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ABSTRACT

Glaucoma, after cataracts, is the second most leading cause of vision loss. It

develops due to increased intraocular pressure (IOP) that damages retinal nerve

fibres (RNFs). Generally, glaucoma does not exhibit any indication of its progression

in early stages until it becomes more advanced. Therefore, early diagnosis and

routine checkup are required to prevent further vision loss.

Ophthalmologists employ certain clinical instruments to diagnose glaucoma. In

addition to these clinical examinations, advanced computerised imaging devices are

used to detect the presence of glaucoma. These imaging devices generate retinal

and optic nerve head (ONH) images along with objective quantitative measures.

Experts use these images and measures for further investigation of glaucoma condi-

tion. However, the aforementioned clinical methods are manual and require skilled

supervision. Moreover, the computerised imaging devices are bulkier, fragile, ex-

pensive, require trained professionals, and are generally not available in rural and

remote areas. Further, the retinal images obtained using these imaging devices re-

quire manual evaluation by qualified experts. This manual evaluation is subjective

and introduces inter and intra-observer variability, which occurs due to inconsistent

perception of different experts towards the structural and functional damages, which

characterises glaucoma, within the eye.

Unlike the advanced computerised imaging devices, fundus camera is a basic

imaging device without computational setup. Therefore, it is generally portable and

economical. Retinal fundus image acquired using fundus camera can be employed to

visualise optic cup, optic disk, and blood vessels. In this way, these images help di-

agnose glaucoma condition. However, as the number of glaucoma cases is increasing

every year, it is a time-consuming and challenging task to examine individual retinal

images manually. These challenges can be overcome by developing retinal fundus

image based computer-aided systems that are fast and accurate. These systems do

not involve human intervention and can assist experts in their diagnosis, thereby

reducing the burden of mass-screening.

In recent years, with the development of advanced image analysis techniques

and machine learning algorithms, there exists a huge potential for development

of efficient, accurate, and state-of-the-art methods for computer-aided automated



diagnosis of glaucoma. These methods can be used to develop prompt, reliable,

handy, and cost-effective glaucoma diagnostic systems.

Therefore, this thesis aims to propose computer-aided approaches for automated

glaucoma diagnosis based on advanced image analysis techniques and machine learn-

ing algorithms. In general, such approaches involve following processing stages. The

initial stage involves image preprocessing techniques such as resizing, filtering, etc.

In the next stage, meaningful features from the input fundus image are extracted

using image analysis techniques. This is followed by ranking and selection of the ex-

tracted features. Finally, the features are fed to a classifier to discriminate between

normal and glaucoma classes.

The first three approaches presented in the thesis involve the aforementioned

processing stages. The first two approaches for glaucoma diagnosis are based on

adaptive non-stationary image analysis techniques. Specifically, empirical wavelet

transform (EWT), and iterative variational mode decomposition (VMD) have been

explored. A local bit-level texture descriptor based approach has also been devel-

oped for glaucoma diagnosis. Additionally, this thesis explores convolution neural

network (CNN) based approach for glaucoma diagnosis. This approach automati-

cally extracts relevant features and classifies the input fundus image.

The experimental results presented in this thesis demonstrate that the proposed

approaches are effective for glaucoma diagnosis. Moreover, the proposed approaches

achieve state-of-the-art performance on benchmark datasets.

x
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Chapter 1
Introduction

Eyes are vital part of the human visual system responsible for generating vision when

the light reflected from the surrounding objects enters the eye. Fig. 1.1 illustrates

human eye anatomy. Initially, the reflected light enters the eye through the pupil

and is focused on the retina by the eye lens. The reflected light then activates photo-

receptors present beneath the retinal layer. The activated photo-receptors generate

electrical impulses which are transmitted to the brain via retinal nerve fibres (RNFs)

for further processing. However, improper functioning of the internal part of the eye

may interrupt or permanently damage the vision. The vision loss may occur due to

defect developed in eye lens in cataracts, damage to RNFs in glaucoma, or retinal

damage in diabetic retinopathy.

Lens

Iris

Ciliary body Retina

Optic nerve

Optic cup

Pupil

Figure 1.1: Human eye anatomy.
(Image source: https://iristech.co/protect-yourself-from-glaucoma-with-iris).
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1.1. Glaucoma

1.1 Glaucoma

Glaucoma is an ocular disorder which may lead to permanent vision loss, if not

detected in its early stage. As per the world health organization (WHO), glaucoma

is the second most leading cause of vision loss after cataract [1]. Glaucoma causes

irreversible damage to the eye. The symptoms of glaucoma do not appear in the

initial stage and can only be noticed when it progresses to advanced stage. As

glaucoma develops slowly over time, it is referred to as silent thief of sight [2].

Due to glaucoma progression, the dark region gradually starts growing around the

field of view of the eye and affects the vision. The artificially generated image in

Fig. 1.2(b) illustrates how the field of view gets affected with partial glaucoma

condition. Doctor advice regular eye checkups once every 2-4 years for people in

the age group 40-64 years and once in 1-2 years for people older than 64 years [2].

Regular glaucoma screening followed by appropriate treatment may prevent further

vision loss.

(a) (b)

Figure 1.2: Field of view: (a) normal eye, and (b) eye with partial glaucoma.
(Image source:

http://www.eyedocsottawa.com/services-special-vision/special-vision-concerns/glaucoma).

1.1.1 Glaucoma progression

The vision loss in glaucoma occurs because of the damage caused to RNFs, which

transmits visual information to the brain. The RNFs are damaged by increased

intraocular pressure (IOP). Within the eye, IOP is regulated by the balance in

the production of aqueous humour (AH) and its drainage through trabecular mesh

2



Chapter 1. Introduction

[3]. Fig. 1.3(a) illustrates the flow of AH in normal eye condition. IOP is largely

influenced by the imbalance generated due to the malfunction of trabecular mesh,

which partially or entirely blocks the flow of AH. Due to the blockage, the AH

starts accumulating in the space between the cornea and the iris, as shown in Fig.

1.3(b). The imbalance increases the IOP, which in turn damages the RNFs [4].

The damaged RNFs become non-functional and do not transmit visual information.

Moreover, the vision loss due to glaucoma cannot be reversed as no treatments

are available to revitalise the damaged RNFs. The damage due to glaucoma is

characterised by structural changes, which get reflected in the parameters such as

optic disk (OD) diameter, OD area, optic cup (OC) diameter, rim area, and mean

cup depth [5].

Trabecular mesh

Flow of aqueous 

humour 

(a)

accumulation of 

aqueous humour 

Intraocular 

pressure

cupping

(b)

Figure 1.3: (a) Flow of AH in normal eye condition. (b) Accumulation of AH in
glaucoma condition.

(Image source: https://www.insightvisioncenter.com/treating-and-controlling-glaucoma).
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1.2. Clinical diagnosis of glaucoma

1.1.2 Types of glaucoma

There are two types of glaucoma, namely, open-angle glaucoma and angle-closure

glaucoma, which are described below:

1. Open-angle glaucoma: It is the most common type of glaucoma, which has an

open angle between iris and cornea, as shown in Fig. 1.4(a). It occurs due

to slow congestion of the drainage canals, which gradually increases the IOP.

Open-angle glaucoma develops slowly without any noticeable symptoms in the

early stages.

2. Angle-closure glaucoma: This is a rare type of glaucoma, in which the angle

between iris and cornea is closed, as shown in Fig 1.4(b). It occurs due to

sudden blockage of the outflow of AH, which abruptly increases the IOP. The

symptoms can be noticed in the form of red-eye and acute pain.

Drainage canals

Drainage canals

Cornea

Iris

Fluid flow

Lens

Open angle

(a)

Drainage canals

Cornea

Iris

Fluid flow

Lens

Fluid flow

Drainage canals

Open angle

(b)

Figure 1.4: Types of glaucoma: (a) open-angle glaucoma, and (b) angle-closer glau-
coma.

(Image source: https://www.glaucoma.org/glaucoma/types-of-glaucoma.php).

1.2 Clinical diagnosis of glaucoma

In the initial stage, the symptoms of glaucoma do not appear until it progresses to

an advanced stage. This happens because the IOP develops slowly over time and
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gradually damages the RNFs. The damage caused to RNFs will lead to vision loss.

Therefore, to prevent further vision loss, experts advise routine check-up, followed

by appropriate treatment. Ophthalmologists employ certain clinical instruments

to diagnose glaucoma. In addition, they employ advanced computerised imaging

devices to investigate the glaucoma condition. The clinical tests and computerised

imaging devices are discussed in the following sub-section.

1.2.1 Clinical tests

The clinical tests involved in glaucoma diagnosis are as follows:

• Tonometry: In this test, IOP is measured with the help of tonometer. During

the process, the eye is made numb using eye drops, and then tonometer is

employed to measure IOP, which helps in identifying glaucoma condition in

the eye. There is an increased risk of glaucoma when the pressure within the

eye exceeds 22 mm Hg.

• Ophthalmoscopy: This test is used to examine the damage to RNFs. Eye

drops are used to dilate the pupil, enabling the examiner to look into the eye

to investigate the condition of RNFs.

• Perimetry: This is a visual field test of the eye. It involves the evaluation

of the eye’s visual field, which indicates the damage caused due to glaucoma

progression.

• Gonioscopy: This test involves assessing the angle between the iris and the

cornea. The open or wide-angle corresponds to a normal eye condition. On

the other hand, narrow or close angle signifies the possibility of glaucoma.

• Pachymetry: In this test, a pachymeter measures the corneal thickness, which

may influence the eye pressure readings.

1.2.2 Computerised imaging devices

In addition to these clinical tests, advanced computerised imaging devices are com-

monly employed to detect the glaucoma condition. These devices are expensive due
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to the sophisticated optical and mechanical assemblies. The imaging setup needs to

be accurately aligned and focused on the patient’s eye to acquire glare-free images

of retina and optic nerve head (ONH), along with a set of objective quantitative

parameters. Experts rely on these measures and images to investigate glaucoma

condition. Brief descriptions of different imaging devices are provided below:

• Scanning laser polarimetry (SLP): This device is used to measure the thickness

of retinal nerve fibre layer (RNFL), which is related to the density of RNFs [6].

RNFL thickness leads to a decrease in the ganglion cell layer. RNFL damage

may precede optic nerve damage in early glaucoma. The limitation of SLP is

that it produces unreliable values for RNFL thickness in patients with other

medical conditions.

• Confocal scanning laser ophthalmoscopy (CSLO): CSLO is an imaging tool

that provides a 3D composite image of ONH and posterior segment [7]. CSLO

generates stereometric parameters such as rim area, rim volume, cup shape

measure, cup-disk (C/D) ratio, retinal height variation along the contour line

and RNFL thickness. Limitations of CSLO include the requirement for the

operator to manually outline the disk margin and the use of a reference plane

in the calculation of many stereometric parameters.

• Optical coherence tomography (OCT): OCT performs cross-sectional imaging

of nerve tissues. OCT can identify RNFL defects in areas corresponding to

visual field defects.

1.3 Challenges and motivation

This section discusses major challenges involved in the diagnosis of glaucoma and

presents the motivation behind the computer-aided approaches proposed in this

thesis.

1.3.1 Challenges

In a worldwide survey, the number of people diagnosed with glaucoma was 60.5

million in 2010, and this number increased to 64.3 million in 2013. The estimated
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global prevalence of glaucoma for the population aged between 40–80 years will reach

to 76 million by 2020 and approximately 112 million by 2040 [8], [9]. This increase

in the number of people with glaucoma affects the social economy and quality of

life. Therefore, early diagnosis is necessary to prevent further vision loss due to

glaucoma.

Many times, a single clinical diagnostic examination of the eye does not help in

evaluating the characteristics of glaucoma. Therefore, experts rely on more than

one clinical diagnostic tests to detect glaucoma. Multiple tests increase the initial

cost of the diagnosis. Furthermore, clinicians perform a visual inspection of the

retinal images produced by the advanced computerised imaging devices. These

images aid the experts in evaluating the visual function and structural changes that

characterises glaucoma.

The aforementioned clinical procedures are manual and require skilled supervi-

sion. Also, the computerised imaging devices are bulky, fragile, expensive, require

trained professionals, and are usually not available in rural and remote areas [10].

Further, the retinal images generated using these computerised imaging devices re-

quire manual evaluation by qualified experts. The manual investigation tends to be

subjective as it involves inter and intra-observer variability [4]. This variability oc-

curs due to inconsistent perceptions of different experts towards the structural and

functional damages that characterise glaucoma. Therefore, using these methods for

mass-screening for glaucoma is likely to be infeasible in the future.

The aforementioned challenges discussed so far have motivated us to develop

computer-aided methodologies for automated glaucoma diagnosis using advanced

image analysis and machine learning algorithms.

1.3.2 Motivation

Unlike advanced computerised imaging devices, fundus camera is simple imaging

device without computational setup. The fundus camera is generally portable and

economical. The image acquired from a fundus camera can be employed to visualise

optic cup, optic disk, and blood vessels. The fundus image-based computational

methods for glaucoma diagnosis have proven to be prompt, cost-effective, and fairly

accurate. In recent years, with the advancement in image analysis and machine
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learning algorithms, there exists a huge potential for the development of effective and

state-of-the-art computer-aided methods for automated glaucoma diagnosis using

fundus images. These methods are expected to aid clinicians during mass screening.

Of late, various computer-aided methodologies have been proposed for auto-

mated glaucoma diagnosis. Some of the existing methodologies employ objective

quantitative parameters generated from the computerised imaging devices such as

SLP, CSLO, and OCT. Specifically, these imaging devices generate parameters such

as RNFL thickness, RNFL cross-sectional area, optic disc and cup area, C/D ratio,

cup depth, cup shape, etc., which are employed for glaucoma diagnosis. However,

these parameters are obtained by marking the optic rim boundaries manually by

the skilled operator in the retinal fundus image generated by the imaging device.

Therefore, the obtained parameters are prone to operator error.

Moreover, the fundus images have also been employed for computer-aided method-

ologies for glaucoma diagnosis. Some of the existing methods are based on the

segmentation of the fundus image. The segmentation based approaches employ

morphological and thresholding operations to separate the desired region of interest

in the fundus image. Further, this separated region is then processed to detect the

presence of glaucoma. However, segmentation based approaches suffer from localisa-

tion and thresholding error. The small error in segmentation may lead to significant

changes in measurements which result in the wrong diagnosis.

The texture feature based analysis of fundus image has also been investigated

in some of the existing methods. In texture-based approaches, the image analysis

methods convert the fundus image into simpler yet meaningful features. Recently,

Fourier analysis, wavelet transform, higher order spectra (HOS), higher-order cumu-

lant, Gabor transform, etc. are employed as texture-based image analysis methods.

However, these image analysis methods have one or more pre-defined basis functions

which are non-adaptive as they are designed independently of the processed signal.

On the other hand, the aim of adaptive methods is to construct such a basis which

is directly based on the information contained in the signal.

The aforementioned limitations of the existing methodologies have motivated us

to explore adaptive techniques. Therefore, in this thesis, the adaptive non-stationary

image analysis technique based approaches are proposed and experimentally investi-
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gated for computer-aided automated diagnosis of glaucoma. The existing computer-

aided methodologies for glaucoma diagnosis are discussed in the next section.

1.4 Related work

This section presents a brief discussion of the existing automated methodologies for

computer-aided glaucoma diagnosis.

Of late, the objective quantitative parameters obtained from computerised imag-

ing devices have been employed for to discriminate between glaucoma and non-

glaucoma eyes. Nagarajan et al. [11] employed multi-focal visual evoked potential

(mfVEP) data obtained from ObjectiVision perimetry device for glaucoma diag-

nosis. The mfVEP is a visual pathway data recorded from many regions of the

visual field. The mfVEP is fed to a trained artificial neural network (ANN) for

classification. Essock et al. [12] proposed wavelet-Fourier based approach, which is

evaluated using RNFL thickness data obtained from GDx-VCC polarimetry. The

4th order wavelet transform is used in their approach to extract abnormalities and

discontinuities. Further, Fourier transform (FT) is applied on the detail coefficients

of the wavelet transform to obtain the Fourier amplitudes. The Fourier amplitudes

and the approximation coefficients are combined to create a feature set, which is

used for classification.

Huang et al. [13] developed an adaptive neuro-fuzzy inference system (ANFIS)

to discriminate between glaucoma and non-glaucoma cases based on the quantita-

tive assessment of OCT data reports of Taiwan Chinese population. The features

extracted using orthogonal arrays of the RNFL thickness and ONH topography data

obtained from OCT are fed to a classifier. The same group of authors, in their next

work [14], developed an approach that improves the discrimination between glau-

comatous and healthy eyes in Taiwan Chinese population. The evaluations have

been performed on the RNFL thickness data generated from SLP. They employed

entropy-based feature selection to remove irrelevant RNFL thickness parameters.

The selected features are then fed to a classifier. The authors investigated linear

discriminant analysis (LDA) and ANN for classification.

The optic disk topography parameters obtained using heidelberg retinal tomo-
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graph (HRT) have been employed in [15] for glaucoma diagnosis. The authors

explored neural network and linear discriminant function (LDF) for classification.

They concluded that the neural network based approach provides better diagnos-

tic accuracy for the glaucoma test. Greaney et al. [5] compared the discrimina-

tion capability of optic nerve head stereo photographs (ONHSPs), SLP, CLS, and

OCT for glaucoma detection. Specifically, receiver operating characteristic (ROC)

curves have been generated from the discriminant analysis of CSLO, OCT, SLP

and ONHSP data. The authors observed that the analysis of ONHSP yields better

performance than the quantitative methods such as CSLO, OCT, SLP for glaucoma

diagnosis. They concluded that the combination of imaging methods would signif-

icantly improve glaucoma detection accuracy. Also, analysis involving quantitative

methods is subjective due to the involvement of experts.

Merickel et al. [16] computed cup-to-disc ratio of the optic nerve head from the

fundus image. The authors employed a soft pixel classification method to generate

the probability map of the optic disc. Further, a cost function is developed to max-

imise the probability of the region within the disc. The image is then segmented by

graph search algorithm capable of detecting the border by maximising the probabil-

ity of disc. Nayak et al. [17] performed morphological operations on fundus images

to detect glaucoma. The authors extracted features such as cup-to-disk ratio, the

ratio of the distance between the optic disc centre and ONH to the diameter of the

optic disc, and the ratio of blood vessel area in inferior-superior side to the area of

blood vessels in the nasal-temporal side. The extracted features are then fed to the

neural network for classification.

Swindale et al. [18] modelled the shape of ONH by a smooth 2D surface described

by ten parameters. Parameters such as the degree of the surface curvature of the

disc region surrounding the cup, the steepness of the cup walls, measures of cup

width and cup depth have been extracted from fundus images. These parameters

have been used to discriminate between normal and glaucoma images. Joshi et al.

[19] performed OD and OC segmentation in fundus images for glaucoma diagnosis.

They computed vertical cup-to-disk diameter ratio and cup-to-disk area ratio for

glaucoma assessment.

Balasubramanian et al. [20] proposed a method for glaucoma diagnosis based on
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the pixel-wise changes for glaucoma detection. The authors compared the reference

and the follow-up ONH of each eye. Initially, to describe the structure of ONH of

the eye, proper orthogonal decomposition (POD) is employed to create a baseline

topograph for each eye. Further, the follow-up ONH topograph is compared with

the baseline topograph that was constructed earlier. The changes in the pixel-wise

ONH comparison was quantified by correlation, L1-norm ad L2-norm, and image

euclidian distance (IMED). This pixel-based method produces an error when the

topographical position of ONH changes.

Kolar et al. [21] developed a fractal dimension based methodology for glaucoma

diagnosis. In this method, the power spectrum of the fundus image is generated

by the periodogram. Further, the fractal dimension is extracted as a feature from

the power spectrum. The extracted features are fed to the support vector machine

(SVM) classifier. The methodology proposed by Bock et al. [22] extracts raw pixel

intensities, FT coefficients, and spline coefficients as features from fundus images.

They formed a separate feature vector corresponding to each feature. Further, the

pricipal component analysis (PCA) is applied to reduce the dimension of each feature

vector. In this work, the authors employ a two-stage classification process. SVM is

investigated as a classifier to evaluate the performance of the proposed method. In

the first stage, each feature vector is fed to the separate SVM classifiers and obtains

a probability score. The probability scores of separate SVMs are combined and fed

to the second stage of the classification process.

Acharya et al. [23] explored texture features such as entropy, mean, energy,

contrast, moments extracted from the fundus image. The HOS features, along with

texture features, have been investigated for glaucoma diagnosis. The extracted

features are ranked and fed to the classifiers. The authors observed that the clas-

sification performance of their methodology improves when ranked features are fed

to the classifier. Dua et al. [24] proposed discrete wavelet transform (DWT) based

method, which employs 2D DWT to decompose fundus images. The authors ex-

plored three well-known wavelet filters, namely, Daubechies (db3), symlets (sym3)

and the biorthogonal (bio3.3, bio3.5, and bio3.7). The fundus images are decom-

posed into DWT components, and the mean and energy features are extracted from

each of the decomposed components. The extracted features are ranked and fed to
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a classifier for glaucoma diagnosis.

Mookiah et al. [25] developed HOS and DWT based methodology for glaucoma

diagnosis. The fundus images have been preprocessed by histogram equalisation

followed by radon transform. Further, the HOS and DWT are applied on the pre-

processed fundus images. The entropy features from HOS components, and mean,

and energy features from DWT components are extracted. The extracted features

are fed to the SVM classifier. The authors investigated the classification perfor-

mance for radial basis function (RBF) and polynomial kernel function. Noronha et

al. [26] investigated higher-order cumulant features for glaucoma diagnosis using

fundus images. The authors extracted third-order cumulant features from prepro-

cessed fundus images. Further, LDA and Fisher’s discrimination index are used for

feature reduction and selection, respectively. The ranked features are fed to the SVM

classifier. In the proposed work, authors investigated the classification performance

of 2nd and 3rd order polynomial, and RBF as a kernel function.

Acharya et al. [27] developed Gabor transformation based methodology for glau-

coma diagnosis using fundus images. Various textural features such as mean, vari-

ance, skewness, kurtosis, and entropies have been extracted from the Gabor trans-

form coefficients. The extracted features are subjected to PCA to reduce the dimen-

sionality of the feature vector. Authors employed various feature ranking methods,

and the ranked features are fed to the SVM classifier. In this work, the authors eval-

uated SVM classifier performance by employing various classifier kernels. Authors

in [1] proposed texton and local configuration pattern (LCP) based methodology.

The textons are produced from fundus images by convolution of various filter banks.

Further, the LCP features are extracted from the textons. The extracted features

are ranked and fed to classifiers for glaucoma and non-glaucoma classification.

The methodologies proposed for glaucoma diagnosis generally involves features

extraction and classification. The selection of relevant features and classifiers is a

tedious job. The design of such hand-crafted features is time-consuming, strongly

related to experts knowledge and have restricted representation power. On the other

hand, convolutional neural network (CNN) integrates automatic feature extraction

and the classification process. CNN is the advanced neural network developed of im-

age analysis and classification task. It is employed in various application such as face
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recognition [28], brain abnormality in MR images [29], liver cancer detection [30],

myocardial infarction [31], mammogram image segmentation [32]. Recently, CNN

is employed for glaucoma diagnosis and found effective as they provided promising

classification performances. Authors in [33] and [4] proposed 6-layer and 18-layer

CNN architecture for glaucoma diagnosis, respectively.

Transfer learning technique based approaches are also employed for glaucoma

diagnosis. This technique uses a pre-trained CNN model to re-train on a new dataset

for a similar classification task. GoogLeNet model is employed in [34] via transfer

learning technique for glaucoma diagnosis. Authors in [35] used a combination of

CNN and SVM. The features are extracted from CNN and fed to the SVM classifier.

Table 1.1 presents a summary of various methodologies developed for glaucoma

diagnosis.

1.4.1 Objectives

The prime objective of this thesis is to propose state-of-the-art approaches for glau-

coma diagnosis. Specifically, we propose approaches based on advanced image anal-

ysis techniques in combination with machine learning algorithms to explore texture

features for glaucoma diagnosis using fundus images. The specific objectives of this

thesis are as follows:

1. To propose and investigate the effectiveness of adaptive non-stationary image

analysis based approaches for glaucoma diagnosis.

2. To develop a local bit-level texture descriptor method for diagnosis of glaucoma

and investigate its effectiveness.

3. To employ advanced machine learning algorithm for glaucoma diagnosis that

integrates both the automatic feature extraction and classification process.

4. To evaluate the performances of the proposed approaches on larger datasets.

1.5 Thesis contributions and organisation

The current chapter provides background about glaucoma, outlines the thesis moti-

vation, briefly introduces previous methodologies developed for glaucoma diagnosis,
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Table 1.1: Existing methodologies for computer-aided glaucoma diagnosis.

Authors Techniques employed

Nagarajan et al. [11] multi-focal visual evoked potential
& artificial neural network

Essock et al. [12] Discrete wavelet transform
& Fourier transform

Huang et al. [13] Adaptive neuro-fuzzy inference system

Huang et al. [14] Linear discriminant analysis
& artificial neural network

Bowd et al. [15] Neural network
& linear discriminant function

Greaney et al. [5] Discriminant analysis

Merickel et al. [16] pixel classification & graph search

Nayak et al. [17] Morphological operations
& neural network

Swindale et al. [18] Optic nerve head modeling

Joshi et al. [19] Active contour model

Balasubramanian et al. [20] Proper orthogonal decomposition

Kolar et al. [21] Power spectral
& fractal dimension

Bock et al. [22] Raw pixel intensities, Fourier transform
& spline coefficients

Acharya et al.[23] Higher-order spectra
& texture features

Dua et al. [24] Discrete wavelet transform based energy features

Mookiah et al. [25] Higher-order spectra
& discrete wavelet transform

Noronha et al. [26] Higher-order cumulant

Acharya et al.[27] Gabor transformation

Acharya et al.[1] Texton & local configuration pattern

Cheng et al. [33] 6-layer convolutional neural network

Raghavendra et al. [4] 18-layer convolutional neural network

Cerentini et al. [34] GoogLeNet CNN model

Bander et al. [35] Convolutional neural network
& support vector machine
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and discusses the thesis objectives. The subsequent chapters of the thesis and their

contributions are organised as follows:

• In Chapter 2, we present an adaptive non-stationary image decomposition

based approach for glaucoma diagnosis. Previously, the glaucoma diagno-

sis methodologies employ image analysis methods such as DWT, FT, and

HOS. These image analysis techniques are non-adaptive methods which pro-

cess the images irrespective of the information contained in them. On the other

hand, adaptive image analysis techniques depend upon the information con-

tained in an image. Therefore, in this chapter, the effectiveness of an adaptive

non-stationary image decomposition based approach is investigated for glau-

coma diagnosis using fundus images. Specifically, empirical wavelet transform

(EWT) based approach is proposed.

• In Chapter 3, we propose an adaptive image analysis approach applied it-

eratively on fundus image for glaucoma diagnosis. Intermittently, the image

analysis techniques may fail in extracting all the relevant details from fun-

dus images at once. To extract the fine details in the form of closely related

pixel intensity variations which corresponds to glaucoma, we analyse the per-

formance of an iterative approach. Therefore, this chapter analyses the vari-

ational mode decomposition (VMD) based approach applied to the fundus

images iteratively.

• In Chapter 4, we develop and analyse the effectiveness of local bit-level tex-

ture descriptor based approach for glaucoma diagnosis. Texture based ap-

proaches play an important role in classification [36], [37]. The local binary

pattern (LBP) is a gray level texture descriptor which is found to be effective

in applications such as face recognition [38], palmprint recognition [39]. In

this chapter, unlike grey-level texture, the local bit-level texture descriptor is

developed. The proposed approach employs bit plane slicing (BPS) followed

by LBP.

• Computer-aided approaches typically involve the process of the hand-crafted

feature extraction and classification. In Chapter 5, the proposed approach in-

tegrates the automatic feature extraction and the classification process. Specif-
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ically, the effectiveness of CNN based is explored for glaucoma diagnosis. This

approach employs transfer learning and LBP based data augmentation.

• Finally, Chapter 6 provide the conclusions of the work proposed in this thesis

and the directions for future research.
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Chapter 2
Empirical Wavelet Transform

Based Approach for Glaucoma

Diagnosis

This chapter presents the empirical wavelet transform (EWT) based approach for

glaucoma diagnosis. In the proposed approach, the EWT is explored as an adaptive

technique for the analysis of non-stationary signal. Specifically, EWT decomposes

the fundus image into EWT components of various spatial frequency. Further, the

correntropy based features are extracted from the EWT components and are fed to

the classifier for discriminating between normal and glaucoma classes.

2.1 Introduction

Signal analysis plays an important role in studying the behaviour and properties

of the signal by converting them into simpler yet meaningful entities. Stationary

signals can be analysed by representing them in time-domain or frequency-domain.

In time-domain representation, the signal is recorded with respect to time. For

example, the electrical activity of the brain and the heart is recorded for every time

instant in electroencephalogram (EEG) and electrocardiogram (ECG), respectively.

Fourier transform (FT) is used to represent the time-domain signal into frequency-

domain and effectively captures the frequencies present in the signal. But, it does

not provide any information about the location of frequencies in time. On the other
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hand, the analysis of non-stationary signal requires time and frequency information

simultaneously. Therefore, FT is not suitable for the analysis of non-stationary

signals [40].

The time-frequency domain (TFD) is a signal representation technique where the

non-stationary signal can be simultaneously analysed in time and frequency. The

short time Fourier transform (STFT) is one of the TFD methods for representing

a non-stationary signal [40]. It is a windowed version of FT. However, due to the

fixed window size, it can either have a good frequency or time localisation [40].

This limitation is overcome by wavelet transform, which is another TFD technique

extensively used for analysing the non-stationary signal at different scales with the

help of translation and dilation process. In the wavelet transform, the signal is

represented as a weighted sum of wavelets. However, the selection of mother wavelets

is a challenging task [41]. Moreover, these non-stationary signal analysis techniques

have pre-defined basis functions which are designed irrespective of the signal to be

processed.

The empirical mode decomposition (EMD), on the other hand, is an adaptive

non-stationary signal analysis technique [42]. Unlike Fourier and wavelet transform,

it does not rely on pre-defined basis functions and constructs a basis which is directly

based on the information contained in the signal [43]. However, EMD suffers from

mode mixing, lack of mathematical formulation, and the stopping criteria [41]. The

EWT is also an adaptive non-stationary signal analysis technique. Therefore, in this

chapter, the EWT based approach is proposed for glaucoma diagnosis.

The rest of the chapter is organised as follows: Section 2.2 presents the proposed

approach. This section introduces EWT, the feature extraction, and the classifi-

cation process. The fundus image dataset employed in the proposed approach is

described in Section 2.3, which also presents the discussion on the experimental

results. Finally, the chapter is summarised in Section 2.4.

2.2 Proposed approach

In this section, the steps involved in the proposed approach are explained briefly.

Firstly, this section provides an overview of the proposed approach. Then, pre-
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processing of data is followed by the description of EWT technique. Further, the

feature extraction and selection technique are presented. The classification process

is discussed at last.

2.2.1 Overview of the proposed approach

In this chapter, the EWT based approach is proposed for glaucoma diagnosis. EWT

is an adaptive technique for the analysis of non-stationary signal. The 2D version

of EWT developed for images [44] has been employed in this approach. The EWT

is applied to each of the fundus image channels to obtain EWT components. Fur-

ther, the correntropy [45] is extracted as a feature from the EWT components. The

extracted features are normalised and ranked using Student’s t test. Finally, the

ranked features are fed to the least squares support vector machine (LS-SVM) clas-

sifier. Various classifier kernels such as RBF, Morlet and Mexican-hat wavelet have

been investigated for the performance evaluation of the proposed approach. Three-

fold and ten-fold cross-validation strategies have been used to validate the classifier

performance. The block diagram of the proposed approach is shown in Fig. 2.1.

2.2.2 Data preprocessing

The sample colour fundus image for normal and glaucoma class is shown in Fig.

2.2. In the first step of the proposed approach, the red (R), green (G), and blue (B)

channels are separated from colour fundus image. In addition, the grey-scale image

is also obtained from the fundus image. The grey-scale image is referred to as grey

(Gr) channel in the rest of the chapter. Further, the EWT is applied to R, G, B,

and Gr channels. The EWT is discussed in the next section.

2.2.3 Empirical wavelet transform

EWT [43] is an adaptive technique for the analysis of non-stationary signals. It

decomposes the signal into time-frequency components. Unlike FT and WT, EWT

is signal-dependent method and do not have predefined basis functions.

In EWT, the Fourier spectrum of the signal, in the range 0 to π, is segmented

into M number of parts as shown in Fig. 2.3. Each segment limit is denoted by
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Figure 2.1: Block diagram of EWT based approach for glaucoma diagnosis.

ωm, where ω0 = 0 and ωM = π. Each segment is denoted by Sm = [ωm−1, ωm]. The

transition phase Tm is centered around ωm, and has a width of 2%m, where %m is

expressed in terms of ωm as %m = λωm with 0 < λ < 1.

After segmenting the Fourier spectrum, bandpass filters are designed on each

segment Sm. These bandpass filters are called empirical wavelets. The empirical

scaling function ξm(W ) and the empirical wavelets ςm(W ) can be mathematically

expressed as [43]:
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(a) (b)

Figure 2.2: Sample fundus images: (a) normal, and (b) glaucoma.

Figure 2.3: Fourier spectrum segmentation in EWT.

ξm(W ) =


1, if |W | ≤ (1− λ)ωm

cos
[
π
2
z(λ, ωm)

]
, if (1− λ)ωm ≤ |W | ≤ (1 + λ)ωm

0, otherwise

(2.1)

and

ςm(W ) =



1, if (1 + λ)ωm ≤ |W | ≤ (1− λ)ωm+1

cos
[
π
2
z(λ, ωm+1)

]
,

if (1− λ)ωm+1 ≤ |W | ≤ (1 + λ)ωm+1

sin
[
π
2
z(λ, ωm)

]
,

if (1− λ)ωm ≤ |W | ≤ (1 + λ)ωm

0, otherwise

(2.2)
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where z(λ, ωm) and z(λ, ωm+1) can be expressed as [43]:

z(λ, ωm) = z
(

1
2λωm

(|W | − (1− λ)ωm)
)

(2.3)

z(λ, ωm+1) = z
(

1
2λωm+1

(|W | − (1− λ)ωm+1)
)

(2.4)

The z(z) satisfies the following criteria [43],

z(z) =


0, if z ≤ 0

1, if z ≥ 1

z(z) + z(1− z) = 1 ∀z ∈ [0, 1]

(2.5)

The scaling function and the empirical wavelet is then used to obtain EWT,

denoted by Wf (m, t). The EWT approximation coefficients are obtained by the

inner product with the scaling function as follows:

Wf (0, t) =< f, ξm > (2.6)

Similarly, the EWT detailed coefficients are obtained by the inner product with

the empirical wavelet as follows:

Wf (m, t) =< f, ςm > (2.7)

where f is FT of the signal.

In the proposed approach, the 2D version of EWT is employed on the fundus

images. Let x be a 2D signal, then 2D EWT approach is expressed as follows [44]:

1. Compute 1D Fourier transform for each row of r of x and compute mean row
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spectrum as:

XR =
1

NRw

NRw∑
r=0

X(r,Ω) (2.8)

2. Similarly, compute 1D Fourier transform for each column of c of x and compute

mean column spectrum as:

XC =
1

NCl

NCl∑
c=0

X(Ω, c) (2.9)

where number of rows and columns are denoted by NRw and NCl in Eq. 2.8

and Eq. 2.8, respectively.

3. Perform boundaries detection on XR and XC and build the corresponding filter

bank {ξR1 , {ςRm}
NR
m=1} and {ξC1 , {ςCm}

NC
m=1} respectively where NR and NC are the

number of mean row and column sub-band respectively.

4. Filter x along the rows {ξR1 , {ςRm}
NR
m=1} which provides (NR+1) output images.

5. Filter (NR+1) output images along the columns with {ξC1 , {ςCm}
NC
m=1}, this pro-

vides (NR+1)(NC+1) sub-band images.

The 2D version of EWT has been applied on fundus images. The 2D EWT

components are obtained using 2D empirical Littlewood-Paley wavelets [44]. Figs.

2.4-2.7 show the decomposed EWT components of R, G, B, and Gr channels, re-

spectively. The pseudo-colour representation in Figs. 2.4-2.7 is used to create the

visual difference between the EWT components.

2.2.4 Feature extraction

Feature extraction plays a vital role in the development of computer-aided diagnosis

methods. It is the process of transformation of original data to an attribute with a

reduced number of variables, which contains the most discriminatory information.

In the proposed approach, the effectiveness of the correntropy is investigated as a

feature extracted from the decomposed EWT components.

Correntropy: Correntropy is a non-linear kernel based measure of similarity

which preserves both statistical and temporal information [45, 46, 47]. It mea-

sures correlation in the nonlinear domain of multiple delayed samples of the signal.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.4: Sub-figures (a) and (b) are R channel of Figs. 2.2(a) and 2.2(b), re-
spectively. Sub-figures (c), (e), (g), and (i) are EWT components of (a). Similarly,
sub-figures (d), (f), (h), and (j) are EWT components of (b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.5: Sub-figures (a) and (b) are G channel of Figs. 2.2(a) and 2.2(b), re-
spectively. Sub-figures (c), (e), (g), and (i) are EWT components of (a). Similarly,
sub-figures (d), (f), (h), and (j) are EWT components of (b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.6: Sub-figures (a) and (b) are B channel of Figs. 2.2(a) and 2.2(b), re-
spectively. Sub-figures (c), (e), (g), and (i) are EWT components of (a). Similarly,
sub-figures (d), (f), (h), and (j) are EWT components of (b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.7: Sub-figures (a) and (b) are Gr channel of Figs. 2.2(a) and 2.2(b),
respectively. Sub-figures (c), (e), (g), and (i) are EWT components of (a). Similarly,
sub-figures (d), (f), (h), and (j) are EWT components of (b).
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Recently, it has been employed for the diagnosis of coronary artery disease [48]. In

this study, the correntropy is employed as a feature which incorporates the subtle

pixel intensity variations from the decomposed EWT components. The correntropy,

denoted as CE(G) for lag G, can be expressed as [45, 47, 48]:

CE(G) =
(

1
X−G+1

)2 X∑
x1,x2=G

k(t[x1, x2]− t[x1 −G, x2 −G]) (2.10)

where t[x1, x2] is the 2D signal, X is number of rows and columns. The Gaussian

kernel function k(t[x1, x2] − t[x1 − G, x2 − G]), in Equation 2.10, can be expressed

as:

k(t[x1, x2]− t[x1 −G, x2 −G]) =

1√
2πε

exp

[
−(t[x1, x2]− t[x1 −G, x2 −G])2

2ε2

] (2.11)

where the Gaussian kernel width is controlled by ε. The number of correntropy

features depends on the value of G. In this study, 3 correntropy features are ex-

tracted from each decomposed EWT component.

2.2.5 Feature selection and ranking

All the extracted features do not contribute equally in the performance evaluation of

the approach. Some of the extracted features posses higher discriminating potential

than rest of the features. Inclusion of features with low discriminating capability

will affect the performance of the computer-aided methods. Therefore, the proposed

approach employs a feature selection technique to select the features with signifi-

cant discriminating capability. In the proposed approach, Student’s t-test algorithm

[49, 27, 50] is explored for feature selection and ranking. The t-test discriminates

two classes based on population mean. Features with high t value are more discrim-

inatory and are ranked in the order of decreasing t value.
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2.2.6 Feature normalisation

Skewed data may result in a false alarm and hampers the performance of the system.

Feature normalisation brings the data into the desired range and reduces the effect

of outliers. In this approach, z-score normalisation [51] is employed to normalise the

data. The data is normalised as follows [23]:

d̂ =
d− d̄
d̃

(2.12)

where d̂, d̄ and d̃ are normalised data, mean and standard deviation of data d,

respectively.

Tables 2.1-2.4 list the ranked features with their corresponding t values for R,

G, B, and Gr channels, respectively. Where CExy, in features column, denotes yth

correntropy feature of xth decomposed EWT component. These ranked features are

then fed to the classifier, which is discussed in the next section.

Table 2.1: Ranked correntropy features of R channel of private database.

Features Normal Glaucoma t value

CE13 −0.514± 1.153 0.514± 0.399 4.611
CE12 −0.412± 1.232 0.411± 0.408 3.475
CE42 0.318± 1.006 −0.318± 0.901 2.578
CE32 0.180± 1.047 −0.180± 0.933 1.407
CE43 −0.079± 1.380 0.079± 0.342 0.610
CE33 −0.051± 1.358 0.051± 0.429 0.390

Table 2.2: Ranked correntropy features of G channel of private database.

Features Normal Glaucoma t value

CE13 −0.425± 1.255 0.425± 0.292 3.611
CE12 −0.365± 1.269 0.365± 0.386 3.013
CE43 −0.179± 1.387 0.179± 0.197 1.405
CE33 −0.153± 1.398 0.153± 0.173 1.187
CE42 0.134± 1.238 −0.134± 0.682 1.039
CE32 −0.035± 1.345 0.035± 0.472 0.270
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Table 2.3: Ranked correntropy features of B channel of private database.

Features Normal Glaucoma t value

CE42 0.389± 0.980 −0.389± 0.872 3.251
CE13 −0.341± 1.322 0.341± 0.214 2.790
CE22 0.339± 0.933 −0.339± 0.962 2.779
CE23 0.338± 1.055 −0.338± 0.827 2.765
CE12 −0.278± 1.331 0.278± 0.320 2.225
CE32 0.168± 1.139 −0.168± 0.823 1.313

Table 2.4: Ranked correntropy features of Gr channel of private database.

Features Normal Glaucoma t value

CE13 −0.464± 1.234 0.464± 0.255 4.039
CE12 −0.407± 1.261 0.407± 0.316 3.431
CE42 0.279± 1.073 −0.279± 0.849 2.230
CE23 0.212± 1.066 −0.212± 0.896 1.669
CE33 −0.196± 1.378 0.196± 0.237 1.536
CE22 0.142± 1.104 −0.142± 0.879 1.102

2.2.7 Classification

Classifiers have always been employed in the development of computer-aided diagno-

sis approaches such as diabetes diagnosis using heart rate signals [50], septal defects

detection using heart sound signals [52], CAD diagnosis using heart rate signals

[48], seizure detection EEG [53, 54, 55, 56, 57] and glaucoma diagnosis using fundus

images [23, 24, 25, 26]. In the proposed approach, LS-SVM [58, 59] is employed

as a classifier. It is a supervised machine learning algorithm used to discriminate

two or more classes using linear or non-linear kernel. The non-linear kernel function

transform the linearly inseparable data into linearly separable by projecting it into

higher-dimensional space.

Let there be N data points {pn, qn}Nn=1, where pn ∈ Rm is nth input data with

qn ∈ Rm is class label corresponding to nth data point. For classification of two

classes using LS-SVM, discrimination function can be written as [58]:

κ(x) = sign
[
ΩT z(p) + b

]
(2.13)

where Ω is weight vector of dimension x and b is a bias and z(p) function maps

p into x-dimensional space.
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LS-SVM classifier decision function can be determined as [58, 60]:

κ(x) = sign

[
N∑
n=1

anqnK(p, pn) + b

]
(2.14)

where K(p, pn) is kernel function and an is Lagrange multiplier.

In the proposed approach, RBF [61], Morlet and Mexican-hat wavelet kernels

[62, 56] are investigate for the classification performance. These kernels are mathe-

matically expressed as:

• The RBF kernel function is expressed as [61, 63]:

KRBF(p, pn) = exp

[
−||p− pn||2

2σ12

]
(2.15)

• The expression for Morlet wavelet kernel function is given as [62, 56]:

KMorlet(p, pn) =
∏N

j=1 cos
[
ω0

(pj−pjn)
a

]
exp

[
−||pj−pjn||2

2σ22

]
(2.16)

• The Mexican-hat kernel function is expressed as [62, 56]:

KMexican-hat(p, pn) =
∏N

j=1

[
1− (pj−pjn)2

a2

]
exp

[
−||pj−pjn||2

2σ32

]
(2.17)

where pjn represents jth element of nth traning set, a represents the scaling pa-

rameter of wavelet. The symbols σ1, σ2, and σ3 are the kernel parameters of RBF,

Morlet and Mexican-hat wavelet kernels, respectively.

2.2.8 Performance parameters & cross-validation

The following parameters are employed to measure the classification performance

[64] of the proposed approach:

• Sensitivity (Sn): It is also referred to as true positive rate. It is expressed as

a ratio of the number of samples correctly classified as a positive class to the
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total number of samples in positive class. It is expressed as:

Sn =
Tp

Tp+ Fn
× 100% (2.18)

• Specificity (Sp): It is also known as the true negative rate. It is the ratio of

the number of correctly classified samples of negative class to the total number

of negative class samples. It is expressed as:

Sp =
Tn

Tn+ Fp
× 100% (2.19)

• Accuracy (Acc): It is expressed as the ratio of total correctly classified samples

by the total number of samples. Mathematically written as:

Acc =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
× 100% (2.20)

The correctly classified samples of the positive and negative class are denoted by

Tp and Tn, respectively. On the other hand, Fp and Fn are incorrectly classified

samples of negative and positive class, respectively.

Cross-validation is a method which evaluates the performance of the machine

learning model. In the proposed approach, K-fold cross-validation strategy [65] is

employed to evaluate the classifier performance. In this method, the data is divided

into K equal parts. Of the k parts, a single part is retained for testing the model,

and the remaining k−1 parts are used as the training data. This process is then

repeated K times so that each of the k parts has been exactly used once as the

testing data. Further, the final performance metric is obtained by averaging the

results of each k part. The performance evaluation of the proposed approach using

this method is robust as each of the samples in data has been tested exactly once.

In the proposed approach, three-fold and ten-fold cross-validations are explored for

performance evaluation.
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2.3 Dataset and experimental results

This section describes the fundus image dataset employed to validate the perfor-

mance of the proposed approach. Further, this section also presents experimental

results and discussion.

2.3.1 Dataset

The following datasets are employed in the proposed approach:

1. Private database: This database consists of 30 normal and 30 open-angle

glaucoma images. These images are obtained from Kasturba Medical College,

Manipal, India. The doctors of ophthalmology department have certified the

image quality and its usability. The image is stored in 24-bit JPEG format

with a resolution of 560×720 pixels.

2. Public database: It consists of 255 normal and 200 glaucoma images. This

database is obtained from Medical Image Analysis Group (MIAG) and is

available online publicly at http://medimrg.webs.ull.es/. The images are

stored in a 24-bit JPEG file format with various resolutions.

2.3.2 Results & discussion

In the proposed approach, the fundus image is separated into R, G, B, and grey

channels. Four EWT components are obtained from each channel, and three cor-

rentropy features are extracted from each EWT component. Therefore, the length

of the feature vector is 12 for each channel of the fundus image. Further, the features

are ranked and fed to the LS-SVM classifier. These ranked features are tabulated

in Tables 2.1-2.4 for private database. The classifier kernel parameters σ1, σ2, and

σ3 are varied from 0.1 to 1 with a step size of 0.1. The value of ω0 is set to 0.3 for

Morlet wavelet kernel by trial and error method.

Table 2.5 tabulates the classification performance for different channels along

with the number of features and kernel functions using three-fold cross-validation for

the private database. Similarly, Table 2.6 tabulates the classification performance

for ten-fold cross-validation. It can be observed from Table 2.5 that G channel
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Table 2.5: Classification performance of the proposed approach using three-fold
cross-validation for private database.

Channel/Image Number of features Kernel (parameter) Acc (%) Sn (%) Sp (%)

R 6 RBF (σ1 = 0.9) 91.67 86.67 96.67
R 6 Morlet (σ2 = 1) 90.00 83.33 96.67
R 2 Mexican-hat (σ3 = 0.3) 90.00 90.00 90.00

G 4 RBF (σ1 = 0.3) 98.33 100 96.67
G 4 Morlet (σ2 = 0.6) 98.33 96.67 100
G 4 Mexican-hat (σ3 = 0.4) 95.00 96.67 93.33

B 4 RBF (σ1 = 0.5) 90.00 83.33 96.67
B 3 Morlet (σ2 = 0.5) 88.33 83.33 93.33
B 2 Mexican-hat (σ3 = .6) 88.33 83.33 93.33

grayscale 6 RBF (σ1 = 0.5) 96.67 93.33 100
grayscale 6 Morlet (σ2 = 0.9) 93.33 90.00 96.67
grayscale 5 Mexican-hat (σ3 = 0.5) 93.33 93.33 93.33

Table 2.6: Classification performance of the proposed approach using ten-fold cross-
validation for private database.

Channel/Image Number of features Kernel (parameter) Acc (%) Sn (%) Sp (%)

R 5 RBF (σ1 = 0.9) 90.00 83.33 96.67
R 5 Morlet (σ2 = 1) 88.33 83.33 93.33
R 2 Mexican-hat (σ3 = 1) 86.67 93.33 80.00

G 4 RBF (σ1 = 0.3) 96.67 100 93.33
G 4 Morlet (σ2 = 0.5) 96.67 96.67 96.67
G 4 Mexican-hat (σ3 = 0.4) 95.00 96.67 93.33

B 3 RBF (σ1 = 0.4) 88.33 83.33 93.33
B 3 Morlet (σ2 = 0.7) 88.33 83.33 93.33
B 3 Mexican-hat (σ3 = 1) 90.00 90.00 90.00

grayscale 5 RBF (σ1 = 0.6) 93.33 90.00 96.67
grayscale 6 Morlet (σ2 = 1) 91.67 86.67 96.67
grayscale 2 Mexican-hat (σ3 = 0.3) 90.00 96.67 83.33

obtains maximum classification accuracy of 98.33% with RBF and Morlet wavelet

kernels using three-fold cross-validation. Similarly, for ten-fold cross-validation, G

channel obtains maximum classification accuracy of 96.67% with RBF and Morlet

wavelet kernel. It can also be noticed from both the tables that the RBF obtains

the maximum classification accuracy for other channels.

Figs. 2.8 and 2.9 show the plot of accuracy versus kernel function parameters

for different channels with three-fold and ten-fold cross-validations, respectively for

private database. The highest classification accuracy for corresponding kernel pa-

rameter values are marked with an ellipse as illustrated in Figs. 2.8 and 2.9.

The performance of the proposed approach is also evaluated for the public
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Figure 2.8: Plot of accuracy versus kernel parameters using three-fold cross valida-
tion strategy for private database.

database. The classification performance for the public database is tabulated in

Tables 2.7 and 2.8 for three-fold and ten-fold cross-validations, respectively. The

maximum classification accuracy of 81.32% and 80.66% is obtained using three-fold

and ten-fold cross-validations, respectively.

The experimental evaluation suggests that the proposed approach has been found

useful for glaucoma diagnosis. The EWT separates the fundus image channels into

components of different spatial frequency. In the proposed approach, we have em-

ployed the Littlewood-Paley extension of 2D EWT. This decomposes the image data

based on the energy separation in frequency spectrum [44]. This energy separation

in different frequency components is then captured as the textural features for clas-

sification.
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Table 2.7: Classification performance of the proposed approach using three-fold
cross-validation for public database.

Channel/Image Number of features Kernel (parameter) Acc (%) Sn (%) Sp (%)

R 12 RBF (σ1 = 0.3) 80.01 75.05 83.92
R 12 Morlet (σ2 = 1) 79.78 74.49 83.92
R 1 Mexican-hat (σ3 = 0.3) 75.17 62.05 85.49

G 12 RBF (σ1 = 0.5) 80.45 75.03 84.71
G 11 Morlet (σ2 = 1) 80.44 74.98 84.71
G 2 Mexican-hat (σ3 = 0.7) 75.39 60.03 87.45

B 12 RBF (σ1 = 0.3) 81.09 78.50 83.14
B 11 Morlet (σ2 = 0.8) 81.32 78.99 83.14
B 3 Mexican-hat (σ3 = .7) 75.61 57.00 90.20

grayscale 12 RBF (σ1 = 0.4) 81.10 77.01 84.31
grayscale 12 Morlet (σ2 = 1) 80.44 79.01 81.57
grayscale 3 Mexican-hat (σ3 = 0.9) 75.17 63.52 84.31

Table 2.8: Classification performance of the proposed approach using ten-fold cross-
validation for public database.

Channel/Image Number of features Kernel (parameter) Acc (%) Sn (%) Sp (%)

R 12 RBF (σ1 = 0.4) 79.32 71.00 85.80
R 12 Morlet (σ2 = 1) 78.70 74.00 82.45
R 2 Mexican-hat (σ3 = .6) 74.97 64.50 83.22

G 12 RBF (σ1 = 0.3) 80.26 74.00 85.18
G 12 Morlet (σ2 = 1) 80.44 74.00 85.51
G 2 Mexican-hat (σ3 = 0.2) 75.62 65.50 83.54

B 12 RBF (σ1 = 0.3) 80.44 77.50 82.82
B 11 Morlet (σ2 = 0.9) 80.66 78.00 82.78
B 3 Mexican-hat (σ3 = 1) 74.96 58.00 88.23

grayscale 12 RBF (σ1 = 0.4) 80.63 76.00 84.25
grayscale 12 Morlet (σ2 = .9) 80.41 78.00 82.25
grayscale 2 Mexican-hat (σ3 = 0.9) 74.93 64.00 83.45

38



Chapter 2. EWT-based approach

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 i
n

 %

kernel parameter

R−channel

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
75

80

85

90

95

100

A
c
c
u

ra
c
y
 i
n

 %

kernel parameter

G−channel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 i
n

 %

kernel parameter

B−channel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 i
n

 %

kernel parameter

Grayscale image

RBF

Mexican−hat

Morlet

Figure 2.9: Plot of accuracy versus kernel parameters using ten-fold cross validation
strategy for private database.

On the other hand, the ridgelet and curvelet extension of 2D EWT decomposes

the image data into components based on different angular and radial parameters.

Also, in [44], it has been shown that for the same number of decomposed compo-

nents, Littlewood-Paley extension of 2D EWT effectively separates the frequency

information for image type shown in Fig. 2.10(a). Similarly, curvelet and ridgelet

work effectively for image type, as shown in Fig. 2.10(b). Therefore, based on the

frequency spectrum segmentation technique, we choose Littlewood-Paley for the

proposed method as the frequency spectrum of the fundus image (as shown in Fig.

2.10(c)) is closely related to Fig. 2.10(a).

Further, the correntropy successfully incorporates the subtle pixel intensity vari-

ations from the decomposed EWT components. The extracted features are then
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(a)

(b)

(c)

Figure 2.10: (a) Sample image (left) and its Fourier transform (right). (b) Sample
image (left) and its Fourier transform (right). (c) Retinal fundus image (left) and
its Fourier transform (right) .

classified by SVM with various kernel functions. The kernel parameter is varied

from .1 to 1 with a step size of .1. For less or more value of kernel parameter,

the kernel function overfits or underfits the training data, respectively. Therefore,

instead of fixing the kernel parameter, we have performed our experiments with

varying kernel parameter values. From Fig. 2.9 and 2.8, it can be observed that

at a particular value of kernel parameter, the kernel function fits the training data
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optimally and obtains better classification accuracy (marked by a black ellipse).

From experiments, we have found that the RBF kernel function achieves better

performance consistently as compared to Morlet and Mexican-hat wavelet kernels.

From Fig. 2.9 and 2.8, it can be observed that in majority of cases, RBF kernel

achieves better classification performance compared to other two kernels.

Further, it can be noticed from Table 2.5 and 2.5 that the features extracted

from the G channel achieve higher classification performance than other channels.

This signifies that the pixel intensity variations in G channel are closely related to

the characteristic changes due to glaucoma. The performance of the proposed ap-

proach is compared with existing methodologies for glaucoma diagnosis in Table 2.9.

It can be noticed from Table 2.9 that the proposed approach achieves better clas-

sification performance with comparatively less number of features than the existing

methodologies.

2.4 Summary

In this chapter, the adaptive non-stationary signal analysis approach is proposed.

Specifically, the EWT based approach has been proposed for automated diagnosis

of glaucoma. Further, the approach employs the correntropy as a feature extracted

from EWT components. Student’s t test is explored for feature selection and ranking

based on the t value. Furthermore, the ranked features have been used for the classi-

fication. Various kernels have investigated for the classification and experimentally

found that RBF and Morlet wavelet kernels yield high classification performance

than Mexican-hat wavelet kernel. The experimental results suggest that the pro-

posed approach has been found to be effective for the glaucoma diagnosis. It is also

observed that the features extracted from the green channel achieves high accuracy

as compared to other channels. This suggests that the pixel variations in the green

channel are more prone to detect glaucoma changes.
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Chapter 3
Iterative Variational Mode

Decomposition of Fundus Images

for Glaucoma Diagnosis

In this chapter, an iterative non-stationary signal analysis approach is proposed for

the classification of fundus images. Specifically, the proposed approach explores

variational mode decomposition (VMD) as an adaptive non-stationary signal anal-

ysis. The VMD is applied iteratively on the fundus images. The features extracted

from the VMD components are classified into normal and glaucoma classes.

3.1 Introduction

In the preceding chapter, EWT based approach is proposed for glaucoma diagnosis.

Specifically, EWT is an adaptive non-stationary signal decomposition method. It

decomposes the signal by creating an adaptive filter bank, based on the segmentation

of its Fourier spectrum [43]. The segmentation mainly relies on robust detection of

the peaks in the Fourier spectrum [66]. However, the peak detection algorithm fails

to estimate the number of prominent peaks under shaky or noisy conditions [67].

Also, the explicit tight construction of filter banks depends on parameter selection,

which induces some amount of spectral overlap [66].

On the other hand, VMD is an adaptive and non-recursive method of signal

decomposition. It decomposes a given signal into the number of VMD components

45



3.2. Proposed approach

which are sparsely separated in the frequency domain. Therefore, in this chapter,

the VMD based approach is proposed for the glaucoma diagnosis. The VMD decom-

position procedure needs the number of components in advance [68]. To overcome

this limitation, the iterative method is adopted in the proposed approach. In this

study, the 2D version of VMD has been employed for the iterative decomposition of

the fundus image.

The rest of the chapter is structured as follows: The proposed approach is pre-

sented in Section 3.2, which describes the iterative VMD process, the feature ex-

traction, and the classification process. Section 3.3 details the fundus image dataset

and presents the experimental results of the proposed approach. Finally, Section 3.4

summarises the chapter.

3.2 Proposed approach

This section details the steps involved in the proposed approach. Firstly, the

overview of the proposed approach is followed by the data preprocessing step. Fur-

ther, the iterative VMD process is described along with feature extraction and se-

lection method. The classification process is described at the end of the section.

3.2.1 Overview of the proposed approach

This chapter presents an iterative VMD based approach for the automated diagnosis

of glaucoma using fundus images. The proposed approach employs the 2D version

of the VMD [69] to decompose fundus images in an iterative manner. Firstly, in

the proposed approach, the green (G) channel is obtained from the fundus image.

Then, the G channel is decomposed into VMD components iteratively. Further,

various entropies and fractal dimension are extracted as features from the VMD

components. The extracted features are then ranked using the ReliefF feature se-

lection algorithm. Finally, the extracted features are fed to the LS-SVM classifier

for discriminating between glaucoma and non-glaucoma class. The performance of

the proposed approach is evaluated using three-fold and ten-fold cross-validation

methods. The block diagram of the proposed approach is shown in Fig. 3.1.
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Iterative 2D-VMD

Entropies and fractal dimension 
based features extraction

Feature  normalization, selection, 
and ranking

LS-SVM

Normal / Glaucoma images

Green channel extraction from 
RGB image and preprocessing

Normal Glaucoma

Training set Testing set

Offline model 
determination

Ground truth Real time 
classification

Figure 3.1: Overview of the iterative VMD based approach.

3.2.2 Preprocessing step

Fig. 4.2 shows few sample fundus images. The fundus images have been preprocessed

before they are used in the proposed approach. To reduce the computation time,

the images are resized to 250×(250*asr) by employing bi-cubic interpolation [70]

method. To maintain the aspect ratio, the number of columns in the original image

is multiplied by the asr value. The asr is the ratio of the number of columns to

the number of rows in the original image. Further, the dynamic range of the fundus

images gets affected due uneven illumination of lighting conditions during image

acquisition. In order to improve the dynamic range, the fundus images are treated

with contrast limited adaptive histogram equalization (CLAHE) [71] [72].
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Top row: normal fundus images. Bottom row: glaucoma fundus images.

3.2.3 Variational mode decomposition

Variational mode decomposition (VMD) [66], unlike empirical mode decomposition

(EMD) [42], is a non-recursive method. The signal decomposition based on EMD

highly depends on extremal point finding, interpolation, and stopping criteria. These

degrees of freedom and lack of mathematical theory suggest to explore a new robust

decomposition method. On the other hand, the VMD is also robust to noise, and

improved alternative to the EMD [66].

VMD is an adaptive, and variational technique for the analysis of non-stationary

signals [66]. It depends upon the frequency information present in the signal. It

decomposes the signal into bandlimited modes, that are centred around a particular

frequency and have specific sparsity properties. The VMD decomposes a multi-

component signal non-recursively into a discrete number of bandlimited sub-signals.

These sub-signals are well sparsely separated in the spectral domain. Each sub-

signal after decomposition is bandlimited to centred frequency. The bandwidth of a

bandlimited sub-bands are computed as follows [66]:

1. Transform the signal into its analytic counterpart for each sub-band.

2. Exponential term, which is tuned to respective estimated centre frequency, is

used to shift the frequency spectrum of each sub-band.

3. The squared L2-norm of the gradient is applied to estimate the bandwidth.
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For a multi-component signal S, the constrained variational problem for VMD

can be formed as [66]:

min
mk,ωk

{∑
k

∣∣∣∣∣
∣∣∣∣∣∂t[(δ(t) +

i

πt
) ∗mk(t)] exp−iωkt

∣∣∣∣∣
∣∣∣∣∣
2

2

}
such that

∑
k

mk = S (3.1)

where mk and ωk are the kth decomposed bandlimited VMD component and its

center frequency. In Equation (3.1), the constrained problem can be addressed by

incorporating quadratic penalty and the Lagrangian multiplier. This equation can

be rewritten as [66]:

L(mk, ωk, β) = α
∑
k

∣∣∣∣∣
∣∣∣∣∣∂t
[

(δ(t) +
i

πt
) ∗mk(t)

]
exp−iωkt

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∣∣∣∣∣
∣∣∣∣∣s(t)−∑

k

mk(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

+

〈
β(t), s(t)−

∑
k

uk(t)

〉
(3.2)

Saddle point of Equation (3.2) with respect to Equation (3.1) can be determined

by an alternating direction method of multipliers (ADMM) [66]. The estimate of

the kth-mode is updated as follows:

m̂n+1
k (ω) =

Ŝ(ω)−
∑

j 6=k m̂j(ω) + β̂(ω)
2

1 + 2α(ω − ωk)2
(3.3)

where α is balancing parameter of the data fidelity constraint. The center fre-

quency is updated as center of gravity, which can be written as [66]:

ωn+1
k =

∫∞
0
ω|m̂k(ω)|2dω∫∞

0
|m̂k(ω)|2dω

(3.4)

In this work, the 2D VMD [69] proposed for images is employed for fundus image

decomposition. The 2D-VMD is applied iteratively on G channel of fundus image.

The iterative VMD is shown in Fig. 3.3. In the 1st iteration, the fundus image

is decomposed into 2 VMD components. Similarly, in rest of the iterations, the
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3.2. Proposed approach

2nd VMD component of the previous iteration is further decomposed into 2 VMD

components. In total, there are 5 iterations. Hence, a total of 10 VMD components

are obtained from a single G channel of the fundus image. Figs. 3.4 and 3.5 show

the iterative VMD components of G channel of normal and glaucoma fundus image,

respectively.

Preprocessed green 

channel of colour

fundus image

2D-VMD

1st comp

2nd comp

1st iter

2D-VMD

1st comp

2nd comp

2nd iter

2D-VMD

1st comp

2nd comp

3rd iter

2D-VMD

1st comp

2nd comp

4th iter

2D-VMD

1st comp

2nd comp

5th iter

Figure 3.3: Illustration of iterative 2D-VMD. (*iter = iteration, *comp = compo-
nent)

3.2.4 Feature extraction

Feature extraction process plays an important role in capturing discriminatory infor-

mation from the data. It replaces the original data by a comparatively less number

of discriminatory attribute referred to as features. In the proposed approach, various

entropies and fractal dimension are extracted as features from the VMD components.

These features incorporates the smoothness, coarseness, and pixel irregularities of

the VMD components.

Entropy is the measure of uncertainty and randomness [73]. Equal distribution

of pixels intensity values leads to no information and hence zero entropy. In this

work, non-Shannon entropies are explored which have higher dynamic range and

make better estimation of regularity and scattering [74]. In this approach, entropies

such as Renyi entropy (RE) [75], Yager entropy (YE) [74], and Kapur entropy (KE)

[75] are extracted from the VMD components. Let px denote the probability of

pixel value x occurred y number of times and let image size be r × c, then px can
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.4: Iterative VMD components of G channel of fundus image in Fig. 3.2(a).

be expressed as px = y
r×c . The KE, RE, and YE can be expressed as [74]:

KE =
1

b− a
log2

(∑X−1
x=0 p

a
x∑X−1

x=0 p
b
x

)
(3.5)

RE =
1

1− α
log2

(
X−1∑
x=0

pαx

)
(3.6)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.5: Iterative VMD components of G channel of fundus image in Fig. 3.2(e).

YE = 1−

X−1∑
x=0

|2px − 1|

|r × c|
(3.7)

Fractal Dimension: Fractals are the objects with self-similarity and irregularity

[76]. The FD is a measure of roughness, self-similarity and irregularity. It is very

useful for studying texture as it has scale-dependent property [77]. To investigate
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the textural differences in the normal and glaucoma images, FD is explored in the

proposed approach. The high value of FD indicates higher roughness of the surface

texture [78].

If a surface S, scaled up or down by a factor f , is self-similar only if S is a union

of non-overlapping copies (Sf ) of itself when scaled. The self-similarity measured

by FD as [76]:

1 = Sff
FD (3.8)

which can also be re-written as:

FD =
log(Sf )

log
(

1
f

) (3.9)

where

f =
scaled value

original scale
(3.10)

Differential box counting (DBC) [77] algorithm is used to determine FD. In this

work, the sequential box-counting (SBC) [76] method is employed for computing

FD. The modified DBC technique is named as sequential box counting (SBC). In

the SBC method, the initial grid size is set to the power of 2 and the final grid is set

to image size (r× c). The Sf in Equation 3.8 is the sum of differences of maximum

and minimum intensities of each 2×2 grid. This is repeated until the size of the

grid is equal to the image size. Previously, the FD is successfully explored for the

characterization of ovarian tumour [78] and epileptic seizures [79].

3.2.5 Feature Normalisation

Skewed data may result in a false alarm and may hamper the performance of the

classifier. Feature normalisation brings the numeric values of the features within

the desired range. In this work, z-score normalisation [51] has been used, which

transform the data into zero mean and unit deviation. If X is data, then the

normalised data X̂ using z-score procedure can be expressed as [80]:
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X̂ =
X −mean(X)

std(X)
(3.11)

where std is standard deviation.

3.2.6 Feature selection

Feature selection is a crucial stage in the computer-aided automated diagnosis. Not

all the extracted features behave similarly. Some features with lower discrimina-

tory ability may disturb the performance of the proposed approach [23]. Moreover,

training the machine learning algorithm with a large number of features may lead to

over-fitting [78]. Therefore, selecting feature subset which has significant discrimi-

nation capability will maximise the classification performance of the method.

In the proposed approach, ReliefF feature selection method [81] is employed.

This method is an improved version of Relief feature selection method proposed by

Kira et al. in [82]. Statistical methods are used in ReliefF feature selection method

instead of heuristic search, and it selects statistically relevant features. The input

to the ReliefF algorithm is feature vector and class labels. Pseudocode for ReliefF

feature selection algorithm is explained in Algorithm 1 [81].

Algorithm 1 ReliefF feature selection algorithm pseudocode

initialize W [A] := 0.0;
for i := 1 to m do

randomly select Ri;
find k nearest hits Hj;
for each class C 6= class(Ri) do

from class C find k nearest misses Mj(C);
end for
for A := 1 to a do

W [A] := W [A]−
k∑
j=1

diff(A,Ri, Hj)/(m.k)+

∑
C 6=class(Ri)

[
P (C)

1− P (class(Ri))

k∑
j=1

diff(A,Ri,Mj(C))

]
/(m.k)

end for
end for

In ReliefF feature selection method, an instance Ri is randomly selected and
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Table 3.1: Results of features ranked using ReliefF method.

Feature Normal Glaucoma
(mean± std) (mean± std)

KE1
1 7.465±0.121 7.444±0.162

FD5
1 1.935±0.008 1.919±0.010

FD4
1 1.949±0.009 1.930±0.012

FD3
1 1.971±0.012 1.949±0.017

RE5
1 0.391±0.102 0.284±0.147

FD5
2 2.098±0.033 2.029±0.040

FD2
1 2.010±0.016 1.982±0.024

RE1
1 6.145±0.259 5.583±0.668

RE1
2 1.375±0.065 1.285±0.131

FD4
2 2.110±0.032 2.040±0.040

Y E2
1 0.999±4.58×10−05 0.999±7.13×10−05

KE4
1 2.078±0.235 1.828±0.452

KE3
1 2.540±0.260 2.330±0.530

FD3
2 2.124±0.032 2.055±0.040

KE5
1 1.753±0.218 1.480±0.400

RE4
1 0.550±0.121 0.430±0.191

FD2
2 2.144±0.031 2.075±0.040

RE2
1 1.127±0.120 0.978±0.237

then searches for k nearest neighbors from the same and different classes termed as

nearest hits Hj and misses Mj(C), respectively. Depending upon the values of Ri,

Hj, and Mj(C), the quality estimation W [A] is updated. Parameter k is user defined

and generally set to 10 [81]. The difference between the values of the attribute A for

two instances I1 and I2 is calculated by diff(A, I1, I2) function. Based on the value

of W , the features are ranked and first eighteen features are further selected for

classification. Table 3.1 lists the selected eighteen features. Column 1 of Table 3.1

lists the features in the form Xz
y where X represents feature and y and z represent

the component and iteration number, respectively.
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3.2.7 Classification

Classifiers play an important role in computer-based diagnosis applications. They

create a decision boundary to discriminate between two or more classes. Various

biomedical signals such as for heart sound [52], electroencephalogram [53], and heart

rate [50] have employed support vector machine (SVM) classifier [58, 59]. In the

proposed approach, LS-SVM is employed, which is a supervised machine learning

algorithm and has previously been used in computer-based glaucoma diagnosis [80].

In this work, to separate non-linear features using LS-SVM, a non-linear kernel

function is employed which maps the input feature space into a higher dimensional

space in order to make them linearly separable. Specifically, radial basis function

(RBF) [61] is investigated as a non-linear kernel function in this work.

3.3 Dataset and experimental results

The fundus image dataset is described in this section. This section also presents

experimental results of the proposed approach validated on the described dataset.

3.3.1 Dataset

In this work, the dataset consists of 488 fundus images obtained from Kasturba

Medical College, Manipal, India, has been employed for glaucoma diagnosis. The

doctors of the ophthalmology department of the college have provided permission

for the usage of these fundus images. Sample normal and glaucoma digital fundus

images are shown in Fig. 3.2. Moreover, in this study, the online available pub-

lic database obtained from http://medimrg.webs.ull.es/ is used to validate our

proposed method. This database consists of 255 normal and 200 glaucoma fundus

images.

3.3.2 Results & discussion

In the proposed method, VMD is iterated five times, with two VMD components per

iteration, which produces ten VMD components per fundus image. Four features

are extracted from each VMD component. Therefore, the length of the feature
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vector is 40 per fundus image. Further, a subset of eighteen features is selected from

the ranked features. The selected features are then fed to the classifier. Accuracy,

sensitivity, and specificity are employed as the performance metric in the proposed

approach [64]. The kernel parameter σ for RBF kernel is varied from 0.2 to 2

with 0.1 increment. To evaluate the classifier performance, three-fold and ten-fold

cross-validation strategies [64] are employed.

The proposed approach achieves the maximum classification accuracy using the

first 13 features. The three-fold and ten-fold cross-validation obtains the classi-

fication accuracy of 95.19% and 94.79%, respectively. The plots of performance

parameters versus the number of features and kernel parameter are shown in Fig.

3.6 and Fig. 3.7, respectively for three-fold and ten-fold cross-validation strategies.

Further, the proposed method is also evaluated for the public database. The

classification accuracy of 81.63% and 81.22% has been obtained for three-fold and

ten-fold cross-validation strategies, respectively. The reason for less accuracy of

the proposed method on the public database is due to diverse fundus images with

different image resolutions and varying illumination changes.

The extracted features from G channel of the fundus image are more effective

for glaucoma diagnosis as compared to red (R) and blue (B) channels [21], [80],

[83]. They incorporate the subtle variation in pixel intensities that characterises the

glaucoma change. Therefore, in the proposed approach, only the G channel of the

fundus image is considered for further analysis.

In adaptive decomposition based image analysis, the number of decomposed com-

ponents play an important role. The VMD has a limitation that it needs the number

of components in advance [68]. To overcome this limitation, the iterative method

is adopted in the proposed approach. The VMD is applied iteratively, as shown in

Fig. 3.3. The iterative process narrows the frequency band of the subsequent VMD

component. This narrowing process separates the closely related pixel variations,

which are further captured by various entropies and fractal dimension.

The number of iterations is kept 5 in the proposed method. We have also per-

formed our experiments up to 8th iterations. However, the features extracted from

those (6th to 8th) iterations does not contribute to the performance enhancement

as there is no significant improvement in classification accuracy. Additionally, the
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Figure 3.6: Plot of accuracy versus number of features for (a.) three-fold, and (b.)
ten-fold cross validation strategies.

feature subset chosen for classification using feature selection does not involve the

features extracted from 6th to 8th iterations. Further, an increase in the number of

modes will result in more computational time and number of features. Therefore,

we have restricted our experiments up to 5 iterations only. Further, the extracted

features are ranked, and the subset of features is selected from the ranked features.

The feature selection improves the classification performance of the approach by

avoiding features with lower discriminating capability.

The experimental results suggest that the features extracted from the iterative

VMD components are effective for automated glaucoma diagnosis. In Table 3.1, it

can be noted that all feature values are high for a normal class. It means that there is
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Figure 3.7: Plot of accuracy versus kernel parameter for first-thirteen features with
(a.) three-fold, and (b.) ten-fold cross validation strategies.

more pixel variation in the normal class. In glaucoma, due to a large optic cup (OD)

which signifies increased white region, pixel variation will be less causing reduction

in the feature values. Existing methodologies proposed for automated diagnosis of

glaucoma have been presented in Table 3.2. It can be observed from Table 3.2 that

the proposed approach achieves better classification performance than the existing

state-of-the-art methodologies.
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Chapter 3. Iterative VMD-based approach

3.4 Summary

In this chapter, an iterative VMD-based approach is proposed for automated di-

agnosis of glaucoma. The G channel of fundus image is decomposed into VMD

components iteratively. Further, various entropies and fractal dimension have been

extracted as the features. Further, the extracted features are ranked and only signifi-

cant features with high discriminating capability are selected and fed to the classifier.

The experimental results suggest that the features extracted from iterative VMD

components have been found to be effective for glaucoma diagnosis. Specifically,

Renyi entropy, Kapur entropy, and fractal dimension efficiently capture the subtle

variation in the pixel intensities in the VMD decomposed components. Hence, the

proposed approach has been validated on 488 fundus images and obtains better

classification performance than the state-of-the-art glaucoma diagnosis approaches.
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Chapter 4
Local Bit-Level Texture Descriptor

for Glaucoma Diagnosis

In this chapter, unlike grey-level texture descriptor, the local bit-level texture de-

scriptor is developed for glaucoma diagnosis. The proposed approach employs bit-

plane slicing (BPS) followed by local binary pattern (LBP), which generates LBP

images. Further, the features are extracted from the LBP images and fed to the

classification process. Finally, the decision level fusion is explored to combine the

predictions of different classifiers.

4.1 Introduction

In Chapters 2 and 3, EWT and VMD based methodologies have been proposed for

glaucoma diagnosis, respectively. Both EWT and VMD decomposes the signal into

a number of time-frequency components. In EWT, the Fourier axis segmentation in

noisy conditions fails to estimate prominent peaks. This results in irrelevant EWT

components [67]. On the other hand, VMD has a limitation that it needs the number

of components in advance [68]. To overcome this limitation, the iterative approach

is proposed. However, these signal decomposition techniques are computationally

complex as they involve a large number of complicated steps to decompose a signal.

In this chapter, the local bit-level texture descriptor is proposed. The proposed

approach employs BPS and local binary patterns (LBPs). The computation of LBP

is simple and involve less number of operations [85], which makes the proposed
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4.2. Proposed approach

approach computationally efficient.

Other sections of the chapter are organised as follows: The proposed approach is

described in Section 4.2, which elaborates BPS followed by LBP description, feature

extraction, and the classification process. The fundus image dataset is described in

Section 4.3, which also presents experimental results and discussion. Finally, the

chapter is summarised in Section 4.4.

4.2 Proposed approach

This section starts with an overview of the proposed approach. Then, it discusses the

preprocessing step followed by BPS method, and the LBP based feature extraction

process. At last, the classification process is discussed.

4.2.1 Overview of the proposed approach

In this chapter, local bit-level texture descriptor is developed for glaucoma diag-

nosis. This approach employs BPS, followed by LBP. Initially, the BPS split each

preprocessed fundus image channel into bit planes. Then, the LBP images are ob-

tained from the bit planes of each channel. Further, corresponding to each channel,

the features are extracted from LBP images and are subjected to normalization and

ranking. The ranked feature vectors of each channel are then fed to separate classi-

fiers. The performance of the proposed approach is investigated on 2nd and 3rd order

polynomial kernels. Finally, to combine the individual predictions of classifiers, the

decision level based fusion has been employed. The block diagram of the proposed

methodology is illustrated in Fig. 4.1.

4.2.2 Preprocessing of fundus images

A few sample images are shown in Fig. 4.2. The proposed methodology starts with

a preprocessing step. Firstly, the fundus image is resized to 360 × 480 pixels to

decrease the computation time. Secondly, the resized fundus image is separated

into the red (R), green (G), and blue (B) channels. Finally, each of these channels

goes through contrast limited adaptive histogram equalization (CLAHE) [71] [72]
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Color fundus image

Resizing and separating 

R, G, B channels 

Bit plane slicing

LBP based statistical 

feature extraction

Feature normalization

Support vector machine 

classifier

Normal Glaucoma

R-channel

Feature selection

Bit plane slicing

Feature normalization

Support vector machine 

classifier

G-channel

Feature selection

Bit plane slicing

Feature normalization

Support vector machine 

classifier

B-channel

Feature selection

Decision level fusion

CLAHE CLAHE CLAHE

LBP based statistical 

feature extraction

LBP based statistical 

feature extraction

Figure 4.1: Block diagram of the local bit-level texture descriptor approach.

to overcome the problem of uneven lighting conditions at the time of fundus image

acquisition.

4.2.3 Bit plane slicing

BPS [71] is a technique which splits a grey image into the bit planes. In general, a

256-level grey-scale image is composed of 8-bits and therefore BPS splits it into 8 bit

planes. Correspondingly, each R, G, and B channel is a 8-bit grey-scale image which

splits into 8 bit planes. BPS is useful for analyzing the relative importance of each

bit plane, which can be processed further to extract the discriminating information.

Fig. 4.3 shows the bit planes of the R channel of glaucoma image shown in Fig.

4.2(e). Fig. 4.3(a) shows the 1st bit plane that corresponds to least significant bit
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4.2. Proposed approach

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Sample fundus images: normal (top row) and glaucoma (bottom row)
class.

(LSBs) plane. Similarly, Figs. 4.3(b) - 4.3(h) show the remaining bit planes.

4.2.4 Local binary patterns based feature extraction

The analysis of two-dimensional texture has been investigated extensively for appli-

cations involving image classification. In real world, textures are often irregular due

to orientation, scale, lightening conditions [85]. Most of the discriminating problems

rely heavily on how effectively the variations in texture is captured.

The LBP [85] is a simple and effective image texture descriptor that has been

widely used for diverse applications. To capture the local changes in each of the

bit planes, LBP is employed. LBP is computed by performing logical operations in

the local neighbourhood of a predefined window. More specifically, the computation

of LBP involves two steps. In the first step, each of the neighbouring pixels is

thresholded against the centre pixel value to generate a binary pattern. In the

second step, the binary pattern is converted into its equivalent decimal value. This

decimal value is considered the LBP of the corresponding centre pixel.

Since the bit planes are already in binary form, the second step is directly per-

formed to compute the LBP. Mathematically, it is computed as follows:
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.3: Bit planes of R channel of Fig. 4.2(e).
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4.2. Proposed approach

LBPN,L =
N−1∑
n=0

xn ∗ 2n (4.1)

where xn is the binary value of the neighbouring pixels. N and L in Eq. 4.1 is

the number of local neighbours and the size of the square window, respectively. In

the experiments, the value of N and L is set to 8 and 3, respectively. In this work,

LBPs are extrcated from each of the bit planes. Hence, this process generates a 2D

LBP array or an LBP image from each of the bit planes. Fig. 4.4 shows the LBP

images of the corresponding bit planes in Fig. 4.3.

LBP is an efficient descriptor that characterises local variation in grey levels,

which is useful for texture-based classification problems. The LBP images com-

puted from bit planes incorporate local bit-level changes. More often, the statistical

analysis of texture has been found to be effective in capturing the underlying discrim-

inating information present in the form of randomness and variability. Specifically,

non-Shannon entropies and fractal dimension are computed from the LBP image as

statistical features. These features are further detailed below.

Entropy

Entropy measures the variation in texture as an information content in the image

[73]. Uniform distribution of pixel values leads to zero information content in an

image. The proposed approach investigates non-Shannon entropies such as Kapur

entropy (KE) [75], and Renyi entropy (RE) [75] to determine the texture randomness

associated with LBP image. These entropies provide a higher dynamic range that

makes a better estimate of randomness. The mathematical expressions for KE and

RE are given below [74]:

KE =
1

b− a
log2

(∑I−1
i=0 p

a
i∑I−1

i=0 p
b
i

)
(4.2)

RE =
1

1− α
log2

(
I−1∑
i=0

pαi

)
(4.3)

where pi denote the probability of occurrence of ith LBP value. If a LBP value

occur m number of times, then pi is computed as:
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.4: LBP images of bit planes shown in Fig. 4.3.
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4.2. Proposed approach

pi =
m

r × c
(4.4)

where r and c denotes the number of rows and columns of LBP vector, respec-

tively.

Fractal Dimension

A fractal is the smallest unit which repeats itself into self-similar patterns that

manifest at every scale [79]. They are used to analyze random phenomena. FD is a

measure of roughness and self-similarity. Of late, fractal dimension (FD) has been

found to be effective in the diagnosis of ovarian tumour [78], and epileptic seizures

[79]. In this work, the sequential box-counting (SBC) [76] method is employed for

computing FD.

4.2.5 Feature normalization

The performance of machine learning algorithms may get affected by the skewed

data, which can result in a false alarm. This issue can be rectified by employing

data normalisation, which brings the skewed data to a desired numeric scale. In

the proposed approach, z-score normalisation [51] is employed to transform the data

into zero mean and unit standard deviation.

4.2.6 Feature Selection

Feature selection helps in improving the performance of the computer-aided diag-

nosis systems. Some of the extracted features do not contribute significantly to the

performance due to their low discriminating ability. In this work, the Student’s

t-test [49, 50] is investigated for feature selection. Student’s t-test generates t value

for each of the features. The t value represents the discriminating capability of the

corresponding feature. A high t value indicates higher discriminating capability.

Therefore, these features are arranged in descending order of their corresponding t

values. Tables 4.1, 4.2 and 4.3 show the first twenty features and their correspond-

ing t values for R, G, and B channels, respectively. In features column, subscript

denotes the bit plane number.
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Table 4.1: Features extracted with t values for R channel.

Features Normal Glaucoma t value
(mn± std) (mn± std)

RE4 0.04± 0.008 0.02± 0.008 49.60

KE4 0.52± 0.033 0.40± 0.058 48.45

RE3 0.06± 0.005 0.03± 0.011 47.92

KE5 0.41± 0.043 0.28± 0.065 43.67

RE2 0.05± 0.006 0.03± 0.010 43.06

KE3 0.57± 0.016 0.48± 0.059 42.16

RE5 0.02± 0.006 0.008± 0.005 40.35

KE6 0.29± 0.046 0.18± 0.054 40.09

KE2 0.55± 0.023 0.55± 0.062 40.01

FD5 3.87± 0.010 3.84± 0.023 37.93

FD4 3.89± 0.005 3.87± 0.016 36.57

FD6 3.83± 0.019 3.77± 0.037 35.69

KE7 0.19± 0.042 0.12± 0.044 35.24

RE1 0.06± 0.004 0.04± 0.011 34.11

KE8 0.15± 0.030 0.09± 0.033 34.01

RE6 0.008± 0.003 0.003± 0.002 33.10

FD7 3.75± 0.03 3.68± 0.052 32.33

KE1 0.58± 0.013 0.52± 0.046 31.44

FD3 3.90± 0.003 3.88± 0.014 29.56

RE8 0.0017± 0.0008 0.0006± 0.0005 28.69

mn: mean & std: standard deviation
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4.2. Proposed approach

Table 4.2: Features extracted with t values for G channel.

Features Normal Glaucoma t value
(mn± std) (mn± std)

RE3 0.05± 0.006 0.03± 0.011 50.89

KE4 0.52± 0.038 0.40± 0.056 49.62

RE4 0.04± 0.008 0.02± 0.007 49.30

RE1 0.05± 0.007 0.03± 0.009 47.14

KE5 0.42± 0.043 0.29± 0.064 46.56

KE6 0.30± 0.041 0.18± 0.058 45.73

KE3 0.57± 0.019 0.47± 0.058 45.21

KE1 0.56± 0.024 0.46± 0.053 43.89

RE5 0.02± 0.006 0.008± 0.005 43.36

KE2 0.50± 0.038 0.39± 0.057 42.73

RE2 0.04± 0.008 0.02± 0.007 41.89

RE6 0.01± 0.003 0.003± 0.002 40.39

FD4 3.89± 0.006 3.87± 0.018 38.43

FD5 3.87± 0.013 3.83± 0.029 35.98

FD6 3.82± 0.024 3.75± 0.048 35.92

FD2 3.89± 0.006 3.87± 0.014 34.07

KE8 0.16± 0.050 0.07± 0.048 32.88

FD3 3.90± 0.003 3.88± 0.017 32.18

FD1 3.90± 0.003 3.88± 0.009 30.96

FD8 3.55± 0.116 3.34± 0.127 30.83

mn: mean & std: standard deviation
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Table 4.3: Features extracted with t values for B channel.

Features Normal Glaucoma t value
(mn± std) (mn± std)

RE3 0.06± 0.006 0.03± 0.011 55.14

RE1 0.05± 0.007 0.03± 0.010 54.65

KE1 0.56± 0.027 0.45± 0.053 50.88

RE4 0.04± 0.009 0.02± 0.008 50.26

KE4 0.53± 0.037 0.40± 0.056 50.10

KE3 0.57± 0.019 0.46± 0.061 48.23

KE2 0.48± 0.042 0.36± 0.059 45.54

KE5 0.42± 0.046 0.29± 0.061 45.20

RE2 0.03± 0.008 0.015± 0.006 43.64

RE5 0.02± 0.006 0.008± 0.005 41.02

FD4 3.89± 0.005 3.86± 0.021 40.10

KE6 0.30± 0.061 0.17± 0.063 39.38

FD2 3.88± 0.007 3.86± 0.017 38.96

FD1 3.90± 0.003 3.88± 0.013 36.93

FD5 3.87± 0.012 3.82± 0.034 35.73

FD3 3.90± 0.003 3.87± 0.021 33.98

RE6 0.01± 0.004 0.002± 0.002 32.24

KE7 0.20± 0.043 0.13± 0.051 29.09

FD7 3.76± 0.061 3.58± .0167 28.98

KE8 0.10± 0.048 0.04± 0.035 25.33

mn: mean & std: standard deviation
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4.3. Dataset and experimental results

4.2.7 Classification

In this work, the support vector machine (SVM) classifier is employed to discrimi-

nate the two classes. SVM classifier [86] is a supervised machine learning algorithm

which is widely used for classification. Supervised machine learning algorithm needs

labelled data in the training stage for mapping input-output pairs. In this work,

SVM classifier with polynomial kernel function of order 2nd and 3rd have been in-

vestigated. In the proposed approach, the ranked features obtained from each of

R, G, and B channels are fed to three SVM classifiers separately for automated

classification.

4.2.8 Decision level fusion

In order to effectively combine the information obtained from the three different

SVM classifiers, the decision level fusion scheme is explored in the proposed ap-

proach. Decision level fusion combines the decisions made by multiple classifiers.

In the proposed methodology, each of the three SVM classifiers generates a binary

decision to predict the normal or glaucoma class. In this fusion scheme, a query

image belonging to a normal or glaucoma class depends upon the maximum number

of predictions made by the classifiers in favour of that particular class.

4.3 Dataset and experimental results

This section details the fundus image dataset employed in the proposed approach

followed by the experimental results and the discussion.

4.3.1 Database

The database used for performance evaluation of the proposed approach consists of

1426 retinal colour fundus images, out of which 589 belong to the normal class, and

the rest belong to the glaucoma class. Images in this database have been collected by

Kasturba Medical College, Manipal, India. The ethical approval has been obtained

from the doctors in Ophthalmology department for using the database in this work.

Sample fundus images are shown in Fig. 4.2.
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4.3.2 Results & discussion

In this approach, 8 LBP images are obtained from 8 bit planes corresponding to each

of the channels. Further, three features are extracted per LBP image. Therefore,

the length of the feature vector is 24 for each channel. For validating the perfor-

mance of the proposed approach, 10-fold cross-validation [65] has been explored.

The commonly used measures such as accuracy, sensitivity, and specificity [64] have

been used as the performance metric. Classification performance of our approach

investigate for different kernel parameters, and decision level fusion method for each

channel are reported in Table 4.4.

Table 4.4: Classification performance for different channels, and order of polynomial
kernel function.

Decision based on Kernel parameter Accuracy (%) Sensitivity (%) Specificity (%)
(polynomial order)

R channel 2nd 98.36 96.78 99.52

R channel 3rd 98.60 97.97 99.05

G channel 2nd 98.95 98.83 99.05

G channel 3rd 98.98 98.20 99.52

B channel 2nd 98.81 98.99 98.70

B channel 3rd 98.74 98.33 99.05

Decision level fusion 2nd 99.16 98.99 99.29

Decision level fusion 3rd 99.30 98.84 99.64

It can be observed from Table 4.4 that the minimum classification accuracy of

98.36% is obtained by the R channel. On the other hand, the G channel individu-

ally achieves a maximum classification accuracy of 98.98%. In addition, this table

also shows the performance obtained using the decision level fusion scheme. The

proposed approach achieves a maximum classification accuracy of 99.30% for deci-

sion level fusion with 3rd order polynomial SVM kernel. The plots of classification

performance versus the number of features with 2nd order and 3rd order polynomial

kernel function are shown in Fig. 4.5 and Fig. 4.6, respectively. It can be observed

from the Tables 4.1, 4.2, and 4.3 that due to high t value of the extracted features,

the proposed obtains high classification accuracy.

Table 4.5 compares the proposed approach with other existing approaches for

glaucoma diagnosis. The proposed approach obtains highest classification perfor-

mance with a comparatively large number of fundus image in a dataset. Generally,
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LBP is an efficient grey-level texture operator. However, in the proposed approach,

it is explored to capture local bit-level changes in bit planes. The statistical fea-

tures extracted from LBP images have been found to be highly discriminatory, and

favourable for the classification process. Specifically, these entropies have been pre-

viously found to be effective for human seizure detection [87], identification of focal

Electroencephalogram (EEG) signals [88], and characterization of fatty liver disease

[89]. The advantage of these entropies lies in their generality and flexibility due to

the parameters involved, which enable several measurements of uncertainty. Fractal

dimension is an indicator of the surface roughness and has previously been employed

for thyroid lesion classification in ultrasound images [90]. The proven effectiveness

of these features motivated us to explore them for fundus image based glaucoma

diagnosis.

It can be noted from Table 4.1, 4.2 and 4.3 that the mean value of features

for normal cases are higher as compared to glaucoma cases. This is because the

normal image has more variations in terms of pixel intensities. In glaucoma case,

the pixel intensity variations are less due to loss in retinal nerve fibres [80]. Also, the

variability in entropy values of the normal class is more as compared to glaucoma

as it has large optic disc (white region).

The local bit-level texture analysis has been found to be effective for glaucoma

diagnosis. The experimental results suggest that the features extracted from the

green channel achieve better classification performance as compared to other chan-

nels. This advocate that the pixel variations in the green channel are more prone to

characterise glaucoma changes.

4.4 Summary

This chapter presents a local bit-level texture descriptor for the diagnosis of glau-

coma. The proposed approach employs bit-plane slicing followed by local binary

patterns. Further, various features have been extracted from LBP images of dif-

ferent channels. Furthermore, the extracted features are ranked and fed to the

classifier. The SVM classifier with 2nd and 3rd order polynomial kernel has been

investigated for performance execution of the approach. At last, The decision level
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fusion technique combines the classifier predictions obtained for the features ex-

tracted from different channels. The experimental results suggest that the decision

level fusion improves the classification performance of the proposed approach. The

proposed approach experimentally achieves better classification performance than

the existing state-of-the-art glaucoma diagnosis methodologies. Therefore, it can be

concluded that the proposed approach has been experimentally found to be effective

for glaucoma diagnosis.
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Figure 4.5: Plot of classification performance versus number of features for 2nd order
polynomial kernel.

78



Chapter 4. Local bit-level texture descriptor based approach

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of features

97.6

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

A
cc

u
ra

cy
 (

%
)

 Decision level fusion

 R channel

 G channel

 B channel

(a)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of features

95.5

96

96.5

97

97.5

98

98.5

99

99.5

S
en

si
ti

v
it

y
 (

%
)

 Decision level fusion

 R channel

 G channel

 B channel

(b)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of features

97.5

98

98.5

99

99.5

100

S
p

ec
if

ic
it

y
 (

%
)

 Decision level fusion

 R channel

 G channel

 B channel

(c)

Figure 4.6: Plot of classification performance versus number of features for 3rd order
polynomial kernel.
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Chapter 5
CNN-based Approach for Glaucoma

Diagnosis

This chapter presents an approach which integrates automatic feature extraction

and the classification process. Specifically, in this chapter, a convolutional neu-

ral network (CNN) based approach is proposed for automated glaucoma diagnosis.

Further, the proposed approach employs the local binary pattern (LBP) based data

augmentation and transfer learning.

5.1 Introduction

In previous chapters, the approaches proposed for computer-aided diagnosis of glau-

coma using fundus images typically involves the extraction of discriminating features

from fundus images, and the classification of the extracted features. More specifi-

cally, the fundus images are initially pre-processed and followed by image analysis

techniques. These techniques convert the image into simpler yet meaningful dis-

criminatory representations referred to as features. The most discriminatory subset

of features is then obtained from the feature set. Finally, the ranked features are

then fed to the classifiers for discriminating between normal and glaucoma class.

However, an efficient selection of the feature extraction method and the classifier

is necessary to develop an effective computer-aided diagnosis system [4]. The optimal

selection of this combination is cumbersome. Further, the design of such hand-

crafted features for effective diagnosis is strongly related to the expert knowledge
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5.2. Proposed approach

and have restricted representation power [4]. Also, there may arise a possibility that

the computer-aided method developed for a small dataset may not work for a large

dataset, and thus it may not show the discriminative ability [4].

Therefore, there is a need for a technique which can extract meaningful features

automatically from the data and classifies them. Recently, CNN has gained popular-

ity among various computer-aided diagnosis system [4], [29], [31], [30]. It integrates

both, automatic feature extraction and the classification process. In this chapter, a

CNN based approach is proposed for automated diagnosis of glaucoma using fundus

images.

The remaining chapter is structured as follows: Section 5.2 presents the CNN

architecture followed by the brief description on transfer learning and the data aug-

mentation techniques. Section 5.3 presents the dataset description and discusses

experimental results. Finally, Section 5.4 summarises the chapter.

5.2 Proposed approach

Firstly, this section presents the overview of the proposed approach, which is followed

by the description of CNN architecture. Next, the transfer learning technique is

presented, and the data augmentation process is described at last.

5.2.1 Overview of the proposed approach

The block diagram of the proposed approach is shown in Fig. 5.1. In this chapter,

a CNN-based approach is proposed for glaucoma diagnosis. Specifically, transfer

learning technique is explored in this approach. This technique employs a pre-trained

CNN model, which is developed for other similar tasks. In this study, Alexnet has

been investigated as a pre-trained CNN model. Further, the fundus image dataset is

split into training and testing set. The colour fundus images of training and testing

set are separated into red (R), green (G) and blue (B) channels. To increase the

size of the training set, data augmentation is employed. Specifically, LBP-based

data augmentation is employed, as shown in data augmentation block in Fig. 5.1.

The augmented data is then further employed to train the CNN model. During the

testing stage, the R, G, and B channels of test image are fed to the trained model,

84



Chapter 5. CNN-based approach

which provide three decisions, as shown in Fig. 5.1. Finally, these decisions are then

combined using the decision level fusion technique.

Colour fundus images
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Trained 

model

Train modified 
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Figure 5.1: Overview of the CNN-based proposed approach.

5.2.2 Convolutional neural network

CNN is the advanced neural network architecture, which is explored in many com-

puter vision applications such as face recognition [28], segmentation [32], and classi-

fication based approaches [29], [30]. Generally, the traditional methods for glaucoma

diagnosis involve a two-step process: feature extraction followed by the classification

process. Whereas, CNN is a single-step process which integrates both, the automatic

feature extraction, and the classification.

The neural network is inspired by the human brain and is used in machine

learning. It is composed of the input layer, the hidden layer/layer’s, and the output

layer. The hidden layer is a set of neurons which are connected with the neurons
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5.2. Proposed approach

in the previous layer. The neurons learn by adjusting their weights. When an

unexpected output is obtained for a given set of input, the weights are adjusted by

the back-propagation algorithm to achieve the desired output. Initially, the neural

networks are designed for 1D data. For 2D data such as images, the design of a

neural network involves large a number of parameters, which makes the network

complex. This results in slow training and induces the chances of over-fitting. This

limitation is overcome with the evolution of CNN.

CNN, on the other hand, is a multi-layered neural network which is developed

for the image analysis and classification task. CNN employs neurons which are

arranged in a 3D pattern having width, height, and number of filter layers. The

CNN architecture is composed of one or multiple repetitions of the following layers:

1. Input layer: This is the first layer of CNN. It holds and passes the raw data

to next layer for further processing.

2. Convolutional layer: This layer performs a dot product between the filter and

local image region. It is referred to as the learning layer. It preserves the

information in the local neighbourhood.

3. Rectified linear unit (ReLU): This is an activation function used to threshold-

ing the output of previous layer. It is written as max(0, x). This function

returns 0 if x is less than 0, and x otherwise.

4. Max-pooling layer: It reduces the spatial dimension of the data received from

the previous layer.

5. Fully connected layer: In this layer, the neurons are fully connected with the

neurons of the previous layer.

6. Soft-max layer: This layer brings the data in the range 0 - 1. It is a normalized

exponential function.

7. Output layer: This layer provides the output prediction. It contains the loss

function and label of the input data.
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Chapter 5. CNN-based approach

5.2.3 Transfer learning

Training an entire CNN model from scratch requires a very large dataset and a

capable GPU based hardware. Practically, it is not feasible to train a complete

CNN network from scratch due to hardware limitation and the small size of the

dataset. To overcome this limitation, transfer learning technique is explored in this

work. Transfer learning employs a pre-trained CNN model, which is developed for

other similar tasks. This pre-trained model is then trained on new data by changing

certain design parameters [93].

Training a pre-trained CNN model on a new dataset is about adjusting the layer

weights. Specifically, in the proposed approach, Alexnet [94] is investigated as a pre-

trained CNN model, and is re-trained via transfer learning. The network architecture

of Alexnet contains eight learning layers, out of which five are convolution layers, and

three are fully-connected layers. Originally, Alexnet is capable of classifying 1000

classes. However, in the proposed approach, Alexnet is modified to perform binary

classification. For this purpose, the last three layers, namely the fully-connected

layer, the soft-max layer, and the classification layer, are modified to train them

from scratch. However, the remaining layers need to adjust their corresponding

weights according to new training data. Table 5.1 lists the layers of the modified

Alexnet. Fig. 5.2 shows the modified Alexnet architecture used in this work.
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Figure 5.2: Modified Alexnet architecture via transfer learning.
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Table 5.1: Architecture of modified Alexnet CNN model.

Layers Layer label Layer parameters

Image Input data Sz: 227x227x3

Convolution conv1 Nf: 96, Sz: 11x11x3, St: 4, Pd=0

ReLU relu1 -

Cross Channel Normalization norm -

Max Pooling pool1 Sz: 3x3, St:2

Convolution conv2 Ft: 256, Sz: 5x5x48, St:1, Pd:2

ReLU relu2 -

Cross Channel Normalization norm2 -

Max Pooling pool2 Sz: 3x3, St:2

Convolution conv3 Nf: 384. Sz: 3x3x256, St: 1, pd:1

ReLU relu3 -

Convolution conv4 Fn: 384, Sz: 3x3x192, St:1 Pd:1

ReLU relu4 -
Convolution conv5 Fn: 256, Sz: 3x3x192, St:1, Pd: 1

ReLU relu5 -

Max Pooling pool5 Sz = 3x3, St:2, Pd:0

Fully Connected fc6 Sz = 4096

ReLU relu6 -

Dropout drop6 50%

Fully Connected fc7 Sz: 4096

ReLU relu7 -

Dropout drop7 50%

Fully Connected fc8 Sz: 2

Softmax prob -

Classification Output output cross-entropy

5.2.4 Data augmentation

In order to prevent the CNN model from over-fitting, a large number of labelled

data is required to train the CNN model [94]. As the size of the training data

available for this task is small, data augmentation method is employed to increase

the size of training data. Data augmentation employ operations such as cropping,

scaling, translation, shear, zooming, rotation, and reflection. However, in the pro-

posed approach, any of the above-described operations are not employed for data

augmentation. Instead, the LBPs [85] of R, G, and B channels of the training data
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Chapter 5. CNN-based approach

are computed. The LBP-based data augmentation block is shown in Fig. 5.1. The

computed LBPs of each channel is a 2D vector, so it is referred to as LBP images

in the rest of the chapter.

5.3 Dataset & experimental results

In this section, the fundus image dataset employed in the proposed approach and

the experimental results are presented.

5.3.1 Dataset

The publicly available RIM-ONE database is employed to validate the proposed

approach. The dataset contains 455 colour fundus images with 255 normal and 200

glaucoma images. This database is obtained from medical image analysis group

(MIAG) and is available at http://medimrg.webs.ull.es/. The fundus images in the

dataset are stored in JPEG format with different resolutions.

5.3.2 Results & discussion

The fundus image database is divided into training (80%) and testing (20%) data.

The experiments have also been validated with 70:30 and 90:10 data split into train-

ing:testing. In order to train the model, values of the parameters involved are

initialized as follows: learning rate is set to 0.0001, stochastic gradient descent with

momentum (SGDM) optimizer is used as a solver, the number of images in a batch

is 20, and the number of epochs is 80.

Initially, the images in the training and testing data are separated into R, G,

and B channels. Then, LBP-based data augmentation is employed by obtaining

LBP images of individual channels of training data. Further, the augmented data

is fed to the modified CNN model for training. While testing, the trained Alexnet

model generates predictions for R, G, and B channels of the test image. These three

individual predictions are further combined using decision level fusion technique

[95]. In order to access the performance of the proposed approach, the commonly

used parameters are employed, such as accuracy, sensitivity and specificity [64].
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5.3. Dataset & experimental results

The experiments are repeated 20 times, therefore, the classification performances

are tabulated in the form of maximum−mean−minimum value in Table 5.2.

Table 5.2 tabulates classification performances for 70:30, 80:20 and 90:10 train-

ing:testing data split. It can be observed from the Table 5.2 that the R channel indi-

vidually achieves a maximum classification accuracy of 99.10%, 98.90% and 95.58%

for 70:30, 80:20 and 90:10 training:testing data split, respectively. The B channel

obtains minimum performance. The experiments have also been performed without

employing LBP based data augmentation for 80:20 training:testing data split. The

classification performance without LBP based data augmentation is tabulated in

Table 5.3. It can be observed from Table 5.3 that the experiments performed with

LBP-based data augmentation achieve better classification performance as compared

to the experiments performed without employing data augmentation.

Table 5.2: Classification performance for LBP-based data augmentation.

Data split Performance of Accuracy (%) Sensitivity (%) Specificity (%)
(training:testing) (max-mean-min) (max-mean-min) (max-mean-min)

90 : 10 R channel 98.90 - 94.28 - 92.30 100 - 97.25 - 90.19 97.50 - 90.50 - 82.50
G channel 94.50 - 91.37 - 90.11 100 - 96.27 - 90.19 97.50 - 86.00 - 75.00
B channel 93.40 - 91.42 - 90.11 98.03 - 94.80 - 92.15 92.50 - 87.12 - 82.50

Decision level fusion 96.70 - 93.40 - 92.30 100 - 96.69 - 92.15 97.50 - 88.75 - 85.00

80 : 20 R channel 95.58 - 92.86 - 91.91 100 - 95.68 - 90.79 95.00 - 89.33 - 86.67
G channel 92.65 - 90.69 - 88.97 100 - 94.80 - 89.47 95.00 - 85.67 - 75.00
B channel 92.65 - 89.55 - 88.33 98.68 - 93.22 - 86.84 90.0 - 84.33 - 76.67

Decision level fusion 94.11 - 92.24 - 91.17 100 - 95.26 - 88.15 96.67 - 88.41 - 81.67

70 : 30 R channel 99.10 - 96.00 - 93.33 100 - 97.20 - 92.00 100 - 94.50 - 90.00
G channel 98.95 - 95.00 - 93.33 100 - 98.60 - 92.00 100 - 89.00 - 70.00
B channel 98.60 - 94.33 - 93.33 100 - 96.20 - 92.00 100 - 92.00 - 85.00

Decision level fusion 100 - 96.00 - 93.33 100 - 98.00 - 92.00 100 - 93.50 - 85.00

Table 5.3: Classification performance without LBP based data augmentation for
80:20 training:testing data split.

LBP based Channel Accuracy (%)
data augmentation (max-mean-min)

Yes R 98.90 - 94.28 - 92.30
G 94.50 - 91.37 - 90.11
B 93.40 - 91.42 - 90.11

No R 94.51 - 92.97 - 92.31
G 93.41 - 91.10 - 90.11
B 93.41 - 90.44 - 89.01
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Chapter 5. CNN-based approach

Table 5.4: A comparative summary of the existing methods for automated glaucoma
diagnosis for public database.

Authors Method Classifier/ Performance (%)
CNN architecture

Acharya et al.[92] Non parametric spatial SVM ac: 93.62
envelop energy pattern sn: 87.50

sp: 98.43

Bander et al. [35] Deep CNN SVM ac: 88.20
based feature extraction sn: 90.8

sp: 85

Allan et al. [34] Deep CNN Google-net ac: 86.20
sn: -
sp: -

Maheshwari et al. [80] Empirical wavelet transform LS-SVM ac: 81.32
based correntropy features sn: -

sp: -

Kirar et al. [96] Discrete & empirical LS-SVM ac: 83.57
wavelet transform sn: 86.40

sp: 80.80

Maheshwari et al. [91] Variational mode decomposition SVM ac: 81.62
based entropy and fractal features sn: -

sp: -

Proposed method Local binary pattern Alexnet ac: 98.90
& Deep CNN transfer learning sn: 100

sp: 97.50

*NR = Not reported, ac = accuracy, sn = sensitivity, sp = specificity, AROC = Area
under receiver operating characteristics

Table 5.4 presents a brief description of the existing methodologies developed for

automated glaucoma diagnosis using public database.

The proposed CNN-based approach self-extract the meaningful features from

the data by performing a series of convolutional operations. The variety of filters

are convolved with the input data at different layers of the CNN model. These

many convolution operations extract the features from the input fundus images. As

the image travels down the CNN network, the layers break down the fundus image

into low-level features, which are used for the classification between the normal and

glaucoma class. The features plot of the last layers is shown in Fig. 5.3.

LBP-based data augmentation has been in this work. The LBP is simple and

effective feature descriptor employed for texture-based image classification [36],

[37]. Further, to demonstrate the effectiveness of LBP-based data augmentation,

t-Distributed Stochastic Neighbor Embedding (t-SNE) [97] method is explored to

visualise the non-LBP and LBP features learned by the CNN model. The t-SNE
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5.3. Dataset & experimental results

is a non-linear dimensionality reduction technique which is well-suited for embed-

ding high-dimensional data for visualisation in a low-dimensional space of two or

three dimensions [97]. It preserves the local variances of the data to be visualised.

In simpler terms, t-SNE provides the intuition of how the data is arranged in a

high-dimensional space.

In this method, we have employed t-SNE to visualise the high-dimensional fea-

tures learned by various layers of the pre-trained CNN model from retinal fundus

image dataset. Fig. 5.3 shows the t-SNE visualisation of the features learned by

conv5 layer (left), fc6 layer(middle), and fc7 layer (right). It can be observed from

Fig. 5.3 that as the features pass through subsequent layers, the discrimination

between normal and glaucoma class increases. However, the t-SNE visualisation

clearly indicates that the features extracted from LBP based augmented data are

more discriminatory as compared to features extracted from non-augmented data.

Therefore, it can be observed from the t-SNE plot that the transfer learning of pre-

trained CNN network, i.e., Alexnet and LBP based data augmentation is effective

in glaucoma diagnosis using retinal fundus images. Table 5.5 describes the legends

used in Fig. 5.3.

Table 5.5: Description of legends used in Fig. 5.3.

Legend Feature corresponding to

× Glaucoma data (glc)
o Normal data (nrm)
∆ Local binary pattern (LBP) of glc data (LBP glc)
* LBP of nrm data (LBP nrm)

The experiments have also been performed without employing LBP based data

augmentation to training data. The result of which is tabulated in Table 5.3. It

can be observed from Fig. 5.3 that due to good inter-class discrimination capabil-

ity of LBP images, the classification performance of the CNN model improves by

employing LBP based data augmentation.
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Figure 5.3: The t-SNE plot of: features learned by conv5 layer (left), output of fc6
(middle) and fc7 (right) layers of the modified CNN model.

5.4 Summary

This chapter proposed a CNN based approach for automated glaucoma diagno-

sis. The transfer learning technique has been employed to re-train the pre-trained

CNN model. Transfer learning is employed to overcome the limitation of having

advance and GPU-based capable hardware. To prevent the CNN model from over-

fitting, LBP-based data augmentation technique is employed. The experimental

results suggest that the performance of the proposed approach improves by employ-

ing LBP-based data augmentation. The approach obtains promising classification

performance. Therefore, the proposed approach can help in reducing the burden on

experts and assists them during mass screening.
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Chapter 6
Conclusions and Future Scope

This chapter presents concluding remarks on the main contributions of the thesis

and discusses some directions for future research.

6.1 Conclusions

In Chapter 2, the adaptive non-stationary image analysis technique has been in-

vestigated for glaucoma diagnosis. Specifically, the EWT based approach has been

proposed in this study. The correntropy is extracted as the feature from EWT

components of R, G, B, and Gr channels of fundus image. To validate the clas-

sification performance, three-fold and ten-fold cross-validation is employed. The

experiments have been validated on the dataset of 60 fundus images. The experi-

mental results demonstrated that the features extracted from the G channel obtain

maximum classification performance when compared to other channels. The exper-

iments suggest that the correntropy features extracted from G channel incorporate

the subtle pixel intensity changes that characterise glaucoma change in the fundus

image. The experimental results suggest that the adaptive approach is effective for

glaucoma diagnosis.

In Chapter 3, the iterative approach has been investigated on fundus images

for glaucoma diagnosis. Specifically, the VMD based iterative approach has been

proposed. Only the G channel of the fundus image is considered in this work.

The features extracted from the G channel have been experimentally found to be

effective for glaucoma diagnosis in the approach proposed in chapter 2. Various
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entropies and fractal dimension features have been extracted from the decomposed

VMD components obtained by the iterative process. The proposed approach is

evaluated on the dataset of 488 fundus images. The iterative process repeatedly

decomposes the previous VMD component and narrows the spatial frequency band of

new VMD component. The features extracted from narrow-band VMD components

incorporate the pixel changes due to glaucoma in fundus images. The experimental

results approve the effectiveness of the iterative approach for glaucoma diagnosis.

In Chapter 4, the local bit-level texture descriptor has been developed for au-

tomated glaucoma diagnosis. In this approach, BPS is followed by LBP. The LBP

images are obtained from the bit planes of R, G, and B channels. Further, the

entropies and fractal dimension are extracted as the features from LBP images. In

the proposed approach, the decision level fusion technique is explored to combine

the individual classifier predictions of the features extracted from different chan-

nels. The proposed method is validated on the dataset of 1426 fundus images. The

experimental results suggest that the features extracted from the G channel obtain

better classification performance than the features of other channels. The G channel

features capture the subtle pixel variations that characterise glaucoma. The exper-

iments also support the statement made for the approach proposed in Chapter 2

that the features extracted from G channel deliver promising classification perfor-

mance. Further, the decision level fusion technique combines the feature predictions

of different channels and achieves highest classification performance. Unlike grey-

level texture feature descriptor, the experimental results suggest that local bit-level

texture descriptor has been found useful for glaucoma diagnosis.

In Chapter 5, CNN based approach is investigated for glaucoma diagnosis. Computer-

aided diagnosis methods generally involve feature extraction and the classification

process. The design of such hand-crafted features are time-consuming, require field

expertise, and have limited representation capability. On the other hand, the CNN

integrated automatic feature extraction and classification. In the proposed approach,

Alexnet has been explored as a pre-trained CNN model, which is re-trained via

transfer learning. However, to prevent the model from over-fitting, LBP-based data

augmentation technique has been employed. The approach is evaluated on the pub-

lic dataset of 455 fundus images. Further, the experiments have been repeated 20

96



Chapter 6. Conclusions and Future Scope

times to validate the performance of the approach. The experimental results suggest

that the LBP-based data augmentation improves the classification performance of

the proposed approach. Experimentally, the proposed approach in this study has

been found effective for glaucoma diagnosis.

In summary, various approaches have been investigated for glaucoma diagnosis.

The advanced image analysis techniques and machine learning algorithms have been

explored. The proposed approaches have been validated on various fundus image

datasets. In general, the implementation of computer-aided diagnosis approaches

involves image analysis and the classification process. The image analysis techniques

convert the images into simpler yet meaningful representations which are further

classified. Image analysis typically involves image processing and feature extraction.

In the proposed approaches, the extracted features from the fundus images have been

found to be useful for glaucoma diagnosis as they incorporate the characteristics

changes in fundus image due to glaucoma condition.

6.2 Future scope

This section presents the future directions of this thesis. In this thesis, various

advanced image analysis and machine learning algorithms based approaches are

proposed for glaucoma diagnosis. In future, the research work in this thesis can be

extended as follows:

The approaches proposed in this thesis needs to be tested on a huge dataset. The

experimental evaluation of the proposed approaches on a large and diverse dataset

will provide more reliable performance. In general, for biomedical applications, there

is very less number of publicly available datasets. Moreover, these datasets consist

of less number of fundus images. In future, collaboration with hospitals can be

made to collect a large number of fundus images under the supervision of experts.

To make the dataset more diversified, the fundus image data can be collected from

people of different age groups belonging to various geographical regions.

The proposed approaches aid clinicians during mass-screening. Also, an applica-

tion can be developed for a portable device. This device can be made accessible at

nearest health centres in areas where experts are not available for initial glaucoma
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screening. This device will help to detect glaucoma symptoms in early stages for

people residing in rural areas. Also, the work-load of clinicians will be reduced as

now they have to consider cases only with glaucoma symptoms.

In future, the proposed approaches can be explored for the diagnosis of other

diseases such as diabetes retinopathy, fatty liver disease, thyroid cancer, and ovarian

cancer. Fundus image is employed for the diagnosis of diabetic retinopathy. Simi-

larly, the ultrasound image is employed for the diagnosis of fatty liver, ovarian and

thyroid cancer. As the diagnosis of these diseases involves image analysis methods,

the proposed approaches can be investigated for their diagnosis.
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