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Abstract
The epoch of reionization (EoR) is one of the least known periods in the history of the Universe. The

next-generation telescopes (e.g. the SKA, HERA) will have the capability to directly probe the
distribution of neutral hydrogen from this era through the redshifted 21-cm line. Once such

observations are successful in detecting the 21-cm signal from the EoR, one would then aim to
constrain the astrophysical parameters of the EoR accurately by doing statistical analysis of the

observed data. One way of achieving this is through Bayesian inference of various signal statistics.
To draw inference in a Bayesian framework, one would need to compare the observed signal statistic

with a model statistic while performing random walks in the multi-dimensional astrophysical
parameter space. In case of the EoR 21-cm signal, this implies simulating the signal in a large
cosmological volume with reasonably high precision for each step of the random walker in this
parameter space. The conventional simulations of the EoR (radiative transfer or semi-numerical)

takes a large amount of computer memory (∼ 1 TB in RAM) and a significant amount of computation
time to simulate the signal in a reasonable volume for one such set of parameters (i.e. one step of the
random walker). The requirement of computing time will be proportionately higher when one has to
take of the order of millions of random steps in the parameter space. To circumvent this problem, we
have developed an artificial neural network (ANN) based EoR 21-cm signal statistics (presently for
power spectrum and bispectrum) emulator EmuPBk12, which is orders of magnitude faster than a
semi-numerical simulation. The EmuPBk was trained over 1000 semi-numerically simulated (using
Region-Yuga code) EoR 21-cm power spectra and bispectra. Our tests show that it has a reasonable
capability of predicting the EoR 21-cm power spectra and bispectra. Further, using these emulated
power spectra and bispectra of the signal, our MCMC analysis based Bayesian inference shows that

one will be able to put tighter constraints on the reionization parameters using the bispectra
compared to the power spectra. This is due to the fact that the 21-cm signal from the EoR is highly
non-Gaussian and power spectra do not capture this non-Gaussianity. However, the bispectra is

sensitive to such non-Gaussianities which are dependent on the time evolving topology of the signal.

1https://github.com/himmng/EmuPBk
2https://emupbk.readthedocs.io/en/latest/
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Chapter 1

Introduction

The Universe has supposedly emerged out from the Big-bang and it is con-
tinuously evolving since then. In its very primitive stage, it was in the form
of a plasma (soup of electrons, protons and radiation) which remained so
till the expansion cooled the Universe enough to allow the very first atoms
to be formed by the combination of these electrons and protons (Barkana
and Loeb 2001; S. R. Furlanetto, Peng Oh, and Briggs 2006). It made the
Universe neutral for the first time and also transparent to the radiation. This
radiation can still be observed as the relic Cosmic Microwave Background
Radiation (CMBR). This dissociation between matter and radiation led the
Universe into a dark phase, when there were no sources of light were present.
The observations of CMBR have successfully quantified the imprints of the
very early perturbations in the matter density which further grew during
this dark era and finally led to the bound structures that we see around us
today (Jonathan R Pritchard and Loeb 2012; Choudhury 2003). The Cosmic
Dawn (CD) was the time when these first structures (first stars and galaxies)
emerged out from the gravitationally bound structures in the matter. These
were the first sources of light which produced huge amount of X-rays and
ionizing UV photons, and started heating and ionizing the neutral hydrogen
(H i) at their vicinity and then gradually the whole inter-galactic medium
(IGM) leading to the Epoch of Reionization (EoR). Due to the complex
heating and ionization processes, the astrophysics during this era is more
complicated than the cosmology. Thus understanding these astrophysical
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processes through a parametric model is key to answer many of the unre-
solved questions during this period. Some of the important unanswered
questions from this era are – how did the Universe got heated and ionized
during this era, what were the typical sources that produced X-ray and UV
photons during this period, how long did this period last etc.

Although, we have a good understanding of the phase of the universe
when matter-radiation decoupled (i.e. the time when CMBR was formed),
we do not have much information about the periods afterwards, specifically
the cosmic dawn and the epoch of reionization. A thorough observation
of these phases will help us to better understand the process of structure
formation. However, observing the first sources of lights from this era
is a challenge. As most of the IGM was neutral at this time thus most of
radiation from these sourceswere absorbed on their way before reaching even
us. As an alternative technique, one could try to observe the IGM during
this period, which was mostly hydrogen and helium, through the redshifted
21-cm signal originating due to the spin-flip transition in H i. However,
observing this particular signal from the CD-EoR requires highly sensitive
radio telescopes as the signal is very faint compared to the other radiations
coming from the our own galaxy and extra glactic sources in the same
frequency range. Detection of this signal is thus very difficult because of
the presence of these radio foreground emission, man made radio frequency
interference (RFI), and system noise of radio telescopes. Overcoming these
obstacles require highly sophisticated techniques of foreground removal (Liu
and Tegmark 2011; Murray, Trott, and Jordan 2017) and system noise
suppression. The expected 21-cm signal is 4-5 orders of times weaker than
the foregrounds (Ali, Bharadwaj, and Chengalur 2008; Bonaldi and Brown
2015). The first generation of radio interferometers such as the GMRT
(Paciga et al. 2011), PAPER (Kolopanis et al. 2019), LOFAR (Mertens
et al. 2020), MWA (Barry et al. 2019; Li et al. 2019) will not be able
make images of this era via conventional means of radio astronomy due
to the lack of sensitivity. This is why they are trying to detect this signal
via Fourier statistics e.g. 21-cm Powerspectrum (PS). Till date, only the
weak upper limits on the 21-cm PS (Parsons et al. 2014; A. H. Patil et al.
2017) has been obtained. The future generation telescopes such as the SKA
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(Koopmans et al. 2015), HERA (Pober et al. 2014)) will not only be able
to detect the 21-cm PS but will also be able to make first three dimensional
tomographic images of the 21-cm signal from this era (G. Mellema et al.
2015). Once such a detection is achieved then the next tusk would be to
interpret it and extract vital information about the the EoR from it. To
achieve such interpretations from observations computer simulations of this
era has been developed, where one can tune different parameters to get an
idea about all possible observable statistics. These kinds of simulations have
two categories: radiative transfer and semi-numerical. The radiative transfer
simulations are very accurate in terms of their physics as they follow the path
of each individual photons (e.g. Garrelt Mellema et al. 2006). However,
they have the drawback of being memory intensive and computationally
expensive. These types of simulations are thus limited in terms of exploring a
huge andmultidimensional parameter space such as that of the CD-EoR. The
semi-numerical simulations (e.g. 21cmFast: Mesinger, S. Furlanetto, and
Cen 2010, ReionYuga: Majumdar, Garrelt Mellema, et al. 2014a; Mondal,
Bharadwaj, and Majumdar 2016) on the other hand are approximate in their
treatment of the physics but are fast and computationally cheap, thus can be
used to simulate the signal in large cosmological volumes and to some extent
can be used to explore the parameter space as well. However, they are also
somewhat limited )in their ability (in terms of speed) in exploring are large
and complex parameter space such as the CD-EoR.

Inmany of these simulations and theoreticalmodels, the EoR is described
in terms of three main astrophysical parameters, they are - Z - the ionizing
efficiency of the ionizing sources (stars and galaxies), R< 5 ?- the mean free
path of the ionizing photons and Mh<8=- the minimum mass of the dark-
matter halo which hosts these ionizing sources (Choudhury 2003; Mesinger,
S. Furlanetto, and Cen 2010). So far various approachses have been consid-
ered for predicting these parameters given a successful observation of the
signal, they include - Bayesian inference, Fisher-matrix analysis, Variational
inference etc. (Hassan, Andrianomena, and Doughty 2020; Hortúa, Volpi,
and Malagò 2020; Kern et al. 2017; Greig and Mesinger 2015; Ajinkya H.
Patil et al. 2014; McQuinn et al. 2006). In this thesis our focus is constrain
these parameters (Z , R< 5 ?, Mh<8=) using Bayesian Inference. Bayesian
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Inference provides a unique way to probe the parameter space. It also
gives insight to many other aspects (i.e.: the reliability to underlying model
used for the inference, correlation between different parameters, probabil-
ity density functions (PDF) of the constrained parameters). However, even
semi-numerical simulations have some drawbacks when used in a Bayesian
framework. As one need to simulate a large cosmological volume thus even
a semi-numerical simulation takes a considerable amount of time to simu-
late an observable. On top of that the MCMC random walker needs to take
thousands to millions of steps to make a reasonable posterior distribution
(see Figure 2.1). Therefore, to circumvent this problem, new fast methods
(such as Principal component analysis(PCA), machine learning) can be used
to develop emulation based EoR models trained by these semi-numerical
simulations in a roboust manner. Machine learning techniques more specif-
ically Artificial Neural Networks is one such widely used methods (Claude
J. Schmit and Jonathan R. Pritchard 2017; Chardin et al. 2019; Doussot,
Eames, and Semelin 2019) to emulate such simulated signals.

In their paper, C J Schmit and J R Pritchard 2017 have directly com-
pared the 21cmFast based simulated and ANN emulated 21-cm PS and also
showed that their ANN emulator can be used to constrain the EoR parame-
ters through Bayesian inference. However 21-cm PS has several limitations
of its own. The EoR 21-cm signal is expected to be highly non-Gaussian
(Majumdar, Jonathan R Pritchard, et al. 2018) and being a two point statistic
PS will not be able to describe this non-Gaussian signal completely. Thus
a higher order statistics is essential to describe this non-Gaussian signal.
Here, we use 21-cm Bispectrum (BS), the Fourier equivalent of the three
point correlation function, to characterize the EoR 21-cm signal Majumdar,
Jonathan R Pritchard, et al. 2018. Following the approach of C J Schmit
and J R Pritchard 2017 and extending it beyond the PS, we for the very first
time attempt to develop an Artificial Neural Network (ANN) based 21-cm
BS emulator and use this emulator to build a Bayesian inference pipeline
for estimating the EoR parameters. We have used the ReionYuga simula-
tions (Majumdar, Garrelt Mellema, et al. 2014a; Mondal, Bharadwaj, and
Majumdar 2016) to train our ANNs. We then have tried to constrain the
EoR parameters using both PS and BS on our mock observation data au-
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tonomously, and checked which one among these two statistics put tighter
constraints on the parameters. Further we have converted this entire pipeline
into a single python-pip package called EmuPBk and made it public. This
package can be used further for more complex scenarios (e.g. adding sys-
tem noises(SKA), improving the ANNs by adding more training samples,
training ANNs over different EoR-models etc.) of parameter estimation.

This thesis is organized in the following manner: in the Chapter 2,
we have discuss the basics of 21-cm physics that is relevant for the EoR
21-cm signal and how one can observe the EoR using Radio-Telescopes
and different obstacles for these observing. We have also described briefly
different 21-cm statistics from the EoR, which have a greater possibility of
detection due to their high signal-to-noise ratio. Additionally, we discuss
different EoR simulation techniques and different EoR model parameters.
In Chapter 3, we have discussed the methodology that we have adopted in
developing our statistical inference tools. This includes a short discussiong
on the workings of Bayesian inference, why we have used emulation based
EoR models instead of simulations? The Chapter 4, contains our results
and related discussions. In the last chapter (Chapter 5), we have discussed
further future scopes of this project.
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Chapter 2

21-cm transition in the context of
EoR

The observations of Cosmic Microwave Background Radiation (CMBR)
(Collaboration et al. 2018) confirm that the Universe was hot and dense
plasma of hydrogen and helium during its early stages (I ∼ 1100). These
observations also supports the big-bang model of cosmology, according
to which, the Universe continuously expanded after the big-bang, thus got
cooled later on. After the matter-radiation decopuling they evolved differ-
ently and thus also cooled differently. The electrons and protons and some
neutrons (mostly from hydrogen and helium) recombined to form neutral
hydrogen and helium during this period. This is why this period is known as
the recombination era of the Universe. After this, the Universe went into a
dark age, when there were no sources of photons (other than the CMBR). The
small density perturbations in matter which has their imprints on the CMBR
were of ∼ 10−5 in relative magnitude (S. R. Furlanetto, Peng Oh, and Briggs
2006; Jonathan R Pritchard and Loeb 2012) at this point. However, during
this dark age, these perturbations grew over time and become the seed of the
very first structures of the Universe. These first structures eventually (when
enough baryons collapsed into them) become the hosts for the first luminous
objects (first stars and galaxies). These first sources of lights produced huge
amount of Ultra-Voilet (UV) and X-ray radiations, and started ionzing and
heating the neutral intergalactic medium around them. This lead to a phase
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change in the state of the IGM from neutral to ionized. As the number
of first stars and galaxies grew over time and also subsequent generations
of stars and galaxies were formed, they led to the ionization of the whole
Universe. This process is known as the Epoch of Reionization(Barkana and
Loeb 2001; Loeb 2010).

The observations of line of sight (LoS) opacity of the free electrons
to the CMBR, suggest that the mean neutral fraction ((G��)) of the IGM
changes from completely neutral to ∼ 0.9 around I ≤ 10 (Collaboration
et al. 2018). Also analysis of the data from the high-redshift quasar serveys
(specifically the absence of the Gun-Peterson trough at low redshift quasar
spectra) suggest that most of the IGM became ionized by I ≤ 6 (Fan et al.
2006). As the numbers of luminous sources (stars and galaxies) increased,
the reionization process also got boosted, which can also be inferred from
the the observations of luminosity functions of Lyman-U emitters (Zheng
et al. 2017). All these observations have put a somewhat weak constrain on
the timeline of the EoR (6 ≤ I ≤ 12).

However, these observations described above, most of which are indirect
in nature, are limited in their capabilities to understand the EoR. The direct
observation of EoR is one of themost challanging task, as therewere very few
luminous sources and the high optical depth of the medium prevented most
of the photons produced during that time to reach us. The most promising
way to observe the EoR is thus not the observations of luminous sources but
observations of the radiation coming from the neutral Hydrogen H i from
this era.

2.1 H i Transition Line

The gaseous matter in between the stars (interstellar medium) is a mix
of gas (atoms and molecules), radiation and dust. Hydrogen is the most
abundant amongst them, consisting of almost 75% of total baryonic budget
of the Universe. Most of the hydrogen is in its atomic form. The number
density of hydrogen varies place to place, from diffuse low dense (=60B ∼
106 atoms/m3) to high dense regions (=60B ∼ 1013 atoms/m3). The kinetic
temperature of these H i regions can vary between ) ∼ 80 − 6000 . The
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protons and electrons in the hydrogen atom have spins associated with them,
therefore they possesses magnetic moment. The total magnetic moment of
the atom is the sum of the magnetic moments of both electron and proton.

F = ( + � (2.1)

The magnetic moment is defined as:
For electron:

`4 = 64
`�

ℏ
(

where 64 = -2.00232 and `� is the bohr’s magneton (`1 = 4ℏ
2<4

= 9.274 ×
10−24 J/T).
Similarly for proton:

`? = 6?
`#

ℏ
�

where 6? = +5.586 and `# is the nuclear magneton (`# = 4ℏ
2<?

= 5.051 ×
10−27 J/T)

The direction of magnetic moment of an electron having angular mo-
mentum along Î direction will be along -Î direction, and for proton, it will
be along the same direction. In the triplet state, the magnetic moment of
electron and proton are in the opposite direction, and for the singlet state
they are in the same direction. The magnetic moment of proton is found to
be ∼ 650 times lower than electron’s magnetic moment. The difference in
these energy states arise due to difference in the magnetic interaction energy.
The magnetic interaction energy is defined as:

�?>C = −`4 .�%

Taking proton size to be finite with radius '?.

�? =
`0

2c'3
?

`?

where, '? is the radius of the proton, `0 = 4c × 10−7 )<�−1.

�?>C = −
4
3
'3
%

03
0
`4 · �?
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where, 00 is the bohr radius.

�?>C = −
4
3
`0
2c
646?`4`#

03
0

(
S · I
ℏ2

)

S · I = 1
2
ℏ2 [� (� + 1) − ((( + 1) − � (� + 1)] (2.2)

• For � = 0 in above equation results S · I = -3
4ℏ

2.

• For � = 1 in above equation results S · I = -1
4ℏ

2.

This creates the energy difference which is:

Δ�?>C = |�?>C |�=1 − |�?>C |�=0 =
4
3
`0
2c
646?`4`#

03
0

[
1
4
ℏ2 −

(
−3

4
ℏ2

)]
(2.3)

Figure 2.1: Hydrogen Hyper-fine Transition

Δ�?>C = 9.42762 × 10−25
[
1
4
−

(
−3

4

)]
The frequency correspond to this difference is:

a = Δ�?>C/ℎ ≈ 1420"�I

This hyperfine transition line corresponds to 21-cm wavelength. This tran-
sition occurs when electron spin flips from the triplet state to a singlet state
(Bradt 2008).

2.2 21-cm Brightness Temperature

The excitation temperature corresponding to this hyperfine line is known
as the spin temperature )B. This represents the relative population between
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these two states mentioned above and are defined as (Morales and Wyithe
2010):

=1/=0 = (61/60)4G?(−)∗/)B) (2.4)

Where, subscript 0 & 1 correspond to 1S singlet and 1S triplet level, (61/60)
= 3, )∗ ≡ ℎ2/:_212< = 0.068 K.

The Universe is non-homogeneous and anisotropic on the small length
scales, due to which we might have spatial variations in spin temperature
which conveys information about the astrophysical processes.

We will only be able to detect the 21-cm signal if there is some deviation
of spin temperature form its background temperature. The three processes
that can make the spin flip transition of H i are:

• Absorption/Emission of the 21-cm signal from the radio background
(CMBR).

• Collisions of hydrogen atoms with other hydrogen atoms or electrons,
that can also excite/deexcite hydrogen for 21cm absorption/emission.

• Due to the presence of Ly-U sources, which can cause a spin flip via
intermediate excited state (Wouthuysen-Field effect).

The spin-temperature thus takes the form:

)−1
( =

)−1
W + G2)−1

2 + GU)−1
U

1 + G2 + GU
(2.5)

Where, G2 and GU are the coupling coefficients (due to the atomic collision
and Ly-U photons; see e.g. Jonathan R Pritchard and Loeb 2012; Carilli
2015). The CMBR acts as a background radio source for the intervening
H i clouds, which have a tendency to absorb the CMBR. Thus, the signal
depends upon the radiative-transfer (RT) through gas along the LoS. The
basic RT equation for the transmission of this radiation is governed by the
equation for m�a/ma (ignoring the scattering along LoS):

3�a

3B
= −Ua �a + 9a (2.6)
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Figure 2.2: CMBR in the background for the intervening H icloud

The absorption and emission coefficients are −Ua, 9a respectively. This
lead to the differential brightness temptrature, following (JonathanRPritchard
and Loeb 2012):

X)1 =
)( − )'

1 + I (1 − 4
−ga ) (2.7)

≈ )( − )'
1 + I g (2.8)

X)1 ≈ 27GH i(1+X1)
(
Ω1ℎ

2

0.023

) (
0.15.(1 + I)
Ω<ℎ

2.10

)1/2 (
)( − )'
)(

) [
mAEA

(1 + I)� (I)

]
mK

(2.9)
where GH i is the neutral fraction of hydrogen, X1 is the fractional overdensity
in baryons and the final term arises form the peculiar velocity gradient mAEA
along the LoS (Jonathan R Pritchard and Loeb 2012).

2.3 Statistical Observables of the 21-cm signal form the EoR

2.3.1 Power Spectrum

The brightness temperature of the 21-cm signal can have a spatial vari-
ation at same redshifts, because of the spin temperatue )( changes as local
hydrogen density, presence of the Ly-U sources changes and also due to the
difference in the state of ionization of hydrogen at different points. These
spatial features are dependent on the early structures of the Universe. To
observe these features power spectrum statistics is used, which is the Fourier
transform of the 2-point correlation function, a measure of the amplitude of
the fluctuations in the signal at different spatial scales. Before the ionization,
the 21-cm powerspectrum effectively follows the matter powerspectrum, and
for the latter stages of the reionization it follows the ionisation field power

11



spectrum (see e.g. Jonathan R Pritchard and Loeb 2012). The powerspec-
trum in general for the 21-cm field can be defined as:

X21(G) = (X)1 (G) − X)̄1)/X)̄1 (2.10)

〈X21(:1)X∗21(:2)〉 = (2c)3X� (:1 − :2)%21(:1) (2.11)

where, X� is the dirac-delta and 〈〉 denotes the ensemble average. It is
convenient to use dimensionless powerspectrum for our analysis, which is
expressed as:

Δ2
21(:) =

:3

2c2%21(:) (2.12)

2.3.2 Bispectrum

The powerspectrum in principle can represent all information about the
21-cm signal only if, the fluctuations present in the signal are Gaussian ran-
dom in nature. However, the signal is expected to be highly non-Gaussian
due to the presence of non-random distribution of ionized regions and their
evolution with time and the inherent non-Gaussianity in the initial pertur-
bation form the inflation period. This non-Gaussianity in the signal is also
expected to evolve with the progressing state of reionization, resulting in the
correlation in the signal between different Fourier modes (:), which can not
be probed by the powerspectrum (Mondal, Bharadwaj, and Majumdar 2015;
Majumdar, Jonathan R Pritchard, et al. 2018). Thus one would need to use
some higher order statistics which can extract the non-Gaussian information
from the 21-cm signal. The bispectrum, which is a Fourier transform of the
3-point correlation function, is one such higher order statistics and is defined
as:

〈X21(:1)X21(:2)X21(:3)〉 = (2c)3X� (:1 + :2 + :3)�(:1, :2, :3) (2.13)

(Majumdar, Jonathan R Pritchard, et al. 2018). The bispectrum provides a
scale-dependentmeasure of the non-Gaussianity in the 21-cm signal and thus
contain additional astrophysical information over powerspectrum. The stud-
ies of non-Gaussianity will be most useful for learning about astrophysics in
more detail and for constraining the astrophysical parameters more precisely.
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2.4 Probing EoR using Radio Telescopes

The 21-cm signal from the EoR is redshifted towards the meter-wave band
of the spectrum due to the expansion of the Universe. This signal can be
detected using radio telescopes. However, observation of the 21-cm signal
from the EoR is an extremly challanging due to the presence of different
obstacles, e.g.:

• Galactic Foreground: The galactic emission is orders of magnitude
higher than that of signal from EoR.

• System Noise: System Noises also (e.g.: Radio Telescope noise)
makes it difficult to observe the signal.

• RFI: Most of our daily communications uses radio channels (i.e.:
Television Broadcasts, Mobile network signals). These sources inter-
fere with the 21-cm signal.

From all these sources the 21-cm signal gets contaminated severely. So,
one requires a good modeling of the foreground, system noise, and preferred
locations of the radio telescopes to be away from human population for
a successful detection (Ali, Bharadwaj, and Chengalur 2008; Bonaldi and
Brown 2015).

Using multiple radio-dishes instead of a single dish, is a great alternative
to probe the EoR. The collection of these dishes acts as a signal interferrom-
eter, which is sensitive to the spatial fluctuations in the 21-cm signal across
the sky (Jonathan R Pritchard and Loeb 2012). Typical First generation radio
telescopes e.g. GMRT (Paciga et al. 2011), PAPER (Kolopanis et al. 2019),
LOFAR (Mertens et al. 2020), MWA (Barry et al. 2019; Li et al. 2019),
etc. due to their lack of sensitivity, are unable make images of this signal
but is trying to detect it through Fourier statistics such as the powerspec-
trum. However, next-generation telescopes such as the SKA (Koopmans
et al. 2015), HERA (Pober et al. 2014) will have large collecting area, which
will be able to make 21-cm images of the EoR.
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2.5 EoR model Parameters

The brightness temperature eq. (2.9) depends on cosmology as well as the
astrophysics. For, higher redshifts, before the reionization begins, the neutral
fraction G�� ≈ 1 results in the brightness temperature being proportional
to the matter density fluctuations which probes the cosmology. For later
redshifts, when the reionization starts, the brightness temperature becomes
dependent on both the density fluctuations and neutral fraction. The neutral
fraction fluctuations and evolution is dependent on the astrophysics. In our
simulations the parameters that affect the reionization process are:

2.5.1 Ionizing Efficiency (Z)

The ionizing efficiency of high redshift sources of photons is the combi-
nation of several other degenerate parameters, define as:

Z = ��4 5★ 54B2#8>=

where ��4 is a correction factor for the presence helium, 5★ is star formation
efficiency, 54B2 is the escape fraction and #8>= is number of photons produced
per baryons. More ionizing efficiency will speed up the ionization process.

2.5.2 Mean Free Path of ionizing photons ('< 5 ?)

During the formation of first structures, therewere dense clouds of neutral
hydrogen where the recombination (electron-proton) rate was much higher
than rest of the IGM. These regions effectively absorb all ionizing radiation
which affect the size of ionized bubble regions during reionization. So, the
'< 5 ? is defined as the mean distance travelled by those ionizing photon
before getting absorbed by such regions.

2.5.3 Minimum Halo mass ("ℎ<8=)

The minimum mass of the dark matter halos which host the luminous
sources (stars and galaxies etc) to form and produce the ionizing radiation,
which will ionize their surroundings. Typical star formation happens after
the stability between in-falling gravity and thermal pressure of gas (�2

primarily), gas cools fast and instability happen in the system results the
star formation, which leads to dissociation of �2 gas, and further ionize the
dissociated neutral hydrogen.
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2.6 Simulations of the EoR

The 21-cm signal contains a wealth of information about the cosmology and
astrophysical processes that takes place during the EoR. In order to learn
about the underlying physical processes resulting the re-ionisation, simula-
tions with dynamical ranges spanning orders of magnitude are required. In
principle these simulations should be able to deal with the physics between
Mpc to sub-kpc scales. There exists different approaches of doing these
simulations:

2.6.0.1 Radiative Transfer simulations

Radiative Transfer simulations are physically more accurate as they sim-
ulate the underlying astrophysical processes more accurately by solving ra-
diative transfer equations along the line-of-sight of each individual photons.
This makes them computationally more intensive thus they are very expen-
sive to generate a single realization of ionization and brightness temperature
maps.

2.6.0.2 Semi-numerical Simulations

Semi-numerical simulations are developed by considering some approx-
imations over the radiative transfer methods which mainly involves photon
counting at different smoothing length scales. These approximations makes
them fast and also gives more freedom to make:

• Simulations of large cosmological volumes (∼ Gpc3) that are com-
parable to the survey volumes of future radio interferometers like the
SKA.

• Allows fast exploration of the reionization parameter space.

There are several semi-numerical simulations that are openly available, e.g.
Reion-Yuga (Majumdar, Garrelt Mellema, et al. 2014a; Mondal, Bharadwaj,
and Majumdar 2015), 21cmFast (Mesinger, S. Furlanetto, and Cen 2010),
etc. 21cmFast is one of the fast and most used semi-numerical codes,
however, it doesnot use N-body simulations to generate the matter density
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(thus do not properly simulate the non-linearities in the matter distribution)
and also does not include the effect of redshift-space-distortion properly in
the simulated 21-cm signal. However, Reion-Yuga uses a particle-mesh
N-body simulation to simulate the matter distribution and includes the effect
of redshift space distortion properly. Which makes this code more accurate
than 21cmFast (Majumdar, Garrelt Mellema, et al. 2014a). It has been
observed that redshift space distortions can alter the signal significantly upto
100 − 200% at large length scales (Mao et al. 2012).
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Chapter 3

Methodology

In this chapter, we try to explain the methods that we have adopted for the
development of our statistical inference pipeline. It is apprent from the
discussions in Section 2.6 that there are significant amount of limitations in
use of simulations for Bayesian parameter estimation. The use of simulations
will increase the time for statistical inference by many folds. Both the
radiative transfer and semi-numerical simulations are expensive enough that
they cannot be used to take millions of random steps in a multidimensional
parameter space. One alternative for speeding up the inference process is to
use well trained emulations instead of simulations. The first generations of
radio-telescopes have successfully put the upper-limits in the PS of the signal
and in the upcoming years next-generation telescope (e.g. SKA) comes with
the promise of detecting the 21-cm PS and BS but also making the first
3D-tomographic images from this era. Once this signal is detected one
would require a roboust inference mechanism to constrain the EoR model
parameters from these observations. One such inference mechanism is the
Bayesian inference and we use this to build our statistical inference tool box
for this project. The flowchart in Figure 3 shows the basic building blocks
and working principle of our Bayesian inference pipeline, which we discuss
in details in this chapter.
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Powerspectrum Data

Powerspectrum
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Bispectrum Data
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Paremeter
Estimation using
Powerspectrum

Powerspectrum
Results

Bayesian Inference
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Bispectrum

Bispectrum
Results

Comparison between the constraints on parameters
from power spectrum and bispectrum statistics

Figure 3.1: This flowchart shows the basic building blocks and workings of
our statistical inference pipelines.
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3.1 Bayesian Inference

Bayesian inference works with the fundamental principle of Bayes’ theorem
and Marcov’s Chain Monte Carlo (MCMC) algorithm. This essentially
predicts the posterior probability from a prior, likelihood and the evidence,
which connected through the Bayes theorem as:

%A (\ |�, ") = %A (� |\, ")c(\ |")
%A (� |") (3.1)

where \ is a vector which contains the parameters, � is the observed data
(given), " is model. The different probabilities mentioned above are labeled
as:

• %A (\ |�, ") is called Posterior.

• c(\ |") is called Prior.

• %A (� |\, ") is the Likelihood.

• %A (� |") is our Normalization constant or Evidence.

In our context the eq. 3.1 implies that given a successful detection of
the 21-cm signal and assuming a reionization model to be true, we would
like to know what is the posterior distribution of the model parameters. As
discussed earlier our reionization model depends on three parameters:

" (Z, '< 5 ?, "ℎ<8=)

In scenarios when we do not have any apriori information about the
parameters we assume as flat prior for each of them. This implies while
sampling the parameter space, our random walker will not assume any
predefined distribution around the randomly chosen parameter points. Ad-
ditionally if we assume our model to be true then we can also ignore the
estimation of the evidence as it just acts as an normalization constant. So
our problem then boils down to estimating the likelihood alone. In the stan-
dard MCMCs (MH) algorithms the likelihood is generally assumed to be a
multivariate-Gaussian of the form:

! ≡ � ∗ 4G?(−(" (\8) − �>1)2
�>E

) (3.2)
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Where, \8 = B4C (Z, '< 5 ?, "ℎ<8=) is random step in the parameter space,
�>1 and �>E are the data and covariance-matrix respectively from the
observation. It is more reasonable to use the log of likelihood function for
the convenience of estimation:

log ! ∝ −0.5 × ((" (\8) − �>1))�>E−1(" (\8) − �>1)) (3.3)

The MCMC computes the likelihood of parameters for a given data set and
a given model using Bayes rule. As the posterior is proportional to the
likelihood thus it essentially provides us the constraints on the parameters.
As this exercise provides us the entire posterior distribution, thus one can
go even beyond the simple constraints on the parameters and can even tell
us about if there is any correlation between different parameters. The basic
MCMC mechanism works in the following manner:

• Start over large numbers of iteration.

• for each iteration : generate a random point in parameter space(\8)
(random walk).

• calculate the value of the model function at that point in the parameter
space.

• calculate the likelihood or log-liklihood.

calculation of log-likelihood is preferred in those cases, where we just want
the distribution of the likelihood over the given parameter values.

There are many python based MCMC libraries available e.g. EM-
CEE (Foreman-Mackey et al. 2013), CosmoHammer (Akeret et al. 2013),
PyHMC, PyMC3 etc., which quickly computes the likelihood for a large
numbers of random walkers at simultaneously using parallel computation
for each MCMC chain. For the MCMC sampling in this work, we have
used CosmoHammer which has been used for constraining the cosmological
parameters from the WMAP data by Akeret et al. 2013. CosmoHammer
uses EMCEE under its hood.

CosmoHammer chain has three basic components:
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Figure 3.2: Working of CosmoHammer Image credit: Cosmopic.

• Context: The context is a dictionary for storing information created
during the evaluation of the likelihood. It at least contains the param-
eter values of the current position proposed by the sampler.

• CoreModule: TheCoreModules can be used to calculate information
which is needed for the evaluation of the likelihood. The information
can then stored in the context.

• Likelihood Module: The Likelihood Modules use the information in
the context to calculate the likelihood of the proposed position and
return the log-likelihood to the chain.

The Likelihood Computation Chain =⇒ first stores the proposed parameters
in the context =⇒ then moves on and invokes all available Core Module
before =⇒ then calls the Likelihood Module.
The resulting log-likelihood values are gathered, summed, and returned to
the sampler.
CosmoHammer is parallelized, so one can use several random walkers si-
multaneously for the sampling of the parameter space.
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Figure 3.3: A random walker sampling a 2D parameter space.

As shown in Figure 3.3 the random walker needs to take thousands of
steps to probe the parameter space properly. It calculates the likelihood
at each of those steps, only after which we get a considerable posterior
distribution. To estimate the likelihood at each of these steps one would
need to estimate the specific statistic for a given model. For our problem
we need to simulate the 21-cm signal in a cosmologically relevant volume
and then estimate the specific statistics and compare it with the observed
statistics. Simulation part of this flowchart is the computationally time
consuming and heaviest segment of this process. Previously, Greig and
Mesinger 2015; Greig and Mesinger 2017 had used the 21-cm PS from
semi-numerical simulation 21cmFAST for evaluating the log-likelihood. As
discussed earlier, though it is a faster way to explore the parameter space
but not accurate enough to simulate various physical signatures or estimate
higher order statistics e.g. 21-cm BS with reasonable accuracy at different
length scales.

As an alternative, one can use different emulation techniques e.g. using
Artificial Neural Networks(ANN), Principle component analysis(PCA) etc.,
to emulate the signal rather than simulating it. Agarwal et al. 2014 had
developed PkANN, that emulates the non-linear matter power spectrum
through ANN. Kern et al. 2017 had used Gaussian processes and PCA for
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the emulation of Cosmic Dawn 21-cm power spectrum. C. J. Schmit and
J. R. Pritchard 2018 had used ANN emulated 21-cm PS signal for EoR
parameter estimation. For building their ANN based emulator they have
used semi-numerical simulation 21cmFast.

3.2 Emulating the EoR 21-cm Statistics

Keeping this motivation in mind that emulated models of the EoR can speed
up the time consuming statistical inference, we have tried to developArtificial
Neural Network(ANN) based models of the EoR 21-cm statistics.

Artificial Neural Networks are one of many applications of Machine
learning where the machine learns by itself without being explicitly pro-
grammed. It mimics the working of a human brain. The ANN is a col-
lection of individual artificial neurons, which are nothing but some well
defined mathematical functions. These artificial neurons are simply con-
nected to each other (like the neuron cells in our brain). There exists differ-
ent kinds of ANN architectures e.g.: Artificial Neural Networks(ANN)-
used as both classification and regression solver, Convolutional Neural
Networks(CNN)- generally used on image data, and classification, Recurrent
Neural Networks(RNN)- are used in pattern recognition, language process-
ing etc. These different ANNs were then trained over the data, accordingly.
Here, our approach is the supervised machine learning, where we train the
ANN model before doing any predictions out of it. The basic working of a
single artificial neuron is the following:

• Let us have the data in the form of some (G8, H8). The neuron tries
to fit a functional relation between the data points, using the simple
equation:

I8 = ,8 .G8 + 18

where,8 are the weights and 18 are the biases.

• Then I8 is inserted in some kind of activation function, e.g. Relu,
Sigmoid, Elu , tanh etx.

Ĥ8 = 02C (I8)
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• The difference (loss) between the Ĥ8, H8 is:

XH8 =

√
Ĥ8

2 ∼ H2
8

#
(3.4)

where # are the number of epochs. The forward and back propagation
algorithms (e.g. gradient decent) are then used to minimise the loss
function. The whole idea behind this is to adjust the weights and
biases in such a way, that minimises the loss.

3.2.1 Structure of an ANN

Figure 3.4: Basic multi-layered ANN structure.

Emulating the EoR 21-cm statistics is a kind of a regression problem.
So, before making any predictions the ANN should be well trained, which
requires huge amount of training data, i.e. simulated 21-cm statistics. The
more data we put into the network and the more paramter space is covered,
the better will be the accuracy of the ANN when it predicts.

Our training simulated data-sets come from the EoR simulation Reion-
Yuga (Majumdar, Garrelt Mellema, et al. 2014b; Mondal, Bharadwaj, and
Majumdar 2016). We estimate both the power spectrum and bispectrum
from this simulated training set.
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Figure 3.5: Data-set used for training (upper-triangular region) and testing
(lower-triangular region).

The data-set consists of 1058 points in the parameter space (see Figure
3.5) out of which we have used 1000 samples for training purpose, 40
samples for validation and 18 as our test-set. The simulations data has the
box size of 215 Mpc, at a single redshift z = 9.210. The reason for choosing
this redshift is that the 21-cm signal is expected to have its highest level of
fluctuations around this redshift. We followed a simple Multi-layered ANN
model as our structure of ANN. The basic working of the ANN is as follows:

• ANN uses training data i.e. for given Parameters =⇒ what is
Powerspectrum/Bispectrum ?

• After completion of training, it should be able to predict i.e. given the
parameters =⇒ what will be the Powerspectrum/Bispectrum?

Out of several different Python based open source machine learning libraries
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ANN Output
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ANN Training

prediction

Figure 3.6: The working of a supervised ANN.

available, we have used Tensorflow1 and keras2 to build the ANN models.

1https://www.tensorflow.org/
2https://keras.io/
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Chapter 4

Results and Discussion

In this chapter we discuss our major results. Our results have two segments.
In the first segment, we discuss about the performance of our ANN based
emulator in emulating the power spectrum and bispectrum. In the second
segment we discuss how well our Bayesian inference pipeline works in
constraining the EoR parameters.

4.1 ANN Emulators

4.1.1 21-cm Powerspectrum Emulator

We have used 1000 simulated normalized 21-cm PS over seven :-bins
to train our ANN based PS emulator. So the emulator effectively has ten
parameters (three EoR parameters (dependent) + seven :-bins : free pa-
rameters, Figure 4.1) on which the PS depends. As all PS data-set are on
the same :-bins, it is convenient to order the data for training. Thus the
emulator is designed such that it can predict the 21-cm PS over all of these
seven :-bins when supplied with just three EoR parameter values.

The PS emulator has following structure:

• The input layer consists of 3 neurons according to the 3 given param-
eters with elu as the activation function.

• first hidden layer has 48 neurons.

• second hidden layer has 24 neurons.
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Figure 4.1: Powerspectrum simulation (points) and emulation (line).

• The third hidden layer has 14 neurons.

• The output layer has 7 neurons (correspond to seven desired Power-
spectrum values over seven :-bins), with linear activation function
and 0.0 dropout rate. For all layers, elu activation function has been
used.

• The Adam optimizer is used with the learning rate of 0.001.

• The loss function is Mean Squared Error, with 1000 epochs and 10
batch size.

4.1.1.1 Accuracy and Loss

Figure 4.1 shows the simulated and emulated powerspectrum simultane-
ously. The difference between simulation and emulation is non-differentiable
with eye. As discussed in Section 3.2 and Chapter 3, the back-end working
rule of Artificial Neural Network is to minimise the loss function which
improves accuracy of the predictions. The Figure 4.2 shows the accuracy
and loss of the emulation process. We can clearly see from these plots that,
our model has achieved ∼ 98% accuracy for about 1000 training epochs,
similarly the loss is also significantly low.
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Figure 4.2: Training Accuracy and Loss for the PS emulator.
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Figure 4.3: PS test predictions from ANN for 18 test sets.

Figure 4.3 shows the predictions of PS from our 18 test-sets. It is evident
that predictions are as good as the simulations.

4.1.2 21-cm Bispectrum Emulator

Bispectrum for binned triangle configurations can be defined as:

�̂( ®:1, ®:2, ®:3) =
1
#+

∑
( ®:1+ ®:2+ ®:3=0)∈=

Δ1 (:1)Δ1 (:2)Δ1 (:3) (4.1)

The :-triangle shape for BS estimation is defined via two paramters:

• :2/:1 = =

• 2>B(\) = ®:1. ®:2
:1.:2

We have used 21-cm Bispectrum with the following configurations:

• we have only used two different :1 values (0.3 Mpc−1 and 1.5 Mpc−1).

• :2/:1 ranges from 0.50→ 1.00 with the steps of 0.05.

• 2>B(\) ranges from 0.50→ 0.99 with the step size 0.01.

• for a given value of :1, we have 50 × 11 (free) + 3 EoR parameters
(dependent).
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Figure 4.4: Bispectrum

Figure 4.4 shows the BS at single :1 and for :2/:1-2>B(\) parameter
space. Since all the dependent parameters are fixed, we have only used 3
EoR-parameters and 50 × 11 BS values at a single :1 mode for the training
of the ANN emulator. It is convenient to plot Bispecturm for only the unique
triangles, which follows following conditions:

•

:1 ≥ :2 ≥ :3

•

:2/:1 × 2>B(\) ≥ 0.5

4.1.2.1 Bispectrum for :1 = 0.3 Mpc−1

The bispectrum ANN emulator has the following structure:

• The input layer consists of 3 neurons as we use 3 parameters.
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Figure 4.5: Training Accuracy and Loss for bispectrumwith :1 = 0.3 Mpc−1

• We have total 6 hidden layers on which first, second, third, fourth,
fifth, sixth hidden layers have 80, 320, 460, 560, 260, 100 neurons.

• The output layer has 550 neurons (corresponding to 550 desired bis-
pectrum values), with linear activation function and 0.0 dropout rate.

• The Adam optimizer is used with the learning rate of 0.0001, and
Mean Squared Error as the loss function, with 1200 epochs and 10
batch size. For all layers except output layer, elu activation function
has been used.

4.1.2.2 Accuracy, Loss and Predictions for Bispectrum with :1 =

0.3 Mpc−1

For both the training set and the validation set, accuracy certainly reached
around 98% for about 1200 training epochs, and the loss also reached close
to zero.

4.1.2.3 Bispectrum for :1 = 1.5 Mpc−1

The base structure for the bispectrumwith :1 values 0.3 Mpc−1and 1.5 Mpc−1

are the same. For both the training sets and the validation sets, accuracy
certainly reached around 98% for less than 1000 training epochs, and the
loss also reached close to zero. ANN predictions of bispectrum, shows a
great resemblance with the simulated bispectrum.
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Figure 4.6: Test predictions using ANN emulator for bispectrum with :1 =

0.3 Mpc−1
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Figure 4.7: Training Accuracy and Loss in the bispectrum emulation for
:1 = 1.5 Mpc−1

4.1.2.4 Accuracy, Loss and Predictions for Bispectrum with :1 =

1.5 Mpc−1

4.2 Parameter Estimation

4.2.1 Impact of EoR parameters on 21-cm statistics

The global ionization state of the IGM is dependent on the EoR param-
eters. Among the parameters under consideration, Z implies efficiency of
the ionizing sources. '< 5 ? implies the maximum distance travelled by these
ionizing photons, before getting absorbed by the IGM. This also in a way
tells about the size of the ionized regions. "ℎ<8= implies the minimummass
of the halo that hosts the ionizing sources. The typical size of the ionized
regions directly depends on the halo mass as the photon production rate is
also proportional to the halo mass.

We choose the test sets of parameters in such a way that it covers a
significant amount of the parameter space. Table 4.2 shows the test sets of
parameters that we have chosen to test our Bayesian inference pipeline. From
this table we choose few extreme sets of parameters and discuss their imapct
on one of the 21-cm statistic, the powerspectrum. The same can be done
for the bispectrum, however, we limit our discussion here to powerspectrum
alone.

We start our discussion with Case-8. Figure 4.9 shows the power spec-
trum for this set of parameter values (Z = 30, '< 5 ? = 10., "ℎ<8= = 10). The
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Figure 4.8: Test predictions using ANN emulator for bispectrum with :1 =

1.5 Mpc−1
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True Values Z '< 5 ? ("?2) "ℎ<8= (108"�)

Case-1 20. 20. 500.
Case-2 18. 45. 100.
Case-3 130. 30. 100.
Case-4 140. 30. 100.
Case-5 170. 30. 800.
Case-6 45. 60. 700.
Case-7 40. 30. 500.
Case-8 30. 10. 10.
Case-9 23.21 20. 1000.
Case-10 200. 30. 800.
Case-11 130. 45. 200.
Case-13 100. 10. 100.
Case-14 55. 10. 100.
Case-15 50. 60. 800.

Table 4.1: This shows the 15 test sets of parameters for which we have tested
our Bayesian inference pipeline.

Figure 4.9: Powerspectrum for Case-8.
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Figure 4.10: Powerspectrum for Case-9

"ℎ<8= implies that the smallest halo mass is of the order of 10 × 109"�,
which is on the lower-end of halo mass function. This means that almost
the entire population of halo at any given time contributes to the EoR. As
the low mass halos are more numerous than the high mass halos, one would
expect to have alarge number of small ionized regions along with few large
ionized regions by this redshift (given that Z = 30 and '< 5 ? = 10 Mpc also
has somewhat fiducial values). Thus the signature of this set of parameters
will be a significant amplitude in the powerspectrum at large : bins, whereas
a relatively small amplitude in the powerspectrum at small : modes.

Next we take up Case-9. Figure 4.10 shows the powerspectrum for
Case-9 which has Z = 23.21, '< 5 ? = 20 Mpc, "ℎ<8= = 1000. This set of
parameters lead to an end of reionization by I ∼ 6. This also provides us a
Thompson-scattering optical depth of CMBR photons that is in agreement
with the estimates from the PLANCK data. Here we have "ℎ<8= = 1000 ×
109"�, which implies only the high mass end of the halo mass function is
contributing as ionizing sources. As they are less numerous, they lead to
a less number of ionized regions by this time. However, as they are more
massive the number of ionizing photons produced by them is quite high,
which leads to larger ionized regions. This increases the fluctuations in the
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large length scales compared to Case-8, which implies more power at small
: modes.

We find that in general, Z and"ℎ<8= can significantly alter the ionization
state of IGM. However, the sensitivity of '< 5 ? can be seen only in a very
small region of the parameter space. If we choose high Z and low-moderate
"ℎ<8=, which will lead to large number of small mass halos with high
ionizing efficiency, in this region of the parameter space the ionization state
of the IGM will be sensitive to '< 5 ?.

4.2.2 Bayesian inference: parameter estimation using individual
statistics

Figure 4.11: Parameter estimation using individual statistics : P(:) (grey),
B(:1=0.3) (yellow), B(:1=1.5) (blue) for Case-1 (Z = 20, '< 5 ? = 20 Mpc,
"ℎ<8= = 500).
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Figure 4.12: Parameter estimation using individual statistics : P(:) (grey),
B(:1 = 0.3) (yellow), B(:1 = 1.5) (blue) for Case-2 (Z = 18, '< 5 ? = 45
Mpc, "ℎ<8= = 100).

Figure 4.11 and 4.12 show the estimated posterior distributions for the
three parameters from our Bayesian inference pipeline for three individual
statistics (powerspectrum and bispectra for :1 = 0.3 and 1.5 Mpc−1) for
the test Case-1 and 2 respectively. These plots gives us a clear idea about
which parameter is sensitive to which statistics. The intersecting points of
the dashed show the true values of the parameters. It is clear from these
plots that the posterior is not a simple multidimensional Gaussian in any
of the cases. The powerspectrum puts a rather weaker constraints on the
parameters in both cases compared to the bispectra. Among the bispectra
fro two :1 modes considered here, �(:1 = 0.3) puts a tighter constrain on
the parameters compared to �(:1 = 1.5). However, they have significantly
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different shapes in their posterior, which implies they probe different non-
Gaussian characteristics. We also find that powerspectrum is not sensitive
to the '< 5 ? in this regime, whereas �(:1 = 1.5) manages to put somewhat
weaker constraints on the '< 5 ? in Case 1 and 2.

4.2.3 Joint Posterior Plots

Though Figure 4.11 and 4.12 provides us some insight about how dif-
ferent statistics constrain different parameters (through the shape of their
individual posteriors), still own would gain more insight when all of these
posteriors from different statistics would be plotted together. In its true sense
just this kind of joint posterior plots cannot be treated as joint parameter es-
timation. However, they provide us some sort of pictorial insight to what a
joint parameter estimation would lead to. We next show the joint posterior
plots for all test cases in Figures 4.13-4.26.

We next divide our test cases based on to what extent the parameters have
been constrained for them. First we focus on Cases 1, 6, and 7 (Figures 4.13
, 4.18, 4.19 respectively). In all of these cases the parameters Z and "ℎ<8=
are both well constrained by all the statistics and their mean/median are very
close to the true values of the parameters. The other important point to note
is that the error elipse for the powerspectrum is differently alligned compared
to the error ellipses of the bispectra. Additionally, the powerspectra has a
larger uncertainty for its estimated parameters compared to the bispectra. We
also observe that the bispectrum for larger :1 = 1.5 Mpc−1 has put somewhat
weaker constraint even around '< 5 ? parameter.

For the test Cases 3, 4, 13 (Figures 4.15 , 4.16, 4.26), we find some of
the best obtained constraints on the parameters Z and "ℎ<8=. Interestingly,
here the error ellipses for all statistics are alligned with each other. The
marginalized posterior for Z and "ℎ<8= also appears to be well behaved
Gaussian. On top of these the bispectrum for :1 = 0.3 Mpc−1 provides a
somewhat weak constrain on '< 5 ?.

In Cases 5 and 10 (Figures 4.17 and 4.22) we find that all statistics
provide a good constrain on Z and "ℎ<8=. In these two cases both bispectra
are able to set weaker constrains on the '< 5 ? as well.

40



The Case 8 (Figure 4.20), is an example of MCMC sampling being
restricted by the boundary of the parameter space. Due to our simulation
resolution limits we were unable to go below a certain value of "ℎ<8=. This
has defined our lower limit of "ℎ<8= range for the emulator as well. This
has lead to a trimmed posterior.

For all other test cases to a significant degree the parameters Z and"ℎ<8=
reasonably constrained.

Figure 4.13: Joint Plot-1, true values (20, 20, 500)
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Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 16.3+2.9−4.3 - 525 ± 23

�(:1 = 0.3"?2−1) 20.55+0.71
−0.84 - 507+11

−15
�(:1 = 1.5"?2−1) 19.73+1.03

−0.92 20+31
−12 506+18

−16

Table 4.2: Case-1

Figure 4.14: Joint Plot-2, true values (18, 45, 100)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 17.0+1.3−1.8 - 100.9+3.8−2.8

�(:1 = 0.3"?2−1) 18.33+0.55
−0.57 - 101.4+4.0−4.1

�(:1 = 1.5"?2−1) 18.38+1.01
−0.99 18.3+26.5

−5.6 103.4+8.0−6.8

Table 4.3: Case-2
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Figure 4.15: Joint Plot-3, true values (130, 30, 100)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 129.5+1.9−2.0 - 100.5+2.1−2.0

�(:1 = 0.3"?2−1) 129.9+2.7−2.3 32.0+33.2
−6.3 99.7+2.9−2.6

�(:1 = 1.5"?2−1) 130.6 ± 4.7 - 100.2+5.1−4.9

Table 4.4: Case-3
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Figure 4.16: Joint Plot-4, true values (140, 30, 100)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 139.9+2.4−2.2 - 101.1+1.9−2.2

�(:1 = 0.3"?2−1) 139.7+2.6−2.3 - 99.4+2.6−2.3
�(:1 = 1.5"?2−1) 142.6+5.4−6.2 - 101.5+5.4−5.7

Table 4.5: Case-4
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Figure 4.17: Joint Plot-5, true values (170, 30, 800)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 168.9+7.1−6.4 - 815+27

−28
�(:1 = 0.3"?2−1) 170.8+1.4−1.6 56+11

−21 806.4+2.8−3.0
�(:1 = 1.5"?2−1) 168.9+2.9−2.8 5+42

−0 803.7+8.4−7.9

Table 4.6: Case-5
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Figure 4.18: Joint Plot-6, true values (45, 60, 700)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 48.2+6.6−7.0 - 720+45

−37
�(:1 = 0.3"?2−1) 46.05+0.84

−0.81 - 708.4+7.8−7.4
�(:1 = 1.5"?2−1) 43.7+2.2−1.9 12.6+38.3

−7.3 697+17
−16

Table 4.7: Case-6
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Figure 4.19: Joint Plot-7, true values (40, 30, 500)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 39.9+2.7−2.5 - 507+30

−28
�(:1 = 0.3"?2−1) 41.86+0.67

−0.96 - 521.5+2.5−6.1
�(:1 = 1.5"?2−1) 39.5+2.1−1.9 5+30

−0 500+38
−20

Table 4.8: Case-7
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Figure 4.20: Joint Plot-8, true values (30, 10, 10)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 17.0+1.3−1.8 - 100.9+3.8−2.8

�(:1 = 0.3"?2−1) 18.33+0.55
−0.57 - 101.4+4.0−4.1

�(:1 = 1.5"?2−1) 18.38+1.01
−0.99 18.3+26.5

−5.6 103.4+8.0−6.8

Table 4.9: Case-8
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Figure 4.21: Joint Plot-9, true values (23.21, 20, 1000)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 31+10

−17 - 1073+68
−78

�(:1 = 0.3"?2−1) 27.47+0.99
−1.08 - 1051+18

−22
�(:1 = 1.5"?2−1) 24.3+1.9−1.7 - 1054+52

−66

Table 4.10: Case-9
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Figure 4.22: Joint Plot-10, true values (20, 30, 800)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 195.0+5.7−6.3 - 822 ± 27

�(:1 = 0.3"?2−1) 203.2+1.4−1.8 55.0+6.6−7.1 805.8+2.5−3.5
�(:1 = 1.5"?2−1) 197.9+2.8−2.2 5+27

−0 797.4+8.2−6.9

Table 4.11: Case-10
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Figure 4.23: Joint Plot-11, true values (130, 45, 200)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 129.6+2.0−1.9 32+37

−26 203.3+4.1−4.3
�(:1 = 0.3"?2−1) 127.1+1.2−1.1 72.4+2.2−2.1 198.4+2.5−2.0
�(:1 = 1.5"?2−1) 126.8+1.4−1.5 - 194.4+2.6−3.1

Table 4.12: Case-11

51



Figure 4.24: Joint Plot-12, true values (100, 10, 100)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 99.2+1.9−1.7 - 102.1+4.4−3.0

�(:1 = 0.3"?2−1) 92.48+1.25
−0.90 45.7+4.3−3.4 96.1+1.8−1.2

�(:1 = 1.5"?2−1) 99.2+3.1−2.1 9.8+2.5−2.4 101.4+4.9−4.5

Table 4.13: Case-12
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Figure 4.25: Joint Plot-13, true values (55, 10, 100)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 54.49+0.77

−0.69 19+28
−14 100.0+3.1−3.0

�(:1 = 0.3"?2−1) 50.57+0.61
−0.57 32.6+3.3−4.0 90.0+1.5−1.8

�(:1 = 1.5"?2−1) - 32.1+5.4−19.8 -

Table 4.14: Case-13
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Figure 4.26: Joint Plot-14, true values (50, 60, 800)

Statistics Z '< 5 ? ("?2) "ℎ<8= (108"�)
%(:) 58.3+6.3−7.0 - 824+48

−43
�(:1 = 0.3"?2−1) 49.13+0.90

−0.92 37+33
−26 792.8+5.4−6.6

�(:1 = 1.5"?2−1) 46.7 ± 1.5 5+44
−0 776 ± 13

Table 4.15: Case-14

4.3 Summary

The outcome this thesis can be summarized in terms of the following few
points:

• In this thesis, for the first time, we have successfully demonstrated that
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it is possible to build a ANN based emulator for the 21-cm bispectrum
from the EoR.

• We have tested our 21-cm bispectrum emulator for a wide range of
parameter values and found its outcome to be quite robust so that
it can be safely used in the Bayesian inference exercise for the EoR
parameter estimation.

• Through our comparative Bayesian parameter estimation exercise we
have shown that the bispectrum provides a much tighter constraints
than the powerspectrum for the EoR parameters Z and "ℎ<8=.

• Wehave further shown that the parameter '< 5 ?, which is quite insensi-
tive to the powerspectrum based parameter estimation and earlier have
been reported to be a dependent parameter (Binnie and J R Pritchard
2019), can be constrained weakly by the bispectrum in some regions
of the parameter space.

• Through overlapping posterior plots obtained from different statistics
we have shown that one can put a much tighter constraints on the
EoR parameters if simultaneouly independent signal statistics such as
powerspectrum and bispectrum are used.

• The efficiency of bispectrum in putting tighter constraints on the EoR
parameters can be ascribed to the fact that being a higher order statistic
bispectrum contains more information than the powerspectrum.
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Chapter 5

Future Scopes

In this project we have considered a simpler three parameter model of the
EoR to build our ANN based signal emulator and the Bayesian inference
pipeline. We have shown that it is possible to emulate the 21-cm EoR
bispectrum reliably enough that it can be used in the Bayesian inference
exercise. This project is a stepping stone in the direction of developing
statistical inference tools in the relm of BIG DATA driven astronomy with
next-generation telescopes. There are many directions in which this project
can be progressed further. We note down a few of them below:

• Our entire analysis uses sample variance in the place of the error co-
variance matrix for the Bayesian inference. In a realistic scenario, the
error covariance matrix will contain noise uncertainty in the measure-
ment of the target statistics along with its sample variance. We are
presently working on to take into account the system noise contribu-
tion to the error covariance matrix for an experiment like the SKA-low
using the formalism of (Shaw, Bharadwaj, and Mondal 2019).

• Here we have considered an idealistic scenario where there is no
foreground in the data. In case of imperfect foreground subtraction, the
residual foreground in the data will impact the parameter estimation.
We plan to explore the impact this realistic scenario in our follow up
work.

• The training data set that we have used to train our emulator is sampled
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from an almost uniform grid from the parameter space. This is not the
ideal way to building a training set for an emulator. We plan to use the
latin-hypercube sampling of the parameter space for building up our
training set (Claude J. Schmit and Jonathan R. Pritchard 2017). This
is expected to make the training of the ANN far more robust.

• We have considered our EoR 21-cm signal to come from a single
redshift. In a realistic observation the signal will come from a range
of redshifts. This will make the constraints on the parameters much
tighter.

• One can extend this work further to emulate the signal from theCosmic
Dawn where the number of parameter involved in the model is more
than the EoR.

• Here for the Bayesian parameter estimation we have used only one
model of the reionization. However, in a realistic scenario one should
consider all possible models of the EoR. One can then first perform a
Bayesian model selection exercise, followed by a parameter estimation
for the preferred model.

• Herewe have done independent parameter estimation using each of the
21-cm statistics. However, this parameter estimation would have been
even more robust if it was done jointly using all available statistics
together.
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