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ABSTRACT

In this project work, we first become familiar with rigid motions and

symmetry, discuss a result stating all possibilities for a finite subgroup of SO3.

We further study free groups to understand the structure of finite groups using

Todd Coxeter Algorithm.

The matrix Lie group, matrix exponential map and its existence have

also been discussed. Further, we have studied the Lie algebras of the matrix

Lie groups. In the last chapter, we study some examples of representations

of the matrix Lie groups and their Lie algebras. The last result is about the

completely reducibility of a compact matrix Lie group.
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Chapter 1

Rigid Motions and Symmetry

All the definitions and theorems discussed in this chapter can be found in

[MA].

Definition 1 (Rigid motions). A distance preserving map m from Rn to Rn

is called a rigid motion i.e. it is a map having the following property: For

any two points X and Y in Rn, we have

|Y −X| = |m(Y )−m(X)|.

This map carries triangles to congruent triangles, therefore, it preserves shapes

and angles in general. If we take the set Mn as the set containing all the rigid

motions of Rn, then this set is a group with the group operation as composition

of maps known as the group of motions.

Theorem 1. If m is a rigid motion on Rn, then it is nothing but a orthogonal

operator composed with a translation. So, every rigid motion is of the form

m(X) = PX + a

where P is an orthogonal matrix and a is a fixed vector.

Proof. We can assume a = m(0). Let t′ denotes the translation map. We

have t′−a(a) = 0, so t′−am fixes zero and we can easily prove that every rigid

motion fixing zero is a left multiplication by an orthogonal matrix P. So, we

have t′−am(X) = PX for all X ∈ Rn. Thus, m(X) = PX + a.
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Definition 2 (Symmetry). A symmetry of a subset F of a plane is a rigid

motion carrying F to itself.

Suppose M is the set containing all the rigid motions of the plane. Then

M is classified into two parts:

1. The orientation preserving motion of the plane is the motion by

which the plane is not fliped.

2. The orientation reversing motion of the plane is the motion that do

flip the plane over.

A further classification can be done as:

1. Orientation preserving motions:

(i) Translations: It is a parallel motion of the plane by a vector

b : x→ x+ b.

(ii) Rotation:[VP]. It is a motion in which the plane is rotated by

some non-zero angle θ about a fixed point.

2. Orientation reversing motions:

(i) Reflection: This motion reflects the plane about a fixed line l.

(ii) Glide reflection: It includes reflection about some line l and

then translating by a non-zero vector b, parallel to l.

Definition 3. Group Operations: An operation of a group G on the set

S is a map

φ : G× S → S,

such that the element φ(g, s) is denoted by gs and satisfy the following two

properties:

1. If 1 is the identity of G, then 1s = s for all s ∈ S.
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2. (gg′)s = g(g′s) for all g, g′ ∈ G and s ∈ S.

A G-set is a set S that is equipped with an operation of some group G.

Definition 4. For an element s of a G-set S. The orbit is defined as the set

Os = {s′ ∈ S : s′ = gs for some g ∈ G} = {gs : g ∈ G}.

The orbits are equivalence classes for the relation

s′ ∼ s if s′ = gs for some g ∈ G.

Thus, S is a union of disjoint orbits. A transitive operation of G on the set S

is an operation which has only one orbit in S .

Definition 5. For an element s ∈ S, the stabilizer of s is the subgroup of G

of elements that fixes s and is denoted by Gs. Thus,

Gs = {g ∈ G : gs = s}

Observation:- If S is a G-set, s ∈ S and let the stabilizer of s be H

and orbit of s is Os, then there exists a natural bijective map
G

H

ψ−→ Os

given by

gH → gs.

1.1 Counting Formula

Let s ∈ S, Hs denotes the stabilizer of s and Os be its orbit. Then, by using

the above observation we have,

(order of G)=(order of orbit)(order of stabilizer)

i.e.,

|G| = |Gs||Os|.

Example:- Rotations of a regular dodecahedron- Let G denotes

the group of all orientation preserving symmetries of a regular dodecahedron

D, then G must contain all the rotational symmetries of D.

Consider S to be the set of all faces of D. Then, for a fixed face s of D,

the stabilizer is the group of all rotations by multiples of the angle 2π/5 about
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a perpendicular passing through the center of the face s. Thus, Gs has order

5. We can see that G acts transitively on S and as the total number of faces

in D is 12, therefore, |Os| = 12 and hence order of G is equal to 5× 12 = 60.

Similarly, If we take the set S to be the set of all vertices, then for a fixed

vertex s ∈ S, we have |Gs| = 3 and |Os| = 20. Thus, we get |G| = 3×20 = 60.

Similar calculations done by taking the set S as the set of all edges of D yields

|G| = 60.

Thus, the G has 60 elements.

1.2 Finite subgroups of the rotational group

Theorem 2. If G is a finite subgroup of SO3, then G has only these possibil-

ities:

1. Ck: group of all rotations about a line l by multiples of 2π/k which turns

out to be cyclic group of order k;

2. Dk: group of all symmetries of a regular k-gon that is the dihedral group;

3. group of all 60 rotations of a regular dodecahedron, known as the icosa-

hedral group;

4. group of all 12 rotations of a regular tetrahedron, known as the tetrahedral

group;

5. group of all 24 rotations of a cube, known as the octahedral group.

Proof. Let N be the order of a finite subgroup G of SO3, then every non-

identity element, g of G is a rotation about a unique line, say l. Thus, exactly

two points on the unit sphere S in R3 are fixed by g. These are the points of

intersection of the line l and the unit sphere S. These points are known as

poles of g. The group G operates on P .

Stabilizer for a particular pole p contains only the rotations in G about the

line l, passing through the origin and the pole p. Thus, the stabilizer for the
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pole p is a cyclic group generated by the rotation of smallest angle θ. We can

see that if order of the stabilizer is rp, then θ must be equal to 2π/rp. As, p is

a pole, therefore, it is fixed by some non-identity element of G as well. Thus,

it’s stabilizer Gp has more then one element.

By counting formula,

|Gp||Op| = |G|.

If np denotes the number of elements that an orbit Op has, then

rpnp = N.

In G, there are rp − 1 elements with p as a pole. If p and p′ are in the same

orbit, then by counting formula, their stabilizers also have the same number

of elements. Also, every element in G has 2 poles except the identity. Thus,

we have ∑
p∈P

(rP − 1) = 2N − 2,

which is equal to
n∑
i

ni(ri − 1) = 2N − 2

where the sum varies over the disjoint orbits, namely O1, O2, . . . , On and ni =

|Oi| and ri = |Gp| for any p ∈ Oi.

As, N = niri for all i, therefore, we can divide both sides of the above

equation by N to get the formula

2− 2

N
=

n∑
i

(1− 1

ri
).

The left side of this equation is less then 2 and since, each ri > 1,

therefore, each term in the right hand side is at least 1
2
. So, the number of

orbits cannot exceed 3.

Now, we will list all the possibilities.

1. One orbit:- If we have only one orbit, then the above formula gives

2− 2

N
= 1− 1

r
.

The left hand side of this equation is more then or equal to 1 and 1− 1
r
<

1, therefore, this case is ruled out.
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2. Two orbits:- In this case, we have

2− 2

N
=

(
1− 1

r1

)
+

(
1− 1

r2

)
this is equivalent to

2

N
=

1

r1
+

1

r2
.

As, ri ≤ N for each i, therefore, this can happen only if r1 = r2 = N

which implies, n1 = n2 = 1. Hence, each element of the group G fixes

only two poles p and p′. Thus, G is a cyclic group CN containing exactly

the rotations about the axis l passing through these two poles p and p′.

3. Three orbits:- In this case our formula gives
2

N
=

1

r1
+

1

r2
+

1

r3
− 1.

Let us assume that r′is are in increasing order. Then

Case 1:- If all r′is are greater then or equal to 3, then the right hand

side is ≤ 0, which is not possible. So, r1 = 2.

Case 2:- If r1 = r2 = 2, then N = 2r3 which implies n3 = 2. So, the

third orbit contains only two poles say p and p′. Thus, every element

g of G either fixes both of these poles or interchange them. So, all the

elements of G are either rotations about the line l = (p, p′) or reflections

by the angle π about a line l′ perpendicular to l. Thus, G turns out

to be the group of all rotations that fixes a regular r-gon. So, G is the

dihedral group Dr in this case.

Case 3:- If only one ri is 2, then the following cases cannot occur:

(i) r1 = 2, r2 ≥ 4, r3 ≥ 4 since
1

2
+

1

4
+

1

4
− 1 = 0.

(ii) r1 = 2, r2 = 3, r3 ≥ 6 since
1

2
+

1

3
+

1

6
− 1 = 0.

So, we are left with the following three possibilities:-

(a) (r1, r2, r3) = (2, 3, 3), (n1, n2, n3) = (6, 4, 4), N = 12;

(b) (r1, r2, r3) = (2, 3, 4), (n1, n2, n3) = (12, 8, 6), N = 24;
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(c) (r1, r2, r3) = (2, 3, 5), (n1, n2, n3) = (30, 20, 12), N = 60.

Now, only the above cases are to be analysed. We will discuss the third

case only because the conclusions for the rest two cases can be obtained

similarly.

In the third case, we have (n1, n2, n3) = (30, 20, 12). Then, O3 has 12

poles. Let p be one of them and let q ∈ O2 such that q is nearest to

p. Now, the stabilizer of p has order 5 and it operates on O2. Thus,

there are five elements (images of q) which are nearest to p. These five

elements forms the vertices for a regular pentagonal. The 12 pentagonals

so obtained yields a regular dodecahedron.

Similarly, the other two cases can be analysed to get the final conclusions

as:

(a) The poles in O2 forms a regular tetrahedron, and thus, G is a group

of rotations of a regular tetrahedron.

(b) The poles in O2 forms a regular octahedron, and thus, G is a group

of rotations of a regular octahedron.

1.3 Free Group

Definition 6. Let S be an arbitrary set of symbols (may be finite or infinite),

say S = {a, b, c, . . . }, then a word is a finite set of strings of symbols of S, in

which repetition of symbols is allowed. For example:- ba, aaa, bbb abb are all

words.

Two words are composed by juxtaposition:

aaa, ba→ aaaba;

The empty word, which is denoted by 1, is the identity element for this asso-

ciative law. Now, to get the inverses, let us modify our set S.
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Let S ′ be the set of symbols containing all the symbols from S and the

symbols a−1 for each a ∈ S

S ′ = {a, a−1, b, b−1, c, c−1, . . . }.

Let the set of words from the set S ′ be denoted by W ′. If a word w ∈ W ′

has the following form:

. . . x−1x . . . or . . . xx−1 . . .

for any x ∈ S, then we will cancel two symbols x−1x to have a word with

reduced length. If all such cancellation have been done for a word and there is

no scope of further cancellations, then the form so obtained is called a reduced

form of that word.

Two words w and w′ are said to be equivalent, and we are able to write

w ∼ w′, if w and w′ yields the same reduced form after cancellations. This

turns out to be an equivalence relation. We can see that the product of two

equivalent words are equivalent and inverse of class of w = xy . . . z is the class

of z−1 . . . y−1x−1. So, the set F of all equivalence classes of words form a group

under the compositions induced from the set W ′. This group is called the free

group on the set S.

1.3.1 Generators and relations

Theorem 3 (Mapping property of the free groups). Let S = {a, b, c, . . . } be

a non-empty set, F be the free group on it and G be a group, then any map

f : S → G can be extended to a group homomorphism ψ : F → G such

that a word in S ′ = {a, a−1, b, b−1, . . . } is sent to the corresponding product of

elements {f(a), f(a)−1, f(b), f(b)−1, . . . } in G.

Proof. This rule defines a map on S ′ with the equivalent words being sent to

the same product in G. The map defined is a homomorphism as the multipli-

cation in F is given by juxtaposition.

If the above map ψ is surjective, then S is said to generate the group

G. In this case, the elements of S are called generators of G. Also, by first

8



theorem of isomorphism, if Ker(ψ) = N , then G is isomorphic to F
N

. The

elements of the group N are called relations among the generators. If N = 1,

then ψ is an isomorphism and G is called a free group too.

Definition 7. A set R of Defining relations for the group G, is a subset of

N such that N is the smallest normal subgroup containing R.

A group G generated by elements x1, . . . , xn, with defining relations

r1, . . . , rm is denoted by < x1, . . . , xn; r1, . . . , rm >.

If the set of generators and all the defining relations are known then we

can compute in F/N and hence in isomorphic group G as well.

1.4 Todd Coxeter Algorithm

If H is a subgroup of a finite group G then this algorithm is a method of

counting the cosets of H in G without knowing it’s order and it also determines

the operation of G on the set of cosets. Since, every operation on an orbit is

similar to an operation on cosets, this algorithm is a method of describing any

group operation the set of cosets of a subgroup.

Let the group G be defined as

G =< x1, . . . , xn; r1, . . . , rm >

with generators x1, . . . , xn and the defining relations r1, . . . , rm. So, G is real-

ized as the group F
N

, where F is the free group on the set {x1, . . . , xn} and the

smallest normal subgroup containing {r1, . . . , rm} is N . We also assume that

the images in G of the set of words

{h1, h2, . . . , hs}

in the free group F generate H.

The algorithm works on the following set of rules:

1. The operation of each generator is a permutation.

2. The operation on cosets is transitive.

9



3. The generators of the subgroup H fixes H.

4. Relations operate trivially.

Let us consider one example to make the idea more clear. Let G be a

group defined as

G =< x, y, z;x3, y2, z2, xyz >

and H =< z >, or H is a cyclic subgroup which is generated by the element

z. Now, we aim to determine the operations on cosets, which is a permutation

representation.

Let the indices 1, 2, 3, . . . denote the cosets, with 1 denoting H. We

will define a new index only if an action cannot be determined by using the

previous information.

By rule 3, 1z = 1. We don’t know how x acts on 1. So, we assign a

new index, say 2 = 1x and similarly 1x2 = 2x = 3. Now, as x3 is a relation,

therefore, 1x3 = 3x = 1. So, we have

1
x−→ 2

x−→ 3
x−→ 1.

Now, the operation of y is to be determined. As we also don’t know how

y acts on H, thus 1y = 4 and 1y2 = 4y = 1. So, we have

1
y−→ 4

y−→ 1.

As, we have defined the operations by x and y, therefore, let us try to find the

information about xyz. We have 1x = 2 but we don’t know how y acts on 2.

Let 2y = 5. So, we have 1xy = 2y = 5. As, xyz is a relation, therefore, we

have 1xyz = 5z = 1. So, we have,

1
x−→ 2

y−→ 5
z−→ 1.

Now, by rule 1, since 1z = 1 = 5z, so we have 1 = 5. Hence, we have

2y = 1 but we already have 4y = 1 leading to 4 = 2. So, we have only 3

indices now and we get the following table:

10



x x x y y z z x y z

1 2 3 1 2 1 1 1 2 1 1

2 3 1 2 1 2 2 3 2

3 1 2 3 3 3 1 2 3

The table gives 2z = 3. So, 3z = 2 and then we have 3y = 3 and in this

way all the blank spaces in the table is determined. Thus, we have

x = (1 2 3), y = (1 2), z = (2 3).

So, there are 3 indices and hence, there are 3 cosets of H in G and H

has order 2. So, G has order 6. The 3 permutations listed above can be shown

to generate the group S3. So, G is isomorphic to S3.

Example:-2. Let T denotes the tetrahedral group that is the of all

rotational symmetries of a regular tetrahedron. We know that the T has 12

elements. Let x and y denotes the counter clockwise rotations by 2π/3 about

the center of a face and about a vertex of that face respectively. If z denotes

the rotation about an edge by an angle π. Then, we have yx = z and the

relations

x3 = 1, y3 = 1, z2 = yxyx = 1

hold in T .

Now, we will show that these relations are enough to define the group

completely. So, we can take the group G as

G =< x, y; x3, y3, yxyx > .

As, x and y generate T . So, we can define a surjective homomorphism φ :

G → T . Now, to show that φ is injective it is enough to show that order of

G is 12. If we take subgroup H to be the subgroup generated by y, by doing

similar calculations as in the last example, we get the resulting table as:

11



x x x y y y y x y x

1 2 3 1 1 1 1 1 2 3 1

2 3 1 2 3 4 2 3 1 1 2

3 1 2 3 4 2 3 4 4 2 3

4 4 4 4 2 3 4 2 3 4 4

Thus, we have

x = (1 2 3), y = (2 3 4).

So, order of H is 3 and it has index 4 in G. So, order of G is 12. Thus, T is

isomorphic to G which is isomorphic to A4.

Example:-3. Just modify the relations given in the last example as

G =< x, y; x3, y3, yxy2x = 1 >,

and let the subgroup H is the one generated by y. Note that y2 = y−1, so we

have the modified table as:

x x x y y y y x y−1 x

1 2 3 1 1 1 1 1 2 3 1

2 2 2 3 1 1 2

The remaining entries are obtained by working from the right. It is clear

that 2y−1 = 3, which implies 3y = 2 and as 2y = 3, therefore 3y2 = 3 and

3y3 = 2 but y3 = 1, so we have 3 = 2 which implies 1 = 2 = 3. So, H = G and

x is some power of y, in fact x = y3 = 1. Hence, G turns out to be a cyclic

group of order 3. This example shows that just a small change in one of the

relation may reduce or increase the order of G.

G can also be defined as:

< x; x3 > .

We can define G by the following form as well,

< x, y; x3, y3, xy2x > .

So, we can have more than one way to define a group G.

12



Chapter 2

Matrix Lie Groups

In this Chapter, we will see what is a Matrix Lie Group, some of it’s exam-

ples and counter examples. All the definitions and theorems discussed in this

chapter and in successive chapters can be found in [BH].

Definition 8. Let Mn (C) be denoted as the space of all matrices of order n×n

with complex entries and GL (n;C) be the subset Mn (C) which consists of all

invertible matrices. With respect to the operation of matrix multiplication,

GL (n;C) turns out to be a group known as the general linear group.

Definition 9. A sequence of matrices Am in Mn (C) is said to converge to a

matrix A if

(Am)ij → (A)ij, for all 1 ≤ i, j ≤ n.

Definition 10 (Matrix Lie Group). A subgroup G of GL (n;C) is known as

a matrix Lie group if whenever there is a sequence matrices Am in G which

converges to A then either A is not invertible or A ∈ G.

2.0.1 Counterexample

1. Let G be a subgroup of the group GL (2;C) consisting of matrices with

rational entries. We observe that the sequence An in G defined as

An =

(1 + 1
n

)n (
1 + 1

n

)n − 1

1 1


13



converges to

A =

e e− 1

1 1

 ,
which is invertible but not in G. Thus, though G is a subgroup of

GL (2;C), it is not closed as a subset, hence not a matrix Lie group.

2.0.2 Examples

The following are some important examples of the matrix Lie groups.

1. GL (n;R) or GL (n;C) are trivial examples of matrix Lie groups.

2. The special linear groups SL (n;R) and SL (n;C)

As the determinant is a continuous function therefore a sequence of ma-

trices with determinant 1 has to converge to a matrix of determinant 1.

Therefore, SL (n;R) and SL (n;C) are the matrix Lie groups.

3. The orthogonal group O(n) and special orthogonal group SO(n)

Let Am be a sequence in O(n) such that Am → A. Since AtrmAm = I and

AtrmAm → AtrA, hence AtrA = I and A ∈ O(n) and thus we conclude

that the orthogonal group satisfies the Definition 10. Further, using the

continuity of determinant function as in the above example SO(n) also

turns out to be a matrix Lie group.

In the similar lines we can show that the complex orthogonal groups,

O(n,C) and SO(n,C) are matrix Lie groups.

4. Further, since complex conjugation of matrices is also preserved under

taking limits, we can easily observe that the unitary group U(n) and

special unitary group SU(n) are also matrix Lie groups.

5. The Heisenberg group H

14



The Heisenberg group is the group of all 3× 3 real matrices of the form

A =


1 a b

0 1 c

0 0 1

 , (2.1)

which is easily seen to be closed under limits, hence H is a matrix Lie

group.

2.0.3 Compactness of matrix Lie groups

Definition 11. We say that a matrix Lie group G is compact if:

1. for every sequence Am in G such that Am → A, then A ∈ G, and

2. there is a constant C such that modulus of every entry of any given

matrix A ∈ G, is less than C, thus

|Aij| ≤ C for all A ∈ G and 1 ≤ i, j ≤ n.

Examples and counterexamples

The groups U(n), SU(n), O(n) and SO(n) are compact matrix Lie

groups while the groups H, SL (n;R) and SL (n;C) are not compact.

2.0.4 Connectedness of matrix Lie groups

Definition 12. A matrix Lie group G is called connected if it is path con-

nected. Thus, G is connected if for any two points A and B in G, there exists

a continuous map φ from [0, 1] to G such that φ(0) = A and φ(1) = B.

It can be easily shown that the connected component of a matrix Lie

group G, containing the identity, is also a subgroup of G.

Examples and counterexamples of connected matrix Lie groups

The groups U(n), SU(n), GL (n;C) and SL (n;C) are connected while

the group GL (n;R) is not connected.

Simple connectedness of matrix Lie groups

15



Definition 13. A connected matrix Lie group G is called simply connected

if every continuous map φ : [0, 1] → G such that φ(0) = φ(1), there exists a

continuous map Φ : [0, 1]× [0.1]→ G such that

1. φ(s, 0) = Φ(s, 1) for all 1 ≤ s ≤ 1,

2. Φ(0, t) = φ(t) for all t ∈ [0, 1], and

3. Φ(1, t) = Φ(1, 0) for all t ∈ [0, 1].

For example, SU(2) is simply connected and SO(2) is not simply con-

nected.

2.0.5 Homomorphism and Isomorphism

Definition 14. Suppose G and H are two matrix Lie groups. A homomor-

phism Φ : G → H is said to be a Lie group homomorphism, if Φ is

continuous.

Further, if Φ is a group isomorphism between G and H, then it is said

to be Lie group isomorphism if both Φ and Φ−1 are continuous maps.

There exists a two-to-one Lie group homomorphism from SU(2) onto

SO(3).

16



Chapter 3

Matrix Lie Algebras and the

Exponential Mapping

In this chapter, the focus is on associated matrix Lie algebras of some well

known matrix Lie groups. Some of the results, which are stated without proof,

can be found in [BH].

Definition 15 (The Matrix Exponential). For a n×n complex or real matrix

X, the exponential of X that is eX is defined as

eX =
∞∑
m=0

Xm

m!
. (3.1)

This series is convergent and the function eX is continuous.

Some elementary results related to matrix exponential:-

For any arbitrary n × n matrices X and Y , matrix exponential satisfies the

following properties:-

1. (eX)∗ = eX
∗
.

2. e0 = I.

3. e(α+β)X = eαX + eβX for all α and β in C

4. eX is invertible and (eX)−1 = e−X

5. If XY = Y X, then eXeY = eY eX = eX+Y .

17



6. If A is an invertible matrix, then we have eAXA
−1

= AeXA−1.

7. ‖eX‖ ≤ e‖X‖.

Proof. The properties 1,2 and 6 are easy to see by the definition of the function

eX and the property 7 can be proved in the process of proving that the series

of eX converges. Now 3 and 4 follows directly from 5. So, we will prove only

the fifth one.

eXeY =

(
I +X +

X2

2!
+
X3

3!
+ . . .

)(
I + Y +

Y 2

2!
+
Y 3

3!
+ . . .

)
.

By rearranging the terms, we get

eXeY =
∞∑
n=0

n∑
l=0

Xn

n!

Y n−l

(n− l)!

=
∞∑
n=0

1

n!

n∑
l=0

n!

l!(n− l)!
X lY n−l

=
∞∑
n=0

1

n!
(X + Y )n

= eX+Y .

3.1 The Matrix Logarithm

Definition 16. If P is a n× n complex matrix, then the matrix logarithm of

P is defined by the function

logP =
∞∑
n=1

(−1)n+1 (P − I)n

n
, (3.2)

wherever the series converges.

Theorem 4. The matrix logarithm is well defined for all the n × n complex

matrices P such that ‖P − I‖ < 1. In this domain it is a continuous function

and

elogP = P.

Moreover, for all X such that ‖X‖ < log 2, ‖eX − I‖ < 1 we have

log eX = X.

18



Proof. As ‖(P − I)n‖ ≤ ‖(P − I)‖n and the complex function log z has radius

of convergence equal to 1, therefore, the given series is absolutely convergent

for all P with ‖(P − I)n‖ < 1 and we can also show that in this domain, the

function is continuous.

Now, one can prove that elogP = P in this domain by first looking at the

case when P is diagonalizable and then proving it for any arbitrary matrix by

constructing a sequence of diagonalizable matrices converging to P .

The last part follows directly by the properties of log z function.

Theorem 5. There exists a constant K such that for all n × n matrices P

with ‖P‖ < 1
2
,

‖ log(I + P )− P‖ ≤ K‖P‖2.

Proof. Since

log(I + P )− P =
∑∞

n=2(−1)n+1 Pn

n
= P 2

∑∞
n=2(−1)n+1 Pn−2

n
.

so that

‖ log(I + P )− P‖ ≤ ‖P‖2
∞∑
n=2

(1
2
)n−2

n
≤ K‖P‖2

for some constant K.

Theorem 6 (Lie Product Formula). For any two complex matrices X and Y

of order n, we have

eX+Y = lim
m→∞

(e
X
m e

Y
m )m.

The proof uses basic properties of exponential and logarithm function

and easy to conclude.

Next theorem is also stated without proof as the proof is easy to write

by using some linear algebra results.

Theorem 7. For any A ∈Mn(C), we have

det(eA) = etrace(A).

Definition 17. A one-parameter subgroup of GL(n;C) is a function de-

fined as, P : R→ GL(n;C) such that
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1. P (0) = I,

2. P is continuous,

3. P (u+ v) = P (u)P (v) for all u, v ∈ R.

Theorem 8. For every one-parameter subgroup P of GL(n;C), there is a

unique complex matrix X of order n such that

P (u) = euX .

3.2 The Lie Algebra of a Matrix Lie Group

Definition 18. For matrix Lie group G, it’s Lie algebra is defined as the set

of all matrices X for which esX is in G for all s ∈ R. The Lie algebra of G is

denoted by g.

Lie algebras of some well-known matrix Lie groups

1. It is easy to see that the Lie algebra of GL(n;C) is the set of all complex

matrices of order n, denoted by gl(n;C) and the Lie algebra of GL(n;R)

is the set of all real matrices of order n, denoted by gl(n;R).

2. The Lie algebra of SL(n;C)(\SL(n;R)) is the space of all complex (\

real) matrices of order n having trace equal to zero and is denoted by

sl(n;C)( \sl(n;R).

3. The Lie algebra of the matrix Lie group U(n) is the space of all matrices

of order n such that X∗ = −X and is denoted by u(n) and thus the Lie

algebra of the group SU(n) is the space of all complex matrices of order

n such that X∗ = −X with trace(X) = 0 and is denoted by su(n).

4. The Lie algebra of the group O(n) is same as the Lie algebra of SO(n)

and that is the set of all real matrices of order n such that X tr = −X

and is denoted by so(n).
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5. The Lie algebra of the Heisenberg group H is the set of all upper trian-

gular real matrices of order 3.

Some Properties of Lie algebras

For a matrix Lie group G with it’s Lie algebra ǵ, we have

1. If X ∈ ǵ, then eX belongs to the connected component of G which

contains identity.

2. If X is in ǵ and P is in G, then PXP−1 ∈ ǵ.

3. If X and Y are elements of ǵ, then we have X + Y ∈ ǵ, XY − Y X ∈ ǵ

and sX ∈ ǵ for all s ∈ R. Thus ǵ turns out to be a real linear subspace

of Mn(C).

Definition 19. Let P and Q be two matrices of order n. The bracket of P

and Q is denoted by [P,Q] and defined as

[P,Q] = PQ−QP .

Theorem 9. Let ǵ and h́ be the Lie algebras of the matrix Lie groups G and

H respectively. If Φ : G→ H be a Lie group homomorphism, then is a unique

real linear transformation φ : ǵ→ h́ with the property

Φ(eX) = eφ(X)

for all X ∈ G. This map φ satisfies the following properties:-

1. φ(PXP−1) = Φ(P )φ(X)Φ(P )−1, for all X ∈ ǵ, P ∈ G.

2. φ([X, Y ]) = [φ(X), φ(Y )], for all X, Y ∈ ǵ.

3. φ(X) = d
dt

Φ(e(tX))|t=0.

Definition 20. A linear map φ between two matrix Lie algebras ǵ and h́

is called a Lie algebra homomorphism if it preserve the bracket. More

precisely, a linear map φ : ǵ→ h́ is Lie algebra homomorphism if

φ([X, Y ]) = [φ(X), φ(Y )], for all X, Y ∈ ǵ.
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Definition 21 (The Adjoint Mapping). Let ǵ be the Lie algebra of the matrix

Lie group G. For a given A ∈ G the adjoint mapping is denoted by AdA and

defined to be an invertible linear map AdP : ǵ→ ǵ as

AdP (X) = PXP−1.

Theorem 10. Let ǵ be the Lie algebra of the matrix Lie group G. Let GL(ǵ)

denotes the group of all invertible linear transformations of ǵ and regarded as

a matrix Lie group. Then the map P → AdP is a Lie group homomorphism

of G into GL(ǵ) and for every P ∈ G

AdP [X, Y ] = [AdP (X), AdP (Y )] for all X, Y ∈ ǵ.

If ad : ǵ→ GL(ǵ) is the associated Lie algebra map, then for all X, Y ∈ ǵ

adX(Y ) = [X, Y ].

Definition 22. The exponential mapping for a matrix Lie group G, is the

restriction of matrix exponential to the Lie algebra ǵ of G.

The exponential mapping can be used to prove the following results

Theorem 11. Let G be a connected matrix Lie group with its Lie algebra g.

If A ∈ G, then A can be written as

A = eX1eX2 . . . eXl

for some X1, X2, . . . Xl in g.

Theorem 12. Let H and K be two matrix Lie groups. If Φ1 and Φ2 are

Lie group homomorphisms of H into K and φ1 and φ2 are the associated Lie

algebra homomorphisms. If H is connected and φ1 = φ2, then Φ1 = Φ2.

Definition 23 (Lie algebra). A finite-dimensional real or complex Lie algebra

is a finite-dimensional real or complex vector space ǵ, with a map [·, ·] from

ǵ× ǵ into ǵ such that

1. [X, Y ] = −[Y,X] for all X, Y ∈ ǵ.

2. [·, ·] is bilinear.
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3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ ǵ.

Property 3 is known as Jacobi Identity.

Example:-Mn(R) with respect to the bracket operation [P,Q] = PQ−

QP is a real Lie algebra.

A subalgebra h́ of a real or complex Lie algebra ǵ is a subspace of ǵ

which is closed with respect to the bracket operation.

For the Lie algebras ǵ and h́, a Lie algebra homomorphism is a linear

map φ : ǵ→ h́ such that φ([X, Y ]) = [φ(X), φ(Y )] for all X.Y ∈ ǵ and a Lie

algebra isomorphism is a one-to-one, onto Lie algebra homomorphism.

Definition 24 (ad map). For a Lie algebra ǵ with X ∈ ǵ, define a linear map

adX : ǵ→ ǵ by

adX(Y ) = [X, Y ].

Thus, ad (the map X → adX) is a linear map from ǵ into gl(ǵ), the space of

linear operators on ǵ.

Theorem 13. If ǵ is a Lie algebra, then for all X, Y ∈ ǵ

ad[X,Y ] = adXadY − adY adX = [adX , adY ].

Thus the map ad : ǵ→ gl(ǵ) is a Lie algebra Homomorphism.

Complexification of real Lie Algebras

Definition 25. Let V be a finite-dimensional vector space. The complex-

ification of V is a complex vector space, denoted by VC, is the space of

formal linear combinations v1 + iv2, for v1, v2 ∈ V with a condition that

i(v1 + iv2) = −v2 + iv1.

It can be shown easily that if gC is the complexification of a finite-

dimensional real Lie algebra g, then the bracket operation on g can be uniquely

extended to a gC making it a complex Lie algebra and this complex Lie algebra

gC is known as complexification of the real Lie algebra g.
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Chapter 4

Representations of the Matrix

Lie Groups and their Lie

Algebras

4.1 Introduction

In this chapter, we will first define finite dimensional complex and real rep-

resentations for matrix Lie groups and Lie algebras. Then invariant space,

irreducible representation, and intertwining map are defined. We see a rela-

tion between the representations of matrix Lie groups and their Lie algebras.

Next, we explore some examples of representations like: the adjoint represen-

tation, some representations of SU(2) and corresponding representations of

its Lie algebra su(2). Further, we see that every compact matrix Lie group is

completely reducible. Certain facts and results stated without proof can found

in [BH] and the references therein.

4.2 Representations

Definition 26. A Lie group homomorphism

Π : G→ GL(n;C)
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or a Lie group homomorphism

Π : G→ GL(V ),

where V is a finite dimensional complex vector space, is called a finite-dimensional

complex representation of the matrix group G. The dimension of V is called

the dimension of the representation Π. Similarly a finite dimensional real

representation of a matrix Lie group can be defined.

Definition 27. A Lie algebra homomorphism π of ǵ into gl(n;C) or into

GL(V ) for a finite dimensional complex vector space V is called a finite-

dimensional complex representation of the Lie algebra ǵ

Similarly a finite dimensional real representation of a Lie algebra can be

defined.

A representation is called faithful if it is a one-one homomorphism.

Definition 28. If Π is a finite dimensional representation of a matrix Lie

group G, acting on a vector space V then an invariant subspace W of V is

a subspace of V such that Π(P )w is in W for all w ∈ W and for all P ∈ G.

An irreducible representation is one which have no non-trivial invariant sub-

spaces. Analogously, these terms can be defined for Lie algebras.

Definition 29. Let Π1 be a representation of a matrix Lie group G acting on

the vector space V1, and let Π2 be a representation acting on some other space

V2 then an intertwining map of representations is a linear map φ : V1 → V2

such that

φ(Π1(P )v) = Π2(P )φ(v).

for all P ∈ G and for all v ∈ V1. In the same way the intertwining map of

representations of a Lie algebra can be defined.

An invertible intertwining map of representations is called an equivalence

of representations. The representations are called equivalent if there exists an

intertwining isomorphism between the two spaces V1 and V2.

25



Theorem 14. For a matrix Lie group G with the Lie algebra ǵ, if Π is a rep-

resentation acting on the vector space V , then we have a unique representation

π of ǵ that acts on the same vector space and satisfies

Π(eX) = eπ(X)

for all X in ǵ. Also, the representation π is such that

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

π also satisfies

π(PXP−1) = Π(P )π(X)Π(P )−1

for all X in ǵ and all P in G.

Proof. By using theorem 9, we can say that for any Lie group homomorphism

Φ : G→ K,

we have an associated Lie algebra homomorphism

π : ǵ→ ḱ.

Now we can take K to be equal to GL(V ) and Φ to be equal to Π. As, we know

that the Lie algebra of GL(V ) is denoted by gl(V ), the associated Lie algebra

homomorphism that is π maps ǵ to gl(V ) and thus, it is a representation of

ǵ.

The described properties of the map π are satisfied using the theorem 9.

Theorem 15. Let ǵ be the Lie algebra of a connected matrix Lie group G.

1. If Π is a representation of G with associated representation π of ǵ then

π is irreducible iff Π is irreducible.

2. If Π1 and Π2 are representation of G with associated representation π1

and π2 of ǵ then π1 π2 are equivalent iff Π1 Π2 are equivalent.

Proof. The proof of second is similar to the first, we will prove the first only.

Let Π be irreducible and W be a subspace of V , invariant under π(X)

for all X in ǵ. Our aim is to show that either W is {0} or V .

Since G is connected and P ∈ G, we can write P as

P = eX1......eXm
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for some X1, X2, . . . , Xm ∈ ǵ. As, the space W is invariant under π(Xi), so it

will be invariant under exp(π(Xi)) as well and then under

Π(P ) = Π(eX1......eXm) = Π(eX1) . . .Π(eXm) = eπ(X1) . . . eπ(Xm).

Thus, W is invariant under Π(P ) for each such P ∈ G. Therefore, W is either

{0} or whole of V . Thus, π is irreducible.

Now, suppose that π is irreducible and W is an invariant subspace under

Π(P ) for all P ∈ G. Then, by the definition of exp function, we can see that

W is invariant under Π(exp(sX)) for all X in ǵ and for all s ∈ R. Therefore

W is invariant under

π(X) =
d

ds
Π(esX)

∣∣∣∣
s=0

.

Hence, irreducibility of π implies that W is either {0} or V , proving the

irreducibility of Π.

Using definitions the following result can be easily proved.

Theorem 16. If ǵC is the complexification of a real Lie algebra ǵ, then we

have a unique extension for every finite dimensional complex representation π

of ǵ to a complex linear representation of ǵC, which is also denoted by π and

defined as

π(X + iY ) = π(X) + iπ(Y )

for all X and Y in ǵ.

Also, π is an irreducible representation as a representation of ǵ iff it is an

irreducible representation as a representation of ǵC.

Definition 30. Let H́ be a Hilbert space and U(H́) be group of all unitary

operators on H́. Let G be a matrix Lie group. Then a unitary representation

of G is a homomorphism Π : G → U(H́) if the given continuity condition is

satisfied:

If Pn, P ∈ G with Pn → P , then

Π(Pn)v → Π(P )v
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for all V ∈ H́.

It is an important question that why we should study representations?

If Π is a faithful representation of a matrix Lie group G, then the collec-

tion of operators {Π(A) : A ∈ G} is a group and it turns out to be isomorphic

to G itself. Hence, we obtain a way to view G as a group of invertible opera-

tors. Despite this important reason, the idea behind studying representation

theory is not limited to this only.

Another important reason is that a representation can be viewed as an

action of a given group on a linear space. Some such kind of actions are

common in many branches of physics and mathematics. It is desirable to

understand these actions in some better way.

In case a system possess symmetry, then with the knowledge of the rep-

resentations of the group of its symmetries, one can work with the system in

more efficient and simple way.

For an example, if a differential equation in R3, possess rotational sym-

metry, then the solution space remains invariant under the action of SO(3),

and hence the representations of rotation group help to understand the solu-

tions.

4.3 Some Examples of Representations

1. The standard representation

If we take any matrix Lie group G, then by its definition, it is a sub-

group of GL(n;C). So, the inclusion map of G into GL(n;C) will be a

representation of G. This is called the standard representation of G.

Thus, the standard representation of SO(3) is a representation in which

it acts on R3 in the usual way and for SU(2), the standard representation

is the representation in which it acts in the usual way on C2.

Now, for any matrix Lie group G, it’s Lie algebra ǵ is a subalgebra of
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gl(n;R) or gl(n;C). Thus, in this case, the inclusion map will work as

a standard representation.

2. The trivial representation

Consider complex vector space C of dimension one, then for any matrix

Lie group G, the trivial representation of G is defined as: Π : G →

GL(1;C) such that

Π(P ) = I

for all P in G. As, the dimension of C is one, therefore it has no nontrivial

subspaces. Thus, Π is an irreducible representation of G.

Now, for a Lie algebra ǵ, the trivial representation can be defined in

the most obvious way as π : ǵ→ gl(1;C) such that

π(X) = 0

for all X in ǵ.

3. The adjoint representation

We know that for a matrix Lie group G with the Lie algebra ǵ, the

adjoint mapping is a map defined as:

Ad : G→ GL(ǵ)

given by the formula

AdP (X) = PXP−1.

Since, Ad is a Lie group homomorphism, we can consider it as a repre-

sentation of the matrix Lie group G which acts on it’s Lie algebra ǵ. So,

we can call the map Ad as the adjoint representation of G.

Similarly, for a Lie algebra ǵ, the adjoint map is defined as:

ad : ǵ→ gl(ǵ)

given by the formula

adX(Y ) = [X, Y ].

As, ad is a Lie algebra homomorphism, therefore, it is a representation

29



of the Lie algebra ǵ and it is known as the adjoint representation.

4. Some representations of SU(2)

Let Vn be the space of all homogeneous polynomials in two complex

variables (z1 and z2) having total degree n. So, Vn will contain all the

polynomials of the form:

f(z1, z2) = a0z1
n + a1z1

n−1z2 + a2z1
n−2z2

2 + · · ·+ anz2
n

where z1, z2 are complex variables and aj’s are arbitrary complex con-

stants.

Any element U of SU(2) acts on C2 as a linear transformation. Let the

order pair (z1, z2) in C2 is denoted by z. Then a linear transformation

Πm(U) can be defined on the space Vn as:

[Πn(U)f ](z) = f(U−1z).

By the definition of f , we have,

[Πn(U)f ](z1, z2) =
n∑
k=0

ak(U
−1
11 z1 + U−112 z2)

n−k
(U−121 z1 + U−122 z2)

k
.

If we expand the right hand side of this formula, then we observe that

Πn(U)f is a homogeneous polynomial having degree n. So, Πn(U) is

map from Vn into Vn. We also have

Πn(U1)[Πn(U2)f ](z) = [Πn(U2)f ](U1
−1z) = f(U2

−1U2
−1z) = Πn(U1U2)f(z).

Hence, Πn is a representation of SU(2).

Now, let us compute the Lie algebra representation πn corresponding to

the representation Πn. By theorem 14, we know that

πn(X) =
d

dt
Πn(etX)

∣∣∣∣
t=o

.

By using the definition of Πn(U), we have

(πn(X)f)(z) =
d

dt
f(e−tXz)

∣∣∣∣
t=0

.

Let us now assume that z(t) is a curve in C2 defined by the formula

z(t) = e−tXz.

So, z(0) = z and z(t) = (z1(t), z2(t)), with zj(t) ∈ C. Hence, by the
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chain rule, we have,

πn(X)f =
∂f

∂z1

dz1
dt

∣∣∣∣
t=0

+
∂f

∂z2

dz2
dt

∣∣∣∣
t=0

.

Since, dz
dt

∣∣
t=0

= −Xz, therefore, we have

πn(X)f = − ∂f
∂z1

(X11z1 +X12z2)−
∂f

∂z2
(X21z1 +X22z2).

By theorem 16, we know that every finite dimensional complex represen-

tation of a Lie algebra (here we consider the Lie algebra su(2) of SU(2))

extends uniquely to a complex linear representation of it’s complexifica-

tion.

The complexification of su(2) is sl(2;C) (up to isomorphism). So, πn

is extended to a representation of sl(2;C), which we will denote by πn

itself.

For example, consider the matrix

H =

1 0

0 −1

 ∈ sl(2;C).

Then (πn(H)f)(z) is defined as:

(πn(H)f)(z) = − ∂f
∂z1

z1 +
∂f

∂z2
z2.

So,

πn(H) = −z1
∂

∂z1
+ z2

∂

∂z2
.

Now, if we apply πn(H) to a basis element z1
kz2

n−k, then we get

πn(H)z1
kz2

n−k = −kz1kz2n−k + (n− k)z1
kz2

n−k = (n− 2k)z1
kz2

n−k.

So, each basis element z1
kz2

n−k is an eigenvector for πn(H) with eigen-

value (n− 2k). Hence, πn(H) is diagonalizable.

If X, Y ∈ sl(2;C) are two elements given by

X =

1 0

0 0


and

Y =

0 0

0 1

 .
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Then we have,

πn(X) = −z2
∂

∂z1
, πn(Y ) = −z1

∂

∂z2
Then,

πn(X)z1
kz2

n−k = −kz1k−1z2n−k+1,

πn(Y )z1
kz2

n−k = (k − n)z1
k+1z2

n−k−1.

Theorem 17. πn is an irreducible representation of sl(2;C).

Proof. Let W be a non-zero invariant subspace of Vn, then, we have to

show that W = Vn.

Let w be a non-zero vector in W , then we can write w uniquely in the

following form:

w = a0z1
n + a1z1

n−1z2 + a2z1
n−2z2

2 + · · ·+ anz2
n

and since, w is non-zero, therefore, at least one of the a′ks is nonzero.

Assume that k0 is the largest value of k such that ak is nonzero. Then,

consider

πn(X)k0w.

As, each application of πn(X) reduces the power of z1 by 1, there-

fore, πn(X)k0 makes all the terms in w equal to zero except the term

ak0z
k0
1 z

n−k0
2 and on this term πn(X)k0 acts as:

πn(X)k0(ak0z
k0
1 z

n−k0
2 ) = k0!(−1)k0ak0z2

n.

So, πn(X)k0w is nothing but a nonzero multiple of z2
n. As, W is an

invariant subspace, therefore, it must contain this nonzero multiple of

z2
n and hence, it must contain z2

n.

Now, by the definition of πn(Y ), πn(Y )kz2
n is a nonzero multiple of

z1
kz2

n−k. Therefore,W must contain z1
kz2

n−k for all 0 ≤ k ≤ n. As,

these elements form a basis for Vn, therefore, this implies that W = Vn.

Hence, the theorem is proved.
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4.4 Complete Reducibility

Definition 31 (Direct sum). Let Π1,Π2, . . . ,Πm be representations of a ma-

trix Lie group G, which act on the vector spaces V1, V2, . . . , Vm respectively.

The direct sum of these representations is a representation, denoted by

Π1 ⊕ · · · ⊕ Πm, of G which acts on the vector space V1 ⊕ V2 ⊕ · · · ⊕ Vm,

such that for all A in G,

[Π1 ⊕ · · · ⊕ Πm(A)](v1, . . . , vm) = (Π1(A)v1, . . . ,Πm(A)vm).

In the same way, direct sums of representations for Lie algebras are defined.

Definition 32 (Completely Reducible Representation). Let Π be a finite-

dimensional representation of a matrix Lie group G. Then Π is said to be

a completely reducible representation of the group G if it is isomorphic

to a representation of G, which is the direct sum of finitely many irreducible

representations of G.

Similarly, one can define Completely Reducible Representation of a Lie

algebra.

Definition 33. A Lie algebra or a Lie group is known to possess complete

reducibility property, if all of its finite dimensional representations are com-

pletely reducible.

Theorem 18. Every finite dimensional unitary representation of a matrix Lie

group G, which acts on a finite dimensional real or complex Hilbert space V is

completely reducible.

Proof. Suppose Π acts on a finite dimensional Hilbert space V and let 〈, 〉

be the inner product on the space V . Assume that U ⊂ V is an invariant

subspace, then V is equal to the direct sum of U and U⊥.

Since, Π is a unitary representation, therefore for all A in G we have Π(A−1) =

Π(A)−1 = Π(A)∗. Further, if u ∈ U and v ∈ U⊥, then

〈Π(A)v, u〉 = 〈v,Π(A)∗u〉 = 〈v,Π(A−1)u〉 = 〈v, u′〉 = 0.
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Hence, U⊥ is also an invariant subspace.

Now, suppose that V is not irreducible, then there exists a non-trivial

subspace U of V such that V = U ⊕ U⊥, where both U and U⊥ are invariant

subspaces. Then either we have U as an irreducible space or it can further

be decomposed as an orthogonal direct sum of invariant subspaces, similar

condition is true for U⊥.

This process of splitting may be continued till we get irreducible pieces.

The termination of the process is guaranteed because V is finite dimensional.

Hence, at the end we get irreducible invariant subspaces, whose direct sum is

V itself.

Theorem 19. Every finite group satisfies complete reducibility property.

Proof. Let Π be a representation of G which acts a space V . We aim to show

that there is an inner product on V , with respect to which Π turns out to

be a unitary representation on V , Hence the result will follow from previous

theorem. Let 〈, 〉 be the inner product on V . Now define a new inner product

〈, 〉G on V as:

〈v1, v2〉G =
∑
h∈G

〈Π(h)v1,Π(h)v2〉.

If g ∈ G, then

〈Π(g)v1,Π(g)v2〉G =
∑
h∈G

〈Π(h)Π(g)v1,Π(h)Π(g)v2〉 =
∑
h∈G

〈Π(hg)v1,Π(hg)v2〉.

Since, h varies over whole of G, we have

〈Π(g)v1,Π(g)v2〉G = 〈v1, v2〉G,

hence, Π is a unitary representation.

Definition 34. A nonzero measure µ on the Borel σ-algebra in the matrix

Lie group G, is said to be a left Haar measure on G, if it locally finite and

left translation invariant.

Theorem 20. Every compact matrix Lie group G possess the complete re-

ducibility property.

34



Proof. It is known that every matrix Lie group has a left Haar measure and

upto multiplication by a constant there is only one such Haar measure. Further

since the group is compact, the left Haar measure is finite.

Suppose Π is a finite-dimensional representation of a compact group G,

which acts on a vector space V and let 〈, 〉 be the inner product on V , then

define a new inner product 〈, 〉G on V as:

〈v1, v2〉G =

∫
G

〈Π(g)v1,Π(g)v2〉dµ(g),

where µ is a left Haar measure. If h ∈ G, then we have

〈Π(h)v1,Π(h)v2〉G =

∫
G

〈Π(g)Π(h)v1,Π(g)Π(h)v2〉dµ(g)

=

∫
G

〈Π(gh)v1,Π(gh)v2〉dµ(g) = 〈v1, v2〉G.

Thus Π is a unitary representation with respect to the new inner product.

Therefore, it is completely reducible by Theorem 18.
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Chapter 5

Conclusion

In this thesis, we worked with the matrix Lie groups which are the subgroups

of general linear groups. Lie groups, in general is a very vast topic and need a

lot of pre-requirements but matrix Lie groups are special kinds of Lie groups

which requires only some basic knowledge of Algebra, Topology and Analysis

and are thus easy to understand.

The area of representation theory is a very vast one and whatever we

studied in these chapters is just an attempt to become familiar with some

examples of representations and so that we can go for some more advanced

study related to representation theory in the coming future. We would like

to study the representations of SU3, nilpotent Lie groups and semisimple Lie

algebras.
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