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ABSTRACT 

 

In the modern era, the extensively growing global energy demand is 

leading to the rapid decay of fossil fuels and non-renewable energy 

reserves. Therefore, we need an alternative for the same. Herein, we have 

synthesized 2-((phenylimino) methyl)phenol (L1), 2-

((phenylamino)methyl) phenol (L2), 2-((p-tolylimino)methyl)phenol (L3) 

and 2-((p-tolylamino)methyl)phenol (L4), 2-(((2,6-dimethylphenyl) 

imino)methyl)phenol (L5) and 2-(((2,6-

dimethylphenyl)amino)methyl)phenol (L6), 2-((mesitylimino)methyl) 

phenol (L7) and 2-((mesitylamino)methyl)phenol (L8) by seeking help 

from the literature. After successful synthesis of these ligands, 

corresponding arene ruthenium complexes were prepared by using [(ղ6-

arene)RuCl2]2 (arene = C10H14) as an initial source of Ru. All final 

products were characterized by NMR and mass spectrometry. The 

catalytic activity of these arene-ruthenium complexes was checked for 

dehydrogenation of formaldehyde and formic acid at 95 ◦C. Using water 

displacement system, the volume of gas evolved was measured and 

TON/TOF calculated per ruthenium atom. 
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Chapter 1    Introduction 

1.1. General Introduction: 

In recent times, the booming population of the world have extensive 

energy demands [1]. In the former age, different sustainable 

(geothermal, wind solar and hydro energy, etc.) and non-sustainable   

(mainly fossil fuels) sources of energy were utilized to achieve this 

tremendous energy request. Massive use of fossil fuel to fulfil the energy 

demands of humankind led to a gradual diminish in the earth’s fossil 

fuels reserves and also led to the explosive increase in the release of 

greenhouse gases leading to global warming [2]. So there is a need of 

an alternative for the fulfilment of global energy demands. Hydrogen is 

one of the most efficient substitute of fossil fuel for energy reserve [3, 

4]. Because of its high enthalpy of combustion i.e. -286 kJ/mol, 

hydrogen can furnish considerable energy without any release of 

harmful gases [4]. In fuel cells, it can be converted to energy with water 

as the only by-product. Hence, can be used as a clean and dry alternative 

for the same [5, 6]. 

Due to the lack of sufficient molecular hydrogen in the earth’s 

atmosphere, there is a need for an artificial production of molecular 

hydrogen by various methods. Previously, production of hydrogen was 

done by using water-gas shift reaction and steam forming of methane at 

a high temperature (>200 ◦C) [7]. Although it’s an enormous source of 

energy, due to its explosive nature, storage and transportation of 

hydrogen is not quite easy [8-11]. Several researchers have been 

working extensively to develop the novel materials like metal-organic-

frame works, amine borates, carbon nanotubes, metal hydrides, doped 

polymers and phosphonium borates for storage and production of 

hydrogen [12-14]. 

In this context, liquid organic compounds like HCHO [15-20], HCOOH 

[21-26], CH3OH [27], etc also play a major role as a hydrogen carrier, 

they store hydrogen in indirect form and release hydrogen at the place 

of need [28]. Formaldehyde having higher hydrogen weight efficiency 

8.4 wt% than formic acid 4.4 wt% [28,29]. Formic acid having low 
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hydrogen weight efficiency but is a prominent non-toxic, biodegradable 

and environment-friendly organic liquid compound with easy 

transportation and storage [13]. In our work, we are focusing on 

catalytic dehydrogenation of both HCOOH and HCHO. Different noble 

metal complexes catalyze various dehydrogenation reactions of formic 

acid [23] and formaldehyde [30]. For dehydrogenation, the formation 

of metal hydride species is the key step [28]. Moreover, different types 

of ligand attached to the metal centre in a complex also tunes the activity 

of the complex [29]. Along with this, the presence of N-H moiety also 

enhance the activity of a catalyst, as it forms hydrogen bonding 

interaction with solvent or the hydrogen carrying LOC’s i.e. HCOOH 

[31-37]. In the presence of catalyst formic acid decomposes to give H2 

and CO2, whereas formaldehyde release CO2 and two equivalent of H2.  

  Dehydrogenation of formic acid was first discovered by 

Coffey in 1967, using Ir-phosphine complex [38]. In dehydrogenation 

of formic acid, complexes of ruthenium [39,1,40], iridium [38,41], 

palladium [42], platinum [43,44], and rhodium [45,46] transition 

metals have been found sufficiently active. The catalytic activity of 

these metal complexes has been widely investigated with fruitful results 

in the presence of base or additives in an aqueous system [23]. For 

instance, Pidko et. al. has reported TON of 706500 and TOF of 257000 

h-1 at 90 °C using a PNP-pincer Ru-complex (PNP- 2,6-bis(di-tert-butyl-

phosphino methyl)pyridine) in presence of amine [47]. Moreover, 

Himeda et. al. reported a high TON value of 14000 h-1 using [Cp*Ir(4,4-

DHBP)(H2O)]SO4 as a catalyst [7]. In 2012, Hull et. al. reported TOF 

of 12000 h-1 at 60 °C for an aqueous formic acid system using Ir-

bipyrimidine dimer catalyst without any base or additive, TOF can be 

enhanced up to 31600 h-1 using sodium formate as the base [48]. In 

2014, Himeda et. al. reported TOF of 34000 h-1 at 80 °C using Ir-

biimidazole complex without any base or additive [49].  Himeda et. al. 

has reported their improved results in 2015 after using 

[Cp*Ir(pyrimidylimidazoline)H2O]SO4 as a catalyst in an aqueous 

solution of HCOOH/HCOONa with a high TON value of 322000 h-1 

[50]. Joo et. al. reported a TON of 298000 h-1 using an iridium-hydride 
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complex in formic acid dehydrogenation at 100 °C [51]. In 2018, Patra 

et.al. Reported initial TOF of 940 h-1 using complex [(ƞ6-C6H6)Ru(κ2-

NpyNHMe-MAmQ)Cl]+ (MAmQ = 8-(Nmethylamino)quinoline and 

AmQ = 8-aminoquinoline) at 90 °C for formic acid dehydrogenation in 

presence of sodium formate [52].  

Along with formic acid dehydrogenation, different transition metal 

complexes have proven sufficiently active for dehydrogenation of 

formaldehyde/paraformaldehyde [30]. In the case of formaldehyde, 

firstly formaldehyde/paraformaldehyde catalysed to formic acid and 

then decompose to give H2 and CO2. Here, formaldehyde serves as a 

hydride donor and water serves as a proton donor [15]. As 

dehydrogenation of formaldehyde (HCHO + H2O → 2H2 + CO2) is 

thermodynamically favoured reaction but needs a driving force to make 

it kinetically favourable [19]. Formaldehyde dehydrogenation is a two-

step process shown in scheme 1.  

 

Scheme 1: Catalytic dehydrogenation of formaldehyde. 

 

The first homogeneous catalytic system for dehydrogenation of aqueous 

formaldehyde reported by Prechtl et al. with a TON of 700 and initial 

TOF of 3142 h-1 at 95 °C [15,16]. Suenobu et.al. also reported a TON 

of 51 and an average TOF of 3.6 h-1 at 60 °C for H2O/HCHO system 

under basic (NaOH) conditions [17]. Fujita et al. reported a TON of 178 

under basic conditions by using [IrIII(Cp*)(6,6′-dionato-2,2′-

bipyridine)-(OH)] as a catalyst [18]. Grutzmacher et.al. reported TON 

of 1787 and initial TOF greater than 20000 h-1 at 60 °C for H2O/HCHO 

system under basic (KOH) conditions [19].The literature data given 

above shows that there are so many findings by researchers, for effective 

dehydrogenation of formic acid as well as for formaldehyde/ 

paraformaldehyde. Various noble metal catalysts show high activity for 

the same. In concern with the conditions of the dehydrogenation, there 
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is a need for cost-effective catalyst that is active even at lower 

temperature-pressure.  

 

1.3. Aim and Strategy of work:   

Our work aims to synthesize an active Ru-arene catalyst for 

dehydrogenation reactions of formic acid and formaldehyde/ 

paraformaldehyde. 

 

The strategy of our work is to synthesize different arene ligands using 

salicylaldehyde with aniline and its derivatives (scheme 2) followed by 

the complexation of these arene ligands with ruthenium using [(ղ6-

arene)RuCl2]2 (arene = C10H14) (scheme 3).  

 

 

Scheme 2: Procedure for synthesis of different arene ligands. 

 

 

Scheme 3: Procedure for synthesis of Ru-arene complexes. 

 

Using these Ru-arene complexes, catalytic dehydrogenation of formic 

acid and formaldehyde was performed at 95 ◦C and volume of evolved 

gas was measured by using water displacement method. 
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Chapter 2  Experimental Section 

2.1. Materials and Instruments: 

All other salts and chemicals were purchased from Merck, Alfa Aesar 

& Sigma-Aldrich and used without any further purification.  

1H NMR spectra were recorded on Bruker AVANCE 400 spectrometer 

using tetramethylsilane (TMS) as a reference at ambient temperature. 

Chemical shifts were reported in ppm relative to the centre of the singlet 

at 7.26 ppm for CDCl3 in 1H. Mass spectrometric analyses were done on 

Bruker-Daltonics, microTOF-Q II mass spectrometer.  

2.2. Synthesis of Ligands: 

2.2.1. Synthesis of L1 and L2:  

L1 was synthesized by using salicylaldehyde (10 mmol, 1.066 mL) and 

aniline (10 mmol, 0.914 mL) in 30 mL methanol, refluxed for 2 hours. 

After reflux, solvent dried using rotatory vapour. We got the orange-

yellow viscous liquid product (yield: 9.6 mmol, 1.720 mL, 96%). 

Product was characterized by mass and NMR. 1H NMR (400 MHz, 

CDCl3): δ (ppm) = 8.63 (s, 1H), 7.41 (m, 4H), 7.30 (m, 3H), 7.03 (d, 1H, 

J=8 Hz), 6.95 (t, 1H, J=8 Hz). LCMS (ESI): calculated m/z = 198.0913, 

observed m/z = 198.0916. Ligand (L1) (4 mmol, 0.784 g) was taken in 

100 mL round bottom flask along with 20 mL methanol. Sodium 

borohydride (6 mmol, 0.227 g) was added to the solution and 

continuously stirred for 4 hours using an ice bath. After the reaction 

resulting solution dried and workup was done with water and DCM. 

Finally, the solvent was dried using rotatory vapour and we got the white 

solid product (yield: 3.5 mmol, 0.697 g, 87.5%). The final product (L2) 

was characterized by mass and NMR. 1H NMR (400 MHz, CDCl3): δ 

(ppm) = 7.20 (m, 3H), 7.13 (d, 1H, J=4 Hz), 6.92 (m, 2H), 6.84 (m, 3H), 

4.41 (s, 2H). LCMS (ESI): calculated m/z = 200.1070, observed m/z = 

200.1112. 
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2.2.2. Synthesis of L3 and L4:  

L3 was synthesized by using salicylaldehyde (10 mmol, 1.066 mL) and 

4-methylaniline (10 mmol, 1.102 mL) in 30 mL methanol, refluxed for 

2 hours. After reflux, solvent dried using rotatory vapour. We got the 

orange-yellow viscous liquid product (yield: 8.96 mmol, 1.890 mL, 

89%). Product was characterized by mass and NMR. 1H NMR (400 

MHz, CDCl3): δ (ppm) = 8.63 (s, 1H), 7.38 (d, 1H, J=8 Hz), 7.35 (d, 

1H, J=8 Hz), 7.19 (m, 4H), 7.02 (d, 1H, J=8 Hz), 6.94 (t, 1H, J=8 Hz), 

2.39 (s, 3H). LCMS (ESI): calculated m/z = 212.1070, observed m/z = 

212.1072. Ligand (L3) (4 mmol, 0.844 g) was taken in 100 mL round 

bottom flask along with 20 mL methanol. Sodium borohydride (6 mmol, 

0.227 g) was added to the solution and continuously stirred for 4 hours 

using an ice bath. After the reaction resulting solution dried and workup 

was done with water and DCM. Finally, the solvent was dried using 

rotatory vapour and we got the white solid product (yield: 3.7 mmol, 

0.788 g, 92.5%). The final product (L4) was characterized by mass and 

NMR. 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.21 (t, 1H, J=8 Hz), 

7.11 (d, 1H, J=8 Hz), 7.04 (d, 2H, J=8 Hz), 6.91 (d, 1H, J=8 Hz), 6.85 

(t, 1H, J=8 Hz), 6.79 (d, 2H, J=8 Hz), 4.39 (s, 2H), 2.28 (s, 3H). LCMS 

(ESI): calculated m/z = 214.1226, observed m/z = 214.1385. 

2.2.3. Synthesis of L5 and L6:  

L5 was synthesized by using salicylaldehyde (10 mmol, 1.066 mL) and 

2,6-dimethylaniline (10 mmol, 1.236 mL) in 30 mL methanol, refluxed 

for 2 hours. After reflux, solvent dried using rotatory vapour. We got the 

orange-yellow viscous liquid product (yield: 8.9 mmol, 1.944 mL, 89%). 

Product was characterized by mass and NMR. 1H NMR (400 MHz, 

CDCl3): δ (ppm) = 8.49 (s, 1H), 7.56 (t, 1H), 7.49 (d, 1H, J=8 Hz), 7.26 

(d, 2H, J=8 Hz), 7.21 (d, 1H, J=8 Hz), 7.19 (t, 1H, J=8 Hz), 7.12 (t, 

1H), 2.37 (s, 6H). LCMS (ESI): calculated m/z = 226.1226, observed 

m/z = 226.1234. Ligand (L5) (4 mmol, 0.900 g) was taken in 100 mL 

round bottom flask along with 20 mL methanol. Sodium borohydride (6 

mmol, 0.227 g) was added to the solution and continuously stirred for 4 
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hours using an ice bath. After the reaction resulting solution dried and 

workup was done with water and DCM. Finally, the solvent was dried 

using rotatory vapour and we got the white solid product (yield: 3.4 

mmol, 0.772 g, 85%). The final product (L6) was characterized by mass 

and NMR. 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.25 (t, 1H, J=8 Hz), 

7.09 (t, 3H, J=8 Hz), 7.01 (d, 1H, J=8 Hz), 6.95 (d, 1H, J=8 Hz), 6.86 

(t, 1H, J=8 Hz), 4.19 (s, 2H), 2.42 (s, 6H). LCMS (ESI): calculated m/z 

= 228.1383, observed m/z = 228.1551. 

2.2.4. Synthesis of L7 and L8:  

L7 was synthesized by using salicylaldehyde (10 mmol, 1.066 mL) and 

2,4,6-trimethylaniline (10 mmol, 1.404 mL) in 30 mL methanol, 

refluxed for 2 hours. After reflux, solvent dried using rotatory vapour. 

We got the orange-yellow viscous liquid product (yield: 8.7 mmol, 

2.038 mL, 87%). Product was characterized by mass and NMR. 1H 

NMR (400 MHz, CDCl3): δ (ppm) = 8.36 (s, 1H), 7.42 (t, 1H, J=8 Hz), 

7.35 (d, 1H, J=8 Hz), 7.07 (d, 1H), 6.98 (t, 1H, J=8 Hz), 6.96 (s, 2H), 

2.34 (s, 3H), 2.21 (s, 6H). LCMS (ESI): calculated m/z = 240.1383, 

observed m/z = 240.1396. Ligand (L7) (4 mmol, 0.956 g) was taken in 

100 mL round bottom flask along with 20 mL methanol. Sodium 

borohydride (6 mmol, 0.227 g) was added to the solution and 

continuously stirred for 4 hours using an ice bath. After the reaction 

resulting solution dried and workup was done with water and DCM. 

Finally, the solvent was dried using rotatory vapour and we got the white 

solid product (yield: 3.5 mmol, 0.844 g, 87.5%). The final product (L8) 

was characterized by mass and NMR. 1H NMR (400 MHz, CDCl3): δ 

(ppm) = 7.25 (t, 1H, J=8 Hz), 7.09 (t, 3H, J=8 Hz), 7.01 (d, 1H, J=8 

Hz), 6.95 (d, 1H, J=8 Hz), 6.86 (t, 1H, J=8 Hz), 4.19 (s, 2H), 2.42 (s, 

6H). LCMS (ESI): calculated m/z = 242.1539, observed m/z = 

242.1515. 
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2.3. Synthesis of Complexes: 

2.3.1. Synthesis of C1:  

C1 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = C10H14) (0.2 

mmol,  0.1224 g), 2-((phenylimino)methyl)phenol (L1) (0.44 mmol, 

0.0867 g) and KOH (0.44 mmol, 0.0247 g) in 20 mL THF, stirred at RT 

for 24 hours. After the completion of the reaction, solvent dried using 

rotatory vapour. The crude product was dissolved in 2 mL of DCM and 

precipitated using petroleum ether. Precipitate washed with petroleum 

ether and then dried (yield: 0.3212 mmol, 0.150 g, 80.3%). Product was 

characterized by mass and NMR. 1H NMR (400 MHz, CDCl3): δ (ppm) 

= 7.75 (s, 1H), 7.63 (d, 2H), 7.45 (t, 2H, J=8 Hz), 7.33 (t, 1H), 7.22 (t, 

1H), 6.99 (d, 1H, J=8 Hz), 6.94 (d, 1H, J=8 Hz), 6.43 (t, 1H, J=8 Hz), 

5.33 (d, 1H), 5.24 (d, 1H), 4.99 (d, 1H), 4.19 (d, 1H), 2.63 (m, 1H), 2.12 

(s, 3H), 1.17 (d, 3H, J=8 Hz), 1.11 (d, 3H, J=8 Hz). LCMS (ESI): 

calculated m/z = 432.0902, observed m/z = 432.0928. 

2.3.2. Synthesis of C2:  

C2 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = C10H14) (0.2 

mmol,  0.1224 g), 2-((p-tolylimino)methyl)phenol (L3) (0.44 mmol, 

0.0928 g) and KOH (0.44 mmol, 0.0247 g) in 20 mL THF, stirred at RT 

for 24 hours. After the completion of the reaction, solvent dried using 

rotatory vapour. The crude product was dissolved in 2 mL of DCM and 

precipitated using petroleum ether. Precipitate washed with petroleum 

ether and then dried (yield: 0.3222 mmol, 0.155 g, 80.6%). Product was 

characterized by mass and NMR. 1H NMR (400 MHz, CDCl3): δ (ppm) 

= 7.73 (s, 1H), 7.51 (d, 2H), 7.21 (m, 3H), 6.98 (d, 1H, J=8 Hz), 6.93 

(d, 1H, J=8 Hz), 6.42 (t, 1H), 5.32 (d, 1H), 5.26 (d, 1H), 4.96 (d, 1H), 

4.20 (d, 1H), 2.64 (m, 1H), 2.43 (s, 3H), 2.13 (s, 3H), 1.17 (d, 3H, J=8 

Hz), 1.11 (d, 3H, J=8 Hz). LCMS (ESI): calculated m/z = 446.1059, 

observed m/z = 446.1082. 
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2.3.3. Synthesis of C3:  

C3 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = C10H14) (0.2 

mmol,  0.1224 g), 2-(((2,6-dimethylphenyl)imino)methyl)phenol (L5) 

(0.44 mmol, 0.0990 g) and KOH (0.44 mmol, 0.0247 g) in 20 mL THF, 

stirred at RT for 24 hours. After the completion of the reaction, solvent 

dried using rotatory vapour. The crude product was dissolved in 2 mL 

of DCM and precipitated using petroleum ether. Precipitate washed with 

petroleum ether and then dried (yield: 0.2727 mmol, 0.1350 g, 68.2%). 

Product was characterized by mass and NMR. 1H NMR (400 MHz, 

CDCl3): δ (ppm) = 7.42 (s, 1H), 7.16 (m, 4H), 6.93 (d, 1H, J=8 Hz), 

6.86 (d, 1H, J=8 Hz), 6.41 (t, 1H), 5.35 (d, 1H), 5.11 (d, 1H), 4.93 (d, 

1H), 4.19 (d, 1H), 2.75 (m, 1H), 2.53 (s, 3H), 2.27 (s, 3H), 1.97 (s, 3H), 

1.30 (d, 3H), 1.26 (d, 3H). LCMS (ESI): calculated m/z = 460.1216, 

observed m/z = 460.1357. 

2.3.4. Synthesis of C4:  

C4 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = C10H14) (0.2 

mmol,  0.1224 g), 2-((mesitylimino)methyl)phenol (L7) (0.44 mmol, 

1.0516 g) and KOH (0.44 mmol, 0.0247 g) in 20 mL THF, stirred at RT 

for 24 hours. After the completion of the reaction, solvent dried using 

rotatory vapour. The crude product was dissolved in 2 mL of DCM and 

precipitated using petroleum ether. Precipitate washed with petroleum 

ether and then dried (yield: 0.2220 mmol, 0.1130 g, 55.5%). Product was 

characterized by mass and NMR. 1H NMR (400 MHz, CDCl3): δ (ppm) 

= 7.40 (s, 1H), 7.17 (t, 1H, J=8 Hz), 7.02 (s, 1H), 6.99 (s, 1H), 6.92 (d, 

1H, J=8 Hz), 6.85 (d, 1H, J=8 Hz), 6.40 (t, 1H, J=8 Hz), 5.36 (d, 1H), 

5.14 (d, 1H), 4.91 (d, 1H), 4.20 (d, 1H), 2.77 (m, 1H), 2.52 (s, 3H), 2.37 

(s, 3H), 2.22 (s, 3H), 1.99 (s, 3H), 1.31 (d, 3H), 1.26 (d, 3H). LCMS 

(ESI): calculated m/z = 474.1372, observed m/z = 474.1134. 

2.4. General procedure for the catalytic dehydrogenation of aqueous 

formaldehyde using different Ru-arene complexes: 

37 wt% aq. formaldehyde (13.55 mmol, 1.016 mL) was dehydrogenated 

in 4 mL two necked tube. C1, C2, C3 and C4 were used as a catalyst 
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(0.1 mol %, 0.013 mmol) and the reaction mixture was heated at 95 ◦C 

as shown in scheme 4.  

Scheme 4: General procedure for the catalytic dehydrogenation of aq. 

formaldehyde using Ru-arene complex. 

The volume of evolved gas was measured by water displacement 

method. Turn over number (TON) and turn over frequency (TOF) values 

were calculated by using formula given below: 

mmol of gas evolved =
mL of gas evolved

24.5 mL/mmol 
 

 

TON =
mmol of gas evolved

mmol of catalyst 
 

TOF =
TON

time taken (h) 
 

By following the same procedure, dehydrogenation of formaldehyde 

was done by using all Ru-arene complexes i.e. C1, C2, C3 and C4. 

2.5. General procedure for the catalytic dehydrogenation of formic 

acid using Ru-arene complex: 

Formic acid (10 mmol, 378 μL) was dehydrogenated in 25 mL round 

bottom flask (RB). Previously synthesized Ru-arene complex C1 was 

used as a catalyst (0.01 mmol, 4.68 mg) in 5 mL aqueous solution and 

reaction mixture was heated at 95 ◦C as shown in scheme 5.  
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Scheme 5: General procedure for the catalytic dehydrogenation of 

formic acid using Ru-arene complex C1. 

The volume of evolved gas was measured by water displacement 

method. Turn over number (TON) and turn over frequency (TOF) values 

were calculated by using given formula: 

TON =
mmol of gas evolved

mmol of catalyst 
 

TOF =
TON

time taken (h) 
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Chapter 3  Results and discussion 

3.1. Synthesis and characterization of ligands: 

Ligand L1 was synthesized by refluxing salicylaldehyde with aniline as 

shown in scheme 6. We got a viscous product with 96% yield (9.6 mmol, 

1.720 mL). The obtained product was characterized by using 1H NMR 

and mass spectrometry. 

Scheme 6: Synthesis of ligand L1. 

LCMS of L1 (figure 1) showing that we got a signal m/z equals to 

198.0916, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 199.0933 due to the presence 

of isotope of hydrogen. Calculated m/z = 198.0913 and observed m/z = 

198.0916. 

 

Figure 1: Mass spectrogram of ligand L1. 

Figure 2 showing the 1H NMR spectrum of L1, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

8.63 ppm that corresponds to the characteristic peak of imine. Peaks for 

9 aromatic hydrogens are observed in the range 7.5-6.9 ppm. 
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1+
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1+

LIGAND 1\L-1: +MS, 0.9min #52

198.0913
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199.0946
1+
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0

1
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Figure 2: 1H NMR spectrum of L1. 

Ligand L2 was synthesized by reduction of ligand L1 using NaBH4 at 0 

◦C as shown in scheme 7. We got a solid white product with 88% yield 

(3.5 mmol, 0.697 g). The obtained product was characterized by using 

1H NMR and mass spectrometry. 

Scheme 7: Synthesis of ligand L2. 

LCMS of L2 (figure 3) showing that we got a signal m/z equals to 

200.1112, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 201.1122 due to the presence 

of isotope of hydrogen. Calculated m/z = 200.1070 and observed m/z = 

200.1112. 
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Figure 3: Mass spectrogram of ligand L2. 

Figure 4 showing the 1H NMR spectrum of L2, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm. Peaks for 9 aromatic 

hydrogens are observed in the range 7.3-6.8 ppm. A singlet for 2 

hydrogens at 4.41 ppm that corresponds to the hydrogens of -CH2-. 
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Figure 4: 1H NMR spectrum of L2. 

Ligand L3 was synthesized by refluxing salicylaldehyde with 4-

methylaniline as shown in scheme 8. We got a viscous product with 89% 

yield (8.96 mmol, 1.890 mL). The obtained product was characterized 

by using 1H NMR and mass spectrometry. 

Scheme 8: Synthesis of ligand L3. 
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LCMS of L3 (figure 5) showing that we got a signal m/z equals to 

212.1072, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 213.1097 due to the presence 

of isotope of hydrogen. Calculated m/z = 212.1070 and observed m/z = 

212.1072. 

 

Figure 5: Mass spectrogram of ligand L3. 

Figure 6 showing the 1H NMR spectrum of L3, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

8.63 ppm that corresponds to the characteristic peak of imine. Peaks for 

8 aromatic hydrogens are observed in the range 7.5-6.9 ppm and a 

singlet for 3 hydrogens at 2.39 ppm shows the presence of -CH3 in the 

phenyl ring. 
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Figure 6: 1H NMR spectrum of L3. 
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Ligand L4 was synthesized by reduction of ligand L3 using NaBH4 at 0 

◦C as shown in scheme 9. We got a solid white product with a 93% yield 

(3.7 mmol, 0.788 g). The obtained product was characterized by using 

1H NMR and mass spectrometry. 

Scheme 9: Synthesis of ligand L4. 

LCMS of L4 (figure 7) showing that we got a signal m/z equals to 

214.1385, where m = M + 1 and z = 1. Along with the intensed signal 

there is an isotopic weak signal at m/z = 215.1423 due to the presence 

of isotope of hydrogen. Calculated m/z = 214.1226 and observed m/z = 

214.1385. 

Figure 7: Mass spectrogram of ligand L4. 

Figure 8 showing the 1H NMR spectrum of L4, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and peaks for the 8 aromatic 

hydrogens observed in the range 7.25-6.79 ppm. A singlet for 2 

hydrogens at 4.39 ppm that corresponds to the hydrogens of -CH2- while 

a singlet for 3 hydrogens at 2.28 ppm represents the presence of –CH3 at 

the para position of the phenyl ring. 
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Figure 8: 1H NMR spectrum of L4. 

Ligand L5 was synthesized by refluxing salicylaldehyde with 2, 6-

dimethylaniline as shown in scheme 10. We got a viscous product with 

an 89% yield (8.9 mmol, 1.944 mL). The obtained product was 

characterized by using 1H NMR and mass spectrometry. 

Scheme 10: Synthesis of ligand L5. 

LCMS of L5 (figure 9) showing that we got a signal m/z equals to 

226.1234, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 227.1257 due to the presence 

of isotope of hydrogen. Calculated m/z = 226.1226 and observed m/z = 

226.1234. 
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Figure 9: Mass spectrogram of ligand L5. 

Figure 10 showing the 1H NMR spectrum of L5, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

8.49 ppm that corresponds to the characteristic peak of imine. Peaks for 

7 aromatic hydrogens are observed in the range 7.58-7.10 ppm and a 

singlet for 6 hydrogens at 2.37 ppm shows the presence of two -CH3 in 

the phenyl ring. 
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Figure 10: 1H NMR spectrum of L5. 

Ligand L6 was synthesized by reduction of ligand L5 using NaBH4 at 0 

◦C as shown in scheme 11. We got a solid white product with an 85% 

yield (3.4 mmol, 0.772 g). The obtained product was characterized by 

using 1H NMR and mass spectrometry. 
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Scheme 11: Synthesis of ligand L6. 

LCMS of L6 (figure 11) showing that we got a signal m/z equals to 

228.1551, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 229.1568 due to the presence 

of isotope of hydrogen. Calculated m/z = 228.1383 and observed m/z = 

228.1551. 

Figure 11: Mass spectrogram of ligand L6. 

Figure 12 showing the 1H NMR spectrum of L6, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and peaks for the 7 aromatic 

hydrogens observed in the range 7.27-6.84 ppm. A singlet for 2 

hydrogens at 4.19 ppm that corresponds to the hydrogens of -CH2- while 

a singlet for 6 hydrogens at 2.42 ppm represents the presence of two -

CH3 at the ortho positions of the phenyl ring. 
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Figure 12: 1H NMR spectrum of L6. 

Ligand L7 was synthesized by refluxing salicylaldehyde with 2, 4, 6-

trimethylaniline as shown in scheme 12. We got a viscous product with 

an 87% yield (8.7 mmol, 2.038 mL). The obtained product was 

characterized by using 1H NMR and mass spectrometry. 

Scheme 12: Synthesis of ligand L7. 

LCMS of L7 (figure 13) showing that we got a signal m/z equals to 

240.1396, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 241.1424 due to the presence 

of isotope of hydrogen. Calculated m/z = 240.1383 and observed m/z = 

240.1396. 
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Figure 13: Mass spectrogram of ligand L7. 

Figure 14 showing the 1H NMR spectrum of L7, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

8.36 ppm that corresponds to the characteristic peak of imine. Peaks for 

6 aromatic hydrogens are observed in the range 7.44 6.96 ppm. Singlet 

for 3 hydrogens at 2.34 ppm shows the presence of -CH3 at the para 

position while singlet for 6 hydrogens at 2.21 ppm shows the presence 

of the two -CH3 at ortho positions in the phenyl ring. 
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Figure 14: 1H NMR spectrum of L7. 

Ligand L8 was synthesized by reduction of ligand L7 using NaBH4 at 0 

◦C as shown in scheme 13. We got a solid white product with an 88% 

yield (3.5 mmol, 0.884 g). The obtained product was characterized by 

using 1H NMR and mass spectrometry. 
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Scheme 13: Synthesis of ligand L8. 

LCMS of L8 (figure 15) showing that we got a signal m/z equals to 

242.1515, where m = M + 1 and z = 1. Along with the intense signal, 

there is an isotopic weak signal at m/z = 243.1550 due to the presence 

of isotope of hydrogen. Calculated m/z = 242.1539 and observed m/z = 

242.1515. 

Figure 15: Mass spectrogram of ligand L8. 

Figure 16 showing the 1H NMR spectrum of L8, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and peaks for the aromatic 

hydrogens observed in the range 7.26-6.83 ppm. A singlet for 2 

hydrogens at 4.15 ppm that corresponds to the hydrogens of -CH2- while 

a singlet for 6 hydrogens at 2.38 ppm represents the presence of two -

CH3 at the ortho positions and another singlet for 3 hydrogens at 2.28 

ppm represents the presence of -CH3 at the para position of the phenyl 

ring. 
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Figure 16: 1H NMR spectrum of L8. 

3.2. Synthesis and characterization of complexes: 

Complex C1 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = 

C10H14) with ligand (L1) 2-((phenylimino)methyl)phenol in the 

presence of a base as shown in Scheme 14. We got a red crystalline solid 

product with an 80 % yield (0.3212 mmol, 0.150 g). The obtained 

product was characterized by using 1H NMR and mass spectrometry. 

Scheme 14: Synthesis of Complex C1. 

LCMS of C1 (figure 18) showing that we got a signal m/z equals to 

432.0928, where m = M+ and z = 1. The given spectrogram is for the 

cationic species of complex 1 shown in figure 17. Along with the intense 

signal, there are some weak isotopic signals on both sides of the major 

peak due to the presence of isotope of ruthenium. Calculated m/z = 

432.0902 and observed m/z = 432.0928. 
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Figure 17: Cationic species of Complex C1. 

 

 

Figure 18: Mass spectrogram of Complex C1. 

Figure 19 showing the 1H NMR spectrum of C1, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

7.75 ppm that corresponds to the characteristic peak of imine of the 

ligand. Peaks for 9 aromatic hydrogens of the ligand are observed in the 

range 7.65-6.94 ppm. Doublets at 5.35, 5.26, 5.00, 4.21 ppm represent 

the 4 aromatic hydrogens of the ring while a multiplet at 2.66 ppm is for 

the tertiary hydrogen of the para-cymene. Doublets at 1.19, 1.13 ppm 

are for the two -CH3 at tertiary carbon and a singlet at 2.12 ppm is for -
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CH3 at the para position of the para-cymene ring. Here, we can see that 

there is a shift in characteristic peak of imine of the ligand. In free ligand, 

the singlet for 1H of imine is observed at 8.63 ppm while in complex the 

same singlet is observed at 7.75 ppm. This variation in chemical shift is 

due to increase in electron density near H of imine. 
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Figure 19: 1H NMR spectrum of Complex C1. 

Complex C2 was synthesized by using [(ղ6-arene)RuCl2]2 (arene = 

C10H14) with ligand (L3) 2-((p-tolylimino)methyl)phenol in the presence 

of a base as shown in Scheme 15. We got a red crystalline solid product 

with an 81% yield (0.3222 mmol, 0.155 g). The obtained product was 

characterized by using 1H NMR and mass spectrometry. 

Scheme 15: Synthesis of Complex C2. 

LCMS of C2 (figure 21) showing that we got a signal m/z equals to 

446.1082, where m = M+ and z = 1. The given spectrogram is for the 

cationic species of complex 2 shown in figure 20. Along with the intense 

signal, there are some weak isotopic signals on both sides of the major 
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peak due to the presence of isotope of ruthenium. Calculated m/z = 

446.1059 and observed m/z = 446.1082. 

 

Figure 20: Cationic species of Complex C2. 

 

 

Figure 21: Mass spectrogram of Complex C2. 

Figure 22 showing the 1H NMR spectrum of C2, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

7.73 ppm that corresponds to the characteristic peak of imine of the 

ligand. Peaks for 8 aromatic hydrogens of the ligand are observed in the 

range 7.53-6.40 ppm. Singlet for 3 hydrogens at 2.43 ppm shows the 

presence of the -CH3 at the para position of the phenyl ring in the ligand. 
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Doublets at 5.34, 5.27, 4.97, 4.22 ppm represent the 4 aromatic 

hydrogens of the ring while a multiplet at 2.68 ppm is for the tertiary 

hydrogen of the para-cymene. Doublets at 1.19, 1.12 ppm are for the two 

-CH3 at tertiary carbon and a singlet at 2.13 ppm shows the -CH3 at the 

para position of the para-cymene ring respectively. Here, we can see that 

there is a shift in characteristic peak of imine of the ligand. In free ligand, 

the singlet for 1H of imine is observed at 8.63 ppm while in complex the 

same singlet is observed at 7.73 ppm. This variation in chemical shift is 

due to increase in electron density near H of imine. 

  

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Chemical Shift (ppm)

3.093.042.99 2.971.95 1.00 0.99 0.980.97 0.94

Chloroform-d

7
.7

3
7

.5
3

7
.5

1
7

.2
3

7
.2

1
7

.0
0

6
.9

8
6

.9
5

6
.9

3
6

.4
3

6
.4

2
6

.4
0

5
.3

4
5

.3
2

5
.2

7
5

.2
6

4
.9

7
4

.9
6

4
.2

2
4

.2
0

2
.6

8
2

.6
6

2
.6

4
2

.6
1

2
.4

3

2
.1

3

1
.5

9
1

.1
9

1
.1

7
1

.1
2

1
.1

1

7.5 7.0 6.5

Chemical Shift (ppm)

2.991.95 1.011.00 0.97

Chloroform-d

7
.7

3

7
.5

3
7

.5
1

7
.2

3
7

.2
1

7
.0

0
6

.9
8

6
.9

5
6

.9
3

6
.4

3
6

.4
2

6
.4

0

Figure 22: 1H NMR spectrum of Complex C2. 

Complex C3 was synthesized by using dichloro(p-cymene)Ru(II) dimer 

with ligand (L5) 2-(((2,6-dimethylphenyl)imino)methyl)phenol in 

presence of a base as shown in Scheme 16. We got a red crystalline solid 

product with 68% yield (0.2727 mmol, 0.1350 g). The obtained product 

was characterized by using 1H NMR and mass spectrometry. 
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Scheme 16: Synthesis of Complex C3. 

LCMS of C3 (figure 24) showing that we got a signal m/z equals to 

460.1357, where m = M+ and z = 1. The given spectrogram is for the 

cationic species of complex 3 shown in figure 23. Along with the intense 

signal, there are some weak isotopic signals on both sides of the major 

peak due to the presence of isotope of ruthenium. Calculated m/z = 

460.1216 and observed m/z = 460.1357. 

 

Figure 23: Cationic species of Complex C3. 
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Figure 24: Mass spectrogram of Complex C3. 

Figure 25 showing the 1H NMR spectrum of C3, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

7.42 ppm that corresponds to the characteristic peak of imine of the 

ligand. Peaks for 7 aromatic hydrogens of the ligand are observed in the 

range 7.20-6.40 ppm. Singlets for 3 hydrogens at 2.57 ppm and 2.27 

ppm shows the presence of two different -CH3 at the ortho positions of 

the phenyl ring in the ligand. Doublets at 5.37, 5.13, 4.95, 4.20 ppm 

represent the 4 aromatic hydrogens of the ring while a multiplet at 2.78 

ppm is for the tertiary hydrogen of the para-cymene. Doublets at 1.28, 

1.26 ppm are for the two -CH3 at tertiary carbon and a singlet at 1.97 

ppm shows the -CH3 at the para position of the para-cymene ring 

respectively. Here, we can see that there is a shift in characteristic peak 

of imine of the ligand. In free ligand, the singlet for 1H of imine is 

observed at 8.49 ppm while in complex the same singlet is observed at 

7.42 ppm. This variation in chemical shift is due to increase in electron 

density near H of imine. 
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Figure 25: 1H NMR spectrum of Complex C3. 

Complex C4 was synthesized by using dichloro(p-cymene)Ru(II) dimer 

with ligand (L7) 2-((mesitylimino)methyl)phenol in the presence of a 

base as shown in Scheme 17. We got a red crystalline solid product with 

56% yield (0.2220 mmol, 0.1130 g). The obtained product was 

characterized by using 1H NMR and mass spectrometry. 

Scheme 17: Synthesis of Complex C4. 

LCMS of C4 (figure 27) showing that we got a signal m/z equals to 

474.1134, where m = M+ and z = 1. The given spectrogram is for the 

cationic species of complex 4 shown in figure 26. Along with the intense 

signal, there are some weak isotopic signals on both sides of the major 

peak due to the presence of isotope of ruthenium. Calculated m/z = 

474.1372 and observed m/z = 474.1134. 
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Figure 26: Cationic species of Complex C4. 

 

 

Figure 27: Mass spectrogram of Complex C4. 

Figure 28 showing the 1H NMR spectrum of C4, here we observed the 

solvent peak (chloroform-d) at 7.26 ppm and a singlet for 1 hydrogen at 

7.40 ppm that corresponds to the characteristic peak of imine of the 

ligand. Peaks for 6 aromatic hydrogens of the ligand are observed in the 

range 7.20-6.38 ppm. Singlets for 3 hydrogens at 2.52, 2.37 and 2.22 

ppm were observed for the three different -CH3 at the ortho and para 

positions of the phenyl ring in the ligand. Doublets at 5.37, 5.16, 4.93, 

4.21 ppm represent the 4 aromatic hydrogens of the ring while a 
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multiplet at 2.80 ppm is for the tertiary hydrogen of the para-cymene. 

Doublets at 1.33, 1.27 ppm are for the two -CH3 at tertiary carbon and a 

singlet at 1.99 ppm shows the -CH3 at the para position of the para-

cymene ring respectively. Here, we can see that there is a shift in 

characteristic peak of imine of the ligand. In free ligand, the singlet for 

1H of imine is observed at 8.36 ppm while in complex the same singlet 

is observed at 7.40 ppm. This variation in chemical shift is due to 

increase in electron density near H of imine. 
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Figure 28: 1H NMR spectrum of Complex C4. 

3.3. Catalysis: 

3.3.1. Dehydrogenation of aqueous formaldehyde: 

 Dehydrogenation of aqueous formaldehyde (13.55 mmol, 1.016 

mL) was done by using Ru-arene complexes as catalyst at 95 ◦C as 

shown in scheme 18. 

Scheme 18: Catalytic dehydrogenation of aq. formaldehyde. 
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The catalytic activity of C1, C2, C3 and C4 was checked at 95 ◦C for 

dehydrogenation of formaldehyde and volume of evolved gas was 

measured by using water displacement method. Calculated TON and 

TOF values are shown in table 1. 

 

Catalyst TON 

   (20 min) 

TOF (h-1) 

  ( 20 min) 

TON 

  (200 min) 

TOF (h-1) 

(In 200 min) 

C1 286 859 593 178 

C2 281 844 613 184 

C3 341 1023 693 208 

C4 316 948 593 178 

 

Table 1: Catalytic table for dehydrogenation of aq. formaldehyde. 
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Figure 29 Plot of the mmoles of gas evolved by catalytic 

dehydrogenation of aq. HCHO vs time in presence of complex C1. 

 



34 
 

0 100 200 300 400 500
0

2

4

6

8

10

12

m
m

o
le

s 
o

f 
g

a
s

time (min.)
 

Figure 30: Plot of the mmoles of gas evolved by catalytic 

dehydrogenation of aq. HCHO vs time in presence of complex C2. 
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Figure 31 Plot of the mmoles of gas evolved by catalytic 

dehydrogenation of aq. HCHO vs time in presence of complex C3. 
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Figure 32: Plot of the mmoles of gas evolved by catalytic 

dehydrogenation of aq. HCHO vs time in presence of complex C4. 

 

3.3.2. Dehydrogenation of formic acid: 

  Dehydrogenation of formic acid (10 mmol, 378 μL)  was done 

by using C1 as a catalyst at 95 ◦C as shown in scheme 19. 

Scheme 19: Catalytic dehydrogenation of formic acid. 

Catalytic dehydrogenation of formic acid is assumed to proceed through 

the plausible mechanism shown in scheme 20. For initial 10 minutes, 

calculated TON and TOF values are found to be TON = 98, TOF = 590 

h-1. 
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Scheme 20: Plausible mechanism for the catalytic dehydrogenation of 

formic acid. 
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Figure 33 Plot of the mmoles of gas evolved by catalytic 

dehydrogenation of HCOOH vs time in presence of complex C1. 
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Chapter 4     Conclusion 

4.1. Conclusion: 

We have successfully synthesized the different arene ligands and their 

respective ruthenium complexes. All the synthesized products were 

characterized by NMR and mass spectrometry. Catalytic 

dehydrogenation of the formic acid and formaldehyde was done by 

using various synthesized complexes. TON and TOF values were 

calculated per ruthenium atom by using water displacement system. 

 

4.2. Future scopes: 

Further clarifications and modification are yet to be explored. The 

catalytic activity of these complexes can be improved by changing 

temperature conditions and by using a particular amount of base.  

Complexes of the reduced ligands can also show better activity due to 

the presence of N-H moiety.  
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