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ABSTRACT

It is believed that all physical fields should be described at fundamen-

tal level by the general framework of quantum field theory. But we do not

have any successfull theory of quantum gravity, which describes the gravity

in the quantum domain. Therefore, to study the influence of the gravita-

tional field on quantum phenomena we quantize the matter fields in the

usual way while the gravitational field is treated as the fixed background.

Classically gravity is described by the theory of general relativity as the

curvature of spacetime. So in order to understand the quantum aspect of

gravity one is lead to the subject of quantum field theory in background

curved spacetime, which is the subject of this work.

In curved spacetime, in general, we do not have any preferred set of basis

modes. Even our very notion of particle and vacuum is not very well de-

fined, they depend on the set of modes (in other words they are observer-

dependent). Theory predicts some interesting phenomenon eg. Casimir

effect, Unruh effect. We see that the frequency modes get modified in the

presence of boundary or in presence of non-trivial geometry of spacetime.

Vacuum is the most simple yet most bizzare. The Casimir effect is regarded

as one of the most striking manifestations of vacuum fluctuations in quan-

tum field theory. The Casimir stress for spherical shell turns out to be

repulsive with certain constraints, which can be related to the expansion

of the universe.
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Chapter 1

Introduction

There are four fundamental forces in nature. Standard model explains

three of the fundamental forces in the framework of quantum field theory

but fails to describe the gravity. The two major advances of the 20th

century physics : quantum mechanics and General relativity, has changed

our view towards nature. These theories work very well in their respectie

areas and have been experimentally verified. We understand gravity at the

classical level as the curvature of spacetime described by Einstein’s field

equation. But to find the solution of Einstein’s equation, in general, is

tedious. Blackhole is the prediction of Einstien’s equation, which is now

experimentally verified.

However, the main problem is to find a consistent framework for

quantum gravity that unifies general relativity with quantum mechanics.

There are many approaches to such a theory, but no one is fully successful.

String theory offers a route towards such a theory, it predicts the existence

of a vertex operator corresponding to a massless spin two particle. On the

other hand, the unexpected similarities between the properties of blackhole

and the laws of thermodynamics have gave us a new way to understand the

gravity. If the blackhole has entropy then in quantum theory it must be an

ensemble of some kind of microstates in quantum Hilbert space as defined

by Boltzmann law. This approach leads to the involvement of number the-

ory and different kinds of dualities in string theory.

here we proceed with adopting Einstien’s general theory of relativity

1



as a description of gravity and quantize the material field as usual.

1.1 Quantum fields in curved spacetime

There exist a number of way for formulating a quantum field theory from

a classical field theory which is described in terms of Lagrangian or Hamil-

tonian formulation. Howeve, the field which describes the gravity is suffi-

ciently different from other classical field theories, the essential difference

between the general relativity and other classical theories appears to be

the dual role-played by the metric gµν as both the quantity which describes

the dynamical aspect of gravity and the quantity which describes the back-

ground spacetime structure. Thus, it would appear that to quantize the

dynamical degrees of freedom of the gravitational field, one must also give

a quantum mechanical description of spacetime structure. It is convenient

to first study the Quantization of the scalar and another vector fields in

curved spacetime, for which we know how to quantize them in Minkowski

space.

1.1.1 Scalar field quantization in curved spacetime

In order to study the behavior of quantum fields in curved space, we start

with Lagrangian density [1]

LM =
1

2

√
−g(x)

[
gµν(x)∇µΦ(x)∇νΦ(x)−m2Φ2(x)− ξR(x)Φ2(x)

]
(1.1)

where m is the mass of field quanta of scalar field φ(x). The coupling

between the scalar field and the gravitational field is presented by ξRφ2,

where ξ is a dimensionless factor and R(x) is the Ricci scalar curvature.

Setting the variation of the action with respect to φ equal to zero yields

the scalar field equation

[
�x +m2 + ξR(x)

]
φ(x) = 0
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the field φ may be expanded as:

φ(x) =
∑
i

[
âifi(x) + âi

†fi
?(x)

]
(1.2)

where in Minkowski space, fi(x
µ) =

[
2ω(2π)n−1

]− 1
2 eikµx

µ

The inner product is generalized to,(for a spacelike hypersurface Σ)

(φ1, φ2) = −ι
∫

Σ

(φ1∇µφ2
∗ −∇µφ1φ2

∗) [−gΣ(x)]
1
2 dΣµ

where dΣµ = nµdΣ, with nµ a future directed unit vector orthogonal hy-

persurface Σ and dΣ is the volume element in Σ.

There is a difference here how we treat the quantum fields in any

spacetime. In Minkowski space, there is a natural set of modes.The vector

∂
∂t

is a Killing vector in this space, and the modes are eigenfunctions of

this killing vector. However, in curved spacetime, the Poincare group is

no longer a symmetry of spacetime. Indeed, in general , there will be no

Killing vectors at all with which to define positive frequency modes. There

is no preferred set of modes in curved spacetime. Field φ may be expanded

in another complete orthonormal set of modes.

φ(x) =
∑
i

[
b̂igi(x) + b̂i

†
gi
?(x)

]
(1.3)

1.1.2 Bogolubov transformation

The two observers corresponding to different set of modes will disagree on

the number of particles observed. It is convenient to expand each set of

modes (from equation 6 and 7)in terms of other

gi =
∑
i

(αijfj + βijfj
?)

conversely

fi =
∑
i

(αji
?gj − βjigj?)

3



These transformations from one set of basis into another is known as Bo-

golubov transformation. The matrices αij and βij are called Bogol-

ubov coefficients.

αij = (gi, fj)

βij = −(gi, fJ
?)

These Bogolubov coefficient can be used to transform between the operators

corresponding to different set of modes,

âi =
∑
i

(αjib̂j + βji
?b̂j
†
)

b̂i =
∑
i

(αij
?âj − βij?âj†)

Expectation value of the g number operator n̂gi = bi
†bi in f-vacuum :

〈
0f
∣∣ n̂gi ∣∣0f〉 =

∑
i

|βij|
2

1.2 Concept of particle : Particle detectors

The concept of particle and vacuum do not generally have universal signifi-

cance, there is an essential observer dependent quality about them. One is

still free to assert the presence of particles, but without specifying the state

of motion of the detector, the concept is not very useful, even in Minkowski

space.

We define a particle as being something which is ”detected” by a ”particle

detector”.

We shall treat a model of particle detector due to Unruh (1976) and Dewitt

(1979). It consists of an idealized point particle with internal energy levels

labeled by the energy E, coupled via a monopole interaction with a scalar

field φ.
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1.2.1 Transition probability and response function

To understand how the particle detector detects the presence of particles,

let the particle detector moves along the world line xµ(τ), where τ is the

detector’s proper time. The detector-field interaction is described by the

interaction Lagrangian [2]

Lin = cm(x)φ[x(τ)]

where c is a small coupling constant and m is the monopole moment of

detector. Suppose the field φ is in the vacuum state |0M〉. For a general

trajectory detector will undergo a transition E > E0, also the field will

make transition to a arbitrary state |ψ〉. For small c amplitude for this

transition may be given by first order perturbation theory as

ic 〈E,ψ|
∫ ∞
−∞

m(τ)φ[x(τ)]dτ |0M , E0〉

Using time evolution of m(τ) and H0 |E〉 = E |E〉, the transition amplitude

factorize to give

ιc 〈E|m(0) |E0〉
∫ ∞
−∞

ei(E−E0)τ 〈ψ|φ(x) |0M〉 dτ

We calculate the transition probability to all possible E and ψ, ob-

tained by the squaring the modulus of Eq. (8), and summing over E and

the complete set ψ

c2
∑
E

| 〈E|m(0) |E0〉 |2F(E − E0)

where

F(E) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′e−iE(τ−τ ′)G+(x(τ), x(τ ′)) (1.4)

The function F(E), is known as the Response function of detector,

5



which is independent of the internal details of the detector, and is de-

termined by the positive frequency Wightman Green function G+. It

represents the bath of the ’particles’ that the detector effectively experience

as a result of its motion. The remaining factor represents the selectivity

of the detector.

In Minkowski space the system is invariant under time translation in the

detector’s reference frame, so we can write

G+(x(τ), x(τ ′)) = g(∆τ)

∆τ = τ − τ ′

The transition probability per unit proper time in this case is modified as

c2
∑
E

| 〈E|m(0) |E0〉 |2
∫ ∞
−∞

d(∆τ)ei(E−E0)∆τG+(∆τ) (1.5)

1.2.2 Detector moving along a hyperbolic trajectory

Considering that the detector moves along a hyperbolic trajectory in the

(t,z) plane:

z2 = t2 + α2

x = y = 0

where α is a constant. Detector accelerates uniformly with acceleration

α−1 in the frame of detector. The detector’s proper time τ is given as

t = α sinh
( τ
α

)
. Considering the field massless, the positive frequency Wightman function

is evaluated as

D+(x, x
′
) = − 1

4π2

[
(t− t

′
− ιε)2 − |~x− ~

x
′
|2
]

(1.6)
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For this trajectory we obtain:

D+(∆τ) = −(4π2)−1
∞∑

k=−∞

(∆τ − 2ιε+ 2πιαk)−2

Substituting this into Eq. (9) and using the Fourier transform with the

help of a contour integral yields the transition probability per unit time [2]

c2

2π

∑
E

(E − E0)| 〈E|m(0) |E0〉 |2

e2π(E−E0)α − 1

In this expression we get a term like Planck factor (Bose-Einstein’s Dis-

tribution)
[
e2π(E−E)α − 1

]−1

, which indicates that the equilibrium be-

tween the accelerated detector and the φ field in the state |0M〉 is the

same as that would have been achieved when the detector remained unac-

celerated, but immersed in a bath of thermal radiation at the temperature

T =
1

2παkB
=
acceleration

2πkB

where kB is Boltzmann’s constant.

In other words we can say that the vacuum Green function for a

uniformly accelerated detector is the same as the thermal Green function

for an inertial detector.

1.2.3 Cosmological particle creation: an example

To see how particle creation can occur in a expanding (or contracting)

spacetime with Minkowskian in and out regions, let us consider a simple

example. Considering a two-dimensional Robertson-Walker universe with

line element

ds2 = dt2 − a2(t)dx2

Introducing new time parameter η (conformal time) defined by dη =

dt
a
, the metric becomes

ds2 = C(η)(dη2 − dx2)

7



where C(η) = a2(η) is the ’conformal scale factor’. The form of the metric

here is conformal to Minkowski space.

Figure 1.1: The conformal scale factor C(η) represents an asymptotically
static universe that undergoes a period of smooth expansion

Taking C(η) = A+B tanh(ρη) , A, B, ρ are constants.

So that in the far past and future the spacetime looks like the Minkowskian

since

C(η)→ A±B, η → ±∞

This spacetime has the spatial translation symmetry, so separating the

variable in scalar mode function as

uk(η, x) = (2π)−
1
2 eιkxχk(η)

Substituting uk(η, x) in scalar field equation with ξ = 0, we obtain an

ordinary differential equation:

d2

dη2χk(η) + (k2 + C(η)m2)χk(η) = 0

This equation can be solved in terms of hypergeometric function. [2]

uk
in(η, x) = (4πωin)−

1
2 exp{ιkx− ιω+η − (ιω−/ρ) ln [2 cosh(ρη)]}

F1(1 + (ιω−/ρ), ιω−/ρ; 1− (ιωin/ρ);
1

2
(1 + tanh(ρη)))

8



uk
out(η, x) = (4πωout)

− 1
2 exp{ιkx− ιω+η − (ιω−/ρ) ln [2 cosh(ρη)]}

F1(1 + (ιω−/ρ), ιω−/ρ; 1− (ιωout/ρ);
1

2
(1 + tanh(ρη)))

The normalized modes which behaves like the positive frequency

Minkowski space modes in remote past ( η → −∞) and future ( η →

+∞)are

uk
in(η, x)→ (4πωin)−

1
2 eι

~k.~x−ωinη

uk
out(η, x)→ (4πωout)

− 1
2 eι

~k.~x−ωoutη

Where

ωin =
[
k2 +m2(A−B)

] 1
2

ωout =
[
k2 +m2(A+B)

] 1
2

ω± =
1

2
(ωout ± ωin)

Bogolubov coefficient is non-vanishing. We can write

uk
in(η, x) = αkuK

out(η, x) + βku−k
out?(η, x)

Where

|αk|2 =
sinh2(πω+/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)

|βk|2 =
sinh2(πω−/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)

If the quantum field resides in the state |0, in〉, the unaccelerated

particle detectors in the out region (η → +∞) will register the presence

of quanta. We can therefore describe this quantum development as the

creation of particles in the mode k as the consequence of the cosmic expan-

9



sion.
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Chapter 2

Effects of a non-trivial

topology in quantum field

theory : Cylindrical spacetime

In order to understand the behaviour of quantum fields in curved space-

time, we look for the effect of non-trivial topology in a locally flat space-

time. Considering the R1 ∗ S1 two dimensional cylindrical spacetime with

compactified spatial sections. In this spacetime the spatial points x and

x+L are identical, where L is the periodicity length (circumference of the

universe) and the length element is given as

ds2 = dt2 − dx2

The field modes in this case are given by the discrete set

Uk = (2Lω)−
1
2 eι(kx−ωt))

where

k =
2πn

L
, n = 0,±1,±2,±3, ...

For the massless case, ω = |k|,the components of stress - tensor in

this two dimensional space are calculated as

11



[2]

Txx = Ttt = 1
2
(∂tφ)2 + 1

2
(∂Xφ)2 (2.1)

Ttx = Txt = ∂tφ∂xφ (2.2)

The vacuum associated with these discrete modes |0L〉 is different from

usual Minkowski space vacuum |0〉 with the property |0L〉 → |0〉 as L→∞.

The vacuum expectation value of the stress - tensor is calculated as

〈0L|Ttt |0L〉 =
( 1

2L

) ∞∑
n=−∞

|ke| =
(2π

L2

) ∞∑
n=0

n (2.3)

which is clearly diversing. Here in the case of cylindrical space spatial

section is compactified, applying normal ordering in this fock space we

obtain

〈0L| : Ttt : |0L〉 = 〈0L|Ttt |0L〉 − lim
L
′→∞
〈0L′ |Ttt |0L′〉 = − π

6L2 (2.4)

The cloud of negative vacuum energy is distributed uniformly through-

out the R1 ∗ S1 universe with total energy − π
6L

.

Here we have used the boundary condition (i.e. uk(t, x) = uk(t, x+ L)). If

12



we use antiperiodic boundary conditions uk(t, x) = (−1)nuk(t, x + L), the

scalar field is referred to as a twisted field. The vacuum energy in case of

twisted scalar field is calculated in a similar way [2]

ρ = 〈0L| : Ttt : |0L〉 =
π

12L2

For the twisted scalar field the value of vacuum energy is −1
2

of that for

untwisted fields. Here in this case we have seen that spatially bounded

space suffers the same ultraviolet divergence properties as one observe in

usual Minkowski space.Now we want to observe the behaviour of these

quantum fields in presence of the boundary.
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Chapter 3

Boundary effects in field

theory in curved space time :

Casimir effect

The Casimir effect, discovered more than 60 years ago by Casimir (1948), is

one of the most direct manifestations of the existence of zero- point vacuum

oscillations. Casimir effect in a essence is the polarization of the vacuum

by boundary conditions or geometry, which alter the zero-point modes of

the field. The classical electromagnetic field get modified in the presence of

material boundaries. In any space, even it is unbounded, the quantum field

modes may modified in presence of conducting surfaces. To observe these

possibilities we look into a simple example of an infinite plane (x3 = 0)

in ubounded four dimensional Minkowski space. The field modes for a

massless scalar field vanish at the plane’ surface and is given by

sin |k3|x3e
ι(k1x1+k2x2−ωt)

The vacuum state will be different in this case from that of a simple

Minkowski space without boundary. The Green function can be calculated

by using the method of images[2]

D
(1)
B (x, x′) =

1

2π2

( 1

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 − (t− t′)2

15



− 1

(x1 − x′1)2 + (x2 − x′2)2 + (x3 + x′3)2 − (t− t′)2

)
The first part of this expression corresponds to the unbounded Minkowski

space, which diverges when x → x′. The second term corresponds to

the Minkowski space with boundary. To analize the boundary effects we

calculate the vacuum expectation value of Stress - Energy- Momentum

tensor in latter case

〈0|Ttt|0〉B = − 1

16π2x4

similarly

〈0|Tii|0〉B =
1

16π2x4

We can see that the vacuum energy diverges as one approaches to

surface x3 → 0, even though we have already subtracted the infinite vac-

uum energy of unbounded Minkowski space. Hence we observe that these

boundary surfaces alter the topology of field configuration.

We can generalize the problem, to the case where more than one boundaries

are present, easily for plane boundaries and conformally invariant fields.

Casmire (1948) considered the vacuum energy associated with the elec-

tromagnetic field between two parallel reflecting planes. Conservation and

tracelessness of stress tensor require that

〈T µν〉 = A(
1

4
ηµν + x̂µ3 x̂

ν
3)

the two parallel reflecting planes are orthogonal to X3, and A is a constant

A = − π2

180a4

Here a is the separation between the two parallel plates.

16



Present Work :

3.1 Casimir effect for a spherical shell in De

Sitter spacetime

The Casimir force depends on the nature of the quantum field, the specific

boundary conditions imposed on the field, the type of spacetime manifold

and its dimensionality. Here we analyse the Casimir effect for a spherical

shell in De Sitter background for a scalar field satisfying Dirichlet boundary

condition. Using the lagrangian density (1.1) we obtain the scalar field

equation

[
�x +m2 + ξR(x)

]
φ(x) = 0 (3.1)

De Sitter space is a maximally symmetric Lorentzian manifold, rep-

resented as the hyperboloid

z0
2 − z1

2 − z2
2 − z3

2 − z4
2 = −α2

embedded in (n+1) dimensional Minkowski space with metric

ds2 = dz0
2 − dz1

2 − dz2
2 − dz3

2 − dz4
2

Using the coordinates (t,x) described as[2]

z0 = α sinh(t/α) +
1

2
α−1et/α|x|2

z4 = α cosh(t/α)− 1

2
α−1et/α|x|2

zi = et/αxi, i = 1, 2, 3, −∞ < t, x <∞

it covers the half of the de Sitter manifold with z0 +z4 > 0, the line element

becomes

ds2 = dt2 − e2t/α
∑
i

(dxi)2

17



In terms of conformal time parameter η = −αe−t/α the line element be-

comes

ds2 =
α2

η2 [dη2 −
∑
i

(dxi)2], −∞ < η < 0 (3.2)

which is the same as Robertson-Walker sapcetime with C(η) = α
η

. This

metric is conformal to the metric for Minkowski space. Also the metric is

symmetric under η → −η so we can take range 0 < η <∞ instead of −∞ <

η < 0 for studying cosmology forward in time. The mode decomposition

for the field φ (3.1)

φ(x) =

∫
dn−1k[akũk(x) + ak

†ũk?(x)]

The modes can be expressed as[2]

ũk(x) = (2φ)
1−n
2 eιk.xC

2−n
4

(η)χk(η)

Where ak
∣∣0̃〉 = 0,

∣∣0̃〉 is the vacuum associated with the mode ũk(x), known

as conformal vaccum.

Substituting in the field equation, χk(η) satisies

d2

dη2χk(η) + [k2 + C(η)(m2 + (ξ − ξ(η))R(η))]χk(η) = 0 (3.3)

Now, the metric (3.2) is conformal to flat space, if we take ξ = n−2
4(n−1)

,

then for massless field (m = 0)the field equation (3.1) is invariant under

conformal transformation. Therefore considering the massless scalar field

i.e.

[
�x +

n− 2

4(n− 1)
R(x)

]
φ(x) = 0 (3.4)

With Dirichlet boundary condition

φ(x)|x=a = 0

18



Where a is the radius of the spherical shell.

Now, using the properties of conformal symmetry ˜gµν = ω2(x)gµν

D̃+(x, x
′
) = ω(2−n)/2(x)D+(x, x

′
)ω(2−n)/2(x

′
) (3.5)

where D+(x, x
′
) is the Wightman function for the Minkowski space, which

is given by equation (1.6).

Wightman function for the four dimensional (n = 4) De Sitter vacuum

is obained by using (1.6) and (3.2) in (3.5)

D̃+(x, x
′
) =

ηη
′

α2 D
+(x, x

′
) =

−ηη
′

4π2α2[(η − η
′
− ιε)2 − |x− x

′
|2]

(3.6)

The Casimir stress (radial casimir force per unit area) on the spherical

shell is obtained as

F

A
= 〈0| [T(in)r

r − T(out)r
r] |0〉 |r=a (3.7)

The corresponding energy momentum tensor for two conformally re-

lated metrics gµν and ˜gµν is given as [10]

〈0|Tµν [ ˜gµν ] |0〉 |ren = (g/g̃)1/2 〈0|Tµν [gµν ] |0〉 |ren −
1

2880
[
1

6
(1)H̃µ

ν
− (3)H̃µ

ν
](3.8)

Where H̃ν
µ are some combination of curvature components, the second

term denotes the vacuum polarization due to the gravitational field (due

to time dependent curved background). The Casimir stress due to pure

gravitational field (without using boundary condition ) can be calculated

by substituting [10]

〈0|Tµν [gµν ] |0〉 |ren = 0

(1)H̃µ

ν
= 0
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(1)H̃µ

ν
=

3

α4 δµ
ν

in ( 3.8), we have

〈0|Tµν [g̃µν ] |0〉 |ren =
1

960π2α4 δµ
ν

Therefore the pressure on the spherical shell due to gravitaional field

−〈0|Trr[g̃µν ] |0〉 |ren = − 1

960π2α4

Using this equation in (3.7) the effective pressure on spherical shell

due to pure gravitational vacuum polarisation

PG = Pin − Pout = 0 (3.9)

i.e. pressure is same on both side of shell and cancel each other.

Now we observe the Casimir stress on spherical shell due to Dirichlet bound-

ary condition. The stress on spherical shell in flat space can be obtain by

[16]

F

A
= 〈0| [T(in)r

r − T(out)r
r] |0〉 |r=a = − 1

4πa2

∂E

∂a
(3.10)

where E is the total Casimir energy due to boundary condition. this relation

can be generalized for De Sitter space using conformal properties (3.5) i.e.

F̃

A
= − 1

4πa2

∂Ẽ

∂a
=
η2

α2

F

A
(3.11)

In case of spherical shell Casimir energies are individually divergent

for inside and outside of the shell. For a massless scalar field in Minkowski

spacetime with Dirichlet boundary condition the Casimir energy is given

as
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Ein =
1

2a
[c1 + c1

′
/ε], Eout =

1

2a
[c2 − c1

′
/ε]

Where

c1 = 0.008873, c2 = −0.003234.

After renormalization and using (3.11) the total Casimir energy in De Sitter

space due to boundary condition is obtained as

Ẽ =
η2

2a

(
c1

α2 +
c2

α2

)
(3.12)

Substituting this equation in (3.11) the Casimir stress on spherical shell

due to boundary condition is obtained

PB =
F̃

A
=

η2

8πa4

(
c1

α2 +
c2

α2

)
(3.13)

Calculating the non-vanishing component of Ricci tensor for metric (3.2),

we obtain the Ricci scalar for the Di Sitter space

Rµν =
n− 1

α2 gµν , R = 12/α2 (3.14)

Where the adiabatic parameter α, which gives the measure of curva-

ture, is related to cosmological constant.

Λ = 3/α2 (3.15)

i.e. De Sitter space is a vacuum solution of Einstein’s equation with cos-

mological constant given by (3.15). And the nature of Casimir stress (3.13)

depends on the cosmological constant.

3.1.1 Spherical shell in De Sitter space with different

background (vacua) outside and inside

To study the model for expansion of universe let us consider that vacua in

the inside and outside of the spherical shell (bubble) are different. The dif-
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ferent vaccua correspond to the different adiabatic parameter αin and αout

for the metric (3.2). The total Casimir stress due to boundary condition

and due to gravitational field for this case can be evaluated by substituting

the different α’s in the equations (3.9) and (3.93) and adding them

P = PG + PB = − 1

960π2

(
1

αin
4 −

1

αout
4

)
+

η2

8πa4

(
c1

αin
2 +

c2

αout
2

)

Using the relation (3.15), we have

P = PG + PB = − 1

8640π2 (Λin
2 − Λout

2) +
η2

24πa4 (c1Λin + c2Λout) (3.16)

where PG is the stress due to pure gravitational effect (i.e. due to non-

trivial geometry of spacetime) and PB is the stress on the shell due to

boundary condition. This pressure is due to quantum effect only. Total

stress on spherical cell may be positive or negative, to analyse this result,

let us first assume (in 3.16)

c1Λin + c2Λout > o

Now a true vacuum is a global minimum of energy, and is commonly as-

sumed to coincide with a physical vacuum state, if we consider the true

vacuum outside and false vacuum inside i.e. Λin > Λout then the first

term will be always negative. So total pressure can be negative or posi-

tive. However, if we assume the true vacuum inside i.e. Λin < Λout, it is

important for cosmological consideration. Initially, when η → 0 the first

term dominates, (PG > 0), which leads to the expansion of universe (i.e.

spherical bubble). At latter times, when η >> 1, the second term which is

η dependent contributes in (3.16) and leads to further acceleration in the

expansiom of universe. Thus in this case Casimir force is always repulsive.

On the other hand if we assume

c1Λin + c2Λout < o
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In this case inside will be the true vaccum i.e. Λin < Λout and for P < 0

initially, the pressure will remain negative and bubble will collapse.

3.2 Non-zero response of a comoving detec-

tor to a conformal vacuum

The comoving worldline is defined as x = constant in Robertson-Walker

spacetime. The response function of a comoving detector in De Sitter

spacetime can be calculated by substituting (3.6) in (1.4) with ∆x = 0 and

performing the contour integral in complex plane with E > 0,

F(E)

unit area
=

E

2π

1

e2απE − 1
(3.17)

which is equivalent to the thermal spectrum with temperature T = 1/(2παkB).

Thus it seems that the comoving observer will detect the particle in con-

formal vacuum of de Sitter space. Also metric (3.2) is time dependent in

curved background, so one may expect some kind of particle production in

analogy with dynamical Casimir effect.

However the metric (3.2) is conformal to Minkowski space, therefore

to analize the problem we calculate the Bogolubov coefficient for the in

and out region modes, where the in and out region correspond to η → −∞

and η → T < 0 respectively. The equation of motion for a massless scalar

field in Minkowski space is

(∂2/∂η2 −∆2)φ(x, η) = 0

Which can be solved by separation of variables in polar coordinates

φ(r, θ, φ, η) = A(r, θ, φ)W (η)

then

W (η) = e−ιωη
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Now using the conformal property φ̃ = Ω(2−n)/2φ, the corresponding

Solution for massless scalar field equation in De Sitter space (3.4) is

˜W (η) = (η/α)e−ιωη (3.18)

Since particle creation is related to the time dependence of space

(3.2), the time dependent part of solution will satisfy the Bogolubov trans-

formation

W̃ in(η) = αnW̃
out(η) + βnW̃

∗out(η) (3.19)

The mode function (3.19) and its derivative should be continuous at

η = T . using (3.18 ) and (3.19)

ηe−ιωη = αnηe
−ιωη + βnηe

ιωη|η=T

−ιωηe−ιωη = −ιωαnηe−ιωη + ιωβnηe
ιωη|η=T

Comparing the both sides we obtain

αn = 1, βn = 0 (3.20)

The expectation value of number operator in conformal vacuum

〈
0̃
∣∣ N̂ni

∣∣0̃〉 =
∑
m

|βmn|
2

Therefore, there will be no particle creation and the conformal vacuum

will remain so for all the time. Particle production takes place only when

the conformal symmetry is broken by the presence of mass, which provides

a length scale for the theory. If the cosmological expansion is allowed to

cease (smoothly), then an inertial particle detector adiabatically switched

on after the expansion has ceased will register no quanta [2].
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3.3 Summary and Conclusion

In curved spacetime, we quantize the matter field in usual way but the

quantum field theory looses its privilege of natural vacuum, particle number

etc. As we can see in sec. [3.2] that a comoving observer, which is the

most natural generalization of the inertial observer in De Sitter space, has

nonzero response (i.e. it observes a thermal spectrum) to the conformal

vacuum for de Sitter space, even there is no particle creation for metric

(3.2). It is an illustration that in curved spacetime (with nonzero curvature)

the concept of particle looses much of its intuitive meaning. The field

quanta (particle) is a global property of the space and depends upon the

mode solutions of the field. Two different observer, in general, will disagree

on the number of particles in curved space which leads to the effect like

particle creation in curved geometry. Unruh effect is one such prediction

of the quantum field theory in curved spacetime.

In second part of the project We have studied the effect of boundaries and

non-trivial geometry on the quantum fields, the field modes get modified

in this case and we observe the stress on the bounding surface known as

Casimir effect. It is the surprising manifestation of the zero-point energy

which reveals the nature of vacuum : Vacuum is not empty at all.

However, the vacuum contains infinite ammount of energy and we have

to use different kind of regularization and renormalization techniques to

obtain a finite result. Further, in future we will use this quantum field

theory in curved space to study the quantum blackholes in view of blackhole

thermodynamics which will give us some insight into the subject quantum

gravity.
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