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Abstract

Twin support vector machine is one of the widely used classifiers for real world ap-

plications. Many algorithms are proposed in the literature to deal with noisy data

sets. One of the different approaches is the intuitionistic fuzzy twin support vector

machine (IFTWSVM) technique. However, most of the real-world problems have data

sets with some correlation between two points in the same class which is not addressed

by IFTWSVM. Within this thesis, we propose a twin SVM based classifier for binary

data sets termed as weighted intuitionistic fuzzy least squares twin support vector ma-

chines. The proposed model not only judges input data by considering the membership

and nonmembership values but also uses the correlation between two data points in the

same class for the betterment of classification performance. This weighting technique

can give weights considering the relative significance of each data point. Retrospecting

the time complexity for big data sets we have used the least square model, which can

solve the classification problem without solving any Quadratic Programming Problem.

We have checked the efficiency of the proposed model on a considerable amount of data

sets. It can be seen that the proposed model can generalize brilliantly when compared

to other baseline models in terms of accuracy and area under the curve (AUC).
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Chapter 1

Introduction

One of the popular, interpretable machine learning algorithms, Support Vector Ma-

chine (SVM) was introduced by Vapnik [1]. This algorithm is effective in classification

and regression problems [1], [2]. While current trending algorithms like the artificial

neural network has no guarantee to achieve global minimum, SVM can give this guar-

antee to achieve global minimum. There are so many challenging areas where support

vector machines can be useful like medical [3], face detection [4] etc. SVM was also

found useful in speech recognition [5], cancer classification with micro array data [6],

satellite radiation [7], text categorization [8].

SVM is the result of the deal between structural complexity and empirical risk. In

SVM the hypothesis is to find a function f: Rn → [-1, 1] so that positive and negative

instances are separated by the hyperplane. Vapnik [9] showed that the hyperplane

maximizing the margin of training dataset will have minimal VC dimension in the set

of all consistent hyperplanes, which will thus be optimal.

If any dataset containing support vectors is mixed with noise then SVM finds it dif-

ficult to find the optimal hyperplane. To address this issue FSVMs [10]- [11] came

with a degree membership function for each training data point. The effects of out-

liers and noises were reduced by FSVM partially as while calculating the membership

value of each training datapoint, distance from the class center with this data point

was used only. A new idea with the combination of dual membership and SVM came

in [12]. Though this helped in the betterment of FSVM’s performance but also had
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Chapter 1. Introduction

some complications. Points far away from the center of that class produced superior

membership function values than points proximal to the class center. Balasundaram

and Tanveer [13] have introduced proximal bilateral-weighted fuzzy support vector

machine classifiers in the SVM family for a binary classification problem. They have

considered an input data point can belong to both the classes having different fuzzy

memberships.

Two parallel support hyperplanes are build by classical support vector machines and

then it maximizes the margin, minimizes the structural risk. A new approach was

introduced in the SVM family with the start of the use of unparalleled hyperplanes,

TWSVM [14] and GEPSVM [15]. In TWSVM, GEPSVM the main focus is to gen-

erate two unparalleled hyperplanes in such a way that the distance of each plane is

minimized from one class and maximized from the other. Classical SVM solves one big

quadratic programming problem (QPP) but when TWSVM came it solved the problem

by solving two smaller sized QPPs. TWSVM [14] has shown astonishing results while

remaining four times faster. In [16], Tanveer has reformulated TWSVM and made it

a strongly convex problem named robust and sparse linear programming twin support

vector machines. Richhariya and Tanveer [17] has integrated universum learning with

SVM. They have used a rectangular matrix of small size to do the tasks in low memory

and with faster speed.

Recently, concepts of intuitionistic fuzzy number and SVM were combined to form In-

tuitionistic fuzzy support vector machines [18, 19]. In fuzzy support vector machines

for the classification problem, every point had a degree of membership associated with

it to cut down error rates caused by noise and outliers. The problem with this degree

membership function is that the distance between the class center and the sample point

was measured in the sample space. To address the above issue in [18, 19], each point

is mapped to a higher dimensional feature space. Thenceforth an intuitionistic fuzzy

number is assigned to it and then with the help of a precise score function, one can

calculate the contribution of this point in the classification algorithm.

However, algorithms like TWSVM and IFTWSVM and their variants suffer from the
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following deficiency: most of the datasets have a neighbourhood structure which they

failed to preserve. In a time where most of us are getting recommendation’s in NET-

FLIX, YOUTUBE and in every ecommerce websites depending on the neighbourhood

structure of our choices, the above deficiency of the algorithms make them incompetent.

Moreover, we will explain the proposed algorithm “ Weighted Intuitionistic Fuzzy

Least Squares Twin SVM” minutely from where we can wrap up prior deficiency.
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Chapter 2

Related Works

In this chapter, we have discussed minutely the concepts and algorithms analogous to

the proposed algorithm.

2.1 Twin Support Vector Machines (TWSVMs)

Two parallel support hyperplanes are build by classical support vector machines and

then it maximizes the margin, minimizes the structural risk. A new approach was

introduced in the SVM family with the start of the use of unparalleled hyperplanes,

Twin Support Vector Machine [14]. In TWSVM [14] the main focus is to engender two

unparalleled hyperplanes in such a way that the distance of each plane is minimized

from one class and maximized from the other. Classical SVM solves one big quadratic

programming problem (QPP) but when TWSVM came it solved the problem by solving

two smaller sized QPPs. TWSVM has shown astonishing results while remaining four

times faster.

In this section, we will discuss about the TWSVM with linear and nonlinear kernels.
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Chapter 2. Related Works

2.1.1 Linear TWSVM

To solve a binary classification problem with linear kernel, the hyperplanes

wT1 x+ b1 = 0 and wT2 x+ b2 = 0, (2.1)

are obtained keeping in mind that each hyperplane has to be closest to the one class

and away from the other class. A test data point gets it’s class label by considering

the minimum distance from the two hyperplanes.

The primal problem of linear TWSVM [14] is defined as:

min
w1,b1,ξ

1

2
||X1w1 + e1b1||2 + c1e

T
2 ξ

s.t. − (X2w1 + e2b1) + ξ ≥ e2, ξ ≥ 0

(2.2)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 + c2e

T
1 η

s.t. (X1w2 + e1b2) + η ≥ e1, η ≥ 0,

(2.3)

where ci > 0, i = 1, 2 are penalty parameters, ξ and η are the slack variables, e1 and e2

are vectors of ones of appropriate dimensions, X1 and X2 are matrices corresponding

to class one and class two with m1 and m2 datapoints respectively.

Lagrangian of (2.2) is given by:

L(w1, b1, ξ, α, β) =
1

2
||X1w1+e1b1||2+c1e

T
2 ξ−αT (−(X2w1+e2b1+e2)+ξ)−βT ξ, (2.4)

where Lagrange multipliers are given by α = (α1, α2, . . . , αm2)
T ≥ 0 and

β = (β1, β2, . . . , βm1)
T ≥ 0 .

The Karush-Kuhn Tucker (K.K.T.) [20] conditions are given as:

XT
1 (X1w1 + e1b1) +XT

2 α = 0, eT1 (X1w1 + e1b1) + eT2 α = 0 and c1e2−α− β = 0. (2.5)
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Using equation (2.5), we can obtain the solution as:

u1 = −(RTR)−1P Tα, u1 = [w1, b1]
T (2.6)

where R = [X1 e1] and P = [X2 e2] are matrices augmented with ones. While

computing inverse matrices in TWSVM we may face that some matrices are singular.

Therefore to avoid this situation a small positive number, say εI, is added to the matrix,

where I represents an identity matrix of appropriate dimension. Hence, equation (2.6)

can be written as:

u1 = −(RTR + εI)−1P Tα, u1 = [w1, b1]
T . (2.7)

Using equations (2.5) and (2.6) in equation (2.4), the dual formulation of QPP (2.2) is

as follows:

max
α
− 1

2
αTP (RTR)−1P Tα + eT2 α

s.t. 0 ≤ α ≤ c1.

(2.8)

Similarly, the dual of QPP (2.3) is given by:

max
β
− 1

2
βTR(P TP )−1RTβ + eT1 β

s.t. 0 ≤ β ≤ c2.

(2.9)

A test data point x gets it’s class label from the decision function given by;

class = arg min
i=1,2
|wtix+ bi|. (2.10)

2.1.2 Non-linear TWSVMs

TWSVM with non-linear kernel finds the hyperplanes given by:

K(xT , AT )w1 + b1 = 0 and K(xT , AT )w2 + b2 = 0, (2.11)

6
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where A = [X1;X2], w1 and w2 ∈ Rn and K is denoting the Gaussian kernel. The

primal problem of non-linear TWSVM is defined as :

min
w1,b1,ξ

1

2
||K(X1, A

T )w1 + e1b1||2 + c1e
T
2 ξ

s.t. − (K(X2, A
T )w1 + e2b1) + ξ ≥ e2, ξ ≥ 0

(2.12)

and

min
w2,b2,η

1

2
||K(X2, A

T )w2 + e2b2||2 + c2e
T
1 η

s.t. (K(X1, A
T )w2 + e1b2) + η ≥ e1, η ≥ 0.

(2.13)

The corresponding duals are:

max
α

− 1

2
αTP (RTR)−1P Tα + eT2 α

s.t. 0 ≤ α ≤ c1

(2.14)

and

max
β

− 1

2
βTR(P TP )−1RTβ + eT1 β

s.t. 0 ≤ β ≤ c2.

(2.15)

Finally, one can obtain u1, u2 as:

u1 = −(RTR)−1P Tα, u1 = [w1, b1]
T (2.16)

and

u2 = (P TP )−1RTβ, u2 = [w2, b2]
T . (2.17)

A new test data point x ∈ Rn gets it’s class label from the decision function given by:

class = arg min
i=1,2
|wtiK(xT , AT ) + bi|. (2.18)

7
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2.2 Least Squares Twin Support Vector Machines

(LSTWSVMs)

Least squares TWSVM [21] was proposed to complement the performance of TWSVM

[14]. LSTWSVM solves two systems of linear equations instead of two QPPs. This

algorithm is awfully fast when compared with TWSVM. In the next parts of this

section, we will discuss the linear as well as non-linear formulations of LSTWSVMs in

a nutshell.

2.2.1 Linear LSTWSVMs

Objective function of linear LSTWSVM [21] is given as follows:

min
w1,b1,ξ

1

2
||X1w1 + e1b1||2 +

c1
2
||ξ||2

s.t. − (X2w1 + e2b1) + ξ = e2

(2.19)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 +

c2
2
||η||2

s.t. (X1w2 + e1b2) + η = e1.

(2.20)

The above formulation is solved as simultaneous systems of linear equations. Now,

substitute the equality constraint of (2.19) into the objective function (2.19) and obtain

the following equation

min
w1,b1

1

2
||X1w1 + e1b1||2 +

c1
2
||X2w1 + e2b1 + e2||2. (2.21)

Using K.K.T. conditions, the solution of (2.19) is given as:

 w1

b1

 = −
( 1

c1
RTR + P TP

)−1
P T e1. (2.22)

8
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Similarly, solution of (2.20) is given by:

 w2

b2

 =
( 1

c2
P TP +RTR

)−1
RT e2. (2.23)

A new test data point x ∈ Rn gets it’s class label from the decision function given by:

(2.10).

2.2.2 Non-linear LSTWSVMs

TWSVM with non-linear kernel finds the hyperplanes given by (2.11). Primal formu-

lation of non-linear LSTWSVM [21] is as follows:

min
w1,b1,ξ

1

2
||K(X1, A

T )w1 + e1b1||2 +
c1
2
||ξ||2

s.t. − (K(X2, A
T )w1 + e2b1) + ξ = e2

(2.24)

and

min
w2,b2,η

1

2
||K(X2, A

T )w2 + e2b2||2 +
c2
2
||η||2

s.t. (K(X1, A
T )w2 + e1b2) + η = e1.

(2.25)

We can obtain the solutions of non-linear LSTWSVM similarly as we did in linear

LSTWSVM as,  u1

b1

 = −
( 1

c1
STS +RTR

)−1
RT e1 (2.26)

and  u2

b2

 =
( 1

c2
RTR + STS

)−1
ST e2. (2.27)

A new test data point x ∈ Rn gets it’s class label from the decision function given by

(2.18).

9
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2.3 Fuzzy Support Vector Machines

Though SVM is an omnipotent tool in classification jobs but this theory also has some

boundary. While solving real-life problems by machine learning different point makes

different effects in the training of the algorithm. From this problem the concept of

fuzzy set, SVM was combined and Fuzzy SVM [10] came in the market.

Let A be a nonempty set. Fuzzy set F in the universe A is defined by

F={(y, µF (y)) : y ∈ A}

where µF : X −→ [0, 1] and µF represents the membership degree of belongingness of y

to A.

One can find the optimal hyperplane after solving

min
1

2
||w||2+cSt2η

subject to yi(w.zi + b) ≥ 1− ηi, η ≥ 0, i = 1, 2, 3...m,

here c is a given constant and ηi is the error in classifying ith sample and zi is the

feature vector of ith sample. Lagrangian of the above QPP is given as:

L(w, b, η, α, β) =
1

2
||w||2 + cSt2η −

m∑
1

αi[yi(w.zi + b)− 1 + ηi]−
m∑
1

βiηi, (2.28)

here α and β are the Lagrange multipliers.

To solve this problem we need the saddle point of the above Lagrangian to be found

out. Following conditions should be satisfied by the parameters.

∂L

∂w
= w −

m∑
i=1

αiyizi = 0, (2.29)

∂L

∂b
= −

m∑
i=1

αiyi = 0, (2.30)

∂L

∂ηi
= cSi − αi − βi = 0. (2.31)

10
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On using the above three equations, we transform the primal problem into its wolfe

dual form

max
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
i=1

αiαjyiyjK(zi, zj)

subject to
m∑
i=1

yiαi = 0, 0 ≤ α ≤ cS.

A sample point xi is a support vector if it has corresponding αi is positive. Fuzzy SVM

has two possible types of support vectors. Support vectors for which cSi > αi > 0 gets

the position at the margin of the hyperplane and if αi = cSi then corresponding sample

point gets misclassified.

2.3.1 Importance of Fuzzy Membership in Classification Per-

formance

In traditional Support Vector Machines, there is only one penalty parameter to vary

when we want to balance the margin width and number of misclassified samples. When-

ever we want to make the margin wide we choose small value for c and selection of

large value for c will imply that objective function will focus more to make the model

accurate.

Fuzzy SVM behaves similar to traditional SVM when score values for all the points

is 1. If a point gets bigger score value that means that point more important while

forming the decision surface for the classification problem.

Therefore, from the above discussion we can say that number of variable parameters (

only one in traditional SVM) increases from SVM to Fuzzy SVM (in Fuzzy SVM it is

equal to the count of training samples).

11
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2.4 Intuitionistic Fuzzy Twin Support Vector Ma-

chines

In fuzzy support vector machines for classification problem every point had a degree

of membership associated with it to cutdown error rates caused by noise and outliers.

The problem with this degree membership function is that the distance between class

center and sample point was measured in the sample space. To address the above issue

each point is mapped to a higher dimensional feature space then an intuitionistic fuzzy

number is assigned to it and then with the help of a precise score function one can

calculate the contribution of this point in the classification algorithm. In this section,

we will discuss about the intuitionistic fuzzy set, intuitionistic fuzzy number and linear

and non-linear formulations of intuitionistic fuzzy support vector machines.

2.4.1 Intuitionistic Fuzzy set

Let A be a nonempty set. Fuzzy set F in the universe A is defined by

F={(y, µF (y)) : y ∈ A} where µF : X −→ [0, 1] and µF represents the membership

degree of belongingness of y to A.

One can define an intuitionistic fuzzy set as

IF={(y, µIF (y), ηIF (y)) : y ∈ A},

where µIF : X −→ [0, 1], ηIF : X −→ [0, 1], 0 ≤ µIF (y) + ηIF (y) ≤ 1 , µIF & ηIF

represents the membership degree and nonmembership degree of belongingness of y to

A.

The degree of hesitation of y that it will belong to A is defined by

hIF (y) = 1− µIF (y)− ηIF (y).

An intuitionistic fuzzy number is defined by IFN = (µIF , ηIF ).

∴ Largest intuitionistic fuzzy number and smallest intuitionistic fuzzy numbers are re-

spectively (1,0),(0,1) from the conditions put on µIF & ηIF .

An intuitionistic fuzzy number alone is not enough we need to measure the number by

score value assigned to it. Therefore, the basic score function is

s(IFN)= µIFN − ηIFN .

12
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However, it is not possible for the above score function to measure all the IFNs. Ad-

dressing the problem a precise score function was defined by

p(IFN)= µIFN + ηIFN ,

∴ p(IFN) + hIF (IFN) = 1.

Given two IFNs we can say that IFN1 < IFN2 if

s(IFN1) = s(IFN2) and p(IFN1) < p(IFN2).

Many score function can be defined depending on the precise score function. One such

is defined by

G(IFN) =
1− ηIFN

2− µIFN − ηIFN
. (2.32)

Thus we have the conjunction amidst membership and nonmembership values as,

s(IFN1) < s(IFN2)⇒ G(IFN1) < G(IFN2),

s(IFN1) = s(IFN2), p(IFN1) < p(IFN2)⇒ G(IFN1) < G(IFN2).

2.4.1.1 Process of assigning degree membership to every training data

points

Here degree membership is calculated in the feature space unlike FSVM where degree

membership is calculated in the sample space. We first project the training points

in the high dimensional space. After that we find the center for each class, calculate

the distance for each training point from its class center to determine the membership

values. Given a training data point one can assign the degree of membership as

µ(xi) =

 1− ‖ψ(xi)−C+‖
R++ε

, if yi = +1,

1− ‖ψ(xi)−C−‖
R−+ε

, if yi = −1.
(2.33)

Here ε > 0 needed to be adjusted according to requirements, C+, C−, R+, R− are centers

and radius of positive and negative classes respectively in the higher dimensional space,

vector norm is represented by ‖.‖.

Class centers can be found as

C+ = 1
m+

∑
yi=1 ψ(xi) and C− = 1

m−

∑
yi=−1 ψ(xi),

here m+ and m− are the counts of positive and negative samples.

13
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Following equation explains how radius of each class can be calculated,

R+ = maxyi=+1‖ψ(xi)− C+‖ and R− = maxyi=−1‖ψ(xi)− C−‖.

2.4.1.2 Process of assigning degree non-membership to every training data

points

Non-membership values for each training data points in proportional to the ratio of

total number of incongruous points and the cardinality of the set of all training points

in its neighbourhood. Non-membership function can be defined as follows,

γ(xi) = (1− µ(xi))τ(xi).

Here 1≥ γ(xi) + µ(xi) ≥ 0, τ(xi) is defined by, ratio of

|{xi : ‖ψ(xj)− ψ(xi)‖ ≤ β, yi 6= yj| over |{xi : ‖ψ(xj)− ψ(xi)‖ ≤ β}|.

Here β>0 is an adjustable parameter and the cardinality is denoted by |.|

2.4.1.3 Calculating Score Values

Training data points can be transformed into IFN using membership and nonmember-

ship values as follows: IFN={x1, y1, µ1, γ1}, {x2, y2, µ2, γ2}, . . . , {xm, ym, µm, γm}. Here

µi and γi are respectively membership and nonmembership values. Therefore score

values can be found as

Si =


µi, γi = 0,

0, µi ≤ γi,

1−γi
2−µi−γi others.

(2.34)

2.4.1.4 Relation between kernel function and inner product distance

All the distances used in calculating the membership and non-membership values are

in feature space. These distances depends on the inner products of feature vectors in

high dimensional space. Therefore there is a relationship between kernel function and

inner product distance given by

‖ψ(xp)− ψ(xq)‖ =
√
K(xp, xp) +K(xq, xq)− 2K(xp, xq).

14
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Above relationship between kernel function and inner product can be proved as

‖ψ(xp)− ψ(xq)‖

=
√

(ψ(xp)− ψ(xq)).(ψ(xp)− ψ(xq)),

=
√

(ψ(xp).ψ(xp)) + (ψ(xq).ψ(xq))− 2(ψ(xp).ψ(xq)),

=
√
K(xp, xp) +K(xq, xq)− 2K(xp, xq).

2.4.2 Intuitionistic Fuzzy Twin Support Vector Machines

(IFTWSVM)

The main idea of Intuitionistic fuzzy twin support vector machines [19] has been trig-

gered by the Intuitionistic fuzzy number and Fuzzy twin SVM concept. Obtaining two

nonparallel hyperplanes from the solutions of two smaller QPPs instead of one large

QPP IFTWSVM classifies a point. The performance of IFTWSVM has been elevated

as it considers both membership and nonmembership values.

2.4.2.1 Linear IFTWSVM

The primal problem of linear IFTWSVM [19] is defined as

min
w1,b1,ξ

1

2

∣∣|X1w1 + e1b1||2+
c1
2
||w1||2 + c2S

t
2ξ

subject to

− (X2w1 + e2b1) + ξ ≥ e2, ξ ≥ 0 (2.35)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 +

c3
2

∣∣|w2||2 + c4S
t
1η

subject to

(X1w2 + e1b2) + η ≥ e1, η ≥ 0. (2.36)

15
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Here c1, c2, c3, c4 > 0 are parameters; e1, e2 are vector of ones of appropriate dimensions;

X1, X2 are features of training data sets corresponding to each class; ξ and η are slack

variables.

Lagrangian of (2.35) is given as:

L(w1, b1, ξ, α, β) =
1

2
||X1w1 + e1b1||2 +

c1
2
||w1||2 + c2S

t
2ξ

+α[(X2w1 + e2b1)− ξ + e2]− βξ,
(2.37)

here α and β are the Lagrange multipliers.

One can obtain the K.K.T. conditions as,

∂L

∂w1

= X t
1(X1w1 + e1b1) + c1w1 + αX2 = 0, (2.38)

∂L

∂b1
= et1(X1w1 + e1b1) + αe2 = 0, (2.39)

∂L

∂ξ
= c2S

t
2 − α− β = 0, (2.40)

from (2.38)-(2.40) we can say that

X t
1

et1

[X1 e1

]w1

b1

+ α

X2

e2

 = 0. (2.41)

Equation (2.41) can be written as,

u1 = −(RtR + c1I)−1P tα, (2.42)

where R=
[
X1 e1

]
, P=

[
X2 e2

]
, u1 =

w1

b1

 .
Using the K.K.T. conditions and Lagrangian method we can write the corresponding

Wolfe dual as

max
α

et2α−
1

2
αtP (RtR + c1I)−1P tα

subject to 0 ≤ α ≤ c2S2

16
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and

max
β

et1β −
1

2
βtR(P tP + c3I)−1Rtβ

subject to 0 ≤ β ≤ c4S1.

One can obtain u1 and u2 as

u1 = −(RtR + c1I)−1P tα, (2.43)

u2 = (P tP + c3I)−1Rtβ, (2.44)

A new test data point x ∈ Rn gets it’s class label from the decision function given by:

arg min
i=1,2

|wtix+ bi|
||wi||

. (2.45)

2.4.2.2 Non-linear IFTWSVM

The primal problem of nonlinear IFTWSVM is defined as

min
w1,b1,ξ

1

2

∣∣|K(X1, A
t)w1 + e1b1||2+

c1
2
||w1||2

+ c2S
t
2ξ

subject to

− (K(X2, A
t)w1 + e2b1) + ξ ≥ e2, ξ ≥ 0 (2.46)

and

min
w2,b2,η

1

2
||K(X2, A

t)w2 + e2b2||2 +
c3
2

∣∣|w2||2

+ c4S
t
1η

subject to

(K(X1, A
t)w2 + e1b2) + η ≥ e1, η ≥ 0. (2.47)

Here c1, c2, c3, c4 > 0 are parameters; e1, e2 are vectors of ones of appropriate di-

mensions; X1, X2 are features of training datasets corresponding to each class; At =

[X1X2]
t; ξ and η are slack variables.
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Lagrangian of (2.46) is given as:

L(w1, b1, ξ, α, β) =
1

2
||K(X1, A

t)w1 + e1b1||2 +
c1
2
||w1||2

+c2S
t
2ξ + α[(K(X2, A

t)w1 + e2b1)− ξ + e2]− βξ,
(2.48)

here α and β are the Lagrange multipliers.

One can obtain the K.K.T. conditions as,

∂L

∂w1

= K(X1, A
t)t(K(X1, A

t)w1 + e1b1) + c1w1

+αK(X2, A
t) = 0,

(2.49)

∂L

∂b1
= et1(K(X1, A

t)w1 + e1b1) + αe2 = 0, (2.50)

∂L

∂ξ
= c2S

t
2 − α− β = 0, (2.51)

from (2.49)-(2.51) we can say that

K(X1, A
t)t

et1

[K(X1, A
t) e1

]w1

b1

+ α

K(X2, A
t)

e2

 = 0. (2.52)

Equation (2.52) can be written as,

u1 = −(RtR + c1I)−1P tα, (2.53)

where R=
[
K(X1, A

t) e1

]
, P=

[
K(X2, A

t) e2

]
, u1 =

w1

b1

 .
Using the K.K.T. conditions and Lagrangian method we can write the corresponding

Wolfe dual as

max
α

et2α−
1

2
αtP (RtR + c1I)−1P tα

subject to 0 ≤ α ≤ c2S2

and

max
β

et1β −
1

2
βtR(P tP + c3I)−1Rtβ

subject to 0 ≤ β ≤ c4S1.
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One can obtain u1 and u2 as

u1 = −(RtR + c1I)−1P tα, (2.54)

u2 = (P tP + c3I)−1Rtβ. (2.55)

A new test data point x ∈ Rn gets it’s class label from the decision function given by:

arg min
i=1,2

|wtiK(x,At) + bi|√
wtiK(Xi, At)wi

. (2.56)
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Proposed Algorithm

Within this chapter, we propose a new method for binary classification problems des-

ignated by Weighted Intuitionistic Fuzzy Least Squares Twin SVM (WIFLSTWSVM).

3.1 Weighted Intuitionistic Fuzzy Least Squares Twin

SVM (WIFLSTWSVM)

To address intra-class local structure in a dataset, we used knn based weighting tech-

nique introduced in [22]. Given any pair of points (xi, xj) in the same class the weight

matrix can be defined as

Wij =

 exp
−||xi−xj ||2

t
, if xi is k nearest neighbour of xj,

0, otherwise.
(3.1)

Here t is a hyper-parameter. After this, the intra-class weights can be found as: ρ
(c)
i =∑k

j=1Wij, where c varies over the number of class and i varies over the number of

samples in that class.

The proposed WIFLSTWSVM acquires the subsequent alluring advantages:

• Paramountcy of the correlation between two points in the same class has been

considered for the betterment of classification performance.
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• We have augmented the objective function of the primal problem by adding the

regularizing term which helps our algorithm to perform better.

• The solution of our algorithm is unique.

In the coming parts of this chapter, we will discuss formulations of the proposed WI-

FLSTWSVM for the linear and non-linear cases.

3.1.1 Linear WIFLSTWSVM

In the primal formulation of WIFLSTWSVM, we take linear equality constraints in-

stead of inequality constraints. The primal formulation is given by:

min
w1, b1, ξ

1

2

∣∣|ρ1(X1w1 + e1b1)||2+
c1
2
||S2ξ||2 +

c2
2

(
||w1||2 + b21

)
s.t. − (X2w1 + e2b1) + ξ = e2

(3.2)

and

min
w2, b2, η

1

2
||ρ2(X2w2 + e2b2)||2 +

c3
2
||S2η||2 +

c4
2

(
||w2||2 + b22

)
s.t. (X1w2 + e1b2) + η = e1.

(3.3)

Here c1, c2, c3, c4 > 0 are parameters; e1, e2 are vectors of ones of appropriate dimen-

sions; X1, X2 are features of training data sets corresponding to each class; ρ1, ρ2 are

intraclass weight matrices for respective class. ξ and η are slack variables.

Using the equality constraints (3.2), the objective function (3.2) can be rewritten as

min
w1,b1

1

2
||ρ1(X1w1 + e1b1)||2 +

c1
2
||S2(X2w1 + e2b1 + e2)||2

+
c2
2

(
||w1||2 + b21

)
.

(3.4)

Taking the gradient of (3.4) with respect to w1, b1 and equating to zero we get respec-

tively,

(ρX1)
tρ1(X1w1 + e1b1) + c1(S2X2)

t(S2(X2w1 + e2b1 + e2)) + c2w1 = 0, (3.5)
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(ρ1e1)
tρ1(X1w1 + e1b1) + c1(S2e2)

t(S2(X2w1 + e2b1 + e2)) + c2b1 = 0. (3.6)

Writing the above two equations in matrix form we get

w1

b1

 = −(c1T
tT +RtR + c2I)−1T tS2e2, (3.7)

where R=
[
ρ1X1 ρ1e1

]
, T=

[
S2X2 S2e2

]
,

I = identity matrix of appropriate dimension.

In a similar way, we can compute the parameters for the other hyperplane by the

following formula w2

b2

 = (c3R
tR + T tT + c4I)−1RtS1e1, (3.8)

where R=
[
S1X1 S1e1

]
, T=

[
ρ2X2 ρ2e2

]
.

3.1.2 Nonlinear WIFLSTWSVM

The objective functions of nonlinear least squares weighted IFTWSVM (LSWIFTWSVM)

are written as

min
w1,b1,ξ

1

2
||ρ1(K(X1, A

t)w1 + e1b1)||2 +
c1
2
||S2ξ||2 +

c2
2

(
||w1||2 + b21

)
subject to

− (K(X2, A
t)w1 + e2b1) + ξ = e2 (3.9)
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and

min
w2,b2,η

1

2
||ρ2(K(X2, A

t)w2 + e2b2)||2 +
c3
2
||S2η||2 +

c4
2

(
||w2||2 + b22

)
subject to

(K(X1, A
t)w2 + e1b2) + η = e1. (3.10)

Here c1, c2, c3, c4 > 0 are parameters; e1, e2 are vectors of ones of appropriate dimen-

sions; X1, X2 are features of training data sets corresponding to each class; At =

[X1X2]
t; ξ and η are slack variables.

Using the equality constraints (3.9), the objective function (3.9) can be rewritten as

min
w1,b1

1

2
||ρ1(K(X1, A

t)w1 + e1b1)||2

+
c1
2
||S2(K(X2,A

t)w1 + e2b1 + e2)||2 + c2
2

(
||w1||2 + b21

)
.

(3.11)

Taking the gradient of (3.11) with respect to w1, b1 and equating to zero

(ρK(X1, A
t))tρ1(K(X1, A

t)w1 + e1b1)+

c1(S2K(X2, A
t))t(S2(K(X2, A

t)w1 + e2b1 + e2)) + c2w1 = 0,
(3.12)

(ρ1e1)
tρ1(K(X1,A

t)w1+e1b1)+ c1(S2e2)
t(S2(K(X2,A

t)w1 +e2b1+e2)+ c2b1=0.

(3.13)

Writing the above two equations in matrix form we get

w1

b1

 = −(c1T
tT +RtR + c2I)−1T tS2e2,

where R=
[
ρ1K(X1, A

t) ρ1e1

]
, T=

[
S2K(X2, A

t) S2e2

]
,

I = identity matrix of appropriate dimension, A is the feature matrix of all training

samples.

In a similar way, we can compute the parameters for the other hyperplane by the
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following formula w2

b2

 = (c3R
tR + T tT + c4I)−1RtS1e1,

where R=
[
S1K(X1, A

t) S1e1

]
, T=

[
ρ2K(X2, A

t) ρ2e2

]
.

3.2 Theoretical Justification and Computational Com-

plexity of the Proposed Algorithm

3.2.1 Theorem 1: Finding Hyperplanes of WIFLSTWSVM is

a Convex Optimization Problem

Proof: Constraints of an optimization problem forms a convex set, ξ is linear and convex

function is known to us. Therefore we need to check the convexity of the function

1

2
||ρ(Xw1 + eb1)||2 +

1

2
c2(||w1||2 + b21), (3.14)

for ρ, X, e, c2 and t∈ [0,1].

That is, we need to check,

t

2
||ρ(Xw1 + eb1)||2 +

t

2
c2(||w1||2 + b21) +

1− t
2
||ρ(Xw2 + eb2)||2 +

1− t
2

c2(||w2||2 + b22)

≥
1
2
||ρX(tw1 +(1-t) w2) + e(tb1 +(1-t) b2)||2 + c2

2
(||tw1 +(1-t) w2||2 + (tb1 +(1-t) b2)

2).

When we subtract the expression in the left hand side of the inequality from the

expression on the right hand side we will get the expression,

ρ2X2w1
2(t2− t) + ρ2X2w2

2(t2− t) + 2ρ2X2w1w2(t-t
2) + e2b1

2(t2− t) + e2b2
2(t2 − t) +

2e2b1b2(t-t
2) +2ρXw1eb1(t

2 − t) + 2ρXw1eb2(t-t
2) + 2ρXw2eb1(t-t

2) +2ρXw2eb2(t
2 −

t)+c2(w1
2(t2 − t)+w2

2(t2 − t) + 2w1w2(t-t
2) +b1

2(t2 − t)+b2
2(t2 − t) + 2b1b2(t-t

2) )

after simplifying the above expression we get

(t2 − t)[(ρX(w1-w2)
2 + (e(b1-b2))

2 + 2ρXe(w1-w2)(b1-b2) +c2[(w1-w2)
2 + (b1-b2))

2]]
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= (t2 − t)[[ρX(w1-w2)]+e(b1-b2)]
2+c2[(w1-w2)

2 + (b1-b2)
2]]≤ 0.

As(t2 − t) ≤ 0 for t ∈ [0,1] (3.15)

Thus we have proved the required inequality by proving that the expression on the right

hand side of inequality is smaller than the expression on the left side of the inequality.

On the similar lines one can check the convexity of the other hyperplane. Thus we can

conclude that WIFLSTWSVM model is convex.

3.2.2 Theorem 2: Uniqueness of the solutions for any ρ, X, e,

S, c1>0, c2>0

Suppose Z is the objective function

Z =
1

2
||ρ(Xw + eb)||2 +

c1
2
||Sξ||2 +

c2
2

(
||w||2 + b2

)
, (3.16)

let if possible m1 and m2 be the two solutions of the objective function. Since the objec-

tive function is convex. Therefore, a family of solutions is possible mt = (1−t)m1+tm2,

t∈ [0,1]. Also Z(mt) = Z(m1) = Z(m2). Therefore Z(mt)-Z(m1)=0.

From the above equation, we get

1
2
||ρ(X[(1 − t)w1+tw2] +e[(1-t)b1 +tb2])||2 + c1

2
||S[(1 − t)ξ1 + tξ2]||2 + c2

2
(||(1 − t)w1 +

tw2||2 + [(1− t)b1 + tb2]
2) - 1

2
||ρ(Xw1 + eb1)||2 − c1

2
||Sξ1||2 − c2

2

(
||w1||2 + b21

)
= 0

On differentiating the above equation w.r.t. t we get

(ρX)2[(t − 1)||w1||2 + t||w2||2 + (1 − 2t)<w1, w2>] + e2[(t − 1)||b1||2 + t||b2||2 + (1 −

2t)<b1, b2>]+ρXe[2(t−1)<w1, b1>+(1−2t)<w1, b2>+(1−2t)<w2, b1>+2t<w2, b2>]+

c1S
2[(t − 1)||ξ1||2 + t||ξ2||2 + (1 − 2t)<ξ1, ξ2>] + c2[(t − 1)||w1||2 + t||w2||2 + (1 −

2t)<w1, w2>+ (t− 1)||b1||2 + t||b2||2 + (1− 2t)<b1, b2>] = 0

On differentiating the above equation w.r.t. t we get

(ρX)2[||w1||2 + ||w2||2−2<w1, w2>] + e2[||b1||2 + ||b2||2−2<b1, b2>] +ρXe[2<w1, b1>−

2<w1, b2> − 2<w2, b1> + 2<w2, b2>] + c1S
2[||ξ1||2 + ||ξ2||2 − 2<ξ1, ξ2>] + c2[||w1||2 +

||w2||2 − 2<w1, w2>+ ||b1||2 + ||b2||2 − 2<b1, b2>] = 0

⇒ (ρX)2||w1−w2||2+e2||b1−b2||2+2ρXe<w1−w2, b1−b2>+c1S
2||ξ1−ξ2||2+c2[||w1−

w2||2 + ||b1 − b2||2] = 0
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⇒ ||(ρX)(w1 − w2) + e(b1 − b2)||2 + c1S
2||ξ1 − ξ2||2 + c2[||w1 − w2||2 + ||b1 − b2||2] = 0

⇒ w1 = w2; b1 = b2; ξ1 = ξ2

Thus we can conclude that the solution is unique.

3.2.3 Complexity of the Proposed WIFLSTWSVM

We will use big-O notation to analyse the time complexity of the proposed model. Here

n, m denotes the total number of training samples, number of samples in a single class

respectively. The important contributions in computation cost is coming from:

1: To generate score values for each sample, we need O(m) computations [19].

2: Calculating the k-nearest neighbour we can compute the intra-class weights in

O(2m2log(m)) [22].

Thus, optimization of the proposed model requires the same time complexity as in

RFLSTSVM by Richhariya and Tanveer [23] as we are using the same sized matrices

while minimizing our objective function.

3.3 Experimental Results

In this section, we embrace the achievement of the proposed WIFLSTWSVM. To au-

thenticate the preeminence of the proposed WIFLSTWSVM, we have compared the

proposed algorithm with TWSVM [14], IFTWSVM [19]. Moreover, we have also given

six number of tables containing experimental results of accuracy rates, AUC rates,

ranks of three algorithms with linear as well as non linear kernels. We have done all

these experiments using MATLAB R2017a on PC having configuration 2x intel Xeon

Processor, 128 GB of RAM with 4 TB of secondary storage.

3.3.1 Parameter selection

While doing these experiments to bring out the best accuracy from the algorithms

we have used grid search method to tune the hyper-parameters with five-fold cross
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validation method. We have set the parameters c1 = c3 and c2 = c4 for IFTWSVM

and our proposed algorithm and c1 = c2 for TWSVM. For all three nonlinear models

Gaussian (κ(xp, xq) = exp(−||xp−xq||2/σ2))kernel has been used with kernel parameter

σ =[2−1, 2, 21, 22, 23, 24, 25]. In IFTWSVM and proposed WIFLSTWSVM’s linear mod-

els Gaussian (κ(xp, xq) = exp(−||xp−xq||2/σ2)) kernel has been used with kernel param-

eter σ =[2,21, 22, 23, 24, 25] to calculate the intuitionistic fuzzy score values in the feature

space. Optimal values of c1 and c2 were searched in [10−5, 10−4, 10−3, 10−2, 10−1, 10,

102, 103, 104, 105] for all three models. For the proposed WIFLSTWSVM we have

searched for the optimal value of the hyperparameter k in [1,2,3,4,5,6,7,8,9]. Before

training features were normalised so that mean is zero and standard deviation is one

as for some data set may have different range which in return may hamper the models

performance.

3.3.2 Results and discussion

Here we will discuss the experimental results to authenticate the preeminence of the

proposed WIFLSTWSVM in contrast with TWSVM and IFTWSVM.

3.3.2.1 Comparison on different benchmark datasets

While comparing the proposed WIFLSTWSVM with TWSVM and IFTWSVM we

have taken the datasets from [24–26]. We have encapsulated the experimental results

in Table 3.1, 3.2, 3.4, 3.3 along with the optimal value of the hyper-parameter k for

the proposed WIFLSTWSVM.

In Table 3.1 we have presented accuracy rates for 34 datasets using nonlinear kernel.

We can see from the table that in 14 datasets our model performs better than other two

algorithms and in 3 datasets it has tied with one of the other two algorithms having

best performance for that dataset.

In Table 3.2, we presented accuracy rates for 32 datasets using linearkernel. We can see

from the table that in 19 datasets our model out performs other two algorithms and in

1 dataset it is tied with one of the other two algorithms having best performance for
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that dataset.

Also in Table 3.4 and Table 3.3 we have shown that the proposed WIFLSTWSVM

is not only capable of handling balanced dataset but it can also handle imbalanced

dataset.

Moreover, we have given the count plot of accuracy for different number of neighbours

used in intraclass weighting in Fig. 3.1 for four datasets using non-linear kernel.

In Fig. 3.1 (a), for Statlog (Australian Credit Approval) data set we got top accuracy

for the proposed algorithm with nonlinear kernel as 86.7052 % for k value 8. From the

count plot of accuracy for different values of k, it is very clear that if we can not choose

k value properly the neighbourhood structure is not preserved properly and algorithm

gets inferior results for this data set. Similarly, it can be recognized for other datasets

in Fig. 3.1 (a), Fig. 3.1 (b) and Fig. 3.1 (c). Therefore the choice of the values of k is

a significant job when we scrutinize the performance of our proposed algorithm.
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Figure 3.1: Effects of the hyper-parameter k on different datasets

(a) Statlog (Australian Credit Approval) Dataset

(b) Heart Disease Dataset

(c) Congressional Voting Records Dataset

(d)Breast Cancer Wisconsin (Diagnostic) Dataset
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Table 3.1: Accuracy rate with nonlinear kernel

Dataset TWSVM IFTWSVM Proposed WIFLSTWSVM k

iono 92.6136 97.1591 97.1591 4

wdbc 96.1404 96.4912 99.2982 6

wpbc 77.551 77.551 78.5714 1

heart-stat 77.9412 85.2941 84.5588 1

pima 78.4416 76.8831 78.7013 6

aus 86.9942 88.7283 86.7052 8

sonar 74.2857 80 74.2857 1

crossplane130 100 100 100 1

crossplane150 100 100 100 1

brwisconsin 96.7836 97.6608 98.2456 4

vehicle 1 85.1415 79.9528 82.0755 5

vehicle2 99.0566 99.0566 99.0566 5

cleve 78.5235 80.5369 81.8792 3

haberman 74.6753 59.7403 72.7273 3

votes 94.4954 94.0367 95.4128 2

transfusion 81.6 84.8 84 1

checkerboard Data 86.9942 88.7283 86.7052 8

monk2 87.3754 82.7243 81.3953 5

monk3 97.1223 96.0432 93.8849 2

ripley 91.3738 91.2141 90.8946 4

acute-inflammation R 100 100 91.8033 7

acute-nephritis R 100 85.2459 100 1

breast-cancer R 73.6111 67.3611 79.8611 3

breast-cancer-wisc R 95.4286 97.4286 97.7143 2

breast-cancer-wisc-prog R 75 74 76 1

credit-approval R 87.8613 89.0173 87.2832 1

echocardiogram R 84.8485 87.8788 87.8788 3

haberman-survival R 74.026 75.974 72.0779 1

heart-hungarian R 79.0541 83.1081 79.7297 5

hepatitis R 82.0513 79.4872 84.6154 4

mammographic R 81.4969 80.6653 84.4075 5

planning R 69.5652 65.2174 72.8261 6

parkinsons R 87.7551 89.7959 91.8367 1

molec-biol-promoter R 75.9259 74.0741 83.3333 9
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Table 3.2: Accuracy rate with linear kernel

Dataset TWSVM IFTWSVM Proposed WIFLSTWSVM k

iono 86.3636 88.6364 88.6364 2

wdbc 97.5439 98.9474 98.2456 1

wpbc 79.5918 78.5714 81.6327 1

heart-stat 86.0294 86.0294 86.0294 9

pima 76.6234 77.6623 78.4416 3

aus 86.9942 86.4162 87.2832 9

sonar 56.1905 72.381 78.0952 2

crossplane130 100 100 100 4

crossplane150 100 100 100 5

brwisconsin 96.1988 98.538 97.6608 1

vehicle 1 77.8302 77.1226 78.7736 4

vehicle2 94.5755 96.934 97.8774 7

cleve 83.8926 80.5369 83.2215 2

votes 94.4954 94.4954 94.4954 8

transfusion 83.7333 82.1333 85.3333 9

checkerboard Data 86.9942 86.4162 87.2832 9

monk3 83.8129 82.0144 80.5755 1

ripley 88.9776 89.4569 89.9361 4

acute-inflammation R 100 100 100 1

acute-nephritis R 85.2459 100 100 1

breast-cancer R 72.9167 70.1389 72.2222 3

breast-cancer-wisc R 96.8571 96.8571 97.1429 1

breast-cancer-wisc-prog R 75 66 77 2

credit-approval R 87.2832 87.2832 85.8382 1

echocardiogram R 84.8485 84.8485 86.3636 9

haberman-survival R 76.6234 76.6234 79.8701 6

heart-hungarian R 73.6486 83.1081 86.4865 4

hepatitis R 79.4872 75.641 79.4872 1

mammographic R 81.9127 80.8732 83.9917 1

planning R 57.6087 67.3913 70.6522 1

parkinsons R 82.6531 77.551 85.7143 1

molec-biol-promoter R 64.8148 68.5185 70.3704 1
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Table 3.3: AUC rate in test sets with nonlinear kernel

Dataset TWSVM IFTWSVM Proposed WIFLSTWSVM k

shuttle-6 vs 2-3 100 99.0991 79.0991 1

glass4 91.1765 91.1765 66.6667 1

ecoli-0-6-7 vs 3-5 85.7143 88.2653 93.8776 2

glass2 64.898 64.1837 55 1

ecoli-0-4-6 vs 5 85.8142 86.3636 94.3556 1

ecoli4 77.2727 92.6064 91.9735 2

ecoli-0-1 vs 5 82.1429 89.2857 90.0534 2

abalone9-18 76.5351 80.8114 87.2442 2

ecoli-0-3-4-6 vs 5 82.8014 88.8889 94.4444 1

ecoli-0-6-7 vs 5 87.4183 84.4771 83.4967 2

yeast2vs8 72.6496 73.7179 75 1

ecoli-0-1-4-7 vs 2-3-5-6 85.7143 91.5668 83.4562 1

ecoli2 80.4113 89.1991 86.2771 1

ecoli3 80.4113 89.1991 86.2771 1

yeast1vs7 64.3411 69.5349 62.5581 2

ecoli0137vs26 84.1518 92.6897 97.2656 1

yeast5 79.3503 96.6118 97.9749 1

ecoli-0-1 vs 2-3-5 75 74.0991 78.7162 1

ecoli-0-2-3-4 vs 5 91.8045 96.8421 96.8421 2

ecoli-0-2-6-7 vs 3-5 77.297 83.3333 87.4466 2

ecoli-0-1-4-7 vs 5-6 86.5323 88.7634 85.5376 2

yeast3 78.9388 90.6366 87.8057 2

yeast1 71.8094 72.873 70.8078 2
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Table 3.4: AUC rate in test sets with linear kernel

Datasset TWSVM IFTWSVM WIFLSTWSVM k

shuttle-6 vs 2-3 60 98.1982 100 1

glass4 66.6667 65.6863 80.3922 2

ecoli-0-6-7 vs 3-5 77.551 91.8367 92.8571 1

glass2 64.3878 74.3878 70.3061 2

ecoli-0-4-6 vs 5 85.8142 85.015 85.5644 1

ecoli4 89.9597 93.8723 93.8723 3

ecoli-0-1 vs 5 87.8838 84.7463 89.4192 2

abalone9-18 72.3319 87.6827 87.2807 2

ecoli-0-3-4-6 vs 5 82.8014 88.357 93.3806 1

ecoli-0-6-7 vs 5 88.3987 86.4379 85.9477 1

yeast2vs8 75 75 75 1

ecoli-0-1-4-7 vs 2-3-5-6 81.4977 78.5945 73.0645 1

ecoli2 85.8658 87.4892 88.5498 2

ecoli3 85.8658 87.4892 88.5498 2

yeast1vs7 60.0775 59.9225 66.8217 2

ecoli0137vs26 91.0714 94.0848 94.308 1

yeast5 94.76 96.9972 96.648 1

ecoli-0-1 vs 2-3-5 81.0811 78.2658 80.1802 1

ecoli-0-2-3-4 vs 5 96.8421 96.8421 85.2632 1

ecoli-0-2-6-7 vs 3-5 82.8526 87.4466 91.0791 1

ecoli-0-1-4-7 vs 5-6 90.6989 89.4086 89.7312 1

yeast3 85.4828 91.0534 91.5861 2

yeast1 68.597 71.1101 70.7969 2
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Table 3.5: Rank table for TWSVM, IFTWSVM and WIFLSTWSVM with linear
kernel on the basis of accuracy

Dataset TWSVM IFTWSVM WIFLSTWSVM

iono 3 1.5 1.5

wdbc 3 1 2

wpbc 2 3 1

heart-stat 2 2 2

pima 3 2 1

aus 2 3 1

sonar 3 2 1

crossplane130 2 2 2

crossplane150 2 2 2

brwisconsin 3 1 2

vehicle 1 2 3 1

vehicle2 3 2 1

cleve 1 3 2

votes 2 2 2

transfusion 2 3 1

checkerboard Data 2 3 1

monk3 1 2 3

ripley 3 2 1

acute-inflammation R 1 1 1

acute-nephritis R 2 2 2

breast-cancer R 1 3 2

breast-cancer-wisc R 1.5 1.5 1

breast-cancer-wisc-prog R 2 3 1

credit-approval R 1.5 1.5 2

echocardiogram R 1.5 1.5 1

haberman-survival R 1.5 1.5 1

heart-hungarian R 3 2 1

hepatitis R 1.5 2 1.5

mammographic R 2 3 1

planning R 3 2 1

parkinsons R 2 3 1

molec-biol-promoter R 3 2 1

average rank 2.1093 2.1406 1.4062
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Table 3.6: Rank table for TWSVM, IFTWSVM and WIFLSTWSVM with nonlin-
ear kernel on the basis of accuracy

Dataset TWSVM IFTWSVM WIFLSTWSVM

iono 3 1.5 1.5

wdbc 3 2 1

wpbc 2.5 2.5 1

heart-stat 3 1 2

pima 2 3 1

aus 2 1 3

sonar 2.5 1 2.5

crossplane130 2 2 2

crossplane150 2 2 2

brwisconsin 3 2 1

vehicle 1 1 3 2

vehicle2 2 2 2

cleve 3 2 1

haberman 1 3 2

votes 2 3 1

transfusion 3 1 2

checkerboard Data 2 1 3

monk2 1 2 3

monk3 1 2 3

ripley 1 2 3

acute-inflammation R 1.5 1.5 2

acute-nephritis R 1.5 2 1.5

breast-cancer R 2 3 1

breast-cancer-wisc R 3 2 1

breast-cancer-wisc-prog R 2 3 1

credit-approval R 2 1 3

echocardiogram R 2 1.5 1.5

haberman-survival R 2 1 3

heart-hungarian R 3 1 2

hepatitis R 2 3 1

mammographic R 2 3 1

planning R 2 3 1

parkinsons R 3 2 1

molec-biol-promoter R 2 3 1

average rank 2.1176 2.0294 1.7647
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Conclusions and Future Directions

In this work, we have proposed a novel WIFLSTWSVM for classification problem.

The proposed WIFLSTWSVM finds a hyperplane by solving a convex optimization

problem having a unique solution. Moreover, we have taken motivation from IFN and

IFTWSVM, Locality preserving projections(LPP) [27]. Using this LPP to generate

intra class weights we have given importance to the community structure of a dataset.

Benefits of using the proposed algorithm in binary classification problems can be easily

seen from the comparison of experimental results. Thus the proposed algorithm is

capable of producing surpassing results. Moreover, the proposed algorithm is cognizant

of the values of k. If one does not choose it correctly then this algorithm may produce

subsidiary results. As we have seen that the proposed algorithm is not only able to

handle balanced data sets but it is also able to handle imbalanced datasets. In future

one can use the proposed algorithm with specified weights for different classes in class

imbalance problems for binary classification.
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