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Abstract 

Evolution of gold nanoclusters have attracted great attention in the past 
decade due to their remarkable catalytic activities, size- and support- 
dependent CO oxidation, and structure-activity relationships. Here, we 
performed a global structure search of the low-energy cluster of Aun (n = 
59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168) exhibit core-shell type 
structures by using multicanonical Monte Carlo simulations combined with 
artificial neural network potentials. We found that the most stable structure 
of gold nanoclusters exhibit icosahedral type core structure. 
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Chapter 1  

Introduction 

1.1 General Introduction: 

Global optimization of a function is that finds the global minima or maxima 
of a complex system that has continuously attracted attention. For searching 
the global minimum, potential energy taking as a function while complex 
variables as the coordinates of atoms. Global minimum can be taken as a 
technique to find the ground state of a physical system.[1] MC techniques 
are valuable for simulating systems with numerous degrees of freedoms, for 
example, liquids, disorder materials, strongly coupled solids, and cellular 
structures. These methods are used when a large number of minima exist in 
a complex system. 

Mathematically functions are estimated by MC simulation using random 
sampling and statistical modeling. These sampling experiments contain the 
generation of arbitrary numbers observed by using a restricted number of 
arithmetic and logical operations, which are often the same at each step. At 
the start of an MC move, a random atom is selected which gives a uniform 
random displacement along each of the coordinate instructions. The most 

displacement is an adjustable parameter that governs the dimensions of the 
region and controls the convergence of the Markov chain.[2]  

The MC technique is time-consuming and meanwhile, most researchers are 
progressively keen on new outcomes rather than the methodology. There 
has been little work on the optimization of parameters, for example, 
maximum displacement and the choice of the transition matrix. Metropolis 
method one randomly selected atom is moved to produce another state. The 
underlying stochastic matrix can be changed so a few or the entirety of the 
particles are moved at the same time. Chapman and Quirk found that 
equilibration was accomplished more rapidly by utilizing multi-particle and 
single-particle moves, as estimated by their ability to sample phase space in 
a given measure of computer time, has not been exposed to systematic 
study. A typical practice in MC simulation is to pick out the particles to 
move sequentially instead of randomly. This cuts down the amount of 
arbitrary number generation and is a similarly valid method of producing 
the correctly weighted states. The length of an MC simulation is 
conveniently estimated in ‘cycles’, i.e. N trial moves whether selected 
sequentially or randomly. The computer time engaged with an MC cycle is 
similar to that in an MD time step. Of fundamental significance to all Monte 
Carlo techniques, the statistical weight relates the energy potential to the 
coordinate system.[2]  
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MCMC simulations are a Markov chain Monte Carlo approach for the 
simulation of bodily models, which yields canonical expectation values 
over various temperatures. MCMC simulation is the most normally applied 
algorithm wherein a Boltzmann weight has been followed in which 
temperature performs a pivotal role in determining the thermodynamic 
properties. 

                                            𝑇 = 𝛽−1 

                                       𝑤(𝑎) =  𝑒−𝛽𝐸𝑎 

A perfect choice of the weight is the inverse of the density of states of 
energy, which might result in the favoured uniform random-walk trajectory 
over the whole energy space. However, the density of states is unknown a 
priori, and the MCMC method generates an approximation to it by 
enhancing the estimate iteratively. The process is repeated until no further 
significant development of the multicanonical weight is found, and the 
approximate position of the energy minimum is resolved. MCMC method 
has already shown achievement in their applications to finding stable 
systems of crystalline clusters and predicting protein native systems.[1]  

Gold nanoparticles can show particular physical and chemical properties. A 
lot of these unique properties can be attributed to both strong relativistic 
properties and finite-magnitude quantum effects  [3,4]. MD or MC 
simulations are used to achieve the finite-time and finite temperature 
properties of chemical systems. These simulations use classical interatomic 
potentials or ab initio techniques to calculate the energy and forces of the 
system. In the present study, we performed a LM structure search of low-
energy clusters for size selected Aun nanoparticles using MCMC 
simulations combined with ANNPs. 

 

1.2 Organization of the Thesis: 

Chapter 2: Theory 

Chapter 3: Fortran Code 

Chapter 4: Results and Discussion 

Chapter 5: Conclusions 
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Chapter 2 

Theory 

2.1 Methodology for Multicanonical Monte Carlo 
simulations 

To evaluation of gold nanoclusters by using MCMC simulations with 
ANNPs and starting with different random geometries of various sizes Aun 
(n = 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168). ANNPs was used for 
generating data using the MCMC simulation for the structural evolution of 

gold nanocluster. 

Step 1: Assigning positions of atoms 

We assigned random initial position for each of the atom of various sizes 
Aun (n = 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168). 

Step 2: Calculate the potential of nanoparticles 

Trained  NN is used to calculate the potential for an atom. A two-layer feed-
forward NN architecture are shown as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of two-layer feed-forward neural networks 
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Where 𝐸𝑖 is the energy of 𝑖𝑡ℎatom and 𝑁ℎ𝑑 is the number of hidden nodes. 

𝐷𝑖𝑗 stands for input descriptor functions. 𝑊𝑗𝑘
01, 𝑊𝑘𝑙

12, and 𝑊𝑙1
23 are weights 

connecting the different layers of NN. 𝑊𝑏𝑙
2 and 𝑊𝑏𝑘

1 are bias weights in 

different layers of NN. 𝑓𝑙
2 and 𝑓𝑘

1 represent the sigmoid function for 
activation of the network.[5,6] 

The total energy (E) of a nanoparticle is computed by adding all individual 
atomic energies, 

 

Step 3: Multicanonical Monte Carlo simulations 

We study a physical system described by a ANNPs Energy. MC simulations 
with a-priori unknown weight factors are feasible and need to be considered. 
To sample the significant configurations of a canonical ensemble at 

temperature 𝑇 = 𝛽−1 with Boltzmann weights [7] 

                                    𝑤(𝑎) =  𝑒−𝛽𝐸𝑎,                                                         (1) 

Where 𝐸𝑎 is the energy of configuration 𝑎. 

Let us first discuss the connection of the weight factors with microcanonical 

temperature 𝛽(𝐸),  

                       𝑤𝑛+1(𝑎) =  𝑒−𝑆(𝐸𝑎) =  𝑒−𝛽(𝐸𝑎)𝐸𝑎+𝛼(𝐸𝑎)                              (2)           

Where 𝑆(𝐸) is the microcanonical entropy and, by definition, 

                               𝛽(𝐸) =  
𝜕𝑆(𝐸)

𝜕𝐸
 . 

This determines the fugacity function 𝛼(𝐸) as much as an (irrelevant) 
additive constant. We take into account the case of a discrete minimal 

energy 𝜖 and indicate  

                            𝛽(𝐸) = [𝑆(𝐸 + 𝜖) − 𝑆(𝐸)]/𝜖                                           (3)                                

And the identity 𝑆(𝐸) = 𝛽(𝐸)𝐸 − 𝛼(𝐸) implies  

𝑆(𝐸) − 𝑆(𝐸 − 𝜖) =  𝛽(𝐸)𝐸 − 𝛽(𝐸 − 𝜖)(𝐸 − 𝜀) − 𝛼(𝐸) + 𝛼(𝐸 − 𝜖) . 

Inserting 𝜖𝛽(𝐸 − 𝜖) = 𝑆(𝐸) − 𝑆(𝐸 − 𝜖)  yields  

                  𝛼(𝐸 − 𝜖) = 𝛼(𝐸) + [𝛽(𝐸 − 𝜖) − 𝛽(𝐸)]𝐸                                       (4)                                 

And 𝛼(𝐸) is fixed through defining 𝛼(𝐸𝑚𝑎𝑥) = 0. In precis, once 𝛽(𝐸) is 

provide, 𝛼(𝐸) follows for free. 

A convenient beginning condition for the initial (n = 0) simulation is 

     E = ∑𝐸𝑖
𝑖
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                                 𝛽0(𝐸) = 𝛼0(𝐸) = 0.                                                        (5)    

The energy histogram the  𝑛𝑡ℎ simulation is given through 𝐻𝑛(𝐸). To keep 

away from 𝐻𝑛(𝐸) = 0 we replace for the instant 

𝐻𝑛(𝐸) → �̂�𝑛(𝐸) = max[ℎ0,𝐻𝑛(𝐸)],                

Where ℎ0 is a variety of 0 < ℎ0 <1. Our final equations allow for the 

restriction ℎ0 → 0. Subscripts zero are used to indicate that the ones 

quantities aren’t yet the very last estimators from the 𝑛𝑡ℎ simulation. Let   

                      𝑤0
𝑛+1(𝐸) =  𝑒−𝑆0

𝑛+1(𝐸) = 𝑐
𝑤𝑛(𝐸)

�̂�𝑛(𝐸)
 , 

Where the constant c is introduced to ensure that 𝑆0
𝑛+1(𝐸) maybe an 

estimator of the microcanonical entropy. It follows 𝑆0
𝑛+1(𝐸) = −𝑙𝑛𝑐 +

𝑆𝑛(𝐸) + 𝑙𝑛�̂�𝑛(𝐸). Putting this relation into (3) gives  

                 𝛽0
𝑛+1(𝐸) = 𝛽𝑛(𝐸) +

[𝑙𝑛�̂�𝑛(𝐸+𝜖)−𝑙𝑛�̂�𝑛(𝐸)]

𝜖
                             (6)                             

As estimator of the variance follows  

                             𝜎2[𝛽0
𝑛+1(𝐸) =

𝑐′

𝐻𝑛(𝐸+𝜖)
+

𝑐′

𝐻𝑛(𝐸)
 , 

Wherein c’ is an unknown constant and we have re-presented the original 
histograms to emphasize (and use) that the variance is endless while there 

is zero statistics. The statistical weight for 𝛽0
𝑛+1(𝐸) is inversely 

proportional to its variance. Selecting a convenient constant, we get  

                                   𝑔0
𝑛(𝐸) =

𝐻𝑛(𝐸+𝜖)𝐻𝑛(𝐸)

𝐻𝑛(𝐸+𝜖)+𝐻𝑛(𝐸)
 .                                                   (7)     

Be aware that 𝑔0
𝑛 = 0 for 𝐻𝑛(𝐸 + 𝜖) = 0 or 𝐻𝑛(𝐸) = 0. The 𝑛𝑡ℎ 

simulation changed into done using 𝛽𝑛(𝐸). It’s miles now sincere to mix 

𝛽0
𝑛+1(𝐸) and 𝛽𝑛(𝐸) in keeping with their respective statistical weights into 

the preferred estimator 

                      𝛽0
𝑛+1(𝐸) = �̂�𝑛(𝐸)𝛽𝑛(𝐸) + �̂�0

𝑛(𝐸)𝛽0
𝑛+1(𝐸),                         (8)                            

Where the normalized weights  

                    �̂�0
𝑛(𝐸) =

𝑔0
𝑛(𝐸)

𝑔𝑛(𝐸)+�̂�0
𝑛(𝐸)

 and �̂�𝑛(𝐸) = 1 − �̂�0
𝑛(𝐸)   

Are determined by the recursion  

                          𝑔𝑛+1(𝐸) = 𝑔𝑛(𝐸) + 𝑔0
𝑛(𝐸), 𝑔0(𝐸) =0.                            (9)                               

We can eliminate 𝛽0
𝑛+1(𝐸) from Eqn. (8) by inserting its definition (6) and 

get  
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           𝛽𝑛+1(𝐸) = 𝛽𝑛(𝐸) + �̂�0
𝑛(𝐸) × [𝑙𝑛�̂�𝑛(𝐸 + 𝜖) − 𝑙𝑛�̂�𝑛(𝐸)]/𝜖    (10)                                                                    

Finally, Eqn. (10) can be converted into a recursion for ratios of weight 
factor neighbors. We define  

                                  𝑅𝑛(𝐸) = 𝑒𝜖𝛽
𝑛(𝐸) =

𝑤𝑛(𝐸)

𝑤𝑛(𝐸+𝜖)
                (11)                                 

And get the recursion  

                             𝑅𝑛+1(𝐸) = 𝑅𝑛(𝐸) [
�̂�𝑛(𝐸+𝜖)

�̂�𝑛(𝐸)
]
�̂�0
𝑛(𝐸)

.            (12) 
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Figure 2: Flow chart of MCMC. 
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Chapter 3 

                                    Fortran Code 

3.1 Main Code 

      Program GMIN 
      IMPLICIT NONE 
      INCLUDE 'params.h' 
      INCLUDE 'commons.h' 
      INTEGER J1 
      DOUBLE PRECISION POTEL 
      COMMON /POT/ POTEL 
      LOGICAL EVAP 
      COMMON /EV/ EVAP 
c 
      PRINT* 
c 
      CALL KEYWORD 
c 
      IF (DUMPT) THEN 
          OPEN (UNIT=40, FILE='QUENCH.P', STATUS='UNKNOWN') 
          OPEN (UNIT=39, FILE='QUENCH.E', STATUS='UNKNOWN') 
      ENDIF 
c 
      CALL IO1 
c 
      IF (CENT) CALL CENTRE(COORDS) 
c 
      NQ=1 
      If (mcsteps(1).le.1) nsave=1 
      DO J1=1, NSAVE 
          QMIN(J1) = 1.0D10 
          QMINB(J1) = 1.0D10 
          QRSQ(J1) = 0.0d0 
          QRSQB(J1) = 0.0d0 
      ENDDO 
c 
      IF (NRUNS.GT.0) CALL MCRUNS 
c 
      STOP 
      END 
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3.2 Code for Monte Carlo simulations 

      SUBROUTINE MCRUNS  
      IMPLICIT NONE 
      INCLUDE 'params.h' 
      INCLUDE 'commons.h' 
      INTEGER J1 
c 
      DO J1=1, NRUNS 
           CALL MC(MCSTEPS(J1), TFAC(J1)) 
      ENDDO 
c 
       RETURN  
      END 
c 
      SUBROUTINE MC (NSTEPS, SCALEFAC) 
      IMPLICIT NONE 
      INCLUDE 'params.h' 
      INCLUDE 'commons.h' 
      INTEGER J1, NSUCCESS, NFAIL, NFAILT, NSUCCESST, J2, 
    1         NSTEPS, ITERATIONS, NQTOT, nacc, j, jj 
      DOUBLE PRECISION POTEL, SCALEFAC, X(3*MXATMS),  
    1         RANDOM, EPPREV, emini, emaxi, xt, yt, zt 
      LOGICAL EVAP, ATEST 
      COMMON /EV/ EVAP 
      COMMON /POT/ POTEL 
      COMMON /TOT/ NQTOT 
c 
      NQTOT=0 
      NSUCCESS=0  
      NFAIL=0 
      NSUCCESST=0 
      NFAILT=0 
c 
      emini= 1.0d10 
      emaxi=-1.0d10 
c 
c     Calculate the initial energy and save in EPREV 
c 
      WRITE (*, '(A)') 'Calculating initial energy'' 
      DO J1=1,3*NATOMS 
           X(J1) = COORDS(J1) 
      ENDDO 
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      CALL QUENCH (iterations) 
      CALL SAVEITA (POTEL, coords) 
      CALL FINALIOA 
c     
      NQTOT=NQTOT+1 
      WRITE (*,'(A, I7, A, F20.10, A, I4, A, F15.7)') 'Quench', NQ, 

1     'energy=' POTEL, 'steps=', ITERATIONS, 'RMS force=', RMS 

      EPREV=POTEL 
      EPPREV=0.0D0 
      WRITE (*, '(A, I10, A)') 'Starting MC run of ', NSTEPS,' steps'   
      WRITE (*, '(A, F15.8, A)') 
     1             'Temperature will be multiplied by ',  
     2             SCALEFAC, ' at every step' 
      call flush (6) 
c 
      if (IMCMC.eq.1) NSTEPS =NEQUI 
c 
      DO J1=1, NSTEPS  
            NQ=NQ+1 

         CALL TAKESTEP 
         CALL TAKESTEPBASIC  
         CALL QUENCH (iterations) 
         NQTOT=NQTOT+1 
            WRITE (*, '(A, I7, A, F20.10, A, I4, A, F15.7)') 'Quench', NQ, 

     1         'energy=', POTEL, 'steps=', ITERATIONS, 'RMS force=', RMS 
       IF (EVAP) THEN  

      NFAIL=NFAIL+1 
      DO J2=1,3*(NATOMS-NSEED) 
              COORDS(J2) = COORDSO(J2) 

                ENDDO 
                DO J2=1, NATOMS 

             VAT(J2) =VATO(J2) 
                ENDDO  
       ELSE 

         CALL TRANSITION (POTEL, EPREV, ATEST, RANDOM) 
         IF (ATEST) THEN 
               NSUCCESS=NSUCCESS+1 
               EPPREV=EPREV 
               EPREV=POTEL 
                   if (potel.lt. emini) emini=potel 
                   if (potel.gt. emaxi) emaxi=potel 
         ELSE 
               NFAIL=NFAIL+1 
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               DO J2=1,3*(NATOMS-NSEED) 
                       COORDS(J2) = COORDSO(J2) 

                  ENDDO 
               DO J2=1, NATOMS 
                     VAT(J2) = VATO(J2) 
               ENDDO 

         ENDIF 
      ENDIF 
c   
c     Check the acceptance ratio. 
c 
      call saveita (potel, coords) 
      call finalioa 
c    
      IF ((MOD (J1, NACCEPT). EQ. 0). AND. (NSEED.EQ.0)) THEN 
            IF (DELOAT(NSUCCESS) / DFLOAT (NSUCCESS +NFAIL.           
     1               GT. ACCRAT) THEN    

              IF (FIXBOTH) THEN 
              ELSE IF (FIXSTEP) THEN  
                    IF (. NOT. FIXTEMP) TEMP=TEMP/1.05.DO 
              ELSE 
                   STEP=STEP*1.05D0 
                  ASTEP=ASTEP*1.05D0 
              ENDIF 
         ELSE   
              IF (FIXBOTH) THEN 
              ELSE IF (FIXSTEP) THEN 
                     IF (. NOT. FIXTEMP) TEMP=TEMP*1.05D0 
              ELSE 
                     STEP=STEP/1.05D0 
                     ASTEP=ASTEP/1.05D0 
              ENDIF 
         ENDIF 
         IF (FIXBOTH) THEN 
         ELSE IF (FIXSTEP) THEN 
               IF (. NOT. FIXTEMP) 

     1                 WRITE (*,'(A, F12.6)') ' Temperature is now:', TEMP 
         ELSE 
               WRITE (*,'(A, F12.6, A, F12.6)') 
1 ' Maximum center-of-mass and angular steps are now: ', STEP,    

2   ' and ', ASTEP 

         ENDIF 
            WRITE (*,'(A, I4, A, F15.7)') 
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1          ' Acceptance ratio for previous', NACCEPT,' steps=', 

     2               DFLOAT(NSUCCESS)/DFLOAT(NSUCCESS+NFAIL) 
            NSUCCESST=NSUCCESST+NSUCCESS 
            NFAILT=NFAILT+NFAIL 
            NSUCCESS=0 
            NFAIL=0 
      ENDIF 
      TEMP=TEMP*SCALEFAC 
      FLUSH (6) 
      IF (HIT) GOTO 37 
      ENDDO 
c 
 37   CONTINUE 
        WRITE (*,10) DFLOAT(NSUCCESST) / MAX (1.0D0, DFLOAT 
     1              (NSUCCESST+NFAIL)), STEP,ASTEP,TEMP 
 10    FORMAT (' Acceptance ratio for run=', F12.5, ' Step='F12.5, 
     1                     ' Angular step factor=', F12.5,' Temperature=', F12.5) 
c 
       if (IMCMC.eq. 0) then 
            MUPD=0 
            emin = emini 
            emax = emaxi 
       endif 
c   
       call mcmc 
c 
       RETURN 
       END 
 

3.3 Multicanonical monte Carlo simulation algorithm 

      Code for Multi canonical monte Carlo simulation 

       SUBROUTINE MCMC 
       IMPLICIT NONE 
       INCLUDE 'params.h' 
       INCLUDE 'commons.h' 
       INTEGER J1, L, I, IT, N, J, JJ, K, nac, nre 
       DOUBLE PRECISION delE, dhi, dhii, ai, bt, potel 
       DOUBLE PRECISION RANG, mini, maxi, beta0, ebinr, ebinl, hterm,        
     1                                       so, sn 
       DOUBLE PRECISION enew, eold, elowest, acr 
       DOUBLE PRECISION sumg (300,100), wei (100), ener (100) 
       DOUBLE PRECISION beta (100), betap (100), alpha (100) 
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      DOUBLE PRECISION sold (100), snew (100) 
      INTEGER ITER, H (100), M, NL, NITER, attest, nbin, idummy, iconv 
       COMMON /POT/ POTEL 
c 
c     **************READ PARAMETERS************* 
c     START OF MCMC 
 
       write (21, *) "Start of mcmc simulation" 
       write (21, *) "Temp=", TEMPA 
 
       nl = nbins 
       write (21, *) "MUPDATES:", MUPD, "NBINS=:", NL 
c 
       acr =1.0d0 
       iconv=1 
c 
       beta0 = 1.0/TEMPA      ! initial temperature  
c    
       elowest=emin 
       eold = emin 
c   
       write (21, *) "emin=:", emin, "emax=:", emax 
c 
c     number of bins is 10 
       rang = emax-emin 
       delE = rang/(nl-2) 
c 
       write (21, *) "deltaE: ", delE 
c 
c     ********END READ PARAMETERS********** 
c 
       call constH (emin, emax, dele, nl, ener) 
c 
       do k = 1, mupd 
       do i = 1, nl 
            sumg (k, i) = 0.0d0 
       enddo 
       enddo 
c 
c      ************INITIALIZE beta, alpha and wei******** 
c 
       do i = 1, nl 
            beta(i) = beta0 
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            alpha(i) = 0.0d0 
            betap(i) = beta(i) 
c      assign a boltzman weight for each bin 
        if (I.lt.nl) then  
        sold(i)= (beta(i)*ener(i)) – alpha(i) 
        else 
           sold(i) =0.00d0  
        endif 
        enddo 
c        
c      LOOP FOR MCMC UPDATE 
c 
        DO i = 1, nl 
             h(i) = 0.0d0 
        Enddo 
c    
        DO K= 1, mupd 
c   
        call quench(idummy) 
        call update (emin, emax, dele, nl, h, potel, nbin) 
        sold(nbin)=(beta(nbin)*potel)-alpha(nbin) 
                   so = sold(nbin) 
c 
c      INNER LOOP FOR MC STEPS 
c 
        nac=0 
        nre=0 
        do n = 1, nitera 
c 
c      Quench initial random xyz and update 
c 
        call takestep 
        call finaliob 
c              
        if (potel.lt. elowest) then 
               elowest=potel 
               call saveitb (potel, coords)'' 
               call finaliob 
        endif 
c 
        call getbin (emin, emax. dele, nl, potel, nbin) 
c 
        bt = beta(nbin) * potel 
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        ai = alpha(nbin) 
        snew(nbin) = bt – ai 
        sn = snew(nbin) 
c 
        attest = -1 
c 
        call checkw (sn, so, atest) 
c 
        if (attest. eq. 1) then 
            nac = nac + 1 
            so = sn 
            eold= potel 
        else 
            nre = nre+1 
        do j=1,3*natoms 
            cords(j)=coordso(j) 
        enddo 
        endif 
c    
        call update (emin, emax, dele, nl, h, eold, nbin) 
c 
        if (mod (n, naccept). eq. 0) then 
c 
            acr = dble(nac)/dble(nac+nre) 
c 
            if (acr.gt. 0.5d0) then 
               step = step *1.050d0 
               astep =astep *1.050d0 
            else 
               step = step *0.952d0 
               astep =astep *0.952d0 
            endif 
 c 
            nac=0 
            nre=0 
        endif 
c  
        call saveitb (potel, coords) 
        call finaliob 
c 
        enddo 
c 
        call updateAB (nl, h, sumg, ener, alpha, beta, betap, beta0, dele, k) 
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c 
  s     do i =1, nl  
           betap(i)=beta(i) 
       enddo 
       do i = 1, nl 
           h(i) =0 
       enddo 
       enddo 
  
      RETURN 
      END 
c 
      Subroutine updateAB (1, his, sumg, ehis, a, b, bp, b0, del, mu) 
      implicit none  
      integer 1, i, his (100), mu, m 
      double precision ehis (100), sumg (300,100), hhh (100) 
      double precision a(100),b(100),bp(100),g(100),gg(100) 
      double precision dhi,dhii,hterm,del,b0,dn 
c 
      do i = 1-2, 1, -1 
c 
c     calculates correction coefficient g, gg 
c 
            if (his(i). gt. 0.and. his(i+1) .gt. 0) then 
                 dhi = dble(his(i)) 
                 dhii = dble(his(i+1)) 
                 g(i) = dhi *dhii / (dhi + dhii) 
                 sumg (mu, i) = g(i) 
c 
c        get denominator 
c    
                 dn = 0.0d0 
                 do m = 1, mu 
                     dn = dn + sumg (m, i) 
                 enddo 
                 gg(i) = g(i) / dn 
c        Hterm calculation 
                 hterm = (log(dhii) – log(dhi)) /del 
                 hhh(i) = hterm 
                 b(i) = bp(i) + (gg(i)*hhh(i)) 
            else 
                 hhh(i) =0.00d0 
                 gg(i) = 0.00d0 
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                 sumg (mu, i) =0.0d0 
                 b(i) = bp(i) 
            endif 
      end do 
c        now calculates alpha 
      do i = 1-2, 1, -1 
      a(i) = a(i+1) + ((b(i)-b(i+1)) * ehis(i)) 
      enddo  
      end 
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Chapter 4                    

Results and Discussions 

Here, we have performed a global structure search for low-energy clusters 
of Aun, where n = 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168, by using 
MCMC simulations combined with ANNPs and found that they exhibit 
core-shell type structures. For the LM search of Aun, initial we took a 
random structure for MCMC simulations run at 366 K. The magic number 
sized clusters were selected i.e. Aun  (n = 68, 70, 92,106, 112, 138, 156, 166, 
168) and the most stable assumed structure for it is an icosahedron core-
shell type structure. Here, we will discuss each stable cluster in detail. Table 
1. having the no of gold atoms in Aun as its first column, no of atoms in core 
structure as its second column, lowest energy of the cluster (eV) as third 
column and no of steps that we have done to get these lowest energy 
structures as the fourth column of the table. The recognized structural 
evolution of the core-shell gold nanoclusters will be useful for future 
catalysis research. 

Number of 
atoms in Aun 

Number of 
core structure 

atom 

The energy of 
structure (eV) 

Number of 
steps 

59 9 -162.44 14,400 

60 9 -165.48 15,048 

68 12 -189.08 16,952 

70 13 -195.48 13,350 

92 20 -260.49 9,141 

106 25 -302.46 12,214 

112 28 -320.78 12,983 

138 39 -398.28 8,416 

156 51 -453.59 5,926 

166 53 -484.62 4,540 

168 55 -490.05 4,819 

 

Table 1: Energy and the number of core structures atom of the structure 

of Aun. 
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For Au59 and Au60 -: For the LM search for Au59, the MCMC 

simulations were run at 366 K up to 14,400 steps using a random initia l 
structure such that many structures are obtained from these steps. Using 
ANNPs with simulations, the lowest energy observed for the structure 
having 50 atoms in the outer shell (colored yellow) and 9 atom core-shell 
shown in green in figure 3. For the LM search for Au60, 15,048 steps of 
MCMC simulation were run using random initial structure at 366 K. Many 
structures were obtained from these steps and the structure observed with 
the lowest energy have 51 atoms in the outer shell (colored yellow) and 9 
atom core-shell i.e. same as Au59 in green color as shown in figure 4. 

 

 

 

 

 

 

 

 

Figure 3: (a) low-energy structure of Au59 and (b) 9-atom core structure 

of Au59. 

 

 

 

 

 

 

 

 

Figure 4: (a) low-energy structure of Au60 and (b) 9-atom core structure 

of Au60. 

 

 
 

(a) (b) 

 

 
 

(a) (b) 
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For Au68 and Au70 -: For the LM search for Au68, 16,952 steps of 

MCMC simulation were run using a random initial structure at 366 K and 
the lowest energy structure from these observed in yellow-colored outer 
shell consists of 56 atoms The core-shell of the low-energy structure of Au68 
having a 12-atoms structure, in which 11 atoms are surrounding the one 
central atom but one apex atom is missing here. That’s why the arrangement 
of the core looks like an icosahedron but not the perfect icosahedron which 
is in green color that is shown in figure 5. For the LM search for Au70, 13350 
steps of MCMC simulation were run using a random initial structure at 366 
K and we observed the lowest energy structure of Au70 using ANNPs that 
has yellow-colored outer shell consists of 57 atoms and the core-shell 
consists of 13-atoms in which the outer 12 atoms are surrounding the one 
central atom. This arrangement of the core structure is perfect icosahedron 
which is in green color that is shown in figure 6. 

 

 

 

 

 

 

 

Figure 5: (a) low-energy structure of Au68 and (b) 12-atom core structure 

of Au68. 

 

 

 

 

 

 

Figure 6: (a) low-energy structure of Au70 and (b) 13-atom core structure 

of Au70. 
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For Au92 and Au106 -: For the LM search for Au92, 9,141 steps of MCMC 

simulations were run using a random initial structure at 366 K. Many 
structures are obtained from these steps and the lowest energy structure 
consists of 72 atoms in the outer shell (colored yellow) and 20 atoms core-
shell which are arranged red color of 13 atoms in an icosahedral manner 
with 7 bridging atoms which are in green color for better visualization. This 
is not the regular icosahedron structure, because the lower ring is leaning 
towards the bridged atom that deviates it from the perfect geometry as 
shown in figure 7. For the LM search of Au106, 12,214 steps of MCMC 
simulation were run using a random initial structure at 366 K and we 
observed the lowest energy structure from these simulation steps which has 
yellow-colored outer shell consists of 81 atoms and the core-shell of Au106 
consists of 25 atoms which are arranged red color of 13 atoms in an 
icosahedral manner with 12 bridging atoms which are in green color. Here 
also, the lower ring is more leaned towards the bridged atom that’s why it 
is not the regular icosahedral structure that is shown in figure 8. 

 

 

 
 
 
 
 
 
 
 
 
Figure 7: (a) low-energy structure of Au92 and (b) 20-atom core structure 

of Au92. 
 
 
 
 
 
 
 
 
 

 

   

(a) (b) 
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Figure 8: (a) low-energy structure of Au106 and (b) 25-atom core structure 

of Au106. 
 
For Au112 and Au138 -: For the LM search of Au112, 12983 steps of 

MCMC simulation were ran using a random initial structure at 366 K and 
we observed the lowest energy structure from these simulation steps which 
has yellow-colored outer shell consists of 84 atoms and the core-shell of 
Au112 consists of 28 atoms which are arranged red color of 13 atoms in an 
icosahedral manner with 15 bridging atoms which are in green color. This 
is not the regular icosahedral structure, because the lower ring is leaning 
towards the bridged atom as shown in figure 9. For the LM search of Au138, 

8,416 steps MCMC simulation were run using a random initial structure at 
366 K. we observed the lowest energy structure from these simulation steps 
which has yellow-colored outer shell consists of 99 atoms and the core-shell 
of Au106 consists of 39 atoms but their arrangement is quite different from 
the icosahedral symmetry which is in green color that is shown in figure 10.  
 
 
 
 
 
 
 
 
 
 
 

 

   

(a) (b) 



 

23 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: (a) low-energy structure of Au112 and (b) 28-atom core structure 

of Au112. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: (a) low-energy structure of Au138 and (b) 39-atom core 

structure of Au138. 
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For Au156 -: For the LM search for Au156, 5,926 steps of MCMC 

simulations were run using a random initial structure at 366 K. Many 
structures are obtained from these steps and we observed the lowest energy 
from these simulations using ANNPs that have 105 atoms in the outer shell 
(colored yellow) and arrangement of the atom in the outer shell-like an 
icosahedral but not perfect icosahedral structure that is shown in figure 
11(a). and the core-shell consists of 51 atoms which are arranged in an 
icosahedral manner with few missing atoms as shown in figure 11(b). While 
the inner core-shell consists of red color 12 atoms which are arranged in a 
perfect icosahedral manner as shown in figure 11(d). And the outer core 
consists of green color of 39 atoms which are arranged in an icosahedral 
manner with few missing atoms. That’s why it is not a regular icosahedral 
structure is shown in figure 11(c). 

 
 
 
 
 
 
 
 
 
                                                                                
                                                                     
                
       
                          
                                                                            
 
 
 
 
 
Figure 11: (a) low-energy structure of Au156, (b) 51-atom core structure 

of Au156, (c) 39-atom outer core structure of Au156, and (d) 12-atom inner 
core structure of Au156. 
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For Au166 -:  For the LM search for Au166, 4540 steps of MCMC 

simulations were run using a random initial structure at 366 K and from 
these simulation steps, we observed the lowest energy from these 
simulations using ANNPs that have 113 atoms in the outer shell (colored 
yellow) that is shown in figure 11(a). and the core-shell is having a 53-atom 
structure in which atoms are arranged in an icosahedral manner with few 
missing atoms as shown in figure 12(b). The inner core-shell consists of a 
red color of 13-atom structure that is a perfect icosahedron having a central 
atom as shown in figure 12(d). while the outer core-shell structure consists 
of green color of the 40-atom structure, having the icosahedral geometry 
with few missing atoms that deviates it from perfect geometry that is shown 
in figure 12(c). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 12: (a) low-energy structure of Au166, (b) 53-atom core structure 

of Au166, (c) 40-atom outer core structure of Au166, and (d) 13-atom inner 
core structure of Au166. 
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For Au168 -: For the LM search of Au168, 4819 steps of MCMC simulations 

were run using a random initial structure at 366 K and we observed the 
lowest energy structure from these simulation steps which has yellow-
colored outer shell consists of 113 atoms and arrangement of the atom in 
the outer shell-like an icosahedral but not perfect icosahedral structure that 
is shown in figure 13(a). the core-shell of Au168 consists of 55 atoms 
structure, with the irregular icosahedral geometry i.e. shown in figure 13(b). 
The inner core-shell consists of the red color of 12 atoms structure, having 
the icosahedron arrangement with the central atom but one apex atom is 
missing as shown in figure 13(d). And the outer core-shell consists of green 
color of the 43-atom structure, having icosahedral geometry but not regular 
as shown in figure 13(c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 13: (a) low-energy structure of Au168, (b) 55-atom core structure 

of Au168, (c) 43-atom outer core structure of Au168, and (d) 12-atom inner 
core structure of Au168. 

 

 

 
 

(d) 
(c) 

(b) (a) 

 

 



 

27 
 

We performed structure evolution of low energy gold nanoclusters Aun (n 
= 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168) exhibit core-shell type 
structures by using MCMC simulations combined with ANNPs. From these 
LM structures of different sized structures, we observed that as the number 
of gold atom increases, the core-shell atoms increase and stability of core-
shell is also increased. As we choose the size selected magic number cluster, 
so the most stable assumed structure for it is an icosahedron. For the above 
structures of Aun (n = 59, 60, 68, 70) we found that as the number of gold 
atom increases, the stability of the core-shell structure also increases. In the 
low-energy structure of Au70, the arrangement of core-shell is perfect 
icosahedron as shown in figure 6(b) as compared to Aun  (59, 60, 68)  as 
shown in figure 3(b), 4(b) and 5(b) respectively. Also for the structures of 
Aun (n = 92, 106, 112, 138, 156, 166, 168) the stability of the core-shell 
structure increases as the number of gold atom increases and formed a new 
layer core-shell which is also going to be like an icosahedral stable structure. 
Therefore, we can conclude that the structure evolution of gold nanoclusters 
Aun (n = 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168) exhibit stable 
icosahedral core-shell type structure using MCMC simulations with 
ANNPs. 
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Chapter 5             

Conclusion 
 
In this project, we have evaluated the core-shell of gold nanoclusters Aun, 
where n = 59, 60, 68, 70, 92, 106, 112, 138, 156, 166, 168. By this 
evaluation, we found that the most stable structure of gold nanoclusters 
exhibit core-shell type structures. The stable structure of Aun (n = 59, 60) 
exhibits 9-atom core, Au68 exhibits a 12–atom icosahedral core with one 
missing apex atom, and Au70 exhibits icosahedral core structure. While the 
stable structure of Aun (n = 92, 106, 112) exhibits 20-atom, 25-atom and, 
28-atom respectively, which are arranged in an icosahedral manner with 
bridging atom that is not the regular icosahedron structure. In the stable 
structure of Au138, the core consists of 39 atoms but their arrangement is 
different from the icosahedral symmetry. The core consists of 51-atom and 
53-atom structure of Au156 and Au166 in which atoms are arranged in an 
icosahedral manner with few missing atoms. While the core consists of a 
55-atom structure of Au168 with the irregular icosahedral geometry. Here, 
we conclude that as the number of gold atom increases, the core-shell atoms 
also increase which leads to an increase in the stability of the core-shell 
structure. The recognized structural evolution of the core-shell gold 
nanoclusters will be useful for future studies of the structure-catalytic-
activity relationship. 
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