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ABSTRACT

We have studied the pp collisions at the Large Hadron Collider (LHC)

and estimated the requirements for the Bose-Einstein condensation in the

pion gas formed in such collisions. We have used the Tsallis non-extensive

statistics to estimate the transition temperature (Tc) required to form the

condensation. We clearly observe that the Tc depends on the non-extensive

parameter q. As q decreases the Tc increases and gradually approaches to

the Tc obtained from the pion gas which is at equilibrium (q = 1). We

also find a threshold of charged particle multiplicity below which the pion

condensation is dominant.
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Chapter 1

Introduction

1.1 What is High Energy Physics?

High Energy Physics (HEP) is the study of the most fundamental build-

ing blocks of the universe and their interactions at extreme energies. Ev-

erything in our universe that is visible to us consists of indivisible units

which are known as the fundamental particles or elementary particles. The

universe basically consists of two types of particles; fermions and bosons.

Fermions have half integral spins and follow the Pauli’s exclusion princi-

ple. The quarks, antiquarks, leptons and antileptons are of this category.

Bosons, on the other hand, have integral spin, i.e. they don’t follow Pauli’s

exclusion principle. All the gauge bosons such as the gluons, photons and

W and Z bosons are from this category along with the mesons which are

actually composite particles. The theory that describes all the elementary

particles and their interactions, is called Standard Model (SM) of Particle

Physics. A list of elementary particles is given in Fig.1.1.

These fundamental particles are controlled by four basic interactions

or forces such as Strong force, Weak force, Electromagnetic force and Grav-

itational force. The SM of particle physics describes the relation between

all the particles and the four fundamental forces. Just after the Big Bang

Nucleosynthesis (BBN), nearly few millionths of a second, the universe was

filled with an extremely hot, dense plasma consisting of all kinds of particles

moving nearly with the speed of light. This hot mixture was mostly filled
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Figure 1.1: Standard model of elementary particles (source : online)

with quarks and gluons, which are the fundamental constituents of matter

and know as Quark-Gluon Plasma (QGP). The QGP state is studied by

a theory called Quantum Chromodynamics (QCD), which is the theory of

strong interaction. Gluons are the force carriers for the strong force which

help to bind the quarks together. The QCD predicts that quarks and gluons

can exist in a deconfined state (QGP) in which they can move to distances

even large than the typical hadron size. Hadrons or ions with high ener-

gies are made to collide under suitable experimental conditions to probe

the dense nuclear matter similar to which was present in the evolutionary

phase of the early universe. In the high energy heavy ion collisions, there is

a possibility of formation of the QGP at extreme conditions of temperature

and energy density.

In particle physics, elementary particles means the particles which

have no substructure or point-like objects that are constituents of matter.

Therefore, we depend on the spatial resolution of the probe used to investi-

gate the possible structure/sub-structure. Say, two points of an object can

just be resolved as separate by a distance ∆r apart. Assuming that the

probing beams themselves consist of point-like particles like electrons or
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positrons, this resolution is limited by the de Broglie wavelength of these

beam particles, which is given by λ = h/p, where p is the momentum of

the beam particle and h is the Planck’s constant. Hence beams of high

momentum have short de Broglie wavelengths and thus have high resolu-

tion [1].

1.2 Heavy-Ion Collisions

The general consensus among the scientific community is that our universe

was created through Big Bang. Immediately after the Big Bang, the fun-

damental particles were produced, followed by a phase where the universe

was filled with a state of matter know as QGP. The initial conditions after

the Big Bang could be studied by achieving such high temperatures and/or

densities in the laboratories. One of the ways to study the properties of nu-

clear matter in the laboratory is through high energy heavy-ion collisions.

These collisions provide the unique possibility to create and investigate the

nuclear matter at high temperatures and high densities in the laboratory.

Collision of two nuclei at relativistic energies gives us information about

particle production mechanism. Powerful accelerators collide heavy-ions

or hadrons at an energy of the order of some trillion electronvolts (TeV).

When two Lorentz contracted nuclei collide at very high energies, the re-

gion where they overlap is very thin in the longitudinal direction, much

like an almond shape. This energetic interaction results in the formation

of a possible state of the QGP. The QGP exists at very high temperature

and/or energy density and consists of asymptotically free quarks and glu-

ons, otherwise known as partons. The created fireball then expands and

cools down gradually until the produced particles reach kinetic freeze-out.

The first heavy-ion collisions experiment was performed in the 1970s

and 80s with fixed target nuclei at the Alternating Gradient Synchrotron

(AGS) in the Brookhaven and the Super Proton Synchrotron (SPS) in

the European Laboratory for Nuclear Research (CERN) with the center

of mass energies of 33 GeV and 400 GeV respectively. Most of the recent

experiments are performed at the Relativistic Heavy Ion Collider (RHIC)
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in the Brookhaven and the A Large Ion Collider Experiment (ALICE)

detector at the Large Hadron Collider (LHC) at the CERN, where the

energy has reached upto 13 TeV.

1.2.1 Kinematic Variables

In high energy physics, all the particles are treated as relativistic due to

their speed being nearly close to the speed of light. According to Einstein’s

special theory of relativity, the velocity of light (c) always remains constant

in any inertial frame of reference. All the physical observables like posi-

tion, momentum are treated as four components of coordinate vectors. For

relativistic heavy-ion collision, it is more convenient to use the kinematic

variables as they have simple forms under Lorentz transformation with the

change of reference frame. In Fig.1.2, the Z-axis is the beam axis of the

Figure 1.2: Coordinates of particle collision. (Source : online)

collision plane, the XY plane is treated as the transverse plane. The an-

gle between the produced particle and the Z-axis is denoted by θ which is

called as the polar angle. Azimuthal angle φ is the angle measured from the

X-axis in the transverse plane. There are some other kinematic variables

as discussed below.
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Rapidity

As the velocities are not additive i.e. non-linear in successive transfor-

mation, a new kinematic variable was introduced called rapidity [1]. It

changes by an additive constant under successive Lorentz boost. Rapidity

is a dimensionless quantity and is given by,

y =
1

2
ln

(
E + pz
E − pz

)
, (1.1)

where E and pz are the energy and longitudinal momentum component of

the particle respectively.

Pseudorapidity

For highly relativistic particles, the z component of the momentum is too

large. Therefore, it is too difficult to get total momentum vector at higher

values of rapidity. To overcome this limitation a quantity almost similar to

rapidity called pseudorapidity (η) is defined and which is given by,

η = − ln

(
tan

θ

2

)
. (1.2)

Pseudorapidity is particularly useful in hadron colliders such as the LHC,

where the composite nature of the colliding protons is such that interac-

tions rarely have their center of mass frame coincide with the detector rest

frame. In addition, a knowledge of energy and momenta of the particles is

not necessary, like it is for rapidity variable. For rapidity, particle identifi-

cation is required, which is a very difficult task in high energy experiments,

particularly at higher momenta. Just knowing the position of the hit points

on the detector, contrary helps us to have information about psedurapidity.

1.3 Quark-Gluon Plasma (QGP)

The QGP is predicted by the theory of strong interaction i.e. Quantum

Chromodynamics (QCD). The QGP occurs at extremely high tempera-

tures and/or high baryon densities. This state consists of asymptotically
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free strongly interacting partons (quarks and gluons) and is an analogy to

electromagnetic plasma. This state of matter has been produced at the

laboratories such as the RHIC and the LHC.

The QGP is a thermally equilibrated system where the partons are

deconfined from the hadrons so that the color degrees of freedom become ex-

plicit in nuclear rather than the nucleonic volume [2]. This can be achieved

either by heating the nuclei to ultra-high temperatures i.e. hundreds of

MeVs (1 MeV = 1.16 × 1010 Kelvin), which is done at the RHIC and the

LHC energies or by compression of nuclei so as to diffuse the hadronic

boundaries, which may be happening in the cores of neutron stars.

Figure 1.3: A schematic of the QCD phase diagram. Source: [3].
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In Fig.1.3, the temperature is plotted as a function of the baryon

density of the system. The phase diagram has two scenarios, one is a

high temperature and low baryon density which corresponds to an early

universe that might have existed billions of years ago and the other is the

low temperature and high baryon density which corresponds to different

astrophysical objects like neutron stars.

The deconfined phase of quarks and gluons is separated by a first

order phase transition from the confined hadronic matter, which ends with

a possible critical end-point (CP) [3]. So we observe a cross-over transition

in the RHIC and LHC energy regimes. The exploration of this QCD phase

diagram and the search for the CP has been a frontier of high energy nuclear

research for decades. The critical energy density and temperature required

for such deconfinement transition is εc = 1 GeV/fm3 and Tc ≈ 150− 170

MeV [4].

1.3.1 The Space-Time Evolution

The Fig.1.4 shows that the space-time evolution in hadronic and heavy-ion

collisions are complex phenomena involving various degrees of freedom at

different space-time coordinates. After the collisions of heavy-ions, the sys-

tem goes through a pre-equilibrium phase, which is followed by a deconfined

QGP phase. After that a possible mixed phase occurs which should show

the first order phase transition signatures. Then, hadronization occurs,

forming composite hadrons from the primordial partonic matter. There

is a possible phase transition from the QGP to hadron gas, this point is

marked by the critical temperature (Tc). After that the chemical compo-

sition of the system is frozen in which inelastic collisions begin to cease,

making the particle ratios fixed with time. This point is treated as chemical

freeze-out boundary for the particles. This is characterized by the chem-

ical freeze-out temperature (Tch) and the baryochemical potential (µB) of

the system. At this point a statistical hadron gas model works, which ig-

nores the interactions treating the system as an ideal gas. Now, the final

state particles then fly toward the detectors and the mean free path of

the system becomes higher than the system size, making the particles col-
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Figure 1.4: A schematic diagram space-time evolution in hadronic colli-
sions, compared with heavy-ion collisions. Source: [3]

lide infrequently with each other. At this point, the transverse momentum

distribution of the system is fixed with time in which the elastic collisions

stop. This is called kinetic freeze-out and after that the particles are finally

detected at the detectors.

The left part of the Fig.1.4 describes the space-time evolution of a col-

lision without the QGP formation. Generally low multiplicity pp collisions

fall under this category. After the collision, the system goes through a pre-

hadronic phase and then the chemical freeze-out occurs without the QGP

phase. Then the produced hadrons attain kinetic freeze-out and finally are

detected at the detectors.
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1.4 Motivation

The particles which have an integral spin, are called bosons and obey the

Bose-Einstein condensation. Pions are spin-0 bosons with three isospin

states, namely π+, π0, π−. These are the lightest mesons (hadrons are sub-

divided to baryon and meson). Baryon has odd half integer spin and me-

son has integer spin and are produced abundantly in any ultra-relativistic

heavy-ion collisions, with yield almost 80 percent of the total number of

particles produced (mostly pions, less percent of kaons, protons and other

particles). This is the reason we have considered pion gas system to study

for our purpose.

When two Lorentz contracted nuclei collide at ultra-relativistic en-

ergies, the produced fireball contains partons (quarks and gluons) as the

degrees of freedom. The hot and dense fireball then gradually expands

and cools down. The hadrons start forming within the system and fi-

nally the particle production stops when the temperature goes down to

the kinetic freeze-out temperature. It is seen that at the LHC energies,

the pT -spectra of identified charged particles doesn’t follow a thermalized

Boltzmann-Gibbs statistics, which should be a high-temperature approx-

imation of Fermi-Dirac and Bose-Einstein statistics, depending on if the

particle is a fermion or boson, respectively. As a result, if we apply the

Bose-Einstein (BE) distribution to study pion condensation in pp colli-

sions, we may not get the accurate description of the system. This drives

us toward using a non-extensive statistics.

In this work, we have considered a thermodynamically consistent ver-

sion of non-extensive Tsallis statistics. Tsallis statistics is a generalization

of previously known Boltzmann-Gibbs (BG), Fermi-Dirac (FD) and BE

statistics, where a deformation parameter q is present. This parameter cor-

responds to the degree of deviation of the system from equilibrium to non-

equilibrium condition. For the value q = 1, the whole statistics becomes

the normal BG statistics at equilibrium condition. The non-extensive pa-

rameter, q, encodes the dynamics of the system, like degree of correlation,

fluctuation etc.
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Chapter 2

Statistical Mechanics

Statistical Mechanics is a branch of physics which considers how the overall

behavior of a system of many particles is related to the properties of the

particles themselves, or it establishes the interpretation of the macroscopic

behavior of a system in terms of its microscopic properties. As its name

implies, statistical mechanics is not concerned with the actual motion of

individual particle of the system; but investigates instead what is most

likely to happen. It is able to tell us, for instance, the probability that any

particle has a certain amount of energy at a certain moment.

The methods of statistical mechanics are applied to draw inferences

and making the conclusions of some average or most probable properties of

large assemblies of electrons, atoms, molecules, quanta etc. Some scientists

applied the statistical methods making the use of classical physics, and de-

veloped a sub-branch known as classical statistics or Maxwell-Boltzmann

(MB) statistics. The MB statistics successfully explains many observable

physical phenomenon like temperature, pressure, energy, entropy etc.; but

it could not explain accurately several other experimentally observed phe-

nomenon such as black-body radiation, specific heat at low temperature

etc. To explain such phenomenon, scientists developed a new approach

called quantum statistics. The quantum statistics is subdivided into two

categories:

1. Bose-Einstein statistics

2. Fermi-Dirac statistics

10



2.1 Maxwell-Boltzmann Statistics

Classical particles such as gas molecules obey the MB statistics. The parti-

cles are identical and can be distinguishable. In quantum terms, the wave

functions of such particles overlap to a negligible extent.

The MB distribution function states that the average number of par-

ticles fMB(E) in a state of energy E in a system of particles at absolute

temperature T is,

fMB(E) =
gi

exp(E−µ
kT

)
, (2.1)

where gi is the degeneracy, µ is the chemical potential, k is the Boltzmann

constant.

2.2 Quantum Statistics

The quantum statistics deals with all the quantum systems. Bosons and

fermions obey quantum statistics and follow different statistical distribu-

tions.

2.2.1 Fermi-Dirac Statistics

The Fermi-Dirac (FD) statistics is obeyed by the particles that have odd-

half integral spins (1
2
, 3
2
, 5
2
....), and are called fermions. Fermions are iden-

tical quantum particles and can not be distinguishable. Fermions obey

Pauli’s exclusion principle, which means the maximum number of particles

(with spin s) that can occupy the same state is (2s + 1). The wave func-

tion of a system of fermions changes upon the exchange of any pair of the

particles.. The wave function of this kind is called antisymmetric. Only

one fermion can occupy in a particular quantum state of the system.

Let us consider a system of two particles, 1 and 2, one of which is in

state a and other in state b. When the particles are distinguishable, there

are two possibilities for occupancy of the states, given as below

ψI = ψa(1)ψb(2), (2.2)
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ψII = ψa(2)ψb(1). (2.3)

When the particles are not distinguishable, we can tell which of them is in

which state. If they are fermions. the system is described by antisymmetric

wave function. So the Eq.(2.2) and Eq.(2.3) can be written as,

ψF =
1√
2

[ψa(1)ψb(2)− ψa(2)ψb(1)], (2.4)

where 1√
2

is the normalization factor.

The distribution function for fermions is given by,

fFD(E) =
gi

exp (E−µ
kT

) + 1
. (2.5)

2.2.2 Bose-Einstein Statistics

The Bose-Einstein statistics is obeyed by the particles that have zero or

integral spins, which are called bosons. Bosons are identical and indis-

tinguishable. Bosons do not obey the exclusion principle, and the wave

function of a system of bosons is not affected by the exchange of any pair

of them. A wave function of this kind is called symmetric, means any

number of bosons can exist in the same quantum state of the system.

Similarly as the above section, when the particles are not distinguish-

able, we can not tell which of them is in which state. If they are bosons, by

using Eq.(2.2) and Eq.(2.3), the symmetric wave function for the system is

given by,

ψB =
1√
2

[ψa(1)ψb(2) + ψa(2)ψb(1)]. (2.6)

The distribution for bosons can be written as,

fBE(E) =
gi

exp (E−µ
kT

)− 1
. (2.7)
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2.2.3 Bose-Einstein Condensation

Statistical mechanics plays a very significant role in understanding the un-

derlying behaviors of nature. From the study of system of gases to the

white-dwarf stars, it has changed our perception of the physical world in

numerous ways. One of the most astounding revelations of the statisti-

cal mechanics was the discovery of a new state of matter, called Bose-

Einstein condensate, rightfully named after the two giants of twentieth

century physics, Satyendra Nath Bose and Albert Einstein.

In 1924 Indian physicist Satyendra Nath Bose sent a paper to Albert

Einstein in which he had derived the Planck’s law for black-body radiation

by treating the photons as particles of an ideal gas. Later Einstein predicted

that at sufficiently low temperature the particles would condense into the

lowest possible energy state of the system. This phenomenon is called Bose-

Einstein Condensation (BEC). BEC is applicable to bosons which follow

the Bose-Einstein (BE) statistics. The BE statistics describes one of the

two possible ways in which a collection of non-interacting, indistinguishable

particles may occupy a set of available discrete energy states at thermal

equilibrium. BEC is called the fifth state of matter which is usually formed

when a gas of bosons at low densities are cooled to a temperature very close

to absolute zero. Under such conditions, a large fraction of the particles

occupy the lowest possible energy state or zero momentum state, at which

point the wave functions of the such particles interfere with each other and

the effect is observed microscopically. This is possible because the bosons

have integral spins and symmetric wave functions. All the bosons in a

system below a particular low temperature (Tc), behave differently than

fermions which obey Pauli’s exclusion principle. For BEC, the distribution

function is like as Eq.(2.7) (where gi = 1),

f(E) =
1

exp (E−µ
kT

)− 1
. (2.8)

For our study on BEC in pion gas, we use a thermodynamically consistent

non-extensive statistics. There is a non-extensive parameter in the system,

13



which tells us that how much the system deviates from the equilibrium

state. In proton-proton collisions, we consider the produced system to be

away from thermodynamic equilibrium, as is evident from the pT -spectra

of identified particles. Hence to describe such a system, the right statistics

would be Tsallis non-extensive statistics.

14



Chapter 3

Non-Extensive Statistical
Mechanics

According to thermodynamics, entropy of a system is defined as a measure-

ment of disorder of molecular motion of that system. Means, greater is the

disorder of molecular motion of the system, greater is the entropy.

In statistical mechanics, the entropy is an extensive property of the

thermodynamic system and its function is represented as probability dis-

tribution. It is a delicate and powerful concept to be carefully constructed

for classes of systems. These systems share the same functional connec-

tion between the entropy and the set of probabilities of their microscopic

states. The most known of such class is that which we shall refer to as the

Boltzmann-Gibbs (BG). The BG entropy for a set of W discrete states is

given by,

SBG = −k
W∑
i=1

pi ln pi (3.1)

with
W∑
i=1

pi = 1, (3.2)

where k is a positive constant called Boltzmann constant.

For a particular case of equal probabilities i.e. pi = 1
W

, Eq.(3.1) becomes,

SBG = k lnW. (3.3)

The Eq.(3.3) is a famous expression, as well as Eq.(3.1), and has been

used in a variety of creative manners by scientists. If we compose two

probabilistically independent subsystems say, A and B (with numbers of

15



states respectively denoted by WA and WB), i.e., the joint probabilities

factorize, pA+Bij = pAi p
B
j (∀(i, j)), the entropy SBG becomes additive [5]. i.e.

SBG(A+B) = SBG(A) + SBG(B). (3.4)

The extensive property of entropy is expressed as an additive quantity.

3.1 Non-extensive Statistics

The non-extensive statistical mechanics is the generalization of well known

BG theory.

3.1.1 Mathematical Tools

Let us present here a possible metaphor for generalizing the BG entropy.

The simplest ordinary differential equation can be considered to be [6],

dy

dx
= 0, (y(0) = 1) (3.5)

so its solution is given by,

y = 1. (3.6)

Now the second simplest differential equation we may consider

dy

dx
= 1, (y(0) = 1) (3.7)

and its solution is given by,

y = 1 + x, (3.8)

whose inverse function is written as,

y = x− 1. (3.9)

16



In similar manner, we may consider the following one,

dy

dx
= y, (y(0) = 1) (3.10)

whose solution is given by,

y = exp(x). (3.11)

And its inverse function is written as,

y = lnx. (3.12)

A property of logarithmic function is

ln(xAxB) = ln xA + lnxB. (3.13)

Now, let us consider,

dy

dx
= yq, (y(0) = 1; q ∈ R) (3.14)

its solution is,

y = [1 + (1− q)x]
1

1−q ≡ expq(x), (exp1(x) = exp(x)). (3.15)

Its inverse is written as,

y =
x1−q − 1

1− q
≡ lnq(x), (x > 0; ln1(x) = ln(x)). (3.16)

The Eq.(3.13) satisfies the property as the solution of Eq.(3.16)

lnq(xAxB) = lnq xA + lnq xB + (1− q)(lnq xA)(lnq xB). (3.17)

Through the metaphor presented above, we may postulate the following
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generalization of Eq.(3.3):

Sq = k lnqW, (S1 = SBG, q = 1), (3.18)

comparing with Eq.(3.17), entropy should be a non-additive quantity. sim-

ilar to Eq.(3.1) the entropy can be written as,

Sq = k〈lnq(1/pi)〉. (3.19)

Now, using Eq.(3.16) yields,

Sq = k
1−

∑W
i=1 p

q
i

q − 1
. (3.20)

The non-additive entropy is written as,

Sq(xAxB) = SqxA + SqxB + (1− q)(SqxA)(SqxB). (3.21)

This q parameter is generally known as non-extensive parameter or de-

formation parameter, which describes the non-extensive properties of any

system.

There is a probability distribution derived from the maximization

of the Tsallis entropy, i.e., Eq.(3.18) under appropriate constraints called

Tsallis distribution.

3.2 Tsallis Distribution

Tsallis distribution function is the generalized form of the BG distribution

function.

The Tsallis form of the Fermi-Dirac (FD) distribution as Eq.(2.5) is

given by (putting gi = 1 and k = 1 in natural unit),

fFDq (E) =
1

expq(
E−µ
T

) + 1
. (3.22)
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Figure 3.1: Comparison between the FD and the Tsallis-FD distribution
as a function of the energy E, keeping the Tsallis parameter q fixed, for
various values of the temperature T . The chemical potential (µ) is kept
equal to 1 in all curves, and the units are arbitrary [9].

The Fig.3.1 shows that the numerical difference between the Eq.(2.5) and

the Eq.(3.22) is small, for a value of q = 1.1.

The high energy heavy-ion collisions provide opportunity to study

the nuclear matter under extreme conditions, i.e. at high temperature

and/or density. So there is a possibility of a large number of particle

production in the final state of A+A and pp collisions. The statistical

models are suitable to describe this particle production mechanism. Such

a statistical description of transverse momentum (pT ) of the final state

particle production in high energy collisions has been proposed to follow a

thermalized Boltzmann type of distribution as given by [7],

E
d3σ

d3p
≈ C exp

(
− pT
T

)
. (3.23)
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To take into account for high pT and low pT region of the spectra, a power-

law in pT has been proposed, which empirically accounts for the possible

QCD contributions [8], i.e.

E
d3σ

d3p
= C

(
1 +

pT
p0

)−n
, (3.24)

for pT −→ 0, exp(−npT
p0

)

and for pT −→∞, (pTp0 )−n

where T is the effective temperature i.e. T = p0
n

.

A thermodynamically consistent non-extensive distribution function is given

by [9],

F (mT ) = Cq

[
1 + (q − 1)

mT

T

]− 1
q−1

, (3.25)

where mT is the transverse mass, q is the non-extensive parameter which

measures the degree of deviation from equilibrium.

The above expression is thermodynamically consistent, i.e. the first

and second laws of thermodynamics lead to two differential relations must

be satisfied [9, 10]:

dε = Tds+ µdn, (3.26)

dP = sdT + ndµ, (3.27)

where ε = U/V , s = S/V and n = N/V are the energy, entropy and

particle densities respectively, and P , µ, T , U , S, V and N are the pres-

sure, chemical potential, temperature, internal energy, entropy, volume and

number of particles respectively. The Maxwell relations given below follow

from this:

T =
∂ε

∂s

∣∣∣∣
n

, (3.28)

µ =
∂ε

∂n

∣∣∣∣
s

, (3.29)
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n =
∂P

∂µ

∣∣∣∣
T

, (3.30)

s =
∂P

∂T

∣∣∣∣
µ

. (3.31)

The following thermodynamics relation must also be satisfied:

ε+ P = Ts+ µn. (3.32)

The proof of thermodynamical consistency of the parameter T in Eq.(3.25)

is satisfied by [9],

T =
∂U

∂S

∣∣∣∣
N,V

, (3.33)

hence the parameter T of a system obeying Tsallis distribution.
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Chapter 4

Bose-Einstein Condensation
and Non-extensivity

We have taken advantage of the usefulness of a thermodynamically consis-

tent Tsallis distribution function to explore the possibility and study pion

condensation in the system produced in high energy pp collisions.

The Tsallis statistics of q-generalized framework has already been

used to study BEC in liquid Helium (He42) [11]. Whenever a system is

subjected to temperature fluctuation, the non-equilibrium generalized sta-

tistical mechanics plays a crucial role. With zero spin, a He42 is a boson

and obeys BE statistics, and thus exhibits BEC at low temperature. Sim-

ilarly, as pions fall under the group of bosons, it would be interesting to

see whether the pion gas formed after a high energy pp collision shows any

sign of BEC at such high temperatures.

4.1 Bose-Einstein Condensation of Pions

In ultra-relativistic high energy collisions, large amount of pions are pro-

duced. The temperature reached in the high energy collisions are of MeV

scale which is about 1010 K [14]. This temperature is astronomically higher

than the temperature required for BEC for cold atoms such as He42 [11].

The pion system would have much smaller volume with high density and

different interactions are involved in the formation of high temperature

BEC. Thus the properties of a BEC for pions would be different from the

low temperature BEC. An observation of the BEC signal of pions is domi-

nant for pp collisions at
√
s = 70 GeV [12].

The aim of relativistic heavy-ion collisions is to understand the phases
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of Quantum Chromodynamics (QCD) matter. Especially, these collisions

give us an opportunity to characterize the Quark-Gluon Plasma (QGP)

phase and subsequent hadronic phase. To study the information about

these phases, some models are used such as thermal models and hydrody-

namic models. Thermal models mainly assume thermodynamic equilibrium

to explain the hadronic yields. Whereas hydrodynamic models which use

local thermodynamic equilibrium, are not quite good to explain the high

momentum part of the pion pT -spectra.

To explain these, the chemical non-equilibrium in the formation of

the hadronic matter is assumed by Viktor Begun et.al [13, 14]. They have

studied in the heavy-ion collisions that the chemical non-equilibrium brings

up the non-zero value of chemical potential (µ) which is closer to the critical

value of µ needed for BEC of pions. However, any contribution of non-

equilibrium can exist in small systems like that formed in pp collisions,

although in the LHC pp collisions the baryon chemical potential (µB) is

taken as zero. Further, the system formed in pp collisions can be taken

as reference to interpret the results of heavy-ion collisions. So it is of

great significance to understand the formation of BEC like features in small

systems formed in pp collisions. Thus we investigate the possibility of BEC

in pion gas formed in pp collisions and compare the results with the heavy-

ion collisions, to find the link between the two systems.

At the RHIC and the LHC energies, it is observed that the pT -spectra

of pp collision systems deviate from the standard thermalized BG distribu-

tion. In such cases, the Tsaliis distribution describes the pT -spectra very

well. The non-extensive parameter q gives the degree of deviation from

equilibrium, for q = 1 suggests the equilibrium condition (BG scenario).

4.2 Mathematical Formulation

The Bose-Einstein (BE) distribution given by Eq.(2.8) (putting k = 1 in

natural unit)

f(E) =
1

exp(E−µ
T

)− 1
. (4.1)
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By using the above formula, we calculate the particle multiplicities as [13]

N =
∫∞
0

d
3
xd

3
p

h
3

g

exp

(√
p
2
+m

2−µ
T

)
−1

' V

∫ ∞
0

d3p

(2π)3
g

exp

(√
p
2
+m

2−µ
T

)
− 1

, (4.2)

where g is the degeneracy of the particle, p is the momentum, m is the mass

of the particle, T is the temperature of the system and µ is the chemical

potential.

For our consideration of pion gas, g = 2 and m → mπ. The integral

over the space co-ordinates gives us the volume of the system V . In the

thermodynamic limit, V →∞, we can write Eq.(4.2) as separate terms for

p = 0 and p > 0, [13]

N ' 1

exp(mπ−µ
T

)− 1
+ V

∫ ∞
0

d3p

(2π)3
1

exp

(√
p
2
+m

2
π−µ

T

)
− 1

⇒ Ntotal = Ncondensation +Nexcited. (4.3)

By taking Tsallis non-extensivity into account, the BE distribution function

changes to,

f(E) =
1[

expq(
E−µ
T

)− 1

]q . (4.4)

Here, the non-extensive exponential function is defined as in Eq.(3.15) [9],

expq(x) = [1 + (q − 1)x]1/q−1, (x > 0). (4.5)

The Eq.(4.3) is defined as the total number of particles in which the first

term is the number of particles in the condensate and second term is the
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number of particles in the excited state, and it becomes,

N ' 1[
expq(

mπ−µ
T

)− 1

]q +

V

∫ ∞
0

d3p

(2π)3
1[

expq

(√
p
2
+m

2
π−µ

T

)
− 1

]q . (4.6)

The formula for the critical temperature is given by [12],

Tc = 1.4× ρ1/3, (4.7)

where ρ is the number density of the system which is given by the formula,

ρ = g

∫
d3p

(2π)3

[
1 + (q − 1)

E − µ
T

] −q
q−1

. (4.8)

4.3 Results and Discussion
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Figure 4.1: (Color online) Ratios of number of particles in the condensate
with total number of particles and the number of particles in the excited
state with total number of particles as a function of temperature for pion
gas.
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In Fig.4.1, we have plotted the ratios ofNcondensation/Ntotal andNexcited/Ntotal

as a function of temperature by using Eq.(4.6). We have taken some ran-

dom values of temperature and estimated the ratios at particular q values.

Here we have assumed a constant value of the volume of the system with

the system radius of 1.2 fm. This volume roughly denotes the chemical

freeze-out volume of the fireball formed in pp collisions. As calculating

the kinetic freeze-out volume of a system is not trivial, we have used this

approximation. This would have a great impact on the outcome, as higher

volume would mean lower density and thus the possibility of BEC would

vary. But as a safe guess, we have started with this approximation. We

clearly see that the crossing points of the ratios which are the transition

temperatures (Tc) are q dependent. This is an interesting finding, since

we know that in high multiplicity pp collisions at
√
s = 7 TeV, the kinetic

freeze-out temperature is around 90 MeV. This indicates that there is a

possibility that we may observe BEC in pp collisions at the LHC energies.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

q

0.07

0.08

0.09

0.1

0.11

0.12

(G
eV

)
c

T

Figure 4.2: (Color online) Critical temperature as a function of non-
extensive parameter q.

In Fig.4.2, we have plotted the transition/critical temperatures (Tc) as

a function of the non-extensive parameter q. These Tc points are extracted
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from the Fig.4.1. We observe that for the lower value of q i.e. (q = 1) in

which the system is at equilibrium, the Tc for BEC is the highest value at

around 105 MeV. For higher value of q (q = 1.13) in which the system is

far away from the equilibrium, the (Tc) for BEC is lower value at around

75 MeV.
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Figure 4.3: (Color online) Critical temperature as a function of number
density for pion gas.

The relation between the critical temperature and the number density

can be obtained by Eq.(4.7). Fig.4.3 shows the critical temperature (Tc) as

a function of number density (ρ). To estimate ρ we have used the Eq.(4.8)

for certain T and q values. We see that the critical temperature is only

dependent on number density ρ, higher the number density, higher is the

critical temperature of the system.

In Fig.4.4, we have plotted the ratios of Ncondensation to Ntotal and

Nexcited to Ntotal for pp collisions at
√
s = 7 TeV using the ALICE data as

a function of charged particle multiplicity. In this case, the kinetic freeze-

out temperatures with corresponding q values are obtained after fitting

Tsallis distribution function to its pT -spectra of charged pions [15]. For

the sake of simplicity, we have only considered the chemical freeze-out
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Figure 4.4: (Color online) Ratios of number of particles in the condensate
with total number of particles and number of particles in the excited state
with total number of particles as a function of charged particle multiplicity
for pp collisions at

√
s = 7 TeV at the ALICE.

volume of the system which can vary with the system’s different chemical

freeze-out radii corresponding to each charged particle multiplicities [16].

We observe that at high charged particle multiplicity which corresponds to

higher kinetic freeze-out temperature, about 70% of the particles are in the

excited states and about 30% of the particles occupy the lowest quantum

state. With the decrease in 〈dNch/dη〉 we see that the Nexcited to Ntotal ratio

is decreasing while the Ncondensation to Ntotal ratio is increasing. At about

〈dNch/dη〉 = 14, which corresponds to 87 MeV temperature, we observe a

transition. This 〈dNch/dη〉 can be considered as the critical charged particle

multiplicity for pp collisions at
√
s = 7 TeV at the LHC, before which the

number of particles in the condensate is higher than the excited states.

At the lowest charged particle multiplicity, we observe that the particle

multiplicity in the condensate is dominant over the particles at the excited

states. This is an interesting finding given that at low charged particle

multiplicity the number density, the volume and the temperature of the

system are relatively lower as compared to the systems at high charged
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particle multiplicities.
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Figure 4.5: (Color online) Ratios of number of particles in the condensate
with total number of particles and number of particles in the excited state
with total number of particles as a function of charged particle multiplicity
for pp collisions at

√
s = 7 TeV and Pb-Pb collisions at

√
sNN = 2.76 TeV

at the ALICE.

Getting the volume of the system formed in a collision system is not

trivial. To get an approximate value, we have used the chemical freeze-out

radius estimated from the HBT (Hanbury-Brown-Twiss) radius, and we

have added a factor 0.4 of hadronic phase lifetime of the system at certain

charged particle multiplicities [17] to get the total approximate radius of

the system at kinetic freeze-out. Using this, we have estimated the volume

of the systems and later used it in our estimations.

In Fig.4.5, in pp collisions, we observe a smooth transition from the

collision species. It shows that at around 〈dNch/dη〉 ∼ 8, we may observe

BEC. For Pb-Pb collisions at
√
sNN = 2.76 TeV almost all of the particles

are in the excited state and the number of particles in the ground state in-

creases slowly as we move towards peripheral Pb-Pb collision systems. The

condensate is more dominant at peripheral collisions than central collisions.
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4.4 Summary and Conclusions

The presence of high fraction of condensation in the particle spectra of low

multiplicity proton-proton collisions arises the possibility that the BEC-like

effect in spectra can also be due to non-equilibrium effects. This is because

the local thermalization is less expected in the low multiplicity region. It

may be a hint that BEC-like features can be observed due to some other

effect like non-equilibrium at low multiplicity which is mimicking the effect

of BEC. This can be a consequence of strong correlation in the system,

rather than due to attainment of BE equilibrium and consequent conden-

sation. So this result shows that interpretation of BEC in high energy

collisions should be done carefully, to confirm that really an equilibrium

condensation is achieved according to BE statistics.

We observed that the critical temperature (Tc) of BEC is highly de-

pendent on the thermodynamically consistent non-extensive parameter q.

Finally we estimated theoretically that there is a possibility of BEC in the

pion gas formed in pp collisions.
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