has several limitations, which 

might affect its newly found nonlinear optical properties also. These 

shortcomings might be addressed by nanoencapsulation. So, in order to 

utilize ICG as a multiphoton exogenous contrast agent, it has been 

nanoencapsulated within PLA NPs. The effect of nanoencapsulation of 

the ICG on the optical properties of higher excited states and its 

application for multiphoton imaging was studied. Results suggest that 

the significant enhancement of the multiphoton emission was observed 

from the ICG PLA NPs treated cells in comparison with free ICG 

treated cells. Finally, it was established that in addition to the NIR 

imaging application, ICG could also be used as an exogenous contrast 

agent for preclinical and clinical multiphoton imaging applications for 

the disease diagnosis. However, the major shortcomings of ICG could 

be addressed by the nanoencapsulation within polypeptides based 

nanoparticles, and those were fabricated using green chemistry 

approach. 

6.2 Future Prospects  

The carried out research work presented in this thesis has highlighted 

the nonlinear optical properties of ICG and the importance of 

nanoencapsulated ICG for NIR and multiphoton bioimaging. This 

work shows the future potential of ICG to be utilized as a first U. S. 
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FDA approved an exogenous contrast agent for multiphoton 

bioimaging. Especially, ICG mediated preclinical and clinical in-vivo 

multiphoton imaging can be performed immediately. Another possible 

direction is the development of the surface-modified polypeptide based 

nanoparticles for targeted imaging and therapy of the diseased 

cells/tissue in-vivo, which could further improve the contrast and SNR. 

Also, this work can be a foundation for various research where 

newly found optical properties of ICG can be used. Several future 

studies may be extended to study the optoelectronic applications of 

ICG. One of the vital applications in optoelectronics is white-light 

(WL) emission, which has been seen in the case of ICG. As shown in 

Figure 6.2, when ICG is excited using a He-Cd laser wavelength of 

325 nm, it shows the WL emission. For this experiment, a 

photoluminescence (PL) system (Dongwoo Opteron) was used. The 

ICG electrons, which got excited to S3 states by absorbing 325 nm 

laser light, release its energy in the form of emission during S3 ➔ S0 

state transition. However, they might undergo non-radiative relaxation 

via internal conversion between S3 ➔ S2  and S2 ➔ S1  states and 

further gives emission due to a direct transition from S2 ➔ S0 and S1 

➔ S0 state. Figure 6.2(a) shows the photoluminescence emission 

spectrum exhibiting two major broad emission bands in visible 

Figure 6.1 Application of ICG as an exogenous contrast agent for 

multiphoton bioimaging. 
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wavelength range with peaks at ~380 and ~575 nm, respectively, 

which results in the production of WL. The commission international 

del’ Elcairage (CIE) chromaticity coordinates of ICG were found to be 

(0.31, 0.33), which are very close to the perfect WL emission 

coordinates, i.e., (0.33, 0.33) as shown in Figure 6.2(b). The inset of 

Figure 6.2(b) shows the colored digital image of the bright WL 

emission from the aqueous solution of the ICG upon excitation at 325 

nm. This result suggests that the ICG could also be used as a 

biocompatible WL emitting molecule in the WL emitting devices such 

as light-emitting electrochemical cells.[1, 2] 

 

 

 

 

 

 

Figure 6.2 WL emission from the aqueous solution of ICG (a) PL 

spectra collected from 330 nm to 650 nm after excitation by 325 nm 

with He-Cd laser, the inset shows the mechanism via Jablonski 

diagram. (b) chromaticity plot coordinates of ICG in aqueous solution 

(inset: digital image of ICG in cuvette when excited by 325 nm laser). 

 



125 
 

6.3 References 

1.  Jenatsch S, Wang L, Bulloni M, et al. (2016) Doping Evolution 

and Junction Formation in Stacked Cyanine Dye Light-Emitting 

Electrochemical Cells. ACS Appl Mater Interfaces 8:6554–

6562. https://doi.org/10.1021/acsami.5b12055 

2.  Pertegás A, Tordera D, Serrano-Pérez JJ, et al. (2013) Light-

emitting electrochemical cells using cyanine dyes as the active 

components. J Am Chem Soc 135:18008–18011. 

https://doi.org/10.1021/ja407515w 


