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ABSTRACT

Rough set theory is an important tool for dealing with uncertain and vague

data. In this project work, we study some different approaches of generalized

rough sets, like generalized rough sets induced by an arbitrary binary relation,

generalized rough sets based on neighborhood systems and the covering based

rough sets. We further explore the properties and structure of rough set model

induced by an arbitrary binary relation. We also investigate the relationship

between Alexandrov space and generalized approximation space induced by

an arbitrary binary relation. A one-to-one correspondence between the class

of generalized approximation spaces based on pre-order relations and the class

of Alexandrov spaces are given. In addition, several counter-examples are

provided to indicate counter connections.
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Chapter 1

Introduction and Basic

Concepts

1.1 Introduction

Rough set theory is a mathematical tool to handle vagueness and uncertainty

in data analysis, and has arisen the interest of experimenters and practitioners

in various fields of science and technology. The basic idea of approximation

space was proposed during the early 1980s by Pawlak [2, 3]

In Pawlak’s rough set theory equivalence (indiscernibility) relation is

a primitive concept. However, equivalence relations are too restrictive for

many applications. To avoid this issue, several generalizations of rough set

models are proposed by different researchers and practitioners. For example,

rough set model is extended to arbitrary binary relation [6, 7], covering based

generalized rough set model [8, 9, 10, 11], neighborhood system based rough

set model [13, 16] etc. Some researchers even extended classical rough sets to

fuzzy sets [17], Boolean algebras [19] and fuzzy lattices [18].

Various kinds of approximations in generalized rough set model based

on arbitrary binary relation were studied. For instance, Y.Y. Yao [7] defined

a new type of generalized rough set model based on binary relation and Z.

Pei [5] explore the topological point of view of this type of rough sets. In
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our work, we explore the structure and properties of some generalized rough

set models like, covering based rough set model, neighborhood system based

rough sets. We establish a close relation between generalized approximation

space induced by an arbitrary binary relation and Alexandrov space.

The thesis is structured as follows: First, we present some basic defini-

tions and Pawlak’s classical rough set model with its properties. Chapter 2

presents various generalizations of rough set theory and their properties. In

Chapter 3, we investigate the relationship between generalized approximation

spaces induced by an arbitrary binary relation and Alexandrov spaces.

1.2 Basic Concepts

In this section, we give some basic concepts of rough set theory which are

required for our work. We use the symbol ∅ to denote empty set throughout

this work.

Definition 1 (Relation). Let W be a non-empty set. By a binary relation Θ

on W , we mean a subset of W ×W .

In this article, we will work only with binary relations and therefore we

will call them simply as a relation. Usually we write aΘb for (a, b) ∈ Θ. Both

the notations will be used in this thesis.

Definition 2. Let Θ be a relation on W . Then Θ is called

• serial if for every u ∈ W , we have aΘb for some b ∈ W .

• reflexive if uΘu for all u ∈ W .

• symmetric if uΘv implies vΘu for all u, v ∈ W .

• transitive if uΘv and vΘw implies uΘw for all u, v, w ∈ W .

Θ is called a pre-order (relation) if Θ is both pre-order; if Θ is both reflexive

and symmetric then it is called a tolerance relation. If Θ is reflexive, symmetric

and transitive, then we say that Θ is an equivalence relation.
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Definition 3 (Pawlak Approximation Space [2, 3]). By an approximation

space, we mean a tuple (W,Θ) where W 1 is a non-empty set of objects and Θ

is an equivalence relation (called the indiscernibility relation) on W .

The objects belonging to the same equivalence class of the relation Θ are

indistinguishable with respect to the information provided by Θ. Therefore,

having ‘complete information’ about the domain W is identified with the case

when Θ is the identity relation on W . A concept given by a subset Z of W ,

may not, in general, be expressible in terms of equivalence classes using the

set-theoretic operations of union, intersection and complementation. Thus, we

approximate Z using the notions of lower and upper approximations defined

as follows.

Definition 4. Let (W,Θ) be an approximation space and X ⊆ W . The lower

approximation of X, denoted as XΘ, and upper approximation of Z, denoted

as ZΘ, are defined as follows. Let us use Θ(x) to denote the set {y ∈ W : xΘy}.

ZΘ = {x ∈ W : Θ(x) ⊆ Z};

ZΘ = {x ∈ W : Θ(x) ∩ Z 6= ∅}.

Given an approximation space (W,Θ) and a subset Z ⊆ W , the do-

main W is divided into three disjoint sets viz. ZΘ, BΘ(Z) := ZΘ \ ZΘ and

(ZΘ)
c := W \ ZΘ. The elements of ZΘ, BΘ(Z) and (ZΘ)

c are called positive,

boundary/undecidable and negative elements of Z, respectively. As mentioned

above, if BΘ(Z) 6= ∅, then we cannot define Z in terms of equivalence classes

using the set-theoretic operations of union, intersection and complementation.

In such a case, Z is called rough. Z is called definable if BΘ(Z) = ∅.

Example 1. Let (W,Θ) be a classical approximation space, where

• W = {1, 2, 3 · · · , 10};

• For all x, y ∈ W , (x, y) ∈ Θ if and only if either both x and y are even

or both x and y are odd.

1
Pawlak considered W to be finite in his original definition.

3



Let Y = {1, 3, 4, 5, 7, 9, 10}. One can verify that Y Θ = {1, 3, 5, 7, 9} and Y Θ =

W .

Proposition 1 ([2, 3]). Consider an approximation space (W,Θ). Let U, V ∈

2W . Then the following holds.

1. UΘ ⊆ U ⊆ UΘ

2. ∅
Θ
= ∅Θ = ∅; WΘ = WΘ = W

3. (U ∩ V )
Θ
= UΘ ∩ V Θ

4. (U ∪ V )
Θ
= UΘ ∪ V Θ

5. U ⊆ V implies UΘ ⊆ V Θ

6. U ⊆ V implies UΘ ⊆ V Θ

7. (U ∩ V )
Θ

⊆ UΘ ∩ V Θ

8. (U ∪ V )
Θ

⊇ UΘ ∪ V Θ

9. UΘ = (U c

Θ)
c

10. UΘ = (U c

Θ)
c

11. (UΘ)
Θ
= (UΘ)Θ = UΘ

12. (UΘ)Θ = (UΘ)
Θ
= UΘ

Definition 5 (Topological Space). A topological space is defined as a tuple

(W, τ), where W is a set and τ is a family of subsets of W satisfying the

following conditions:

• ∅ ∈ τ and W ∈ τ .

• τ is closed under finite intersection.

• τ is closed under arbitrary union.
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The elements of τ are termed open sets. The complements of elements of τ

are termed closed sets.

Example 2. Let W be any set and τ be the set of all subsets of W . One can

easily verify that, (W, τ) is a topological space.

Definition 6 (Alexandrov Space [5]). A topological space (W, τ) is called an

Alexandrov Space if τ is closed under arbitary intersection.

Example 3. Let (W, τ) be a topological space and τ be the set of all subsets

of W . One can easily verify (W, τ) is an Alexandrov space.

Definition 7. Suppose (W, τ) is a topological space and Y ⊆ W . The interior

of Y , denoted as Y τ , and the closure of Y , denoted as Y τ , are defined as

follows.

Y τ := {x ∈ W : there exists a X ∈ τ such that x ∈ X and X ⊆ Y };

Y τ := {x ∈ W : X ∩ Y 6= ∅ for all X ∈ τ with x ∈ X}.

Example 4. Let (W, τ) be a topological space, where

• W = {a, b, c, d}

• τ = {∅, {b}, {b, c}, {a, b, c},W}

Let A = {b, d} be a subset of W . One can verify that Aτ = {b} and Aτ =

{b, c, d}.
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Chapter 2

Review of Generalized Rough

Set Models

In literature, one can find many generalization of the classical rough set theory

due to demands from various practical applications. In this chapter, we briefly

study a few generalized rough set models viz. generalization based on arbitrary

binary relation, covering based rough set models, generalized rough sets based

on neighborhood systems.

2.1 Rough Set Model Based on Arbitrary Bi-

nary Relation

In Pawlak’s classical rough set model, the relation Θ is considered to be an

equivalence relation. Thus, a natural generalization is obtained by relaxing the

requirement of Θ to be an equivalence. Therefore, in literature, one can find

various types of useful generalizations by considering different types of Θ. For

example, tolerance approximation space is studied in [18, 19], where the rela-

tion is taken to be reflexive and symmetric. In these generalized approximation

spaces, the following natural extension of Pawlak’s classical notions of lower

and upper approximations are considered. Let Θ(x) := {y ∈ W : (x, y) ∈ Θ}.
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Property serial reflexive symmetric transitive

XΘ = (Xc

Θ)
c hold hold hold hold

XΘ = (Xc

Θ)
c hold hold hold hold

WΘ = W hold hold hold hold

∅Θ = ∅ hold hold hold hold
(X ∩ Y )

Θ
= XΘ ∩ Y Θ hold hold hold hold

(X ∪ Y )
Θ
= XΘ ∪ Y Θ hold hold hold hold

∅
Θ
= ∅ hold hold does not

hold
does not
hold

WΘ = W hold hold does not
hold

does not
hold

XΘ ⊆ X ⊆ XΘ does not
hold

hold does not
hold

does not
hold

X ⊆ Y implies XΘ ⊆ Y Θ hold hold hold hold
X ⊆ Y implies XΘ ⊆ Y Θ hold hold hold hold

(X ∩ Y )
Θ

⊆ XΘ ∩ Y Θ hold hold hold hold
(X ∪ Y )

Θ
⊇ XΘ ∪ Y Θ hold hold hold hold

Table 2.1: Properties of lower and upper approximation operator

Then for X ⊆ W , XΘ := {x ∈ W : Θ(x) ⊆ X} and XΘ := {x ∈ W :

Θ(x) ∩X 6= ∅}.

Table 2.1 lists the properties of lower and upper approximation operator when

Θ is serial, reflexive, symmetric and transitive.

Let us consider two binary relations Θ1 and Θ2 on W . It is natural to

ask if there is any relationship between the approximations with respect to the

relations Θ1 and Θ2. We have the following theorem on this.

Theorem 1 ([6]). Let Θ1 and Θ2 be two binary relations on W . Then the

following conditions are equivalent.

• Θ1 ⊆ Θ2.

• Θ1(x) ⊆ Θ2(x), x ∈ W .

• XΘ1
⊇ XΘ2

, X ⊆ W .

• XΘ1
⊆ XΘ2

, X ⊆ W .
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2.2 Rough Set Models Based on Covering

In this section, we study rough sets based on covering and discuss the proper-

ties of lower and upper approximation operators induced by covering. Further,

we see the relationship between classical approximation space and covering ap-

proximation space.

Definition 8 (Covering [8]). Let W be a non empty set of objects and D =

{Dn | n ∈ I} be a collection of subsets of W . If
⋃
n∈I

Dn = W , then D is called

a covering of W . The tuple (W,D) is called a covering approximation space.

Remark 1. It is not difficult to see that every partition of a set gives a covering

of that set.

We may ask that is there any connection between the classical approximation

space and the covering approximation space defined on a set.

Let (W,Θ) be a classical approximation space, then Θ divides the set W into

disjoint equivalence classes. Let S be the set of all equivalence classes of W

generated by Θ. Then S forms partition for W . Since each partition of W is

a covering, (W,S) is a covering approximation space.

But it is not always possible to obtain a classical approximation space

from covering approximation space. It is possible only when the members of

covering are disjoint. Let (W,D) be a covering approximation space and the

members of D are disjoint to each other. Let D = {Dn | n ∈ I}, where I

denotes the index set. Define,

xΘy if and only if x, y ∈ Dn for all n ∈ I.

Clearly, Θ is an equivalence relation. Thus (W,Θ) is a classical approximation

space.

In literature one can find various types of rough sets determined by

coverings (cf. e.g. [10]). Here, we present a few of them. Consider the

following definition.
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Definition 9. Consider a covering approximation space (W,D). The neigh-

bourhood of x ∈ W , denoted as N(x), is defined as follows:

N(x) =
⋂
{Dn ∈ D : x ∈ Dn}.

Let X ⊆ W , the lower and upper approximations of X, denoted as XD and

XD are defined as follows:

XD :=
⋃

{Dn : Dn ∈ D and Dn ⊆ X};

XD := XD

⋃
{N(x) : x ∈ X \XD}.

Note that we can give another representation of XD, i.e.,

XD =
⋃
{N(x) : x ∈ X}.

Note that the above notion of lower and upper approximations are identi-

cal with the Pawlak’s authoritative notion of lower and upper approximations,

when D is nothing but a partition of W .

Proposition 2 ([8]). Consider a covering approximation space (W,D) and let

U, V ∈ 2W . Then we have the following.

1. UD ⊆ U ⊆ UD.

2. WD = W .

3. ∅D = ∅D = ∅.

4. (U ∪ V )D = UD ∪ V D.

5. U ⊆ V ⇒ UD ⊆ V D.

6. U ⊆ V ⇒ UD ⊆ V D.

7. (UD)D = UD.

8. (UD)D = UD.

9



2.3 Rough Set Models based on Neighbor-

hood Systems

In this section, we discuss rough sets based on neighborhood system. Let

W be a universe of discourse and P(W ) be the power set of W . A map

n : W −→ P(W ) is called neighborhood operator. Each element x ∈ W is

associated with a subset n(x) ⊆ W , called a neighborhood of x. Note that a

neighborhood of x may or may not contain x.

Definition 10 (Neighborhood System [12, 13]). A neighborhood system of an

object x ∈ W , denoted as NS(x), is a nonempty family of neighborhoods of

x. The neighborhood system of W is denoted by NS(W ) and defined as:

NS(W ) = {NS(x) : x ∈ W}.

Further, we study the following properties of neighborhood system.

Serial : for any x ∈ W and n(x) ∈ NS(x), n(x) is nonempty.

Reflexive : for any x ∈ W and n(x) ∈ NS(x), x ∈ n(x).

Symmetric : for any x, y ∈ W,n(x) ∈ NS(x) and n(y) ∈ NS(y);

x ∈ n(y) ⇒ y ∈ n(x).

Transitive : for any x, y, z ∈ W,n(y) ∈ NS(y) and n(z) ∈ NS(z),

x ∈ n(y) and y ∈ n(z) ⇒ x ∈ n(z).

Definition 11. Let NS(W ) be a neighborhood system of W . If for any

n1(x), n2(x) ∈ NS(x), ∃n3(x) ∈ NS(x) such that

n3(x) ⊆ n1(x) ∩ n2(x),

then NS(W ) is called weak-unary neighborhood system of W .

Definition 12. Let NS(W ) be a neighborhood system of W . NS(W ) is

called weak-transitive neighborhood system of W if for any x ∈ W and n(x) ∈

NS(x), ∃n1(x) ∈ NS(x) satisfying that for any y ∈ n1(x), ∃ an

n(y) ∈ NS(y) such that n(y) ⊆ n(x).
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Let NS(W ) be a neighborhood system of W . Let X ⊆ W , the lower approxi-

mation of X (XNS) and the upper approximation of X (XNS) are defined as

follows:

XNS = {x ∈ W : ∃n(s) ∈ NS(x), n(x) ∈ X},

XNS = {x ∈ W : ∀n(s) ∈ NS(x), n(x) ∩X 6= ∅}.

Let W be a universe of discourse and NS(W ) be a neighborhood system of

W . Let X, Y ∈ P(W ). Then the lower and upper approximation operators

satisfy the following properties.

Proposition 3 ([13]).

∅NS = ∅.

WNS = W .

X ⊆ Y implies XNS ⊆ Y NS.

X ⊆ Y implies XNS ⊆ Y NS.

XNS = (Xc
NS)

c.

XNS = (Xc
NS)

c.

Moreover, if NS(W ) is serial, then

• ∅NS = ∅.

• WNS = W .

If NS(W ) is reflexive, then

• XNS ⊆ X.

• X ⊆ XNS.

If NS(W ) is symmetric, then

• X ⊆ (XNS)NS
.

• (XNS)NS ⊆ X.
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If NS(W ) is transitive, then

• XNS ⊆ (XNS)NS
.

• (XNS)NS ⊆ XNS.

If NS(W ) is weak-unary, then

• (X ∪ Y )NS = XNS ∪ Y NS.

• (X ∩ Y )
NS

= XNS ∩ Y NS.

Proposition 4 ([13]). The following properties are equivalent:

1. NS(W ) is weak-transitive.

2. XNS ⊆ (XNS)NS
.

3. (XNS)NS ⊆ XNS.

4. xNS ⊆ (xNS)NS
∀x ∈ W and n(x) ∈ NS(x).

We may ask that is there any connection between the lower and upper

approximations induced by arbitrary binary relation and the lower and upper

approximations induced by neighborhood system.

Let (W,Θ) be a generalized approximation space, One can define the

neighborhood approximation space (W,NS), where NS := {X ⊆ W : Θ(x) ⊆

X}. Let Y ⊆ W , then we get Y NS = Y Θ and Y NS = Y Θ.

Also we ask is their any connection between covering approximation

space and generalized approximation space based on neighborhood system.

Let (W,C) be a covering approximation space. Let x ∈ W . Define,

NC(x) = {Ci : x ∈ Ci and Ci ∈ C}

be the neighborhood system of x. Then we obtain neighborhood approxima-

tion space (W,NC). We relate the covering and neighborhood based rough set

model in the following proposition.

12



Proposition 5. 1. Neighborhood system (W,NC) satisfies the following.

• x ∈ X ∈ NC(y) → X ∈ NC(x);

• X ∈ NC(x) → x ∈ X;

• NC(x) 6= ∅, ∀x ∈ W .

2. XNS = XC and XNS = XC, where XC and XC are defined in section 2.

3. Given a neighborhood system (W,N) satisfying all the three properties

mention in first point, then there exists a covering C of W such that

NC = N .

2.4 Generalized Rough Sets Induced by Core

of Neighborhood Systems

This section presents rough set model induced by the core of neighborhood

systems.

Definition 13. Consider a relation Θ on a set W and u ∈ W . The right

and the left neighborhood of u induced by Θ, denoted as RN(u) and LN(u),

respectively, are defined as follows:

RN(u) = {v ∈ W : uΘv},

LN(u) = {y ∈ W : vΘu}.

Definition 14 (Core Neighborhood [14, 15]). Consider a relation Θ on a set

W and u ∈ W . The core neighborhood of u induced by Θ, denoted as CN(u),

is defined as the set {v ∈ W : RN(v) = RN(u) and LN(v) = LN(u)}.

Let Θ be a relation on a non-empty set W . In [14, 15]], the following

four kinds of core of neighborhood system are defined.

1. The core of right neighborhood (CNR(u)) :

CNR(u) = {v ∈ W : RN(u) = RN(v)}.
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2. The core of left neighborhood (CNL(u)) :

CNL(u) = {v ∈ W : LN(u) = LN(v)}.

3. The core of union neighborhood (CNU(u)) :

CNU(u) = CNR(v) ∪ CNL(u).

4. The core of intersection neighborhood (CNI(u)) :

CNI(u) = CNR(u) ∩ CNL(u).

Definition 15. Consider a relation Θ on a non-empty set W . Suppose CNH

is the core of neighborhood systems where H ∈ {R,U, L, I}. Then, by a CNH

approximation space we mean the tuple (W,Θ, CNH).

Consider a CNJ approximation space (W,Θ, CNH) and X ⊆ W . Then

the CNH-lower approximation and the CNH-upper approximation of X are

defined as follows:

XCNH
=

⋃
{CNH(u) : CNH(u) ⊆ X},

XCNH
=

⋂
{CNH(u) : CNH(u) ∩X 6= ∅}.

Proposition 6 ([16]). Consider a CNH approximation space (W,Θ, CNH) and

Y,X ⊆ W . Then, CNH lower approximation and CNH upper approximation

satisfy the following properties:

1. XCNH
⊆ X ⊆ XCNH

.

2. ∅CNH

= ∅CNH
= ∅; WCNH

= WCNH
= W .

3. (X ∩ Y )
CNH

= XCNH
∩ Y CNH

.

4. (X ∪ Y )CNH

= XCNH
∪ Y CNH

.

5. X ⊆ Y ⇒ XCNH
⊆ Y CNH

.

6. X ⊆ Y ⇒ XCNH
⊆ Y CNH

.

7. (X ∩ Y )CNH

⊆ XCNH
∩ Y CNH

.
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8. (X ∪ Y )
CNH

⊇ XCNH
∪ Y CNH

.

9. XCNH
= (Xc

CNH
)c.

10. XCNH
= (Xc

CNH
)c.

11. (XCNH
)
CNH

= (XCNH
)
CNH

= XCNH
.

12. (XCNH
)
CNH

= (XCNH
)
CNH

= XCNH
.

Remark 2. From above proposition, we observe that in this approach of gen-

eralization, the approximation operators satisfy all the properties of Pawlak’s

approximation operators. Therefore, we say that this is the ideal general-

ization of rough sets among all the generalizations discussed in this project

work.

2.5 Variable Precision Rough Set Model

In this section we briefly discuss variable precision rough set model (VPRS-

model) [20]. This model uses a generalization of approximation operators

obtained by putting a majority inclusion relation in place of inclusion relation

in the definition of Pawlak’s approximation operators.

Definition 16 ([20]). Consider an approximation space (W,Θ) with finite

domain. The rough membership function g : W × 2W −→ [0, 1] is given as

follows:

g(u, v) =
|[u] ∩ Z|

[u]
, u ∈ W, Z ⊆ W.

For α ∈ [0, 1
2
), the majority inclusion relation ⊆α is given as follows:

U ⊆β V if and only if D(U, V ) ≤ α,

where D(U, V ) = 1− |U∩V |
|U |

, if |U | > 0; otherwise, D(U, V ) = 0.

Note that D([u]Θ, U) = 1−g([u]Θ, U), g being the rough membership function.

Let U ⊆ W . Then by using ⊆α, the α-lower approximation ΘαU of U and

15



α-upper approximation ΘαU of a U is defined as follows:

ΘαU := {u ∈ W : [u]Θ ⊆α U} = {u ∈ W : g([u]Θ, U) ≥ 1− α},

ΘαU := {x ∈ W : D([u]Θ, U) < 1− α} = {u ∈ W : g([u]Θ, U) > α}

One can easily show that Θ0U = UΘ and Θ0U = UΘ.

Note that for infinite domain W the definitions of the membership func-

tion, α-lower and α-upper approximations may not be well defined. To deal

with this problem probabilistic approximation space is introduced.
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Chapter 3

Rough Set Theory and

Alexandrov Space

This chapter deals with the relationship between Alexandrov space and ap-

proximation space. We investigate the connection between the notion of

lower/upper approximations based on approximation spaces with interior/closure

operators defined on topological spaces. Throughout this chapter, we will write

generalized approximation space to mean generalized approximation space

based on an arbitrary binary relation.

Let (W,Θ) be a generalized approximation space. For X ⊆ W , we define

the sets XΘ and XΘ as follows:

XΘ := {y ∈ W : xΘy for some x ∈ X};

XΘ := {y ∈ W : yΘx for some x ∈ X}.

Definition 17. Let F := (W,Θ) be a generalized approximation space and

X ⊆ W . X is called an upset of F if XΘ ⊆ X. X is called a downset of F if

XΘ ⊆ X.

Given a generalized approximation space F := (W,Θ), we define τΘ ⊆

2W as follows:

τΘ := {X ⊆ W : X is an upset of F}.

As shown by the following result, τΘ is obtained as a topology for W .
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Theorem 2. Let F := (W,Θ) be a generalized approximation space. Then

(W, τΘ) is an Alexandrov space.

Proof. Note that ∅Θ = ∅ and hence ∅Θ ⊆ ∅. Obviously, we also have WΘ ⊆ W .

Therefore, ∅,W ∈ τΘ.

Next, supposeXi ∈ τΘ for each i ∈ Λ, where Λ is an index set. We need to show

that
⋃

i∈Λ Xi ∈ τΘ, that is, (
⋃

i∈Λ Xi)
Θ ⊆

⋃
i∈Λ Xi. Let y ∈ (

⋃
i∈Λ Xi)

Θ. Then

we obtain (z, y) ∈ Θ for some z ∈
⋃
i∈

∧
Xi. This implies z ∈ Xk for some k.

Using the definition of XΘ

k , we obtain y ∈ XΘ

k . Since Xk is an upset, we

obtain y ∈ Xk and hence y ∈
⋃

i∈Λ Xk.

Now, suppose Xi ∈ τΘ for each i ∈ Λ, where Λ is an index set. We need to

show that
⋂

i∈Λ Xi ∈ τΘ, that is, (
⋂

i∈Λ Xi)
Θ ⊆

⋂
i∈Λ Xi. Let y ∈ (

⋂
i∈Λ Xi)

Θ.

Then there exists an element z ∈
⋂

i∈Λ Xi such that (z, y) ∈ Θ. This implies

that y ∈ XΘ

i for each i ∈ Λ. Since Xi ∈ τΘ for each i, it follows that y ∈ Xi

for each i ∈ Λ. This gives y ∈
⋂

i∈Λ Xi, as required.

Once we have Theorem 2, a natural question arises about the relationship

between (i) Y Θ and Y τΘ
and (ii) Y Θ and Y τΘ

, where Y ⊆ W . In general,

Y Θ 6= Y τΘ
(and Y Θ 6= Y τΘ

) as shown by the following example.

Example 5. Let (W,Θ) be a generalized approximation space, where

• W = {1, 2, 3, ....., 9, 10};

• Fora all x, y ∈ W , (x, y) ∈ Θ if and only if | x− y |< 2.

Note that Θ is reflexive but not transitive.

Claim 1: Let U be a non-empty subset of W such that U 6= W . Then, there

exists a y ∈ W \ U such that y + 1 ∈ U or y − 1 ∈ U .

Let us prove the claim. Suppose y be the smallest among the elements of W

such that y /∈ U . Since U 6= W , such y exists. If y ≥ 2, then y − 1 ∈ U and

hence we are done. So, let y = 1, that is, 1 /∈ U . Since U 6= ∅, this guarantees

the existence of a z such that z ∈ W \ U and z + 1 ∈ U . This completes the

proof of the claim.
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Claim 2: Let U be a non-empty subset of W such that U 6= W . Then UΘ 6⊆ U .

Claim 1 guarantees the existence of a y ∈ W \ U such that y + 1 ∈ U or

y − 1 ∈ U . This shows that y ∈ UΘ, but y /∈ U .

It follows from Claim 2 that τΘ := {W, ∅}. Let Y = {1, 4, 5, 6, 7, 8}. Thus,

we obtain Y τΘ
= ∅. One can also verify that Y Θ = {5, 6, 7}. Therefore,

Y Θ 6= Y τΘ
.

In general, as shown in Example 5, we do not have Y Θ = Y τΘ
(and

Y Θ = Y τΘ
), but we have the following result.

Theorem 3. Let F := (W,Θ) be a generalized approximation space and Y ⊆

W . Then Y τΘ
⊆ Y Θ and Y Θ ⊆ Y τΘ

.

Proof. We provide a proof of Y τΘ
⊆ Y Θ. We can similarly prove Y Θ ⊆ Y τΘ

.

Obviously we have the result if Y = ∅. So, let Y 6= ∅. Let x ∈ Y τΘ
. It is

sufficient to show that Θ(x) ⊆ Y . So, suppose y ∈ Θ(x) and we show that

y ∈ Y . This gives (x, y) ∈ Θ. Since x ∈ Y τΘ
, there exists a U ∈ τΘ such

that x ∈ U and U ⊆ Y . Therefore, since x ∈ U , from (x, y) ∈ Θ, we obtain

y ∈ UΘ. But, since U ∈ τΘ, we have UΘ ⊆ U and hence y ∈ U . Finally, since

U ⊆ Y , we get y ∈ Y as required.

In the case when Θ is pre-order, we obtain Y Θ = Y τΘ
and Y Θ = Y τΘ

as

shown by the following result.

Theorem 4. Let (W,Θ) be a generalized approximation space where Θ is a pre-

order relation. Then for each Y ⊆ W , we obtain Y Θ = Y τΘ
and Y Θ = Y τΘ

Proof. We provide a proof of Y Θ = Y τΘ
. One can similarly prove Y Θ = Y τΘ

.

From Theorem 3, we have Y τΘ
⊆ Y Θ and hence it remains to show that

Y Θ ⊆ Y τΘ
. So, let x ∈ Y Θ and we show that there exists a U ∈ τΘ such that

x ∈ U and U ⊆ Y . Note that x ∈ Θ(x) (∵ Θ is reflexive) and Θ(x) ⊆ Y .

Therefore, it is enough to show that U ∈ τΘ, that is, Θ(x) is an upset. So,

let y ∈ (Θ(x))Θ and we show that y ∈ Θ(x). Since y ∈ (Θ(x))Θ, there exists
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a z ∈ Θ(x) such that (z, y) ∈ Θ. Now, using the transitivity of Θ, we obtain

y ∈ Θ(x). This completes the proof.

In Example 5, we have seen that the reflexivity of Θ alone is not enough

to give the conclusion of Theorem 4. The next example shows that transitivity

of Θ alone is also not enough to give us Y Θ 6= Y τΘ
.

Example 6. Let (W,Θ) be a generalized approximation space, where

• W = {1, 2, 3, ....., 9, 10};

• Fora all x, y ∈ W , (x, y) ∈ Θ if and only if y|x and y 6= x.

Let Y = {3, 4, 5, 6, 7, 8, 9}. One can verify that Y Θ = {6, 8, 9, 10} and Y τΘ
=

{3, 4, 5, 6, 7, 8, 9, 10}.

Let S and A be the class of all generalized approximation spaces and the

class of all Alexandrov spaces, respectively. Let Srt be the class of all general-

ized approximation spaces with pre-order relations. Consider the mapping

ϕ : S −→ A

such that ϕ(F ) = Fϕ, where F = (W,Θ) and Fϕ := (W, τΘ). Here, it is

pertinent to ask the following questions:

Q1. Is ϕ surjective?

Q2. Is ϕ injective?

The answer to Q1 is Yes. In fact, we have the following.

Theorem 5. The mapping ϕ|Srt
: Srt −→ A is a surjective map.

Proof. Let (W, τ) ∈ A. We need to find a pre-order relation Θ on W such that

τΘ = τ . We define Θ as follows:

(x, y) ∈ Θ if and only if x ∈ {y}τ . (3.1)

It is not difficult to verify that

(x, y) ∈ Θ if and only if for all U ∈ τ with x ∈ U , we have y ∈ U . (3.2)
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It is not difficult to see that Θ is pre-order. We need to show that τ = τΘ to

complete the proof.

Let us first prove τ ⊆ τΘ. Let U ∈ τ and we show that UΘ ⊆ U .

Let y ∈ UΘ. Then there exists a x ∈ U such that (x, y) ∈ Θ. Therefore, from

(3.1), we obtain y ∈ U as required.

Next, we show that τΘ ⊆ τ . Let U ∈ τΘ, that is, U
Θ ⊆ U . We need to show

that U ∈ τ . Let us take an arbitrary x ∈ U . Note that x ∈ Θ(x) (∵ Θ is

reflexive) and Θ(x) ⊆ U (∵ UΘ ⊆ U). Therefore, it is enough to show that

Θ(x) ∈ τ to complete the proof. Let us prove it.

For each y ∈ Θ(x), we define the set

U∗
y :=

⋂

V ∈τ and y∈V

V.

Note that y ∈ U∗
y and U∗

y ∈ τ . We also have U∗
y ⊆ Θ(x). In fact,

z ∈ U∗
y

=⇒ z ∈ Θ(y)

=⇒ z ∈ Θ(x) (∵ y ∈ Θ(x) and Θ is transitive)

Thus, it follows that Θ(x) ∈ τ .

Let us return to Q2. The answer to Q2 is no as shown by the following

example.

Example 7. Consider the generalized approximation spaces F := (W,Θ) and

F ′ := (W,Θ′), where

• W = {1, 2, . . . , 10};

• xΘy if and only if | x− y |< 2;

• xΘ′y if and only if x 6= y.

As shown in Example 5, we obtain τΘ := {∅,W}. It is also not difficult to

verify that τ
Θ

′ := {∅,W}. Thus, F 6= F ′, but ϕ(F ) = ϕ(F ′).

We end this section with the remark that the map ϕ|Srt
: Srt −→ A is

injective as show below.
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Theorem 6. ϕ|Srt
: Srt −→ A is injective.

Proof. Let F1, F2 ∈ Srt be such that τΘ1
= τΘ2

. Let F1 := (W,Θ1) and F2 :=

(W,Θ2). We need to show that Θ1 = Θ2 to complete the proof. If possible,

let Θ1 6= Θ2. Without loss of generality, let us assume that (x, y) ∈ Θ1, but

(x, y) /∈ Θ2.

As shown in the proof of Theorem 4, Θ2(x) is an upset of F2. That is, Θ2(x) ∈

τΘ2
. Also note that (Θ2(x))

Θ1 6⊆ Θ2(x) as y ∈ (Θ2(x))
Θ1 but y /∈ Θ2(x). Thus,

Θ2(x) /∈ τΘ1
. This gives τΘ1

6= τΘ2
, a contradiction. Hence Θ1 = Θ2.

From Theorems 5 and 6 it is evident that there is a 1-1 correspon-

dence between Alexandroff spaces and generalized approximation spaces with

reflexive and transtive relations. Further, from Theorem 4 it follows that

lower/upper approximation operators in generalized approximation spaces with

reflexive and transtive relations can be identified with the interior/closure op-

erators in the Alexandroff spaces.
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CONCLUSION

In this project work, we have studied the relationship between covering approx-

imation space and classical approximation space. We have also discussed the

connection between the notion of Pawlak’s lower and upper approximations

with the notion of lower and upper approximations induced by covering. The

relationship between generalized approximation space and Alexandrov space

is also studied. We noted that there is a 1-1 correspondence between Alexan-

droff spaces and generalized approximation spaces with pre-order relations.

Further, it is shown that lower/upper approximation operators in generalized

approximation spaces with pre-order relations can be identified with the inte-

rior/closure operators in the Alexandroff spaces.
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