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Abstract

Purpose: The social cloud is at the centre of this study. A social cloud can be seen

as a resource sharing framework where agents share (or trade) their computing resources

(like storage space, processing power, workflows, and so on) with others who are socially

connected with them. This study deals with two aspects of social cloud; first, endogenous

social cloud formation, and second, properties of the social cloud. In particular, this study

analyses the stability, efficiency and contentedness of social cloud in a setting where agents

decide with whom they want to form resource sharing connections and with whom they do

not. It also aims to examine how a link formation between two agents' impact their as well

as others' resource availability.

Methodology/ approach: This study is at the intersection of computer science and

economics. There is a long tradition in the field of computer science to make use of tools

from economics to deal with issues like resource allocation in distributed systems. This

study makes use of strategic network formation (from economics) as a tool for investigating

social cloud formation in a strategic setting.

Findings: This study presents three models of social cloud formation. First is the social

storage network model in which agents perform resource sharing with those who have

direct connections with them. The utility of agents is a combination of the cost that they pay

and the benefit they receive, as a function of the resource sharing network in place. In this

model, network formation always leads to a stable network, which need not be efficient.

That is, there is a tension between stability and efficiency. Further in a stable network,

if the number of agents is an even number, then each agent in the network has the same

number of direct connections. Otherwise, there exists an agent who has one less direct

connection than the remaining agents. Second is a social storage cloud model in which

agents perform closeness-based resource sharing with direct and indirect connections. For

the symmetric form of this model, agents form a stable and efficient network, and therefore,

the price of anarchy and stability is one. Here, a stable network is always disconnected.
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The third is a social cloud compute model, that mainly focuses on local and global resource

availability. Global resource availability is examined in terms of externalities via an

empirical approach. Here, the number of agents who experience negative externalities is

always greater than the number of agents who experience positive externalities. Further,

this study adopts an inverse approach to derive the stability of social compute cloud

structures encoded in the standard network structures, namely, star, complete, wheel, and

bipartite network.

Limitations: Although the social cloud models of network formation focus on agents who

are heterogeneous concerning the benefit and the cost of link formation, this study mainly

investigates social cloud formation with homogeneous agents.

Value: The existing social cloud literature only focuses on exogenous social connections

to research on and develop of social cloud systems. Different from the existing trend, this

study looks at the more practical and intuitive endogenous social cloud formation, which is

the first move in this direction.

Implications: The theoretical insights would help the real-world social cloud systems in

designing efficient workload balancing, resource sharing and incentive policies, and also

recommender systems in this context. This study also enhances our knowledge regarding

the neighbourhood size, which is a crucial issue in the social cloud context. Finally,

this study introduces the social cloud as an application of strategic network formation to

economists.

Keywords: Social Cloud, Social Storage, Sharing Economy Network, Resource Shar-

ing Network, Social Network, Strategic Network Formation, Pairwise Stability, Bilateral

Stability, Externalities
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Chapter 1

Introduction

The concept of social cloud [2] has emerged as a significant area of research at the

intersection of computer science and economics. Social storage [3], a special case of the

social cloud, has also received a lot of attention in recent years. Although there are many

views on the concept of social cloud, the definition of social cloud stated in [4] is widely

accepted in the literature. According to Chard et al. [4], “a social cloud is a resource and

service sharing framework utilizing relationships established between members of a social

network”. In particular, social clouds allow agents (members of the network) to share or

trade their under-utilized computing resources (for example, disk space, processing power,

shareable software, and so on) with other agents, by making use of social connections to

facilitate resource sharing.

Computer scientists believe that, by taking advantage of social connections, it is possible

to build a trustworthy distributed computing paradigm that deals with various limitations

associated with many other distributed computing frameworks (like volunteer computing

[5], peer-to-peer (P2P) computing [6], grid computing [7], utility computing [8] and cloud

computing [9]). For economists, social cloud is a case of sharing economy (“the peer-to-

peer based activity of obtaining, giving, or sharing access to goods and services” [10]).

Social connections, in this context, are either extracted from an online social network or

constructed in an application context [3]. We call extracted social connections as exogenous

social connections, and social connections that evolve in an application context as endoge-

nous social connections. In academic discourse, numerous architectural prototypes have
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been proposed that make use of exogenous social connections to build social cloud systems.

For instance, Social Storage Cloud [4] and FriendBox [11] integrate Facebook social graph,

and Friendstore [12] and BlockParty [13] use Orkut and Venus social graphs. The other

class of social cloud systems, for example, BuddyBackup1, and CrashPlan2 allow agents to

share their disk space with other agents who select their storage sharing partners explicitly,

resulting in endogenously evolving social connections.

Recent surveys on social cloud [2] and socially-aware peer-to-peer systems [3] have

pointed out the numerous advantages as well as disadvantages of making use of social con-

nections for constructing these systems. However, these discussions are restricted to ex-

ogenous social connections. In fact, the approach of using exogenous social connections in

building social cloud systems is dominant in the literature and the aspect of endogenous so-

cial connections is, notably, lacking. This thesis bridges this gap by focusing on endogenous

social connections.

1.1 Motivation

Existing research on social cloud is moving in two directions. One direction [12, 14, 11,

13, 15, 16] focuses on various technical approaches such as development of social cloud ap-

plications and their implementation, and various other aspects associated with social clouds,

such as trust [17], incentives [18, 19], and resource management [20, 21]. The other di-

rection [22, 23, 24] focuses on Quality of Service (QoS) related issues that include data

availability, reliability, storage availability, and designing data maintenance and data place-

ment policies. The latter body of research provides several important insights, especially

regarding the correlation between the social connection pattern and QoS, trust, resource al-

location and so on. For example, some studies [23, 24] observe that a small friend set is

the major cause of poor QoS, imbalanced workload (the number of resource requests) and

low resource utilization. However, it should be highlighted that these understandings are

achieved in the context of exogenous social connections.

1http://www.buddybackup.com (accessed on 21 June 2019)
2https://support.crashplan.com (accessed on 21 June 2019)
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On the one hand, focusing on exogenous social connections has several advantages.

For example, some level of trust between socially connected agents can mitigate issues

related to security (for example, Denial-of-Service attack3) and agents' malicious behaviour.

Further, homophily4 in exogenous social connections helps to design efficient service search

algorithms [3]. Then, exogenous social connections provide incentives for cooperation that

effectively deal with issues like random arrival and departure of agents in a system, and free

riding5.

On the other hand, focusing only on exogenous social connections has several limita-

tions. For example, Fitzpatrick and Recordon6, and Iskold7 have discussed various issues

associated with utilizing social graph information for making use of them for application de-

velopment. These issues include: 1) agent identity (agent may be a participant of multiple

networks), 2) types of relationship (a link between two agent represents a different kind of

relationship between them), privacy (a social graph contains private as well as public infor-

mation), 3) social networking inter-op protocol, 4) node communication, and 5) overlapping

social graphs.

In addition to the above, this approach fails to answer several questions. First, it does

not provide an understanding of agents' preferential attachment in the social cloud system

and the underlying social graph (on which the social storage is built). For example, an agent

may not want to perform resource sharing with one of its neighbours in the underlying

social graph. Therefore, the understanding of the correlation between friend-set (in the

underlying social graph) and QoS is in question. Second, a limitation of this approach is

that it does not explain why each agent has a particular set of neighbours. Third, it does not

take agents' choices of selecting their storage partners into consideration.

Online social cloud systems like BuddyBackup impel us to focus on endogenous social

connections. In fact, the approach of looking at the endogenous social connections (or net-

work formation) helps answer the aforementioned questions. Besides, this approach would
3A denial-of-service (DoS) attack refers to the situation in which legitimate agents of the system are not

able to access resources/ services due to the act of malicious agents.
4Homophily refers to the tendency of agents to have social relationships with those agents who mostly

meet their own type (e.g., religion, demographic propinquity, age, etc.).
5Free riding refers to the tendency of agents to offers less to a system but consumes more.
6https://bradfitz.com/social-graph-problem/
7https://readwrite.com/2007/09/11/social graph concepts and issues/
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help to model agents' incentives or cost-benefit trade-off in these systems. By this, it is easy

to analyse agents' behavior in the process of building social resource sharing connections

and the outcome of their interactions.

Surprisingly, the social cloud literature has not treated endogenous social connections

in much detail. In a nutshell, agents' behavior in building resource sharing connections, the

cost-benefit trade off, and the outcome of their interactions are still poorly understood. With

this background, we now state our objectives.

1.2 Objectives

This study does not engage with either of the two existing research directions discussed

in the previous section. The discussion of exogenous social connections is beyond the scope

of this study. Specifically, this study does not deal with the technical facets as mentioned

earlier, such as application development, designing the policies related data and resource

management, trust or incentives aspects.

This thesis aims to gain theoretical insights into endogenous social cloud formation.

The approach of looking at endogenous social connections, in particular, endogenous social

cloud formation introduces a rich set of questions. The following questions set the objective

of this study.

1: How to model endogenous social cloud formation? There are numerous cases of

social cloud systems that allow agents to select their resource sharing partners explicitly

which eventually leads to resource sharing network formation. To examine the formation

of endogenous social cloud, there is a need for a model that provides a better understanding

of resource sharing network formation and insights into its basic principles. Further, it

must capture agents' behaviour as well as their freedom to decide what should be done in a

particular situation while building their resource sharing connections.

2: Which resource sharing networks are formed by agents? It is widely known that

the shape of social connections has an effect on the agent as well as aggregate behaviour.

This leads to the question, which types of social connections (network structures) are likely

to emerge when agents are decision-makers. This question is interesting when agents are

4



self-interested and choose resource sharing connections to maximize their well-being.

3: Are the resource sharing networks that form stable (where no agent wants to change

the prevailing network structure)? If so, under what conditions? What structures (shapes)

do they have?

4: Are the networks that form efficient or inefficient? That is, does the network formed

by self-interested agents lead to an outcome (network structure) that is also preferable (best)

from a societal viewpoint? It might be possible that self-interested agents build their re-

source sharing connections that are beneficial from the point of view of respective agents,

but that this formation leads to a ‘bad’ outcome from a societal viewpoint. In other words,

network formation may lead to an inefficient outcome.

5: Do externalities exist? How do the agents' choice of selecting their resource sharing

partners impact other agents' behaviour as well as their possibilities of obtaining resources

in the resource sharing network?

1.3 The Approach

As mentioned earlier, there is a need of a model to look into social cloud formation

(as resource sharing network formation). The two types of network formation models are

widely discussed, namely, non-strategic and strategic models of network formation. The

non-strategic models of network formation are based on the theory of random graph mod-

els [25, 26]. The random graph models are the easiest way to model network formation,

where link formation between two nodes takes place with some probability p. Although

the random graph models are a simple approach, they do not explore the link formation

(network formation) process on the agent level. That is, these models do not consider the

choices of agents in building their social connections. Further, these models fail to examine

the stability and efficiency of network formation. Another class of network formation mod-

els are strategic network formation models [27, 28, 29, 30], stem from economics, make

use of game-theoretic approach to model network formation. The strategic network forma-

tion models assume agents are rational and discretionary who build their social connection

to obtain payoffs that depend on the shape of the network take place. Unlike the random
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graph models, in strategic network formation models, link formation takes place between

agents based on the cost-benefit trade-off. Therefore, these models allow studying network

stability (in equilibrium) and efficiency.

This study follows the approach of strategic network formation modelling to examine the

social cloud formation and to deal with the above objectives. To model network formation

there is a foremost requirement of defining the utility function, which captures the cost and

benefit of the agents that they receive as a function of the established network. This study

examines strategic social cloud formation (in three different resource sharing setups) by

proposing three different utility models and gain insights into the various objectives stated

earlier.

1.4 Thesis Contribution

This study contributes to the research in the field of social cloud and strategic network

formation. First, it contributes to the field of social cloud in various ways. To our knowl-

edge, in the context of social cloud, no study has analysed social cloud formation in a strate-

gic setting. This study tried to fill the research gap in the field of social cloud by touching

the approach of endogenous social cloud formation. We believe this study provides consid-

erable insight into social cloud formation, their stability and efficiency. Further, this study

is the opening move towards enhancing our understanding of a particular friend set size

that agents have in social clouds, which the exogenous social connection approach fails to

answer. This study proposes three utility functions, which are the first of their kinds in the

context of social cloud. Second, this study offers social cloud as an application to the re-

search field of strategic network formation. This study offers numerous challenges, which

researchers in the field of strategic network formation could be interested in.

Now, we overview our contributions in brief.

Contribution I: Chapter 3 and 4

The first part of the thesis focuses on social storage systems, which are emerging as a
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good alternative to existing data backup systems of local, centralized, and P2P backup. In

this research, we, first, model the social storage system as a strategic network formation

game. We define the utility of each agent in the network under two different frameworks,

one where the cost to add and maintain links is considered in the utility function and the

other where budget constraints are considered.

Second, we propose the solution concept termed bilateral stability which refines the

pairwise stability solution concept defined by Jackson and Wolinsky [31], by requiring mu-

tual consent for both addition and deletion of links, as compared to mutual consent just for

link addition. Mutual consent for link deletion is especially important in the social stor-

age setting. The notion of bilateral stability subsumes the bilateral equilibrium definition

of Goyal and Vega-Redondo [32]. We discuss the above in Chapter 3. Third, we prove

necessary and the sufficient conditions for bilateral stability of social storage networks. For

symmetric social storage networks, we prove that there exists a unique neighbourhood size,

independent of the number of agents (for all non-trivial cases), where no pair of agents has

any incentive to increase or decrease their neighbourhood size. We call this neighbourhood

size as the stability point. Fourth, given the number of agents and other parameters, we dis-

cuss which bilaterally stable networks would evolve and also discuss which of these stable

networks are efficient, that is, stable networks with maximum sum of utilities of all agents.

We also discuss ways to build contented networks, where each agent achieves the maximum

possible utility.

We discuss these results in Chapter 4, which also appeared in: P. C. Mane, K. Ahuja,

N. Krishnamurthy “Stability, efficiency, and contentedness of social storage networks”.

Annals of Operations Research, 287 (2), 811–842, (2020).

Contribution II: Chapter 5

This research presents social storage cloud model (as described in Chapter 3), where

agents are involved in a closeness-based conditional storage sharing and build their storage

sharing network themselves. In the previous research, we analysed social storage network

formation by proposing a degree-based utility function. In this research, we propose a

degree-distance-based utility model, which is a combination of benefit and cost functions.
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The benefit function of an agent captures the expected benefit that the agent obtains by

placing its data on others' storage devices, given the prevailing data loss rate in the network.

The cost function of an agent captures the cost that the agent incurs to maintain links

in the network. With this utility function, we analyse what network is likely to evolve

when agents themselves decide with whom they want to form links and with whom they

do not. Further, we analyse which networks are pairwise stable and efficient. We show

that for the proposed utility function, there always exists a pairwise stable network, which

is also efficient. We show that all pairwise stable networks are efficient, and hence,

the price of anarchy is the best that is possible. We also study the effect of link addition

and deletion between a pair of agents on their, and others', closeness and storage availability.

We study externalities in the social storage network, that is, the effect of link formation

between a pair of agents on the utility of the other agents. We find, in a connected social

storage cloud, agents experience either positive or negative externalities and there is no

case such as ”no” externalities. However, agents observe ”no” externalities if and only if

the network is disconnected and consists of more than two components (sub-networks).

Second, if there is a no change in agents' (who are not involved in link formation) closeness

due to newly added links then agent experiences negative externalities. We conjecture, and

later experimentally support (discussed in Chapter 6), that for an agent to experience positive

externalities, an increase in its closeness is necessary. The condition is not sufficient though.

We provide a necessary and sufficient condition under which agents experience positive and

negative externalities.

We discuss these results in Chapter 5, which also appeared in: P. C. Mane, N. Krish-

namurthy, K. Ahuja “Formation of stable and efficient social storage cloud”. Games, 10,

article no. 44, (2019).

Contribution III: Chapter 6 and 7

The objectives of this research are: first, to investigate the impact of agents' decision of link

addition and deletion on their local resource availability. Second, to extend our knowledge

of externalities (spillover ). In particular, this research studies the role of agents' closeness,
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and the network size and density in determining what type of externalities these agents

experience in the network. Third, to model the choices of agents that suggest with whom

agents want to add links in the social cloud. Fourth, to perform pairwise stability analysis

of social compute cloud formation.

The findings include; first, agents' decisions of link addition (deletion) increases (de-

creases) their local resource availability. However, these observations do not hold in the case

of global resource availability. That is, the action of link addition (deletion) of an agent may

decrease (increase) its global resource availability. We, then, study externalities (in terms of

global resource availability) experimentally, show that for populated ring networks, one or

more agents experience positive externalities due to an increase in the closeness of agents.

We show that, in a two-diameter network agents always experience negative externalities.

Further, the initial distance between agents forming a link has a direct bearing on the number

of beneficiaries, and the number of beneficiaries is always less than that of non-beneficiaries.

Next, Further, by focusing on the parameters such as closeness and the shortest distances,

we provide conditions under which agents choose with whom they will form a link to max-

imize their utility. This research adopts a reverse approach of understanding stability of

social cloud formation.

We discuss the above observations in Chapter 6. The results regarding an impact of

network size and density on externalities are also appeared in: P. C. Mane, K. Ahuja, N. Kr-

ishnamurthy “Externalities in endogenous sharing economy networks”. Applied Economics

Letter, (2019). DOI: 10.1080/13504851.2019.1683507

We state our initial observations on pairwise stability of social compute cloud (see

Chapter 7. In particular, we provide conditions a two-diameter network and other stan-

dard topologies (e.g., the star, the complete, the complete bipartite network) are pairwise

stable.

1.5 Organization of the Thesis

The rest of the thesis is organized into the following chapters, with the summary of each

chapter as provided below:
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Chapter 2 (Background and Preliminaries)

This chapter provides background information related to social cloud and network

formation games. It presents a general framework of the social cloud, which includes the

concept of social storage also. We discuss the different views, applications and the current

status of social cloud in Appendix A. The concept of social storage, its characteristics

and taxonomy are discussed in Appendix B in detail. Further, this chapter introduces the

framework of strategic network formation model, which acts as a tool to analyse social

cloud formation. It discusses several aspects (such as solution concept, efficiency and

inefficiency, and externalities) related to the strategic network formation model.

Chapter 3 (Social Storage Models)

This chapter introduces our models of social cloud formation, namely, social storage

network and social storage cloud. Specifically, it presents two types of utility functions:

degree-based in social storage network context and degree-distance-based, in the social

storage cloud context. Then, it discusses network stability notions, namely, pairwise

stability and its refinement bilateral stability, introduced by us.

Chapter 4 (Social Storage Networks: Stability, Efficiency and Contentedness)

This chapter examines bilateral stability, efficiency and contentedness of social storage

networks.

Chapter 5 (Social Storage Cloud: Stability and Efficiency)

This chapter analyses pairwise stability, efficiency and inefficiency of social storage

cloud. It also examines externalities in the the social storage cloud.

Chapter 6 (Social Storage Cloud: Resource Availability)

The focus of this chapter is on the analysis of resource availability. It examines local

resource availability and global resource availability in the context of social storage cloud.

It also discusses preference modelling, which suggests to whom agents would prefer to

form resource sharing connections.

Chapter 7 (Social Compute Cloud: Pairwise Stability)

This chapter discusses our observations on pairwise stability of symmetric social

compute cloud.
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Chapter 8 (Conclusion and Future Work)

This chapter summarizes the contribution of this thesis and states possible future

directions of our work.
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Chapter 2

Background and Preliminaries

This chapter provides an overview of social cloud, social storage and network formation

game. In Section 2.1, we discuss a brief literature review of social cloud and social storage,

so as to lay foundation for discussion in subsequent chapters. Further details are discussed

in Appendices A and B. In Section 2.2, we provide a glimpse on the concept of networks,

network formation games. Appendix C contains more details.

2.1 Social Cloud and Social Storage

Although there is no general agreement on what exactly social cloud is, it has been

widely accepted that the concept of social cloud integrates social knowledge (in terms of

social network or connections) and the idea of sharing computing resources between so-

cially connected users. Social cloud is a framework, which allows users to share or trade

computing resource available at their end. Note that, shareable entities in Social cloud

could be processing power, storage space, workflows, information, and shareable software

that are available with users. Till date, social cloud has appeared in various forms of dis-

tributed computing (community cloud, grid computing and volunteer computing) through

various applications. We provide a detailed survey of social cloud in Appendix A.

Social storage is another concept (inspired by P2P data backup) and follows the same

notion of a combination of social network and storage resource sharing between users. Un-

like social cloud, social storage is specific about the shareable entity, which is storage space.
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We will discuss the idea of social storage in more details in Appendix B (that includes social

storage functionalities, characteristics and its taxonomy).

One can view social storage as a subset or a special case of social cloud. In this sec-

tion, we present the view of computer scientists and economists on social cloud and social

storage. Then, we provide a general framework of social cloud, which subsumes social

storage.

2.1.1 Social Cloud and Social Storage: Computer Science Outlook

Computing paradigm has seen a massive shift in last few years. This gradual shift in

computing paradigm is essentially to address the different needs of the hour. Distributed

computing concept emerged with an aim to connect agents and computing resources in a

transparent, reliable and scalable way to achieve huge computing power. Subsequently,

cluster computing, a form of distributed computing enables utilization of computational

power of standalone computers by integrating them. Cluster computing logically provides

a single unified computational resource. This follows a number of resource sharing com-

puting paradigms namely Grid computing [7], Peer-to-Peer (P2P) computing [6], Volunteer

computing [5], Utility computing [8] and recently Cloud computing [9]. These computing

paradigm share common characteristics like resource sharing or utilization of computational

power of standalone resources. However, these are distinguishable with respect to their re-

source provision mechanisms, domains of applicability and associated principal stakehold-

ers. For example, Grid and Volunteer computing operates in trust less framework wherein

risk is associated with the notion of ‘sharing’ resources or services [33]. Specifically, in

volunteer computing, the volunteered hosts are unreliable and insecure, hence, it is likely

that incorrect result can be yielded by malicious volunteers [34]. The more recent cloud

computing is very much business centric and may not fit well for those who are concerned

about cost or do not bother about strong performance guarantees [35].

In the past few years, researchers have shown an increased interest in social networks to

develop the idea of social cloud. One group of computer scientists [36, 4, 2, 20, 37, 38, 39]

have been focusing on social cloud. The increasing trends of donating computing resources
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by users (at the edge of the internet) to scientific projects such as SETI@home8, Fold-

ing@home9 inspires these researchers to think about social cloud. This community aims to

take advantage of social connections to deal with the limitations associated with the above

computing paradigms. Although there are many views on social cloud, the definition stated

in [4] is widely accepted in the literature. According to Chard et al. [4], a social cloud is “a

resource and service sharing framework utilizing relationships established between mem-

bers of a social network”. Researchers believe that social connections will assure interper-

sonal trust and help incentivizing and regulating resource sharing among the participants.

In social cloud, shareable entities could be computing capacity (storage space, computing

power, etc.), people, software, or information [4].

Another group of computer scientists [12, 16, 11, 13, 14] have been focusing on social

storage or Friend-to-Friend data backup systems. This community believes that exploiting

social knowledge can help to deal with various issues such as quality of service (include

resource availability, data availability, reliability, and its security), resource management,

and trust that are associated with peer-to-peer data backup systems [40, 41, 42, 43, 44].

2.1.2 Social Cloud and Social Storage: Economics Outlook

Many forms of distributed computing (Grid, Cloud, P2P computing) have been adopted

in commercial settings with various business models. The studies suggest that these comput-

ing paradigms have made a positive impact on business and organizations [45, 46, 47, 48],

and therefore, on the economy. For example, cloud computing offers various computing ser-

vices (infrastructure-, software-, platform- as a service) through different deployment plans

(e.g., public, private and community) suitable to business needs.

From the point of view of economists, traditional cloud services like Amazon' s AWS

S310 and IBM Cloud11 are examples of agents in a horizontal market where different cloud

providers compete for customers' requests for resources. On the other hand, cloud services

8https://setiathome.berkeley.edu/
9https://foldingathome.org/

10https://aws.amazon.com/s3
11https://www.ibm.com/cloud
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like DropBox12 and Mega Cloud13 are examples of agents in a vertical market where a

broker resells the resources of a cloud provider.

Social cloud and social storage are examples of the sharing economy network [49, 50,

51], where two individual agents (embedded in a network) share (or trade) resources di-

rectly with each other, without an intermediary third-party (cloud provider or broker). For

example, CuckuBackup and BackupCow are online data backup systems, which allow their

users to select their data backup partners who share their underutilized disk space and per-

form data backup on the shared space. These kinds of social storage systems have made a

positive impact on the economy. The recent report of kbv research14 expects that the data

backup and recovery market will grow at a Compound Annual Growth Rate (CAGR) of

10.2 of during the forecast period and reach 12.9 billion by 2023.

On the one side, economy is benefited by these computing paradigms. On the other

side, these computing paradigms are also benefited by various economic approaches to deal

with resource allocations in these computing frameworks [52, 53, 54]. Many studies have

focused on strategic resource sharing settings and make use of game-theoretic models to

deal with resource allocation in such settings [55, 56, 57]. In the context of social cloud and

social storage, researchers have been studying resource allocation on existing networks.

Now, we present a general purpose framework of the social cloud (as shown in Figure 2.1)

that subsumes social storage. This framework ignores the technical aspects of both social

cloud and social storage paradigms.

2.1.3 Social Cloud: A General Framework

A general framework of the social cloud consists of two layers. The underlying layer is

social knowledge in the form of social connections or network. The top layer is an applica-

tion layer.

12https://www.dropbox.com
13https://mega.nz/
147Report ID: 978-1-68038; On-line available at: https://kbvresearch.com/data-backup-and-

recoverymarket/
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Figure 2.1: A general framework of Social Cloud.

2.1.3.1 Application Layer

An application makes use of social knowledge to facilitate resource sharing between

users.

2.1.3.2 Social Knowledge

As stated earlier, a social network is at the core of the social cloud. We define these

social networks (connections) based on how they are obtained for the development of social

cloud systems.

2.1.3.2.1 Exogenous social networks: An exogenous social network is a social graph

that is extracted from an online social network. For example, SSS (a social cloud system)

extracts a social graph from Facebook and allows Facebook users to share their storage

resources with each other.

2.1.3.2.2 Endogenous social networks: An endogenous social network is one which

evolves through the actions of agents in the social cloud application context. In other words,

agents select their resource sharing partners in the context of the application. For example,
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BuddyBackup (an online social storage system) allows agents to select their partners with

whom they are socially connected in the real world.

2.1.3.2.3 Exo-Endo-genous social networks An exo-endo-genous social network is a

combination of exogenous and endogenous social cloud in which, first, a social graph is ob-

tained from an online social network and, next, agents select their resource sharing partners

from the extracted social graph. For example, Cucku-backup15 (an online social storage

system) obtains a social graph by extracting Skype16 and then allow agents to select their

partners with whom they are connected in Skype.

The survey [2] distinguishes numerous social cloud systems based on how social knowl-

edge (or social network) is obtained. We extend this by incorporating many other social

storage systems and also the type of social connections. Table 2.1 (an extension of Table A

in [2]), shows the comparison of various social storage (cloud) systems along with resource

and social network type.

2.2 Network Formation Game (NFG)

This study adopts the approach of strategic network formation modelling to model en-

dogenous social storage cloud formation. This approach stems from economics, where

agents build their relationships based on their payoffs as a function of the network. This

section discusses the network formation game (NFG) model with its elements. Then, it

discusses the aspects of NFG such as the solution concepts, network efficiency, price of an-

archy and stability. We begin the discussion with a mathematical presentation of networks.

2.2.1 Network: Mathematical Foundation

Conceptually, a network is simply a collection of nodes and links connecting these

nodes. In fact, a network represents a system, which is made up of entities (represented by

15https://cucku-backup.apps112.com/
16ttps://www.skype.com
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System Resource Social Network

SSC† Storage Exogenous

SCC† Compute Exogenous

F2Box(FriendBox)‡ Storage Exogenous

Friendstore‡ Storage Exogenous

CRB−Model† Compute Exogenous

SocialCloud† Compute Exogenous

BuddyBackup‡ Storage Endogenous

Crashplan‡ Storage Endogenous

Multi-community-cloud collaboration Compute Exogenous

CuckuBackup‡ Storage Exo-endo-genous

BackupCow‡ Storage Exogenous

Community clouds and Community Networks† Compute Exogenous

HSSC† Information Exo-endo-genous

Blockparty‡ Storage Exo-endo-genous

Table 2.1: Comparison of existing social cloud† and social storage‡ systems along with
resource and social network type.

the nodes of the network) and the interactions (or relations) between these entities (captured

by the links of the network). For example, in a friendship network, persons are represented

by nodes and the friendship between pairs of people are captured by links between them.

Table 2.2 lists a few real-world systems and corresponding network representations that

consist of nodes (the entities involved in the system) and links (the relation type between

these entities). For example, a scientific collaboration (system) can be represented by a co-

authorship network where nodes are scientists and a link between a pair of scientists exist
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if they share a research article.

System Network Node Link
Online communication Online social network User profile Sharing
World Wide Web World Wide Web Web page Hyperlink
Air transport Air transport network Airport Flight
Movie collaborations Movie collaborations Actor Movie
Scientific Collaboration Co-authorship network Scientist Scientific paper
Trading Trade network Trader Bilateral trade

Table 2.2: Examples of real-world systems with network representation

Formally, a network is defined as follows.

Definition 2.1. A network g = (A ,L ) is a pair of sets A , a non-empty set of agents that

correspond to nodes, and L , a set of unordered pairs of agents that correspond to links.

The set A of N agents is indexed by i, j, · · · , unless otherwise specified. The number of

agents N (that is, |A | = N) is the size of the network g. A link 〈i j〉 ∈L is the unordered

pair of agents {i, j}, which suggests that 〈i j〉 joins (or links) agents i and j. That is, links are

non-directed, and hence, the network g is undirected. The number of links (elements) in the

set L is denoted by `, that is, |L |= `. If 〈i j〉 ∈L , we call the agents i and j as neighbors

(or adjacent) in the network g. The set of agents with whom agent i has direct links in g is

represented by ηi(g). We also use ηi(g) to represent the neighborhood size of agent i in g,

which will be clear from the context. The set, G (N), consists of all possible networks on N

agents.

Given distinct agents a1,a2, · · · ,an ∈ A , if 〈a1,a2〉,〈a2,a3〉, · · · ,〈an−1,an〉 ∈ L , then

there is a path Pa1an(g), from a1 to an, of length n− 1. The distance di j(g)(= d ji(g))

between a pair of agents i and j is the length of the shortest path connecting them in g. The

diameter Dg of network g is the maximum distance between any pair of agents. A path of

length ≥ 2 between a pair of agents is an indirect communication channel between them.

A network g may be connected or may consist of two or more connected components.

We say a network g is connected if there exists at least one path between any pair of

agents i and j ∈ A, or else the network g is disconnected. A disconnected network g can

be partitioned into disjoint sub-networks g(κ1),g(κ2), ...,g(κn), where κ1∪κ2∪ . . .∪κn =
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A,κr ∩κs = φ for all r,s ∈ {1,2, . . . ,n},r 6= s, such that any pair of agents i and j are con-

nected if and only if i and j are elements of the same set κr. Such sub-networks are called

as components of the network g.

The notation we use for mathematical representation of a network are used in the subse-

quent chapters. Appendix C discusses more details and defines standard network structures

(topologies), for example, complete, star network, etc.

2.2.2 NFG: Model

We define a non-cooperative game with agents, actions, rules, outcome, and the utility or

payoff of agents (refer Appendix C.3). We can apply these elements to a network formation

game. Table 2.3 maps non-cooperative games to network formation games.

Elements of
Non-cooperative Game

Elements (applied to)
Network Formation Game

Agents Agents who correspond to points

Actions The link formation actions available to each agent

Rules Rules that define how agents may form links

Outcomes Network(s) that is(are) formed

Payoff (utility) function Function that assigns a payoff (utility) to each agent
given the formed network

Table 2.3: Description of network formation game [1]

A network formation game can be described in terms of the following elements.

1. Network with its Agents: We are given a network (graph) g ∈ G (N ) on N agents,

where g= (A ,L ), A = {1,2, · · ·N} being the set of rational agents (players), who are the

decision makers and L being the set of ` undirected links connecting these agents. Recall

that a link that connects agents i and j in g is denoted by 〈i j〉.
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2. Actions: It specifies a set of link update choices (e.g., add and delete links, or accept and

reject links, etc.) available to each agent. For instance, agents can perform the actions, such

as, link addition and deletion, a replacement or pass of a link in the local- and global-Nash

networks model [1]. In our study, we consider only link addition and link deletion actions

that are available to agents.

3. Rules: We consider the set of rules that define how agents may update links, that is,

unilateral link formation and (or) unilateral link deletion, or bilateral link formation and

(or) bilateral link deletion, and so on. For instance, an agent needs mutual consent of

another agent with whom they want to form a link [31], or an agent forms link without

mutual consent of another agent [58].

4. Outcome: An outcome is a network g that forms as a result of the agents' choices (link

addition or deletion).

5. Utility: A utility (payoff) function assigns a payoff to each agent as a function of the

network. That is, given a network g, the utility of each agent i is given by ui : G (N)→ R+.

The profile of utility functions (u1,u2, · · · ,un) is a vector of utilities for all agents that is

represented by u. Therefore, u : G (N)→ RN . The value υ(g) of network g, is the total of

all agents' utilities in the network g, that is, υ(g) = ∑
N
i=1 ui(g).

In general, a utility function can be categorized based upon agents from whom each

receives benefits in the network — from only directly connected agents or from indirectly

connected agents too, and also whether it depends on the number of connections or the

distance between agents or both. There are three types of utility functions, which are

widely discussed in the strategic network formation literature, namely, degree-based utility,

distance-based utility and degree-distance-based utility.

Degree-based utility: A utility function is degree-based if agents benefit only from direct

neighbors, and the benefit decreases with an increase in the number of neighbors of each
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neighbour [59]. In degree based utility functions, one is only concerned about the effects

of its local neighbourhood. Although indirect connections are not considered explicitly

here, they do affect an agent's utility either positively or negatively. For example, in the

co-author model [31], where agents are involved in a collaborative project, an agent's

utility goes down if its neighbours are tightly connected (or agents are densely connected

in the network). In the job contact network [60], for an agent, the probability of getting

job information increases as its neighbourhood size increases. However, the chance of

obtaining job information also depends on how the agents are connected (tightly or loosely)

and unemployment in the network.

Distance-based utility: A utility function is distance-based, if agents obtain benefit from

direct as well as indirect connections; but utility decreases as the distance between agents

increases [61]. The connection model [31], the network creation game [62], the locality

game [63], are some examples where a distance based utility function is used. In general, a

distance based modelling is suitable for those settings where agents are aiming to minimize

the cost of communication.

Degree-distance-based utility: A utility function is degree-distance-based if agents obtain

benefits from direct and indirect links, but the benefit decreases with an increase in the

number of direct and indirect neighbors [64].

2.2.3 Modeling Network Formation

An exhaustive survey of network formation games and games on networks has been

done in the following works: [28, 27, 1, 65, 30]. Few of these models broadly cover strate-

gic network formation modelling. This includes, the cooperative game theory model, the

unilateral connection model, the link investments model, and the bilateral connection model

([1]). Next, we briefly discuss these models and also relate them to our model.

Aumann and Myerson [66] have proposed an extensive network formation game, where

agents form links sequentially (one after another) using some exogenous rules. Agents pro-
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pose with whom they want to form links, and later this proposal is either accepted or rejected

by others. But, once a link is formed between a pair of agents, it cannot be withdrawn. This

is the essence of the cooperative game theory model. In the unilateral connection model,

agents form links without consent and links are directional ([58]). In the link investments

model ([67]) and its variant ([68]), agents propose investments for their every direct link.

These investments are either positive or negative. Linking between a pair of agents takes

place if and only if total investment on that link is positive.

Myerson [69] has proposed the link-announcement game. In this, agents proposing to

form links announce the name of the agents with whom they want to form these links. This

announcement is done simultaneously. A link between two agents takes place if and only if

both agents announce each others name. Inspired by the link-announcement model, Jackson

and Wolinsky [31] proposed the pairwise connection model. Here, link formation takes

place with the mutual consent of the involved agents, however, link deletion takes place

without consent. Our social storage network formation game is inspired by the pairwise

connection model. We differ in the link deletion scenario, where both the agents must agree

to delete the link between them.

2.2.4 NFG: Solution Concepts

Which network is likely to emerge when agents strategically decide with whom they

want to form links and with whom they do not? This is the central question in the field

of strategic network formation. In particular, researchers are interested in a strategically

stable or equilibrium network. We say, a network is strategically stable or in equilibrium if

no agent has incentives to alter the network structure in place, either by adding or deleting

links.

In Subsection 2.2.4.1, we discuss the pairwise stability solution concept (due to Jackson

and Wolinsky [31]), a widely discussed and accepted solution concept in the literature of

strategic network formation. We propose the concept of bilateral stability, a variant of

pairwise stability and discuss the same in Chapter 3. In Subsection 2.2.4.2, we discuss

the bilateral equilibrium solution concept (due to Goyal et al. [32]) and list other solution

24



concepts, some of them being refinements of pairwise stability.

2.2.4.1 Pairwise Stability

Jackson and Wolinsky [31] observe that Nash equilibrium as a solution concept is not

useful in the network formation context for two reasons. First, due to the existence of multi-

ple Nash equilibria (for instance, the null network is always a Nash equilibrium irrespective

of the utility function), and second, it fails to capture the requirement of mutual consent of

agents in link formation. Hence, they propose the pairwise stability solution concept, which

is defined below.

Definition 2.2. [31] A network g is pairwise stable if

1. for all 〈i j〉 ∈ g, ui(g)≥ ui(g−〈i j〉) and u j(g)≥ u j(g−〈i j〉), and

2. for all 〈i j〉 6∈ g, if ui(g+ 〈i j〉)> ui(g), then u j(g+ 〈i j〉)< u j(g).

That is, a network g is pairwise stable with respect to utility function u, if (1) no agent

benefits by deleting an existing link and (2) no two agents benefit by adding a new link

between them.

The main shortcoming of pairwise stability is that it only considers a simple single link de-

viation. Despite this limitation, it is a suitable solution concept to characterize networks in

contexts where self interested agents decide with whom they want to form social connec-

tions and with whom they do not [70]. In fact, one can view pairwise stability as a necessary

condition (although not sufficient), to understand the true stability of a network.

2.2.4.2 Other Solution Concepts

Bilateral equilibrium [32] is another refinement of pairwise stability [31]. Goyal et

al. [32] define strategies of agents as sets of links they would want to add, and define

bilateral equilibrium as a strategy profile that is a Nash equilibrium (that is, no agent benefits

by unilaterally deviating) and is pairwise stable (where both addition and deletion require
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mutual consent). The set of all bilaterally stable strategies as defined by us (see Definition

3.3) is a super-set of the set of all bilateral equilibrium strategies [32].

Other network formation game solution concepts include strong and coalition-proof

Nash equilibria [71], strong pairwise stability [72], pairwise stable Nash equilibrium [73],

farsighted equilibrium [74], pairwise farsightedly stable [75], Nash-Cournot equilibrium

[76], and monadic stability [77].

2.2.5 NFG: Efficiency

One of the central questions in the study of strategic network formation is whether the

network that is evolved when rational agents take decisions of link formation and dele-

tion themselves is efficient (value-maximizing) or not? Under what condition(s) do ra-

tional agents form a network that is ‘best’ from the society's perspective. Identifying the

network(s) that maximize the overall benefit of the society means finding the efficient net-

work(s).

Definition 2.3. A social storage network g is efficient with respect to utility profile

(u1, ...,uN) if ∑
i

ui(g)≥ ∑
i

ui(g
′), for all g′ ∈ G (N).

The above notion of efficiency is utilitarian efficiency, which says that a network is

utilitarian efficient with respect to the utility function if it maximizes the total of utilities

of agents of the society. However, there are many studies [78, 79] which consider Pareto

efficiency as a network efficiency measure. A network is Pareto efficient if it is not possible

to make any agent better off without making at least one other agent worse off. In this

study, we do not focus on the notion of Pareto efficiency.

Jackson and Wolinsky [31] observe the tension between pairwise stability and efficiency.

They identify that a pairwise stable network may not be efficient and an efficient network

may not be pairwise stable. If a network is pairwise stable but not efficient then agents may

improve the overall benefit of the society by altering the network structure. However, no

pairs of agents want to add a new link or no agent wants to delete an existing link in the

network that is in place.
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In general, distance-based utility models display the tension between pairwise stability

and efficiency. For example, in the connection model [31] all pairwise networks are not

efficient. The spatial connections model [78] is consistent with the insights derived in [31]

regarding the conflict between pairwise stable and efficient networks.

However, this is not always the case. For example, in the symmetric connection model,

for some cost-benefit range there are a few networks which are pairwise stable and efficient

also. Similarly, the centrality17 based network formation model proposed by Buechel [80]

observes unique pairwise stable networks which are also efficient. We have consistent ob-

servations with the centrality model for the case of the social storage cloud formation model

(discussed in Chapter 5).

2.2.6 NFG: Inefficiency

When rational agents take decisions of link formation and deletion themselves, the net-

work formation may lead to inefficiency. The lack of coordination between self-interested

agents (who may have competing interests) results in network inefficiency. The question

that arises here is how inefficient the evolving or evolved network(s) is (are)? It is worth

noting that the measures of efficiency are inadequate to assess how inefficient the emerging

networks are? The question of network inefficiency is answered by computing the gap of the

welfare (i.e., overall benefit ) between the set of stable networks and the efficient network.

The notion of Price of Anarchy (PoA) quantifies this gap. Formally, it is defined as below.

Definition 2.4. The price of anarchy (PoA) is the ratio of the worst sum of the utility value

of an equilibrium network and the optimal sum of the utility value in any network.

So, in the context of pairwise stability, PoA is the ratio of the lowest welfare (overall

benefit) generated by any pairwise stable network to the value of efficient network.

Just as Price of Anarchy looks at the worst pairwise stable networks, the Price of Stabil-

ity (PoS) looks at the best possible pairwise stable networks.

17 Network centrality (a widely discussed phenomenon in the literature of social network analysis) mea-
sures the importance of agents (nodes) in a network. We discuss network centrality in more details in Appendix
C.2.
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Definition 2.5. The price of stability (PoS) is the ratio of the best sum of the utility value of

an equilibrium network and the optimal sum of the utility value in any network.

Therefore, in the context of pairwise stability, PoS is the ratio of the largest welfare

(overall benefit) generated by any pairwise stable network to the value of efficient network.

Remark 2.1. If PoA equals to 1 then a pairwise stable network is also efficient. If PoS

equals to 1 then then it means there is an efficient network which is also pairwise stable

[31]

2.2.7 NFG: Externalities

A network formation may lead to an inefficient outcome. To be specific, the questions

here are as follows. First, why does network formation lead to inefficiency? And second,

why is there conflict between pairwise stability and efficiency? Externalities are considered

as the main source of the tension between pairwise stability and efficiency. Externalities

(spillover) are viewed as an impact on the agent's utility due to the actions of link formation

by other agents. Formally, externalities are defined as follows.

Definition 2.6. [61] Consider a network, g, with agents i, j ∈ g such that i 6= j and 〈i j〉 /∈ g.

Suppose agents i and j form a direct link 〈i j〉. Then, agent k ∈ g\{i, j} experiences

1. Positive externalities if uk(g+ 〈i j〉)> uk(g);

2. Negative externalities if uk(g+ 〈i j〉)< uk(g);

3. No externalities if uk(g+ 〈i j〉) = uk(g).

In general, a network formation model with partition value function is without externalities,

since, the utility function in such networks assign payoffs to the partitions. Normally, a de-

gree based utility model displays negative externalities while a distance-based utility model

displays positive externalities. However, these observations are obtained in the context of

information flow networks.

The literature has several network formation models, which exhibit positive, negative,

positive-negative externalities, no externalities. For example, the connection model [31],
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the provision of a pure public good [73], the market sharing agreement [81] models are

few examples that exhibit positive externalities. The models such as Co-author [31], the

free trade agreements [82], and the patent races [73] exhibit negative externalities. Several

authors [83, 64, 84] have studied the network formation in the presence of both positive and

negative externalities.

The analysis of externalities is crucial for a third-party observer/ planner who wants to

convert the network formation to an efficient outcome. In order to lead network formation to

a socially preferred outcome, the planner may perturb the network formation by subsidizing

agents for link formation.

2.3 Chapter Summary

In this chapter, we discussed the concept of Social Cloud, a socially-aware resource

sharing framework that allows users to share computing resources (e.g., storage, computing

capacity, work-flow, etc.) available at their ends with other users in the social network

context. Although there is no consensus on the view of Social Cloud, the numerous and

different social cloud systems show the potential of Social Cloud to act as a complementary

to various other distributed computing frameworks (like Grid, Cloud, Volunteer computing).

At present, researchers are dealing with various issues associated with Social Cloud, such

as trust, incentives, resource management, computing infrastructure and security.

Further, the concept of Social Storage, a twin phenomenon of Social Cloud. Social

Storage is a special case of Social Cloud, where users share their storage resources with

each other for data backup purpose, in a social network context.

In this chapter, we presented a general framework of the social cloud that includes social

storage as well. This framework consists of two layers, namely, application and social

knowledge. The social knowledge layer can be viewed in the form of social connections,

such as, exogenous, endogenous and exo-endogenous.

As stated in the Introduction, the research carried out is in order to analyse social cloud

(informally, a socially-aware resource sharing network) formation in a strategic setting.

We present the fundamentals of how network formation games are represented. Fur-
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ther, we discuss the solution concepts of network formation with specific focus on pairwise

stability. Then, we discuss various aspects such as network efficiency, inefficiency, and ex-

ternalities (or spillover), which are at the centre of the study of network formation games.
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Chapter 3

Social Cloud Models

This study presents three models of strategic social cloud formation, namely, social

storage network model, social storage cloud model and social compute cloud model. In the

social storage model, agents share their storage space with only their immediate neighbours.

This model is inspired by studies like [12, 13] where exogenous social connections are

considered. The second model is a social storage cloud model where agents perform storage

resource sharing with agents who are directly as well as indirectly connected. This study

follows the idea of closeness based resource sharing due to [4]. In fact, studies [23, 24] have

suggested incorporating indirect links in such storage sharing. The third model is social

compute cloud model, which is a variant of the above two models. In this model, agents

share computing resources (not necessarily storage) with other agents who are directly or

indirectly connected with them. This model is inspired by the social cloud system presented

in [85] where agents want to complete a computational task and, hence, strive for resources

in the social cloud. Note that, in the social cloud model [85], agents outsource computational

tasks to their immediate neighbours. In our social compute cloud model, agents perform

their computational task themselves.

Modelling a utility function (the payoff that each agent receives in a network) is the

foremost requirement to study network formation in a strategic setting [61]. This aspect has

not been given much attention by researchers working in the social storage domain. In the

strategic network formation literature, specifically endogenous network formation games,

different kinds of utility functions have been proposed and successfully validated, such as
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degree-based etc., as summarized in the previous chapter. Utility modelling is more crucial

in the social storage context, where decision makers are human agents who aim to optimise

their own goals. This is in comparison to the P2P storage context (our closest cousin),

where nodes (computer systems) are decision makers. In this study, we define three utility

functions, namely, a degree-based, a degree-distance based and a variant of the latter, one

for each model as discussed above. We describe these utility functions in the respective

models.

Table 3.1 summarizes all notations used in this thesis.

g social storage network or social storage cloud or social compute cloud.
A set of agents (or vertices).
N number of agents in g (that is, N is the number of elements in the set A ).
L set of links (or edges).
〈i j〉 link between agents i and j.
ai j indicator for data backup partnership between agents i and j.
ς cost incurred by an agent to maintain a link.
βi worth (or value) that agent i has for its data.
si amount of storage available with agent i that it can contribute to other agents.
di amount of data that agent i wants to backup.
bi budget allocated by agent i towards backup partnerships.
λ probability of failure of a disk.
ηi(g) neighbourhood size of agent i in g. (Also denotes the set of neighbours of i).
g+ 〈i j〉 new link 〈i j〉 is added to g.
g−〈i j〉 existing link 〈i j〉 is deleted from g.
G (N) the set of all networks on N agents.
g(κi) a component of network g, where κi is the set of agents in that component.
gc complement of network g.

Table 3.1: Notation summary

3.1 Social Storage Network Model

Definition 3.1. A social storage network g= (A ,L ) consists of a set of agents, A , and a

set of links connecting these agents, L , where a link between two agents represents a data

backup partnership between them.

Given a social storage network g = (A ,L ), the link 〈i j〉 ∈L represents the fact that
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agents i and j are neighbours of each other, and are involved in a data backup partnership.

This partnership indicates that both the agents commit to share their storage resources with

each other so that they can backup their data on each other' s shared storage space. At any

given point in time, each agent plays a dual role: that of a data owner who wants to back

up its data, and that of storage provider who provides storage space for each of its backup

partners. Storage resource sharing and data backup activity are bidirectional and occur with

the mutual consent of i and j. This implies, the link 〈i j〉 and the link 〈 ji〉 are identical. We

also refer to i and j as backup partners. The set of agents with whom agent i has links is

represented by ηi(g). In other words, ηi(g) is the neighbourhood of agent i. We also use

ηi(g) to represent the neighbourhood size of i, which will be clear from the context.

3.1.1 Link Addition and Deletion Rule

Pairs of agents may add a new link (or continue to maintain the existing link) or delete

the existing link (or continue to remain without a link). In the context of social storage,

mutual consent is necessary for adding as well as for deleting links. That is, an agent does

not add a new link without the consent of the agent with whom it wants to add the new link

and does not delete an existing link without the consent of the agent from whom it wants to

delete the existing link.

3.1.2 Network Formation

The structure of the network, g, is determined by actions of the agents. Firstly, the

network is updated when two agents i and j add a new link 〈i j〉, and we denote this by

g+ 〈i j〉. Secondly, the network is updated when a pair agents i and j delete an existing link

〈i j〉, and we denote this by g−〈i j〉. As agents themselves decide with whom they want to

perform backup partnerships and with whom they do not, this is a process of endogenous

network formation (or partner selection In this chapter, we do not explicitly consider trust

between pairs of agents. We assume that all agents trust each other, and thus, anyone can

form links with anyone.
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3.1.3 Utility of an Agent in a Social Storage Network

Data stored on local hard disk is in danger of getting lost or damaged due to local disk

failure. Hence, to keep data safe, each data owner wants to backup its data. Social storage

systems use two types of techniques to backup data. The first is erasure coding, and the

second is replication18 [22]. Erasure coding is the data redundancy technique in which a

data object is divided into x blocks and recoded into y blocks (y > x). Then the main data

block can be recovered from any subset of y. Replication is the data redundancy technique

in which an agent maintains a single data copy on each partner' s storage device. In this

chapter, we consider the replication technique.

As hard disks are prone to failure, there is a chance that a data owner's backup partner's

hard disk also fails. It is likely that each backup partner's hard disk fails, so each data

owner's interest lies in recovering at least one copy of its data so that the value of the data is

intact. It is not hard to observe that each agent's chance of data recovery, given a particular

disk failure rate, depends on its neighbourhood size. The more the number of neighbours,

the higher the chance of data recovery.

In the absence of costs to add and maintain links, the aim of each agent in a social storage

network is to maximize the chance of data recovery, given that the local copy of data has

been damaged or lost. However, every agent incurs a cost for each of its links. Keeping

this in mind, we define the utility of each agent in the network under two frameworks. The

utility of agent i in the network g is represented by a function ui : G (A )→ R, where G is

the set of all networks, (g is an element of G ). The profile of utility functions (u1, ...,un) is a

vector of utilities for all agents. We first define the parameters required to define the utility

function. λ ∈ (0,1) is the average disk failure rate in the network. That is, at any point in

time, the probability of failure of agent i' s disk is λ . For data owner (agent) i, the value of

the local data that is to be backed up, is βi. Each agent incurs a cost ς to maintain a link.

That is, the total cost of adding and/ or maintaining a link is 2ς , and we assume that the

agents connected by the link equally share this cost. This cost can be interpreted as the cost

required for infrastructure, bandwidth, time, and so on. There is no additional cost to add a

new link. Each agent i also has allocated budget bi for maintaining its links. Further, each
18[86] perform quantitative comparisons between these two techniques.
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agent i has a certain amount of local data di that the agent wants to store on storage devices

of backup partners. Also, each agent i has a certain amount of storage space si available for

sharing with other agents in the network. Using these parameters, we now define the utility

of an agent in the following two frameworks.

3.1.3.1 Multi-Objective Framework (MO-Framework)

In the first framework, there are two objective functions that each agent i tries to opti-

mize. Firstly, each agent i wants to minimize the total cost associated with maintaining the

links, i.e., ςηi(g). Secondly, each agent wants to maximize the expected value of backup

data. Since the disk failure rate is λ , and i has ηi(g) neighbours, the expected value of i' s

backup data is βi(1−λ ηi(g)). Note that, as each agent is interested in “how many links to

maintain”, we look at the expected value of an agent' s backup data given that the local copy

of the agent's data has been damaged or lost. For each agent i, these two objective functions

can be written as a single objective function as follows:

[α(βi(1−λ
ηi(g)))]− [(1−α)(ςηi(g))], where α ∈ (0,1). (3.1)

For elegance of results on stability, we let α = 1/2. We drop the factor of 1/2 from (3.1),

for all i ∈ A , and just consider the following utility function ui(g), for all i ∈ A , for the

given network g:

ui(g) = βi(1−λ
ηi(g))− ςηi(g). (3.2)

As evident above, this is no longer a MO-optimization problem. We have done this con-

version because (a) this is one of the easiest way to solve a MO-problem, and (b) our focus

is on the network formation game, stability, efficiency, and contentedness of the network.

Solving the MO-optimization problem without this conversion is part of future work, and

we discuss that in Section 7. We also still call this a MO-framework a nomenclature (to

differentiate with Single Objective (SO)-framework discussed below).

Each agent i wants to maximize ui(g) over all possible values of ηi(g). The social

optimization problem can be formulated as
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max ∑
i∈A

(ui(g))

such that

ηi(g) = ∑
i, j∈g

ai j and

si ≥ ∑
j∈ηi(g)

d jai j,

where,

ai j =

1 if i and j have a backup agreement,

0 otherwise.

3.1.3.2 Single Objective Framework (SO-Framework)

In this framework, each agent i has only one objective (as compared to two in the previ-

ous framework). Each agent tries to maximize the expected value of backup data. The cost,

ςηi(g), incurred by agent i to maintain links (which was the second objective function in

the MO-Framework), appears in constraints here. This is because,

Remark 3.1. The utility function in the SO-Framework may be reduced to the Constant

Absolute Risk Aversion (CARA [87])19 function. In the context of social storage, agents

are risk averse as they do not want to “risk” losing their data, which is what the above

utility function captures. This function may also be viewed as the Cumulative Distribution

Function of an Exponential distribution, given that the disk failure rate is Poisson.

Remark 3.2. We explicitly write the formulation of the social optimization problems in the

two different frameworks, as above, primarily to highlight that the cost is moved from the

utility function in the MO-framework to budget constraints in the SO-framework. Our goal

is not to solve these problems but rather analyse the corresponding network properties, for

example, the efficiency of the resulting networks.

19We refer the readers to a survey by [88] on functional forms for the utility functions of agents, based on
their risk taking abilities.
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3.1.4 Bilateral Stability, Efficiency and Contentedness

Recall, the pairwise stability solution concept introduced in [31] (see Definition 3.2) is

an appropriate solution concept when agents require mutual consent while adding a link,

but any agent can delete any of its existing links without consent.

Definition 3.2. [31] A network g is pairwise stable if and only if

1. for all 〈i j〉 ∈ g, ui(g)≥ ui(g−〈i j〉) and u j(g)≥ u j(g−〈i j〉), and

2. for all 〈i j〉 6∈ g, if ui(g+ 〈i j〉)> ui(g), then u j(g+ 〈i j〉)< u j(g).

However, the social storage system discussed earlier, impels us to focus on the require-

ment of bilateral consent while deleting a link as well. For instance, let agents i and j be

backup partners. That is, i provides its storage space to j for the purpose of storing j's data,

and vice versa. Now, let us assume that breaking a backup partnership without mutual con-

sent is allowed. If agent i breaks the partnership without consent of j, then there is a threat

that j will lose its data which is stored on i's storage space. Hence, backup partnerships

in social storage networks have to be viewed as mutual contracts which cannot be broken

unilaterally. We call this as bilateral stability.

We modify the pairwise stability concept introduced by [31] so as to ensure that dele-

tion of links also happens with mutual consent. We call this modified pairwise stability as

bilateral stability.

Bilateral equilibrium [32] is another refinement of pairwise stability [31]20. [32] define

strategies of agents as sets of links they would want to add, and define bilateral equilibrium

as a strategy profile that is a Nash equilibrium (that is, no agent benefits by unilaterally

deviating) and is bilateral stable (that is, no pair of agents can deviate bilaterally and benefit

from the deviation and at least one of them strictly).

The set of all bilaterally stable strategies (see Definition 3.3) is a superset of the set of

all bilateral equilibrium strategies [32], as discussed earlier.

The modified definition of pairwise stability we use for social storage is given below.

20Note that, Bilateral equilibrium refines pairwise stability by allowing pairs of agents to add and delete
links simultaneously.
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Definition 3.3. A social storage network g is bilaterally stable if and only if

1. for all 〈i j〉 ∈ g, if ui(g−〈i j〉)> ui(g), then u j(g−〈i j〉)< u j(g), and

2. for all 〈i j〉 6∈ g, if ui(g+ 〈i j〉)> ui(g), then u j(g+ 〈i j〉)< u j(g).

Definition 3.3 is a network stability concept, whose first part states that no pair of agents

with a link between them, wants to delete the link, and the second part states that no pair

of agents has an incentive to add a new link. Note that neither link formation (addition)

nor link deletion can happen without mutual consent. Our further discussions about social

storage stability stands on Definition 3.3.

Remark 3.3. Definition 3.3 can be rewritten using only conditions on the addition of links

by rewriting the first condition (that is, the deletion condition) as a condition for addition in

gc. Similarly, we can also rewrite Definition 3.3 using only deletion conditions.

Now, we generalize Definition 3.3 so that it is suitable as a solution concept for the two

frameworks discussed in the previous section.

For this, we first define remaining storage available with agent i in a network g as

RSi = si− ∑
j∈ηi(g)

d jai j, (3.3)

and remaining budget of agent i in g as

RBi = bi− ∑
j∈ηi(g)

ςai j, (3.4)

where

ai j =

1 if i and j have a backup agreement,

0 otherwise.

For the MO-Framework, where we have storage constraints, the following modification

of Definition 3.3 is appropriate.

Definition 3.4. A social storage network g with storage constraints is bilaterally stable if

and only if
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1. for all 〈i j〉 ∈ g, if ui(g−〈i j〉)> ui(g), then u j(g−〈i j〉)< u j(g), and

2. for all 〈i j〉 6∈ g, if [ui(g+ 〈i j〉)> ui(g) and RS j ≥ di], then

[u j(g+ 〈i j〉)< u j(g) or RSi < d j].

In the above definition, there is no change in the link deletion condition of Definition

3.3. However, while adding a link, an agent has to ensure that the other agent has sufficient

storage to store its data (besides ensuring increase in its utility). We assume that the agents

are rational and self-centred (and hence, it is up to agent j to check whether agent i has

sufficient storage for agent j' s data or not).

Next, we adapt Definition 3.3 for the SO-Framework, where we have storage and budget

constraints.

Definition 3.5. A social storage network g with storage and budget constraints is bilaterally

stable if and only if

1. for all 〈i j〉 ∈ g, if ui(g−〈i j〉)> ui(g), then u j(g−〈i j〉)< u j(g), and

2. for all 〈i j〉 6∈ g, if [ui(g+ 〈i j〉)> ui(g) and RS j ≥ di and RBi ≥ ς)], then

[u j(g+ 〈i j〉)< u j(g) or RSi < d j or RB j < ς ].

As in the case of MO-Framework, there is no change in the link deletion condition of

Definition 3.3. However, while adding a link, an agent has to ensure that the other agent

has sufficient storage to store its data and agent itself has sufficient budget to form the link

(besides ensuring increase in its utility). This is, again, based on the assumption that the

agents are rational and self-centred.

We, now, define efficient and contented social storage networks, with as well as without

constraints. Efficient social storage networks are social storage networks where as many

agents as possible achieve maximum utility, whereas contented social storage networks are

those where all agents achieve maximum utility.

Definition 3.6. A social storage network g is efficient with respect to utility profile

(u1, ...,uN) if ∑
i

ui(g)≥ ∑
i

ui(g
′), for all g′ ∈ G (N).
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Definition 3.7. A social storage network g with storage constraints is efficient with respect

to utility profile (u1, ...,uN) if ∑
i

ui(g) ≥ ∑
i

ui(g
′), for all g′ ∈ G (N) where RSi ≥ 0 for all

i ∈ g′ .

Definition 3.8. A social storage network g with storage and budget constraints is efficient

with respect to utility profile (u1, ...,uN) if ∑
i

ui(g)≥∑
i

ui(g
′), for all g′ ∈ G (N) where RSi ≥

0 and RBi ≥ 0, for all i ∈ g′ .

Definition 3.9. A social storage network g is contented with respect to utility pro-

file (u1, ...,uN) if, for each i ∈ A , ui = max
ηi(g)
{βi(1− λ ηi(g))− cηi(g)}, under the MO-

Framework, and ui = max
ηi(g)
{βi(1−λ ηi(g))}, under the SO-Framework.

Remark 3.4. If maximum possible utility is not achievable by a one or more agents be-

cause of storage or budget constraints, then those agents are not contented, and hence, the

social storage network is not contented. Therefore, we do not define contentedness with

constraints.

3.2 Social Storage Cloud Model

In this section, we describe the social storage cloud model through an interaction struc-

ture, a storage-sharing framework and cost-benefit analysis of agents. In the context of

social storage networks discussed in the previous section, bilateral stability is the appropri-

ate solution concept because neighbours mutually store their data with each other. However,

in the social storage cloud model, agents may share their storage space and save their data

with any agent connected directly or indirectly. Therefore, mutual consent for deletion is

not realistic and hence, pairwise stability is the appropriate solution concept to look at.

3.2.1 Interaction Structure

A social storage cloud g = (A ,L ) is a storage-sharing and data backup network that

consists of a non-empty set A of N agents who are involved in storage (disk)-space sharing

and data backup activity; and a set, L , of links that connect these agents. The set L acts as
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a communication infrastructure for agents to share their storage space with others and search

for storage space provided by others. A link, 〈i j〉 ∈L , represents a direct communication

channel between agents i and j, which is bidirectional (and hence, 〈i j〉= 〈 ji〉). If 〈i j〉 ∈L ,

we call the agents i and j as neighbours in the network g. The number of neighbours of

agent i in g is denoted by ηi(g).

Data stored on local storage space is prone to loss due to multiple reasons such as virus

infection, software or hardware failure, data corruption, and so on. Therefore, each agent

wants to backup its data on remote storage (disk) space. For any agent, data loss is costly.

We capture this by assuming that the value each agent associates with its data is quantifiable

and given. Every agent (as a data owner) strives for obtaining storage space provided by

other agents (as storage providers) in g ∈ G (N). Agent i wants to backup b̄i amount of data

and shares s̄i = ∑
j∈A \{i}

b̄ j amount of storage space. This leads to endogenous social storage

cloud formation, where each agent builds its communication channel to seek storage space

from direct and indirect communication channels. We assume that each agent has global

(complete) information about the network structure.

3.2.2 Link Formation Rules and Network Formation

A network g evolves when agents perform two actions, namely, link addition (g+ 〈i j〉)

and link deletion (g−〈i j〉). Mutual consent of a pair of agents is required for addition of a

link between them, but any link can be unilaterally deleted.

3.2.3 Storage Sharing

According to [4], agents could limit storage-sharing with those who are close to them

in the social cloud. In order to capture this, we make use of the harmonic closeness21

(discussed in [89, 90, 91]), defined as follows:

Φi(g) = ∑
j∈g\{i}

1
di j(g)

, (3.5)

21We overview a few centrality measures in Appendix C.2.
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whereas, di j(g) is the shortest distance (length of the shortest path) between agents i and j

in g.

The harmonic closeness (centrality) of an agent is the sum of the inverse of its shortest

distance with other agents in the network. We use harmonic centrality as it deals with

disconnected networks as well.

In g, an agent j (as a storage provider) computes a probability distribution on all agents

for the purpose of allocating storage space to agent i ∈ g (as a data owner), as below:

αi j(g) =

1
di j(g)

∑
j∈g\{i}

1
di j(g)

=
1

di j(g)Φi(g)
, (3.6)

where αi j(g) is the probability that agent i will obtain storage space from agent j in g.

Remark 3.5. If di j(g) = ∞, then αi j(g) = 0 (and α ji(g) = 0). As agents i and j are discon-

nected in g, their chances of obtaining storage space from each other is zero.

The probability that an agent i obtains storage space from at least one agent in g is

γi(g) = 1− ∏
j∈g\{i}

(1−αi j(g)). (3.7)

3.2.4 Agent' s Utility and Symmetry

We define the utility of agents in a social storage cloud g with the given below.For agent

i, βi is the value of the local data that is to be backed up. An agent i loses its data with prob-

ability δi ∈ (0,1). Agent i obtains storage space provided by others in g, with probability

γi(g). These three aspects capture the expected benefit of agent i in g.

An agent searches for storage by staying connected in the network. Direct as well as

indirect links help agents to get storage space. The direct link between agents i and j

costs ςi. This cost can be interpreted as the cost required for maintaining storage space,

infrastructure, bandwidth, time, and so on. The cost to maintain an existing link and that

for adding (and maintaining) a new link are the same. There is no additional cost to add a

new link. Thus, agent i incurs a total cost of ςiηi(g) in order to obtain an expected benefit

of βiδiγi(g), in case of data loss. But the network is formed upfront, before the data loss
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happens. The cost to maintain links is, hence, incurred even in the case of no data loss,

where the expected benefit to i is βi(1−δi).

Therefore, given the aforementioned parameters, the expected utility is

ui(g) = βi(1−δi)+βiδiγi(g)− ςiηi(g). (3.8)

Equation 3.8 is a form of degree-distance based utility, where an agent's benefit de-

creases with an increase in the number of neighbours of other agents.

Due to similar reasons as discussed earlier, we define a symmetric social storage cloud

g as follows.

Definition 3.10. A symmetric social storage cloud (SSSC) g is a network where the benefit

(value) associated with backed-up data is the same for all agents in the network, that is,

βi = β j (say β ), ςi = ς j (say ς22), and δi = δ j (say δ 23) for all i, j ∈A , and hence, utility

of each agent i in g is

ui(g) = β (1−δ )+βδγi(g)− ςηi(g), (3.9)

where β ,δ ,ς ∈ (0,1).

For further study, we consider the above utility function (Equation (3.9)). Henceforth,

whenever we refer to a network, or just g, we mean an SSSC.

3.3 Social Compute Cloud: The Model

In this section, we describe the social compute cloud model, which is similar to the

social storage cloud model. We discuss this model separately as it is one of the extensions

of our social storage models to social cloud networks where any computational resource

may be shared among agents, directly or indirectly connected.

Definition 3.11. A social compute cloud (SCC) model g= {A ,L } consists of a non-empty

set A of N agents and a set L of ` undirected links, connecting these agents, where a link

between two agents represents a communication channel between them.

22We assume, ς =
ςi+ς j

2 , that is, a pair of agents involved in a link share the cost ς .
23For simplicity, we assume uniform data loss rate δ .
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In a social compute cloud g, the set L can be viewed as a communication infrastructure

that facilitates agents to share their computing resources (such as disk space and computing

power, workflow, etc.), with others, and search for resources shared by others. In g, agents

provide resource to other agents who are directly or indirectly connected with them.

3.3.1 Assumptions

This model stands on the following basic assumptions.

Assumption 3.1. In an SCC g, each agent shares a single type of resource of one unit.

Assumption 3.2. In a prevailing SCC g, an agent has a resource with probability p and

needs to perform a computational task with probability q.

The prevailing resource sharing situation in g is determined by resource provision and

requirement rate. We capture the resource availability in g with rate p. Another aspect is

that agent i wants to accomplish a computational task τi, for example, an agent may need to

backup its data. We capture the task performing rate with the parameter q.

Assumption 3.3. A agent plays two roles; a resource provider with the probability p(1−q)

and a resource consumer with the probability q(1− p).

Assumption 3.4. Each agent has global information, that is, each agent is aware of the

network structure g and the prevailing resource sharing situation in g.

3.3.2 Closeness-Based Resource Sharing

Similar to SSC, here, agents perform closeness based resource sharing. The closeness

of agents is captured by harmonic closeness here also.

In an SCC g, an agent j ∈ g (who acts as a resource provider) computes a probability

distribution on all agents for the purpose of allocating storage resource to agent i ∈ g (who

acts as a resource consumer), which is as below:

αi j(g) = p(1−q)
1

di j(g)

∑
j∈g\{i}

1
di j(g)

=
p(1−q)

di j(g)Φi(g)
. (3.10)
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In other words, αi j(g) is the probability that agent i will obtain storage space from agent j

in g.

Remark 3.6. If di j(g) = ∞ then αi j(g) = 0 (= α ji(g)). As agents i and j are disconnected

in g their chances of obtaining storage space from each other is nil.

The probability that agent i obtain resource from at least one agent in g is given as below:

γi(g) = 1− ∏
j∈g\{i}

(1−αi j(g)). (3.11)

3.3.3 Utility Structure

In an SCC g, an agent i gains benefit θi and ξi by accomplishing a computational task

τi and by providing a resource to others, respectively. An agent i ∈ g gains ξi with the

probability p(1−q). An agent i's expected benefit θi depends on whether the agent has its

own resource or depend on resource availability in g. Note that, with the probability pq the

agent is self-reliant, therefore, do not depends on g. However, the agent depends on others

for resource availability and seeks resource from others in g with the probability q(1− p).

An agent searches resources in g by maintaining direct links. Each agent i pays cost ςi

for each direct link in g. Thus, i incurs total cost ηi(g) times ςi in g. The cost ςi can be

interpreted as the efforts or time that agent i spent to maintain active connection (or link).

However, we consider agents i and j share the link formation cost such that, ς =
ςi+ς j

2 .

Then for a given resource sharing network g, the expected payoff ui(g) of agent i is

given as:

ui(g) = p(1−q)︸ ︷︷ ︸
provider

ξi +

self-reliant︷︸︸︷
pq θi +q(1− p)︸ ︷︷ ︸

consumer

γi(g)θi−
total cost︷ ︸︸ ︷
ςηi(g).

ui(g) = p(1−q)ξi +q[p+(1− p)γi(g)]θi− ςηi(g). (3.12)

Definition 3.12. A symmetric social compute cloud (SSCC) g is a social compute cloud

where the link formation cost, and the benefits that associated with accomplishing a com-

putational task and providing resource to others associated are the same for all agents in
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the network, i.e., ςi = ς j (say ς ), θi = θ j (say θ ) and ξi = ξ j (say ξ ) for all i, j ∈ A , and

hence, utility of each agent i in g is

ui(g) = p(1−q)ξ +q[p+(1− p)γi(g)]θi− ςηi(g). (3.13)

3.4 Chapter Summary

In this chapter, we have presented three models of social cloud formation. In the subse-

quent chapters we will discuss the stability, efficiency and resource availability with respect

to these models.
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Chapter 4

Social Storage Networks: Stability, Efficiency

and Contentedness

This chapter deals with two facets of social storage. First, as stated in Chapter 1, major

social storage studies (such as [16, 24, 92]) have considered exogenous social networks (an

underlying social network, for instance Facebook, Orkut, Venus, and so on) to construct a

social storage system and to study QoS related issues.

The approach of considering an exogenous social network to build a social storage sys-

tem (or to do QoS analysis) stands on the assumption that, an agent in the underlying net-

work is involved in data backup activity with all its .

However, this approach neglects the possibility that agents do not want to perform a data

backup activity with their set of existing neighbours (in the underlying network). In other

words, this approach does not focus on the preferences of agents over selecting their backup

partners. Such preferences may be derived by the cost and benefit that these agent expe-

rience in selecting their backup partners. It also not consider a rational (or self-interested)

behaviour of agents involved in the data backup activity is not taken into consideration24.

Therefore, the QoS analysis, which is based upon the neighbourhood size in the under-

lying network, is no longer valid. Thus, it is important to study when agents want to perform

a data backup activity and (or) when they do not. Hence, in this chapter, we model the social

storage system as an endogenous network formation game.

24Although Sharma and others [23] begin discussing about agents' strategic behaviour in a scenario where
limited storage is available for the agents, this has just been touched upon and has not been looked at in detail.
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Second, social storage systems may not be stable (when agents have no incentive to add

new partners or delete existing partners). Even if stable, they may not be efficient (maximiz-

ing the sum of utilities of all agents), and even if efficient, they may not be contended (when

all agents achieve their maximum utility). There is limited study on stability and efficiency

of social storage systems. While proposing the idea of F2F backup systems, [15] argue that

social ties between agents act as incentives for them to stay in the system, thereby resulting

in a stable social storage system. In their context, a system is unstable when agents arrive

and depart the social storage system randomly — lesser this randomness, more the stability

of the system. In our case, a social storage system, as above, is stable when agents have no

incentive to add new partners or delete existing partners. In the following subsections, we

motivate this definition of stability in detail.

In this chapter, we consider two frameworks for utility of agents in the social storage

network. We modify the pairwise stability definition of [31] to include mutual consent for

link deletion too (as required for social storage networks), and also to include storage and

budget constraints. After defining bilateral stability as a modification of pairwise stability,

we analyse bilateral stability of symmetric social storage networks. Our stability analysis

involved restudying conditions of stability under the new definition of pairwise stability

(that is, bilateral stability), derivation of a unique stability point (which is a neighbourhood

size where no agent has any incentive to add or delete a link), and some necessary and

sufficient conditions for symmetric social storage networks to be bilaterally stable. We also

show that ideally all agents in a network want to achieve their stability point but a network

can be bilaterally stable even when this stability point is not reached for one agent.

Further, we discuss which bilaterally stable networks would evolve. We also discuss

why just studying stability is not enough and one has to look at efficiency and contentment

of the network. Efficiency is the case when the sum of utilities of all agents is maximized,

and contentment is when the individual utility of every agent is maximized. We relate these

three properties of the network with one another. We also give conditions on the number of

agents and stability point (besides other constraints) to achieve bilaterally stable, efficient,

and contented networks.
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4.1 Stable Network Characterization and Stability Point

In this section, we study the bilateral stability aspects of social storage networks consid-

ering the utilities of agents and the solutions concept as defined in Section 3.1.3.

Free riding is a situation where an agent offers less storage space, but consumes more. To

deal with free riding, many backup systems have used the concept of symmetric resource

sharing (or equal resource trading). Internet Cooperative Backup System [44], PeerStore

[42], Pastiche [93], are a few examples of P2P backup systems, which use symmetric re-

source trading to mitigate free riding.

We term a social storage system with symmetric resource sharing as a symmetric social

storage system. We consider symmetry in the agents' value of their respective data, storage

space available, amount of data to be shared, and budget in two different scenarios. These

scenarios are discussed next.

Definition 4.1. A symmetric value network (SVN) g is a social storage network where the

benefit (value) associated with backed-up data is the same for all agents in the network, i.e.,

βi = β j (say β ), for all i, j ∈A , and hence, utility of each agent i in the network is

ui(g) = β (1−λ
ηi(g))− ςηi(g) for MO-Framework 3.1.3.1 and,

ui(g) = β (1−λ
ηi(g)) for SO-Framework 3.1.3.2,

(4.1)

where β ,λ ,ς ∈ (0,1).

Definition 4.2. A symmetric resource network (SRN) g is a social storage network where

all agents in g have an equal amount of (limited) storage space available to them, an equal

amount of data that they want to backup, and have the same budget. That is, for all i, j ∈ g,

si = s j (say s), di = d j (say d), and bi = b j (say b).

Remark 4.1. From this symmetric setup, we can move to real life scenarios in many ways.

We can have different value of cost and benefit for different agents. Another way to include
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heterogeneity in this model is by using the concept of Social Range Matrix [94], which we

have done recently [95]. Here, each agent is concerned about its perceived utility, which

is a linear combination of its utility as well as others utilities (depending upon whether the

pair are friends, enemies or do not care about each other).

Now, we work with SVN under the MO-Framework, where each agent in the given

network g has as much storage as is required for all other agents in g. That is,

si ≥ ∑
j∈g,
j 6=i

d j, for all i ∈ g. (4.2)

Note that si may be different from some other s j. For convenience, we shall call such a

network as SVN with sufficient storage. The reason we do this is that it leads to the results

of the realistic scenario, that is, SV-SRN under the MO-Framework.

Remark 4.2. An SV-SRN, g under the MO-Framework is a social storage network where

the utility of each agent i ∈ g is ui(g) = βi(1−λ ηi(g))− ςηi(g), and for all agents i, j ∈ g,

βi = β j,si = s j, and di = d j.

Next, we work with SVN under the SO-Framework where each agent in the given net-

work g has as much storage as is required for all other agents in g, and each agent in the

given network g has as much budget as is required to maintain backup-partnerships with

every other agent in g. That is,

si ≥ ∑
j∈A , j 6=i

d j, for all i ∈ g, and, bi ≥ ς(N−1), for all i ∈ g where N = |A |.

(4.3)

As in the SO-Framework, this leads to the scenario of SV-SRN under the SO-Framework.

However, for SO-Framework, we present the results for SRN directly rather than SV-SRN.

This is because SV-SRN is a subset of SRN and so, what holds for SRN does for SV-SRN

as well.

Remark 4.3. An SV-SRN, g under the SO-Framework is a social storage network where the

utility of each agent i ∈ g is ui(g) = βi(1−λ ηi(g)), and for all agents i, j ∈ g, βi = β j,si =

s j,di = d j, and bi = b j.
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For ease of exposition, from now onward, whenever we discuss SVN networks, we

will always assume sufficiency of every resource — that is, sufficient storage under MO-

Framework, and sufficient storage and budget under SO-Framework. Whenever we discuss

SRN or SV-SRN networks, we will not make these assumptions of sufficiency. These are

summarized in Table 4.1.

Network Type Framework Resource Availability

SVN MO-Framework Sufficient Storage.

SV-SRN MO-Framework Limited Storage and Limited Budget.

SVN SO-Framework Sufficient Storage and Sufficient Budget.

SRN SO-Framework Limited Storage and Limited Budget.

Table 4.1: Summary of network study under different frameworks with/ without sufficient
resources

In the following subsections, we characterize bilaterally stable symmetric social storage

networks, by first deriving the deviation conditions — conditions for an agent to have an

incentive to add or delete a link, given the network parameters (that is, disk failure rate λ ,

value of backup data β , and the cost of maintaining a link ς ). This also gives us necessary

and sufficient conditions for bilateral stability, in terms of the network parameters (λ , β , and

ς ). Further, this makes it easier to visualize a bilaterally stable network, and we use these

conditions to derive the ideal neighbourhood size for having a bilaterally stable network.

We term this ideal neighbourhood size as the stability point (see Definition 4.3)25).

Definition 4.3. Given a network g, we define the stability point η̂ of g as the neighbourhood

size (degree) such that no agent in g has any incentive to increase its neighbourhood size to

more than η̂ and to decrease it to less than η̂ .

We, now, characterize SVN and SV-SRN under the MO-Framework, and SVN and SRN

under the SO-Framework. Further, we prove uniqueness of the stability point of these net-

works and also show that the stability point is independent of the number of agents for
25Note that, Definition 4.3 is a result of Theorems 4.3, 4.4 and 4.7, which we have discussed in the next

section.
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all cases under the MO-Framework and for all cases but one trivial case under the SO-

Framework, the trivial case being SVN with sufficient storage and sufficient budget where

it is easy to see that the complete network is the only stable network.

4.1.1 Characterization Under the MO-Framework

In this subsection, we characterize bilaterally stable SVN and SV-SRN under the MO-

Framework. We, first, derive conditions under which an agent has an incentive to add a

new link or delete an existing link. Then, we derive necessary and sufficient conditions

for bilateral stability of SVN and SV-SRN under the MO-Framework, and prove that the

stability point of these networks is unique and independent of the number of agents.

Lemma 4.1. In an SVN g, under the MO-Framework, for any agent i ∈ g, forming a part-

nership with another agent j ∈ g is beneficial if and only if ς < βλ ηi(g)[1−λ ].

Proof. As g is an SVN under the MO-Framework,

ui(g) = β (1−λ ηi(g))− ςηi(g), for all i ∈ g.

For i, j ∈ g, if 〈i j〉 6∈ g, then

ui(g+ 〈i j〉) = [β (1−λ ηi(g)+1)]− [ς(ηi(g)+1)].

Adding a new link or backup partner is beneficial for i if and only if

ui(g+ 〈i j〉)> ui(g), if and only if

[β (1−λ ηi(g)+1)− ς(ηi(g)+1)]> [β (1−λ ηi(g))− ς(ηi(g))], if and only if

ς < β [λ ηi(g)−λ ηi(g)+1].

Remark 4.4. The term on the left-hand side of the inequality in Lemma 4.1 is the cost ς

that agent i incurs in order to add a new neighbour j. The term on the right-hand side is the

expected benefit that agent i receives by forming a new link with neighbour j.

Lemma 4.2. In an SVN g, under the MO-Framework, for any agent i ∈ g, breaking an

existing partnership with another agent j ∈ g is beneficial if and only if

ς > βλ ηi(g)−1[1−λ ].
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Proof. As g is an SVN, under the MO-Framework, ui(g) = β (1−λ ηi(g))− ςηi(g), for all

i ∈ g.

If 〈i j〉 ∈ g, then ui(g−〈i j〉) = [β (1−λ ηi(g)−1)]− [ς(ηi(g)−1)].

Deleting an existing link is beneficial for any agent i if and only if

ui(g−〈i j〉)> ui(g)), if and only if

[β (1−λ ηi(g)−1)− ς(ηi(g)−1)]> [β (1−λ ηi(g))− ς(ηi(g))], if and only if

ς > β [λ ηi(g)−1−λ ηi(g)].

Remark 4.5. We interpret Lemma 4.2 in lines similar to Remark 4.4.

Theorem 4.1. An SVN g, under the MO-Framework, is bilaterally stable if and only if

1. for all 〈i j〉 ∈ g, if βλ ηi(g)−1[1−λ ]< ς , then βλ η j(g)−1[1−λ ]> ς , and

2. for all 〈i j〉 6∈ g, if βλ ηi(g)[1−λ ]> ς , then βλ η j(g)[1−λ ]< ς .

Proof. Follows from Lemma 4.1, Lemma 4.2 and Definition 3.3 of bilateral stability.

We state and prove the following for SV-SRN, under the MO-Framework.

Lemma 4.3. Let g be an SV-SRN, under the MO-Framework. For any agent i ∈ g, adding a

new partnership with agent j ∈ g is beneficial if and only if

(ς < βλ ηi(g)[1−λ ] and s−dη j(g)≥ d),

and breaking an existing partnership with agent j ∈ g is beneficial if and only if

ς > βλ ηi(g)−1[1−λ ].

Proof. If 〈i j〉 6∈ g, agent i has an incentive to add a link with agent j, if and only if

ς < β [λ ηi(g)−λ ηi(g)+1] (from Lemma 4.1), where ηi(g) = neighbourhood size of i,

and the amount of storage available with agent j ≥ agent i's

data size, if and only if

ς < β [λ ηi(g)−λ ηi(g)+1] and s j− ∑
k∈η j(g)

dk ≥ di,

where η j(g) is the set of neighbours of j, if and only if
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ς < β [λ ηi(g)−λ ηi(g)+1] and s−dη j(g)≥ d, (as sk = sl,dk = dl , for all k, l ∈ g),

where η j(g) is the neighbourhood size of j.

To delete an existing link, agent i only looks at the cost for maintaining the link, and

hence, from Lemma 4.2, agent i has an incentive to delete a link if and only if

ς > β [λ ηi(g)−1−λ ηi(g)].

Theorem 4.2. An SV-SRN g, under the MO-Framework, is bilaterally stable if and only if

1. for all 〈i j〉 ∈ g, βλ ηi(g)−1[1−λ ]< ς ⇒ βλ η j(g)−1[1−λ ]> ς , and

2. for all 〈i j〉 6∈ g, βλ ηi(g)[1−λ ]> ς and s−dη j(g)≥ d⇒

βλ η j(g)[1−λ ]< ς or s−dηi(g)< d.

Proof. Follows from Lemma 4.3, and Definition 3.4 of bilateral stability.

Now, we look at the stability point of SVN and SV-SRN under the MO-Framework.

Theorem 4.3. Let g be an SVN under the MO-Framework. Then, the stability point η̂ of g

is unique and is given by η̂ =

⌈
| ln( ς

β (1−λ )
)|

| lnλ |

⌉
=

⌊
|(ln ςλ

β (1−λ )
)|

| lnλ |

⌋
.

Proof. From Lemma 4.1, adding a link for agent i is beneficial if and only if

ηi(g) lnλ > ln( ς

β (1−λ )), if and only if

ηi(g)<
| ln( ς

β (1−λ )
)|

| lnλ |

Hence, for agent i, increasing neighbourhood size is not beneficial if and only if

ηi(g)≥
| ln( ς

β (1−λ )
)|

| lnλ | .

Similarly, from Lemma 4.2, deleting a link for agent i is beneficial if and only if

ln( ςλ

β (1−λ ))> ηi(g) lnλ , if and only if
| ln( ςλ

β (1−λ )
)|

| lnλ | < ηi(g)
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So, decreasing neighbourhood size is not beneficial for agent i if and only if
| ln( ςλ

β (1−λ )
)|

| lnλ | ≥ ηi(g).

Therefore, L =
| ln( ς

β (1−λ )
)|

| lnλ | and U =
| ln( ςλ

β (1−λ )
)|

| lnλ | are, respectively, the lower and upper bounds

of η̂ .

U =
| ln( ς

β (1−λ )
)|

| lnλ | + | lnλ |
| lnλ | = L+1.

It is easy to see that if L is not an integer (and hence, U is not an integer), the stability point

η̂ is the unique positive integer between L and U .

Remark 4.6. For most values of ς ,β , and λ ,
| ln( ς

β (1−λ )
)|

| lnλ | , and hence,
| ln( ςλ

β (1−λ )
)|

| lnλ | are non-

integers.

Example 4.1. Consider the networks g1 and g2 (see Figure 4.1). In both the networks, let

the cost ς = 0.0055, β = 0.6, and λ = 0.2. Here,
⌈
| ln( ς

β (1−λ )
)|

| lnλ |

⌉
= d2.72e and

⌊
|(ln ςλ

β (1−λ )
)|

| lnλ |

⌋
=

b3.72c, and hence, η̂ = 3. In network g1, all agents have three neighbours each, and hence,

g1 is bilaterally stable. Despite the fact that agent g in the network g2 has an incentive to

add one more link, network g2 is also bilaterally stable.

((a)) Network g1 ((b)) Network g2

Figure 4.1: Stable SVN networks under the MO-Framework with sufficient storage
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Now, we derive the stability point for SV-SRN network under the MO-Framework.

Here, Definition 3.4 is relevant, and for simplicity, we assume that s
d is an integer.

Theorem 4.4. Let g be an SV-SRN, under the MO-Framework.

Then, ñ = min{η̂ , s
d}, is the unique stability point of g.

Proof. If all agents have sufficient storage, then from Theorem 4.3, η̂ is the stability point.

Now, let us assume that each agent has a total amount of storage, s, available for sharing,

d amount of data to backup. Then, s
d defines the maximum possible neighbourhood size of

each agent in the network.

Therefore, min{η̂ , s
d} is the stability point, given ς ,λ ,β ,s,d.

Alternatively, we may also use the bound s
d in Lemmas 4.1, 4.2 and Theorem 4.3.

Henceforth, for the sake of uniformity, we shall use η̂ (and not ñ) for the stability point

of SV-SRN under the MO-Framework too.

4.1.2 Characterization Under the SO-Framework

In this subsection, we derive necessary and sufficient conditions for bilateral stability

of SVN and SRN under the SO-Framework, and then discuss the stability point of these

networks.

Lemma 4.4. In an SVN, g, under the SO-Framework, for any agent i ∈ g, forming a part-

nership with another agent j ∈ g is always beneficial.

Proof. As g is an SVN, under the SO-Framework, ui(g) = β (1−λ ηi(g)), for all i ∈ g.

For i, j ∈ g, if 〈i j〉 6∈ g, then

ui(g+ 〈i j〉) = [β (1−λ ηi(g)+1)].

Adding a new link or backup partner is beneficial for agent i if and only if

ui(g+ 〈i j〉)> ui(g), if and only if

[β (1−λ ηi(g)+1)]> [β (1−λ ηi(g))], if and only if

λ ηi(g)+1 < λ ηi(g), if and only if

λ < 1, which is always true.
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Corollary 4.1. In an SVN, g, under the SO-Framework, no agent benefits by deleting any

existing partnership.

Theorem 4.5. An SVN, g, under the SO-Framework, is bilaterally stable if and only if g is

a complete network.

Proof. Follows from Lemma 4.4 and Corollary 4.1.

Now, we state and prove the following for SRN, under the SO-Framework.

Lemma 4.5. In an SRN, g, under the SO-Framework, for any agent i∈ g, forming a partner-

ship with another agent j ∈ g is beneficial if and only if b−ςηi(g)≥ ς and s−dη j(g)≥ d.

Proof. In the SO-Framework, the utility of each agent i ∈ g increases with increase in its

neighbourhood size ηi(g).

Therefore, for any agent i ∈ g, forming a partnership with another agent j ∈ g is

beneficial if and only if agent i's budget allows this link addition and agent j has free

storage space for agent i's data. (Refer Definition 3.5).

Agent j has free storage space for i's data, if and only if s−dη j(g)≥ d. (Similar to the

proof of Lemma 4.3).

Similarly, agent i's budget allows adding a link, if and only if b− ςηi(g)≥ ς .

Corollary 4.2. In an SRN, g, under the SO-Framework, no agent benefits by deleting any

existing partnership.

Theorem 4.6. An SRN g under the SO-Framework is bilaterally stable if and only if [b−

ςηi(g)≥ ς and s−dη j(g)≥ d]⇒ [b− ςη j(g)< ς or s−dηi(g)< d], for all 〈i j〉 6∈ g.

Proof. Follows from Lemma 4.5, and Definition 3.5.

Remark 4.7. Since in an SRN g under the SO-Framework, no agent benefits by deleting

any existing partnership, link deletion does not appear in the bilateral stability conditions

above.
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Now, we look at the stability point of SVN and SRN under the SO-Framework. The

following case (Theorem 4.7) is the only case where the stability point depends on the

number of agents, N.

Theorem 4.7. In an SVN g, under the SO-Framework, η̂ = N− 1, is the unique stability

point, where N is the number of agents.

Proof. Follows from Lemma 4.4.

Except SVN under the SO-Framework, in all other scenarios (including the following),

the stability point is independent of N. In all cases (including the above), the stability point

is unique. In the following, for simplicity, we assume that s
d and b

ς
are integers.

Theorem 4.8. In an SRN g, under the SO-Framework, η̂ = min{ s
d ,

b
ς
}, for all i ∈ g, is the

unique stability point, where no agent has incentive to add or delete a link.

Proof. A constructive proof follows from Lemma 4.5.

Alternatively, it is clear that it is beneficial for each agent to add as many links as possible.

The degree of agent i in g, ηi(g), is limited only by its storage space s and budget b. That

is,

s≥ dηi(g) and b≥ ςηi(g).

The theorem follows as the above is true for all i ∈ g.

Example 4.2. Let us consider the networks g1 (see Figure 4.2(a)) and g2 (see Figure 4.2(b)),

each consisting of six agents, and network g3 (see Figure 4.2(c)) consisting of seven agents.

Assume that, in g1 and g3, s = 60 TB, d = 20 TB, b = 0.5, and ς = 0.1. Assume that, in

network g2, s = 60 TB, d = 10 TB, b = 0.4, and ς = 0.1.

Note that in networks g1 and g3, although the budget constraints permit agents to main-

tain five neighbours each, storage limitations do not permit agents to maintain more than

three neighbours each, and hence, g1 and g3 are bilaterally stable networks.

In network g2, although storage constraints permit agents to maintain six neighbours

each, budget constraints do not allow agents to maintain more than four neighbours each.

Hence, g2 is bilaterally stable.
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We summarize the above results on bilateral stability conditions and stability point in

Table 4.2 and Table 4.3, respectively.

Network
Type

Framework Condition(s) for Bilateral Stability

SVN MO-
Framework

1. For all 〈i j〉 ∈ g,
βλ ηi(g)−1[1−λ ]< ς ⇒ βλ η j(g)−1[1−λ ]> ς , and

2. For all 〈i j〉 6∈ g,
βλ ηi(g)[1−λ ]> ς ⇒ βλ η j(g)[1−λ ]< ς .

SV-SRN MO-
Framework

1. For all 〈i j〉 ∈ g,
βλ ηi(g)−1[1−λ ]< ς ⇒ βλ η j(g)−1[1−λ ]> ς , and

2. For all 〈i j〉 6∈ g,
βλ ηi(g)[1−λ ]> ς and s−dη j(g)≥ d

⇒ βλ η j(g)[1−λ ]< ς or s−dηi(g)< d.

SVN SO-
Framework

Each agent i ∈ g has backup partnerships with all agents
j ∈ g with j 6= i.

SRN SO-
Framework

For all 〈i j〉 6∈ g,
[b− ςηi(g)≥ ς and s−dη j(g)≥ d]

⇒ [b− ςη j(g)< ς or s−dηi(g)< d].

Table 4.2: Summary of stability condition for different network

((a)) Network g1 ((b)) Network g2 ((c)) Network g3

Figure 4.2: Stable SRN networks under the SO-Framework
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Network
Type

Framework Unique Stability Point

SVN MO-Framework η̂ =

⌈
| ln( ς

β (1−λ ) )|
| lnλ |

⌉
=

⌊
|(ln ςλ

β (1−λ ) )|
| lnλ |

⌋
.

SV-SRN MO-Framework ñ = min{η̂ , s
d}

SVN SO-Framework η̂ = N−1

SRN SO-Framework η̂ = min{ s
d ,

b
ς
}

Table 4.3: Summary of stability point for different network types under MO- and SO-
frameworks

4.2 Stable, Efficient and Contented Networks

We first discuss conditions on N and η̂ for connected networks to be bilaterally stable

in Section 4.2.1.1. We, then, look at networks that are comprised of multiple connected

components, and discuss conditions on N, η̂ as well as number of agents in individual

components that lead to a bilaterally stable network in Section 4.2.1.2. Finally, we discuss

conditions that lead to unique bilaterally stable networks in Section 4.2.1.3.

Henceforth, whenever we say g is a symmetric social storage network, g may be any of

the networks SVN, SRN or SV-SRN with N agents, under the MO- or SO- Framework, with

the unique stability point η̂ corresponding to that network type and framework.

4.2.1 Stable Networks

Up to this point, we have not explicitly discussed the process of network formation. This

is because all our results above are independent of any process or protocol for network for-

mation. However, the following results depend on the where we start the network formation

from (refer [96] for different network configurations). We consider networks that evolve

either from a null network (where all agents are initially disconnected) or from a complete

network (where all agents are initially connected). When a network evolves from the null

network, every agent starts contacting other agents to form links, in no particular order.

This happens until there is no pair of agents who would consent to form a link. Similarly,
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when a network evolves from the complete network, pairs of agents consider deleting links

if beneficial.

4.2.1.1 Connected Stable Networks

We start our discussion with the following remark.

Remark 4.8. Each agent aims to achieve neighbourhood size η̂ .

Though agents want to achieve neighbourhood size η̂ , this may not always be possible.

This process of link addition or deletion by agents to reach η̂ leads to a bilaterally stable

network. The following example demonstrates how stable networks may evolve when all

agents are isolated (Figure 4.3(a)) or all connected (Figure 4.3(b)), initially.

((a)) Network g1 ((b)) Network g2

Figure 4.3: Stable networks g1 evolved from the null network, and g2 from the complete
network

Example 4.3. We have two networks g1 (see Figure 4.3(a)) and g2 (see Figure 4.3(b)). Let

us assume η̂ = 3 (indicates that no agent benefits by adding or more than three links or

deleting less than three links).

Let us consider, at the beginning, all agents are isolated in network g1 (thus, it evolves

from the empty network) and all agents are connected with each other in network g2 (thus,

it evolves from the complete network). Note that, networks g1 and g2 both are bilaterally

stable.

In g1, although agent e has an incentive to add another link, no other agent having

no link with e would consent to add a new link with e as they have already reached their
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stability point η̂ (that is, their neighbourhood size is η̂ = 3) and hence, have no incentive

to add or delete any link.

In g2, although agent f has an incentive to delete a link, no other agent (having a link

with f ) would consent to delete their link with f as they (that is, agents g, h, i and j) have

already reached their stability point η̂ (that is, their neighbourhood size is η̂ = 3) and

hence, have no incentive to add or delete any link.

In Proposition 4.1 and 4.2 below, we provide results that would be useful for an inde-

pendent observer in checking for a bilateral stable symmetric social storage network, how

many agents have maximised their utility. Thus, as discussed earlier, such an observer (say,

an administrator or regulator) can externally perturb the system so that all agents achieve

maximum utility.

Proposition 4.1. Let N and η̂ be (positive) odd integers, with η̂ < N. Then:

1. Any symmetric social storage network g with N agents and stability point η̂ consists

of at least one agent who has an incentive to either add or delete a link.

2. There exists a connected, bilaterally stable, symmetric social storage network with

exactly N−1 agents who have no incentive to add or delete any link.

Proof. Let g be bilaterally stable, and let ` be the number of links in g.

η̂ <N ensures that ` does not exceed the maximum number of links g can possibly have,

that is, N×(N−1)
2 .

As the utility of each agent is maximum when its neighbourhood size is η̂ , total number

of links ˜̀= N×η̂

2 will be attained if possible. However, ˜̀ is not an integer, as both N and η̂

are odd.

This implies that, not all N agents have a neighbourhood size of η̂ at stability. This

proves (1).

Now, N−1 agents having η̂ neighbours and the Nth agent having η̂−1 or η̂ +1 neigh-

bours are, however, possible. Let g be such a network with exactly N−1 agents who have

no incentive to add or delete any link. These N−1 agents have neighbourhood size η̂ . None

of these N−1 agents will consent to add or delete any link (among themselves, or with the
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Nth agent). Thus, the symmetric social storage network g is bilaterally stable. If g is con-

nected, we are done. Otherwise, all non-trivial components (that is, components with 2 or

more agents in each) of g can be connected as follows, without changing the neighbourhood

sizes of any of the agents. Let 〈i1 j1〉 and 〈i2 j2〉 be links in two different (non-trivial) com-

ponents, say g(κ1) and g(κ2) of g. Deleting both these links, and replacing them with 〈i1 j2〉

and 〈i2 j1〉 connects g(κ1) and g(κ2), without changing the neighbourhood sizes of any of

the agents. As neighbourhood sizes of all the agents remain the same, the resulting graph

is bilaterally stable too. Now, if i is an isolated agent and 〈 jk〉 is a link in g, delete 〈 jk〉,

and add 〈i j〉 and 〈ik〉 instead. In this case, clearly, i continues to be the only agent with an

incentive to either add or delete a link. This proves (2).

Remark 4.9. In the proof of Proposition 4.1, on the one hand, when the network evolves

from the null network, η̂ − 1 neighbours for the Nth agent is as beneficial as possible, and

the total number of links will, hence, be `= [(N−1)η̂+(η̂−1)]
2 .

On the other hand, when the network evolves from the complete network, η̂ + 1 neigh-

bours for the Nth agent is as beneficial as possible, and the total number of links will, hence,

be `= [(N−1)η̂+(η̂+1)]
2 . This number also does not exceed the maximum possible number of

links, as η̂ ≤ N−2 (because η̂ < N, and both η̂ and N are odd).

Proposition 4.2. Let at least one of N and η̂ be even, and let η̂ < N. Then, there exists a

connected bilaterally stable symmetric social storage network g where no agent has incen-

tives to add or delete any link.

Proof. Existence of the η̂-regular network on N agents, g, follows trivially from the Erdős–

Gallai theorem. Clearly g is a bilaterally stable.

4.2.1.2 Stable Network with Multiple Connected Components

We, now, discuss results on stability of symmetric storage networks with two or more

components. Examples of scenarios where this might be useful include companies under

the same umbrella group, where the social storage networks of each of these companies may

be viewed as a component of a larger network, which may be monitored or analysed by an

independent observer (as discussed in the previous section).
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Claim 4.1. Suppose g is a symmetric social storage network with two or more components.

If g is bilaterally stable, then there is at most one component with less than or equal to η̂

agents.

Proof. Suppose, g(κi) and g(κ j) are two different (non-empty) components with less than

or equal to η̂ agents. It is easy to see that all agents in g(κi) as well as in g(κ j) have less

than η̂ neighbours. Consider agents i ∈ g(κi) and j ∈ g(κ j). Clearly, 〈i j〉 6∈ g but both i and

j have incentives to form (at least) one link each, implying g is not bilaterally stable.

Proposition 4.3. Let g be a symmetric social storage network which has evolved from the

null network. Let η̂ be odd. Suppose g consists of κ connected components, κ ≥ 2. Suppose

at least two of the components, say g(κ1) and g(κ2), each have either ≤ η̂ agents or an odd

number of agents more than η̂ . Then g is not bilaterally stable.

Proof. Follows from Proposition 4.1 and Claim 4.1.

One agent in g(κ1) (say pκ1) and another agent in g(κ2) (say pκ2) each have neighbour-

hood size less than η̂ . Hence, both pκ1 and pκ2 have an incentive to add a link, and gain by

forming 〈pκ1 pκ2〉 6∈ g. Thus, the network g is not bilaterally stable.

Example 4.4.

((a)) Two components, g(κ1) and
g(κ2), of g

((b)) Bilaterally stable network g′

Figure 4.4: Two components g(κ1) and g(κ2), though complete, are bilaterally unstable
when η̂ = 3 and form a bilaterally stable network g′. However, the network g consisting of
g(κ1) and g(κ2) as two components is bilaterally stable when η̂ = 2
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Consider network g (see Figure 4.4(a)), with two components g(κ1) and g(κ2).

If η̂ = 3, then both components of g have η̂ agents. Every agent has an incentive to

add one more link. Thus g is bilaterally unstable. Clearly, no agent can add any more links

within the same component. The network g′ (see Figure 4.4(b)) is an example of a bilaterally

stable network, which evolves from g. Now, if η̂ = 2, the network g is bilaterally stable.

Corollary 4.3. Let g be a symmetric social storage network which has evolved from the null

network and which consists of κ components, κ ≥ 2. Let η̂ be odd, and let N > η̂ . If g is

bilaterally stable, then at least κ−1 components must consist of an even number of agents

greater than η̂ .

Remark 4.10. In Proposition 4.3 and Corollary 4.3, if we consider networks which have

evolved from the complete network, then Example 4.5 below acts as a counter example. If η̂

is even, we apply Proposition 4.2 to each component having more than η̂ agents to see that

each of these components is bilaterally stable. Now, there can be at most one component

with ≤ η̂ agents (refer Claim 4.1), and if there is such a component, g is bilaterally stable

if and only if that component is complete.

The following example shows a bilaterally stable network, which has evolved from the

complete network.

Example 4.5. Let N = 15 and η̂ = 3. Consider the network g on N agents (see Figure

4.5) that consists of three components, g(κ1), g(κ2) and g(κ3). Though g consists of three

agents, a, f and k, who have an incentive to delete a link each, g is bilaterally stable. This is

because the agents, a, f and k, are in three different components, in each of which all other

agents have neighbourhood size η̂ .

Claim 4.2. Suppose g is a symmetric social storage network. If η̂ = 1, and if g has evolved

from the null network, then g is bilaterally stable if and only if g consists of a set of N−1
2

connected pairs of agents plus one isolated agent if N is odd, and a set of N
2 connected pairs

of agents if N is even.

Proof. As g has evolved from the null network and as η̂ = 1, no agent has two or more

neighbours. Hence, if N is even, g consists of N
2 connected pairs of agents. Similarly, if N is

odd, g consists of one isolated agent and the remaining N−1 agents connect in pairs.
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((a)) g(κ1) ((b)) g(κ2) ((c)) g(κ3)

Figure 4.5: Stable Network g on 15 agents, consisting of 3 components g(κ1), g(κ2) and
g(κ3)

Remark 4.11. In Claim 4.2, if g has evolved from the complete network (by mutual deletion

of links), then networks consisting of star components are also bilaterally stable as per

Definitions 3.3, 3.4, and 3.5.

Remark 4.12. In Claim 4.2, if g is a given network, then in addition to the star components

as discussed in Remark 4.11, g may also consist of (at most) one isolated agent and continue

to be bilaterally stable.

It is interesting to note that in any star network, given that η̂ = 1, though the universal

agent has incentive to delete a link (or links), no other (pendant) agent will consent to

deletion. However, if we start from the null network, we have the following observation.

Claim 4.3. Suppose g has evolved from the null network. Then, if g is bilaterally stable, g

can never contain a star network as component.

Proof. If η̂ = 1, the result follows from Claim 4.2.

Suppose η̂ > 1. If possible, let g be a star network. It is easy to see that all pendant

agents have incentives to add (at least) one more link implying that g is not bilaterally

stable, a contradiction.
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4.2.1.3 Unique Stable Networks

In the previous subsections, we have seen results on the existence of a bilaterally stable

social storage network. In this subsection, we look at conditions under which a unique bi-

laterally stable social storage network exists. Whenever a unique bilaterally stable network

exists, the agents themselves endogenously form this network. Any independent observer

or regulator knows precisely which network would form (or has formed).

Claim 4.4. If N = η̂ + 1 or η̂ ≥ N, then there exists a unique symmetric social storage

network g that is bilaterally stable, namely the complete network on N agents.

Proof. In both cases (that is, N = η̂ +1 or η̂ ≥ N), the complete network is the one which

maximises the utility of each agent. That is, no agent has an incentive to delete any existing

link and, clearly, no agent can add any more links.

Claim 4.5. If N > η̂ +1, then there are always two or more different (with respect to degree

sequence26) bilaterally stable networks.

Proof. If N = η̂ + 2, the following stable networks are possible, which are different with

respect to degree sequence. The first, where N−1 agents form a clique and the other agent

is isolated. The second network is as follows. If η̂ and, hence, N are even, the connected

regular network with N agents, where each agent has a neighbourhood size of η̂ is bilaterally

stable. If η̂ and, hence, N are odd, the connected network with N agents, where N−1 agents

have a neighbourhood size of η̂ and the other agent has a neighbourhood size of η̂ − 1, is

bilaterally stable. (If η̂ and N are odd, the connected network where N− 1 agents have a

neighbourhood size of η̂ and the other agent has a neighbourhood size of η̂ + 1, is a third

bilaterally stable network).

Example 4.6. Let η̂ = 3 and N = 6. Then, there are four networks g1 (see Figure 4.6(a)), g2

(see Figure 4.6(b)), g3 (see Figure 4.6(c)) and g4 (see Figure 4.6(d)) which are bilaterally

stable.
26Two networks are different with respect to degree sequence if the sorted sequence of degrees (neighbour-

hood sizes) in one is different from that of the other. Note that, both sequences are sorted in the ascending
order (or both in the descending order).
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((a)) g1 ((b)) g2

((c)) g3 ((d)) g4

Figure 4.6: Bilaterally stable networks with N = 6 agents, η̂ = 3.

If we look at specific protocols of network formation, then we get further uniqueness

results. For example, in Claim 4.2, starting from the null network (or any network where

no agent has more than 1 neighbour), the resulting bilaterally stable network is unique up to

isomorphism.

4.2.2 Efficient and Contented Social Storage Networks

In this subsection, we look at efficient social storage networks and contented social

storage networks. As discussed earlier, an observer who observes or monitors or regulates

the network may externally perturb the system so as to reach an efficient or a contented

network. We have seen in Section 4.1 that there exists a unique stability point, η̂ , (for

each network type, under the given framework) such that, no agent gains by adding more

neighbours than η̂ , and severing existing relationships resulting in a neighbourhood size of

less than η̂ . An efficient social storage network is, hence, one in which maximum possible
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number of agents have η̂ neighbours.

Remark 4.13. An efficient social storage network is bilaterally stable.

We, now, discuss an example to highlight the fact that not all stable networks are effi-

cient.

Example 4.7. Suppose there are six agents, a,b,c,d,e and f , in a social storage network

with stability point η̂ = 3. Assume that, starting from the null network, these agents add

links (that is, build mutual data backup partnerships). Different network structures may

emerge, for example Figure 4.7(a), Figure 4.7(b), and Figure 4.7(c)).

In network g1 (see Figure 4.7(a)), agent e's expected value of data backup is less than

that of the rest of the agents. In g2 (see Figure 4.7(b)), all agents achieve the same (and

maximum) expected value of data backup, and in g3 (see Figure 4.7(c)), agents a,b,c, and

d achieve higher expected value of data backup than agents e and f . g2 is efficient, whereas

g1 and g3 are not (though they are bilaterally stable).

We, now, discuss contented networks.

Remark 4.14. A contented social storage network is bilaterally stable.

It is easy to see that not all stable networks are contented. In Example 4.3, though both

g and s are stable, neither of these networks are contented. Consider g. An independent

observer could just add a storage device, p, to the network, which leads to a contented

((a)) g1 ((b)) g2 ((c)) g3

Figure 4.7: Network structure and social welfare
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network as explained below. This storage device acts as a dummy agent, not trying to

maximize its utility, and always agreeing to add or delete any link with any agent. Hence,

for contented networks, we do not consider any dummy agent as a part of the network. In

g, agent e has not achieved the maximum possible utility (as η̂ = 3, but e has 2 neighbours)

while all other agents have. By allowing e to store a copy of its data on storage device p,

e also obtains the maximum possible utility. This network is, now, a contented network

(where the utility of the dummy agent p is not considered). This is, in fact, a hybrid model

— hybrid between a centralized storage system and a decentralized one.

Next, we relate contented networks and efficient networks.

Proposition 4.4. Let g be a symmetric social storage network with N agents and stability

point η̂ . Then:

1. If at least one of N and η̂ is (are) even, then, g is efficient if and only if g is contented.

2. Suppose N and η̂ are odd. Then, an efficient network does exist but there does not

exist any contented network.

Proof. 1 follows from Proposition 4.2, since, if at least one of N and η̂ is/ are even, then, g

is efficient if and only if g is η̂-regular.

2 follows from Proposition 4.1.

Remark 4.15. Not all efficient networks are contented.

In Example 4.3, neither g nor s are contented. However, (at least) one of them is efficient.

The following Propositions help identify which of them is/ are efficient, under the MO- as

well as SO-Frameworks, for SVN, SRN and SV-SRN networks, as the case may be (Refer

Table 4.1). Note that any stable network in which maximum possible number of agents have

η̂ neighbours is not necessarily efficient, as per Definitions 3.6, 3.7, and 3.8.

Proposition 4.5. Let g be an SVN or SV-SRN under the MO-Framework, with N agents and

stability point η̂ . Suppose both N and η̂ are odd. Then g is efficient if and only if g has

N−1 agents with neighbourhood size η̂ and one of the following holds:
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1. c < βλ
η̂

2 ( 1
λ
−λ ) and g has one agent with neighbourhood size η̂ +1.

2. c > βλ
η̂

2 ( 1
λ
−λ ) and g has one agent with neighbourhood size η̂−1.

3. c = βλ
η̂

2 ( 1
λ
−λ ) and g has one agent with neighbourhood size either η̂ +1 or η̂−1.

Proof. For each i∈A, its utility is ui(g) = βi(1−λ ηi(g))−cηi(g). (Refer Equation 3.2). As

the network is SVN or SV-SRN, βi = β , for all i.

max
ηi(g)

ui(g) = max
ηi(g)
{β (1−λ

ηi(g))− cηi(g)}= β (1−λ
η̂)− cη̂

Let g1 be the network where N− 1 agents have η̂ neighbours and the other agent has

η̂ − 1 neighbours. Let g2 be the network where N− 1 agents have η̂ neighbours and the

other agent has η̂ +1 neighbours.

ui(g1) = β (1−λ (η̂−1))− c(η̂−1) and ui(g2) = β (1−λ (η̂+1))− c(η̂ +1).

From Proposition 4.1 and Definition 3.6, it is easy to see that either g1 or g2 (or both)

is (are) efficient. That is, max{∑
i

ui(g)} is either ui(g1) or ui(g2). If ui(g1) < ui(g2), we

get result 1, if ui(g1) > ui(g2), we get result 2 and if ui(g1) = ui(g2), both g1 and g2 are

efficient, leading to result 3.

Proposition 4.6. An SVN under the SO-Framework is efficient if and only if it is a complete

network.

Proof. Follows from Theorem 4.7.

Proposition 4.7. For an SRN under the SO-Framework, s/d and b/ς act as constraints for

the maximum number of links possible.

Let g be an SRN under the SO-Framework, with N agents and stability point η̂ . Then:

1. If at least one of N and η̂ is (or are) even, then g is efficient if and only if g is η̂-regular.

2. If both N and η̂ are odd, then g is efficient if and only if g has N− 1 agents with η̂

neighbours and the other agent with η̂−1 neighbours.
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Proof. From Theorem 4.8, η̂ = min{ s
d ,

b
ς
}.

As the budget b and the storage space available s act as constraints, no agent can have

more than η̂ neighbours. Therefore, part 1 follows from Proposition 4.1. (We do not have

the possibility of one agent having η̂ +1 neighbours as we had in Proposition 4.5).

Part 2 follows from Proposition 4.2.

Chapter Summary

This chapter examined social storage network formation and its stability, efficiency, and

contentedness in a strategic setting. Studying social storage systems as an endogenous

network formation game, and then analysing its stability may, on first glance, seem con-

tradictory — since one cannot do anything from outside the (endogenous) system if the

agents' themselves do not form a stable network, efficient or contended network.

This study observed the tension between stability and efficiency, that is, in the social

storage network, agents always form a stable network, but the network may not be efficient.

That is, the sum of the utilities of all agents may not be the maximum possible. In our case,

as many agents as possible may not be contented as well, i.e. all agents achieve maximum

possible utility. Contented networks are also efficient.

Looking at both endogenous network formation and efficiency and contentment is useful

because, though the social storage system is built endogenously, an independent observer

(say, an administrator or a regulator) can check whether the system is efficient and con-

tented, and if not, can externally do a small perturbation to the network. In some scenarios,

we looked at, the independent administrator may achieve efficiency and (or) contentment

by just introducing a small number of dummy agents.

72



Chapter 5

Social Storage Cloud: Stability and Efficiency

In the social storage network model discussed in the previous chapter, agents perform

data backup activity with their neighbours only, that is, they share their disk space with

only those who are directly connected with them. In the social storage network model, disk

failure is assumed as a cause of data loss. In this chapter, we present the social storage

cloud model with the assumption that the reasons for data loss could be hardware, software,

human error, or so on. Further, the recent studies [24, 23] in social storage suggest incor-

porating indirect connections to improve QoS in these systems. The social storage cloud

model presented in this chapter focuses on indirect connections as well. In other words, in

the social storage cloud model, agents perform storage resource (disk space) sharing with

directly and indirectly connected agents, however, the storage resource allocation is condi-

tional and based on the closeness. This chapter proposes the degree-distance-based utility

in the social storage cloud context, where the benefit of agents depends on the chance of

obtaining storage in the network.

Recall that the expected utility of agent i in a social storage cloud is

ui(g) = βi(1−δi)+βiδiγi(g)− ςiηi(g). (5.1)

As discussed in the previous chapter, in order to deal with free riding, many P2P storage

systems (for example, Internet Cooperative Backup System [44], PeerStore [42], Pastiche

[93]) follow a symmetric storage-sharing mechanism, where agents share the same amount

of storage space.
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We define a symmetric social storage cloud g as follows.

Definition 5.1. A symmetric social storage cloud (SSSC) g is a network where the benefit

(value) associated with backed-up data is the same for all agents in the network, that is,

βi = β j (say β ), ςi = ς j (say ς27), and δi = δ j (say δ 28) for all i, j ∈A , and hence, utility

of each agent i in g is

ui(g) = β (1−δ )+βδγi(g)− ςηi(g), (5.2)

where δ ,β ,ς ∈ (0,1).

For further study, we consider the above utility function (Equation (5.2)). Henceforth,

whenever we refer to a network, or just g, we mean an SSSC. In order to characterize en-

dogenously built social storage cloud, we adopt pairwise stability [31] as a solution concept.

5.1 Closeness and Storage Availability

One of the objectives of this study is to understand the impact of link addition and

deletion on storage availability for those agents who are involved in the link addition (or

deletion) as well as those who are not. The storage availability is determined by the distances

between them and their closeness (from Equation (3.6)). Therefore, first we study how

addition and deletion of a link impacts the shortest distances between pairs of agents and,

therefore, their closeness. This analysis provides a base for understanding the effect of

link-addition (or deletion) on agents' storage availability in g.

5.1.1 Closeness

In this section, we examine how the action of link addition (deletion) between a pair of

agents impacts their as well as others' closeness.

27We assume, ς =
ςi+ς j

2 , that is, a pair of agents involved in a link share the cost ς .
28For simplicity, we assume uniform data loss rate δ .
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5.1.1.1 Closeness: A Pair of Agents Involved in the Actions

First, we discuss our results regarding the impact of link addition and deletion on the

closeness of those who are involved in the actions.

Lemma 5.1. Suppose 〈i j〉 6∈ g. Then, Φi(g+ 〈i j〉)> Φi(g).

Proof. Clearly, di j(g+〈i j〉)< di j(g). As 〈i j〉 6∈ g, we have, di j(g)≥ 2. Also, di j(g+〈i j〉) =

1. Thus, Φi(g) and Φ j(g) increase by at least di j(g)−1
di j(g)

in g+ 〈i j〉.

Lemma 5.2. Suppose 〈i j〉 ∈ g. Then, Φi(g−〈i j〉)< Φi(g).

Proof.

1. Let us assume there is no path between i and j in g−〈i j〉, then di j(g−〈i j〉) = ∞, thus,

Φi(g) and Φ j(g) decrease by 1 in g−〈i j〉.

2. Now, let us assume there exists a path Pi j(g− 〈i j〉) between i and j in g− 〈i j〉,

the distance between i and j in g−〈i j〉 being at least 1 more than that in g. Thus,

Φi(g) and Φ j(g) decrease by at least di j(g−〈i j〉)−1
di j(g−〈i j〉) in g−〈i j〉.

Lemmas 5.1 and 5.2 show that, with respect to closeness, every link benefits agents on

either side of the link. An action of link addition or deletion between a pair of agents not

only impacts their closeness, but also that of other agents.

Now, we study the impact of link addition or deletion between a pair of agents (say, i

and j) on the closeness of the other agents k ∈ g\{i, j}.

Lemma 5.3. Suppose 〈i j〉 6∈ g and k ∈ g\{i, j}. Then, Φk(g) = Φk(g+ 〈i j〉) if and only if

dkl(g) = dkl(g+ 〈i j〉) for all l ∈ g.

Proof. If dkl(g) = dkl(g+ 〈i j〉) for all l ∈ g, then by Equation (3.5), Φk(g) = Φk(g+ 〈i j〉).

Conversely, suppose Φk(g) = Φk(g+ 〈i j〉).

It is easy to see that, if for some l ∈ g, if dkl(g+ 〈i j〉) 6= dkl(g), then dkl(g+ 〈i j〉) <

dkl(g). (Paths in g exist in g+ 〈i j〉 too).

We have dkl(g+〈i j〉)≤ dkl(g) for all l ∈ g and, if there exists x such that dkx(g+〈i j〉)<

dkx(g), then Φk(g)< Φk(g+ 〈i j〉), a contradiction.
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Lemma 5.4. Suppose 〈i j〉 ∈ g and k ∈ g\{i, j}. Then, Φk(g) = Φk(g−〈i j〉) if and only if

dkl(g) = dkl(g−〈i j〉) for all l ∈ g.

Proof. As dkl(g−〈i j〉)≥ dkl(g) for all l, the proof follows in lines similar to that of Lemma

5.3.

5.1.1.2 Closeness: Agents not Involved in the Actions

We now show necessary and sufficient conditions for increase or decrease in the close-

ness of agents who are not involved in link addition or deletion.

Theorem 5.1. Suppose 〈i j〉 6∈ g, and let k be an agent distinct from i and j. Then, Φk(g)<

Φk(g+ 〈i j〉) if and only if there exists at least one agent l ∈ g such that dkl(g) ≥ 3 and all

shortest paths Pkl(g+ 〈i j〉) from k to l in g+ 〈i j〉 contain 〈i j〉.

Proof. Let Φk(g) < Φk(g+ 〈i j〉). Then, by Lemma 5.3, there must be at least one agent,

say l, such that dkl(g)> dkl(g+ 〈i j〉).

Suppose i,k, and l are all distinct. Note that j may be the same as l.

If possible, let dkl(g)< dki(g)+di j(g)+d jl(g) for all l ∈ g. Then, dkl(g) = dkl(g+〈i j〉)

for all l ∈ g. From Lemma 5.1, Φk(g) < Φk(g+ 〈i j〉), a contradiction. Therefore, there

exists an l ∈ g such that dkl(g) = dki(g)+di j(g)+d jl(g).

As 〈i j〉 6∈ g, di j(g)≥ 2. As k 6= i, dik(g)≥ 1 and j = l. Hence, dkl(g)≥ 3.

Now, dkl(g+ 〈i j〉) = dki(g+ 〈i j〉)+di j(g+ 〈i j〉)+d jl(g+ 〈i j〉)

= dki(g)+di j(g+ 〈i j〉)+d jl(g)

< dki(g)+di j(g)+d jl(g)

= dkl(g).

It follows that every shortest path between k and l in g+ 〈i j〉 contains 〈i j〉. (Note that if

there exists a shortest path from k to l in g+〈i j〉 that does not contain 〈i j〉, then this shortest

path exists in g too).

Conversely, let l ∈ g such that dkl(g)≥ 3 and all shortest paths Pkl(g+ 〈i j〉) from k to

l in g+ 〈i j〉 contain 〈i j〉.

Clearly, Φk(g)≤Φk(g+ 〈i j〉).
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If possible, let Φk(g) = Φk(g+ 〈i j〉). This means for every l in g there exists a shortest

path from k to l in g+ 〈i j〉 that does not contain 〈i j〉, a contradiction. Therefore, Φk(g) <

Φk(g+ 〈i j〉).

Theorem 5.2. Suppose 〈i j〉 ∈ g, and let k be an agent distinct from i and j. Then, Φk(g−

〈i j〉)< Φk(g) if and only if there exists at least one agent l ∈ g such that dkl(g)≥ 2 and all

shortest paths Pkl(g) from k to l in g contain 〈i j〉.

We skip the proof as it is similar to the proof of Theorem 5.1.

5.1.1.3 Effect of Closeness on Distances of Agents not Involved in Link Alteration

In this section, we classify agents whose mutual distances from each other remain the

same after link alteration. We use the same to analyse the effect of closeness on distances

between agents who are not involved in the link addition or deletion.

Given k such that Φk(g) < Φk(g+ 〈i j〉), we use L+
k to denote the set of all l ∈ g such

that all shortest paths from k to l in g+ 〈i j〉 contain 〈i j〉. We use l+k to denote an agent in

L+
k .

Proposition 5.1. Suppose i, j, and k are distinct agents in g. Suppose l is another agent,

distinct from i and k, and suppose Φk(g+ 〈i j〉) > Φk(g). If dki(g+ 〈i j〉) < dk j(g+ 〈i j〉) ≤

dkl(g+ 〈i j〉), then dik(g + 〈i j〉) = dik(g).

Proof. We have Φk(g)< Φk(g+ 〈i j〉). Then, from Theorem 5.1, there exists l ∈ g such that

all shortest paths Pkl(g+ 〈i j〉) from k to l in g+ 〈i j〉 contain 〈i j〉.

We consider the two cases j = l and j 6= l.

1. Suppose j = l. As dki(g+ 〈i j〉) < dk j(g+ 〈i j〉), k observes i before j on all shortest

paths Pkl(g+ 〈i j〉). This implies dik(g+ 〈i j〉) = dik(g).

2. Suppose j 6= l. As dki(g+ 〈i j〉) < dk j(g+ 〈i j〉) ≤ dkl(g+ 〈i j〉), k observes i before

j, and j before l, on all shortest paths Pkl(g+ 〈i j〉). This implies dik(g+ 〈i j〉) =

dik(g).
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Definition 5.2. Suppose 〈i j〉 6∈ g and k is an agent such that Φk(g) < Φk(g+ 〈i j〉).

A (k,+i j)-shortest-path-network, gk+
i j , is a subnetwork of g+〈i j〉 that consists of all shortest

paths from k to l+k in g+ 〈i j〉, which contain 〈i j〉, for all l+k ∈ L+
k .

Definition 5.3. An (all k,+i j)-shortest-path-network, g+i j , is
⋃

k∈g,
Φk(g)<Φk(g+〈i j〉)

gk+
i j , the smallest

network consisting of all (k,+i j)-shortest-path-networks.

Definition 5.4. A sub-(i,+)-network, g+i of g+i j , is the induced subnetwork of g+i j consisting

of all agents k ∈ g+i j such that dik(g) = dik(g+ 〈i j〉). Similarly, we define the sub-( j,+)-

network, g+j of g+i j , as the induced subnetwork of g+i j consisting of all agents l ∈ g+i j such

that d jl(g) = d jl(g+ 〈i j〉).

The following example illustrates the above.

Example 5.1. Consider networks g and g+ 〈i j〉, as shown in Figures 5.1(a) and 5.1(b), re-

spectively. The newly added link 〈i j〉 in g increases the closeness of agents k,c,d, f ,g, j, i,h,

and l in g+ 〈i j〉. For instance, from Equation (3.5), we have Φk(g) = 4.60 and Φk(g+

〈i j〉)= 4.87. However, there is no change in the closeness of agents a,b, and e. For instance,

Φa(g) = 6.17 = Φa(g+ 〈i j〉). Figure 5.1(c) shows the shortest-path-network gk+
i j for agent

k, where the set L+
k consists of agents j,g,h, and l. This suggests that the newly added link

〈i j〉 in g brings agents j,g,h, and l close to k in g+〈i j〉, and therefore, Φk(g)<Φk(g+〈i j〉).

Figure 5.1(d) represents the shortest-path-network g+i j that satisfies Definition 5.3. In this

case, g+i j is the union of gk+
i j ,g

c+
i j ,g

d+

i j ,g
f+
i j ,g

g+
i j ,g

h+
i j ,g

i+
i j ,g

j+
i j , and gl+

i j .

Figures 5.1(e) and 5.1(f) show the induced subnetworks g+i and g+j of g+i j , respectively.

The induced subnetworks g+i and g+j are as per Definition 5.4. In g+i , the distances between

agent i, and other agents k,c,d, and f are the same in networks g and g+ 〈i j〉. We have

dik(g)= dik(g+〈i j〉)= 2, dic(g)= dic(g+〈i j〉)= 2, did(g)= did(g+〈i j〉)= 1, and di f (g)=

di f (g+ 〈i j〉) = 1. Similarly, in g+j , the distances between agent j, and other agents g,h, and

l are the same in network g and g+〈i j〉; d jg(g) = d jg(g+〈i j〉) = 1, d jh(g) = d jh(g+〈i j〉) =

1, and d jl(g) = d jl(g+ 〈i j〉) = 2.

Proposition 5.2. For all k, k̄ ∈ g+i , dkk̄(g) = dkk̄(g+ 〈i j〉).
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((a)) Network g ((b)) Network g+ 〈i j〉

((c)) gk+
i j ((d)) Sub-network g+i j

((e)) g+i
((f)) g+j

Figure 5.1: Induced subnetworks of g+ 〈i j〉

Proof. If k, k̄∈ g+i then, from Definition 5.4, dik(g)= dik(g+〈i j〉) and dik̄(g)= dik̄(g+〈i j〉).

As k, k̄ ∈ g+i j as well, there exists l and l̄ such that dkl(g)> dkl(g+〈i j〉) and dk̄l̄(g)> dk̄l̄(g+

〈i j〉).

It is sufficient to show that, given k̄, l̄ can never be k.

If possible, let l̄ = k. Then, from Definition 5.4, dk̄i(g) = dk̄i(g+〈i j〉) implies k̄ observes

i first, and subsequently j to reach k, on all shortest paths Pk̄k(g+ 〈i j〉) from k̄ to k in

g+ 〈i j〉. Then, dik(g) 6= dik(g+ 〈i j〉). This is because, if k = j, dik(g) < dik(g+ 〈i j〉 = 1.

Therefore, k 6∈ g+i , which is a contradiction. Now, if k 6= j, then k must first visit j, and later i,

to reach k̄ on all shortest paths Pkk̄(g+〈i j〉) from k̄ to k. This implies dik(g) 6= dik(g+〈i j〉)
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and hence, k 6∈ g+i , again, a contradiction. Thus, k 6= l̄.

We discuss our results on shortest distances due to link deletion.

5.1.1.4 Effect of Closeness on Distances of Agents not Involved in Link Deletion

Given k such that Φk(g) > Φk(g−〈i j〉), we use L−k to denote the set of all l ∈ g such

that all shortest paths from k to l in g−〈i j〉 contain 〈i j〉. We use l−k to denote an agent in

L−k .

Proposition 5.3. Let i 6= j 6= k, l 6= k, i 6= l, and Φk(g−〈i j〉)< Φk(g). If dik(g)< di j(g)≤

dkl(g), then dik(g−〈i j〉) = dik(g).

We skip the proof as it is similar to the proof of Proposition 5.1.

Definition 5.5. Suppose 〈i j〉 ∈ g and k is an agent such that Φk(g) > Φk(g− 〈i j〉).

A (k,−i j)-shortest-path-network containing 〈i j〉, gk−
i j , is a subnetwork of g that consists

of all shortest paths from k to l−k in g, which contain 〈i j〉, for all l−k ∈ L−k .

Definition 5.6. An (all k,−i j)-shortest-path-network, g−i j is
⋃

k∈g,
Φk(g)>Φk(g−〈i j〉)

gk−
i j , the smallest

network that contains all (k,−i j)-shortest-path-networks.

Definition 5.7. A sub-(i,−)-network, g−i of g−i j , is the induced subnetwork of g−i j consisting

of all agents k ∈ g−i j such that dik(g) = dik(g−〈i j〉). Similarly, we define the sub-( j,−)-

network, g−j of g−i j , as the induced subnetwork of g−i j consisting of all agents l ∈ g−i j such

that d jl(g) = d jl(g−〈i j〉).

Proposition 5.4. Let k, k̂ ∈ g−i . Then, for all k, k̂ ∈ g−i , dkk̂(g) = dkk̂(g−〈i j〉).

We skip the proof as it is similar to the proof of Proposition 5.2.

5.1.2 Storage Availability

In this section, we study the effect of link addition and deletion on the storage space

availability of agents who are involved in these actions. We expand on our motivation with

the following example.
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Example 5.2. We discuss the link deletion case as well as the link addition case, below.

1. Consider the network g as shown in Figure 5.2(a). If agent i decides to delete the

existing link with agent j, we have the network g−〈i j〉 as shown in Figure 5.2(b).

The storage space availability of each agent in these networks, g and g−〈i j〉, are

tabulated in Table 5.1 under ”Link Deletion”. This table shows that agent i benefits by

deleting an existing link with j as its storage space availability increases by 0.00058.

However, agent j's storage space availability decreases by 0.13142.

2. To understand that link addition is not a profitable deal for an agent, we reverse the

above situation. That is, we have network g′ as shown in Figure 5.2(b). Now, if agent i

decides to add a direct link with agent j, we have network g′+〈i j〉, as shown in Figure

5.2(a), as a result. The storage space availability of each agent in these networks g

and g−〈i j〉 are tabulated in Table 5.1 under ”Link Addition”. The table shows that

agent i does not benefit by adding a direct link with j as its storage space availability

decreases by 0.00058. However, agent j's storage space availability increases by

0.13142.

((a)) Network g= g′+ 〈i j〉 ((b)) Network g′ = g−〈i j〉

Figure 5.2: Link additin/ deletion and global resource availability

The above example motivates us to analyse under what conditions agents' chance of

obtaining storage space in the network increases or decreases by adding a new link. Then,

we present our results in the case of link deletion.
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Link Deletion Link Addition
Agent γi(g) γi(g−〈i j〉) γi(g−〈i j〉)− γi(g) γi(g

′) γi(g
′+ 〈i j〉) γi(g

′+ 〈i j〉)− γi(g
′)

a 0.62729 0.62180 0.00549 0.62180 0.62729 -0.00549
. . . . . . .
. . . . . . .
. . . . . . .
t 0.62729 0.62180 0.00549 0.62180 0.62729 -0.00549
i 0.86406 0.86348 0.00058 0.86348 0.86406 -0.00058
k 0.66479 0.64161 0.02318 0.64161 0.66479 -0.02318
j 0.51019 0.64161 -0.13142 0.64161 0.51019 0.13142

Table 5.1: Link deletion and addition, and storage space availability

5.1.2.1 Effect of Link Addition on Storage Availability

First, we discuss the observations related link addition and its effect on the storage avail-

ability of those agents who are involved in the link addition.

Lemma 5.5. Suppose agents i and j add a direct link in g and let k 6∈ g+i j . Then, αik(g) =

αik(g+ 〈i j〉) and α jk(g) = α jk(g+ 〈i j〉).

Proof. If agent k 6∈ g+i j then Φk(g) = Φk(g+ 〈i j〉). Thus, dki(g) = dki(g+ 〈i j〉). Therefore,

from Equation (3.6), αik(g) = αik(g+ 〈i j〉). A similar proof holds for j too.

Lemma 5.6. Suppose agents i, j, k, and l are such that i 6= j, j 6= k, i 6= l, and k 6= l. (Agents

i and k may be the same, and agents j and l may be the same). Suppose 〈i j〉 6∈ g, k ∈ g+i ,

and l ∈ g+j . Then,

1. αkl(g)< αkl(g+ 〈i j〉), and

2. i 6= k implies that αik(g)>αik(g+〈i j〉). Similarly, if j 6= l, then α jl(g)>α jl(g+〈i j〉).

Proof. Proof of 2 follows from Proposition 5.1.

Proof of 1 is as follows.

As k ∈ g+i and l ∈ g+j , dkl(g)> dkl(g+ 〈i j〉), hence, Φk(g)< Φk(g+ 〈i j〉) and Φl(g)<

Φl(g+ 〈i j〉).

It is easy to see that network g in Figure 5.3a is the one where adding link 〈i j〉 leads

to the maximum increment in l' s closeness and the minimum decrements in the distances
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between l and km,(m = 1,2 . . . ,n−4, where n is the number of agents in g), the maximum

and the minimum being across all network structures.

We consider two cases, j 6= l and j = l.

Suppose j 6= l. Consider the network g, as shown in Figure 5.3a.

From Equation (3.5), Φl(g) =
1

dl j(g)
+ 1

dlx(g)
+ 1

dli(g)
+ ∑

k∈g,
dkl (g)=4

1
dkl(g)

= 1+ 1
2 +

1
3 +

n−4
4 = 3n+10

12 .

Without loss of generality, let k = km for some m ∈ {1,2, . . . ,n−4}. Then, from Equa-

tion (3.6), αkl(g) =
( 1

4 )

Φl(g)
= 3

3n+10 .

If agents i and j add a direct link in g, we have network g+ 〈i j〉, as shown in Figure 5.3b.

Then, from Equations (3.5) and (3.6), we have Φl(g+ 〈i j〉) = n+2
3 and αkl(g+ 〈i j〉) = 1

n+2 .

From the above, clearly, αkl(g)< αkl(g+ 〈i j〉).

((a)) g ((b)) g+ 〈i j〉

Figure 5.3: Network structure g and g+ 〈i j〉 with n agents

Now, suppose l = j.

From Equations (3.5) and (3.6) applied to Figure 5.3a,b, we have Φ j(g) =
2n+7

6 ,

αk j(g) =
2

2n+7 , Φ j(g+ 〈i j〉) = n+2
2 , and αk j(g+ 〈i j〉) = 1

n+2 .

It is easy see that αk j(g) < αk j(g+ 〈i j〉) in this case as well. This completes the proof

of 1.

Lemma 5.7. Let k and k̄ be agents in g+i . Then, αkk̄(g) = αkk̄(g+ 〈i j〉) and αk̄k(g) =

αk̄k(g+ 〈i j〉).
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Proof. The proof follows from Proposition 5.2.

Theorem 5.3. Suppose agents i and j are such i 6= j, and 〈i j〉 6∈ g. Then, γi(g)< γi(g+〈i j〉)

if and only if
∏

k∈g+i

(1−αik(g+〈i j〉))

∏

l∈g+j

(1−αil(g))
<

∏

k∈g+i

(1−αik(g))

∏

l∈g+j

(1−αil(g+〈i j〉)) .

Additionally, γi(g)< γi(g+ 〈i j〉) if and only if
∏

k∈g+i

(αik(g+〈i j〉))

∏

l∈g+j

(αil(g))
>

∏

k∈g+i

(αik(g))

∏

l∈g+j

(αil(g+〈i j〉)) .

Proof. The proof follows from Lemmas 5.5, 5.6, and 5.7.

5.1.2.2 Effect of Link Deletion on Storage Availability

We discuss the effect of link deletion on agents' storage availability who are in the action.

Lemma 5.8. Suppose 〈i j〉 ∈ g and k 6∈ g−i j . Then, αik(g) = αik(g− 〈i j〉) and α jk(g) =

α jk(g−〈i j〉).

Proof. The proof follows from Proposition 5.3 and is in similar lines to the proof of Lemma

5.5.

Lemma 5.9. Suppose agents i, j, k, and l are such that i 6= j, j 6= k, i 6= l, and k 6= l. (Agents

i and k may be the same, and agents j and l may be the same). Suppose 〈i j〉 ∈ g, k ∈ g−i ,

and l ∈ g−j . Then,

1. αkl(g)> αkl(g−〈i j〉).

2. If i 6= k, then αik(g)< αik(g−〈i j〉). Similarly, if j 6= l, then α jl(g)< α jl(g−〈i j〉).

Proof. The proof of 1 is in similar lines to the proof of 1 of Lemma 5.6. The proof of 2

follows from Proposition 5.4.

Lemma 5.10. Let k and k̂ be agents in g−i . Then, αkk̂(g) = αkk̂(g− 〈i j〉) and αk̂k(g) =

αk̂k(g−〈i j〉).

Proof. The proof follows from Lemma 5.4.
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Theorem 5.4. Suppose agents i, j, k, and l are such that i 6= j and k 6= l. Suppose 〈i j〉 ∈ g.

Then, γi(g)< γi(g−〈i j〉) if and only if

∏

l∈g−j

(1−αik(g))

∏

l∈g−j

(1−αil(g−〈i j〉)) <

∏

k∈g−i

(1−αik(g−〈i j〉))

∏

k∈g−i

(1−αil(g))
.

In addition, γi(g)< γi(g−〈i j〉) if and only if

∏

l∈g−j

(αik(g))

∏

l∈g−j

(αil(g−〈i j〉)) >

∏

k∈g−i

(αik(g−〈i j〉))

∏

k∈g−i

(αil(g))
.

Proof. The proof follows from Lemmas 5.8, 5.9, and 5.10.

5.1.3 Externalities

In this section, we study externalities, that is, how a link that is added between a pair

of agents affects the utility of others. (Refer to Definition 5.8). The particular form of

externalities (positive, negative, or none) is crucial in determining which network is likely

to evolve and the conditions under which it will lead to a stable and efficient network.

Definition 5.8. [61] Consider a network, g, with agents i, j ∈ g such that i 6= j and 〈i j〉 /∈ g.

Suppose agents i and j form a direct link 〈i j〉. Then, agent k ∈ g\{i, j} experiences

1. Positive externalities if uk(g+ 〈i j〉)> uk(g);

2. Negative externalities if uk(g+ 〈i j〉)< uk(g);

3. No externalities if uk(g+ 〈i j〉) = uk(g).

We now show that the type of externalities an agent k∈ g experiences, can be determined

using conditions on the storage availability, independent of the data loss rate and the value

that agents associate with their data.

Proposition 5.5. In an SSSC g, an agent k ∈ g experiences

1. Positive externalities if γk(g+ 〈i j〉)> γk(g);

2. Negative externalities if γk(g+ 〈i j〉)< γk(g);

3. No externalities if γk(g+ 〈i j〉) = γk(g).

Proof.
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1. By Definition 5.8, uk(g+ 〈i j〉)> uk(g)

⇒ β (1−δ )+βδγk(g+ 〈i j〉)− ςηk(g+ 〈i j〉)> β (1−δ )+βδγk(g)− ςηk(g).

As agent k does not pay the cost for link 〈i j〉, we have ςηk(g+ 〈i j〉) = ςηk(g).

Thus, βδγk(g+ 〈i j〉)> βδγk(g)⇒ γk(g+ 〈i j〉)> γk(g).

2. For Cases 2 and 3, the proof is similar to that of Case 1.

Proposition 5.6. Let i, j, and k be distinct agents in g. Suppose k 6∈ g+i j . Then, k experiences

only negative externalities.

Proof. If agents i and j add a direct link in g, then, from Lemma 5.1, Φi(g)< Φi(g+ 〈i j〉).

If k 6∈ g+i j , then, from Theorem 5.1, Φk(g) = Φk(g+ 〈i j〉), thus, dkl(g) = dkl(g+ 〈i j〉) for all

l ∈ g. Therefore, αki(g+ 〈i j〉) < αki(g), by Equation (3.6). Now, for all l ∈ g, Φl(g) ≤

Φl(g+ 〈i j〉). If Φl(g) = Φl(g+ 〈i j〉), then αkl(g+ 〈i j〉) = αkl(g) and, if Φl(g) < Φl(g+

〈i j〉), then αkl(g+ 〈i j〉)< αkl(g). Thus, γk(g+ 〈i j〉)< γk(g).

Proposition 5.7. Let i, j, and k be distinct agents in g, such that 〈i j〉 /∈ g, an agent k ∈

g\{i, j} experiences negative externalities on formation of the link 〈i j〉, if Φk(g) = Φk(g+

〈i j〉).

Proof. Let agent i and j add a direct link in g. This new link 〈i j〉 reduces their distance

by at least 1, to at most di j(g)− 1 in g+ 〈i j〉. Thus, their closeness increases by at least
di j(g)−1

di j(g)
in g+ 〈i j〉.

Therefore, Φi(g)< Φi(g+ 〈i j〉) and Φ j(g)< Φ j(g+ 〈i j〉).

As Φk(g) = Φk(g+ 〈i j〉), we have dkl(g) = dkl(g+ 〈i j〉), for all l ∈ g.

We know, dik(g) = dik(g+〈i j〉) and Φi(g)< Φi(g+〈i j〉) implies αki(g)> αki(g+〈i j〉).

Similarly, we have, αk j(g)> αk j(g+ 〈i j〉).
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Therefore, (1−αki(g))(1−αki(g))< (1−αki(g+ 〈i j〉))(1−αki(g+ 〈i j〉)).

This implies γk(g)> γk(g+〈i j〉), as Φl(g)≤Φl(g+〈i j〉) for all l ∈ g, implying αkl(g)≥

αkl(g+ 〈i j〉) for all l ∈ g\{i, j}.

Corollary 5.1. Suppose g is a two-diameter SSC with distinct agents i, j, such that 〈i j〉 /∈ g.

Φk(g) = Φk(g+ 〈i j〉) for all k ∈ g \ {i, j}, and hence, all agents experience only negative

externalities if 〈i j〉) is formed.

Remark 5.1. Proposition 5.6 and Proposition 5.7 show that an increase in agents' close-

ness is necessary for them to experience positive externalities. However, the increase in

agents' closeness is not a sufficient condition for positive externalities, as demonstrated by

the following example.

((a)) Network g ((b)) Network g+ 〈Medici,Strozzi〉

Figure 5.4: Externalities in SCC g

Example 5.3. For this example, we consider the Pedgetts's Florentine Families network

[97] (shows business and marital ties of 16 agents) generated by Social Network Visual-

izer29 tool from its known data set, as shown in Figure 5.4(a). Let us say g to the generated

network as shown in Figure 5.4(a). Suppose Medici and Strozzi add a link in g resulting

in the g+ 〈Medici,Strozzi〉 (say g′), as shown in Figure 5.4(b). Then from Equation (3.5),

ΦAlbizzi(g) = 7.83 and ΦAlbizzi(g
′) = 8.00. However, from Equation (3.7), γAlbizzi(g) = 0.701

and γAlbizzi(g
′) = 0.696. This indicates that, although the closeness of Albizzi is increased

29https://socnetv.org/
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Agent(x) Φx(g) Φx(g+ xy) Φx(g+ xy)−Φ(g) γx(g) γx(g+ xy) γx(g+ i j)− γ(g)
Acciaiuodi 5.917 6.250 0.333 0.574 0.580 0.006
Albizzi 7.833 8.000 0.167 0.701 0.696 -0.005
Barbadori 7.083 7.083 0.000 0.649 0.635 -0.014
Bischeri 7.200 7.583 0.383 0.657 0.662 0.005
Castellani 6.917 6.917 0.000 0.642 0.625 -0.017
Ginori 5.333 5.417 0.083 0.537 0.531 -0.007
Gaudagni 8.083 8.083 0.000 0.713 0.702 -0.011
Lamberteschi 5.367 5.367 0.000 0.537 0.526 -0.011
Medici 9.500 10.333 0.833 0.773 0.788 0.015
Pazzi 4.767 4.950 0.183 0.503 0.502 -0.001
Peruzzi 6.783 7.167 0.383 0.633 0.639 0.006
Ridol f 8.000 8.000 0.000 0.693 0.677 -0.016
Salviati 6.583 6.917 0.333 0.641 0.644 0.002
Strozzi 7.833 9.000 1.167 0.691 0.729 0.038
Tornabuoni 7.833 7.833 0.000 0.685 0.673 -0.012
Pucci 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.2: Externalities in SCC g

in g′, its storage availability is decreased. The same is true for Ginori and Pazzi. On

the contrary, the newly added link between Medici and Strozzi increases not only Bischeri's

closeness (i.e.ΦBischeri(g)= 7.20 and ΦBischeri(g
′)= 7.58), but also storage availability (i.e.,

γBischeri(g) = 0.657 and γBischeri(g
′) = 0.662). We have a similar observation for Acciaiuodi,

Peruzzi and Salviati.

———————————————————————————- The following re-

sult provides a necessary and sufficient condition under which an agent k ∈ g experiences

positive or negative externalities.

Theorem 5.5. Suppose agents i, j, k, k̄, and l are such that i 6= j, i 6= k, i 6= l, j 6= k, k 6= k̄,

and k 6= l. (Agents i and k̄ may be the same, and agents j and l may be the same). Suppose

〈i j〉 6∈ g, k̄ ∈ g+i and l ∈ g+j . Then, agent k experiences positive externalities if and only if

k ∈ g+i j and
∏

k̄∈g+i

(1−αkk̄(g+〈i j〉))

∏

l∈g+l

(1−αkl(g))
<

∏

k̄∈g+i

(1−αkk̄(g))

∏

l∈g+j

(1−αkl(g+〈i j〉)) , otherwise k experiences negative exter-

nalities.

Proof. From Proposition 5.6, it is required to increment in agent k's closeness. It is
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straightforward to observe that
∏

k̄∈g+i

(1−αkk̄(g+〈i j〉))

∏

l∈g+l

(1−αkl(g))
<

∏

k̄∈g+i

(1−αkk̄(g))

∏

l∈g+j

(1−αkl(g+〈i j〉)) , then γk(g+ 〈i j〉) >

γk(g). Thus, k experiences positive externalities.

Conversely, let γk(g+ 〈i j〉) < γk(g), then either from Proposition 5.6, dki(g) = dki(g+

〈i j〉), for all i ∈ g or
∏

k̄∈g+i

(1−αkk̄(g+〈i j〉))

∏

l∈g+l

(1−αkl(g))
<

∏

k̄∈g+i

(1−αkk̄(g))

∏

l∈g+j

(1−αkl(g+〈i j〉)) .

Although we have provided a necessary and sufficient condition for positive and negative

externalities by performing a microscopic analysis of externalities, it is hard to obtain a

general characterization of networks where agents experience only positive externalities.

This leads us to the following question. At least for specific network structures, can we

show positive (or negative) externalities? For instance, we can argue that in a two diameter

network, agents never experience positive externalities.

Theorem 5.6. In any connected SSC g with three or more agents, agents experience either

positive or negative externalities, and there is no case where any agent experiences no

externalities.

Proof. Consider an SCC g with distinct agents i, j and k such that 〈i j〉 /∈ g. If possible, let

k have no externalities when 〈i j〉 is added. This means γk(g) = γk(g+ 〈i j〉), by Proposition

5.5.

Therefore, by Equation (3.7), αkl(g) = αkl(g + 〈i j〉), for all l ∈ g. (Note that

αkl(g)≥ αkl(g+ 〈i j〉), for all l ∈ g).

This implies that dkl(g) = dkl(g+ 〈i j〉) and Φl(g) = Φl(g+ 〈i j〉) for all l ∈ g, from

Equations (3.5) and (3.6).

The link addition between agents i and j in g decreases their distance by di j(g)− 1 in

g+ 〈i j〉, and thus, the closeness of both i and j in g+ 〈i j〉 increases by 1
di j(g)−1 .

Hence, Φi(g)< Φi(g+ 〈i j〉) and Φ j(g)< Φ j(g+ 〈i j〉), a contradiction to our deduction
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that Φl(g) = Φl(g+ 〈i j〉) for all l ∈ g.

Therefore, our assumption that k has no externalities is incorrect. In other words, k has

either positive or negative externalities.

Corollary 5.2. Suppose an SCC g is a disconnected network consisting of more than two

disjoint components. Let us assume that we have three distinct agents i, j, and k such agent

i ∈ g(κx), j ∈ g(κy), and k ∈ g(κz) and agents i and j add a direct link in g, then γk(g) =

γk(g+ 〈i j〉) for all k 6∈ g(κx),g(κy).

5.2 Characterization of Stable and Efficient Networks

One of the central focuses of this study is to analyze what network is likely to emerge

when each agent (or pair of agents) decides selfishly which link they want to delete (respec-

tively, whether to add a link or not), when agents build their social connections (links) based

on the benefit associated with their data, the cost for link formation, and the prevailing data

loss rate.

In the following subsections, we discuss pairwise stable networks, efficient networks,

and the measures of efficiency, namely, price of anarchy (PoA) and price of stability (PoS).

In our analysis of stable and efficient networks, we assume that network formation takes

place starting with the null network (where there are no links between any pair of agents).

5.2.1 Stable Networks: Characterization, Existence, and Uniqueness

We now discuss the conditions under which an agent prefers to add a new link or delete

an existing link, and use the same to characterize stable networks.

Lemma 5.11. Let 〈i j〉 6∈ g. An agent i ∈ g is benefited by adding a direct link with agent

j ∈ g if and only if βδ [γi(g+ 〈i j〉)− γi(g)]> ς .

Proof. Agent i has incentive to form a link with agent j if and only if ui(g+ 〈i j〉)> ui(g)

⇒ β (1−δ )+βδγi(g+ 〈i j〉)− ς(ηi(g)+1)> β (1−δ )+βδγi(g)− ςηi(g)

⇒ βδ [γi(g+ 〈i j〉)− γi(g)]> ς .
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Corollary 5.3. An agent i ∈ g has no incentive to add a link with agent j ∈ g if and only if

δ [γi(g+ 〈i j〉)− γi(g)]≤ ς

β
.

Lemma 5.12. Let 〈i j〉 ∈ g. An agent i∈ g benefits by deleting a link with agent j if and only

if βδ [γi(g)− γi(g−〈i j〉)]< ς .

Proof. An agent i has incentive to delete a link with agent j if and only if ui(g−〈i j〉) >

ui(g).

⇒ β (1−δ )+βδγi(g−〈i j〉)− ς(ηi(g)−1)> β (1−δ )+βδγi(g)− ςηi(g)

⇒ ς > βδ [γi(g)− γi(g−〈i j〉)].

Corollary 5.4. An agent i has no incentive to delete an existing link with agent j if and only

if δ [γi(g)− γi(g−〈i j〉)]≥ ς

β
.

Proposition 7.1, stated below, provides an easy characterization of a stable network g.

Proposition 5.8. A network g is pairwise stable if and only if

1. for all i, j ∈ g,δ [γi(g)− γi(g−〈i j〉)]≥ ς

β
, and δ [γ j(g)− γ j(g−〈i j〉)]≥ ς

β
; and

2. for all i, j ∈ g, if δ [γi(g+ 〈i j〉)− γi(g)]>
ς

β
, then δ [γ j(g+ 〈i j〉)− γ j(g)]<

ς

β
.

Proof. The proof follows from Definition 2.2, Corollary 7.2, and Lemma 7.1.

In the following theorem, we prove existence and uniqueness of pairwise stable net-

works, given the values of the parameters.

Theorem 5.7. There always exists a pairwise stable network. Given N, there exists exactly

two pairwise stable networks. For each β ,ς , and δ , the pairwise stable network g is unique.

1. If δ ≤ ς

β
, then g is the null network.

2. If δ > ς

β
, then g consists of

(a) a set of N
2 connected pairs of agents, if N is even; or

(b) a set of N−1
2 connected pairs of agents and one isolated agent, if N is odd.
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Proof. Initially, all agents are isolated in g, hence, for all i ∈ g, γi(g) = 0.

If agents i and j form a direct link 〈i j〉, then Φi(g+ 〈i j〉) = Φ j(g+ 〈i j〉) = 1.

Thus, γi(g+ 〈i j〉) = γ j(g+ 〈i j〉) = 1.

However, from Lemma 7.1, agents i and j benefit by forming a direct link if and only if

δβ [γi(g+ 〈i j〉)− γi(g)]> ς and δβ [γ j(g+ 〈i j〉)− γ j(g)]> ς , respectively.

This implies that a pair of agents have no incentive to add a direct link if and only if

δ ≤ ς

β
.

Therefore, g is the null network. This completes the proof of 1.

Now, if δ > ς

β
, then every pair of agents has an incentive to add a direct link. Suppose

agents i and j add a direct link, and suppose link 〈i j〉 is the only link in the network, say g′.

Let k be another agent, different from i and j, in g′. Then, γi(g
′+ 〈ik〉) = 1− (1− 1

1.5)
2.

By Lemma 7.1, agent i benefits by adding the link 〈ik〉 if and only if δ [γi(g
′+ 〈ik〉)−

γi(g
′)]> ς

β
. Here, δ [γi(g

′+ 〈ik〉)− γi(g
′)]< 0 6> ς

β
.

This implies that no agent benefits by adding more than one link, proving 2.

5.2.2 Efficient Network, Price of Anarchy, and Price of Stability

We analyse whether the network formed by self-interested agents is also efficient, that

is, socially optimal or in other words, “good” for all the agents put together.

Definition 5.9. A social storage network g is efficient with respect to utility profile

(u1, ...,uN) if

∑
i∈N

[β (1−δ )+βδγi(g)− ςηi(g)]≥ ∑
i∈N

[β (1−δ )+βδγi(ḡ)− ςηi(ḡ)],∀ḡ ∈ G (N).

It might be possible that when self-interested agents build their social connections for

their own benefit, the resulting network formation will lead to a “bad” outcome from a

societal viewpoint. That is, the resulting network may be advantageous for a set of agents,

while other agents may not be benefited by the outcome. This results in an inefficient

network. In this state of affairs, we would like to measure how far a pairwise stable network

is from an efficient network. For this, we make use of the widely discussed measures,

namely, price of anarchy (PoA) and price of stability (PoS). We restate these measures

as follows.
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Definition 5.10. The price of anarchy (PoA) is the ratio of the worst sum of the utility values

of an equilibrium network and the optimal sum of the utility values in any network.

Definition 5.11. The price of stability (PoS) is the ratio of the best sum of the utility values

of an equilibrium network and the optimal sum of the utility values in any network.

Theorem 5.8. Every pairwise stable network is efficient. Therefore, PoA = 1. In addition,

every efficient network is pairwise stable. Hence, PoS = 1.

Proof. The proof follows from Theorem 5.7 and Definition 5.9, the fact that network for-

mation starts with the null network, and the fact ([61]) that PoS = 1 if and only if every

efficient network is pairwise stable, and PoA = 1 if and only if all pairwise stable networks

are efficient.

Example 5.4. Let network g and ḡ consist of N > 2. Let in network g each agent maintains

only a single link, whereas in network ḡ each agent maintains relations with the remaining

agents. Therefore, ∑
i∈N

βλγi(g)−ςηi(g) = N(βλ−ς) and ∑
i∈N

βλγi(ḡ)−ςηi(ḡ) = N( βλ

N−1−

ς). It is easy to observe that λβ > λβ

N−1 .

5.3 Experimental Results

We discuss our experimental results on random stable networks where, for 150 random

scenarios, no agent loses its data. That is, even if the disk of an agent fails, in our random

experiments, the disk of the agent' s neighbour (from whom it can retrieve its data) remains

intact.

We conduct random experiments to answer the following question. Though agents form

links and backup their data with adjacent agents, can any agent still lose its data? From

Theorem 5.7, the null network is the unique pairwise stable network when the cost to add

links is “high”, that is, ς ≥ β

δ
, and pairs of agents with links between them is the unique

stable network otherwise. Therefore, as far as formation of networks is concerned, we

always obtain one of these two networks, depending on the values of ς ,β , and δ . In our

experiment, we randomly generate networks of the second type, namely, pairwise links. We
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generate such networks on 30 agents and consider 150 random scenarios, by generating

10 random networks, 5 different sets of randomly chosen agents whose storage disks fail,

for 3 cases, δ = 1%, 2%, and 4%. Our assumption on the values of δ is based on data

from Backblaze30 on hard drive failure rates. Interestingly, in none of the random cases we

generated did agents on the two sides of a link fail at the same time.

Chapter Summary

In this chapter, we have presented the model of social storage cloud network formation,

where agents (involved in storage sharing and data backup) wish to form a network strate-

gically. The agents in this network strive for increasing the probability of obtaining storage

space by minimizing the distances with others. We have proposed a degree-distance-based

utility function and use the same to study network formation. We also studied the impact

of the decision of link addition (deletion) between a pair of agents on shortest distances,

closeness, and storage availability.

We have studied the deviation conditions under which agents have an incentive to add

or delete a link in a given network structure. With these conditions, we analysed pairwise

stability and efficiency of social storage cloud. We shown that there always exist a unique

pairwise stable network, which is also efficient. Hence, the price of anarchy and the price

of stability are, both, one.

30https://www.backblaze.com/blog/backblaze-hard-drive-stats-q1-2019/ (accessed on 04
September 2019)
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Chapter 6

Social Storage Cloud: Resource Availability

In the previous chapter, we studied network formation in the SSSC context, where agents

form a stable network that is disconnected, where each agent is engaged in storage sharing

with a single partner. In other words, in a stable SSSC, each agent maintains a single link

and has no incentives to add more than one link, resulting in a disconnected network (for 3

or more agents). But this network structure introduces a crucial issue regarding QoS (low

data availability and reliability), imbalanced workload distribution and poor resource utiliza-

tion. In the context of exogenous social connections, it is observed that a network structure

(in terms of agents’ neighbourhood size) influences workload (request for resources) dis-

tribution and resource utilization. In load placement, agents with high neighbourhood size

are frequently requested and those with less neighbours seldom. This leads to imbalanced

workload distribution and poor resource utilization.

Let us look at this from the point of view of a system administrator who wants to deal

with these issues. Let us assume that the system administrator gives incentives to its agents

(who are users) to form at least one more link so that it leads to at least a minimally con-

nected network, for instance, the ring network. Then, the system administrator observes the

process of network formation. In this case, it is crucial to understand the impact of link for-

mation between a pair of agents on their chance of obtaining a resource from another agent.

It is also important to estimate how network size and density influence externalities, and

how many agents benefit due to the newly added link. This chapter examines these aspects.

It also studies the preferences of agents in link formation by considering factors like their
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closeness and their mutual distances.

6.1 Social Storage Cloud: Closeness-Based Resource

Sharing

In an SSC g, agents perform closeness-based resource sharing, which is captured by the

harmonic centrality measure as given below.

Φi(g) = ∑
j∈g\{i}

1
di j(g)

(6.1)

In an SCC g, an agent j ∈ g (who acts as a resource provider) computes a probability

distribution on all agents for the purpose of allocating storage resource to agent i ∈ g (who

acts as a resource consumer) and defined as below:

αi j(g) =

1
di j(g)

∑
j∈g\{i}

1
di j(g)

=
1

di j(g)Φi(g)
. (6.2)

In other words, αi j(g) is the probability that agent i will obtain storage space from agent j

in g.

Remark 6.1. If di j(g) = ∞ then αi j(g) = 0(= α ji(g)). As agents i and j are disconnected

in g their chances of obtaining storage space from each other is nil.

The probability that agent i obtains resource from at least one agent in g is given as

bellow:

γi(g) = 1− ∏
j∈g\{i}

(1−αi j(g)). (6.3)

Definition 6.1. We refer to αi j(g) as the local resource availability of i from j, and γi(g), as

the global resource availability of i.
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6.2 Local Resource Availability

This section focuses on local resource availability. Specifically, it studies the impact of

link addition and deletion between a pair of agents on their local resource availability. It also

studies how link addition (or deletion) between a pair of agents impacts the local resource

availability from their neighbours.

An agent's chance of obtaining a resource from another agent is determined by, first, the

distance between the agent (who wants a resource) and the other agent (who may provide

the resource), and second, the other agent's closeness. Hence, it is important to know, how

a newly added link affects the distance between pairs of agents and their closeness.

Remark 6.2. Suppose g is an SSC with distinct agents k, l, such that 〈kl〉 /∈ g.

Then,

either di j(g) = di j(g+ 〈kl〉), for all i ∈ g\{k, l}, j ∈ g,

or di j(g) = di j(g+ 〈kl〉) for some i ∈ g\{k, l}, j ∈ g,

and di j(g)> di j(g+ 〈kl〉) for some i ∈ g\{k, l}, j ∈ g.

Similarly,

either Φi(g) = Φi(g+ 〈kl〉), for all i ∈ g\{k, l},

or Φi(g) = Φi(g+ 〈kl〉), for some i ∈ g\{k, l}

and Φi(g)< Φi(g+ 〈kl〉), for some i ∈ g.

Due to this Remark, we study an agent's probability of obtaining a resource in g by

taking the following cases into consideration.

1. di j(g) = di j(g+ 〈kl〉) and Φi(g) = Φi(g+ 〈kl〉).

2. di j(g) = di j(g+ 〈kl〉) and Φi(g)< Φi(g+ 〈kl〉).

3. di j(g)> di j(g+ 〈kl〉) and Φi(g)< Φi(g+ 〈kl〉).

6.2.0.1 Link Alteration and Local Resource Availability

We first look at the relation between link alteration (in terms of link addition and dele-

tion) and local resource availability.
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Lemma 6.1. Suppose g and g′ are social storage clouds, and suppose i, j ∈ g∩ g′. Then

αi j(g)> αi j(g
′) if and only if di j(g

′) ∑
k∈g′\{i, j}

1
d jk(g′)

> di j(g) ∑
k∈g\{i, j}

1
d jk(g)

.

Proof. αi j(g)> αi j(g
′), if and only if

1
di j(g)(

1
di j(g)

+ ∑
k∈g\{i, j}

1
d jk(g)

)
> 1

di j(g′)(
1

di j(g′)
+ ∑

k∈g′\{i, j}

1
d jk(g

′) )
, if and only if

[ 1
1+di j(g) ∑

k∈g\{i, j}
1

d jk(g)
]> [ 1

1+di j(g′) ∑

k∈g′\{i, j}

1
d jk(g

′)
], if and only if

1+di j(g
′) ∑

k∈g′\{i, j}

1
d jk(g′)

> 1+di j(g) ∑
k∈g\{i, j}

1
d jk(g)

, if and only if

di j(g
′) ∑

k∈g′\{i, j}

1
d jk(g′)

> di j(g) ∑
k∈g\{i, j}

1
d jk(g)

.

Proposition 6.1. Suppose g is an SSC, and suppose i and j are distinct agents in g such that

〈i j〉 6∈ g. Then, αi j(g+ 〈i j〉)> αi j(g).

Proof. Owing to Lemma 6.1, it suffices to show that

di j(g) ∑
k∈g\{i, j}

1
d jk(g)

> di j(g+ 〈i j〉) ∑
k∈g+〈i j〉\{i, j}

1
d jk(g+ 〈i j〉)

(6.4)

Note that di j(g+ 〈i j〉) = 1 and di j(g) ∈ {2,3, . . . ,}.

It suffices to check that Inequality (6.4) holds in the following three cases.

1. Let di j(g) = ∞. That is, i and j are not connected in g. Inequality (6.4) clearly holds.

2. Let ∑
k∈g\{i, j}

1
d jk(g)

= ∑
k∈g+〈i j〉\{i, j}

1
d jk(g+〈i j〉) . That is, addition of link 〈i j〉 does not

change the shortest path between j and any other agent k except i. It is easy to see

that Inequality (6.4) holds in this case too.

3. Now, suppose the addition of link 〈i j〉 changes the shortest path(s) between j and

at least one k (besides i). Every shortest path between j and such k in g+ 〈i j〉 is,

obviously, shorter than that in g. Hence, ∑
k∈g\{i, j}

1
d jk(g)

< ∑
k∈g+〈i j〉\{i, j}

1
d jk(g+〈i j〉) .
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To show that the Left Hand Side of Inequality (6.4) is greater than the Right Hand

Side, we show that it holds for the worst (or tightest) possible case of the Inequality

(given N). This happens when di j(g) is the minimum possible, that is, 2, and for g,

with N agents, as shown in Figure 6.1(a). Agent i is connected with N− 2 agents,

agent j has a single neighbour k, and k is an intermediary between i and j. In g,

Φ j(g) = 1 and di j(g) = 2. Let agent i and j add a direct link in g, resulting in the

network structure g+〈i j〉 as shown in Figure 6.1(b). Here, Φ j(g+〈i j〉) = N+1
2 , which

is an upper bound on the closeness of j in any connected network g+ 〈i j〉, when

Φ j(g) = 1. We have, ∑
k∈g\{i, j}

1
d jk(g)

= N
3 and ∑

k∈g+〈i j〉\{i, j}

1
d jk(g+〈i j〉) =

N−1
2 , which

((a)) Network g ((b)) Network g+ 〈i j〉

Figure 6.1: Link addition and local resource availability

satisfies Inequality (6.4).

The above result shows that agents always improve their local resource availability by

adding new resource sharing connections.

Proposition 6.2. Suppose g is an SSC with distinct agents i and j such that 〈i j〉 ∈ g. Then,

αi j(g)> αi j(g−〈i j〉).

Proof. Owing to Lemma 6.1, it suffices to show that

di j(g−〈i j〉) ∑
k∈g−〈i j〉\{i, j}

1
d jk(g−〈i j〉)

> di j(g) ∑
k∈g\{i, j}

1
d jk(g)

(6.5)

We know that di j(g) = 1, di j(g−〈i j〉) ∈ {2,3, . . .}, and 0≤ ∑
k∈g\{i, j}

1
d jk(g)

≤ N−2, 0 when
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j is isolated and N−2 when j is connected to all k.

It suffices to check that Inequality (6.5) holds in the following three cases.

1. Let di j(g−〈i j〉) = ∞. That is, 〈i j〉 is the only path between i and j in g. Inequality

(6.5), clearly, holds in this case.

2. Let ∑
k∈g\{i, j}

1
d jk(g)

= ∑
k∈g−〈i j〉\{i, j}

1
d jk(g−〈i j〉) .That is, deletion of link 〈i j〉 does not

change the shortest path between j and any other agent k except i. It is easy to see

that Inequality (6.5) holds in this case too.

3. Suppose ∑
k∈g\{i, j}

1
d jk(g)

= N−2, the least upper bound of the summation. This means

j has links with all other agents. Refer Figure 6.2(a).

((a)) Network g ((b)) Network g−〈i j〉

Figure 6.2: Link deletion and local resource availability

Now, suppose di j(g− 〈i j〉) = 2, the greatest lower bound on the distance as 〈i j〉

has been deleted. In g−〈i j〉, j has links with all agents except i. An agent i has a

link to at least one other agent, for otherwise we have Case 1. Refer Figure 6.2(b).

Therefore, ∑
k∈g−〈i j〉\{i, j}

1
d jk(g−〈i j〉) = N−2.

Hence, the Left Hand Side of Inequality (6.5) is 2(N−2) and its Right Hand Side is

N−2, thereby proving that the inequality holds.

The above result shows that an agent's decision to delete an existing resource sharing

connection decreases the local resource availability of the pair of agents from each other.
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Theorem 6.1. Suppose g is an SSC with distinct agents i and j. Then, the link 〈i j〉 is always

strictly beneficial to both i and j, with respect to local resource availability from each other.

Proof. Follows from Propositions 6.1, 6.2 and Lemma 6.1.

6.2.0.2 Neighbors and Local Storage Availability

In the previous section, we saw that an agent i improves its local resource availability

from another agent j by forming link 〈i j〉. However, this newly added link decreases agent

i's local resource availability from its existing neighbours k who are at least three hops

away from j. For neighbours k who are less than three hops away from j, agent i's local

resource availability from them remains the same. Similarly, while an agent's local resource

availability from another agent decreases if their existing link is deleted, the agent's local

resource availability from its existing neighbours who are at least three hops away increases,

and remains the same for the other neighbours. We prove these results below.

Proposition 6.3. Suppose g is an SSC. Suppose i, j and k are distinct agents in g such that

〈i j〉 6∈ g and k ∈ ηi(g). Then, the following hold:

1. If k ∈ η j(g), then αik(g) = αik(g+ 〈i j〉).

2. If dk j(g) = 2, then αik(g) = αik(g+ 〈i j〉).

3. If dk j(g)> 2, then αik(g)> αik(g+ 〈i j〉).

Proof. If dk j(g) > 2, then Φk(g+ 〈i j〉) > Φk(g) as dk j(g+ 〈i j〉) = 2 < dk j(g), the new

shortest path being the path with the two links 〈ki〉 and 〈i j〉.

Therefore, from Equation (6.2 ), αik(g) =
1

Φk(g)
> 1

Φk(g+〈i j〉) = αik(g+ 〈i j〉), thereby

proving case 3.

If dk j(g)≤ 2, then dk j(g+ 〈i j〉) = dk j(g) and, hence, Φk(g+ 〈i j〉) = Φk(g).

It follows that αik(g) = αik(g+ 〈i j〉), proving cases 1 as well as 2.

Similar results hold for agent k's resource availability from agent i too, as stated in the

following corollary.
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Corollary 6.1. Suppose i, j and k are distinct agents in an SSC g such that 〈i j〉 6∈ g and

k ∈ ηi(g). Then, the following hold:

1. If k ∈ η j(g), then αki(g) = αki(g+ 〈i j〉).

2. If dk j(g) = 2, then αki(g) = αki(g+ 〈i j〉).

3. If dk j(g)> 2, then αki(g)> αki(g+ 〈i j〉).

We have the following results on the aggregate local resource availability, aggregated

over all neighbors of i in g.

Corollary 6.2. Suppose g is a two-diameter SSC and Suppose 〈i j〉 6∈ g. Then,

∏
k∈ηi(g)

αik(g) = ∏
k∈ηi(g+〈i j〉)\{ j}

αik(g+ 〈i j〉).

Corollary 6.3. Suppose i and j are distinct agents in an SSC g such that 〈i j〉 6∈ g. Sup-

pose the radius of the shortest-path-{ηi,{ j}}-induced-subgraph of g is at least 3. Then

∏
k∈ηi(g)

αik(g)> ∏
k∈ηi(g+〈i j〉)\{ j}

αik(g+ 〈i j〉).

We, now, see that an agent's local connections increase its aggregate local resource avail-

ability, when the agent deletes a link with one of the neighbours who is at least three hops

away from the other neighbours.

Proposition 6.4. Suppose i, j and k are distinct agents in an SSC g such that 〈i j〉 ∈ g and

k ∈ ηi(g). Then, the following hold:

1. If k ∈ η j(g), then αik(g) = αik(g−〈i j〉).

2. If dk j(g) = 2, then αik(g) = αik(g−〈i j〉).

3. If dk j(g)> 2, then αik(g)< αik(g−〈i j〉).

Proof. The result can be proved in lines similar to the proof of Lemma 6.3.

Corollary 6.4. Suppose i, j and k are distinct agents in an SSC g such that 〈i j〉 6∈ g and

k ∈ ηi(g). Then, the following hold:

1. If k ∈ η j(g), then αki(g) = αki(g−〈i j〉).

102



2. If dk j(g) = 2, then αki(g) = αki(g−〈i j〉).

3. If dk j(g)> 2, then αki(g)> αki(g−〈i j〉).

Corollary 6.5. Suppose g is a two-diameter SCC where i and j are distinct agents and

〈i j〉 ∈ g. Then ∏
k∈ηi(g)\{ j}

αik(g) = ∏
k∈ηi(g−〈i j〉)

αik(g−〈i j〉).

Corollary 6.6. Suppose i and j are distinct agents in an SSC g where 〈i j〉 ∈ g. Sup-

pose the radius of the shortest-path-{ηi(g),{ j}}-induced-subgraph of g is at least 3. Then

∏
k∈ηi(g)\{ j}

αik(g)< ∏
k∈ηi(g−〈i j〉)

αik(g−〈i j〉).

Theorem 6.2. Suppose g is an SSC with distinct agents i, j and k, such that k ∈ ηi(g). Then,

the link 〈i j〉 is always strictly beneficial to i as well as k, with respect to local resource

availabilities from each other, if and only if dk j(g)> 2.

Proof. Follows from Propositions 6.3, 6.4 and Lemma 6.1.

Now, we examine the impact on agents' local resource availability due to a newly added

link (say between j and k) in g.

Lemma 6.2. Let αi j(g) and αi j(g+ 〈kl〉) are the probabilities that agent i will obtain a

resource from j in g and g+ 〈kl〉, respectively.

1. If di j(g) = di j(g+ 〈kl〉) and

• Φ j(g) = Φ j(g+ 〈kl〉) then αi j(g) = αi j(g+ 〈kl〉).

• Φ j(g)< Φ j(g+ 〈kl〉) then αi j(g)> αi j(g+ 〈kl〉).

2. If di j(g)> di j(g+ 〈kl〉) and

• di j(g+〈kl〉)
di j(g)

>
Φ j(g)

Φ j(g+〈kl〉) then αi j(g)> αi j(g+ 〈kl〉).

• di j(g+〈kl〉)
di j(g)

<
Φ j(g)

Φ j(g+〈kl〉) then αi j(g)< αi j(g+ 〈kl〉).

Proof. The proof follows the following observations:

αi j(g) =
1

di j(g)Φ j(g)
and αi j(g+ 〈kl〉) = 1

di j(g+〈kl〉)Φ j(g+〈kl〉) .

103



6.3 Externalities

6.3.1 Experimental Analysis

In the SSC model, we have seen that externalities are derived by the agents' chance

of obtaining storage space from at least one agent in the network (we term this as global

resource availability). Addition of a link imposes both positive as well as negative exter-

nalities on other agents. A newly added link is beneficial for a set of agents, and at the

same time, it is non-beneficial (and even detrimental) for another set of agents. This section

attempts to extend the understanding of externalities in the process of network formation by

computing both positive and negative externalities as a function of the network structure (in

terms of network size and density).

6.3.1.1 Experimental Data:

We are interested in environments with a large number of network configurations where

agents form resource sharing connections with others based on harmonic centrality based

measure. Since the number of network combinations grows exponentially (O(2
N(N−1)

2 )) with

the number of agents (N), the complexity of an analytical treatment of the problem also

increases. For instance, with 4 agents, there are 64 possible networks and with 6 agents

there are 32,768 possible networks. In addition to the issue of manageability, a core diffi-

culty with large networks is that they may encode a tremendous amount of information or

a very limited amount of information [98]. In the literature, several authors have studied

the role of network structure in determining the outcome of economic activities by taking

different sizes of network (number of agents) with different network structures (shape of the

network). Table 6.1 lists a few of them.

To generate data to investigate the relation between externalities, and network size and

network density we implement the network formation algorithm on different sizes of con-

nected ring (circle) networks varying from 4 to 30 agents. The network sizes we consider

here are considerably large in the context of endogenous network formation literature. How-

ever, we admit that the network size we consider for the analysis is one of the limitations of

our study.
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Author(s) Network
Size
(Agents)

Network Structure

Keser et al. [99] 3, 8 The complete and circle
Vallam et al. [100] 4 The complete equi-bipartite
Gallo and Yan [101] 9, 15 The circle
Carrillo and Gaduh
[102]

12 The bipartite and star

Gallo [103] 6 The regular network of degree 4, the star, and
the circle

Table 6.1: Studies of network formation experiments

We focus on the ring network structure for two reasons. First, unlike an arbitrary net-

work or a random η-regular network (where each agent has same neighbourhood size η),

the ring network has uniform harmonic centrality distribution. That is, each agent has same

closeness in the ring network. Second, the structural properties of this network do not sig-

nificantly affect the centralities' granularity, and hence, do not have impact on the relation

between the network size and externalities. Our investigation becomes difficult in the case

of non-uniform harmonic centrality and with large network size. For instance, even for a

small network of 14 agents and η = 3 and η = 7, we have 509 and 21609301 networks31,

respectively [104]. For the given network size and η , the harmonic centrality (closeness) of

agents differ from one network structure to another network structure.

For instance, we have three networks of size 12 (N = 12) (see Figure 6.3). In the network

g1 (see Figure 6.3(a)) and g2 (see Figure 6.3(b)) each agent has four neighbours (i.e. η = 4),

whereas in the ring network (see Figure 6.3(c)), each agent has two neighbours (i.e. η = 2).

The corresponding closeness of each agent in each network is shown in Table 6.2. From this

data, we can observe that although network g1 and g2 are of the same size and where each

agent has the same neighbourhood size, there is non-uniformity in the harmonic centrality

distribution, whereas this is not true in the case of ring network as shown in Figure 6.3(c)).

Therefore, it is cumbersome to deal with networks g1 and g2 in terms of generating the

data and further analysing this data for each case. In fact, the non-uniformity in closeness

31http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
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((a)) g1(η = 4) ((b)) g2(η = 4) ((c)) Ring(η = 2)

Figure 6.3: Network structures with N = 12

Agent g1 g1 Ring
a 7.5000 7.3333 4.7333
b 7.1667 7.3333 4.7333
c 7.3333 7.0000 4.7333
d 7.5000 7.3333 4.7333
e 7.5000 7.5000 4.7333
f 7.3333 7.1667 4.7333
g 7.1667 7.0000 4.7333
h 7.5000 7.1667 4.7333
i 7.1667 7.1667 4.7333
j 7.5000 7.1667 4.7333
k 7.5000 7.3333 4.7333
l 7.1667 7.1667 4.7333

Table 6.2: Closeness (harmonic centrality)

does not serve our aim of investigating the relation between externalities, network size and

density.

6.3.1.2 Experimental Approach

In order to obtain experimental data for our study, among practices such as online and

offline methods of recruiting subjects, agent-based modelling, and computer program based

simulation, we find computer program based simulation methodology the most appropriate.

On the one hand, online (for example, Amazon Mechanical Turk32) and offline methods of

recruiting subjects are laborious and costly, and not necessary in our study. On the other

32https://www.mturk.com/
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hand, agent-based-models are well suited for a dynamic strategic economic framework.

To obtain data for studying externalities, we adopt the cost-efficient and simple approach

of computer program based simulation [105, 106] method33. This method is widely used to

understand both strategic and non-strategic dynamic network formation. For example, [108]

investigate agents' similarity in terms of interests, tests, beliefs, social backgrounds, and so

on. in a non-strategic dynamic network. [100] study network formation with localized

payoff in order to study the pairwise stability and efficiency of the network. Similarly,

network formation with heterogeneous preferences is studied by [109]. The above works

implement the network formation procedure in MATLAB, C++ and Java, respectively.

In our study, for the analysis of externalities, we generate social networks (of sizes men-

tioned above) by using SocNetV (Social Network Analysis and Visualization) software34.

We obtain data related to distances of agents in these networks by using the same software.

The generated network acts as an input to the procedure describe in the following algorithm,

which generates the data. Further, we make use of Microsoft Excel for quantitative analysis

of closeness and resource availability.

Initially, we compute γi(g) for all agents in a ring network g. Then, we select an agent

j arbitrarily and add a link with another agent k whose distance is two hops from j. We

compute γi(g+ 〈 jk〉)− γi(g), and count the number of beneficiaries (NOB) i for whom this

difference is positive. That is, NOB is the set of agents who experience positive externalities

due to a newly added link. We repeat the above for all agents k who are located at distance

two hops from agent j in g. Then, we increment the distance between j and k by one and

follow the same procedure. We do this until we exhaust all agents j.

6.3.2 Findings

This section discusses the findings on the relation between externalities, and network

size and density.

33This is due to unavailability of data of real world networks like BuddyBackup or CrashPlan, and because
of the endogeneity issue [107] faced by various studies

34http://socnetv.org/
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Algorithm for Analysing Externalities in a Network g

Input: Network g
Output: Total NOB = Total Number of Beneficiaries
Output: Number of Beneficiaries for an agent i (NOBi)

1: for each agent i ∈ g do
2: Compute γi(g) by (Equation 1 in the manuscript)
3: end for
4: Compute diameter Dg of g
5: For an agent i ∈ g set NOBi = 0
{NOBi is the number of beneficiaries due to agents i's link formation with other agents}

6: Set distance = 2
7: while distance ≤Dg do
8: for each agent j ∈ g such that di j(g) = distance do
9: Add a link 〈i j〉 in g

{Network g is updated and it becomes g+ 〈i j〉}
10: Set NOBi j = 0

{NOBi j is the number of beneficiaries due to newly added link between i and j}
11: for each k ∈ g+ 〈i j〉 \{i, j} do
12: Compute γk(g+ 〈i j〉) by (Equation 1 in the manuscript)
13: Compute γk(g+ 〈i j〉)− γk(g)
14: if γk(g+ 〈i j〉)− γk(g)> 0 then
15: NOBi j = NOBi j +1
16: end if
17: end for
18: NOBi = NOBi +NOBi j
19: Delete 〈i j〉 in g+ 〈i j〉
20: end for
21: increase distance by 1
22: end while
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6.3.2.1 Network Size

((a)) Network Size 4-10 ((b)) Network Size 11-20

((c)) Network Size 21-30 ((d)) Network Size 22-24

Figure 6.4: Externalities and network-size.

Figure 6.4 summarises our results. The x-axis represents the shortest distance between

two agents involved in link formation. The y-axis represents the NOB. The z-axis represents

the network size (the number of agents in the network).

Finding 6.1. In “less” populated ring networks, no agent experiences positive externalities.

In networks with size varying from 4 to 10 (Figure 6.4(a)), no agent experiences positive

externalities. From from Remark 5.1, positive externalities require an increase in closeness,

which is absent here. However, from network size 11 to 30 ( Figures 6.4(b) and 6.4(c)), a

significant number of agents experience positive externalities.

Finding 6.2. In ring networks of size greater than 10, as the distance between the agents

involved in link addition increases, the number of beneficiaries increases in most cases, and

in all cases for small distances.
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Plots in Figures 6.4(b), 6.4(c) and 6.4(d) are of this type. It is clear that, if an agent

experiences positive externalities, its closeness should increased (from Remark 5.1). This

is intuitive — if a pair of agents who are far from each other in g form a link then, this link

reduces the mutual distances among other agents, and therefore, their closeness increase.

For example, in the network of size 21 (see Figure 6.4(c)), if a pair of agents who have

distance 2 form a link, we have 3 NOB. But, if a pair of agents who have distance 6 form

a link we have 4 NOB. This indicates that link formation between two agents in g brings

many agents close to each other, resulting in increments in their closeness. However, merely

an increase in closeness is not sufficient for agents to experience positive externalities.

Finding 6.3. In ring networks, the number of beneficiaries is always less than the number

of non-beneficiaries.

In all our experiments, the percentage of beneficiaries varies from 0% to 26% of the total

number of agents in the network.

6.3.2.2 Network Density

Network density of a network g is the ratio of the number of existing links in g to the

maximum number of possible links in g [110]. That is, O(g) = `
N(N−1)

2

. Thus, O(g) goes

from 0 (if each agent is isolated in g, i.e. `= 0) to 1 (if each agent has connections with all

other N−1 agents in g, i.e. `= N(N−1)
2 ).

To study the correlation between externalities and network density, we focus on η-

regular networks with varying η ' s. As compared to the network size experiments above,

where η was 2 (or ring networks), this is done so that different agents have different close-

ness, which would help in our analysis (as earlier, for ring networks, closeness of all agents

was the same). The range of number of agents n is same as above, but for the sake of

compactness we report data for the number of agents varying from 11 to 20, which form a

representative set.

For a given n and a given η (which also gives the diameter of the network or Dg), we

first compute its density (O(g)). Computing NOB is more involved here because of the

varying closeness of agents. Next, we compute closeness of all agents, and sort them into
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buckets corresponding to the same closeness35. Then, we randomly pick any agent from

each bucket and run the above algorithm. We report the maximum of NOB obtained from

all buckets. Note that the combination of odd n and odd η is not valid (i.e., a network is not

possible for this combination). The results of these experiments are given in Table 6.3.

Finding 6.4. The network density is inversely proportional to positive externalities.

From Table 6.3, we observe that the network density and the NOB are inversely pro-

portional. That is, as the network density increases, the number of agents who experience

positive externalities decreases. We analyse this finding further by using our earlier conjec-

tures. From Remark 6.2, we know that by every link addition the closeness of all agents

either remains same or increases. From Remark 5.1, we know that for an agent to experi-

ence positive externalities, its closeness must improve due to this new link (although this is

not sufficient).

In a highly connected network (or a dense network, i.e., O(g)→ 1), agents are already

very close to each other, and hence, it is less likely that a newly added link improves their

closeness. Thus, here the chance of agents experiencing positive externalities is also less.

On the contrary, in a less connected network (or a sparse network, i.e., O(g)→ 0), when

a pair of agents form a link, it is very likely that this newly added link improves the closeness

of many agents. Thus, here the chance of agents experiencing positive externalities also

increases.

Finding 6.5. The above relation between the network density and positive externalities, to

a large extent, is independent of the number of agents in the network.

As in Table 6.3, for network sizes varying from 11 to 20, we see that for a linear incre-

ment in η , the number of neighbours (or a linear decrement in the maximum shortest path),

the network density increases and the NOB decrease loosely following different arithmetic

progressions, which is independent of the number of agents in the network. A similar be-

haviour is observed for network sizes less than 11, but that data is not reported in this table

for the sake of compactness.

35The bucket logic is added for efficiency. Also, for ring networks, we had only one such bucket because
all agents had the same closeness.
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Finding 6.6. In a two-diameter network SSC (i.e. Dg = 2) the NOB is always 0.

Table 6.3 clearly indicates this. In a two-diameter network, the maximum shortest path

between a pair agent is either one or two. Hence, no link addition improves the distance

of other pairs of agents, thus their closeness. This finding is consistent with the earlier

observation stated in 5.1.

Finding 6.7. An agent who has lower (higher) closeness is likely to experience positive

(negative) externalities.

The maximum value of closeness of an agent indicates that it is close to every other

agent. For instance, if agent (say, i) in g is connected with every other agent then Φi(g) =

N − 1, which is the maximum closeness for any agent in any network structure. For an

agent i who has higher closeness, a newly added link (say, between agents j and k) may not

reduce its distances with others to a great extent, therefore, Φi(g) ≈ Φi(g+ 〈 jk〉), and as a

result, γi(g) likely goes down in g+ 〈 jk〉. The above results suggest that as the density of a

given network increases, the closeness of agents also increases. We observe that as network

density increases, the chances that agents experience negative externalities also increase.

6.4 Choice Modelling

In SSC g, each agent strives for maximizing its resource availability. Let us assume an

agent wants to form a link with others. With whom will the agent prefer to form a link

(or links) so that it maximizes its resource availability (say, the local resource availability)?

This section deals with this aspect. In order to study this, we first understand the relation

between distance between agents and local as well as global resource availabilities, we, first,

discuss the following example.

Example 6.1. Suppose g is a ring network36. Then, for all i ∈ g,

Φi(g) =

2(1+ 1
2 +

1
3 + . . .+ 1

N ), if N is odd

2(1+ 1
2 +

1
3 + . . .+ 1

N−1)+
1
N , if N is even.

36A ring network g is a connected network where ηi(g) = 2 for all i ∈ g.
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Suppose i ∈ g. For j ∈ g, suppose 〈i j〉 /∈ g. We compute the local resource availability,

αi j(g+ 〈i j〉) of i from j, and the global resource availability γi(g+ 〈i j〉) for different j in

increasing order of the distance between i and j in g. Figures 6.5(a) and 6.5(b) show that

as the distance between i and j increases, αi j(g+ 〈i j〉) and γi(g+ 〈i j〉) also increase.

((a)) αi j(g+ 〈i j〉) ((b)) γi(g+ 〈i j〉)

Figure 6.5: Local and global resource availabilities of agent i in the ring network

We, now, discuss the relation between local resource availability and distance as well as

closeness.

Lemma 6.3. In an SSC g with distinct agents i, j, such that 〈i j〉 6∈ g, the local resource

availability of agent i from agent j increases with decrease in the distance, di j(g), between

them.

Proof. For any i, j ∈ g, i 6= j, 0 < di j(g) < di j(g) + 1. Then, from Equation (6.2),
1

di j(g)Φ j(g)
> 1

(di j(g)+1)Φ j(g)
.

Lemma 6.4. Suppose g is an SSC with distinct agents i, j and k, such that 〈i j〉,〈ik〉 6∈ g. If

di j(g)> dik(g) then, αi j(g)< αik(g).

Proof. Follows from Lemma 6.3.

Lemma 6.5. In an SSC g, agent i∈ g obtains maximum local resource availability from that

k ∈ g who is least close to others (that is, with the least harmonic centrality).

Proof. Let j,k ∈ g and 0 < Φk(g)< Φ j(g), and di j(g) = dik(g). Then, from Equation (6.2),
1

dik(g)Φk(g)
> 1

di j(g)Φ j(g)
.

113



We showed, in Lemmas 6.4 and 6.5, that the local resource availability of an agent from

another agent increases with decrease in the distance between them and that maximum

local resource availability is obtained from the agent with the least closeness (that is, least

harmonic centrality). We, now, look at the relation between the global resource availability

of an agent and its closeness.

Lemma 6.6. In an SSC g, agent i maximizes its global resource availability by maximizing

its own closeness or equivalently, by minimizing its distance with others.

Proof. The proof is in lines similar to that of Lemma 6.5.

We now discuss results that show which agent to add a link to, under different circum-

stances.

Proposition 6.5. Suppose g is an SSC and i∈ g. Across all j ∈ g, 〈i j〉 /∈ g, suppose i chooses

j = j0 to which to add a link, such that j0 maximizes the local resource availability of i from

j in g+〈i j〉. Then, j0 is the agent (or one of the agents) whose closeness is the least, among

all j ∈ g such that 〈i j〉 /∈ g.

Proof. Suppose agents k and l ∈ g are such that 〈ik〉 /∈ g and 〈il〉 /∈ g. Agent i prefers l over

k to add a link, if and only if

αi j(g+ 〈i j〉)> αik(g+ 〈ik〉), if and only if 1
di j(g+〈i j〉)Φ j(g+〈i j〉) >

1
dik(g+〈ik〉)Φk(g+〈ik〉)

.

We have di j(g+ 〈i j〉) = dik(g+ 〈ik〉) = 1.

Hence, αi j(g+ 〈i j〉)> αi j(g+ 〈ik〉), if and only if 1
Φ j(g+〈i j〉) >

1
Φk(g+〈ik〉)

, if and only if

Φk(g+ 〈ik〉)> Φ j(g+ 〈i j〉).

Proposition 6.6. Suppose g is an SSC and i∈ g. Across all j ∈ g, 〈i j〉 /∈ g, suppose i chooses

j = j0 to which to add a link, such that j0 maximizes the global resource availability of i in

g+ 〈i j〉. Then, j0 is the agent (or one of the agents) whose closeness is the highest, among

all j ∈ g such that 〈i j〉 /∈ g.
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Proof. Similar to the proof of Proposition 6.5.

Lemma 6.7. Agent i prefers j over k to which to add a link, if and only if

Φk(g+〈ik〉)−Φ j(g+〈i j〉)
Φk(g+〈ik〉)Φ j(g+〈i j〉) >

[dik(g)Φk(g)]−di j(g)Φ j(g)]
[dik(g)Φk(g)][di j(g)Φ j(g)]

.

Proof. [αi j(g+ 〈i j〉)−αi j(g)]> [αik(g+ 〈ik〉)−αik(g)].

⇒ [αi j(g+ 〈i j〉)−αik(g+ 〈ik〉)]> [αi j(g)−αik(g)].

⇒ [ 1
Φ j(g+〈i j〉) −

1
Φk(g+〈ik〉)

]> [ 1
di j(g)Φ j(g)

− 1
dik(g)Φk(g)

]

⇒ Φk(g+〈ik〉)−Φ j(g+〈i j〉)
Φk(g+〈ik〉)Φ j(g+〈i j〉) >

[dik(g)Φk(g)]−di j(g)Φ j(g)]
[dik(g)Φk(g)][di j(g)Φ j(g)]

.

Theorem 6.3. The following holds for any SSC g.

1. An agent i prefers to add a link with j over k if j is farther to others than that of k in

g+ 〈i j〉, given that, both agents ( j and k) have the same closeness and they are at the

same distance from the agent i in g.

2. An agent i prefer to add a link with j over k if j is far from i than that of k in g, given

that, both agents have same closeness in g and g+ 〈i j〉.

3. An agent i prefers to add a link with j over k if j is less close to others than that of k

in g, given that, both agents have the same closeness in g+ 〈i j〉 and they are at the

same distance from agent i in g.

Proof. Follows from Lemma 6.7.

6.5 Chapter Summary

This chapter examined the impact of link formation between a pair of agents on their

local resource availability. It shown that on the one hand, link addition always increases

local resource availability involved in the link formation, and on the other hand, deletion
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decreases it. This study also examined externalities in terms of group well-being — it

measures, the number of beneficiaries and non-beneficiaries due to a newly added link.

The last section of the chapter studied the preferences of agents in link formation. If link

formation is allowed, then with whom will agents want to add a link so that their local

resource availability is maximized.
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Network
Size n η Dg O(g) NOB

11
2 5 0.20 8
4 3 0.40 5
6 2 0.60 0

12

2 6 0.18 24
3 4 0.27 9
4 3 0.36 7
5 3 0.46 7
6 2 0.55 0

13
2 6 0.17 24
4 3 0.33 11
6 2 0.50 0

14

2 7 0.15 28
3 4 0.22 22
4 3 0.31 15
5 3 0.40 11
6 2 0.46 0

15
2 7 0.14 32
4 3 0.29 20
6 2 0.43 0

16

2 8 0.13 38
3 5 0.20 30
4 3 0.27 24
5 3 0.33 17
6 3 0.40 8
7 2 0.47 0

17

2 8 0.13 40
4 4 0.25 45
6 3 0.38 13
8 2 0.50 0

18

2 9 0.12 48
3 5 0.18 36
4 3 0.24 30
5 3 0.29 21
6 3 0.35 14
7 2 0.42 0

19

2 9 0.11 48
4 3 0.22 30
6 3 0.33 16
8 2 0.44 0

20

2 10 0.11 56
4 4 0.21 37
6 3 0.32 23
8 2 0.42 0

Table 6.3: Externalities and network density





Chapter 7

Social Compute Cloud: Pairwise Stability

In the previous chapter, we have studied the social storage cloud. These results may be

extended to other social cloud networks where computational resources (besides storage)

may be shared. In this chapter, we discuss one such extension. Here, we present our initial

observations on the stability of symmetric social compute cloud. We first characterize stable

networks by deriving the conditions under which an agent has no incentive to add a link or

delete one of its links.

The analysis of network formation can be performed either as a forward or a reverse

problem. The forward approach looks at which network is likely to emerge for the given

cost and benefit of agents in the network. The reverse problem looks at conditions under

which the given network structure is pairwise stable [111].

Recall, in a symmetric social compute cloud (SSCC) g, the utility of agent i is as follows.

ui(g) = p(1−q)ξ +q[p+(1− p)γi(g)]θi− ςηi(g). (7.1)

whereas ς the link formation cost, ξ and θ are the benefits associated with providing a

resource to others and accomplishing a computational task, respectively. Note that, p is the

probability that agent has a resource and q is the probability that agent needs to perform a

computational task.
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7.0.1 Stable SSCC Characterisation

We now discuss deviation conditions for agent i∈ g, which suggest under what condition

agent i has an incentive to add a new or delete an existing resource sharing connection.

Lemma 7.1. Let g be an SSCC. A agent i ∈ g is benefited by adding a link with agent j ∈ g,

if and only if q(1− p)[γi(g+ 〈i j〉)− γi(g)]>
ς

θ
.

Proof. Let us say agent i's utility in g is as (7.1).

Let agent i and i forms a link 〈i j〉, then the structure of g changes to g+ 〈i j〉 and then

the utility of agent i in new structure g+ 〈i j〉 is as follows

ui(g+ 〈i j〉) = p(1−q)ξ +q[p+(1− p)γi(g+ 〈i j〉)]θ − ς(ηi +1)

agent i has incentive to form a link with agent j if and only if ui(g+ 〈i j〉)> ui(g).

ui(g+ 〈i j〉)> ui(g)

⇒ [p(1− q)ξ + q[p + (1− p)γi(g+ 〈i j〉)]θ − ς(ηi + 1)] > [p(1− q)ξ + q[p + (1−

p)γi(g)]θ − ςηi]

⇒ θq(1− p)[γi(g+ 〈i j〉)− γi(g)]> ς .

Hence, we can argue that,

ui(g+ 〈i j〉)> ui(g) if q(1− p)[γi(g+ 〈i j〉)− γi(g)]>
ς

θ
.

Corollary 7.1. A agent i ∈ g has no incentive to add a link with a agent j ∈ g, if and only if

q(1− p)[γi(g+ 〈i j〉)− γi(g)]≤ ς

θ
.

Lemma 7.2. Let g be an SSCC. A agent i ∈ g benefits by deleting a link with agent j, if and

only if q(1− p)[γi(g)− γi(g−〈i j〉)]< ς

θ
.
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Proof. Let us say agent i's utility in g is as (7.1).

Let agent i deletes a link 〈i j〉 with j, then structure of g changes to g−〈i j〉 and then the

utility of agent i in new structure g−〈i j〉 is as follows

ui(g−〈i j〉) = p(1−q)ξ +q[p+(1− p)γi(g−〈i j〉)]θ − ς(ηi−1).

A agent i has incentive to delete a link with agent j if and only if ui(g−〈i j〉)> ui(g).

ui(g−〈i j〉)> ui(g)

⇒ [p(1−q)ξ +q[p+(1− p)γi(g−〈i j〉)]θ − ς(ηi−1)]>

[p(1−q)ξ +q[p+(1− p)γi(g)]θ − ς(ηi)]

⇒ ς > θq(1− p)[γi(g)− γi(g−〈i j〉)].

Thus, ui(g−〈i j〉)> ui(g) if ς

θ
> q(1− p)[γi(g)− γi(g−〈i j〉)].

Corollary 7.2. Let g be an SSCC. A agent i has no incentive to delete an existing link with

a agent j if and only if q(1− p)[γi(g)− γi(g−〈i j〉)]≥ ς

θ
.

Corollary 7.3. In g, a agent's decision about link addition and deletion is independent of

benefit ξ .

Although an agent benefits ξ by sharing its resource to others, its decision of adding or

deleting a link is independent of benefit ξ . In fact, from Lemma 7.1 and 7.2, we can observe

that the structure of the network is defined by the parameters, such as, the cost to maintain a

direct link, and the rate at which agents' need to perform a task and the resources available

in the network. Therefore, an agent's expected benefit (i.e., q(1− p)ξ ) is exogenous to the

network.

Proposition 7.1. An SSCC g is pairwise stable if
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• for all i, j∈ g,q(1− p)[γi(g)−γi(g−〈i j〉)]≥ ς

θ
and q(1− p)[γ j(g)−γ j(g−〈i j〉)]≥ ς

θ
,

and

• for all i, j ∈ g, if q(1− p)[γi(g+〈i j〉)−γi(g)]>
ς

θ
then q(1− p)[γ j(g+〈i j〉)−γ j(g)]<

ς

θ
.

Proof. The proof follows Definition 2.2, Lemma 7.1, and Corollary 7.2 .

From the above result, we can argue that a resource network is a pairwise stable if no

agent has incentives to delete an existing link. If the ratio of cost for maintaining the link

and the benefit obtained by completing a computational task is less than the probability of

becoming a consumer. And the marginal probability of getting a resource in the present

network structure and the network obtained by deleting an existing link. On the other hand,

no pair of agents want to add a new link between them if the ratio of cost and benefit is

greater than the probability of becoming a consumer, the marginal probability of getting a

resource in the present network structure and the network obtained by adding a new link.

7.0.2 Stable Network Existence

In this section, we examine network formation as the inverse problem. Specifically, we

focus on four special cases of network structures, namely, the two-diameter network, the

star network, the wheel network, the complete bipartite network. With deviation conditions

discussed earlier and the definition of pairwise stability, we investigate the best response of

agents in the given network structures that lead to pairwise stable.

Lemma 7.3. Let g be a two-diameter SSCC. Then, for each agent i ∈ g,

1. γi(g+ 〈i j〉)− γi(g) = π
+
i (g)[αi j(g+ 〈i j〉)−αi j(g)].

2. γi(g)− γi(g−〈i j〉) = π
−
i (g)[αi j(g)−αi j(g−〈i j〉)].

Proof. For the proof we consider two cases.

In the first case we assume that in the network g, a pair of agents 〈i j〉 is involved in indi-

rect resource sharing relationship, while in second we assume that a pair of agents 〈i j〉 is

involved in direct relationship.
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1. Suppose, in g agent i is indirectly connected with agent j. From 3.10 the probability

that j will obtain a resource from i is αi j(g), and the probability (γi(g)) that j will get

from at least one agent in g is

γi(g) = [1−
(

∏
k∈g\{i, j}

(1−αk j(g))× (1−αi j(g))︸ ︷︷ ︸
i is not a neighbor of j in g

)
] (7.2)

Now, let us consider that agent j add link with i in g then in new structure g+ 〈i j〉

agent i and j are neighbors.

In the network structure g+ 〈i j〉 the probability that j will not get resource from i is

1−αi j(g+ 〈i j〉), and γi(g+ 〈i j〉) is the probability that j will get resource from at

least one agent as follows

γi(g+ 〈i j〉) = [1−
(

∏
k∈g+〈i j〉\{i, j}

(1−αk j(g+ 〈i j〉))×
i is now a neighbor of j in (g+ 〈i j〉)︷ ︸︸ ︷

(1−αi j(g+ 〈i j〉))
)
]

(7.3)

Let us say, π
+
i (g) = ∏

k∈g\{i, j}
(1−αk j(g)), and

πi(g+ 〈i j〉) = ∏
k∈g+〈i j〉\{i, j}

(1−αk j(g+ 〈i j〉)).

We simplifying 7.2 and 7.3 as bellow

γi(g) = [1− (π+
i (g)× (1−αi j(g))︸ ︷︷ ︸

i ∈ η̂ j(g)

)] (7.4)

γi(g+ 〈i j〉) = [1− (πi(g+ 〈i j〉)× (1−αi j(g+ 〈i j〉))︸ ︷︷ ︸
i ∈ ηi(g+ 〈i j〉)

)]. (7.5)

Then by subtracting 7.4 from 7.5 we have,

γi(g+ 〈i j〉)− γi(g)
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= [1− (π+
i (g+ 〈i j〉)× (1−αi j(g+ 〈i j〉))]− [1− (π+

i (g)× (1−αi j(g))].

But we know, πi(g+ 〈i j〉) = π
+
i (g), and hence,

γi(g+ 〈i j〉)− γi(g) = π
+
i (g)[αi j(g+ 〈i j〉)−αi j(g)].

This proves the first part.

2. Now, let us suppose that in g agent i is directly connected with agent j.

The probability that j will get from at least one agent in g is

γi(g) = [1−
(

∏
k∈g\{i, j}

(1−αk j(g))× (1−αi j(g))︸ ︷︷ ︸
i ∈ ηi(g)

)
]. (7.6)

Now let us consider that agent j deletes link with i then i and j are not remain

neighbours in the new structure g−〈i j〉.

In this network (g−〈i j〉) the probability that j will not get resource from at least one

agent is as follows

γi(g−〈i j〉) = [1− ( ∏
k∈g−〈i j〉\{i, j}

(1−αk j(g−〈i j〉))× (1−αi j(g−〈i j〉))︸ ︷︷ ︸
i in (g−〈i j〉) not a neighbor of j

)].

(7.7)

Let us say, π
−
i (g) = ∏

k∈g\{i, j}
(1−αk j(g)), and
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πi(g−〈i j〉) = ∏
k∈g−〈i j〉\{i, j}

(1−αk j(g−〈i j〉))

Then by subtracting 7.7 from 7.6 we have,

γi(g)− γi(g−〈i j〉)

= [1− (π−i (g)× (1−αi j(g))]− [1− (πi(g−〈i j〉)× (1−αi j(g−〈i j〉))]

But we know πi(g−〈i j〉) = π
−
i (g), and hence,

γi(g)− γi(g−〈i j〉) = π
−
i (g)[αi j(g)−αi j(g−〈i j〉)].

This proves the second part.

Proposition 7.2. In a two-diameter network g,

1. For agent j adding a link with agent i is beneficial if and only if q(1− p)π+
i (g)[αi j(g+

〈i j〉)−αi j(g)]>
ς

θ
, for all i, j ∈ g, and

2. For agent j deleting a link with agent i is beneficial if and only if q(1 −

p)π−i (g)[αi j(g)−αi j(g]−〈i j〉)]< ς

θ
for all i, j ∈ g.

From Lemma 7.1, 7.2 and 7.0.2.

Proposition 7.3. In a two-diameter SSCC g is pairwise stable if

1. for all 〈i j〉 ∈ g,

min
{

q(1− p)π−i (g)[αi j(g)−αi j(g],q(1− p)π−j (g)[α ji(g)−α ji(g)]
}
> ς

θ
, and

2. for all 〈i j〉 ∈ g,

max
{

q(1− p)π+
i [αi j(g+ 〈i j〉)−αi j(g)],q(1− p)π+

j [α ji(g+ 〈i j〉)−α ji(g)]
}
< ς

θ
.

Proof follows Definition 2.2, Lemma and Proposition 7.2.

Claim 7.1. A null SSCC g is pairwise stable if p(1−q)q(1− p)θ ≤ ς .
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This is intuitive. If for an agent the cost of link formation is greater than the probability

(that agent be a provider and a consumer) and the benefit (that the agent obtain after com-

pleting the task), then, the agent has no incentive to add a link, as a result, the null SSCC is

pairwise stable.

Observation 7.1. Let an SSCC be the complete network g of n agents such that each agent

is adjacent with every other agent. Then g is pairwise stable if
ς

q(1−p)θ ≤ p(1−q)(1− p(1−q)
n−1 )n−2( n−2

(n−1)(2n−3)).

As each agent is adjacent with every other agents in the complete network g, agent can

not add one more link in g. The above condition suggests that no agent has incentives to

delete an existing link. Thus, the g is pairwise stable. Further, we state our observations on

pairwise stability of the star, the wheel, and the complete bipartite network in Appendix D.

7.1 Chapter Summary

The discussion in this chapter is primarily based on our initial observations. Therefore, it

has left several issues untouched. In this case, it is important to know, whether, for the given

parameters p, q, θ , and ς there exists a pairwise SSCC or not. It is difficult to estimate

pairwise stability beyond the two diameter network due to the presence of both positive

and negative externalities. In our view, it requires different treatment than the theoretical

approach. This we leave for future work.
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Chapter 8

Conclusion and Future Work

This study primarily examined social cloud formation in a strategic setting. It has ex-

panded on two untouched aspects of social cloud, namely, endogenous network formation

and stability of such networks. In particular, this study formalized the social cloud as a re-

source sharing network formation game, where rational agents construct their resource shar-

ing connections in order to maximize their utility. Three utility functions (payoff structures)

are proposed, which are a combination of the cost and the benefit that agents experience as

a function of the established resource sharing network. The proposed utility functions are;

a degree-based (where agents receive benefits only from their immediate links), a distance-

based (where agents receive benefits from indirect links), and a variant of the two above.

These payoff structures are the first of their kind in the social cloud literature. Broadly,

this study investigated the stability and efficiency of social storage concerning the proposed

utility functions. It also examined externalities (how utility of an agent is affected due to

action of other agents) through a theoretical as well as an experimental approach.

This chapter is organized as follows: Section 8.1 summarizes the findings; Section 8.2

relates this study to the existing literature; Section 8.3 outlines the implications of this study;

Section 8.4 states limitations; and Section 8.5 discusses the future direction.
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8.1 Recapitulation of Findings

In Chapter 3, we have introduced three social cloud formation models, namely, the social

storage network model, the social storage cloud model, and the social compute model. In

social storage network model agents perform data backup activity with their neighbours

(immediate links) only. The utility function defined in this model is degree based, which

captures the following important parameters, namely, the benefit associated with data, the

cost for link formation, and the chance of disk failure. The social storage cloud model is an

the extension of the social storage network model. The utility function defined in this model

is the degree-distance based, it incorporates indirect links and relaxes the data loss cause.

The social compute model captured the broad class of social cloud systems where agents

obtain benefit by providing and consuming resources, however as the earlier, they pay the

cost to stay in the network. The utility function in this model (close to the Job Contact

Model [60]), is a refinement of the distance-based utility function.

In Chapter 4, we studied the social storage network formation with the solution concept

of the bilateral stability (refinement of pairwise stability). We found that for the symmet-

ric version of the utility function, the social storage network formation always leads to a

bilateral stable network. However, the structure of the bilateral stable network is not inde-

pendent of the number of agents. For example, on the one hand, if the number of agents is

even then we have a bilateral stable network in which each agent has η number of neigh-

bours (depending upon the value of the cost and the benefit and the disk failure rate). On the

other hand, if the number of agents is odd, then we have a bilateral stable network, in which

N− 1 agents have η number of neighbours and one agent has η − 1 neighbours. We also

find that an efficient social storage network and a contented social storage network, both,

are bilaterally stable. However, not all efficient networks are contented.

In Chapter 5, we have studied the social storage cloud formation, where agents in this

network strive for increasing the probability of obtaining storage space by minimizing the

distances with others. We studied the social storage cloud formation with the pairwise

stability solution concept. We shown that for the symmetric utility function there always

exists a unique pairwise stable network, which is also efficient. Therefore, the price of
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anarchy and the price of stability are, both, one.

Chapter 6 mainly focused on the analysis of externalities in terms of resource avail-

ability. With regards to externalities, we found that for an agent to experience positive

externalities, an increment in its closeness is necessary, but not sufficient. Through ex-

perimental analysis we found that in “less” populated ring networks, no agent experiences

positive externalities. Also, the number of beneficiaries is always less than the number of

non-beneficiaries. We studied preference modelling, which suggests with whom an agent

prefers to add link. For instance, between two candidate agents an agent prefers to add a

link with the one who is less close to other agents in the network formed after link addition

(given that both the agents have the same closeness and they are at the same distance from

the agent in question).

In Chapter ?? the conditions under which a two-diameter, star, complete, wheel, and

complete-bipartite networks are pairwise stable.

8.2 Relationship with Previous Research

In this study, we have applied strategic network formation as a tool to study social cloud

formation, in particular, social storage systems (which are inspired by the P2P storage).

Therefore, the literature source for this study is from two disciplines; network formation

and social storage. First, we relate our work with network formation and then to social

storage, and specifically, to P2P storage.

In this study, we have presented bilateral stability as a solution concept by refining the

pairwise stability to study social storage network formation. Our solution concept of bilat-

eral stability subsumes the concept of bilateral equilibrium proposed by Goyal and Vega-

Redondo [32]. The set of all strategies that are bilaterally stable contains the set of all

bilateral equilibrium strategies. A network which is bilaterally stable may contain agents

who may be better off by deviating, whereas a bilateral equilibrium network does not con-

tain any such agent. Both definitions, however, allow only bilateral deviations (or pairwise

addition as well as deletion with mutual consent). Buechel and Hellmann [112] have termed

bilateral equilibrium as bilateral stability. Hummon [113] also discussed mutual consent for
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deletion, but he does not formally define or study the concept of stability with mutual con-

sent for deletion. The author performed agent based simulation of the connection model

proposed in [31], and discussed simulation outputs. Other works that focused on agent

based simulations are by Falk and Kosfeld [114] and Goeree et al. [115].

Our study is most closely related to P2P systems. Especially, our strategic network

formation game has some similarities with peer selection for data placement [116, 117, 118]

and topology formation [119, 63] in P2P systems. To start off, in P2P nomenclature, virtual

(i.e., logical) topologies (or structures) are built by peers (in-general computers or software

modules) on top of physical networks (e.g., Internet).

The articles [116, 117] have studied data placement in a strategic interaction between

peers to maximise data availability. Here, peers are involved in a reciprocal replication

contract (a pair of agents replicates each others' data to increase data availability). They

showed that agents prefer to form contracts with only those who have similar availability.

This behaviour of peers makes the system inefficient.

However, by setting cooperation rules and providing incentives to peers, data availability

can be increased along with the increase in the efficiency of the system. We believe that

these ideas of cooperation rules and incentives would be inspirational to design a more

practical social storage system.

Toka and Michiardi [118] studied data placement in a different strategic setting than

above. Here, peers selfishly select partners based upon their profiles. The profile of each

peer, which includes the online availability, the bandwidth, and global preferences, is con-

sidered along with the utility function so that the data storing costs are minimised. Authors

have shown here that there exists at least one pairwise stable matching and it can be found in

polynomial time. In our study, we have not considered agents availability. This was based

upon the assumption that the out of band communication [15] is possible between them.

However, this can be further analysed.

Finally, we looked at topology formation in P2P systems. P2P topologies are a mirror

image of social connections in our case. The studies [119, 63] have proposed a locality game

(inspired by the network creation game proposed by [62]) to study the impact of selfish peers

on P2P topologies. In this setting, selfish peers select their partners in such way that the

130



stretch (i.e., the look up performance in terms of latencies) could be minimised. Their three

main results are as follows: the topologies built by selfish agents are worse compared to the

topologies built by agents in collaboration; the topologies constructed by selfish agents are

never stable (i.e., there is always a change in the topology); and determining a pure Nash

equilibrium is NP-complete here. This aspect of selfish agents is part of our future work and

is discussed in detail in the next section. However, as motivated in the introduction and in

the background chapters, for us the solution concept of Nash equilibrium is not useful and

we use bilateral stability instead.

When looking at P2P systems more closer to our social storage systems, P2P social net-

working is one such area [120, 121]. Topology formation is one of the concerns here [121].

We believe that our solution concept of bilateral stability has its theoretical consequences in

determining which bilaterally stable topology emerges in P2P social networking.

8.3 Research Implications

As mentioned in Chapter 1, in the social cloud literature, the issues of low service avail-

ability (for example, data and storage availability) and imbalanced workload (that lead to

low storage utilization) are strongly correlated with the number of social contacts. In fact,

the study [3] looks how to balance the workloads between the agents having high and low

neighbour sets as an open problem. The studies [23, 24] shown that the small friend set is

a cause of low service availability as well as poor storage utilization. However, it is worth

noting that these findings are drawn in the context of exogenous social contacts.

We have shown that, in particular, for the given utility function if agents are allowed

to select their partners, then in the context of symmetric social storage network (Chapter

4), each agent selects η̂ friends, therefore, the resource sharing network formation leads

to the η̂-regular network. We conjecture that, in the context of the symmetric social stor-

age network, there is a uniformity in the distribution of the workload as each agent has

the same number of neighbours. However, in the context of the symmetric social storage

cloud (Chapter 5), we inferred that if agents select their partners by looking at their cost-

benefit trade-off, then the issues discussed above are more significant than in the context of
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exogenous social contacts.

We believe that the analysis of storage availability and network formation performed

by us have several advantages from the point of view of storage providers (for example,

BuddyBackup, CrashPlan, Friendstore). The analysis of network stability may help design

efficient strategies related to data redundancy that suggest how many data pieces are needed

on the storage space provided by partners in order to achieve the required level of data

availability. It also helps design efficient workload strategies to maximize storage utilization.

One of the advantages of endogenous network formation is that it provides more control

to agents on their data and in selecting their storage partners. Further, our approach of

analysis of network stability is useful for the agents who are part of the Friendstore storage

system—it is easy for them to calculate their maintainable capacity [12] so as to maximize

their storage utilization and data reliability.

It is widely accepted that network structure plays a crucial role in determining exter-

nalities, our findings clearly show that network size is also an equally important factor.

Our results relating network size and the distance between agents to externalities would be

useful to social cloud business startups for policy making. For instance, the policy may

include the use (or recommendation) of friends as backup partners, to avoid negative exter-

nalities or to minimize the number of non-beneficiaries (for example, by choosing agents

for data backup who are far away from the agent requesting backup). Although our re-

sults are for ring networks, they can be extended to other network structures too. Secondly,

our approach of relating externalities and group well-being (that is, measuring beneficiaries

and non-beneficiaries) enriches the transfer-based network formation model [67] (where an

agent subsidizes another agent to form or not form link(s) with others), by incorporating

group subsidization. In particular, agents can subsidize a pair of agents involved in a link

formation, instead of individual subsidization. For example, in some research and develop-

ment settings, where a set of beneficiary-firms are willing to pay a pair of firms that would

like to collaborate [61]. Using the approach and results discussed in the paper, one can

model this situation either as collective subsidization or as bargaining on link formation.

In this case, a set of non-beneficiary-firms will pay for the pair of firms to not collaborate

with each other, or a set of beneficiary-firms will pay for the pair of firms to collaborate
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with each other. Alternatively, both beneficiaries and non-beneficiaries may bargain for link

formation.

8.4 Limitations

Despite the above advantages and implications, our study has several limitations. Firstly,

all the social cloud models, namely, the social storage network model, the social storage

cloud model and the social compute cloud model in Chapter 3 stand on the assumption

(similar to various network formation models [58, 78, 63, 122]) that agents have complete

information about the network structure. Though in the context of the social storage cloud

model, we do not require this assumption during network formation as, owing to Theorem

5.7, links form (at most) pairwise, this assumption is crucial for our analysis in Section 5.1

on closeness and distances.

Secondly, although the proposed utility model captures various parameters essential for

understanding social storage cloud formation, we cannot rule out that parameters like online

availability of agents, trust between them, and the bandwidth they have may influence the

network formation.

In this study, though the proposed utility functions are for heterogeneous agents, the

analysis is limited to homogeneous agents (or symmetric social storage cloud systems).

In the case of heterogeneous agents, it would be interesting to see how externalities will

influence social cloud formation. In fact, the analysis of stability, efficiency and externalities

(in terms of resource availability) will also be more relevant in this setting.

8.5 Future Work

In this section, we discuss future work regrading utility functions, stability, and

efficiency.

Utility Functions

The proposed utility functions can be enriched by taking the above mentioned parameters
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(that is, online availability, bandwidth, and trust) into account. One can then study so-

cial cloud formation with both complete and incomplete information. For example, in the

incomplete information setting, agents know neither the network structure nor the online

availability and bandwidth of others. Analysis in this context will give more insight into

social cloud formation.

For the MO-framework (Chapter 3), we use a convex combination of our two objective

functions (maximizing data reliability and minimizing the total cost of the link), and this is

no longer a case of Multi-Objective (MO) optimization. Since the solution of the convexly

combined problem may not always be the solution of the original MO problem, finding a

Pareto frontier (path followed by most MO algorithms) is part of our future work.

Agent Behaviour

In all our discussions, we have assumed that any pair of agents can potentially form a link.

In scenarios where agents do not necessarily trust all agents in the network, our results

on bilateral stability (discussed in Chapter 4) extend to every clique (of mutually trusting

agents) in the network. If not all agents trust each other, we may use an extension of the

Hall's marriage theorem [123] to aid independent observers determine whether it is possible

to form an efficient network or not.

In our current work, we have not focused on the heterogeneous behaviour of agents in

social storage settings. Although incorporating complex and heterogeneous behaviour of

agents into our models is closer to real world scenarios, this would make it difficult to deal

with the model and as well as predict its outcome. Kuznetsov and Schmid [94] propose

a social range matrix, which is a novel approach to deal with heterogeneous behaviour of

agents in the network. In particular, social range matrices capture three scenarios: anarchy,

monarchy and coalitions. In anarchy, each agent is selfish. In monarchy, agents care

about only one agent in the network. In the coalitions scenario, agents support each other

within the same coalition but act selfishly or maliciously towards agents in other coalitions.

Investigating the applicability of the social range matrix in our earlier proposed frameworks

and bilateral stability is part of our future work.
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Solution Concepts: Stability Analysis

Coming to the solution concept, if we had used the concept of Pairwise Nash Stability

as defined by [73] and had applied the mutual consent requirement for deletion too, we

would have obtained as for the degree-based utility function proposed in the social storage

network context (Chapter 3). This is because the mutual consent requirement for addition

and deletion overrides the requirement for Nash equilibrium. We are currently working on

modifying the definition of Pairwise Nash Stability to multiple other scenarios. Looking

at strong and coalition-proof Nash equilibria [124], strong pairwise stability [72], and

farsighted equilibrium [74], are also future research directions.

Inefficiency

In the case the social storage network model, we have discussed network efficiencies but

not looked at inefficiencies (discussed in Chapter 4). For the social storage cloud model,

we examine efficiency and its contrapositive, that, the inefficiencies in the network (dis-

cussed in Chapter 5). The price of anarchy is an interesting measure to analyse the extent

to which a network is inefficient [125, 126]. By definition, this means ratio of the worst

sum of the utility of agents in an equilibrium network to the best sum of the utility. For the

social storage network model, we have bilaterally stable networks in place of equilibrium

networks. In our case, efficient networks are the ones with the best sum of utility that can be

compared (using Proposition 4.7). However, knowing the worst sum of utility is non-trivial.

The neighbourhood size of every agent that would give us this sum is challenging.
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Appendix A

Social Cloud

In recent years, the idea of Social Cloud has been coming to the forefront of research.

Social Cloud has appeared as a metaphor of resource (service) sharing on a social network,

where users of the social network share resource available at their end with other users in

the social network. In this section, we introduce the concept of social cloud by discussing

different views, a few applications (that demonstrate the potential of social cloud), and

various other aspects of it such as trust, security and resource trading mechanisms.

A.1 Social Cloud: Different Views

Research and development on Social Cloud is currently at its infancy. In the literature,

there seems to be no general definition of Social Cloud (see Table A.1). The different views,

as seen in Table A.1, indicates that nearly half of the studies [4, 36, 38, 39, 85, 20] consider

Social Cloud as a social network group analogous to dynamic Virtual Organization (VO)

[7] in a social network context. A VO like social network group is a set of users who col-

laboratively pool resources to achieve its certain common goal. A group can achieve their

common goal by defining a set of policies regarding group membership, resource sharing,

and so on. So one can view Social Cloud paradigm stands on the notion of collaboration

between generally smaller, better-connected groups of social network users with more het-

erogeneous resources to share. The above kind of resource sharing gives an expression of

local resource sharing.
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Authors View Social Cloud as
Chard et al. [4] ‘...Social Cloud is not representative of point-to-point ex-changes between

users, rather it represents multipoint sharing within a whole community
group...’

John et al. [39] ‘...One way of thinking about the Social Cloud is to consider that social net-
work groups are analogous to dynamic Virtual Organizations (VOs) [7]...’.

Thaufeeg et al.
[38]

“Social Cloud Computing is a resource sharing framework in which re-
sources and services are shared amongst individuals on the premise of the
relationships and policies encoded in a social network.”

Mohaisen et al.
[85]

‘...Our paradigm* and model are similar in many aspects to the conven-
tional grid-computing paradigm...’.

Wooten et al.
[127]

‘...we describe our design** and prototype implementation of a social
healthcare network over the cloud...’.

Caton et al. [20] “A social cloud is a form of community cloud (as defined in NIST's defi-
nition of cloud computing [9]), as the resources are owned, provided and
consumed by members of a social community”.

Zhang et al. [128] ‘...social cloud systems are constructed with peer-to-peer architectures with
resources being owned and managed distributedly by individual users...’

Xu et al. [129] ‘...SocialClouds are owned and operated by the contributors or providers,
who are also SocialClouds users. This is in contrast to PublicClouds where
the platforms underlying a cloud are often owned and managed by a single
service provider, and to PrivateClouds where the platforms underlying a
cloud are often owned and managed by a single enterprise...’

Rafael Pezzi [130] “You may think of the Social Cloud concept as a blend of an auction web-site
and a social networking website hosted at a cloud computing environment,
which on its turn is running in a peer-to-peer network”

Table A.1: Different social cloud views
*Here paradigm means Social Cloud, **Healthcare Social Cloud

On the other side, few studies [129, 130, 127, 128] view Social Cloud is in the form

of Peer-to-Peer community (or peer-to-peer social networking) where each participant per-

forms the same role as the others and each participant manages its own resources at its

end. A participant who joins the network provides resources to others and avails resources

provided by others. In this way, Social Cloud is neither subject to centralized control nor

owned by a single entity. So one can view Social Cloud paradigm as collaboration between

generally bigger, loosely connected group of users present at the edge of Internet sharing

varied types of resources. The above kind of resource sharing gives an expression of global

sharing of resources.
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A.2 Social Cloud: Applications

Despite a lack of a clear view, the series of recently reported social cloud systems

show the potential of Social Cloud to act as complimentary to various other distributed

computing paradigms such as Community Cloud, Grid computing, Volunteer computing,

or Networking Services. Note that, we draw such outward forms of Social Cloud on how

Social Cloud is described while proposing a particular system and respective researchers

explicit arguments. In this subsection, we survey a few existing Social Cloud systems. We

classify these systems in different distributed computing settings and tabulated in Table A.2.

Social Storage Cloud (SSC) [4, 36]:

SSC is deployed as a Facebook application, where Facebook users can offer storage

as a service to their Facebook friends. These users make use of either posted price or

reverse auction market mechanisms for allocating storage space to others. The Facebook

application is used for the purpose of currency regulation, serve as a marketplace (so that

users can communicate with each other, and hence, resource trading can be possible) and

establishment of service level agreement between a storage provider and a storage consumer.

Cloud Resource Bartering (CRB) [131, 132]:

CRB is a social cloud model that enables an on-line social network (e.g., Facebook) users

to share a part of their owned Amazon EC2 infrastructure with other users. Unlike SSC

(where users share their storage space to others), users of CRB share a third party Cloud

service, which is owned by them with their social network friends. Users perform such a

resource sharing in the network through a bartering model.

Collaborative eResearch Social Cloud (CeRSC) [38]:

CeRSC facilitates scientists to collaborate and share computing resources for implementing

computation intensive algorithms on large data sets in a virtualised research environment. In

CeRSC, an online social network (Facebook) users share either their own Virtual-Machine

(VM) images or VM images of third party vendors such as Amazon S3 with others in the
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social network. Users or scientists who are members of Facebook, form a dynamic virtual

organization for sharing their VM with each other. Users can adopt any market model such

as trophy system, reputation, reciprocity model or volunteer contribution for VM sharing.

Public eResearch Social Cloud (PeRSC) [39]:

PeRSC integrates BOINC [133] platform37 and Facebook so that social network users are

able to donate computational resources (e.g., processing power, storage, etc.) to various

scientific projects like SETI@Home. The goal of the authors in [39] is to bring out volun-

teer computing from technical users towards non-technical user domain (such as Facebook

users). View of PeRSC from users' perspective and project server are different. From

users' point of view, PeRSC is a Facebook application, whereas from project servers' point

of view, it is an account management system.

Social Cloud:

Mohaisen et al. [85] presents Social Cloud concept as a grid computing paradigm standing

on social networks where network users collaboratively construct a pool of computing

resources (such as bandwidth, storage, and computing power). In this system, users

perform a local resource sharing (users share resource with only their neighbors). Users

altruistically share their resources with each other and perform a computational task on

behalf of each other. In this system, users play a dual role; a task outsourcer and a worker.

A task outsourcer is the one who outsources a task to its friends, and a worker is the one

who performs an assigned task by an outsourcer.

Husky Healthcare Social Cloud (HHSC) [127]:

HHSC is a third party Cloud (like Amazon EC) assisted social health care network. HHSC

facilitates sharing of health related information between standard users (either patients or

the users who want to get health knowledge) and health professionals through blogs. In

HHSC, each standard user creates its blogs and share it with other trusted standard users

and health professionals. Whereas, a health professional can comment on all blogs shared

37http://boinc.berkeley.edu/
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Social Cloud as a Community
Cloud
SSC [4] Storage Social Cloud members offer under-utilized

storage space to their friends storage-as-service.

CRB-Model [132] Users share Cloud resources with friends within the so-
cial network through the Barter Model.

CeRSC [38] Users form collaboration like VO ([7]) by sharing of
computational resource (Virtual Machine).

Social Cloud as a Grid Comput-
ing
Social Cloud [85] A user (who is a task outsourcer) outsources a com-

putational task to its friends (acts worker for the out-
sourcer). Then the friends performs computational task
on behalf of the friend.

Social Cloud as a Volunteer
Computing
PeRSC [37] Users in social network forms group and donate their

computational resources for scientific computing like
BOINC [133] and gain credit as in volunteer comput-
ing community.

Cybernetics Social Cloud [134] Social Cloud system (a combination of BOINC and
Facebook) deal with big data processing associated
with social networks.

Social Cloud as a Networking
Services
HHSS [127] Various kinds of users (for example, patients, physi-

cians) share their blogs among each other to improve
health care environment.

Social Cloud OSS [135] The Social Cloud OSS provides a way to deliver social
network services that currently are being provided with
the help Cloud.

Table A.2: Classification of social cloud systems. Note that the most of the Social Cloud
systems are in their prototype phases. Hence, we should not consider any rigid boundary
for their classification.

by the standard users regardless of trust rating.

The above social cloud systems can be differentiated according to resources that are
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considered as a shareable entity, principle stakeholders, deployment mechanism, application

and resource trading mechanism (see Table A.3).

Social Cloud
Model

Resource
Definition

Stakeholder Deployment Application Resource
Trading Mech-
anism

SSC [4] Storage Social Cloud
members

Facebook
Application

Storage-as-
Service

Reverse auc-
tion, Posted
Price

CRB-Model
[132]

Amazon
EC2

Social Cloud
members

Facebook
Application

- Bartering

CeRSC [38, 37] VM or
Amazon S3

Scientist Facebook
Application

Platform-as-
Service (PaaS)

-

PeRSC [39, 37] VM, Stor-
age, CPU,
etc.

BOINC project
and Facebook
user

amalgamation
of Facebook
& BOINC

Volunteer Com-
puting on Social
Network

-

Social Cloud
[85]

Storage Social Cloud
members

Overlay
on Social
Graph

Task outsourc-
ing

Altruistic

HHSC [127] blogs Patients, physi-
cians

Networking
Services

Health-care -

Table A.3: Summary of some existing social cloud systems

A.3 Social Cloud: Current Trends

In the previous subsection, we have glanced a few social cloud systems. Apart from

social cloud development and deployment, researchers have been dealing with several other

aspects such as trust, incentives for resource sharing, resource management, computational

infrastructure, and security. Note that, a general framework of Social Cloud is absent.

Researchers are focusing on the above aspects specific to a system, and hence, it is difficult

for us to report the literature that covers the above aspects in detail. Therefore, in brief, we

overview these aspects.

Trust:

Caton et al. [17], argue that trust plays an important role in motivating and joining social

cloud systems. Further, trust is essential to maintain interpersonal relations, measure user's
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resource sharing ability and adhere to an informal agreement (if any). They also argue that

the role of trust is required to finalize an exchange of resource (or service trading) between

users.

Trust and reputations keep changing. To deal with the issue of change in trust and

reputations, Moyano et al. [136] propose a framework called as callable framework. This

provides a way for application developers to develop and deploy an application specific trust

or reputation model.

In the context of HHSS, the authors make use of the adaptive trust rating algorithm

[137]. The algorithm assists a user to quantify the trust value of other users by taking

various parameters (like users' and their groups' availability and popularity) as an input.

Incentives:

By considering different Social Cloud settings, researchers have studied user incentivization

for resource sharing, participation and desired behaviour.

Haas et al. [18] deal with the issue of user involvement and their behaviour in SSC. They

identify three different phases namely discovery of participants, encouraging active partic-

ipation and incentivising social behaviour. Every phase posts some incentive requirement.

Further, they hold the view that hard service level agreement may not be an ideal approach

to resolve social misbehaviour issue in SSC. They express a need to design a social oriented

mechanism to curb misbehaviour of users.

John et al. [39] deal with the issue of user involvement, resource contribution in PeRSC.

For this, they suggest a title (award) scheme. They introduce titles such as Project Cham-

pions and Social Anchors. The project champions title goes to those who give highest

contribution (in terms of resource and time) for a given project. Social Anchors is titled to

those who bring maximum new users in Social Cloud [39].

Punceva et al. [19] put a virtual currency in service to incentivize users for resource

sharing. They consider a social cloud system where users (service exchanging entities)

perform inter- and intra- group service trading by using virtual currency. The value of a

user's currency depends upon its reputation value, which is based upon, how the provider

offers a service to other users (who are consumers) and what feedback the provider gets
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from the consumers. Thus, a user's currency value fluctuates as its reputation changes.

Resource Management:

The resource management scheme varies from one resource sharing setup to another. Users

who perform cooperative resource sharing can decide on a specific resource trading mech-

anism. To regulate and facilitate resource sharing and trading, researchers have suggested

several models. Chard et al. [4],[36] considered various trading models, for example,

reputation points [138][139], trophy [4], bargaining [140], reciprocation [141][142] and

market metaphors such as posted price and auction that members of a Social Cloud can

use. Haas et al. [21] proposed a preference-based resource allocation method. They use

two sided matching approach to match user preferences, which specifies with whom a user

would like to share its resources.

Computational Infrastructure:

Like any other cooperative computing, Social Cloud requires computational infrastructure

that facilitates primary functionalities such as service advertisement, resource allocation,

market-place etc. There are several sources that can provide required computational infras-

tructure (in terms of hardware, software etc.), for example, Cloud infrastructure or any third

party vendor.

Haas et al. [143] present a cooperative economic model to construct computational

infrastructure, where each social cloud member i donates resource endowment Xi to build

the infrastructure. They present two contribution schemes: enforced fixed and voluntary

varied. In the enforced fixed scheme, Xi = X for all users i who are members of the Social

Cloud and every user has to contribute X resource endowment. In the voluntary varied

scheme, users contribute Xi as per their wish, that is, Xi 6= X and may not equal to X j

form some user j.

Security:

Xu et al. [129], identify threat against data confidentiality, threat against data integrity,

threats against data availability, threats against resource providers. To deal with these
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threats, they propose a CryptoOverlay (cryptographic overlaying) security architecture.

CryptoOverlay preserve data and resource access controls and also cope with trust dynam-

ics. CryptoOverlay consists of the following components: first, privacy-preserving access

control enforces access control policies. Second, periodic pro-activization to overcome the

potential availability weakness. Pro-activization is based on proactive cryptography to miti-

gate the possible damage by compromised virtual machines of providers. Third, on demand

proactivization is an intrusion detection system that assures that provider's resource is not

compromised by malware. Data confidentiality is ensured through data encryption. An in-

tegrity and availability of data is ensured by implementing advanced techniques such as the

proof of retrievability.
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Appendix B

Social Storage

Nowadays, one of the most important things for user is his (her) data, its loss can be

catastrophic. Data backup systems keep important data of users safe from hardware or

software failure. Since for more than a decade, significant efforts [40, 44, 93, 41, 144]

have been made in building peer-to-peer (P2P) data backup systems. A peer-to-peer stor-

age system allows its users to utilize disk space of each other to backup data. Despite a

great number of advantages, due to anonymity and lack of trust in peers, these P2P sys-

tems are dealing with a number of challenges. For example, quality of service (e.g., data

reliability, availability, storage availability, etc.), data privacy, security and confidentiality,

system reliability, free riding, and heterogeneity. Numerous studies have described distinc-

tive features and design issues of P2P backup system. Chervenak et al. [145], characterize

a backup system, where they focus on backup techniques for protecting file systems. A

detailed examination of backup systems is presented in [146], where they look at various

peer-to-peer backup systems. The authors characterize backup system based on functional

(e.g. full vs. incremental backup, resource usage, performance, etc.) and non-functional

requirements (e.g. availability, privacy, integrity, etc.) of cooperative backup systems. The

studies [43, 147] discuss various backup system design issues from security point of view

such as data privacy, authentication and different security attacks.

In order to address the aforementioned issues associated with P2P backup systems, re-

searchers have started to take advantage of social knowledge (connections). Numerous

storage systems (for example, Friendstore [12], F2Box [14], FriendBox [11], BlockParty
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[13], etc.) have proposed, under the tag of Friend-to-Friend (F2F) or Social Storage, an al-

ternative to P2P storage systems. Researchers believe that the approach of leveraging social

connections might be more useful to build stable, reliable and effective storage systems. It

is believed that the social fabric incentivises users for proper behaviour in the system.

Recently, the first systematic survey of various P2P systems (which are leveraging social

connections) is presented in [3] under the tag of socially-aware P2P systems. Although the

survey is extensive and studied various F2F storage systems, there are several aspects of F2F

storage that are left out. The aim of this section is to provide an overview of Social Storage

or (F2F storage), which includes; the concept, its characteristics, and taxonomy. We refer

the reader to the survey [3] for understanding of the current research trends and challenges

of this field in details.

B.1 Social Storage: Architecture

The general purpose architecture38 of Social Storage is shown in Figure B.1. The archi-

tecture consists of three components, namely, peer-to-peer (P2P) network, social knowledge

and social storage applications.

Figure B.1: A general-purpose architecture of Social Storage.

38This architecture bears a close resemblance to socially-aware P2P system architecture proposed in [3].
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P2P Network:

A peer-to-peer (P2P) network is a set of autonomous peers (computers) that correspond to

nodes, where the peers share their resources to perform a function in a distributed fashion

and can leave and join the network randomly. Unlike client-server model (where a client

makes a request of service and the server responds to the request), in a peer-to-peer (P2P)

network, every peer plays a dual role of client and server, at the same time. In the above

architecture, the P2P network layer manages resources in the decentralized infrastructure.

This layer provides various other functionalities such as membership management, lookup

services, message routing, and information retrieval [3].

Social Knowledge:

Social knowledge can be viewed as a social network, which can be obtained in the following

three ways.

1. A social network can be obtained from existing online social networks, which is en-

capsulated in a social graph. Fitzpatrick and Recordon39 define social graph as “the

global mapping of everybody and how they' re related”. Iskold40 views “social graph

no different from a network, which is a more common term for describing the same

thing. Graphs consist of nodes and edges, or things and the ways that things relate to

each other”.

2. A social network is a result of the actions of the participants regarding whom they

want to form social connections and with whom they do not, in the application con-

text. In other words, a system acts as a social storage networking system, which

provides a way for users to form data backup connections.

3. A social network can be obtained by integrating the above two approaches. In this

scenario, a social graph is extracted for authentication purpose, where users then se-

lect their social backup partners who are members of that social graph (online social

network).

39http://bradfitz.com/social-graph-problem/
40https://readwrite.com/2007/09/11/social graph concepts and issues/
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B.2 Social Storage Application: Functionalities

Now, we list a few functionalities that social storage application (system) should offer

to its users.

Data Placement:

A system distributes (places) agent's data on its backup partners' storage devices. For this,

the system follows off the shelf data placement strategies such as replication or erasure

coding [22].

Replication: it is a simple data placement technique, in which, a certain number of

replicas of a data object are stored on a set of friend-nodes.

Erasure coding: it divides the data file into n blocks and re-codes into m blocks. A

number of recorded m blocks are greater than the original n blocks. The reconstruction of

the original data is possible with any n blocks. Note that the storage cost increases with

factor n/m [86].

Data Encryption:

A data owner's file is made secret on the local machine by using an encryption tech-

nique/standards (e.g., Advanced Encryption Standard (AES), Data Encryption Standard

(DES), public-private key pair, etc.) before sending data on friends' storage devices. The

encryption technique is a choice of application or it depends on the requirement of the

application. For example, Friendstore [12] system uses exclusive-or operation for data

encoding as well as for maximising storage utilisation. BuddyBackup system implements

AES-256 keys for file encryption. BlockParty [13, 15] uses a public-private key pair for

data encryption and decryption.

Metadata:

Metadata contains information about backup partners and their IP addresses and storage

related information. Data operations like data placement and its recovery require knowledge

about data owner's partners, their IP addresses, and port numbers, the uploading bandwidth
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of data owner and downloading bandwidth of its backup partners. Although major systems

allow data owners to store their data on immediate friend-nodes in the graph, however, in

some cases, users are allowed to store data on indirect friend-nodes. In this scenario, the

system maintains the list of direct and indirect friend-nodes. The above information is

essential for the system to implement an efficient data placement.

Marketplace:

Users may offer their storage space as a service to backup partners, for example, social

cloud storage [4]. This service provision is like commodity market, where storage provider

decides prices of their resources on the basis of supply and demand of services in the system.

A computational marketplace (like Mandi [54]) facilitates users to share (or trade) storage

as a service.

Besides, it supports co-existence of multiple market models like auction, post price or

tenders. A marketplace incorporates the following features: 1) storage service advertise-

ment, 2) storage resource discovery, 3) support co-existences of multiple market models

like auction, post price, bargaining, and so on. for storage trading, 4) facilitates users to

share (or trade) storage for monetary payment or non-monetary way, and 5) service regis-

trations where service providers can advertise their resources for trade and consumer can

publish the required services.

B.3 Social Storage: Characteristics

As the idea of Social Storage is inspired by P2P backup systems, we believe that the

comparison between these two systems aids us to understand the characteristics of Social

Storage.

Storage Partner Selection:

Unlike P2P backup systems, in a social storage systems, users explicitly select their data

backup partners (or friend-nodes) rather than randomly or suggested by the system. A data

owner selects those users as storage-partners with whom the owner is involved in a real
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world social relationship (e.g., friends, colleagues, relatives, and so on).

Authentication:

Authentication is a process of ensuring the identity of an entity. In P2P backup systems,

authentication plays a key role in the identification of peers and their authenticity. There

is an explicit need that each pair of peers or group of peers performs authentication before

storage sharing [148]. Nevertheless, in P2P storage systems, it is difficult for a data owner

to verify its storage partner's identity owing to the absence of a central authority. However,

in a small and trustful network, various complexities related with authentication can be

discounted [147]. From this point of view, in social storage, authentication process is less

difficult as compared to P2P backup systems, as owner and storage partner (friend-node)

both know each other's identity through an out of band communication (i.e. explicit

communication).

Data Control and Location Transparency:

In some scenarios, users require control on their data as well as need to know the location

of their data. The absence of data control and data location creates issues related to data

privacy and security. In P2P backup systems, the process of backing up data is transparent

to data owners. In a typical scenario, a data owner submits a file (that to be backed up) to

the system (system software or client) and the client backs up on different peers (unknown

to the data owner) through a specific data placement technique. This indicates that a data

owner has less control over its data as well as is unaware about the location of its data. On

the contrary, in social storage context, as a data owner stores its data on known friend-nodes,

it has a high control over its data and is also aware of the location of its data.

B.4 Social Storage: Taxonomy

We classify Social Storage systems into three broad classes: centralized, distributed

and hybrid.
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Centralized Social Storage:

A centralized Social Storage takes the advantage of decentralised architecture as well to

Figure B.2: Centralized social storage system

deploy a group based storage sharing (a set of users in a given social graph form a group).

The centralization is similar to Client-Server set-up where one or multiple servers act as

a coordinating entity, assist users to register their storage resources to share (or trade)

with others. In a particular scenario (Figure B.2), at one side, a storage provider sends a

message to the server containing information about its address and storage capacity. On

the other side, a data owner sends a message to this server asking for information about

storage availability and its providers. The decentralisation is reflected in data owner-storage

provider communication. Once the owner gets the information about a storage provider

from the server, further the owner can directly communicate with the storage provider

without communicating with the server further.

Decentralised Social Storage:

A decentralized Social Storage can be considered as a different form of P2P backup

systems [149] as shown in Fig. B.3. Users select their backup partners (whom they

trust) explicitly as storage partners implying decentralisation [14]. In this system, each

user shares storage space available at its end with other users. This system follows a

typical backup scenario, where a user installs backup software on its machine. Next,

a user selects other users (socially connected) as backup partners. A user initiates the

process of data backup by selecting a file to be backed up. Then, the system places the
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Figure B.3: Decentralized social storage system

data on users partners' storage devices by using a data placement technique like repli-

cation or Erasure coding (where replication and encoding are choices of the backup system).

Hybrid Social Storage:

Hybrid Social Storage combines decentralized Social Storage and Cloud storage service

Figure B.4: Hybrid social storage system

(see Figure B.4). A hybrid Social Storage allows users to select their friends as storage

partners as well as multiple third party cloud services to store their data. Thus, users can

store their data either on friends' storage devices or on Cloud storage or on both. The system

benefits those users who wish for high QoS in terms of data availability and long-term data

storage. It also helps those who need high control over the data. When users look for

data control, they can choose only friends as storage partners. In this sense, the system
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functions as a decentralised Social Storage. If users experience poor data availability, then

the cloud storage can be used to store the part of the data to achieve the desired QoS. Cloud

storage serves as a temporary buffer [14] to store the data blocks until some friend-nodes

are available. The usage of Cloud service as a temporary buffer is advantageous to minimise

block transfer time, and hence, the time to schedule. However, embodying a Cloud storage

could be costly and would raise data security related issues.
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Appendix C

Preview on Network, Centrality and Game

Theory

C.1 Network: Basic Concepts and Structures

In this section, we define a few fundamental concepts and standard network structures

we used in this thesis.

Definition C.1. A network g= { ¯A ,L̄ } is a sub-network of g= {A ,L } if ¯A is a subset

of A and L̄ is a subset of L .

Definition C.2. A complement of network g, denoted by gc, is a network on the same set

of agents such that 〈i j〉 ∈ gc if and only if 〈i j〉 6∈ g.

Definition C.3. A null (or empty) network is the one where there are no links — that is, no

agent is connected to any agent.

Definition C.4. A complete network is the one where every agent is connected to every other

agent (as shown in Figure C.1(b)). In a complete network g, for each agent i, ηi(g) = N−1.

Definition C.5. An r-regular network is one where each agent has exactly r neighbours. A

complete network g (as shown in Figure C.1(b)) is an example of a regular network, where

r = N−1.
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((a)) Disconnected network ((b)) Complete network

((c)) Star network ((d)) Wheel network

((e)) Ring network ((f)) Bipartite network

Figure C.1: Example of standard network structures.

Definition C.6. An N agent star network consists of a single universal agent and N − 1

pendant agents. A universal agent is the one who is adjacent to other N−1 pendant agents.

A pendant agent is the one who is adjacent to only the universal agent (as shown in Figure

C.1(c)). A star component is a component which is a star (sub-)network.

Definition C.7. An N agent wheel network consists of a single universal agent and N− 1

pendant agents where the universal agent is adjacent to other N− 1 pendant agents and

N−1 pendant agents are adjacent to exactly three agents (as shown in Figure C.1(d)).
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Definition C.8. A component gc of g is a clique if it is complete.

Definition C.9. A ring (circle) network is the one where each agent has exactly two neigh-

bours.

Definition C.10. A network g is a two diameter network such that 1 ≤ di j(g) ≤ 2, for all

i, j ∈ g.

C.2 Preview on Network Centrality

Which agent (node) is ‘at the center' or the most important (prominent or prestigious)

one in the network? This is one of the central question in the research field of social network

analysis [110]. The notion of centrality answers this question. Centrality is an attempt to

quantify importance (or closeness) of agents in a network41. Formally, a centrality measure

is a function that assigns a numeric value to each agent of a network. Centrality measures

can be classified into two types: local centrality measures and global centrality measures.

Local Centrality Measures

Local centrality measures only focus direct links in a network. Following are the examples

of local centrality measures.

1) Degree Centrality: is an example of local centrality measure. This is the most simplest

and straightforward measure of centrality. Degree centrality is defined as the neighbourhood

size of an agent in the network, that is, the number of links an agent has. The normalized

form of degree centrality is defined below.

For a network g with N agents, the degree centrality for agent i is:

CD(i) =
ηi(g)

N−1
.

41We refer the reader to the body of the paper[150, 151, 89, 152, 153] for details on centrality measures in
networks.
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If someone wants to find a popular agent who has the highest number of neighbours, then

degree centrality is an appropriate measure.

2) Eigenvector Centrality: it is a relative measure for importance or prestige. It assumes

that the importance of agent i is related to the importance of its neighbours. Eigenvector

centrality of agent i is proportional to the sum of centrality of its neighbours as follows.

Es(i) =

∑
j∈ηi(g)

Mi jEs( j)

ρ
,

where Es(i) and Es( j) are the eigenvector score of agent i and its neighbour j, respectively.

Mi j is the adjacency matrix of the network g, and ρ is a constant (positive proportionality

factor).

Global Centrality Measures

Global centrality measures focus on both direct and indirect links in a network. In other

words, global centrality measures consider the shortest paths to generate centrality scores

for agents.

1) Betweenness Centrality: of an agent in a network is determined by how many times

the agent interrupts the shortest path between each pair of agents. A betweenness score of

an agent i in network g is computed as below.

CB(i) = ∑
i 6= j 6=k∈A

σ jk(i)
σ jk

,

where σ jk is the number of shortest paths from agent j to k, and is σ jk(i) is the number of

shortest paths from j to k that pass through agent i.

For an information flow network (where agents are organizations), if someone wants

to find the agent that most frequently controls the flow of information, then betweenness

centrality is an appropriate measure.

2) Closeness Centrality: measure reflects how an agent is close to others in a network.

There are many variants of closeness centrality available in the social network analysis lit-
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erature [154, 155, 156, 157, 158, 159], however, the closeness centrality measure proposed

in [156] is simple and straightforward, which is defined as below.

CC(i) =
1

∑
i 6= j∈A

di j(g)
.

One of the limitations associated with this above closeness centrality measure is that it

does not deal with a disconnected network. If a few agents are isolated in a network, then

the above centrality measure fails to score their closeness.

3) Harmonic Centrality: is one of the variants of closeness centrality that deals with a dis-

connectedness of a network. This measure is a slight modification of the centrality measure

[156] (stated above) and defined as below.

HC(i) = ∑
i 6= j∈A

1
di j(g)

.

C.3 Preview on Game Theory

Game theory is a branch of mathematics that deals with conflict and cooperation

between multiple intelligent rational decision-makers (called agents or players). To be

specific, this theory focuses on decision making settings where agents are rational who

act to achieve their own goals. In such a setting, the decisions of each agent not only

influence the outcome of their own but also of others. In game theory, “the term game

means an abstract mathematical model of a multi-agent decision-making setting” [160];

such a model includes all those details of the domain that are relevant to the decisions that

agents must take. A game can be either non-cooperative or cooperative. We say, a game

is non-cooperative if the agents make their decisions independently to maximize their own

benefit, and they are not able to negotiate or form binding agreements. On the contrary,

in cooperative games agents are free to negotiate and form coalitions based on binding

or enforceable agreements to make joint actions. So, non-cooperative games can be seen

as a competition between individual agents, unlike cooperative games where there is a
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competition between coalitions of agents.

Non-cooperative Games

Formally, a non-cooperative game can be characterized with the following elements.

1. Agents: A game consists of two or more but finite rational agents who make the

relevant decisions.

2. Actions: A set of actions available for each agent.

3. Rules: these are the complete description of how agents will act on actions. For

example, agents choose actions simultaneously or sequentially.

4. Outcomes: these are the consequences of the actions taken by all the agents during

the game. Every combination of actions (one for each agent) is an outcome of the

game.

5. Payoffs: A payoff (or utility) function assigns a payoff (which is a value and in gen-

eral a number) to each agent for each possible outcome. In other words, a payoff is

the value (the degree of satisfaction) observed by each agent as the function of the

actions chosen by all agents.

Solution Concepts are at the core of game theory as they formulate outcomes of games.

A solution of a game can be seen as a rule (or model) that predicts how the game will be

played in terms of what action(s) agents will adopt in that game, and hence, the outcome of

the game.

In the context of non-cooperative games, one class of solutions to a game is based on the

concept of dominance, which is determined by attempting to eliminate a set of actions that

rational agents would never play. Another class of solutions is based on the notion of equi-

librium, which take place when no agent has incentive to depart from the predicted solution

[161]. For example, Nash equilibrium. We say, a given action profile (a combination of

actions of all agents) constitute Nash equilibrium if no agent has an incentive to deviate uni-

laterally, given that all other agents' actions remain unchanged in the given action profile.
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Other than Nash equilibrium there are many solution concepts that follow the concept of

equilibrium. These include Bayesian Nash equilibrium, Correlated equilibrium, Subgame

Perfect Nash Equilibrium, Evolutionary stable strategy, Stackelberg equilibrium, Wardrop

Equilibrium, Pareto Equilibrium, ε-Equilibrium, etc.
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Appendix D

Proofs

D.1 Proof of Observation 7.1

Proof. Let C is a set of all n−1 agents who form the cycle and every agent in the cycle is

connected to one other central agent (say, k). Let we have four distinct agents i, j, k, and l,

such that, i, j, l ∈ C and k is the central agent.

For the given star network g, from Eq. (3.5), we have, Φk(g) = n−1 and Φi(g) =
n
2 for

all i ∈ C.

Then from Eq. (3.6), we have,

αi j(g) =
p(1−q)

n
, for all j ∈ C. (D.1)

αik(g) =
p(1−q)

n−1
. (D.2)

Then, from Eq, (3.11), (D.1), and (D.2). We have,

γi(g) = 1−
[(

1− p(1−q)
n−1

)(
1− p(1−q)

n

)n−2
]

(D.3)

Let agent i and j in C form a direct link in g. Then g leads to g+ 〈i j〉. Then from Eq.

(3.5), in g+ 〈i j〉, we have, Φk(g+ 〈i j〉) = n− 1, Φi(g+ 〈i j〉) = Φ j(g+ 〈i j〉) = n+1
2 , and
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Φl(g+ 〈i j〉) = n
2 , for all l ∈ C\{i, j}.

Then from Eq.(3.6), we have,

αi j(g+ 〈i j〉) = 2p(1−q)
n+1

. (D.4)

αil(g+ 〈i j〉) = p(1−q)
n

for all l ∈ C\{ j}. (D.5)

αik(g+ 〈i j〉) = p(1−q)
n−1

. (D.6)

Then, from Eq, (3.11), (D.4), (D.5), and (D.6). We have,

γi(g) = 1−
[(

1− p(1−q)
n−1

)(
1− p(1−q)

n

)n−3(1− 2p(1−q)
n+1

)]
(D.7)

γi(g+ 〈i j〉)− γi(g) =
(
1− p(1−q)

n−1
)(

1− p(1−q)
n

)n−3( p(1−q)(n−1)
n(n+1)

)
. (D.8)

However, from Corollary 7.1 and Eq. (D.8), agent i ∈ C has no incentive to add a new link

with j if
(
1− p(1−q)

n−1

)(
1− p(1−q)

n

)n−3( p(1−q)(n−1)
n(n+1)

)
≤ ς

q(1−p)θ .

Let agent i delete link with k in g, then it leads to g− 〈ik〉. Then, in g− 〈ik〉, from

Eq.(3.6), we have, Φi(g−〈ik〉) = 0, Φ j(g−〈ik〉) = n−1
2 , for all j ∈ C\{i}. Therefore,

αi j(g−〈i j〉) = 0 for all j ∈ g−〈ik〉, (D.9)

and

αk j(g−〈i j〉) = 2p(1−q)
n−1

for all j ∈ C\{i}. (D.10)

From Eq. (D.9), γi(g−〈i j〉) = 0 and

γk(g−〈i j〉) =
(
1− 2p(1−q)

n−1
)n−2

. (D.11)

γi(g)− γi(g−〈i j〉) = 1−
[(

1− p(1−q)
n−1

)(
1− p(1−q)

n

)n−2
]
. (D.12)
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γi(g)− γi(g−〈i j〉) = (1− 2p(1−q)
n−1

)n−2)− (1− 2p(1−q)
n

)n−1. (D.13)

However, from Corollary 7.2 and Eq. (D.12), agent i ∈ C has no incentive to delete

an existing link with k if 1 −
[(

1 − p(1−q)
n−1

)(
1 − p(1−q)

n

)n−2
]
≥ ς

q(1−p)θ . Similarly,

from Eq. (D.13), agent k has no incentive to delete an existing link with i ∈ C if

(1− 2p(1−q)
n−1 )n−2)− (1− 2p(1−q)

n )n−1 ≥ ς

q(1−p)θ .

Therefore, a direct link between i and k will be deleted if min{1−
[(

1− p(1−q)
n−1

)(
1−

p(1−q)
n

)n−2
]
,(1− 2p(1−q)

n−1 )n−2)− (1− 2p(1−q)
n )n−1}.

Hence, from Corollary 7.2 and 7.1, Eq. (D.8), (D.13), and (D.12), the star network g is

pairwise stable if

(1− p(1−q)
n−1 )(1− p(1−q)

n )n−3( (p(1−q))(n−1)
n(n+1) )

≤ ς

q(1−p)θ ≤

min{[1− ((1− p(1−q)
n−1 )(1− p(1−q)

n )n−2)], [(1− 2p(1−q)
n−1 )n−2)− (1− 2p(1−q)

n )n−1]}.

D.2 Pairwise Stability: Star, Wheel, and Bipartite

In each inequality (stated below), the left hand side suggests when agent has no incen-

tives to add a new link and the right hand side suggests when agent has no incentives to

deleted an existing link. Further, each left hand side represents an agent’s chance of not get-

ting resource in the existing network and the marginal probability of getting resource due to

newly added link. Similarly, each right hand side represents an agent’s chance of obtaining

the resource after deleting one of its link.

Observation D.1. Let an SSCC be a star network g of n agents such that it con-

tains one central agent who is connected to all n− 1 pendant agents, and for which every

pendant agent is connected to the central agent. Then the star network g is pairwise stable if
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(1− p(1−q)
n−1 )(1− p(1−q)

n )n−3( (p(1−q))(n−1)
n(n+1) )

≤ ς

q(1−p)θ ≤

min{[1− ((1− p(1−q)
n−1 )(1− p(1−q)

n )n−2)], [(1− 2p(1−q)
n−1 )n−2)− (1− 2p(1−q)

n )n−1]}.

In the above inequality, the left hand side suggests when a pendant agent has no incen-

tives to add a new link. Whereas the right hand side suggests when the center agent as well

as a pendent agent has no incentive to delete one of its link.

Observation D.2. Let an SSCC be a wheel network g of n agents, such that, it contains a

cycle of order n−1 agents, and for which every agent in the cycle is connected to one other

central agent. Then the wheel network g is pairwise stable if

1. (1− p(1−q)
n−1 )(1− 2p(1−q)

2 )2(1− p(1−q)
n+2 )n−5( p(1−q)(n+1)

(n+2)(n+3) )≤
ς

q(1−p)θ

≤ (1− p(1−q)
n−1 )(1− 2p(1−q)

n+2 )(1− p(1−q)
n+2 )n−4( np(1−q)

(n+1)(n+2)), or

2. (1− p(1−q)
n−1 )(1− 2p(1−q)

2 )2(1− p(1−q)
n+2 )n−5( p(1−q)(n+1)

(n+2)(n+3) )≤
ς

q(1−p)θ

≤ min[(1− 2p(1−q)
n+2 )2(1− p(1−q)

n+2 )n−4( p(1−q)(n−2)
2n−3 )], [(1− 2p(1−q)

n+2 )n−2( p(1−q)(n−1)
(n+1)(n+2) ))]

Let Ĉ is a set of all n− 1 agents who form the cycle and every agent in the cycle is

connected to one other central agent (say, k).

1 assures that no agent i ∈ Ĉ has incentive to either add a new link or delete an existing

link link with j ∈ Ĉ.

2 assures that agent i ∈ Ĉ has no incentive to add a new link with another agent j ∈ Ĉ, and

the central agent k has no incentive to delete an exiting link with one of agents i ∈ Ĉ and

vice versa.

Observation D.3. Let an SSCC be a complete bipartite network g of n agents. A complete

bipartite g consists of two disjoint sets s̄i and ŝ j such that no two agents within the same
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set are adjacent and every pair of agent in the two sets are adjacent. Let s̄i and ŝ j be the

number of agents in the respective sets and n = s̄i+ ŝ j. The complete bipartite g is pairwise

stable if

max
{[

p(1−q)(1− 2p(1−q)
2s̄i+ŝ j−1)

ŝ j(1− p(1−q)
2ŝ j+s̄i−1)

(s̄i−2)[
2ŝ j+s̄i−2

(2ŝ j+s̄i)(2ŝ j+s̄i−1) ]
]
,

[
p(1−q)(1− 2p(1−q)

2ŝ j+s̄i−1)
s̄i(1− p(1−q)

2s̄i+ŝ j−1)
(ŝ j−2)[

2s̄i+ŝ j−2
(2s̄i+ŝ j)(2s̄i+ŝ j−1) ]

]}
≤ ς

θq(1−p)

≤ min
{[

4p(1−q)(1− 2p(1−q)
2s̄i+ŝ j−1)

ŝ j−1(1− p(1−q)
2ŝ j+s̄i−1)

(s̄i−1)[
2s̄i+ŝ j−3

(2s̄i+ŝ j−1)(6s̄i+3ŝ j−7) ]
]

[
4p(1−q)(1− 2p(1−q)

2ŝ j+s̄i−1)
s̄i−1(1− p(1−q)

2s̄i+ŝ j−1)
(ŝ j−1)[

2ŝ j+s̄i−3
(2ŝ j+s̄i−1)(6ŝ j+3s̄i−7) ]

]}
We do the similar interpretation for this as above.
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