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Synopsis 

 

Phenothiazine is a class of fused heteroaromatic compound, containing 

sulfur (S) and nitrogen (N) atoms in the central ring (Figure 1). Phenothiazine acts 

as a strong donor which has been used as a building block to develop 

optoelectronic materials.  Phenothiazine derivatives possess high chemical and 

thermal stability, low reversible oxidation potential, strong absorption, high 

luminescence and photo-conductivities. The most common approach for tuning 

the photophysical and electrochemical properties of the phenothiazine is to link 

donor/acceptor units directly or by π-spacer at the 3- and 7- positions of 

phenothiazine (Figure 2). The donor−acceptor functionalized phenothiazines 

exhibit strong absorption in the near-infrared region and low HOMO−LUMO gap 

which are used as potential candidates for the applications in dye sensitized solar 

cells (DSSCs), bulk heterojunction organic solar cells (BHJOSCs), OLEDs, 

NLOs, OFETs, hole transporting materials (HTMs), sensing, bioimaging, 

photodynamic therapy etc. 

 

 

Figure 1. The molecular structure of phenothiazine core. 

In order to improve the photonic and electronic properties of 

phenothiazines a variety of donors (ferrocene, triphenylamine, carbazole) and 

acceptors (BODIPY, 1,8-naphthalimide, 1,1,2,2-tetracyanoethylene and 7,7,8,8-

tetracyanoquinodimethane) have been introduced to the phenothiazine core. The 

photophysical and electrochemical properties of the donor−acceptor 

functionalized phenothiazines were investigated. 
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The main objectives of the current work are: 

• To design and synthesize donor−acceptor functionalized phenothiazine 

derivatives for optoelectronic applications. 

• To synthesize symmetrical and unsymmetrical phenothiazine derivatives 

by varying the donor/acceptor units in a systematic way. 

• To study the effect of substitution pattern of donor−acceptor 

phenothiazines on their photophysical and electrochemical properties. 

• To fine tune the HOMO−LUMO gap by altering the donor/acceptor 

strength or π-linker on the phenothiazine core. 

• To investigate the structural and photophysical properties of the 

donor−acceptor functionalized phenothiazines via density functional 

theory (DFT) and time-dependent density functional theory (TD-DFT) 

calculations and compare with the experimental data. 

 

 

Figure 2. General classification of donor-acceptor functionalized phenothiazines 

in this work. 

 

Chapter 1: Introduction 

This chapter describes the synthesis and functionalization strategies of 

phenothiazine derivatives and their applications in various fields.  
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Chapter 2: Materials and Experimental Techniques 

This chapter summarizes the general experimental methods, 

characterization techniques and details of instruments used for characterization. 

 

Chapter 3: Aryl−Substituted Phenothiazines: Design, Synthesis and 

Properties 

Chapter 3 describes the design and synthesis of a series of aryl substituted 

phenothiazine-based fluorophores 4a−4f via Pd-catalyzed Sonogashira cross-

coupling reactions by attaching appropriately substituted intermediates (phenyl, 

naphthalene, methoxy naphthalene, anthracene, phenanthrene and pyrene) with 

the substituted phenothiazine core. The substitution of aryl groups on the 

phenothiazine core was found to perturb its photophysical and electrochemical 

properties. The absorption spectrum of the fluorophores showed strong π→π* 

transition in the range of 368–440 nm, which may be due to good electronic 

communication between phenothiazine and aryl moieties. The emission maxima 

of the fluorophores were bathochromically shifted by increasing the solvent 

polarity. The fluorophores showed large stoke shift values in the range of 109–

215 nm in polar solvents (Figure 3). The fluorophores were also emissive in solid-

state where the anthracene, phenanthrene and pyrene substituted phenothiazines 

showed red shifted emission maxima in the solid state as compared to the solution 

phase indicating considerable π-π staking in the solid-state. The anthracene 

substituted phenothiazine exhibited redshifted absorption and emission which 

may be due to the extended π-conjugation in the molecule, resulting in low 

HOMO–LUMO energy gap. In order to explore the geometrical structure and the 

electronic properties of the phenothiazines (4a−4f), theoretical studies were 

performed by using density functional theory (DFT) and time dependent density 

functional theory (TD-DFT) calculations. 
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Figure 3. Normalized electronic absorption and emission spectra of anthracene 

substituted phenothiazine 4d. 

 

Chapter 4: Design and Synthesis of Donor–Acceptor Based Ferrocene 

Substituted Phenothiazines: Tuning of HOMO–LUMO gap 

Chapter 4 summarizes the design and synthesis of a series of 

unsymmetrical (D–A–D1, D1–π–D–A–D1 and D1–A1–D–A2–D1) and 

symmetrical (D1–A–D–A–D1 ) type of phenothiazines 4b, 4c, 4c, 5b, 5c, 5d, 

5d, 5e, 5e, 5f and 5f by [2 + 2] cycloaddition–electrocyclic ring-opening 

reaction of ferrocenyl substituted phenothiazines with tetracyanoethylene (TCNE) 

and 7,7,8,8–tetracyanoquinodimethane (TCNQ).  The photophysical, 

electrochemical and computational studies show strong charge-transfer (CT) 

interaction in the phenothiazine derivatives which can be tuned by the variation of 

number of TCNE/TCNQ acceptors. The phenothiazines 4b, 4c, 4c, 5b, 5c, 5d, 

5d, 5e, 5e, 5f and 5f show red shifted absorption in 400–900 nm region (Figure 

4), resulting in low HOMO–LUMO gap which is supported by TD-DFT 

calculations. The electrochemical study exhibits reduction waves at low potential 
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due to strong 1,1,4,4–tetracyanobuta–1,3–diene (TCBD) and cyclohexa–2,5–

diene–1,4–ylidene–expanded TCBD acceptors. The incorporation of cyclohexa–

2,5–diene–1,4–ylidene–expanded TCBD stabilizes the LUMO energy level to 

greater extent as compared to TCBD. 

 

Figure 4. Normalized electronic absorption spectra of TCBD and cyclohexa–2,5–

diene–1,4–ylidene–expanded TCBD substituted ferrocenyl phenothiazines.  

 

Chapter 5: Donor–Acceptor Based BODIPY Functionalized Phenothiazines 

Chapter 5 reports the design and synthesis of a set of unsymmetrical and 

symmetrical difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) substituted 

phenothiazines of type D–A, D–π–A and A–D–A, A–π–D–π–A by condensation 

and Pd-catalyzed Sonogashira cross-coupling reactions. Their photophysical and 

electrochemical properties were investigated. The electronic absorption spectra 

showed that the acetylene linked phenothiazine functionalized BODIPYs 7a and 

7b exhibited bathochromic shift as compared to directly linked phenothiazine 
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functionalized BODIPYs 4a and 4b. The density functional theory (DFT) 

calculation showed that the incorporation of acetylene linkage between 

phenothiazine and BODIPYs induced coplanarity and resulted lower HOMO–

LUMO gap which leads to red shifted absorption. The unsymmetrical 

phenothiazine functionalized BODIPYs exhibited higher thermal stability as 

compared to symmetrical analogous and follow the order 7a > 4a > 4b > 7b. 

 

Figure 5. Normalized electronic absortion spectra of BODIPY functionalized 

phenothiazines 4b and 7b. 

 

Chapter 6: 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-

Diene-1,4-Diylidene-Expanded TCBD–Substituted BODIPY-Phenothiazines: 

Tuning of HOMO–LUMO gap 

Chapter 6 describes the synthesis of a set of donor–acceptor based 1,1,4,4-

tetracyanobuta-1,3-diene (TCBD) and cyclohexa-2,5-diene-1,4-ylidene-expanded 

TCBD substituted BODIPY-phenothiazines 1–3, via Pd-catalyzed Sonogashira 
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cross-coupling reaction and [2+2] cycloaddition–electrocyclic ring-opening 

reaction. The incorporation of TCBD and cyclohexa-2,5-diene-1,4-ylidene-

expanded TCBD (abbreviated as DCNQ = dicyanodiquinodimethane) in BODIPY 

functionalized phenothiazine resulted in significant perturbation on the optical 

and electronic properties. The absorption spectrum of both the compounds 2 and 3 

showed red shifted absorption as compared to compound 1. Additionally, both 2 

and 3 exhibited a distinct intramolecular charge transfer (ICT) transition in the 

near-infrared region more so for compound 3. The electrochemical study revealed 

multi-redox processes due to the presence of redox-active phenothiazine, 

BODIPY, TCBD or DCNQ entities. The result revealed that the incorporation of 

DCNQ resulted in stronger D–A interaction as compared to TCBD. 

 

Figure 6. Electronic absorption spectra of phenothiazines 1–3.  
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Chapter 7: Donor˗Acceptor based 1,8-Naphthalimide Substituted 

Phenothiazines: Tuning of HOMO˗LUMO gap 

Chapter 7 describes the design and synthesis of a series of donor–acceptor 

(D–A) substituted phenothiazine based chromophores (D–π–D–π–A, D–π–D–π–

A, D–A–D–π–A and D–A–D–π–A). The phenothiazine was substituted with the 

4-ethynyl-1,8-naphthalimide (NPI) on one side whereas a variety of donors 

(phenothiazine, carbazole, ferrocene and triphenylamine) were introduced on the 

other side of phenothiazine via Pd-catalyzed Sonogashira cross-coupling reaction. 

In order to tune the photophysical and electrochemical properties of the 

phenothiazine-based chromophores, cyano-based acceptor 1,1,4,4-tetracyanobuta-

1,3-diene (TCBD) was incorporated in compounds 12-15 by the [2+2] 

cycloaddition–electrocyclic ring-opening reaction of compounds 8–11 and 

tetracyanoethylene (TCNE), respectively. The photophysical and electrochemical 

studies showed that the incorporation of TCBD acceptor in the compounds 12-15 

facilitated the donor–acceptor strength to greater extent. The electronic absorption 

spectra exhibited red shifted absorption bands for the TCBD substituted 

phenothiazines as compared to the alkynylated phenothiazines which led to much 

lower optical band gaps in the formers. Similarly, the electrochemical properties 

showed that the TCBD substituted compounds 12-15 showed low first reduction 

potential values as compared to compounds 8–11 which reveals that the 

incorporation of TCBD acceptor in the former stabilized the LUMO energy level 

of compounds 12-15 to greater extent. The experimental values were further 

supported by the DFT and TDDFT calculations. 
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Figure 7.  Electronic absorption spectra of donor−acceptor substituted NPI-

phenothiazine based compounds 9 and 13. 

Chapter 8: Conclusions and Future Scope. 

 Chapter 8 summarizes the salient features of the work and its prospects to 

develop the new materials for optoelectronic applications.  
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Chapter 1 

Introduction 

 

1.1. Background 

The design and synthesis of π-conjugated donor−acceptor (D−A) molecular 

systems have attracted considerable attention of multidisciplinary scientific 

community due their vast applications in the field of organic photonics and 

electronics as well as biological studies.[1] The development of D−A molecules 

induces narrow HOMO−LUMO gap in the molecular system, which could be 

attributed to the intermolecular charge transfer between the donor and acceptor 

moieties.[2] The photonic and electronic properties of the D−A molecules are 

dependent on the HOMO−LUMO energy gap which can be easily modified by (a) 

changing the π-bridge between the D−A molecular systems or by (b) varying the 

strength of the donor/acceptor units.[3]  

 

 

Figure 1.1. Schematic representation of donor and acceptor molecular systems 

and their frontier molecular orbital diagram. 
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In the D−A molecules, the electron rich moiety which donates the electron 

to another moiety is known as donor and the electron deficient moiety which 

withdraws the electron from the donor is known as acceptor. There are several 

examples of donor and acceptor moieties which are shown in Chart 1.1. 

 

Chart 1.1. Examples of donor and acceptor moieties. 

The couplings of orbitals of donor and acceptor moieties are depicted in 

Figure 1.1 where the electron donating groups raise the HOMO energy levels 

whereas the electron withdrawing group lower the LUMO energy levels. The 

hybridization of the donor and acceptor increases the energy level of HOMO and 

decreases the energy level of LUMO resulting in a low HOMO−LUMO gap with 

a broad absorption spectrum.[4]  

These kinds of D−A molecular systems with low HOMO−LUMO gap and 

broad absorption spectra are of great interest because of their applications in 

diverse fields, e.g. 

➢ Dye sensitized solar cells (DSSCs)[5] 

➢ Bulk heterojunction organic solar cells (BHJOSCs)[6] 

➢ Perovskite solar cells (PSCs)[7] 

➢ Organic light emitting diodes (OLEDs)[8]  

➢ Non-linear optics (NLOs)[9]  

➢ Organic field effect transistors (OFETs)[10] 
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➢ Biological imaging and photodynamic therapy.[11] 

1.2. Phenothiazine 

Among various heterocyclic componds, phenothiazines have attracted the 

attention of researchers for their extensive use as an active chromophore in 

organic photonics and electronics (Figure 1.2).[12] Phenothiazines have fused 

tricyclic heteroaromatic rings which contain electron rich S- and N-atoms in the 

middle ring endowing phenothiazines with strong electron donating ability.[13] 

 

Figure 1.2. The molecular structure of phenothiazine core. 

The nonplanar heteroanthracene structure of phenothiazine shows twisted 

butterfly like conformations.[14] Phenothiazines can be functionalized at the N-

position and aromatic ring.[15, 16] It allows electrophilic substitution at aromatic 

positions, nucliophillic substitution at N-position and oxidation at the S-

position.[15, 16] The most common approach is the electrophilic substitution 

reaction at the 3, 7 -positions of phenothiazine.[17] The phenothiazine derivatives 

exhibit several spectacular properties[18] like: 

➢ Electron rich S-atoms and N-atoms substituted heterocyclic 

phenothiazines exhibit strong electron donating ability. 

➢ Synthetic modifications of phenothiazines are easy and cost 

effective. 

➢ The low reversible oxidation potential of phenothiazine 

derivatives makes them suitable electrophores in optoelectronics. 

➢ Phenothiazines possess high chemical and thermal stability. 

➢ Phenothiazine derivatives show intense luminescence and high 

photo-conductivities. 
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➢ Phenothiazine derivatives exhibit tunable photophysical and 

electrochemical properties by incorporating suitable 

functionalities at the 3,7-positions.  

 

1.3. Classification of donor-acceptor functionalized phenothiazine 

In this work, the classification of donor−acceptor phenothiazine has been 

done on the substituents at the 3,7-positions of the phenothiazine core. The mono 

substituted phenothiazines were synthesized by the incorporation of 

donor/acceptor at the 3-position of phenothiazine. The substitution of 

donor/acceptor at the 3,7-positions of the phenothiazine core resulted in 

disubstituted phenothiazines. In all the cases, donor/acceptor substituents were 

introduced to the phenothiazines either via spacer (π-linker) or without spacer 

(Figure 1.3).  

 

 

 

Figure 1.3. General classification of donor-acceptor functionalized 

phenothiazines in this work. 
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1.4. Synthesis of Phenothiazine Core 

The highly rigid electroactive molecular backbone with high molar 

extinction coefficient () and intense luminescence properties of phenothiazines 

make them excellent candidates for the optoelectronic applications as well as in 

biological studies.[19] In the past few decades, researchers have extensively 

explored donor−acceptor substituted phenothiazine for a wide variety of 

applications such as, dye sensitized solar cells (DSSCs),[20] bulk heterojunction 

organic solar cells (BHJOSCs),[21] OLEDs,[22] NLOs,[23] OFETs,[24] hole 

transporting materials (HTMs),[25] sensing,[26] bioimaging,[27] photodynamic 

therapy,[28] etc. The methodology of synthesizing the phenothiazine core is 

discussed in the following section. 

 

1.4.1. History 

In 1883, Brenthsen et. al. have synthesized 10H-phenothiazine for the first 

time by heating sulfur and diphenylamine at 200−300 ℃.[29] The drawback of the 

reaction was the poor yield of thionation. Further Ackermann and Knoevenagel 

improved the reaction by adding 1% iodine as catalyst (Scheme 1.1).[30]  

 

 

Scheme 1.1. Discovery of phenothiazine. 

In 1954, Massie et al. have made a comprehensive study on the chemical 

reactivity of phenothiazine.[31] Since then, many significant results have been 

reported which are of interest not only for researchers working with 

phenothiazine-based derivatives but also for the entire heterocyclic chemistry. 

 

1.4.2. From 2-aminobenzenethiol 

The condensation of 2-aminobenzenethiol and cylcohexanone in presence 

of thiol additives [DMSO (10 mol%)] resulted in phenothiazine (Scheme 1.2).[32]  
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Scheme 1.2. Synthesis of phenothiazine from 2-aminobenzenethiol. 

Recently, copper or iron catalysed coupling reaction of 2-

aminobenzenethiol and 1,2-dihalobenzene have been reported to synthesize 

phenothiazine with good regioselectivity (Scheme 1.3).[33, 34] 

 

Scheme 1.3. Synthesis of phenothiazine from 2-aminobenzenethiol. 

 

1.4.3. From 2-bromobenzenethiol 

The palladium-catalyzed coupling reaction of 1-bromo-2-iodobenzenes, 2-

bromobenzenethiol and primary amines resulted in phenothiazine (Scheme 

1.4).[35] 

 

Scheme 1.4. Synthesis of phenothiazine from 2-bromobenzenethiol. 

 

2-bromobenzenethiol also reacted with 2-iodoanilines in presence of CuI/ 

L-proline-catalyst gave phenothiazine in good regioselectivity (Scheme 1.5).[36] 

 

 

 

Scheme 1.5. Synthesis of phenothiazine from 2-bromobenzenethiol. 
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1.5. Synthesis of Phenothiazine Precursors  

The parent compound 10H-phenothiazine can be easily alkylated at the N-

position. The reaction of 10H-phenothiazine, 1-iodopropane and sodium 

hydroxide in presence of dry DMSO resulted in 10-propyl-10H-phenothiazine 

Scheme 1.6).[37] Phenothiazine is highly susceptible towards electrophilic 

substitution reaction at the 3,7-positions. The 3,7-brominated and formylated 

phenothiazines are the most commonly used precursors.    

 

Scheme 1.6. Synthesis of 10-propyl-10H-phenothiazine. 

 

1.5.1. Bromination of 10-propyl-10H-phenothiazine 

The precursors 3-bromo-10-propyl-10H-phenothiazine and 3,7-dibromo-

10-propyl-10H-phenothiazine can be synthesized in two different pathways 

(Scheme 1.7). Pathway I: The reaction of 10-propyl-10H-phenothiazine with 

bromine (1 equivalent) in acetic acid or dichloromethane results in mono 

brominated phenothiazine whereas the addition of 2 equivalent of bromine results 

in dibrominated phenothiazine. [38 ,39]  

 

 

Scheme 1.7. Synthesis of 3-bromo-10-propyl-10H-phenothiazine and 3,7-

dibromo-10-propyl-10H-phenothiazine. 
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Pathway II: The reaction of 10-propyl-10H-phenothiazine with N-

bromosuccinimide (NBS) (1 equivalent for monobromination and 2 equivalents 

for dibromination) in presence of catalytic amount of benzoyl peroxide in CCl4 

results in 3-bromo-10-propyl-10H-phenothiazine and 3,7-dibromo-10-propyl-

10H-phenothiazine, respectively.[40] 

 

1.5.2. Vilsmeier-Haack formylation of 10-propyl-10H-phenothiazine 

The mono- and di-formylated phenothiazines are prepared by dropwise 

addition of POCl3 to a mixture of DMF and 1,2-dichloroethane at 0℃, followed 

by the addition of alkylated phenothiazine to the Vilsmeier reagent under 

vigorous stirring and refluxed for 12 h (Scheme 1.8).[41, 42] 

 

 

Scheme 1.8. Synthesis of 10-propyl-10H-phenothiazine-3-carbaldehyde and 3,7-

dibromo-10-propyl-10H-phenothiazine-3,7-dicarbaldehyde. 

 

1.6. Synthesis of Phenothiazine Derivatives 

The synthetic methodologies of different type of phenothiazine-based 

derivatives are summarized in the following sections.  

 

1.6.1. Knoevenagel condensation reaction of phenothiazine 

Shinde et al. have synthesized a series of phenothiazine based organic 

semiconductors 4, 8 and 9 via Knoevenagel-condensation reaction and 

investigated their photophysical and electrochemical properties for hole 

mobility(Scheme 1.9). The mixture of formylated phenothiazines and 

malononitrile in chloroform were refluxed for 12 h to obtain the compounds 4, 8 

and 9 in 81−87% yield.[43] 
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Scheme 1.9. Synthesis of compounds 4, 8 and 9. 

 

1.6.2. Cross-Coupling Reactions of Phenothiazines 

 The most common approach of designing donor−acceptor based 

phenothiazines includes the cross-coupling reaction. The mono and di-bromo/iodo 

phenothiazines undergo various cross-coupling reactions, e.g. Sonogashira 

coupling, Suzuki coupling, Heck coupling and Stille coupling. 

 

1.6.2.1. Sonogashira Cross-Coupling Reaction 

 Hauck et al. have synthesized a series of phenothiazine-based molecules 

4−8 via Sonogashira cross-coupling reaction and investigated their photophysical 

and electrochemical properties for metal cation sensing applications. The reaction 

of iodinated phenothiazine with the series of alkynes in presence Pd catalyst and 

piperidine gives molecules 4−8  in 20−61% yield(Scheme 1.10).[16a] 
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Scheme 1.10. Synthesis of compounds 4−8. 

 

1.6.2.2. Suzuki Cross-Coupling Reaction 

 Müller and co-workers have synthesized a series of phenothiazine 

derivatives 4−8 via Pd-catalyzed Suzuki coupling reaction. The bromoiodo 

derivative of phenothiazine was reacted with the mono- and bisboronic esters of 

phenothiazines in presence of Pd catalyst, potassium carbonate and DME, for 18 h 

under reflux condition and resulted in derivatives 4−8 in 30−70% yield (Scheme 

1.11).[12b] 
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Scheme 1.11. Synthesis of compounds 4−8. 

1.6.2.3. Stille Cross-Coupling Reaction 

Sang et al. have synthesized thiophene based phenothiazine derivatives 4 

via Stille coupling reaction and investigated the photophysical and 

electrochemical properties for photovoltaic application. The reaction of dibromo 

phenothiazine with the stannyl thiophene in presence of Pd(PPh3)4 and toluene 

resulted in 4 in 54% yield (Scheme 1.12).[44]  

 

 

Scheme 1.12. Synthesis of compounds 4. 
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Scheme 1.13. Synthesis of compounds 7−11. 

1.6.2.4. Heck Cross-Coupling Reaction 

 Ravivarma et al. have reported a series of phenothiazine-based derivatives 

7−11 for DSSC applications. The derivatives 7−11 were synthesized via Heck 

cross-coupling reaction. The brominated aryl groups reacted with vinyl 

functionalized phenothiazines in presence of Pd(OAc)2, K2CO3 and 
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tetrabutylammonium bromide to give derivatives 7−11 in 62−85% yield (Scheme 

1.13).[45] 

1.7. Applications of Phenothiazine Derivatives 

The donor−acceptor substituted phenothiazine derivatives have a wide 

range of applications in optoelectronics and biological studies. Some of the 

important applications are discussed below. 

 

1.7.1. Dye sensitized solar cells (DSSCs) 

Dye sensitized solar cells (DSSCs) have attracted the attention of 

researchers due to their easy tunable molecular architectures, low cost and high 

efficiency. In this regard, the electron rich phenothiazine is one of the most 

promising cores for DSSC application. The most common approach to synthesize 

phenothiazine-based donor−acceptor architectures is to design D−A, D−A−π−A, 

A−D−A type of derivatives. A series of dithieno[3,2-b:2′,3′-d]pyrrole (DTP) 

functionalized phenothiazines 1−4 were designed and synthesized by Han et al. 

and used for DSSCs (Chart 1.2). The photophysical and electrochemical study 

exhibited that the incorporation of auxiliary acceptors and alkyl chains stabilized 

the LUMO energy to great extent and resulted in improved photovoltaic 

performance. Among all the dyes phenothiazine 3 showed the highest power 

conversion efficiency (PCE) of 10.06% with Jsc of 19.18 mA cm−2, Voc of 829 

mV, and FF of 0.63 whereas phenothiazine 1, 2 and 4 showed the PCE of 9.42%, 

9.25% and 8.19%, respectively.[46] 
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Chart 1.2. Molecules for DSSCs. 

1.7.2. Bulk Heterojunction Organic Solar Cells (BHJOSCs) 

The bulk heterojuction organic solar cells are comprised of electron donor 

and acceptor materials which are blended together to form a film. Researchers are 

interested in developing active layer donor materials to achieve broad absorption 

spectra with good charge transport and low HOMO−LUMO gap. The electron 

rich phenothiazine acts as a building block which combines with the electron 

deficient materials by providing push-pull dyes with low HOMO−LUMO gap. 

Revoju et al. have reported two compounds 1 and 2 where two phenothiazine 

moieties are linked via central benzodithiophene (phenothiazine-

benzodithiophene-phenothiazine) with electron acceptors 1,3–indanedione and 

malononitrile as end capping units (Chart 1.3). The compounds 1 and 2 showed 

high thermal stability, broad and strong absorption band, deep-lying HOMO 

energy levels and high hole mobility. The organic solar cells based on the active 

layer of 1:PC71BM and 2:PC71BM showed the PCE of 6.20% (Jsc = 11.18 

mA/cm2, Voc = 0.99 V and FF = 0.56) and 7.45% (Jsc = 12.06 mA/cm2, Voc = 1.04 

V and FF = 0.60), respectively.[47] 



 
 

15 
 

 

Chart 1.3. Molecules for BHJOSCs. 

 

1.7.3. Perovskite Solar Cell (PSCs) 

In 2017, two phenothiazine-based materials 1 and 2 were introduced by 

Grisorio et al. as hole transporting materials for perovskite solar cell application 

(Chart 1.4). The photophysical and electrochemical properties of 1 and 2 revealed 

that the presence of phenylene spacer in 2 improved the photovoltaic performance 

drastically. The compound 1 exhibited the PCE of 2.10% whereas compound 2 

showed the PCE of 17.6%.[48] 

 

Chart 1.4. Molecules for PSCs. 
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1.7.4. Organic Light Emitting Diodes (OLEDs) 

Phenothiazine based materials have been used for OLED application due 

to their low cost, tunable mechanical and electroluminescence properties with 

high thermal robustness. Adachi and coworkers have synthesized a phenothiazine 

based fluorescent molecule 1, where the 2,4,6-triphenyl-1,3,5-triazine moiety is 

attached with three phenothiazine moieties. The molecule 1 showed dual emission 

and TADF properties (Chart 1.5). The OLED based on molecule 1 exhibited 

yellowish green electroluminescence [CIE coordinates (0.23, 0.75)] with a high 

EQE of 17.40% where turn-on voltage of 4.20 V, maximum luminance of 7430 cd 

m−2 and maximum current efficiency of 58.60 cd A− were obtained.[49] 

 

Chart 1.5. Molecules for OLEDs. 

1.7.5. Nonlinear Optical Materials (NLOs) 

The high luminescence, low oxidation potential and high 

photoconductivity of phenothiazines, makes them attractive candidates for NLO 

applications. Sreekumar et al. have reported phenothiazine-based copolymer 1 

where the phenothiazine-N-piperidine is attached to the triazine moiety via Suzuki 

coupling reaction (Scheme 1.14). The phenothiazine copolymer showed optical 

band gap of 2.5 eV. The third-order nonlinear optical properties of the 

phenothiazine copolymer by Z-scan technique. The results exhibited the nonlinear 

refractive index and absorption values of -0.5810−10
 esu and 3.7510−

 m/W, 

respectively.[50]  
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Scheme 1.14. Synthesis of compound 1 for NLO application. 

 

1.7.6. Sensing 

 The tunable photoluminescence properties of phenothiazines make them 

suitable for sensing applications. Ramchandran et al. have synthesized a series of 

phenothiazine-based molecules 1−4 for cyanide ion sensing where the 

phenothiazine is attached with ethylenedioxythiophene and dicyanovinyl groups 

(Scheme 1.14). The compounds 2 and 4 showed high selectivity and sensitivity 

towards cyanide ions with the detection limit of 8 ppb and 14 ppb, respectively 

indicating “turn-on” fluorescence.[51]  

 

Scheme 1.15. Synthesis of compounds 2 and 4 for sensing. 

 

1.8. Current Work 

The donor−acceptor based molecules with low HOMO−LUMO gap are 

emerging class of materials for their application in optoelectronics. In order to 

fine tune the photonic properties and HOMO−LUMO gap, a wide variety of 
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donors (ferrocene, triphenylamine, carbazole) and acceptors (BODIPY, 1,8-

naphthalimide, TCNE, TCNQ) have been introduced to the phenothiazine core. 

The photophysical and electrochemical properties of the phenothiazines were 

studied. 

 

The main objectives of the current work are: 

• To design and synthesize donor−acceptor functionalized phenothiazine 

derivatives for optoelectronic applications. 

• To synthesize symmetrical and unsymmetrical phenothiazine derivatives 

by varying the donor/acceptor units in a systematic way. 

• To study the effect of substitution pattern of donor−acceptor 

phenothiazines on their photophysical and electrochemical properties. 

• To fine tune the HOMO−LUMO gap by altering the donor/acceptor 

strength or π-linker on the phenothiazine core. 

• To investigate the structural and photophysical properties of the 

donor−acceptor functionalized phenothiazines by using density functional 

theory (DFT) and time-dependent density functional theory (TD-DFT) 

calculations and compare with the experimental data. 

 

1.9. Organization of thesis 

 

Chapter 1 of the thesis gives general introduction of the phenothiazine, 

followed by the historical background, various synthetic strategies for the design 

of phenothiazine derivatives. A brief literature survey of the applications of the 

phenothiazine derivatives in various fields is outlined.  

 

Chapter 2 of the thesis describes the instrumentation and general methods 

used for the present study. 

 

Chapter 3 of the thesis describes the design and synthesis of a series of 

aryl substituted phenothiazine-based fluorophores via Pd-catalyzed Sonogashira 
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cross-coupling reactions by attaching appropriately substituted intermediates 

(phenyl, naphthalene, methoxy naphthalene, anthracene, phenanthrene and 

pyrene) with the substituted phenothiazine core. Their photophysical and 

electrochemical properties were studied. 

 

Chapter 4 of the thesis summarizes the design and synthesis of a series of 

1,1,4,4–tetracyanobuta–1,3–diene (TCBD) and cyclohexa–2,5–diene–1,4–

ylidene–expanded TCBD acceptors substituted ferrocenyl using [2 + 2] 

cycloaddition–electrocyclic ring-opening reaction. The effect of the incorporation 

of TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD on the 

photonic and electronic properties of ferrocenyl phenothiazines were investigated. 

 

Chapter 5 of the thesis describes the design and synthesis of a set of 

unsymmetrical and symmetrical difluoro-4-bora-3a,4a-diaza-s-indacene 

(BODIPY) substituted phenothiazines by using condensation and Pd-catalyzed 

Sonogashira cross-coupling reactions. The effect of acetylene linkage between 

phenothiazine and BODIPYs on the thermal, photophysical and electrochemical 

properties of phenothiazines were investigated. 

 

Chapter 6 of the thesis reports the synthesis of a set of TCBD and 

cyclohexa-2,5-diene-1,4-ylidene-expanded TCBD substituted BODIPY-

phenothiazines, via Pd-catalyzed Sonogashira cross-coupling reaction and [2+2] 

cycloaddition–electrocyclic ring-opening reaction. The significant perturbation on 

the optical and electronic properties of the phenothiazines were explored. 

 

Chapter 7 of the thesis describes the design and synthesis of a series of 

donor substituted 4-ethynyl-1,8-naphthalimide (NPI) phenothiazine-based 

chromophores and their TCBD derivatives via Pd-catalyzed Sonogashira cross-

coupling reactions and [2 + 2] cycloaddition–electrocyclic ring-opening reaction. 

The effect of the donor (phenothiazine, carbazole, ferrocene and triphenylamine) 

on the photonic and electronic properties of the NPI-phenothiazine and further 
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effect of the TCBD acceptor on the donor substituted NPI-phenothiazine were 

also explored. 

 

Chapter 8 of the thesis summarizes the noticeable features of the work 

and prospects. 
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Chapter 2 

Materials and Experimental Techniques 

 

2.1. Introduction 

The materials, general synthetic procedures, characterization techniques 

and the instrumentation employed in this thesis are described in this chapter. 

 

2.2.  Chemicals for synthesis 

The common solvents used for syntheses were purified according to 

established procedures.[1] 10H-phenothiazine was obtained from TCI chemicals. 

Iodopropane, trimethylsilylacetylene, pyrrole, benzaldehyde, thiophosgene, 

phosphurus oxychloride and boron trifluoride etherate were obtained from 

Spectrochem India. CuI, Pd(PPh3)4 and PdCl2(PPh3)2 were purchased from 

Aldrich chemicals USA and Spectrochem India.  

The solvents and reagents were used as received unless otherwise 

indicated. Photophysical and electrochemical studies were performed with 

spectroscopic grade solvents. 

Dry solvents such as, dichloromethane, 1,2-dichloroethane, chloroform, 

tetrahydrofuran (THF), triethylamine, dimethylformamide (DMF), ethanol, 

acetonitrile and methanol were obtained from Spectrochem, Advent Chembio Pvt. 

Ltd. and S. D. Fine chem. Ltd. 

Silica gel (100–200 mesh and 230–400 mesh) were purchased from 

Rankem chemicals, India. TLC pre-coated silica gel plates (Kieselgel 60F254, 

Merck) were obtained from Merck, India. All the oxygen or moisture sensitive 

reactions were performed under nitrogen/argon atmosphere using standard 

Schlenk method.  

 

2.3.  Spectroscopic measurements 

2.3.1.  NMR spectroscopy 

1H NMR (400 MHz), and 13C NMR (100 MHz) spectra were recorded on 

the Bruker Avance (III) 400 MHz, using CDCl3 as solvent. 1H NMR (500 MHz), 
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and 13C NMR (125 MHz) spectra were recorded on the Bruker-500 MHz Ascend 

FT NMR, using CDCl3 as solvent. Chemical shifts in 1H, and 13C NMR spectra 

were reported in parts per million (ppm). In 1H NMR chemical shifts are reported 

relative to the residual solvent peak (CDCl3, 7.26 ppm). Multiplicities are given 

as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and the coupling 

constants J, are given in Hz. 13C NMR chemical shifts are reported relative to the 

solvent residual peak (CDCl3, 77.36 ppm). 

 

2.3.2.  Mass spectrometry  

High resolution mass spectra (HRMS) were recorded on Brucker-

Daltonics, micrOTOF-Q II mass spectrometer using positive and negative mode 

electrospray ionizations. 

 

2.3.3. UV-Vis spectroscopy 

UV-Vis absorption spectra were recorded using a Varian Cary100 Bio 

UV-Vis and Perkin Elmer LAMBDA 35 UV/Vis spectrophotometer. 

 

2.3.4. Fluorescence spectroscopy 

Fluorescence emission spectra were recorded upon specific excitation 

wavelength on a Horiba Scientific Fluoromax-4 spectrophotometer. The slit width 

for the excitation and emission was set at 2 nm. 

 

The fluorescence quantum yields (ɸF) 

The fluorescence quantum yields (ɸF) of compounds were calculated by 

the steady-state comparative method using following equation, 

ɸF = ɸst × Su/Sst × Ast / Au × n2Du/n2 Dst ……………….. (Eq. 1) 

Where ɸF is the emission quantum yield of the sample, ɸst is the emission 

quantum yield of the standard, Ast and Au represent the absorbance of the standard 

and sample at the excitation wavelength, respectively, while Sst and Su are the 

integrated emission band areas of the standard and sample, respectively, and nDst 
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and nDu the solvent refractive index of the standard and sample, u and st refer to 

the unknown and standard, respectively. 

 

2.4. Electrochemical studies 

Cyclic voltamograms (CVs) were recorded on CHI620D electrochemical 

analyzer using Glassy carbon as working electrode, Pt wire as the counter 

electrode, and Saturated Calomel Electrode (SCE) as the reference electrode. The 

scan rate was 100 mVs‐1. A solution of tetrabutylammonium hexafluorophosphate 

(TBAPF6) in CH2Cl2 (0.1 M) was employed as the supporting electrolyte. 

 

2.5. Single crystal X-ray diffraction studies. 

Single crystal X-ray diffraction studies were performed on SUPER NOVA 

diffractometer. The strategy for the Data collection was evaluated by using the 

CrysAlisPro CCD software. The data were collected by the standard 'phi-omega 

scan techniques, and were scaled and reduced using CrysAlisPro RED software. 

The structures were solved by direct methods using SHELXS-97, and refined by 

full matrix least-squares with SHELXL-97, refining on F2.1. The positions of all 

the atoms were obtained by direct methods. All non-hydrogen atoms were refined 

anisotropically. The remaining hydrogen atoms were placed in geometrically 

constrained positions, and refined with isotropic temperature factors, generally 

1.2Ueq of their parent atoms. The CCDC numbers contain the respective 

supplementary crystallographic data. These data can be obtained free of charge 

via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge 

Crystallographic 42 Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: 

(+44) 1223-336-033; or deposit@ccdc.cam.ac.uk). 

 

2.6. Computational calculations 

The density functional theory (DFT) calculation were carried out at the 

B3LYP/6-31G** level for C, N, S, H, and Lanl2DZ level for Zn in the Gaussian 

09 program.[2] 
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Chapter 3 

Aryl−Substituted Phenothiazines: Design, Synthesis and 

Properties 

3.1. Introduction 

The research in the field of solar light harvesting is of significant interest 

for a sustainable society, where artificial systems mimic natural photosynthetic 

systems by transforming the solar light into storable electric or chemical 

energy.1−3 In this regard, the development of multichromophoric π-conjugated 

molecules as artificial systems has attracted the attention of researchers for fast-

responding optoelectronic devices, such as organic light emitting diodes 

(OLEDs), organic photovoltaics (OPVs) and organic luminescent displays.4−6 The 

advantages of using these π-conjugated molecules are their excellent thermal, 

photophysical and electrochemical properties, which can be easily modified.7 π-

conjugated small molecules, which are able to give photoinduced electron 

transfer, are of extreme interest for light-to-electricity conversion in OPV 

devices.8−10 On the other hand, not only have highly fluorescent organic 

molecules been employed in first generation OLED devices, but also organic 

donor-acceptor systems showing thermally activated delayed fluorescence 

(TADF) have been used in the active layer of extremely efficient third generation 

OLEDs.11−15  

π-conjugated small-molecule-based organic fluorophores possess high 

fluorescence quantum yields, absorption bands in the visible region along with 

high molar extinction coefficients as well as large Stokes shift values.16−18 

Organic fluorophores with large Stokes shifts are valuable for biological studies 

as an alternative to fluorescent proteins, metal complexes, quantum dots, or UV 

absorbing chromophores.17−21 The major benefit of utilizing fluorophores with 

large Stokes shifts is to minimize the interference or cross-talk between the 

excitation source and the emission for bioimaging applications with high signal-
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to-noise ratio.22 The mostly used fluorophores, such as rhodamine, fluorescein, 

cyanine, oxazine, BODIPY, exhibit small Stokes shift values of less than 40 nm 

which can cause poor signal-to-noise ratio and self-quenching.23 In this respect, 

the possibility of multiphoton excitation for these fluorophores24−25 is an added 

value to improve the imaging resolution, also allowing increased penetration 

depth for the infrared exciting light in biological tissues. The design and synthesis 

of small-molecule-based organic fluorophores with high quantum yields, large 

and tunable Stokes shifts, strong two photon absorption are therefore desirable for 

biological applications.26 

Phenothiazine is a tricyclic moiety containing sulfur (S) and nitrogen (N) 

heteroatoms. The electron rich S and N atoms make phenothiazine an excellent 

donor with low oxidation potential values.27−31 The incorporation of heterocyclic 

phenothiazines in molecular systems leads to high chemical and thermal 

stability.27−31 Benzene,32−34 naphthalene,35 anthracene,36−38 phenanthrene39 and 

pyrene40, 41 are well established conjugated systems and have been explored in the 

field of optoelectronic and biological applications. In fact, our group has already 

reported a variety of phenothiazine-based π-conjugated molecular systems for 

optoelectronics.42−46 

 

Chart 3.1.  Structures of aryl substituted phenothiazines 4a–4f. 
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In this chapter, we wish to report the synthesis of a series of aryl 

substituted symmetrical phenothiazine fluorophores via Pd-catalyzed Sonogashira 

cross-coupling reaction where the 3 and 7 positions of the phenothiazines are 

substituted with aryl moieties (Chart 3.1). In this work, our objective was to 

control the optical and electronic properties of the phenothiazines by perturbing 

the conjugation pattern on the phenothiazine core. We have incorporated ethynyl 

substituted simple acenes, such as benzene, naphthalene and anthracene, as well 

as large aromatic units, such as phenanthrene and pyrene, on the phenothiazine 

core. The photophysical and electrochemical properties were investigated for all 

the phenothiazines. The experimental study was carried out in a joint effort with 

DFT and TD-DFT calculations. 

3.2. Results and discussions 

Synthesis: The synthesis of aryl-substituted phenothiazines 4a–4f is shown in 

Scheme 3.1. The alkylation was achieved by reaction of phenothiazine 1 with 

propyl-bromide in the presence of KOH and DMSO. The bromination of 

phenothiazine 2 with NBS resulted in dibromo-phenothiazine 3 with a 85% 

yield.27, 47  

 

Scheme 3.1. Synthesis of Aryl-Substituted Phenothiazines 4a–4f. 
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The Pd-catalyzed Sonogashira cross-coupling reaction of dibromo 

substituted phenothiazine 3 with ethynyl derivatives a–f, resulted in 

phenothiazines 4a–4f with 65−77% yields. All the phenothiazines 4a–4f are 

soluble in common organic solvents such as toluene, dichloromethane, 

tetrahydrofuran, ethyl acetate, dimethylformamide, etc. The purification of the 

phenothiazines 4a–4f were achieved by column chromatography. All the 

compounds were well-characterized by 1H and 13C NMR and HRMS techniques.  

3.3. Photophysical properties 

The electronic absorption and emission spectra of the aryl-substituted 

phenothiazines 4a–4f were recorded in dichloromethane at room temperature 

(Figure 3.2 and Figure 3.3). The obtained results are compiled in Table 3.1. The 

photographs of the phenothiazines 4a–4f in dichloromethane at 1.0 × 10−5 M 

concentration under daylight and UV-light are also displayed (Figure 3.1). 

 

 

Figure 3.1. Pictorial representation of phenothiazines 4a−4f in dichloromethane 

at 1.0 × 10−5 M concentration. 

The absorption spectra of the phenothiazines 4a–4f display characteristic 

bands both in the 360–540 nm range with lower molar extinction coefficient 

values, and in the 250–340 nm range with higher molar extinction coefficient 

values, which can be attributed to π→π* transitions. The absorption bands of 

phenothiazines 4d–4f bathochromically shift in comparison to the benzene and 

naphthalene substituted phenothiazines 4a–4c. Among all the phenothiazines 4a–

4f, anthracene substituted phenothiazine 4d shows the most red−shifted 

absorption band peaked at 440 nm. The optical band gap of the phenothiazines are 

in order 4a>4c>4b>4e>4f>4d, following a trend that clearly indicates how the 
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substitution with the anthracene units results in better electronic communication 

and enhancement of conjugation leading to low optical band gap. The result was 

further supported by the TD-DFT calculations. 

 

Figure 3.2. Electronic absorption spectra of aryl-substituted phenothiazines 4a–4f 

in dichloromethane at 1.0 × 10−5 M concentration.  

 The fluorescence spectra of the phenothiazines 4a−4f feature emission 

maxima in the range between 446 nm and 582 nm, with the most red−shifted 

emission band (peaking at 582 nm) being peculiar to 4d. The phenothiazine 

fluorophores 4a−4e show large Stokes shifts ranging from about 5500 cm-1 to 

6000 cm-1, with the exception of the pyrene substituted phenothiazine 4f (Stokes 

shift value of 2200 cm-1). Remarkable fluorescence quantum yields (between 40 

and 82 %) were measured for these fluorophores in dichloromethane solution.  

Solvatochromic Effect: The solvent effect was investigated for all the 

fluorophores 4a–4f by studying the optical properties in different solvents 

(toluene, tetrahydrofuran (THF), dichloromethane (DCM) and 

dimethylformamide (DMF)). The absorption and emission spectra are shown in 

Figure 3.3 for all the solvents and the data are summarized in Table 3.2.  
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Table 3.1. Photophysical and Electrochemical Properties of phenothiazines 4a–4f 

in dichloromethane. 

 

 

 

Photophysical Data Electrochemical 

Data 

λabs 

(nm)a 

ε 

(M−1 

cm−1) 

λem
 

(nm)b 

Stokes 

Shift 

(cm-1) 

ΦF
d 

 

Optical 

Gap 

(eV)c 

E1  

Oxid 

A B 

4a 374 

295 

49684 

178808 

 

483 482 6035  0.82 2.73 0.78 

4b 385 

314 

 

54240 

89666 

79194 

 

497 497 5850 0.42  2.67 0.8 

4c 368 

318 

 

78107 

155214 

151270 

 

487 479 6640  0.40 2.68 0.78 

4d 440 

301 

 

60380 

62128 

215526 

 

582 594 5545  0.45

e
 

2.46 0.78 

4e 388 

318 

 

70015 

122440 

157865 

202403 

502 542 5850 0.41  2.65 0.8 

4f 404 

294 

101392 

109317 

446 

473 

530 2230  0.67 2.61 0.83 

a Absorbance measured in dichloromethane at 1 X 10−5 M concentration; b λem: 

emission wavelength; (A) = recorded in DCM solvent and (B) in Solid State; ε: 

extinction coefficient; c determined from onset wavelength of the UV/Vis 

absorption, d Determined using Quinine Sulphate as the standard (Φ = 0.54, in 0.5 

M H2SO4), e determined using Rhodamine 6G standard (Φ = 0.95, in ethanol). f 

Calculated from DFT using B3LYP/6-31+G** level for B, C, F, H, N and S. 
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Figure 3.3. Emission spectra of aryl-substituted phenothiazines 4a–4f in different 

solvents. 

The absorption maxima of the fluorophores 4a–4f are not heavily 

dependent on the solvent polarity. This finding is explained by the low polar 

ground state of phenothiazines.48 On the other hand, the emission spectra of the 

fluorophores 4a–4e are dependent on the solvent polarity. The increase in the 

solvent polarity resulted in the bathochromic spectral shift of the emission (Table 

3.2). In particular, the fluorophore 4d is greatly influenced by the solvent polarity 

as compared to the other fluorophores. The emission maxima of 4d was observed 



 
 

42 
 

at 528 nm in toluene and at 657 nm in DMF, where the Stokes shift value reaches 

the highest value of 7350 cm-1. This result suggests that fluorophore 4d has a 

much larger dipole moment in the excited state with respect to the ground state. 

The fluorosolvatochromic effect on the fluorophores 4a–4e is less important but 

again leads to higher Stokes shift in more polar solvents. The pyrene substituted 

fluorophore 4f do not show solvent dependency of both the absorption and 

emission spectra which suggests lower dipole moments in both the ground and 

excited states.48−50  

Table 3.2. Solvent dependent studies of phenothiazines 4a–4f in different 

solvents. 

Phenothiazines Solvent λabs 

(nm) 

λem
 

(nm) 

Stokes 

Shift Δυ 

(cm-1) 

4a Toluene 

THF 

DCM 

DMF 

380 

371 

374 

377 

479 

480 

483 

489 

5440 

6120 

6035 

6075 

4b Toluene 

THF 

DCM 

DMF 

381 

383 

385 

389 

490 

495 

497 

512 

5840 

5910 

5850 

6180 

4c Toluene 

THF 

DCM 

DMF 

369 

367 

368 
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Solid-State Emission: The solid-state emission spectra for the phenothiazines 

4a−4f were recorded at room temperature (Figure 3.4) and all the phenothiazines 

4a−4f were found to be emissive in the solid-state. The emission maxima of the 

fluorophores were observed at 482, 497, 479, 594, 542 and 530 nm for 4a, 4b, 4c, 

4d, 4e and 4f, respectively. 

 

Figure 3.4. Solid-state emission spectra of aryl-substituted phenothiazine 4a–4f. 

The spectral data revealed that the benzene and naphthalene substituted 

phenothiazines 4a−4c do not show any significant difference in the solid-state 

emission as compared to that of the solution phase (in dichloromethane). On the 

other hand, phenothiazines 4d−4f show red−shifted emission maxima in solid-

state relatively to their behavior in solution, which could be attributed to 

important π-π staking interactions of the molecules in the solid-state. Notably, the 

pyrene substituted fluorophore 4f shows highly red−shifted emission maxima (84 

nm) in solid-state as compared to the solution, which may be due to the formation 

of characteristic pyrene excimers in the solid-state resulting from the extensive π-

π staking of the planar pyrene rings. 48−50     
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3.4. Electrochemical Properties 

The electrochemical properties of aryl-substituted phenothiazines 4a–4f 

were explored by cyclic voltammetry (CV) and differential pulse voltammetry 

(DPV) in dry dichloromethane (DCM) solution at room temperature using tri-tert-

butylphosphonium tetrafluoroborate as a supporting electrolyte. The 

electrochemical data are compiled in Table 3.1, and the representative cyclic 

voltammograms are shown in Figure 3.5.  

 

Figure 3.5. Cyclic voltammograms of phenothiazines 4a–4f 0.01 M concentration 

in 0.1 M tri-tert-butylphosphonium tetrafluoroborate in dichloromethane recorded 

at a scan rate of 100 mV s−1. 

 The electrochemical studies of the phenothiazine 4a–4f conjugates exhibit 

reversible one electron oxidation wave due to the phenothiazinyl moiety, at about 

+0.80 V for all investigated molecules. The results of the electrochemical 

experiments thus agree with the observation of the phenothiazine radical cation 

during the femtosecond spectroscopic investigation. 

3.5. Theoretical Calculations 

The density functional theory calculations were performed to explore the 

geometrical structure and electronic properties of the phenothiazines 4a–4f at 
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B3LYP/6-31+G** level for C, H, O, N and S.51 The energy diagram of the 

phenothiazines 4a–4f are shown in Figure 3.6. The incorporation of anthracene, 

phenanthrene and pyrene in the phenothiazine core results in much stabilized 

LUMO energy levels leading to red−shifted absorption spectra.  

 

Figure 3.6. Energy diagram showing the HOMO and LUMO wave functions and 

energies of phenothiazines 4a–4f as determined at B3LYP/6-31G** level. 

The HOMOs of the phenothiazines 4a–4c and 4e are mainly localized on 

the phenothiazine moiety whereas the LUMOs are equally distributed both on the 

phenothiazine and the substituted benzene, naphthalene, methoxy-naphthalene 

and phenanthrene moieties. On the other hand, the anthracene and pyrene 

substituted phenothiazine 4d and 4f show comparatively much lower HOMO–

LUMO energy gaps. The data show that the HOMOs are localized on the 

phenothiazine moiety but also partially situated on the lateral anthracene and 

pyrene for 4d and 4f, respectively. The LUMO is mainly distributed on the 

anthracene moiety for 4d whereas for 4f it is localized on the pyrene moiety. This 

indicates that the presence of anthracene and pyrene moieties in phenothiazine 4d 

and 4f lead to better electronic communication. This finding is in line with the 
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photoinduced electronic charge displacement from the phenothiazine to the lateral 

anthracenes speculated for 4d from the ultrafast spectroscopic results. 

Table 3.3. Calculated electronic transitions for phenothiazines 4a–4f in 

dichloromethane 

fa oscillator strength 

TD-DFT calculations were performed for the phenothiazines 4a–4f by 

using CAM-B3LYP/6-311G(d,p) basis set in dichloromethane. The transitions, 

with their composition, oscillator strength and assignment, are shown in Table 

3.3. The TD-DFT calculations of the six phenothiazines 4a–4f reveal two 

absorption bands, one at shorter wavelengths in the 290–315 nm region with 

lower oscillator strength values, and another at longer wavelengths in the 360–430 

nm region with higher oscillator strengths. The data show that the transitions at 

longer wavelengths characterized by the largest oscillator strengths are mainly 

described by a HOMO→LUMO configuration for all the phenothiazines 4a–4f. 

The theoretically calculated optical wavelengths of phenothiazines 4a–4f are in 

Compounds Wavelength 

(nm) 

Composition fa Assignment 

4a 363 

289 

HOMO→LUMO (0.65) 

HOMO→LUMO+2 

(0.61) 

1.01 

0.75 

π–π* 

π–π* 

4b 376 

306 

HOMO→LUMO (0.61) 

HOMO–2→LUMO 

(0.37) 

1.43 

0.80 

π–π* 

π–π* 

4c 370 

315 

HOMO→LUMO (0.62) 

HOMO→LUMO+1 

(0.50) 

1.42 

1.03 

π–π* 

π–π* 

4d 431 

295 

HOMO→LUMO (0.56) 

HOMO→LUMO+6 

(0.39) 

1.45 

0.06 

ICT 

π–π* 

4e 378 

307 

HOMO→LUMO (0.60) 

HOMO–2→LUMO 

(0.38) 

1.70 

1.03 

π–π* 

π–π* 

4f 405 

291 

HOMO→LUMO (0.57) 

HOMO→LUMO+7 

(0.47) 

2.67 

0.08 

π–π* 

π–π* 
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accordance with the experimental values. However, the calculated theoretical 

energies are slightly lower than the experimental ones, which may be due the 

effect of solvents, dipole moments, and temperature. The absorption spectra of 

phenothiazine 4d calculated from TD-DFT shown in Figure 3.7. 

 

Figure 3.7. Theoretical absorption spectra of phenothiazine 4d. 

3.6. Experimental Section  

General Methods. Chemicals were used as received unless otherwise indicated. 

All the oxygen or moisture sensitive reactions were carried out under argon 

atmosphere. 1H NMR spectra were recorded using a 400 MHz spectrometer. 

Chemical shifts are reported in delta (δ) units, expressed in parts per million 

(ppm) downfield from tetramethylsilane (TMS) using residual protonated solvent 

as an internal standard CDCl3, 7.26 ppm. 13C NMR spectra were recorded using 

a 400 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed 

in parts per million (ppm) downfield from tetramethylsilane (TMS) using the 

solvent as internal standard CDCl3, 77.0 ppm. The 1H NMR splitting patterns 

have been described as “s, singlet; d, doublet; t, triplet and m, multiplet”. UV/Vis 

spectrum of all compounds were recorded in dichloromethane solution. Cyclic 

voltammograms were recorded on electrochemical analyzer using Glassy carbon 

as working electrode, Pt wire as the counter electrode, and Saturated Calomel 

Electrode (SCE) as the reference electrode. The scan rate was 100mVs-1 for 
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Cyclic Voltammetry. A solution of tri-tert-butylphosphonium tetrafluoroborate in 

CH2Cl2 (0.1M) was used as supporting electrolyte. 

General Procedure 

3,7-Dibromo-10-propyl-10H-phenothiazine 3 (100 mg, 0.25 mmol), 

corresponding alkynes (0.55 mmol), PdCl2(PPh3)2 (8.8 mg, 5 mol%), CuI (2.4 mg, 

5 mol%) were dissolved in a mixture of dry THF (20 mL) and triethylamine (5 

mL) under an argon atmosphere. The reaction mixture was stirred at 60 °C for 12 

h. Following cooling to room temperature, the solvent was removed under 

reduced pressure, and the residue was purified by column chromatography on 

silica gel in a 4:1 mixture of hexane/ CH2Cl2 to get phenothiazines 4a–4f.  

 

Phenothiazine 4a. Yellow colored solid. Yield: 80 mg (72%); 1H NMR (400 

MHz, CDCl3): δ = 7.4961 (d, J = 6.28, 5H), 7.3384-7.2895 (m, 9H), 6.7886 (d, J 

= 7.28, 2H), 3.8196 (s, 2H), 1.8608-1.8075 (m, 2H), 1.0247 (t, J = 7.28, 3H); 13C 

NMR (100 MHz, CDCl3): δ = 144.6, 131.4, 130.8, 130.2, 128.3, 128.1, 124.1, 

123.3, 117.4, 115.1, 88.4, 88.7, 49.4, 20.0, 11.2; HRMS (ESI-TOF): m/z 

calculated for C31H23NS= 441.1630 [M]+, measured 441.1546 [M]+ 

 

Phenothiazine 4b. Bright yellow colored solid. Yield: 105 mg (77%); 1H NMR 

(400 MHz, CDCl3): δ = 8.40 (d, J = 8.28, 2H), 7.87-7.82 (m, 4H), 7.73 (d, J = 

7.04, 2H), 7.61-7.58 (m, 2H), 7.53 (t, J = 7.76, 2H), 7.47-7.40 (m, 6H), 6.85 (t, J 

= 8.28, 2H), 3.86 (t, J = 7.04, 2H), 1.92-1.83 (m, 2H), 1.05 (t, J = 7.24, 3H); 13C 

NMR (100 MHz, CDCl3): δ = 144.7, 133.2, 130.9, 130.1, 128.6, 128.3, 126.7, 

126.4, 126.2, 125.3, 124.2, 120.9, 117.6, 93.6, 87.6, 49.5, 20.1, 11.2; HRMS 

(ESI-TOF): m/z calculated for C39H27NS= 541.1857 [M]+, measured 541.1859 

[M]+. 

Phenothiazine 4c. Pale yellow colored solid. Yield: 99 mg (65%); 1H NMR (400 

MHz, CDCl3): δ =8.0 (s, 1H), 7.94 (s, 2H), 7.69 (t, J = 8.8, 4H), 7.51 (d, J = 8.28, 

2H), 7.34-7.30 (m, 3H), 7.17-7.11 (m, 4H), 6.80 (d, J = 8.28, 2H), 3.93 (s, 6H), 

3.83 (s, 2H), 1.87-1.80 (m, 2H), 1.03 (t, J = 7.28, 3H); 13C NMR (100 MHz, 
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CDCl3): δ = 158.3, 144.7, 143.8, 134.0, 131.0, 130.9, 130.2, 129.9, 129.6, 129.3, 

128.9, 128.5, 126.8, 126.5, 124.1, 119.4, 118.2, 117.6, 116.6, 115.2, 114.8, 105.8, 

90.0, 88.3, 55.3, 49.4, 19.9, 11.2; HRMS (ESI-TOF): m/z calculated for 

C31H23NO2S= 602.2116 [M+H]+, measured 602.2146 [M+H]+. 

Phenothiazine 4d. Red colored solid. Yield: 117 mg (72%); 1H NMR (400 MHz, 

CDCl3): δ =8.63 (d, J = 8.76, 4H), 8.43 (s, 2H), 8.02 (d, J = 8.28, 4H), 7.62-7.50 

(m, 12H), 6.92 (d, J = 8.28, 4H), 3.92 (t, J = 7.04, 2H), 1.96-1.87 (m, 2H), 1.09 (t, 

J = 7.24, 3H); 13C NMR (100 MHz, CDCl3): δ = 144.8, 132.5, 131.2, 130.9, 

130.2, 128.7, 127.5, 126.8, 126.5, 125.8, 124.3, 117.8, 117.4, 115.4, 100.1, 86.5, 

49.5, 20.1, 11.3; HRMS (ESI-TOF): m/z calculated for C47H31NS= 641.2173 

[M]+, measured 641.2172 [M]+. 

Phenothiazine 4e. Yellowish orange colored solid. Yield: 120 mg (74%); 1H 

NMR (400 MHz, CDCl3): δ = 8.72-8.65 (m, 4H), 8.53-8.51 (m, 2H), 8.06, (s, 

2H), 7.87 (d, J = 7.28, 2H), 7.72-7.59 (m, 8H), 7.48-7.44 (m, 4H), 6.85 (d, J = 

8.28, 2H), 3.87 (t, J = 7.04, 2H), 1.93-1.84 (m, 2H), 1.06 (t, J = 7.28, 3H); 13C 

NMR (100 MHz, CDCl3): δ = 144.7, 131.5, 131.3, 131.1, 130.9, 130.2, 130.1, 

130.0, 128.5, 127.3, 127.0, 126.9, 124.2, 122.7, 122.6, 119.7, 117.5, 115.2, 93.3, 

87.7, 49.4, 20.0, 11.2; HRMS (ESI-TOF): m/z calculated for C47H31NS= 

642.2248 [M+H]+, measured 642.2250 [M+H]+. 

Phenothiazine 4f. Dark yellow colored solid. Yield: 120 mg (69%); 1H NMR (400 

MHz, CDCl3): δ = 8.89 (d, J = 9.28, 1H), 8.70 (d, J = 9.04, 1H), 8.62 (d, J = 9.04, 

1H), 8.40 (d, J = 7.76, 1H), 8.27-8.00 (m, 16H), 7.49-7.44 (m, 2H), 7.23 (s, 1H), 

6.85 (d, J = 8.28, 1H), 6.70 (d, J = 8.28, 1H), 3.80 (t, J = 7.04, 2H), 1.87-1.78 (m, 

2H), 1.02 (t, J = 7.28, 3H); 13C NMR (100 MHz, CDCl3): δ= 144.9, 143.8, 131.9, 

131.7, 131.3, 131.2, 131.1, 131.0, 130.5, 130.2, 129.9, 129.8, 129.7, 129.4, 128.8, 

128.7, 128.5, 128.2, 128.1, 128.0, 127.3, 127.1, 126.5, 126.4, 126.2, 126.1, 125.9, 

125.8, 125.7, 125.6, 125.5, 125.4, 124.6, 124.5, 124.3, 124.1, 118.1, 117.9, 117.6, 

116.6, 115.3, 114.8, 94.4, 88.8, 49.4, 19.9, 11.2; HRMS (ESI-TOF): m/z 

calculated for C51H31NS= 689.2172 [M]+, measured 689.1940 [M]+. 
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3.7. Conclusions 

A series of aryl substituted phenothiazines were synthesized via Pd-

catalyzed Sonogashira cross-coupling reactions. The fluorescence study of the 

phenothiazines shows that all of them are highly emissive with remarkable 

quantum yields. The investigated molecules exhibit large Stokes shift values in 

solution, with the anthracene functionalized phenothiazine featuring strong 

positive fluorosolvatochromism and thus the largest Stokes shift in polar solvents 

(7350 cm-1 in DMF). These fluorescent compounds are also highly emissive in the 

solid-state where the phenothiazine substituted with the largest aryl groups show 

marked red shifts of the emission maxima as compared to the solution, indicating 

considerable π-π staking interactions. In particular, the anthracene substituted 

phenothiazine exhibits strongly redshifted absorption and emission wavelengths 

both in solid-state and in solution which implies pronounced electronic 

communication in this fluorophore. This finding agrees with the charge 

displacement predicted by the TD-DFT calculations as well as with the results of 

the cyclic voltammetry measurements. This work provides an outstanding strategy 

to synthesize organic fluorophores with high quantum yields and large Stokes 

shifts which are all excellent prerequisites for their possible use as promising 

fluorescent probes in bioimaging.  
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Chapter 4 

Design and Synthesis of Donor–Acceptor Based Ferrocene 

Substituted Phenothiazines: Tuning of HOMO–LUMO gap 

4.1. Introduction 

-Conjugated molecular systems containing sulfur (S) and nitrogen (N) 

atoms are of significant interest for various optoelectronic applications.[1] A wide 

variety of S and N based heterocyclic units such as thiazoles, benzothiazoles, 

benzothiadiazole, phenothiazines and many more have been explored for non-

linear optics (NLO), organic light emitting diodes (OLEDs), organic 

photovoltaics (OPVs) and organic field-effect transistors (OFETs).[2] The tuning 

of the photonic properties of these systems can be achieved by altering the 

strength of donor or acceptor units, and the connecting -linker.[3] Our group is 

interested in the design and synthesis of small molecule based heterocyclic -

conjugated molecular systems for organic photovoltaics.[4]  

The incorporation of heterocyclic moiety into the chromophore backbone 

leads to higher chemical and thermal robustness.[5] Phenothiazines are interesting 

mainly because of their inherent folded conformation (folding angle of 158.58°). 

It can be transformed into a planar conformation by the substitution of different 

functionalities in the N position of the phenothiazine moiety.[6] Phenothiazine 

allows variety of reactions including electrophilic substitution at the aromatic 

position, nucleophilic reaction at the N position, oxidation at the sulfur, etc.[6c] In 

addition, phenothiazines possess low reversible oxidation potential which makes 

them suitable as electrophores in organic materials.[7] The ferrocene is a strong 

electron donor and its derivatives play an important role in NLO, superconductor, 

magnetic, semiconductor, and redox catalyst materials.[8] We were interested to 

incorporate cyano based 1,1,4,4–tetracyanobuta–1,3–diene (TCBD) and 

cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD acceptors on the ferrocenyl 

phenothiazine derivatives to study the effect of the acceptors on photonic and 

electrochemical properties of ferrocenyl phenothiazine. Cyano-based acceptors 
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are one of the most powerful unit for the application in organic electronic 

devices.[9] The  [2+2] cycloadditions of tetracyanoethylene (TCNE) and 7,7,8,8-

tetracyanoquinodimethane (TCNQ) with the electron rich alkynes followed by the 

electrocyclic ring-opening results in donor–acceptor type molecular systems.[10, 11, 

12] These cyano based acceptors have been used to form charge transfer (CT) 

complexes with a variety of electron-rich organic and organometallic compounds 

which exhibit a number of interesting properties such as electric conductivity.[10] 

Diederich et al. are pioneer in the field of TCBD and cyclohexa–2,5–diene–1,4–

ylidene–expanded TCBD chemistry and have studied a large variety of TCBD 

and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD derivatives.[11, 12] 

 Michinobu et al. have extensively explored the TCBD and cyclohexa–

2,5–diene–1,4–ylidene–expanded TCBD substituted polymers which are 

supposed to be promising materials for photovoltaic applications.[13] Shoji et al. 

have reported donor–acceptor based TCBD and cyclohexa–2,5–diene–1,4–

ylidene–expanded TCBD molecules as redox active ICT chromophores.[14] 

Butenschoen et al. have reported a variety of 1,1´ -disubstituted ferrocenyl TCBD 

derivatives.[15] Nakamura and coworkers have studied carbazole and its TCBD 

derivatives.[16] Our group has reported a vast variety of TCBD functionalized 

chromophores for organic electronics.[4f, 17] 

Herein we wish to report the design and synthesis of unsymmetrical and 

symmetrical TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD 

chromophores where phenothiazine and ferrocene are acting as strong donors. In 

this chapter our objective was to improve the photonic and electronic properties of 

ferrocene substituted phenothiazines by incorporating TCNE and TCNQ in 

between phenothiazine and ferrocene building blocks. We have further explored a 

comparative photophysical and electrochemical studies by varying the number of 

TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD acceptor as well 

as ferrocene donor on the phenothiazine moiety. Additionally, theoretical 

calculations were performed in order to study the conformation and the photonic 

properties of phenothiazines. 
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4.2. Results and Discussion 

The TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD 

substituted ferrocenyl phenothiazines 4b, 4c, 4c, 5b, 5c, 5d, 5d, 5e, 5e, 5f and 

5f were designed and synthesized by the [2 + 2] cycloaddition–electrocyclic ring-

opening reaction of ferrocenyl phenothiazines 4a and 5a with TCNE and TCNQ 

(Scheme 4.2, Scheme 4.3 and Scheme 4.4). The ferrocenyl phenothiazines 4a and 

5a were synthesized by the Sonogashira cross-coupling reaction of 3-bromo-10-

propylphenothiazine and 3,7-dibromo-10-propylphenothiazines with the ethynyl 

ferrocene.[18] The Pd-catalyzed Sonogashira cross-coupling reaction of 

phenothiazines 3a and 3b with ethynyl ferrocene at 60 °C resulted ferrocenyl 

phenothiazines 4a and 5a in 50% and 51% yields respectively (Scheme 4.1).  

 

Scheme 4.1. Synthetic route for ferrocenyl phenothiazines 4a and 5a. 

In order to explore the effect of number of TCBD and cyclohexa–2,5–

diene–1,4–ylidene–expanded TCBD  acceptors on the ferrocenyl phenothiazines 

the mono-(4b, 4c, 4c, 5b and 5d, 5d) and di-(5c, 5e, 5e, 5f and 5f) substituted 

ferrocenyl phenothiazines were synthesized. The precursors 4a and 5a undergo 

the [2 + 2] cycloaddition–electrocyclic ring-opening reaction with TCNE at room 

temperature within 4 hours in CH2Cl2 solvent, resulted TCBD functionalized 
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phenothiazines 4b and 5b in 83% and 85% yield, respectively (Scheme 4.2 and 

Scheme 4.3). The ferrocenyl phenothiazine 5a undergoes a similar transformation 

by using excess amount of TCNE which resulted phenothiazine 5c in 90% yield at 

40 °C, for 12 hours in CH2Cl2 solvent. The derivatives of cyclohexa–2,5–diene–

1,4–ylidene–expanded TCBDs were obtained as non-separable regioisomeric 

mixtures. The reaction of ferrocenyl phenothiazine 4a with 1 equivalent of TCNQ 

at 40 °C, for 12 hours in CH2Cl2 solvent results in 40.5:59.5 regioisomeric 

phenothiazines 4c and 4c in 85% yield. The reaction of ferrocenyl phenothiazine 

5a with 1 equivalent of TCNQ at 40 °C, for 12 hours in CH2Cl2 solvent results in 

37.5:62.5 regioisomeric phenothiazines 5d and 5d in 80% yield. The 

phenothiazines 5e and 5e was obtained in 45.1:54.9 regioisomeric mixtures by 

the similar reaction of excess amount of TCNQ with phenothiazine 5a at 40 °C, 

for 4 days in CH2Cl2 solvent and resulted in 70% yield (Scheme 4.3). 

 

 

Scheme 4.2. Synthetic route for ferrocenyl phenothiazines 4b, 4c and 4c. 

The reaction of isomeric cyclohexa–2,5–diene–1,4–ylidene–expanded 

TCBDs functionalized phenothiazine 5d and 5d  with TCNE at 40 °C, for 12 

hours in CH2Cl2 solvent results in 33.1:66.9 regioisomeric phenothiazine 5f and 

5f in 80% yield. The phenothiazines 5f and 5f was also synthesized from TCBD 

functionalized phenothiazine 5b with TCNQ at 40 °C, for 12 hours in CH2Cl2 

solvent which resulted in 33.1:66.9 regioisomeric mixtures with 81% yield, 

(Scheme 4.4). The ferrocenyl phenothiazines as well as TCBD and cyclohexa–

4c 4c 

4b 

4a 
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2,5–diene–1,4–ylidene–expanded TCBD functionalized ferrocenyl phenothiazines 

4b, 4c, 4c, 5b, 5c, 5d, 5d, 5e, 5e, 5f and 5f are soluble in common organic 

solvents such as dichloromethane, chloroform, tetrahydrofuran, toluene and were 

well characterized by 1H NMR, 13C NMR and HRMS techniques. 

 

 

Scheme 4.3. Synthetic route for ferrocenyl phenothiazines 5b, 5c, 5d, 5d, 5e and 

5e. 

 

Scheme 4.4. Synthetic route for ferrocenyl phenothiazines 5f and 5f. 
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5d 
5d 

5e 5e 
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4.3. Photophysical Properties 

The electronic absorption spectra of the ferrocenyl phenothiazines and 

their TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD conjugates 

4b, 4c and 5b–5f were recorded in dichloromethane at room temperature (Figure 

4.1), and the data are compiled in Table 4.1. 

The TCBD functionalized phenothiazines 4b, 5b and 5c exhibit ICT 

transition at 531 nm, 547 nm and 537 nm respectively which indicates that the 

incorporation of TCBD unit results in strong donor–acceptor interaction. On the 

other hand, the cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD substituted 

phenothiazines 4c, 5d and 5e exhibit two strong absorption bands due to the 

strong electron accepting capability of cyclohexa–2,5–diene–1,4–ylidene–

expanded TCBD. 

The absorption band between 454–468 nm and 737–794 nm can be 

attributed to the π–π* transition band and CT band, respectively. The 

TCBD/cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD substituted 

phenothiazine 5f exhibit π–π* transition band and CT band at 524 nm and 800 nm 

respectively. It also shows a shoulder band at 439 nm which may be due to the 

presence of two different acceptors in phenothiazine 5f. The incorporation of the 

TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD acceptor units 

resulted in strong donor–acceptor interaction which was further explained by TD-

DFT calculation in dichloromethane phase. 

The optical band gap of phenothiazines 4b, 4c and 5b–5f follow the order 

4b>5c>5b>5f>4c>5e>5d. The trend clearly indicates the influence of TCBD and 

cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD on ferrocenyl phenothiazines 

leading to the red shifted electronic absorption and low optical band gap which is 

further explained by TDDFT calculations where the effect of regioisomeric 

mixture on the electronic spectra is also discussed. 
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Figure 4.1. The electronic absorption spectra of phenothiazines (i) 4b, 5b and 5c, 

and (ii) 4c, 5d, 5e and 5f in dichloromethane (1 ×10-5 M). 

4.4. Electrochemical Properties 

The electrochemical properties of ferrocenyl phenothiazines 4b, 4c and 

5b–5f were explored by cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV) in dry dichloromethane (DCM) solution at room temperature 

using tetrabutylammonium hexafluorophosphate (TBAPF6) as a supporting 

electrolyte. The electrochemical data are compiled in Table 4.1, and the 

representative CV and DPV plots are shown in Figure 4.2–4.8. 

In general, phenothiazine shows one reversible oxidation wave.[19] The 

TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD substituted 

ferrocenyl phenothiazines show an additional reversible oxidation wave which 

corresponds to the oxidation of ferrocenyl ring. 

The phenothiazines 4c, 5c and 5e show two oxidation potentials at (+0.68 

V, +0.95 V), (+0.55 V, +0.66 V) and (+0.54 V, +0.79 V) respectively, where the 

first oxidation potentials are attributed to the ferrocenyl moiety and the second 

oxidation potentials are due to the phenothiazinyl moiety. The phenothiazine 4b 

exhibits only one oxidation wave at +0.71 V due to the simultaneous reversible 

oxidation of ferrocene and phenothiazine units.[17a–c] The phenothiazines 5b, 5d 

and 5f show three oxidation peaks at (+0.33 V, +0.68 V and +0.81 V), (+0.32V, 
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+0.55V, +0.68 V) and (+0.56 V, +0.67V and +0.85 V), respectively where the 

first two oxidation potentials correspond to the ferrocene moiety and the third 

oxidation potential can be attributed to the phenothiazine moiety. The trend in the 

first oxidation potential of the phenothiazines 4b, 4c and 5b–5f follows the order 

4b>5c>5f>4c>5e>5b>5d. 

The TCBD functionalized phenothiazines 4b, 5b and 5c exhibit a 

reversible two–step reduction wave attributed to one–electron transfer in each step 

and show the reduction potential value at (–0.75 V, –1.04 V), (–0.76 V, –1.06 V) 

and (–0.72 V, –1.07 V), respectively due to the TCBD units. The two reduction 

waves correspond to the formation of radical anions and dianions. A positive shift 

in the first reduction potential was observed in phenothiazine 5c because of the 

presence of two electron withdrawing TCBD units. This indicates that increasing 

the number of TCBD unit enhances the π-accepting properties. The cyclohexa–

2,5–diene–1,4–ylidene–expanded TCBD adduct of  phenothiazines 4c, 5d and 5e 

show only one reduction wave, whose potentials were identified at –0.56 V, –0.55 

V and –0.56 V, respectively which is due to the  simultaneous electrochemical 

reduction of cyclohexa–2,5diene–1,4ylidene–expanded TCBD units.[17a–c] The 

phenothiazine 5f shows three reduction wave at –0.54 V, –0.83 V, –1.11 V where 

the first reduction potential value corresponds to the cyclohexa–2,5diene–

1,4ylidene–expanded TCBD moiety and potential at –0.83 V and –1.11 V could 

be attributed to the TCBD moiety. Therefore the introduction of cyclohexa–2,5–

diene–1,4–ylidene–expanded TCBD adduct shows lower reduction potential as 

compared to TCBDs. The result reveals that the cyclohexa–2,5–diene–1,4–

ylidene–expanded TCBD unit stabilizes the LUMO energy level to greater extent 

than that of TCBD. The HOMO and LUMO energy levels are calculated from the 

onset oxidation and reduction potentials. The corresponding HOMO and LUMO 

energy levels of phenothiazines 4b, 4c, 5b, 5c, 5d, 5e and 5f are –4.98 eV, –4.83 

eV, –4.53 eV, –4.91 eV, –4.62 eV, –4.84 eV, –4.86 eV and –3.82 eV, –3.94 eV, –

3.79 eV, –3.81 eV, –3.96 eV, –4.00 eV, –3.88 eV, respectively. 
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Figure 4.2. CV and DPV plots of phenothiazine 4b. 

Table 4.1. Photophysical and electrochemical properties of phenothiazines 4b, 4c, 

4c, 5b, 5c, 5d, 5d, 5e, 5e, 5f and 5f. 

Phenothiazines Photophysical dataa Theoretical 

datac 

Electrochemical datad 

abs 

(nm) 

 

( M−1 

cm−1) 

Optical 

Band 

Gap 

(eV)b 

HOMO-

LUMO 

energy gap 

(eV) 

Eox(V) Ered(V) 

4b 531 65323 1.59 2.64 0.71 

 

 

–0.75 

–1.04 

4c, 4c 454 60222 1.23 2.22, 2.04 0.55 

0.65 

 

–0.56 

5b 547 68007 1.54 2.49 0.33 

0.68 

0.81 

 

–0.76 

–1.06 
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5c 537 70166 1.57 2.63 0.68 

0.95 

 

–0.72 

–1.07 

5d, 5d 468 77333 1.19 2.03, 1.87 0.32 

0.55 

0.68 

 

–0.55 

5e, 5e 448 80368 1.21 2.24, 2.00 0.54 

0.79 

 

–0.56 

5f, 5f 524 77158 1.24 2.28, 2.11 0.56 

0.67 

0.85 

–0.54 

–0.83 

–1.11 

       

a Absorbance measured in dichloromethane at 110−5 M concentration; abs: absorption wavelength; : 

extinction coefficient. b determined from onset wavelength of the UV/Vis absorption; cobtained from density 

functional theory calculations at B3LYP/6-31+G** level; d recorded by cyclic voltammetry, in 0.1 M solution 

of TBAPF6 in DCM at 100 mV s−1 scan rate versus SCE electrode.  

    

Figure 4.3. CV and DPV plots of phenothiazine 4c. 



 
 

69 
 

     

Figure 4.4. CV and DPV plots of phenothiazine 5b. 

 

Figure 4.5. CV and DPV plots of phenothiazines 5c. 

 

Figure 4.6. CV and DPV plots of phenothiazine 5d. 
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Figure 4.7. CV and DPV plots of phenothiazine 5e. 

 

Figure 4.8. CV and DPV plots of phenothiazines 5f. 

4.5. Theoretical Calculations 

The density functional theory calculation was performed on 

phenothiazines 4b, 4c, 5b, 5c, 5d, 5e and 5f to explore the structure and electronic 

properties at B3LYP/6-31+G** level for B, C, F, H, N and S.[20] The optimized 

structures of phenothiazines are nonplanar with twisted geometry. The 

incorporation of strong cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD 

acceptor unit lower the LUMO energy level to greater extent as compared to 

TCBD, which results in low HOMO–LUMO gap and red shifted electronic 

absorption. The theoretically determined HOMO levels of phenothiazines 4b, 4c, 

5b, 5c, 5d, 5e and 5f are –5.53 eV, –5.62 eV, –5.41 eV, –5.95 eV, –5.39 eV, –

6.03 eV and –6.0 eV whereas LUMO levels are –2.89 eV, –3.40 eV, –2.92 eV, –
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3.31 eV, –3.36 eV, –3.79 eV and –3.72 eV (Figure 4.9). The comparison between 

FMOs of the isomeric phenothiazines (4c and 4c), (5d and 5d), (5e and 5e) and 

(5f and 5f) are shown in the Table 4.2–4.5, where the calculated HOMO levels of 

4c, 5d, 5eand 5f are –5.45 eV, –5.29 eV, –5.87 eV and –5.93 eV, and the 

LUMO levels are –3.41 eV, –3.42 eV, –3.87 eV and –3.82 eV respectively. The 

data reveals that the LUMO energy levels of the isomeric phenothiazines 4c, 5d, 

5eand 5f are more stabilized as compared to the 4c, 5d, 5e and 5f, respectively. 

 

Figure 4.9. Energy diagram showing the HOMO and LUMO wave functions and 

energies of phenothiazines 4b, 4c and 5b–5f as determined at B3LYP/6-31G** 

level. 

The time-dependent DFT calculation was performed at the B3LYP/6-31G 

(d, p) level on optimized phenothiazines in dichloromethane to evaluate the 

absorption properties. The transitions with composition, oscillator strengths, and 

assignments are as shown in Table 4.6.  
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Table 4.2. FMO of regioisomeric phenothiazines 4c and 4c´. 

Phenothiazines 4c 4c´ 

 

 

LUMO 
  

 

 

 

HOMO 
  

 

HOMO–

LUMO energy 

gap (eV) 

 

2.22 

 

2.04 

 

Table 4.3. FMO of regioisomeric phenothiazines 5d and 5d´. 

Phenothiazines 5d 5d´ 

 

 

LUMO 
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HOMO 

 
 

 

HOMO–

LUMO energy 

gap (eV) 

 

2.03 

 

1.87 

 

Table 4.4. FMO of regioisomeric phenothiazines 5e and 5e´. 

Phenothiazine

s 

5e 5e´ 

 

 

LUMO 
  

 

 

HOMO  
 

 

HOMO–

LUMO energy 

gap (eV) 

 

2.24 

 

2.00 
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Table 4.5. FMO of regioisomeric phenothiazines 5f and 5f´. 

Phenothiazines 5f 5f´ 

 

 

LUMO 
 

 

 

 

HOMO 
 

 

 

HOMO–LUMO 

energy gap (eV) 

 

2.28 

 

2.11 

 

The TD-DFT calculation shows absorption band at 578, 625 and 602 nm 

respectively for phenothiazines 4b, 5b and 5c due to the ICT, whereas the 

phenothiazines 4c, 4c, 5d, 5d, 5e, 5e, 5f and 5fexhibit two absorption bands in 

the visible region which can be attributed to the π–π* transition at shorter 

wavelength and ICT at longer wavelength (Table 4.6). The main ICT transition 

for phenothiazine 4b occurs from HOMO→LUMO+1, and HOMO→LUMO for 

phenothiazines 5b and 5c. The charge-transfer occurs from HOMO→LUMO+2, 

HOMO–3→LUMO, HOMO–2→LUMO and HOMO–1→LUMO in 

phenothiazines 4c, 5d, 5e and 5f, respectively whereas for 4c, 5d, 5eand 5f the 

charge-transfer occurs from HOMO→LUMO. The data shows that the isomeric 

phenothiazines 4c, 5d, 5e and 5f are red shifted as compared to 4c, 5d, 5e and 

5f, respectively. The theoretical electronic absorption wavelengths were found to 
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be higher than those of experimental values which might be due to various 

factors, e.g. solvent effect, dipole moment and temperature. 

Table 4.6. Calculated electronic transitions for phenothiazines 4b, 4c, 4c, 5b, 5c, 

5d, 5d, 5e, 5e, 5f and 5f in dichloromethane. 

Compounds Wavelength 

(nm) 

Composition fa Assignment 

4b 578 HOMO→LUMO+1 (0.52) 0.22 ICT 

4c 567 

480 

HOMO→LUMO+2 (0.68) 

HOMO–3→LUMO (0.41) 

0.36 

0.49 

ICT 

π–π* 

4c´ 743 

483 

HOMO→LUMO (0.69) 

HOMO–3→LUMO (0.50) 

0.51 

0.62 

ICT 

π–π* 

5b 625 HOMO→LUMO (0.65) 0.35 ICT 

5c 602 HOMO→LUMO (0.69) 0.53 ICT 

5d 756 

474 

HOMO–3→LUMO (0.48) 

HOMO–1→LUMO+1 

(0.34) 

0.05 

0.00 

ICT 

π–π* 

5d´ 795 

482 

HOMO→LUMO (0.70) 

HOMO–4→LUMO (0.37) 

0.62 

0.37 

ICT 

π–π* 

5e 781 

575 

HOMO–2→LUMO (0.38) 

HOMO–1→LUMO+1 

(0.33) 

0.23 

0.60 

ICT 

π–π* 

5e´ 824 HOMO→LUMO (0.69) 0.40 ICT 
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523 HOMO→LUMO+1 (0.52) 0.52 π–π* 

5f 782 

526 

HOMO–1→LUMO (0.50) 

HOMO–1→LUMO+1 

(0.34) 

0.07 

0.10 

ICT 

π–π* 

5f´ 769 

503 

HOMO→LUMO (0.65) 

HOMO→LUMO+2 (0.59) 

0.32 

0.47 

ICT 

π–π* 

fa oscillator strength 

4.6. Experimental Section  

General Methods. Chemicals were used as received unless otherwise indicated. 

All the oxygen or moisture sensitive reactions were carried out under argon 

atmosphere. 1H NMR spectra were recorded using a 400 MHz spectrometer. 

Chemical shifts are reported in delta (δ) units, expressed in parts per million 

(ppm) downfield from tetramethylsilane (TMS) using residual protonated solvent 

as an internal standard CDCl3, 7.26 ppm. 13C NMR spectra were recorded using 

a 400 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed 

in parts per million (ppm) downfield from tetramethylsilane (TMS) using the 

solvent as internal standard CDCl3, 77.0 ppm. The 1H NMR splitting patterns 

have been described as “s, singlet; d, doublet; t, triplet and m, multiplet”. UV/Vis 

spectrums of all compounds were recorded in dichloromethane solution. Cyclic 

voltammograms were recorded on electrochemical analyzer using Glassy carbon 

as working electrode, Pt wire as the counter electrode, and Saturated Calomel 

Electrode (SCE) as the reference electrode. The scan rate was 100mVs-1 for 

Cyclic Voltammetry. A solution of tetrabutylammonium hexafluorophosphate 

(TBAPF6) in CH2Cl2 (0.1M) was used as supporting electrolyte. 

Synthesis of 4b. Tetracyanoethylene (TCNE) (28.2 mg, 0.22 mmol) was added to 

a solution of compound 4a (98.8 mg, 0.22 mmol) in CH2Cl2 (50 mL). The mixture 

was stirred at room temperature for 4 h. After the completion of the reaction the 

solvent was removed in vacuum, and the product was purified by column 
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chromatography with CH2Cl2 as the eluent which yield 4b as a dark violet colored 

solid. Yield: 106.9 mg, 83%. 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J  = 7.28 

Hz, 1H), 7.30 (s, 1H), 7.16 (t, J = 7.56 Hz, 1H), 7.06-6.95 (m, 2H), 6.87-6.81 (m, 

2H), 5.18 (s, 1H), 4.95 (s, 1H), 4.84 (s, 1H), 4.70 (s, 1H), 4.45-4.37 (m, 5H), 3.82 

(t, J=7.04 Hz, 2H), 1.85-1.79 (m, 2H), 1.01 (t, J = 7.28 Hz, 3H); 13C NMR (100 

MHz, CDCl3): δ = 173.3, 163.5, 150.8, 142.2, 129.7, 128.6, 127.9, 127.6, 127.5, 

125.3, 124.3, 124.2, 122.6, 116.1, 114.9, 113.7, 112.8, 112.5, 80.3, 79.1, 75.5, 

75.4, 74.9, 72.7, 72.5, 72.0, 71.9, 71.5, 49.9, 19.9, 11.1; HRMS (ESI-TOF): m/z 

calculated for C33H23FeN5S= 578.1097 [M+H]+, measured 578.1082 [M+H]+ 

Synthesis of 4c and 4c. Tetracyanoquinodimethane (TCNQ) (44.9 mg, 0.22 

mmol) was added to a solution of compound 4a (98.8 mg, 0.22 mmol) in CH2Cl2 

(50 mL). The mixture was refluxed at 40 °C for 12 h. After the completion of the 

reaction the solvent was removed in vacuum and the product was purified by 

column chromatography with CH2Cl2 as the eluent which yield 4c and 4c in 

40.5:59.5 calculated regioisomeric mixtures as a dark brown colored solid. 

Overall Yield: 122.0 mg, 85%. 1H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 9.28 

Hz, 1H), 7.55 (d, J = 7.52 Hz, 1H), 7.45 (d, J = 9.52 Hz, 1H), 7.38 (d, J = 9.52 

Hz, 1H), 7.23–7.10 (m, 9H), 7.02–6.95 (m, 4H), 6.89–6.77 (m, 5H), 4.97–4.76 

(m, 7H), 4.42–4.26 (m, 11H), 3.85 (t, J = 7.04 Hz, 2H), 3.80 (t, J = 7.04 Hz, 2H), 

1.87–1.77 (m, 4H), 1.04–0.98 (m, 6H); 13C NMR (100 MHz, CDCl3): δ = 177.4, 

167.4, 157.1, 154.6, 154.2, 150.4, 149.6, 148.5, 142.9, 142.3, 134.7, 135.2, 134.1, 

131.6, 131.4, 130.6, 130.5, 129.9, 129.0, 128.9, 128.2, 127.9, 127.6, 126.7, 126.0, 

125.6, 125.4, 125.1, 124.8, 124.2, 124.0, 123.8, 115.0, 114.9, 114.3, 113.8, 113.7, 

113.5, 113.3, 80.0, 79.6, 79.5, 79.4, 77.8, 76.2, 76.1, 75.5, 75.0, 74.9, 74.8, 74.7, 

73.9, 72.8, 72.6, 72.5, 72.4, 71.8, 71.1, 49.8, 49.4, 20.1, 20.0, 11.2, 11.1; HRMS 

(ESI-TOF): m/z calculated for C39H27FeN5S= 676.1229 [M+Na]+, measured 

676.1210 [M+Na]+ 

Synthesis of 5b. Tetracyanoethylene (TCNE) (19.2 mg, 0.15 mmol) was added to 

a solution of compound 5a (98.6 mg, 0.15 mmol) in CH2Cl2 (50 mL). The mixture 

was stirred at room temperature for 4 h. After the completion of the reaction the 
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solvent was removed in vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent to yield 5b as a dark violet colored 

solid. Yield: 100.10 mg, 85%; 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 8 Hz, 

1H), 7.28 (s, 2H), 7.16 (s, 1H), 6.83–6.76 (m, 2H), 5.29 (s, 3H), 5.18 (s, 1H), 4.95 

(s, 1H), 4.85 (s, 1H), 4.71 (s, 1H), 4.45 (s, 6H), 6.94 (s, 6H), 3.81 (t, J = 6.04 Hz, 

2H), 1.83–1.79 (m, 2H), 1.02 (t, J = 6.76 Hz, 3H); 13C NMR (100 MHz, CDCl3): 

δ = 173.3, 163.4, 150.2, 141.4, 130.9, 130.0, 129.7, 127.5, 124.8, 124.5, 122.6, 

120.1, 115.8, 115.1, 113.7, 112.8, 112.7, 112.4, 89.5, 84.2, 80.6, 79.1, 75.5, 75.0, 

72.5, 72.0, 71.4, 70.0, 68.9, 64.9, 49.9, 19.9, 11.1; HRMS (ESI-TOF): m/z 

calculated for C45H31Fe2N5S= 824.0633 [M+K]+, measured 824.0630 [M+K]+ 

Synthesis of 5c. Tetracyanoethylene (TCNE) (38.4 mg, 0.3 mmol) was added to a 

solution of compound 5a (98.6 mg, 0.15 mmol) in CH2Cl2 (50 mL). The mixture 

was stirred at room temperature for 12 h. After the completion of the reaction the 

solvent was removed in vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent which yield 5c as a dark violet colored 

solid. Yield: 123.4 mg, 90%; 1H NMR (400 MHz, CDCl3): δ = 7.54 (t, J = 8.28 

Hz, 2H), 7.22 (d, J = 6.04 Hz, 2H), 6.89–6.86 (m, 2H), 5.30 (d, J = 7.76 Hz, 2H), 

5.01 (s, 2H), 4.88 (s, 2H), 4.59 (d, J = 5.28 Hz, 2H), 4.46 (s, 8H), 3.82 (t, J = 7.04 

Hz, 2H), 1.84–1.79 (m, 2H), 1.03 (t, J = 7.28 Hz, 3H); 13C NMR (100 MHz, 

CDCl3): δ = 172.6, 163.5, 147.9, 147.8, 129.8, 127.5, 127.4, 126.2, 124.3, 116.1, 

113.6, 112.8, 112.2, 111.9, 82.9, 78.8, 74.5, 72.7, 72.2, 71.8, 50.3, 19.9, 11.1; 

HRMS (ESI-TOF): m/z calculated for C51H31Fe2N9S= 952.0756 [M+K]+, 

measured 952.1018 [M+K]+ 

Synthesis of 5d and 5d. Tetracyanoquinodimethane (TCNQ) (30.6 mg, 0.15 

mmol) was added to a solution of compound 5a (98.6 mg, 0.15 mmol) in CH2Cl2 

(50 mL). The mixture was refluxed at 40 °C for 12 h. After the completion of the 

reaction the solvent was removed in vacuum and the product was purified by 

column chromatography with CH2Cl2 as the eluent which yield 5d and 5d in 

37.5:62.5 calculated regioisomeric mixtures as a dark brown colored solid. 

Overall Yield: 103.4 mg, 80%; 1H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 9.8 
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Hz, 1H), 7.56 (d, J = 8.28 Hz, 1H), 7.46 (d, J = 9.52 Hz, 2H), 7.38 (d, J = 9.52 

Hz, 1H), 7.20 (t, J = 8.76 Hz, 5H), 7.13 (s, 1H), 7.03 (d, J = 9.28 Hz, 1H), 6.88 (d, 

J = 8.52 Hz, 1H), 6.80–6.74 (m, 5H), 5.28 (s, 2H), 4.93 (s, 1H), 4.83 (s, 3H), 4.76 

(s, 1H), 4.45–4.20 (m, 31H), 3.84 (t, J = 7.0 Hz, 2H), 3.79 (t, J = 7.04 Hz, 2H), 

1.87–1.77 (m, 4H), 1.05–0.98 (m, 6H); 13C NMR (100 MHz, CDCl3): δ = 167.3, 

156.9, 154.6, 154.2, 149.8, 149.4, 147.9, 142.2, 141.5, 134.6, 134.1, 134.0, 131.5, 

130.9, 130.5, 130.1, 130.0, 129.8, 129.2, 129.0, 128.2, 127.0, 126.1, 125.5, 125.1, 

124.9, 124.6, 124.1, 122.9, 122.7, 119.9, 119.5, 115.7, 115.6, 115.3, 115.0, 

114.3,113.8, 113.6, 113.4, 113.2, 89.5, 89.4, 89.2, 84.2, 80.3,79.5, 79.4, 77.9, 

77.8, 76.1, 75.7, 74.9, 74.8, 73.8, 72.7, 72.6, 72.5, 72.4, 71.8, 71.3, 69.9, 49.8, 

20.1, 19.9, 11.2, 11.1; HRMS (ESI-TOF): m/z calculated for C51H35Fe2N5S= 

861.1309 [M]+, measured 861.1283 [M]+. 

Synthesis of 5e and 5e. Tetracyanoquinodimethane (TCNQ) (61.2 mg, 0.3 

mmol) was added to a solution of compound 5a (98.6 mg, 0.15 mmol) in CH2Cl2 

(50 mL). The mixture was refluxed at 40 °C for 4 days. After the completion of 

the reaction the solvent was removed in vacuum and the product was purified by 

column chromatography with CH2Cl2 as the eluent which yield 5e and 5e in 

45.1:54.9 calculated regioisomeric mixtures as a dark brown colored solid. 

Overall Yield: 111.9 mg, 70%; 1H NMR (400 MHz, CDCl3): δ = 8.30–8.26 (m, 

3H), 7.55–7.42 (m, 7H), 7.31–7.28 (m, 4H), 7.22–7.18 (m, 6H), 7.13 (s, 1H), 7.02 

(s, 2H), 6.91–6.73 (m, 8H), 5.28 (s, 1H), 4.95–4.80 (m, 13H), 4.36–4.29 (m, 

21H), 3.82 (t, J = 8.0 Hz, 2H), 3.75 (t, J = 9.52 Hz, 2H), 1.87–1.74 (m, 4H), 1.05–

0.97 (m, 6H); 13C NMR (100 MHz, CDCl3): δ = 167.2, 156.3, 156.0, 154.4, 

153.9, 148.3, 148.1, 147.5, 147.4, 145.4, 134.0, 133.8, 132.1, 131.5, 130.6, 130.5, 

130.1, 129.9, 128.9, 128.6, 127.8, 125.0, 124.2, 123.9, 115.9, 115.8, 115.6, 115.0, 

114.9, 113.4, 113.1, 112.9, 112.8, 112.7, 82.1, 81.7, 79.3, 79.1; HRMS (ESI-

TOF): m/z calculated for C63H39Fe2N9S= 1088.1644 [M+Na]+, measured 

1088.1651 [M+Na]+. 

Synthesis of 5f and 5f. Tetracyanoethylene (TCNE) (15.4 mg, 0.12 mmol) was 

added to a solution of compound 5d and 5d (103.4 mg, 0.12 mmol) in CH2Cl2 
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(50 mL). The mixture was refluxed at 40 °C for 12 h. After the completion of the 

reaction the solvent was removed in vacuum, and the product was purified by 

column chromatography with CH2Cl2 as the eluent which yield 5f and 5f in 

33.1:66.9 calculated regioisomeric mixtures as a dark colored solid. Overall 

Yield: 95 mg, 80%; 1H NMR (400 MHz, CDCl3): δ = 8.29 (d, J = 9.6 Hz, 1H), 

7.58–7.45 (m, 5H), 7.34–7.28 (m, 2H), 7.21–7.07 (m, 6H), 6.93–6.75 (m, 5H), 

5.28–5.23 (m, 3H), 4.99–4.81 (m, 11H), 4.65 (d, J=7.28 Hz, 1H), 4.57 (s, 2H), 

4.44–4.30 (m, 20H), 3.85 (t, J = 6.52 Hz, 2H), 3.78 (t, J = 6.52 Hz, 2H), 1.84–

1.75 (m, 4H), 1.05–0.99 (m, 6H); 13C NMR (100 MHz, CDCl3): δ = 172.6, 172.5, 

167.2, 163.5, 163.4, 158.2, 154.5, 153.9, 148.7, 148.3, 147.9, 147.4, 145.3, 134.2, 

134.0, 133.9, 133.8, 132.1, 131.4, 130.7, 130.5, 129.9, 129.8, 129.7, 129.0, 128.7, 

128.1, 128.0, 127.8, 127.5, 126.0, 125.8, 125.0, 124.2, 124.1, 123.9, 116.0, 115.9, 

115.8, 115.0, 114.2, 113.7, 113.5, 113.4, 112.9, 112.8, 112.7, 112.4, 112.2, 111.9, 

82.7, 82.6, 82.2, 82.1, 79.1, 78.9, 78.8, 75.8, 75.3, 75.1, 74.9, 73.9, 73.0, 72.7, 

72.6, 72.1, 71.8, 71.7, 53.4, 50.2, 19.9, 19.8, 11.1, 11.0; HRMS (ESI-TOF): m/z 

calculated for C58H39Fe2N9S= 1012.1330 [M+Na]+, measured 1012.1462 

[M+Na]+. 

4.7. Conclusions 

In summary, a series of TCBD and cyclohexa–2,5–diene–1,4–ylidene–

expanded TCBD substituted phenothiazines 4b, 4c, 4c, 5b, 5c, 5d, 5d, 5e, 5e, 5f 

and 5f were synthesized by [2+2] cycloaddition–electrocyclic ring-opening 

reactions. Their electrochemical properties reveal that the incorporation of strong 

acceptors TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD 

facilitates the reduction process of the ferrocenyl-phenothiazines which leads to 

low HOMO–LUMO gap. The electronic absorption spectra exhibit strong ICT at 

longer wavelength and strong donor–acceptor interactions. In particular, DFT and 

TDDFT calculations reveal a broad understanding of the electronic structure and 

absorption spectra of the phenothiazine chromophores which reveal that the 

incorporation of TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD 

acceptor group perturbs HOMO–LUMO gap of the phenothiazines to a greater 
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extent which is in a good agreement with the experimental values. The results 

provide an important procedure of designing new donor–acceptor chromophores 

with low band gaps.  
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Chapter 5 

Donor–Acceptor Based BODIPY Functionalized Phenothiazines 

5.1. Introduction  

π-conjugated donor-acceptor (D-A) molecular systems have been explored 

for various applications in optoelectronics.[1] The photonic properties of donor-

acceptor systems can be significantly improved by varying the donor/acceptor 

unit or the π-linker.[2] 

BODIPY is a strong electron acceptor and possesses unique spectroscopic 

and photophysical properties, such as strong absorption in the visible region with 

high molar extinction coefficient, and high fluorescence quantum yield.[3] The 

BODIPY moiety exhibit tunable redox potentials together with robustness against 

light and chemicals.[4] The photonic properties of BODIPY can be tuned by 

functionalizing it with donor molecules at the meso- and the pyrrolic positions (α 

and β positions).[5]  

Phenothiazines are important class of heterocycles with low reversible 

oxidation potential which makes them suitable electrophores in organic 

materials.[6] Phenothiazine is a strong donor due to its electron rich nitrogen and 

sulfur atoms and has been used to design molecular systems for organic light-

emitting diodes (OLEDs), photovoltaic cells and organic field effect transistors.[7] 

Müller et al. have reported various phenothiazine derivatives and explored their 

properties.[8] We have reported design and synthesis of variety of β and meso 

substituted ferrocenyl BODIPYs.[9] Therefore we were interested to incorporate 

the donor phenothiazine unit at the meso position of BODIPY directly and via 

ethynyl spacer. Giribabu et al. have synthesized directly linked mono-

phenothiazine BODIPYs at the N- and 3 position of phenothiazine donor 

moiety.[10]  

In this chapter we wish to report the design and synthesis unsymmetrical 

D–A, D–π–A and symmetrical A–D–A, A–π–D–π–A type of BODIPY 
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functionalized phenothiazines and investigated the effect of ethynyl spacer on the 

photonic properties and HOMO–LUMO gap. 

5.2. Results and Discussion 

The synthetic route of BODIPY functionalized phenothiazines 4a and 4b 

are shown in Scheme 5.1. The condensation reaction of formylated 

phenothiazines 2/3 with excess pyrrole in the presence of catalytic amount of 

trifluoroacetic acid (TFA), followed by oxidation using 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (DDQ) and complexation with boron trifluoride etherate 

(BF3.OEt2) resulted 4a and 4b in 85% and 87% yields respectively. 

 

Scheme 5.1. Synthesis of phenothiazines 4a and 4b. 

The phenothiazines 6a and 6b were obtained from the Sonogashira cross-

coupling reaction of mono and di-brominated phenothiazines with 

trimethylsilylacetylene (TMS), followed by the de-protection of TMS using 

K2CO3.
[8c] The precursor 8-chloro BODIPY 5 was obtained by the reaction of 

dipyrrylketone with POCl3 followed by the complexation with BF3.OEt2 in 

presence of triethylamine.[11] The Pd-catalyzed Sonogashira cross-coupling 

reaction of phenothiazines 6a and 6b with 8-chloro BODIPY 5 at 0 °C resulted 

phenothiazine functionalized BODIPYs 7a and 7b in 90% and 92% yields 
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respectively (Scheme 5.2). The BODIPY functionalized phenothiazines 4a, 4b, 7a 

and 7b are soluble in common organic solvents such as dichloromethane, 

chloroform, tetrahydrofuran, toluene and were well characterized by 1H NMR, 

13C NMR and HRMS techniques. 

 

Scheme 5.2. Synthesis of phenothiazines 7a and 7b. 

5.3. Thermogravimetric Analysis 

   The thermal stability of BODIPY functionalized phenothiazines 4a, 4b, 7a 

and 7b were investigated by the thermogravimetric analysis (TGA) at a heating 

rate of 10 °C min−1, under nitrogen atmosphere (Figure 5.1). The decomposition 

temperatures (Td) values for 10% weight loss in monosubstituted phenothiazine 

functionalized BODIPYs 4a and 7a show decomposition temperature above 580 

°C whereas disubstituted phenothiazine functionalized BODIPYs 4b and 7b with 

two acceptor units show the decomposition temperature above 366 °C. The trend 

in thermal stability of the phenothiazine functionalized BODIPYs follows the 

order 7a > 4a > 4b > 7b. This indicates that increase in the number of BODIPY 

units leads to decrease in thermal stability.  
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Figure 5.1. Thermogravimetric analysis of BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b measured at a heating rate of 10 °C min–1 under 

nitrogen atmosphere. 

5.4. Photophysical Properties 

The electronic absorption spectra of the BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b were recorded in dry dichloromethane (Figure 

5.2) and the data are summarized in Table 1. The BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b exhibit weak absorption bands at 235–440 nm 

region and strong absorption bands at 450–580 nm region which corresponds to 

π→π* transitions.[5b, 12] The incorporation of acetylenic linkage between 

phenothiazine and BODIPY moieties in 7a and 7b results in redshift of 40 nm in 

the absorption maxima, as compared to directly linked BODIPYs 4a and 4b. The 

BODIPY functionalized phenothiazines 4a and 4b show charge transfer (CT) 

band between 530–670 nm whereas 7a and 7b show CT band between 572–723 

nm which is supported by TD-DFT calculation. The trend in the optical HOMO–

LUMO gap values exhibits the order 4b > 4a > 7b > 7a. These data revealed that 
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incorporation of acetylenic linkage between the phenothiazine and BODIPY units 

decreases the HOMO–LUMO gap values.  

The solvent dependent absorption spectra show negative solvatochromic 

effect. The increase in solvent polarity (from toluene to methanol) exhibit blue 

shifted absorption curves in BODIPY functionalized phenothiazines 4a, 4b, 7a 

and 7b (Figure 5.3 and Table 5.2).  
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Figure 5.2. Electronic absorption spectra of (a) 4a and 7a and (b) 4b and 7b in 

dichloromethane (1 X 10-5 M). 
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Figure 5.3. Absorption curves of BODIPY functionalized phenothiazines 4a, 4b, 

7a and 7b in different solvents. 

5.5. Electrochemical Properties 

The electrochemical properties of BODIPY functionalized phenothiazines 

4a, 4b, 7a and 7b were recorded by cyclic voltammetry (CV) technique in 

dichloromethane using tetrabutylammonioumhexafluorophosphate (TBAPF6) as a 

supporting electrolyte. The representative CV plot is shown in Figure 5.4 and the 

data are summarized in Table 5.1. 

The BODIPY functionalized phenothiazines 4a, 4b, 7a and 7b show one 

reversible oxidation peak in the range of 1.25 to 0.6 V. The compounds 4a and 4b 

show oxidation peaks at 0.85 V and 0.95 V, whereas acetylene linked BODIPY 

functionalized phenothiazines 7a and 7b show oxidation peaks at 0.87 V and 0.98 

V respectively. The oxidation peak of BODIPYs follow the order 7b > 4b > 7a > 

4a. This indicate that the incorporation of two acceptor BODIPY units decreases 

the electron density on phenothiazine and results in higher oxidation potential.  

 

Figure 5.4. Cyclic Voltammogram plot of 4a, 4b, 7a and 4b in dichloromethane. 

The BODIPYs 4a and 4b show reduction peaks at -0.91 V and -0.93 V, 

whereas the acetylene linked phenothiazine functionalized BODIPYs 7a and 7b 

show first reduction peaks at −0.59 V and −0.70 V, and the second reduction 

peaks at −0.83 V and −0.87 V which is due to the BODIPY unit. The reduction 
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potential values of BODIPYs 7a and 7b are lower as compared to BODIPYs 4a 

and 4b which indicates the electron deficient nature in the formers.[13] 

The calculated electrochemical band gap (Egap) of BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b are 1.51 eV, 1.63 eV, 1.25 eV and 1.49 eV 

respectively. The Egap values follow the trend 4b > 4a > 7b > 7a which is in 

agreement with the optical and theoretical HOMO–LUMO gap. 

Table 5.1. The photophysical and electrochemical properties of BODIPY 

functionalized phenothiazines 4a, 4b, 7a and 7b. 

 a 
Absorbance measured in dichloromethane at 110−5 M concentration; abs: absorption wavelength; : extinction 

coefficient. b determined from onset wavelength of the UV/Vis absorption; c recorded by cyclic voltammetry, in 0.1 M 

solution of TBAPF6 in DCM at 100 mV s−1 scan rate versus SCE electrode; d decomposition temperatures for 10% weight 

loss under N2 atmosphere at heating rate of 10 ºC min−1; e theoretical HOMO–LUMO gap obtained from DFT calculation 

Co

mp

oun

d 

Photophysical data Electrochemical 

datac 

Td 

(ºC)d 

HOMO

–LUMO  

Gape 

(eV) 

abs 

(nm)a 

 ( 

M−1 

cm−1) 

Optical 

Gap 

(eV)b 

Eox(

V) 

Ered(

V) 

Egap 

(eV)c 

 

4a 

258 

322 

499 

41990 

12370 

58608 

 

2.02 

 

0.85 

 

−0.91 

 

1.51 

 

580 

 

2.72 

 

4b 

258 

322 

500 

16942 

7353 

41962 

 

1.95 

 

 

0.95 

 

−0.93 

 

1.63 

 

415 

 

2.83 

 

7a 

264 

384 

540 

24180 

10417 

42560 

 

1.75 

 

0.87 

 

−0.59 

−0.83 

 

1.25 

 

671 

 

2.54 

 

7b 

271 

383 

542 

11800 

9699 

35370 

 

1.79 

 

0.98 

 

−0.70 

-0.87 

 

1.49 

 

 

366 

 

2.61 
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Table 5.2. Absorption maxima of BODIPY functionalized phenothiazines 4a, 4b, 

7a and 7b in different solvents. 

Compounds λmax (nm) 

Toluene DCM THF Ethyl 

acetate 

Methanol 

4a 502 499 498 496 495 

4b 503 500 499 497 496 

7a 545 540 540 538 536 

7b 548 542 541 540 537 

 

5.6. Theoretical Calculations 

The density functional theory calculations were performed to explore the 

geometrical and electronic structures of the BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b at B3LYP/6-31+G** level for B, C, F, H, N and 

S.[14] The frontier molecular orbitals (FMOs) of 4a, 4b, 7a and 7b are shown in 

Figure 5.5. The HOMO orbitals of BODIPY functionalized phenothiazines 4a, 

4b, 7a and 7b are mainly localized on phenothiazine unit and LUMO orbitals on 

BODIPY unit, clearly indicates strong donor-acceptor interaction between 

phenothiazine and BODIPY unit. The calculated HOMO levels of 4a, 4b, 7a and 

7b are −5.43eV, −5.76eV, −5.48eV and −5.8eV respectively and the 

corresponding LUMO levels are −2.71eV, −2.93eV, −2.94eV and −3.2eV 

respectively. The theoretical HOMO–LUMO gap values for 4a, 4b, 7a and 7b are 

2.72, 2.83, 2.54 and 2.61, respectively and follow the order 4b > 4a > 7b > 7a. 

The data reveals that acetylene linked BODIPY functionalized phenothiazines 7a 

and 7b exhibit lower HOMO and LUMO energy levels than those of directly 

linked 4a and 4b. The HOMO–LUMO gap values from the DFT calculations 

were found to be in good agreement with the optical bandgap (Egap) values 

calculated from the UV/Vis absorption spectrum (Table 5.1). 
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The time-dependent DFT (TD-DFT) calculations were performed at the 

B3LYP/6-31G (d, p) level to explain the electronic transitions. The results 

indicate that BODIPY functionalized phenothiazines show two main electronic 

transitions in the visible region. The transitions with oscillator strengths, 

assignments and composition are shown in Table 5.3. The transition that occurs 

from HOMO to LUMO in the longer-wavelength region is associated with the 

ICT transition of the phenothiazine and BODIPY unit, whereas the other 

transition in the short-wavelength region is related to π-π* transition (Table 5.3). 

The main charge-transfer transition in BODIPY functionalized phenothiazines 4a, 

4b, 7a and 7b occurs from HOMO→LUMO whereas the π-π* transition occurs 

from HOMO–1→LUMO, HOMO–2→LUMO+1, HOMO–2→LUMO and 

HOMO–3→LUMO, respectively.   

 

Figure 5.5.  Energy diagram showing the HOMO and LUMO wave functions and 

energies of BODIPY functionalized phenothiazines 4a, 4b, 7a and 7b as 

determined at B3LYP/6-31G** level. 
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Table 5.3. Calculated electronic transition of BODIPY functionalized 

phenothiazines 4a, 4b, 7a and 7b. 

fa oscillator strength 

5.7.  Experimental Section  

General Methods 

Chemicals were used as received unless otherwise indicated. All the 

oxygen or moisture sensitive reactions were carried out under argon atmosphere. 

1H NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts 

are reported in delta (δ) units, expressed in parts per million (ppm) downfield 

from tetramethylsilane (TMS) using residual protonated solvent as an internal 

standard CDCl3, 7.26 ppm. 13C NMR spectra were recorded using a 400 MHz 

spectrometer. Chemical shifts are reported in delta (δ) units, expressed in parts per 

million (ppm) downfield from tetramethylsilane (TMS) using the solvent as 

internal standard CDCl3, 77.0 ppm. The 1H NMR splitting patterns have been 

described as “s, singlet; d, doublet; t, triplet and m, multiplet”. UV/Vis spectrums 

of all compounds were recorded in dichloromethane solution. Cyclic 

voltammograms were recorded on electrochemical analyzer using Glassy carbon 

Compoun

ds 

Wavelength Composition 

 

fa Assignment 

4a 590 

415 
HOMO→LUMO (0.70) 

HOMO–1→LUMO 

(0.68) 

 

0.15 

0.43 

ICT 

π–π* 

4b 578 

414 

HOMO→LUMO (0.70) 

HOMO–2→LUMO+1 

(0.58) 

0.24 

0.58 

ICT 

π–π* 

7a 617 

425 

HOMO→LUMO (0.70) 

HOMO–2→LUMO 

(0.70) 

0.46 

0.38 

ICT 

π–π* 

 

7b 624 

418 

HOMO→LUMO (0.70) 

HOMO–3→LUMO 

(0.68) 

0.85 

0.54 

ICT 

π–π* 
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as working electrode, Pt wire as the counter electrode, and Saturated Calomel 

Electrode (SCE) as the reference electrode. The scan rate was 100mVs-1 for 

Cyclic Voltammetry. A solution of tetrabutylammonium hexafluorophosphate 

(TBAPF6) in DCM (0.1M) was used as supporting electrolyte. 

Synthesis of 3-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-10-propyl-10H-

phenothiazine (4a) 

To a stirred solution of compound 2 (0.5 g, 1.85 mmol) and pyrrole (2.48 

g, 37.0 mmol) acid catalyst (trifluoroacetic acid, 0.001 mL) was added at room 

temperature. The reaction mixture was allowed to stir at room temperature for 2 h 

under argon atmosphere. The excess pyrrole was removed by distillation under 

reduced pressure. To purify the dipyrromethane intermediate column 

chromatography was done with DCM/hexane (1:1). In a 100 mL round bottomed 

flask dipyrromethane intermediate (200 mg, 0.518 mmol) was dissolved in 

dichloromethane (50 mL) and oxidized with DDQ (141.23 mg, 0.621 mmol)  The 

reaction were allowed to stir for 1 h at room temperature. Then trimethylamine 

(209.06 mg, 2.07 mmol) was added to the reaction mixture followed by BF3.OEt2 

(293.79 mg, 2.07 mmol). The stirring was continued for another 1 hr. Then the 

mixture was evaporated and the crude was purified by silica gel column 

chromatography with hexane/CH2Cl2 (1:1) to get the desired compound 4a as a 

dark colored solid, Yield 0.189 g (85%); mp 145 °C. 1H NMR (400 MHz, 

CDCl3): δ 7.92 (2H, s), 7.41-7.35 (2H, m), 7.22-7.15 (2H, m), 7.02-6.91 (5H, m), 

6.55 (2H, d, J = 4 Hz), 3.90 (2H, t, J = 8 Hz ), 1.95-1.88 (2H, m), 1.07 (3H, t, J = 

8 Hz); 13C NMR (100 MHz, CDCl3): δ 148.2, 146.3, 143.9, 134.4, 134.5, 131.1, 

130.5, 129.3, 127.9, 127.6, 125.1, 123.8, 123.3, 118.2, 115.8, 114.8, 49.4, 20.1, 

11.3; HRMS (ESI-TOF): m/z calculated for C24H20BF2N3S= 431.1336 [M+H]+, 

measured 431.1332 [M+H]+. 

Synthesis of 3,7-bis(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-10-propyl-

10H-phenothiazine (4b) 

To a stirred solution of compound 3 (0.5g, 1.85mmol) and pyrrole (4.96g, 

74.0mmol) acid catalyst (trifluoroacetic acid, 0.002mL) was added at room 

temperature. The reaction mixture was allowed to stir at room temperature for 2 h 
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under argon atmosphere. The excess pyrrole was removed by distillation under 

reduced pressure. To purify the dipyrromethane intermediate column 

chromatography was done with DCM/hexane (1:1). In a 100 mL round bottomed 

flask dipyrromethane intermediate (200 mg, 0.518 mmol) was dissolved in 

dichloromethane (50 mL) and oxidized with DDQ (282.46 mg, 1.24 mmol)  The 

reaction were allowed to stir for 1 h at room temperature. Then trimethylamine 

(418.12 mg, 4.14 mmol) was added to the reaction mixture followed by BF3.OEt2 

(587.58 mg, 4.14 mmol). The stirring was continued for another 1 h. Then the 

mixture was evaporated and the crude was purified by silica gel column 

chromatography with hexane/CH2Cl2 (1:1) to get the desired compound 4b as a 

dark colored solid, Yield 0.279 g (87%); mp >250 °C. 1H NMR (400 MHz, 

CDCl3 ): δ 7.94 (4H, s), 7.46-7.43 (2H, dd), 7.37 (2H, s), 7.03 (6H, d, J = 8 Hz ), 

6.56 (4H, d, J = 4 Hz), 3.97 (2H, t, J = 8 Hz), 2.02-1.95 (2H,m), 1.14 (3H, t, J = 8 

Hz); 13C NMR (100 MHz, CDCl3): δ 147.0, 146.1, 144.1, 134.8, 131.3, 131.0, 

129.7, 124.4, 118.8, 115.6, 50.2, 30.0, 20.4, 11.6 ; HRMS (ESI-TOF): m/z 

calculated for C33H25B2F4N5S = 644.1856 [M+Na]+, measured 644.1852 

[M+Na]+. 

Synthesis of 3-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-ethynyl-10-

propyl-10H-phenothiazine (7a)  

In a 100 mL round bottomed flask 8-Chloro BODIPY 5 (88.14 mg, 0.39 

mmol) and 3-ethynyl-10-propyl-10H-phenothiazine 6a (100 mg, 0.39 mmol) were 

dissolved in THF–triethylamine (4 : 1, v/v; 5 ml), and in an ice bath the mixture 

was cooled to 0 °C. The reaction mixture was purged with argon, and 

Pd(PPh3)2Cl2 (13.68 mg, 5 mol%), and CuI (3.6 mg, 5 mol%) were added. The 

reaction mixture was stirred at 0 °C for 30 min. Upon the completion of the 

reaction, the mixture was evaporated and purified by silica gel column 

chromatography with hexane/CH2Cl2 (1:4) to get the desired compound 7a as a 

dark colored solid. Yield 0.159 g (90%); mp 150 °C. 1H NMR (400 MHz, 

CDCl3): δ 7.81 (2H, s), 7.45 (1H, d, J = 8 Hz), 7.38 (3H, s), 7.19 (1H, t, 8 Hz ), 

7.13 (1H, d, J = 8 Hz) 6.99 (1H, t, J = 8 Hz), 6.91-6.88 (2H, m), 6.55 (2H, d, J = 

7.7 Hz), 3.87 (2H, t, J = 8 Hz), 1.91-1.81(2H, m), 1.05 (3H, t, J = 4 Hz) ; 13C 
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NMR (100 MHz, CDCl3): δ 148.0, 143.6, 142.8, 136.2, 132.7, 131.2, 128.5, 127.7, 

127.6, 127.5, 125.1, 123.5, 123.4, 118.0, 115.9, 115.1, 114.1, 107.3, 85.6, 49.5, 

20.0, 11.2; HRMS (ESI-TOF): m/z calculated for C26H20BF2N2S= 455.1438 

[M+H]+, measured 455.1473 [M+H]+. 

Synthesis of 3,7-bis(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-bis(ethene-

1,2-diyl)-10-propyl-10H-phenothiazine (7b) 

In a 100 mL round bottomed flask 8-Chloro BODIPY 5 (176.28 mg, 0.78 

mmol) and 3,7-diethynyl-10-propyl-10H-phenothiazine 6a (100 mg, 0.39 mmol) 

were dissolved in THF–triethylamine (10 : 1, v/v; 5 ml), and in an ice bath the 

mixture was cooled to 0 °C. The reaction mixture was purged with argon, and 

Pd(PPh3)2Cl2 (13.68 mg, 5 mol%), and CuI (3.6 mg, 5 mol%) were added. The 

reaction mixture was stirred at 0 °C for 30 min. Upon the completion of the 

reaction, the mixture was evaporated and purified by silica gel column 

chromatography with hexane/CH2Cl2 (1:4) to get the desired compound 7b as a 

dark colored solid. Yield: 0.25 g (92%); mp >250 °C. 1H NMR (400 MHz, 

CDCl3): δ 7.81 (4H, s), 7.46 (3H, d, J = 8 Hz), 7.36 (5H, s), 6.88 (2H, d, J = 12 

Hz ), 6.54 (4H, s), 3.89 (2H, t, J = 4 Hz), 1.90-1.82 (2H, m), 1.06 (2H, t, J = 8 

Hz); 13C NMR (100 MHz, CDCl3): δ 146.3, 143.2, 136.3, 132.9, 131.2, 128.7, 

127.3, 124.2, 118.2, 115.7, 115.4, 105.8, 85.6, 49.9, 20.0, 11.1; HRMS (ESI-

TOF): m/z calculated for C37H20B2F4N5S= 692.1857 [M+Na]+, measured 

692.1852 [M+Na]+. 

 

5.8. Conclusions 

In summary, a series of donor-acceptor BODIPY functionalized 

phenothiazines were designed and synthesized by the condensation and Pd-

catalyzed Sonogashira cross-coupling reaction. The photophysical and 

electrochemical studies show strong donor-acceptor interactions between 

phenothiazine and BODIPY. The optimized structure of acetylene linked 

phenothiazine BODIPY shows co-planar orientation of the phenothiazine donor 

and the BODIPY acceptor units which leads to extension of conjugation and 

significant red shift of the absorption bands in 7a and 7b. The calculated HOMO–
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LUMO gap values were lower in acetylene linked phenothiazine BODIPYs. The 

increase in acceptor units of BODIPY functionalized phenothiazines lowers the 

thermal stability. Further studies into the synthesis of phenothiazine derivatives 

with other acceptor units and their application for organic electronic devices are 

ongoing in our laboratory. 
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Chapter 6 

1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-

Diene-1,4-Diylidene-Expanded TCBD–Substituted BODIPY-

Phenothiazines: Tuning of HOMO−LUMO gap 

6.1. Introduction  

The development of synthetic supramolecular donor–acceptor (D–A) 

systems for mimicking the natural photosynthetic complexes, which harvests the 

solar light and convert it into storable chemical energy, have attracted the 

attention of researchers for the last couple of decades.[1-6] Photosynthetic energy 

conversion is a crucial and fundamental process, which is initiated by the 

absorption of light from antenna systems and transport it to the reaction center to 

promote light induced sequential electron transfer events.[7] In order to design the 

artificial supramolecular systems, significant efforts have been given to synthesize 

D–A molecular systems as their light harvesting properties could easily be tuned 

by varying the (i) D/A redox potentials, (ii) intramolecular distance, and (iii) 

nature of the linker. Our groups and others have explored a variety of D–A 

systems for light harvesting applications in recent years.[1–6,8] 

 Among the most commonly studied chromophores for artificial 

photosynthesis, 4,4-difluoroboradiaza-s-indacene (BODIPY) have been largely 

employed as a building block of donor-acceptor systems.[9, 10] BODIPYs reveal 

strong absorption with high molar extinction coefficient values, high fluorescence 

quantum yields along with tunable redox properties.[9a–c] The photonic properties 

of BODIPYs can be modified by the incorporation of appropriate donor/acceptor 

groups at the meso- and the pyrrolic positions (α and β positions).[11]  On the other 

hand, S and N containing heterocyclic phenothiazine moiety is known for its high 

thermal and chemical robustness.[12] Phenothiazines can easily be functionalized 

by electrophilic substitution reaction at the aromatic position, oxidation at sulfur 

and nucleophilic reaction at the N position.[13] Furthermore, phenothiazine 

possesses low oxidation potential which make them useful electron donor 

chromophores in organic photonic materials.[14] In contrast, the cyano-based 



 
 

110 
 

1,1,2,2-tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane 

(TCNQ) are known as the most commonly used strong acceptors.[15] They react 

with the electron rich alkynes easily via [2+2] cycloaddition–electrocyclic ring-

opening reaction.[15] The resulted 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and 

cyclohexa-2,5-diene-1,4-ylidene-expanded TCBD (abbreviated as DCNQ = 

dicyanodiquinodimethane) substituted D–A systems show broad absorption along 

with strong intramolecular charge transfer (ICT) transitions, properties relevant in 

optoelectronic applications.[8,16]  

Diederich et al. have investigated a large array of TCBD and DCNQ 

derivatives and studied their photophysical and electrochemical properties.[17] 

Michinobu et al. have explored a variety of TCBD and DCNQ substituted 

molecules for optoelectronic applications.[18] Our groups have reported a variety 

of acetylene linked chromophores which were subjected to [2+2] cycloaddition–

electrocyclic ring-opening reaction with TCBD and DCNQ and studied their 

photophysical and electrochemical properties for pertinent optoelectronic 

applications.[8,19]  

 Herein, in this chapter we wish to report the design and synthesis of 

phenothiazine-BODIPY based TCBD and cyclohexa-2,5- diene-1,4-ylidene-

expanded TCBD chromophores. We were interested to improve the photophysical 

properties of phenothiazine-BODIPY chromophore by incorporating TCNE and 

TCNQ acceptors in the molecular building block. We have also performed the 

theoretical calculations, in order to investigate the conformation and the photonic 

properties of the phenothiazines. 

6.2. Results and Discussion 

The synthetic route of phenothiazine-BODIPY derived donor-acceptors, 

1–3 is shown in Scheme 6.1. The phenothiazine-BODIPY 1 was synthesized via 

Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl phenothiazine 

(EPTZ) with Br-BODIPY in presence of THF in 70% yield. The Pd-catalyzed 

Sonogashira cross-coupling reaction of 3-bromo-10-propyl-10H-phenothiaizne 

with TMS acetylene in THF, followed by deprotection with NaOH and methanol, 

resulted in intermediate EPTZ.[11a] On the other hand, the condensation reaction 
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of 4-bromo-benzaldehyde and pyrrole followed by the oxidation with DDQ and 

complexation with BF3-etherate resulted in intermediate Br-BODIPY.[20] 

 

Scheme 6.1. Synthesis of phenothiazines 1, 2 and 3. 

 In order to investigate the photonic and electronic properties of strong 

electron acceptors on the phenothiazine-BODIPY 1, TCNE and TCNQ were 

incorporated in between phenothiazine and BODIPY. The [2+2] cycloaddition–

electrocyclic ring-opening reaction of 1 with TCNE at 83 ℃ for 24 h in 

dichloroethane resulted in compound 2 in 65% yield. The phenothiazine 1 

underwent similar transformation in presence of TCNQ acceptor at 83 ℃ for 5 

days in dichloroethane resulted in compound 3 in 60% yield. The donor-acceptor 

conjugates 1, 2 and 3 were soluble in common organic solvents, such as 

dichloroethane, dichloromethane, tetrahydrofuran and chloroform. All the 

compounds were fully characterized by using 1H and 13C NMR spectroscopy and 

HRMS techniques. 

6.3. Photophysical Properties 

The absorption spectrum of the studied compounds 1–3 were recorded in 

dichloromethane at room temperature (Figure 6.1) and the data are compiled in 
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Table 6.1. The phenothiazine-BODIPY molecules 1–3 showed strong absorption 

in the 410–550 nm region (with peak maxima at 503 nm for 1), and based on its 

similarity with other BODIPY compounds, this was attributed to the S0→S1 

(π→π*) transition.[9] In addition a weaker absorption band was observed in the 

range of 300–400 nm which could be due to the S0→S2 (π→π*) transition of 

BODIPY with contributions from phenothiazine entity. The TCBD incorporated 

derivative, 2 exhibited significant broadening in S0→S1 transition accompanied by 

a broad shoulder peak spanning 550–700 nm range.  This was also the trend in the 

DCNQ incorporated derivative, 3 that showed broadening of the S0→S1 peak with 

a new broad peak covering the 550–900 nm range. The new broad peak observed 

in the case of 2 and 3 has been attributed to intramolecular charge transfer (ICT) 

resulting from strong D–A interactions, viz., TCBD and DCNQ interacting with 

spatially close phenothiazine and BODIPY entities.  

 

Figure 6.1. The electronic absorption spectra of phenothiazines 1, 2 and 3 in 

dichloromethane (1 ×10-5 M). 

The optical band gap of phenothiazines 1, 2 and 3 follow the order 1>2>3. 

The trend in the optical band gap signifies that the influence of cyclohexa–2,5–

diene–1,4–ylidene–expanded TCBD on phenothiazine-BODIPY molecule leading 

to strong CT absorption and low optical band gap. 
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Table 6.1. Photophysical and theoretical properties of phenothiazines 1–3. 

Phenothiazines Photophysical dataa Theoretical datac 

abs (nm)  

( M−1 cm−1) 

Optical 

Band Gap 

(eV)b 

HOMO-LUMO 

energy gap (eV) 

1 503 

357 

146768 

69621 

2.22 2.3 

2 510 

344 

100043 

70532 

1.71 2.11 

3 666 

509 

356 

147951 

59089 

37034 

1.42 1.63 

a Absorbance measured in dichloromethane at 110−5 M concentration; abs: absorption wavelength; : 

extinction coefficient. b determined from onset wavelength of the UV/Vis absorption; cobtained from density 

functional theory calculations at B3LYP/6-31+G** level.  

 

6.4. Theoretical Calculations 

The density functional theory calculation was performed on 

phenothiazines 1–3 to explore the structure and electronic properties at B3LYP/6-

31+G** level for B, C, F, H, N, O and S.[21] The energy diagram of the 

phenothiazines 1–3 is shown in Figure 6.2. The optimized structure of the 

phenothiazines showed nonplanar twisted geometry Figure 6.3. The HOMO 

energy levels of the phenothiazines 1–3 are mainly localized on the phenothiazine 

donor moiety. The LUMO energy level of compound 1 is localized on the 

BODIPY moiety. In case of compounds 2 and 3 the LUMO energy levels are 

mainly localized on the TCBD and cyclohexa–2,5–diene–1,4–ylidene–expanded 

TCBD acceptors. The theoretically calculated HOMO energy levels for 

phenothiazines 1, 2 and 3 are –5.08, –5.69 and –5.59 eV, respectively whereas the 

LUMO energy levels are –2.78, –3.58 and –3.96 eV, respectively. 
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Figure 6.2. Energy diagram showing the HOMO and LUMO wave functions and 

energies of phenothiazines 1–3 as determined at B3LYP/6-31G** level. 
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Figure 6.3. Theoretically optimized structures of phenothiazines 1–3 by 

B3LYP/6-31+G** basis set. 

6.5. Experimental Section  

General Methods. Chemicals were used as received unless otherwise indicated. 

All the oxygen or moisture sensitive reactions were carried out under argon 

atmosphere. 1H NMR spectra were recorded using a 400 MHz spectrometer. 

Chemical shifts are reported in delta (δ) units, expressed in parts per million 

(ppm) downfield from tetramethylsilane (TMS) using residual protonated solvent 

as an internal standard CDCl3, 7.26 ppm. 13C NMR spectra were recorded using 

a 400 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed 

in parts per million (ppm) downfield from tetramethylsilane (TMS) using the 

solvent as internal standard CDCl3, 77.0 ppm. The 1H NMR splitting patterns 

have been described as “s, singlet; d, doublet; t, triplet and m, multiplet”.  

 

Synthesis of compound 1.  

In a 100 mL round bottomed flask Br-BODIPY (88.14 mg, 0.39 mmol) 

and 3-ethynyl-10-propyl-10H-phenothiazine EPTZ (100 mg, 0.39 mmol) were 

dissolved in THF–triethylamine (4 : 1, v/v; 5 ml). The reaction mixture was 

purged with argon, and Pd(PPh3)2Cl2 (13.68 mg, 5 mol%), and CuI (3.6 mg, 5 

mol%) were added. The reaction mixture was stirred at 70 °C for 4 h. Upon the 

completion of the reaction, the mixture was evaporated and purified by silica gel 

column chromatography with hexane/CH2Cl2 (3:7) to get the desired compound 1 

as a dark colored solid. (Yield: 140.0 mg, 70%). 1H NMR (400 MHz, CDCl3): δ = 

7.95 (s, 2H), 7.64 (d, J = 6.6, 2H), 7.55 (d, J = 6.6, 2H), 7.35–7.31 (m, 2H), 7.17–

7.11 (m, 2H), 6.95–6.92 (m, 3H), 6.87 (d, J = 6.4, 1H), 6.81 (d, J = 6.84, 1H), 

6.56 (d, J = 4.4, 2H), 3.83 (t, J = 5.76, 2H), 1.88–1.80 (m, 2H), 1.02 (t, J =5.88, 

3H); 13C NMR (100 MHz, CDCl3): δ = 146.6, 145.9, 144.5, 144.2, 134.7, 133.2, 

131.4, 130.9, 130.6, 130.3, 127.5, 127.4, 126.5, 125.0, 124.1, 122.9, 118.6, 116.3, 

115.6, 115.1, 92.0, 88.3, 49.4, 20.1, 11.3; HRMS (ESI-TOF): m/z calculated for 

C32H24BF2N3S= 532.183 [M+H]+, measured 532.1764 [M+H]+. 
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Synthesis of compound 2.  

Tetracyanoethylene (TCNE) (19.2 mg, 0.15 mmol) was added to a 

solution of compound 1 (98.6 mg, 0.15 mmol) in C2H4Cl2 (50 mL). The mixture 

was refluxed for 83 °C for 24 h. After the completion of the reaction the solvent 

was removed in vacuum, and the product was purified by column chromatography 

with CH2Cl2 as the eluent to yield compound 2 as a dark violet colored solid. 

(Yield: 80.0 mg, 65%); 1H NMR (400 MHz, CDCl3): δ = 7.98 (m, 2H), 7.83 (d, J 

= 8.5, 2H), 7.74 (d, J = 8.3, 2H), 7.43 (s, 1H), 7.21–7.18 (m, 1H), 7.10–-7.00 (m, 

2H), 6.93–6.84 (m, 4H), 6.58 (d, J = 2.76, 2H), 3.88 (t, J = 7.28, 2H), 1.92–1.83 

(m, 2H), 1.06 (t, J = 7.28, 3H); 13C NMR (100 MHz, CDCl3): δ = 151.6, 148.1, 

145.5, 143.7, 141.7, 139.5, 134.4, 133.1, 131.6, 130.5, 129.3, 128.1, 127.7, 127.5, 

125.9, 124.8, 123.8, 119.3, 116.3, 115.2, 50.1, 20.0, 11.1; HRMS (ESI-TOF): m/z 

calculated for C32H24BF2N3S = 659.1876 [M]+, measured 659.1881 [M]+. 

Synthesis of compound 3. 

Tetracyanoquinodimethane (TCNQ; 44.9 mg, 0.22 mmol) was added to a 

solution of compound 1 (98.8 mg, 0.22 mmol) in C2H4Cl2 (50 mL). The mixture 

was refluxed for 83 °C for 5 days. After the completion of the reaction the solvent 

was removed in vacuum, and the product was purified by column chromatography 

with CH2Cl2 as the eluent to give compound 3 as a dark-brown solid (Yield: 82.0 

mg, 60%); 1H NMR (400 MHz, CDCl3): δ = 7.96 (s, 2H), 7.77 (d, J = 7.76, 2H), 

7.67 (d, J = 7.76, 2H), 7.48 (d, J = 9.52, 1H), 7.35–7.29 (m, 2H), 7.20–7.15 (m, 

2H), 7.08 (t, J = 7.56, 2H), 7.01–6.98 (m, 2H), 6.87 (t, J = 6.52, 2H), 6.81 (s, 2H), 

6.55 (s, 2H), 3.84 (t, J = 6.52, 2H), 1.88–1.83 (m, 2H), 1.03 (t, J = 7.04, 3H); 13C 

NMR (100 MHz, CDCl3): δ = 169.8, 153.6, 148.9, 147.8, 145.3, 143.9, 142.7, 

138.7, 135.7, 135.6, 134.6, 134.4, 133.9, 133.5, 131.7, 131.5, 131.3, 129.4, 129.2, 

128.3, 127.9, 127.6, 126.7, 125.9, 124.0, 122.7, 119.2, 116.1, 115.4, 113.5, 112.3, 

111.9, 88.8, 49.8, 20.0, 11.2; HRMS (ESI-TOF): m/z calculated for 

C32H24BF2N3S = 735.219 [M]+, measured 735.2192 [M]+. 
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6.6. Conclusions 

In summary, BODIPY-phenothiazine, 1 was synthesized via Pd-catalyzed 

Sonogashira cross coupling reaction. Subsequently, the TCBD and DCNQ 

substituted molecules, 2 and 3 were synthesized by [2+2] cycloaddition–

electrocyclic ring-opening reactions of compound 1 with TCNE and TCNQ, 

respectively. The photophysical data showed that the incorporation of TCBD and 

DCNQ acceptors in the BODIPY substituted phenothiazines resulted in strong D–

A interactions which led to low HOMO–LUMO band gap in compounds 2 and 3 

as compared to 1. The UV-vis absorption spectra of compounds 2 and 3 showed 

ICT transitions along with significant broadening in S0→S1 transition. The 

theoretical calculations of compounds 1–3 revealed that the DCNQ substituted 3 

stabilized the LUMO energy level to greater extent as compared to TCBD 

substituted phenothiazine 2. This work provides a strategy for the design and 

synthesis of D–A based chromophores with low HOMO–LUMO gap for various 

optoelectronic applications. 
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Chapter 7 

Donor˗Acceptor based 1,8-Naphthalimide Substituted 

Phenothiazines: Tuning of HOMO˗LUMO gap 

7.1. Introduction  

Organic π-conjugated frameworks containing heteroatoms such as sulfur 

(S) and nitrogen (N) are of great interest of researchers in the view of their 

potential applications in the field of organic photonics and electronics.[1] The 

incorporation of heteroatom-based moieties such as phenothiazine, thiazole, 

benzothiazole, benzothiadiazole etc. in donor–acceptor (D–A) chromophores have 

received substantial attention in the field of nonlinear optics (NLO), organic light-

emitting diodes (OLEDs), organic photovoltaics (OPVs), etc.[2] In order to fine 

tune the HOMO/LUMO energy levels, D–A based chromophores can be utilized 

by; (a) changing the donor or acceptor strength or (b) incorporation of different π-

linkers.[3] Therefore, our group is interested to design and synthesize push-pull 

based chromophores by modulating the donor and acceptor moieties for the 

application in optoelectronics.[13d-h] 

Phenothiazine has attracted the attention of researchers due to its well-

conjugated heterocyclic ring system.[4] Phenothiazine acts as a strong donor due 

to its electron rich nitrogen and sulphur atom.[5] It possesses unique electronic and 

optical properties.[6] The easy functionalization of phenothiazine chromophores 

and their higher chemical and thermal stability makes them an excellent 

prerequisite for optoelectronic applications.[7] On the other hand, the 1,8-

naphthalimide (NPI) is electron deficient fluorophore which acts as a strong 

acceptor.[8] NPI exhibits high thermal and chemical stability, strong fluorescence 

quantum yield, good photostability and have been explored in the field of 

fluorescent dyes, laser dyes, metal sensors, pH sensors, bioimaging, 

optoelectronic materials and many more.[9] We were interested to investigate the 

effect of the different donors such as phenothiazine, carbazole, ferrocene, 
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triphenylamine on the photophysical and electrochemical properties of NPI 

substituted phenothiazines (Figure 1). The electron rich molecules carbazole, 

ferrocene and TPA act as strong donors.[10] Furthermore, cyano-based 

tetracyanoethylene (TCNE) acceptor was incorporated in the donor substituted 

NPI-phenothiazines.[11] The TCNE acts as a strong acceptor which shows high 

chemical reactivity towards electron-rich reagents is frequently used to introduce 

strong acceptor moieties into organic molecules.[12] TCNE reacts with the organo-

donor-activated electron rich alkynes via [2+2] cycloaddition followed by 

electrocyclic ring-opening reaction to give 1,1,4,4-tetracyanobuta-1,3-diene 

(TCBD) substituted donor-acceptor molecular systems.[11, 12] Our group has 

reported a wide variety of π-linked donor–acceptor-based chromophores as well 

as TCBD-substituted chromophores for optoelectronic properties.[13] 

Herein in this chapter we wish to report the design and synthesis of D–π–

D–π–A, D–π–D–π–A, D–A–D–π–A and D–A–D–π–A type of phenothiazine 

based molecular systems. In this work, our main objective was to modulate the 

photophysical and electrochemical properties of the donor–acceptor systems. We 

have also done comparative studies by varying different donors in the 

phenothiazine derivatives. In addition, we have explored the theoretical 

calculation to study the conformation and electronic properties of the 

phenothiazine derivatives. 

7.2. Results and Discussion 

Synthesis. The chromophores 8, 9, 10 and 11 were synthesized by Sonogashira 

cross-coupling reactions of PTZ-NPI precursor 3 with different ethynyl 

substituted donors. The PTZ-NPI precursor 3 was synthesized via Sonogashira 

cross-coupling reaction of 3,7-dibromo-10-propylphenothiazine and 4-ethynyl-

1,8-naphthalimide in 80% yield (Scheme 7.1). The Pd-catalysed Sonogashira 

cross-coupling reactions of precursor 3 with the intermediates ethynyl 

phenothiazine (4), ethynyl carbazole (5), ethynyl ferrocene (6) and ethynyl TPA 

(7) at 60 ℃ for 16 h gave 8, 9, 10 and 11 in 78%, 75%, 65% and 64% yield, 

respectively (Scheme 7.2). The intermediates 4–7 were synthesized by the 

literature procedures. 
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Scheme 7.1. Synthetic route of compound 3. 

 

Scheme 7.2. Synthetic route of compounds 8–11. 

               In order to tune the HOMO−LUMO gap of the donor substituted PTZ-

NPI based compounds 8–11, TCBD acceptor introduced to obtain compounds 

12 − 15 (Scheme 7.3). Compounds 8 and 9 undergo [2+2] cycloaddition–

electrocyclic ring-opening reaction in presence of TCNE, using dichloroethane 

(DCE) as solvent, at reflux condition within 24 h to give TCBD substituted 

compounds 12 and 13 in 69% and 72% yield, respectively. Compound 10 

underwent similar kind of conversion with TCNE in DCE within 24 h and gave 

compound 14 in 60% yield. The reaction of compound 11 with TCNE at similar 

condition within 24 h resulted in compound 15 which gave 57% yield. 
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Scheme 7.3. Synthetic route of compounds 12−15. 

The PTZ-NPI based push-pull chromophores 3 and 8–15 are soluble in 

common organic solvents, such as dichloromethane, chloroform, tetrahydrofuran, 

and were well characterized by using 1H and 13C NMR spectroscopy and HRMS 

techniques. The compound 3 was characterized by single-crystal X-ray 

crystallography. 

 

Crystal.  The single crystals of the intermediate 3 was obtained by the slow 

diffusion of a mixture of dichloromethane and hexane solution (2:1) at room 

temperature. The molecule crystallizes in triclinic Pī form. The front view and 

side view of the crystal structures are shown in Figure 7.1. The data refinement 

parameters Table 7.1. The intermediate 3 show butterfly like structure. The 

dihedral angle between the NPI and phenothiazine units in intermediate 3 is 22.2°. 

 

 

(a)                                               (b) 

Figure 7.1. Crystal structures of compound 3: (i) front view, (ii) side view. 
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Table 7.1. Crystal structure data and refinement parameters.  

Compound 3 

Empirical formula C33 H27 Br N2 O2 S 

Formula weight 595.53 

Temperature/K 293(2) K 

Wavelength/Å 0.71073 A 

Crystal system Triclinic 

Space group                                     Pī 

a/Å    8.2382(9) 

α/° 90.811(7) 

b/Å                                                   8.5477(7) 

β/° 97.894(8) 

c/Å                                                   21.8887(18) 

γ/° 115.390(10) 

Volume Å3                                       1374.7(2) 

Z, Calculated density Mg/m3            2,  1.439 

Absorption coefficient mm-1             1.605 

F(000)                                                612 

Crystal size/mm                                 0.330 x 0.260 x 

0.210 

θ range for data collection/°              2.882 to 32.236 

Reflections collected/unique             18426 / 8921 [R(int) 

= 0.0805] 

Completeness to θ                              99.8 % 

Absorption correction                      Semi-empirical from 

equivalents 

Max. and min. transmission            1.00000 and 

0.31585 

Refinement method                      Full-matrix least-

squares on F^2 

Data / restraints / parameters           8921 / 0 / 355 

Goodness-of-fit on F^2                    0.905 

Final R indices [I>2sigma(I)]           R1 = 0.0665,  

wR2 = 0.1452 

R indices (all data)                            R1 = 0.2046, wR2 = 

0.2061 

Largest diff. peak and hole/e Å-3 0.470 and -0.561 
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7.3. Photophysical Properties 

The electronic absorption spectra of the compounds 8–11 and their TCBD 

conjugates 12−15 were recorded in dichloromethane at room temperature (Figure 

7.2 and Figure 7.3), and the data are collected in Table 7.2. 

The compounds 8, 9, 10 and 11 showed two absorption bands in the UV-

Vis region. They exhibited intermolecular charge transfer band (ICT) with lower 

intensity at 445, 445, 448 and 446 nm, respectively which could be attributed to 

the donor–acceptor interactions. On the other hand, higher intensity π–π* 

transitions were observed at 372, 341, 352 and 352 nm for the compounds 8, 9, 10 

and 11, respectively, which may be due to the presence of phenothiazine, 

carbazole, ferrocene, and triphenylamine donors. 

 

Figure 7.2. The electronic absorption spectra of phenothiazines 8–11 in 

dichloromethane (1 X 10–5 M). 
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Figure 7.3. The electronic absorption spectra of phenothiazines 12–15 in 

dichloromethane (1 X 10–5 M). 

The TCBD derivatives 12−15 resulted in red shifted absorption spectrum 

as compared to 8–11, respectively. The compounds 12, 13, 14 and 15 showed ICT 

transition at 554, 548 nm, 539 nm and 495 nm respectively. Along with the ICT 

transition all the TCBD substituted 12−15 showed a shoulder bands in the range 

of 375−475 nm which may be due to the presence of two different donor moieties 

in the molecules. The introduction of different donors such as phenothiazine, 

carbazole, ferrocene and TPA in 8–11 resulted in almost similar absorption bands 

which implies that changing the donor strength do not have much effect on the 

absorption properties. Conversely, the incorporation of the TCBD acceptors in 

12−15 resulted in strong donor–acceptor interaction which leads to red shifted 

absorption spectra and low HOMO−LUMO gap. The trend in the optical band gap 

follows the order 9 > 10 > 11 > 8 >15 > 14 > 12 > 13. The result was further 

explained by TD-DFT calculation in dichloromethane phase. 
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Table 7.2. Photophysical properties of compounds 8–15 in dichloromethane. 

Phenothiazines Photophysical dataa Theoretical 

data 

Electrochemical 

datad 

abs 

(nm) 

 

(M−1 

cm−1) 

Optical 

Band 

Gap 

(eV)b 

HOMO-

LUMO 

energy gap 

(eV) c 

Eox(V) Ered(V) 

8 445 

372 

298 

43196 

69446 

95876 

 

2.21 2.4 0.76 

0.9 

 

–1.26 

9 445 

341 

293 

23167 

44986 

55613 

 

2.3 2.55 0.85 

1.03 

–1.27 

10 448 

352 

301 

34877 

49035 

64281 

 

2.18 2.5 0.61 

0.95 

–1.26 

11 446 

352 

302 

27703 

64521 

53440 

 

2.2 2.34 0.79 

1.03 

–1.28 

12 554 

424 

306 

44144 

41748 

72173 

 

1.7 2.32 1.01 –0.45 

–0.77 

–1.27 

13 548 

423 

291 

22555 

37001 

77416 

 

1.69 2.22 1.07 

1.33 

–0.36 

–0.73 

–1.26 
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14 539 

421 

306 

18651 

34325 

50136 

 

1.76 2.56 0.92 

1.04 

–0.57 

–0.84 

–1.26 

15 495 

428 

303 

65592 

62616 

70507 

1.77 2.4 1.07 

1.28 

–0.47 

–0.77 

–1.26 

a Absorbance measured in dichloromethane at 110−5 M concentration; abs: absorption wavelength; : 

extinction coefficient. b determined from onset wavelength of the UV/Vis absorption; cobtained from density 

functional theory calculations at B3LYP/6-31+G** level; d recorded by cyclic voltammetry, in 0.1 M solution 

of TBAPF6 in DCM at 100 mV s−1 scan rate versus SCE electrode.  

7.4. Electrochemical Properties 

The electrochemical properties of compounds 8–11 and their TCBD 

conjugates 12−15 were explored by cyclic voltammetry (CV) in dry 

dichloromethane (DCM) solution at room temperature using tetrabutylammonium 

hexafluorophosphate (TBAPF6) as a supporting electrolyte. The electrochemical 

data are compiled in Table 7.2, and the CV plots are shown in Figure 7.4 and 

Figure 7.5. 

 In general, the phenothiazine moiety shows one reversible oxidation wave 

and the NPI moiety shows one reversible reduction wave. The compounds 8–15 

showed two oxidation waves due to the presence of two donor units in the 

molecules. 

 The compounds 8, 9, 10 and 11 showed two reversible oxidation 

potentials at +0.76, +0.9 V; +0.85, +1.03 V; +0.61, +0.95 V; and +0.79, +1.03 V, 

respectively. The first oxidation potentials of the 8–11 could be attributed to the 

terminal donor moieties such as, phenothiazine, carbazole, ferrocene, and TPA, 

respectively, whereas the second oxidation potentials could be due to the central 

phenothiazine moieties. On the other hand, compounds 8, 9, 10 and 11 exhibited 

reversible one electron reduction wave at –1.26, –1.27, –1.26 and –1.28 V, which 

could be attributed to the NPI moieties.  
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Figure 7.4. Cyclic voltammograms of phenothiazines 8–11 (0.01 M) in 

dichloromethane with 0.1 M TBAPF6 at a scan rate of 100 mVs–1 versus a 

standard calomel electrode (SCE) at 25 ℃. 
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Figure 7.5. Cyclic voltammograms of phenothiazines 12–15 (0.01 M) in 

dichloromethane with 0.1 M TBAPF6 at a scan rate of 100 mVs–1 versus a 

standard calomel electrode (SCE) at 25 ℃. 
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In case of TCBD substituted phenothiazines 13, 14 and 15, two oxidation 

waves were observed at +1.07, +1.33 V; +0.92, +1.04 V; and +1.07, +1.28 V, 

respectively, in which the first oxidation potentials could be due to the carbazole, 

ferrocene, and TPA moieties, respectively and the second oxidation potentials 

could be due to the central phenothiazine moieties. Compound 12 exhibited one 

reversible oxidation potential which could be to the simultaneous reversible 

oxidation potentials of the two phenothiazine donor moieties. The compounds 

12−15 showed three reduction waves. The first and second reduction potentials of 

compounds 12, 13, 14 and 15 were observed at –0.45, –0.77 V; –0.36, –0.73 V; –

0.57, –0.84 V; and –0.47, –0.77 V respectively, which may be due to the TCBD 

acceptors, whereas the third reduction potentials were observed at ~1.26 V for all 

the molecules due to the NPI moieties. The data showed that the TCBD 

substituted compounds 12−15 showed low first reduction potential values as 

compared to compounds 8–11 which reveals that the incorporation of TCBD 

acceptor in the former stabilized the LUMO energy level of the compounds 

12−15 to greater extent resulting in a much lower HOMO−LUMO gap.  The 

HOMO/LUMO energy levels calculated from the onset values of  compounds 8, 

9, 10, 11, 12, 13, 14 and 15 are as follows, –5.03/–3.29, –5.11/–3.29, –4.88/–3.3, 

–5.1/–3.28, –5.31/–4.11, –5.37/–4.18, –5.23/–3.97, –5.36/–4.07, respectively. 

7.5. Theoretical Calculations 

In order to explore the electronic structure and geometry of compounds 8–

15, density functional theory calculations were performed B3LYP/6-31+G** 

level for C, H, N, O, Fe and S.[14] The optimised structure of compounds 8–15 

showed nonplanar orientation with twisted geometry. The HOMO energy levels 

are mainly localized on the stronger donor moieties and the LUMO energy levels 

are localized on the stronger acceptor moieties. The data reveals that the 

incorporation of TCBD moiety in compounds 12–15 leads to a strong donor-

acceptor interaction. The energy level diagram are shown in Figure 7.6. 

In case of donor substituted PTZ-NPIs the HOMO–LUMO energy levels 

are localized as follows: (a) The HOMO of the phenothiazine substituted PTZ-
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NPI (8) is localized on both the phenothiazine moieties. (b) Similarly, in case of 

carbazole substituted PTZ-NPI (9) the HOMO is distributed on the carbazole and 

phenothiazine moieties. (c) The HOMO of ferrocene substituted PTZ-NPI (10) is 

localized on both the ferrocene and phenothiazine moiety whereas for TPA 

substituted PTZ-NPI (11) the HOMO is localized on both the TPA and 

phenothiazine moiety. (d) In 8–11, the LUMO energy levels of 8–11 are mainly 

localized on the NPI moiety and partially localized on the phenothiazine moiety.  

 

Figure 7.6. Energy diagram showing the HOMO and LUMO wave functions and 

energies of phenothiazines 8–15 as determined at B3LYP/6-31G** level. 

On the other hand, the HOMOs of the TCBD substituted compounds 12–

15 are mainly localized on the phenothiazine moieties whereas the LUMOs are 

localized on the TCBD moieties which resulted in a strong donor-acceptor 

interaction. The theoretically calculated HOMO energy levels of compounds 8, 9, 

10, 11, 12, 13, 14 and 15 are –4.92 eV, –5.11 eV, –5.02 eV, –4.85 eV, –5.58 eV, –

5.67 eV, –5.64 eV and –5.56 eV whereas the LUMO energy levels are –2.52 eV, 

–2.56 eV, –2.52 eV, –2.51 eV, –3.26 eV, –3.45 eV, –3.08 eV and –3.16 eV. The 
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data reveals that the LUMO energy levels of the TCBD substituted compounds 

12–15 are much more stabilized as compared to the compounds 8–11. 

Table 7.3. Calculated electronic transition of compounds 8–15. 

Compou

nds 

Wavelength Composition 

 

fa Assignme

nt 

8 413 

321 

274 

HOMO→LUMO (0.49) 

HOMO–2→LUMO (0.33) 

HOMO–3→LUMO+1 (0.28) 

1.62 

0.73 

0.53 

ICT 

π–π* 

π–π* 

9 411 

315 

276 

HOMO→LUMO (0.53) 

HOMO–3→LUMO (0.38) 

HOMO–5→LUMO (0.35) 

1.61 

0.74 

0.28 

ICT 

π–π* 

π–π* 

10 411 

312 

277 

HOMO→LUMO (0.55) 

HOMO→LUMO (0.35) 

HOMO–1→LUMO+1 (0.27) 

1.40 

0.22 

0.51 

ICT 

π–π* 

π–π* 

11 414 

325 

274 

HOMO→LUMO (0.43) 

HOMO–2→LUMO (0.38) 

HOMO–2→LUMO+2 (0.23) 

1.66 

0.89 

0.34 

ICT 

π–π* 

π–π* 

12 481 

394 

274 

HOMO→LUMO (0.61) 

HOMO→LUMO+1 (0.57) 

HOMO→LUMO+7 (0.23) 

0.75 

0.77 

0.25 

ICT 

π–π* 

π–π* 

13 489 

399 

283 

HOMO–1→LUMO (0.63) 

HOMO→LUMO+1 (0.59) 

HOMO–4→LUMO+1 (0.4) 

0.66 

0.72 

0.16 

ICT 

π–π* 

π–π* 

14 455 

379 

304 

HOMO→LUMO (0.64) 

HOMO→LUMO+2 (0.46) 

HOMO–5→LUMO+1 (0.52) 

1.03 

0.66 

0.26 

ICT 

π–π* 

π–π* 

15 473 

390 

269 

HOMO→LUMO (0.59) 

HOMO→LUMO+1 (0.57) 

HOMO→LUMO+3 (0.37) 

0.87 

0.77 

0.28` 

ICT 

π–π* 

π–π* 
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       fa oscillator strength 

The TD-DFT calculations were performed at the CAM-B3LYP/6-31G (d, 

p) level for the optimization of compounds 8–15 in dichloromethane to evaluate 

the absorption properties. The transitions with composition, oscillator strengths, 

and assignments are as shown in Table 2. The molecular orbital diagrams are 

shown in Table S1–S3. The TD-DFT calculation showed three absorption bands 

for all the molecules. The compounds 8, 9, 10, 11, 12, 13, 14 and 15 showed 

absorption band at 413, 411, 411, 414, 481, 489, 455 and 473 nm respectively 

which could be attributed to the ICT transitions, where the absorption bands at the 

shorter wavelengths may be due to the π–π* transitions. The ICT transitions occur 

form HOMO→LUMO for all the molecules. The TD-DFT calculation showed 

that the TCBD substituted compounds 12–15 are red shifted as compared to 

compounds 8–11. The theoretical electronic absorption wavelengths were found 

to be lower than those of experimental values which might be due to various 

factors, e.g. solvent effect, dipole moment and temperature. 

7.6. Experimental Section  

General Methods. Chemicals were used as received unless otherwise indicated. 

All the oxygen or moisture sensitive reactions were carried out under argon 

atmosphere. 1H NMR spectra were recorded using a 400 MHz spectrometer. 

Chemical shifts are reported in delta (δ) units, expressed in parts per million 

(ppm) downfield from tetramethylsilane (TMS) using residual protonated solvent 

as an internal standard CDCl3, 7.26 ppm. 13C NMR spectra were recorded using 

a 100 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed 

in parts per million (ppm) downfield from tetramethylsilane (TMS) using the 

solvent as internal standard CDCl3, 77.0 ppm. The 1H NMR splitting patterns 

have been described as “s, singlet; d, doublet; t, triplet and m, multiplet”. UV/Vis 

spectrums of all compounds were recorded in dichloromethane solution. Cyclic 

voltammograms were recorded on electrochemical analyzer using Glassy carbon 

as working electrode, Pt wire as the counter electrode, and Saturated Calomel 

Electrode (SCE) as the reference electrode. The scan rate was 100mVs-1 for 



 
 

142 
 

Cyclic Voltammetry. A solution of tetrabutylammonium hexafluorophosphate 

(TBAPF6) in CH2Cl2 (0.1M) was used as supporting electrolyte.  

 

Crystallographic data 

A single crystal X-ray structural study of compound 3 was performed on a 

CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. 

Data were collected at 150(2) K using graphitemonochromated Mo Kα radiation 

(λα = 0.71073 Å). The strategy for the Data collection was evaluated by using the 

CrysAlisPro CCD software. The data were collected by the standard 'phi-omega 

scan techniques, and were scaled and reduced using CrysAlisPro RED software. 

The structures were solved by direct methods using SHELXS-97, and refined by 

full matrix least-squares with SHELXL-97, refining on F2. The positions of all 

the atoms were obtained by direct methods. All non-hydrogen atoms were refined 

anisotropically. The remaining hydrogen atoms were placed in geometrically 

constrained positions, and refined with isotropic temperature factors, generally 

1.2Ueq of their parent atoms. The CCDC number 1997741 contain the 

supplementary crystallographic data for 3. These data can be obtained free of 

charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data 

Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or 

deposit@ccdc.cam.ac.uk). 

 

Generalized Synthetic Procedure for the Compounds 8–11:  

The intermediate phenothiazine-NPI 3 (100 mg, 0.22 mmol) and the 

corresponding alkynes (mg, 0.22 mmol) were dissolved in a mixture of of dry 

THF (20 mL) and triethylamine (5 mL). The reaction mixture was purged with 

argon, followed by the addition of Pd(PPh3)2Cl2 (15 mg, 5 mol %), and CuI (8.3 

mg, 10 mol %). The reaction mixture was stirred at 60 ℃ for 12 h. After the 

completion of the reaction the solvent was removed in a vacuum, and the products 

were purified by column chromatography with n-hexane/CH2Cl2 (3:7) as the 

eluent by column chromatography on silica gel.  

 

mailto:deposit@ccdc.cam.ac.uk
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Characterization Data:  

Compound 8: Orangish Red Solid, Yield: 103.0 mg, 78%. 1H NMR (400 MHz, 

CDCl3): δ = 8.70 (1H, J=8.28, d), 8.64 (1H, J=7.04, d), 8.54 (1H, J=7.56, d), 7.90 

(1H, J=7.52, d), 7.83 (1H, J=7.8, t), 7.43 (1H, J=8.56, d), 7.39 (1H, s), 7.29-7.24 

(4H, m), 7.16-7.10 (2H, m), 6.93-6.89 (1H, m), 6.85-6.76 (4H, m), 4.18 (2H, 

J=7.52, d), 3.86-3.79 (4H, m), 1.88-1.80 (4H, m), 1.72-1.68 (2H, m), 1.50-1.42 

(2H, m), 1.06-0.96 (9H, m); 13C NMR (100 MHz, CDCl3): δ = 164.0,163.8, 

145.7,145.2, 144.6, 143.9, 132.4, 131.5, 131.5,131.4, 131.3, 130.7, 130.6, 130.4, 

130.3, 130.1, 130.0, 128.1, 127.7, 127.4, 127.3, 127.2, 124.8, 124.4, 124.2, 123.8, 

122.9, 122.7, 121.8, 118.0, 116.9, 116.1, 115.5, 115.3, 115.2, 115.0, 98.8, 89.1, 

88.2, 86.6, 49.5, 49.3, 40.3, 30.2, 20.4, 20.1, 20.0, 13.8, 11.3, 11.2; LCMS (ESI-

TOF): m/z calculated for C53H39N3O2S= 781.2758 [M]+, measured 781.2490 

[M]+. 

Compound 9: Orangish Red Solid, Yield: 98.0 mg, 75%. 1H NMR (400 MHz, 

CDCl3): δ = 8.68 (d, J=8.28, 1H), 8.62 (d, J=7.04, 1H), 8.53 (d, J=7.52, 1H), 8.14 

(d, J=7.52, 2H), 7.89 (d, J=7.52, 1H), 7.81 (t, J=7.8, 1H), 7.73 (d, J=8.04, 2H), 

7.56 (d, J=8.28, 2H), 7.45-7.25 (m, 9H), 6.85 (t, J=8.04, 2H), 4.18 (t, J=7.28, 2H), 

3.86 (t, J=7.0, 2H), 1.91-1.86 (m, 2H), 1.73-1.71 (m, 2H), 1.51-1.43 (m, 2H), 

1.08-0.97 (m, 6H); 13C NMR (100 MHz, CDCl3): δ = 163.9, 163.7, 145.5, 144.4, 

140.5, 137.4, 132.9, 132.3, 131.5, 131.4, 131.0, 130.4, 130.2, 128.0, 127.6, 127.3, 

126.8, 126.0, 124.3, 123.9, 123.5, 122.9, 122.2, 121.8, 120.3, 120.2, 117.5, 116.2, 

115.3, 115.2, 109.7, 98.7, 89.5, 88.9, 86.7, 49.5, 40.3, 30.2, 20.4, 19.9, 13.8, 11.2; 

LCMS (ESI-TOF): m/z calculated for C50H41N3O2S2= 779.2635 [M]+, measured 

779.2803 [M]+. 

Compound 10: Orangish Red Solid, Yield: 80.0 mg, 65%. 1H NMR (400 MHz, 

CDCl3): δ = 8.70 (d, J=8.0, 1H), 8.64 (d, J=7.04, 1H), 8.54 (d, J=7.56, 1H), 7.90 

(d, J=7.76, 1H), 7.83 (t, J=7.8, 1H), 7.70 (t, J=5.76, 1H), 7.44 (d, J=7.0, 1H), 7.39 

(s, 1H), 7.28-7.24 (m, 1H), 6.85 (d, J=7.92, 1H), 6.79 (d, J=8.52, 1H), 4.47 (s, 

2H), 4.23 (s, 6H), 4.18 (t, J=7.56, 2H), 3.84 (t, J=7.04, 2H), 1.88-1.82 (m, 2H), 

1.76-1.69 (m, 2H), 1.48-1.42 (m, 2H), 1.04 (t, J=7.28, 3H), 0.98 (t, J=7.28, 3H); 
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13C NMR (100 MHz, CDCl3): δ = 164.0, 163.7, 145.8, 143.6, 135.2, 132.3, 131.5, 

131.3, 130.6, 130.4, 130.0, 128.0, 127.3, 124.5, 123.8, 122.9, 121.8, 118.5, 116.0, 

115.3, 115.2, 98.8, 88.5, 86.6, 84.7, 71.3, 69.9, 68.8, 65.3, 49.5, 40.3, 30.2, 

20.4,19.9, 13.8,11.2; HRMS (ESI-TOF): m/z calculated for C45H36FeN2O2S= 

724.1842 [M]+, measured 724.1948 [M]+ 

Compound 11: Orangish Red Solid, Yield: 85.0 mg, 64%. 1H NMR (400 MHz, 

CDCl3): δ = 7.59 (1H, d, J =7.28 Hz), 7.30 (1H, s), 7.16 (1H, t, J=7.56 Hz), 7.06-

6.95 (2H, m), 6.87-6.81 (2H, m), 5.18 (1H, s), 4.95 (1H, s), 4.84 (1H, s), 4.70 

(1H, s), 4.45-4.37 (5H, m), 3.82 (2H, t, J=7.04 Hz), 1.85-1.79 (2H, m), 1.01 (3H, 

t, J=7.28 Hz); 13C NMR (100 MHz, CDCl3): δ 173.3, 163.5, 150.8, 142.2, 129.7, 

128.6, 127.9, 127.6, 127.5, 125.3, 124.3, 124.2, 122.6, 116.1, 114.9, 113.7, 112.8, 

112.5, 80.3, 79.1, 75.5, 75.4, 74.9, 72.7, 72.5, 72.0, 71.9, 71.5, 49.9, 19.9, 11.1; 

HRMS (ESI-TOF): m/z calculated for C53H41N3O2S= 783.2914 [M]+, measured 

783.297 [M]+. 

Synthesis of Compound 12. Tetracyanoethylene (TCNE) (13 mg, 0.1 mmol) was 

added to a solution of compound 8 (80.0 mg, 0.1 mmol) in C2H4Cl2 (50 mL). The 

mixture was stirred at 80 ℃ for 24 h. After the completion of the reaction the 

solvent was removed in a vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent to yield 12 as a dark violet colored 

solid. Yield: 65.0 mg, 69%; 1H NMR (400 MHz, CDCl3): δ = 8.68-8.63 (2H, m), 

8.54 (1H, J=7.8, d), 7.91 (1H, J=7.52, d), 7.83 (1H, J=7.76, t), 7.71-7.67 (m, 2H), 

7.47-7.44 (m, 1H), 7.37-7.35 (m, 3H), 7.17 (t, J=7.28, 1H), 7.06 (d, J=6.52, 1H), 

6.99 (t, J=7.52, 1H), 6.91-6.86 (m, 4H), 4.18 (t, J=7.56, 2H), 3.90-3.84 (m, 4H), 

1.92-1.83 (m, 4H), 1.76-1.68 (m, 2H), 1.50-1.40 (m, 2H), 1.09-0.96 (m, 9H); 13C 

NMR (100 MHz, CDCl3): δ = 164.2, 163.9, 163.8, 163.7, 151.3, 150.1, 142.9, 

141.9, 132.2, 131.7, 131.6, 131.5, 130.6, 130.5, 130.4, 130.3, 128.0, 127.9, 127.7, 

127.6, 127.4, 127.2, 125.5, 125.3, 124.9, 124.5, 124.4, 123.2, 123.0, 122.6, 122.2, 

118.2, 116.2, 115.9, 115.5, 115.1, 112.9, 112.9, 112.7, 112.2, 111.9, 97.7, 87.4, 

81.7, 80.5, 50.1, 49.9, 40.3, 30.2, 20.4, 20.0, 19.9, 13.8, 11.1; LCMS (ESI-TOF): 

m/z calculated for C59H39N7O2S= 909.2880 [M]+, measured 909.2247 [M]+. 
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Synthesis of Compound 13. Tetracyanoethylene (TCNE) (13 mg, 0.1 mmol) was 

added to a solution of compound 9 (80 mg, 0.1 mmol) in C2H4Cl2 (50 mL). The 

mixture was stirred at 80 ℃ for 24 h. After the completion of the reaction the 

solvent was removed in a vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent to yield compound 13 as a dark violet 

colored solid. Yield: 67.0 mg, 72%; 1H NMR (400 MHz, CDCl3): δ = 8.68-8.63 

(m, 2H), 8.54 (d, J=7.76, 1H), 8.13 (d, J=7.52, 2H), 8.99 (d, J=8.52, 2H), 7.91 (d, 

J=7.8, 1H), 7.86 (d, J=8.8, 2H), 7.82 (d, J=7.76, 1H), 7.77-7.75 (m, 1H), 7.57 (d, 

J=8.28, 2H), 7.50-7.43 (m, 4H), 7.37-7.33 (m, 3H), 6.97 (d, J=8.8, 1H), 6.92 (d, 

J=8.56, 1H), 4.18 (t, J=7.28, 2H), 3.91 (t, J=7.04, 2H), 1.93-1.86 (m, 2H), 1.76 

(m, 2H), 1.48-1.42 (m, 2H), 1.09 (t, J=7.28, ), 0.98 (t, J=7.28, 3H); 13C NMR 

(100 MHz, CDCl3): δ = 165.9, 163.9, 163.6, 163.4, 150.4, 143.9, 142.7, 139.4, 

132.1, 131.7, 131.6, 131.4, 131.3, 130.6, 130.5, 130.3, 128.7, 128.0, 127.6, 127.4, 

127.1, 126.9, 126.5, 125.2, 124.9, 124.3, 123.0, 122.2, 121.5, 120.6, 118.4, 116.1, 

115.6, 112.6, 111.9, 111.3, 109.8, 97.5, 87.5, 86.6, 81.8, 53.4, 40.3, 30.2, 20.3, 

19.9, 13.8, 11.1; LCMS (ESI-TOF): m/z calculated for C56H41N7O2S2= 908.2836 

[M]+, measured 908.2846 [M]+. 

Synthesis of Compound 14. Tetracyanoethylene (TCNE) (14 mg, 0.11 mmol) 

was added to a solution of compound 10 (80 mg, 0.11 mmol) in C2H4Cl2 (50 mL). 

The mixture was stirred at 80 ℃ for 16 h. After the completion of the reaction the 

solvent was removed in a vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent to yield compound 14 as a dark violet 

colored solid. Yield: 57.0 mg, 60%; 1H NMR (400 MHz, CDCl3): δ = 8.66 (t, 

J=8.76,2H), 8.55 (d, J=7.56, 1H), 7.91 (d, J=7.52, 1H), 7.83 (t, J=7.8, 1H), 7.61-

7.58 (m, 1H), 7.47-7.44 (m, 1H), 7.36 (s, 1H), 7.32 (s, 1H), 6.9-6.86 (m,2H), 5.23 

(s, 1H), 4.98 (s, 1H), 4.87 (s, 1H), 4.70 (s, 1H), 4.47 (s, 4H), 4.18 (t, J=7.52, 2H), 

3.86 (t, J=7.28, 2H), 1.89-1.83 (m, 2H), 1.76-1.68 (m, 2H), 1.48-1.42 (m, 2H), 

1.06 (t, J=7.28, 3H), 0.98 (t, J=7.28, 3H); 13C NMR (100 MHz, CDCl3): δ = 

173.1, 163.9, 163.7, 163.5, 149.8, 143.2, 132.2, 131.7, 131.6, 131.5, 130.6, 130.5, 

130.3, 129.7, 128.1, 127.5, 127.4, 127.2, 124.9, 124.8, 123.2, 123.1, 122.2, 118.1, 

115.9, 115.4, 113.6, 112.8, 112.6, 112.3, 97.6, 87.4, 81.3, 79.1, 75.6, 75.4, 75.0, 
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72.6, 72.1, 71.9, 50.0, 40.3, 30.2, 20.4, 19.9, 13.8, 11.1; LCMS (ESI-TOF): m/z 

calculated for C51H36FeN6O2S= 853.2044 [M+H]+, measured 853.1518 [M+H]+. 

Synthesis of Compound 15. Tetracyanoethylene (TCNE) (13 mg, 0.5 mmol) was 

added to a solution of compound 11 (80 mg, 0.11 mmol) in C2H4Cl2 (50 mL). The 

mixture was stirred at 80 ℃ for 8 h. After the completion of the reaction the 

solvent was removed in a vacuum, and the product was purified by column 

chromatography with CH2Cl2 as the eluent to yield compound 15 as a dark violet 

colored solid. Yield: 53.0 mg, 57%; 1H NMR (400 MHz, CDCl3): δ = 8.68-8.63 

(m, 2H), 8.55 (d, J=7.56, 1H), 7.92 (d, J=7.76, 1H), 7.83 (t, J=8.04, 1H), 7.74-

7.71 (m, 1H), 7.64 (d, J=9.28, 2H), 7.46 (d, J=8.52, 1H), 7.41-7.36 (m, 6H), 7.28-

7.21 (m, 6H), 6.91 (t, J=9.04, 4H), 4.18 (t, J=7.56, 2H), 3.88 (t, J=7.04, 2H), 

1.92-1.85 (m, 2H), 1.76-1.68 (m, 2H), 1.48-1.42 (m, 2H), 1.07 (t, J=7.28, 3H), 

0.98 (t, J=7.28, 3H); 13C NMR (100 MHz, CDCl3): δ = 165.2, 163.9, 163.7, 

153.8, 149.9, 144.5, 143.1, 132.2, 131.9, 131.6, 131.5, 130.6, 130.5, 130.4, 130.3, 

130.1, 128.1, 127.9, 127.5, 127.2, 126.9, 126.7, 125.7, 124.8, 123.3, 123.1, 122.2, 

121.5, 118.1, 118.0, 115.9, 115.4, 113.6, 112.8, 97.7, 87.4, 50.1, 40.3, 30.2, 20.4, 

19.9, 13.8, 11.4, 11.1; LCMS (ESI-TOF): m/z calculated for C59H41N7O2S= 

912.3115 [M+H]+, measured 912.2555 [M+H]+. 

7.7. Conclusions 

A series of donor substituted phenothiazine-NPI based chromophores 8–

11 and their TCBD analogues 12–15 were synthesized via Pd-catalyzed 

Sonogashira cross-coupling reaction and [2+2] cycloaddition–electrocyclic ring-

opening reactions, respectively. The electronic absorption spectra of the TCBD 

substituted phenothiazines 12–15 showed strong ICT transition in the longer 

wavelength as compared to the donor substituted phenothiazines 8–11. The 

electrochemical properties revealed that the incorporation of TCBD in 

phenothiazines facilitates the reduction process to greater extent resulting in a 

much stabilized LUMO energy levels. The DFT and TDDFT calculations 

revealed that the TCBD substituted phenothiazines 12–15 are having much lower 

HOMO–LUMO gap as compared to compounds 8–11, which are in a good 
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agreement with the photophysical and electrochemical data. The work provides a 

broad understanding of the effect of the strength of donors/acceptors on the 

photonic and electronic properties of the chromophores, which could be helpful 

for the design and synthesis of the donor–acceptor chromophores for 

optoelectronic applications. 
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Chapter 8 

Conclusions and Future Scope 

 

8.1. Conclusions 

Phenothiazine is an excellent class of heterocyclic molecule containing 

nitrogen (N) and sulfur (S) heteroatoms.[1] It is an electron rich organic molecule 

which acts as strong donor.[2] It possesses strong absorption with high molar 

extinction coefficient and intense luminescence along with a π-conjugated 

molecular backbone.[3] The photonic and electronic properties of phenothiazines 

can be easily tuned by functionalizing with different donor/acceptor 

substituents.[4] We have designed and synthesized donor-acceptor functionalized 

phenothiazines and investigated their photophysical, electrochemical and 

theoretical properties.  

In Chapter 3, we have functionalized the phenothiazine core with a series 

of aryl (benzene, naphthalene, anthracene, phenanthrene, pyrene) substituents 

through π-linker via Pd-catalyzed Sonogashira cross-coupling reactions. The 

fluorescence study of the phenothiazines shows that all of them are highly 

emissive with remarkable quantum yields. The investigated molecules exhibit 

large Stokes shift values in solution, with the anthracene functionalized 

phenothiazine featuring strong positive fluorosolvatochromism and thus the 

largest Stokes shift in polar solvents (7350 cm-1 in DMF). These fluorescent 

compounds are also highly emissive in the solid-state where the phenothiazines 

substituted with the largest aryl groups show marked red shifts of the emission 

maxima as compared to the solution, indicating considerable π-π staking 

interactions. In particular, the anthracene substituted phenothiazine exhibits 

strongly redshifted absorption and emission wavelengths both in solid-state and in 

solution which implies pronounced electronic communication in this fluorophore. 

This finding agrees with the charge displacement predicted by the TD-DFT 

calculations as well as with the results of the cyclic voltammetry measurements. 

In Chapter 4, a series of TCBD and cyclohexa–2,5–diene–1,4–ylidene–

expanded TCBD substituted ferrocenyl phenothiazines were designed and 
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synthesized by [2+2] cycloaddition–electrocyclic ring-opening reactions. Their 

electrochemical properties reveal that the incorporation of strong acceptors TCBD 

and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD facilitates the reduction 

process of the ferrocenyl-phenothiazines which leads to low HOMO–LUMO gap. 

The electronic absorption spectra exhibit strong ICT at longer wavelength and 

strong donor–acceptor interactions. In particular, DFT and TDDFT calculations 

reveal a broad understanding of the electronic structure and absorption spectra of 

the phenothiazine chromophores which reveal that the incorporation of TCBD and 

cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD acceptor group perturbs 

HOMO–LUMO gap of the phenothiazines to a greater extent which is in a good 

agreement with the experimental values.[5] 

In Chapter 5, we have described the design and synthesis of a series of 

donor-acceptor phenothiazine functionalized BODIPYs via the condensation and 

Pd-catalyzed Sonogashira cross-coupling reaction. The photophysical and 

electrochemical studies show strong donor-acceptor interactions between 

phenothiazine and BODIPY. The optimized structure of acetylene linked 

phenothiazine BODIPY shows co-planar orientation of the phenothiazine donor 

and the BODIPY acceptor units which leads to extension of conjugation and 

significant red shift of the absorption bands in 7a and 7b. The calculated HOMO–

LUMO gap values were lower in acetylene linked phenothiazine BODIPYs. The 

increase in acceptor units of phenothiazine functionalized BODIPYs lowers the 

thermal stability.[6] 

In Chapter 6, we have synthesized BODIPY-phenothiazine via Pd-

catalyzed Sonogashira cross coupling reaction. Subsequently, the TCBD and 

DCNQ substituted BODIPY-phenothiazine were synthesized by [2+2] 

cycloaddition–electrocyclic ring-opening reactions. The photophysical and 

electrochemical data showed that the incorporation of TCBD and DCNQ 

acceptors in the BODIPY substituted phenothiazines resulted in strong D–A 

interactions which led to low HOMO–LUMO band gap. The UV-vis absorption 

spectra of TCBD and DCNQ substituted BODIPY-phenothiazine showed ICT 

transitions along with significant broadening in S0→S1 transition. The theoretical 
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calculations of all the molecules revealed that the DCNQ substituted BODIPY-

phenothiazine stabilized the LUMO energy level to greater extent as compared to 

TCBD substituted BODIPY-phenothiazine.[7] 

In Chapter 7, we have designed and synthesized a series of donor 

substituted phenothiazine-NPI based chromophores and their TCBD analogues 

via Pd-catalyzed Sonogashira cross-coupling reaction and [2+2] cycloaddition–

electrocyclic ring-opening reactions, respectively. The electronic absorption 

spectra of the TCBD substituted phenothiazines showed strong ICT transition in 

the longer wavelength as compared to the donor substituted phenothiazines. The 

electrochemical properties revealed that the incorporation of TCBD in 

phenothiazines facilitates the reduction process to greater extent resulting in a 

much stabilized LUMO energy levels. The DFT and TDDFT calculations 

revealed that the TCBD substituted phenothiazines are having much lower 

HOMO–LUMO gap as compared to, which are in a good agreement with the 

photophysical and electrochemical data. 

8.2. Future scope 

 The thesis highlights an important strategy for design and synthesis of 

donor–acceptor functionalized phenothiazine molecules with tunable photonic 

properties and low HOMO–LUMO gap. The HOMO–LUMO gap of the donor–

acceptor functionalized phenothiazines can be modified by (a) varying the number 

of donor/acceptors attached, (b) enhancing the conjugation length and (c) 

changing the π-linker. The variation in the donor/acceptor strength perturbs the 

HOMO–LUMO gap to greater extent. The incorporation of TCNE and TCNQ 

based acceptors can also improve the donor–acceptor interactions in the 

phenothiazines resulting in strong intramolecular charge-transfer at longer 

wavelength which could be extended to the near infrared region. The donor–

acceptor chromophores with strong absorption and low band gap could be 

promising candidate for optoelectronic applications. The phenothiazine based 

fluorophores with high fluorescence quantum yield and large stokes shift values 

could be excellent prerequisites for their possible use as promising fluorescent 

probes in bioimaging. 
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