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ABSTRACT 

 

The development of fast and efficient processors is an inevitable requirement in today’s 

automated world. New architectures that are robust and can handle complex real-time 

applications have to be developed. But how to find the optimum architecture and the 

hardware configurations in the shortest and accurate way is an open question. If the 

configurations must be changed after the prototype is created since it does not satisfy the 

customer requirements, then it will become a tedious and time-consuming process and 

the whole flow will need to get repeated again which is highly undesirable. Therefore, an 

early and exact determination of an efficient processor architecture is needed before the 

hardware development even starts. 

Modern processing systems with heterogeneous components have numerous 

configuration and design options such as the number and types of cores, frequency, and 

memory bandwidth. Hardware architects are confronted with hundreds of design 

parameters which can be combined in many arbitrary ways to develop new architectures. 

Different hardware and software configuration parameters should be evaluated by 

estimating the power and performance corresponding to each set without the availability 

of the real hardware. This highlights the importance of rapid performance and power 

estimation mechanisms. 

In this work, we propose a method to estimate power and performance of different 

workloads for a hardware configuration using machine learning techniques. After training 

the model with the data from previous generation processors, we will be able to predict 

the performance and power of the new generation processors with different hardware and 

workload features associated with that processor without having to run the simulation. 

This can help the architecture design team to select the best architectural configuration 

and build the design with optimal power and performance in a faster way to decrease 

turnaround times in the product lifecycle and increase the product goodness. 
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Chapter 

1. Introduction 

 

1.1 Power and Performance Estimation 

Power and Performance estimation of processors is an 

important stage in the development of an SOC because this 

will eventually pave way to provide the best architecture 

possible to meet the demands of the customer [1]. 

Benchmark developers work on modelling the processor 

performance for a given workload and processor architects 

estimate the power and performance with respect to these 

workloads. Thus, while developing the architecture, 

hardware architects perform pathfinding with respect to 

performance and power, incorporates the changes to be 

made thereby developing the best architecture for 

production. Performance and Power estimation is an 

important and crucial stage in SOC development to meet the 

time-to-market constraints. So, developing a power and 

performance estimation model which is fast and accurate can 

be very useful to processor architects since it will help them 

to design and fine tune future processors. It can help them to 

understand how the variation in different knobs like 

frequency, cache size, etc. can affect power and 

performance. From this they can understand how a processor 

would behave when subjected to a particular workload 

which emulates a certain application or event. 
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1.2 Power and Performance Engineering 

Performance improvement is a constant demand from 

customers and it’s a responsibility to set and meet new 

performance and power targets with each new generation of 

processors.  Performance improvement is as important as 

functional improvement since a new feature added by 

compromising performance is futile. Thus, always 

performance should be kept in mind while any architectural 

changes are made. In the product lifecycle we have 

Technology Readiness [2], Product Definition, Pre - Silicon 

Validation, Post Silicon Validation and Post PRQ. 

Technology Readiness includes setting product performance 

requirements, Workload modelling and Design Space 

Exploration using different methods like analytical models. 

Performance Requirements are set by various factors like 

Current product Performance, Market Research, Customer 

Feedback, Academic Research, Industry trends, 

Generational Requirements, Competitive Requirements, 

Landing zone requirements.  

1.3 What are workloads? 

Workloads or benchmarks are a means to measure how the 

processor performs in a customer environment. In fact, the 

workloads emulate the customer environments. Workload 

creation is in itself a whole different domain where lot of 

effort is put to create the workloads that best mimic the 

environments on which the processors run [3]. It helps us to 

know how well our processor will perform by measuring 

their power and performance before it actually reaches the 

customers and ranks them among their peers. So, finding a 

variety of workloads that together represent a large fraction 
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of customer environments is crucial to meet product 

performance objectives. Then we analyze how these 

workloads scale over a variety of parameters like frequency 

changes, core counts, cache size, etc. 

 1.4 Design Space Exploration 

 

Figure 1. 1: Workflow in power and performance 

estimation 

 

The workloads which emulate the customer environments 

are fed to different models like analytical, cycle accurate 

models or through hardware experiments by which the 

processor performance and power is calculated. If the design 

goals are not met then we go back and change different 

knobs like frequency, cache size, number of cores and other 

hardware configurations and estimate the power and 

performance gains using any of the models. This process is 
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repeated until the design goals are met and finally high-level 

design is formed. Figure 1.1 illustrates the overall workflow 

till the high-level design formation. 

1.5 Artificial Intelligence 

Artificial Intelligence is a branch which is growing and 

being used extensively to solve many problems in day-to-

day lives and in the industries [4]. It is a way to enable 

machines to think like human brain. Machine learning is a 

subset of Artificial Intelligence where the system learns from 

the data given to it. It analyzes, understands and finds a 

certain pattern in the data. It can take decisions with 

minimum human intervention. The computer is trained to 

automate tasks which would otherwise be impossible or 

exhaustive for a human being. Deep Learning is a subset of 

machine learning that mimics the functioning of neurons in 

human body. It uses neural networks to analyze different 

patterns in the data. The depth of the model is decided by the 

number of layers in the model. Figure 1.2 describes how 

Artificial Intelligence, Machine Learning and Deep 

Learning are related.                          

 

Figure 1. 2: Artificial Intelligence and the subsets 
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1.6 Machine Learning and its types 

Machine Learning algorithms can be trained using three 

prominent methods: Supervised Learning, Unsupervised 

learning and Reinforcement Learning. 

In Supervised Learning, we have prior knowledge of the 

output values of  training samples. We have labelled inputs. 

Hence, the major goal in this type of learning is to learn a 

function, given a sample of data and desired outputs, that 

best approximates the relationship between the input and 

output variable [5]. Supervised learning can be further 

divided into Classification and Regression problems.  

Classification problems are when the output variable is 

category which can be a binary like if you have ‘a disease’ 

or ‘not’ or a number of categories like predicting different 

colours ‘red’, ‘blue’, etc. Regression problems [6] are when 

the output data is a real value. Eg. housing prices, weights, 

etc. 

In Unsupervised machine learning [7], the input dataset is 

unlabeled. Here the goal is to model the underlying structure 

or distribution of data so that the model can learn more from 

the data. Algorithms are left on their own to learn the 

interesting structures in the data. It is further divided into 

clustering and dimensionality problems.  

In a clustering problem [8] the aim is to find the inherent 

groupings in the data like grouping the customers according 

to purchase behavior. In dimensionality problem [9], the 

model discovers rules for large portion of data like people 

who buy X also tend to buy Y.  
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In Reinforcement Learning, trial and error method is used to 

come up with a solution for the problem [10]. To enable the 

machine to do what we want, rewards or penalties are 

awarded according to the action it performs. The goal is to 

maximize the total reward. The model does not have any 

clue on how to solve the puzzle. It is upto the model on how 

to perform the task and maximize the reward starting from 

totally random trials to finishing with sophisticated tactics. 

The input is an initial state from which the model starts. 

There can be many possible outputs as there are variety of 

solutions to the problem. The model is trained on the input, 

it returns a state and the user decides whether to reward or 

punish the model based on the input. The model keeps 

learning and the best solution is decided based on maximum 

reward. Figure 1.3 shows the types of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 1. 3: Types of Machine learning 
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The problem we have in hand is a regression problem and 

uses supervised learning method where the power and 

performance values are predicted based on the input data 

from previous generations of processors. 

1.7 Motivation 

Estimating power and performance for the software stack 

running real-world applications is a key aspect to pre-Si 

system-level Hardware design. Current techniques are either 

fast enough to run the software stack but are quite inaccurate 

or provide accurate projections but are slow. With increasing 

accuracy, the speed of the simulators falls off. In the cycle-

accurate (CA) performance simulators, the speed of the 

simulator typically drops to the extent where it is difficult to 

run actual software on top of the system [11] [12]. The new 

processors would be used on sophisticated applications 

which require the need to run long running workloads to 

estimate power and performance and yet provide feedback 

in shorter time. Thus, we can identify a gap in the present 

modelling methodology. We need a faster yet accurate 

model by which long running workloads can be run easily in 

shorter time and hence the power and performance can be 

estimated for the particular hardware configuration. 

1.8 Objective 

We propose a methodology here which makes use of 

Machine Learning techniques in order to predict power and 

performance of processors in a shorter time with fair 

accuracy. It extends the concept of using performance 

monitoring counters [13] [14] which can be broadly divided 

into hardware and workload features, to estimate power and 
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performance. We also have looked at an Automated ML 

solution which can be an extension to this work to have the 

whole system in place on a larger scale and we have explored 

the feasibility of using this solution. Thus, the proposed flow 

will result in early performance and power projection and 

reduces the turnaround time for the projection. It can also 

scrape out the need to develop performance simulators with 

each generation of processors which is in itself a time-

consuming process. Instead here we untap the potential of 

previous generation data of the processors via Machine 

Learning Techniques to produce an effective methodology 

for projection of power and performance. 

1.9 Organization of Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 covers the review of past works on power and 

performance estimation and the proposed methodology. 

Chapter 3 explains how hardware and workload features can 

be used to predict performance of the processor using 

Machine Learning Techniques and how these features have 

a direct correlation in impacting the power and performance. 

Chapter 4 presents the Power estimation using the 

performance monitoring counters and how the Machine 

Learning model can be tuned to increase the prediction 

capabilities. Chapter 5 introduces the Automated ML 

modelling solution which offers a wide range of capabilities 

and the feasibility of using this solution to estimate power 

and performance. Chapter 6 covers the results achieved 

using this methodology to predict the power and 

performance as well as the results using the automated ML 

solution. We have also seen how the different categories of 



9 

 

workloads respond differently to the Machine Learning 

model. Chapter 7 explains the scope of future work in this 

area and the conclusion. 
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 Chapter 

2. Review of past work and problem 

formulation 
 

Power and performance projection are important part of 

SOC lifecycle. Hence the techniques used for these are 

widely explored.  

2.1 State of the art technologies for 

Performance Estimation 

There are different methods existing to perform power and 

performance estimation. The tradeoff here is between 

accuracy and speed. 

2.1.1 Performance Simulators 

C++ based simulation environment or System C 

environment [15] are used for detailed processor 

performance stimulation using real life benchmarks. Many 

works have been developed in this space like building a 

System C framework for design space exploration and 

processor simulation [16]. Co-simulation methodologies 

using System C as hardware modelling language and on an 

Instruction Set Simulator as model of the processor has been 

explored [17]. The disadvantage with this approach is that it 

is very time consuming as large number of instructions are 

executed per benchmark. Each benchmark would contain a 

several millions of instructions. Thus, simulation of such 

large amount of instruction counts would take several hours 

or days even on today’s fastest machines. 
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2.1.2 Analytical Models 

They use algebraic sub-models and analytical formulas to 

estimate power and performance. These provide an insight 

into the interaction between the application and processor. 

They might use simple mathematical equations for a 

particular part of the design [18] to complex processor 

models with numerous formulas. They are much faster than 

cycle level simulation. There are two steps involved in 

estimation an application performance on a particular 

processor configuration. First step is to profile the 

application and the analytic model is applied on the top of 

the profiled data [19]. The next step is to apply mathematical 

formulas. Though this is a faster approach, accuracy is much 

lesser than cycle accurate simulators. If the model has to be 

more accurate, there is a need to formulate more complex 

formulas and hence it leads to a time-consuming 

development phase. Also, every design change poses the risk 

of complete invalidation of the postulated formula and hence 

it is much difficult to start all over again. We can see 

processor models directed at performance evaluation in [20] 

and [21]. However, in [22] the process of formulation of 

such a model and the enormous efforts behind it becomes 

evident. 

2.2 State of the art technologies for 

Architectural power modelling 

It is known that design-based power estimation is more accurate 

than architectural power modeling. But design-based power 

estimation is very compute-intensive and requires stable RTL, 

which is not available until late in the project. Hence 

architectural power modelling is used to deliver usable results 
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very early in the lifecycle of a project [23]. In order to best 

incorporate available information from design-based tools, 

architectural power models are typically designed in an 

evolutionary chain, with the power model for the newest product 

being represented as a set of deltas against the previous product’s 

power model. At the oldest product in the chain, a power model 

built via regression against a trusted design-based power model 

is used. As products move forward in their lifecycle, gradual 

improvements to the quality of the power model are made and 

automatically carried through to subsequent generations in 

parallel development. The older power models are gradually 

changed into models which are directly regressed against a 

design-based power model. As a result of this methodology, for 

much of their lifetime a power model is actually defined in terms 

of scaling factors or features, which represent deltas against the 

previous power model. The best solution to estimate power 

using this methodology is to build power estimators into cycle 

accurate simulators which are used to understand the effect of 

architectural choices in performance [24]. 

2.3 Current Workflow 

The most commonly used flow for architectural performance 

and power projection are performance simulators [25]. The 

input for the simulator are the workloads which are large 

instruction traces [26] and the output from simulators are the 

stat files which are fed into a database. 

A configuration is called an experiment. A study contains 

one or more experiments. Studies that run on performance 

simulator produce stat files. An experiment contains all the 

simulator results for the traces ran on the corresponding 

configuration (jobs). Stat files include stats of different 
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metrics, for many traces, and many experiments. Figure 2.1 

describes the study structure. 

 

 

Figure 2. 1: Study Structure 

 

The simulator outputs stat files for each job, which include 

many metrics, as well as logfiles describing the status of the 

job run on the simulator. Stat files and log files are the input 

of the database management solution. Simulators usually run 

a trace list (N traces) on various configurations (M cfgs). 

Each run is called a job (ie.1 trace on 1 cfg, total: NxM jobs). 

Each job run produces a stat file with various metrics. These 

stats are uploaded into the database management solution. 

Figure 2.2 is a simplified diagram of how power and 

performance is projected using the current flow. 
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Figure 2. 2 Current Workflow 

2.4 Proposed model 

A particular set of configurations and workloads would 

produce a given performance metric and power. The most 

commonly used metric for performance measurement is the 

instructions retired per cycle. In this method the input data is 

a combination of workloads and several metrics which has 

been obtained from the previous generations and we apply 

ML algorithms over this data to estimate power and 

performance. The target would be any of the performance 

metric like instructions retired per cycle or power. The inputs 

or features affecting the target will be workloads and 

configurations. Thus, the target can be predicted for a given 

set of workload and configurations. The result is compared 

to enterprise solution which automatically provides a 

leaderboard of ML models. Finally, we will see how this 

methodology performs at par with the state-of-the-art 

technologies. 
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Chapter  

3. Performance Estimation using 

Machine Learning Techniques 
 

 3.1 Dataset 

Design architects try different configurations on benchmarks 

or workloads and project power and performance at an early 

stage of RTL to make chips that would meet the product 

requirements. Studies run daily on performance simulators 

thereby producing thousands of stats files. Thus large 

magnitude of data is produced. This data is stored in a system 

used for architecture performance work making the storage, 

management, analysis and visualization of such large 

amounts of data easier. The data used for this model is taken 

from this system. Figure 3.1 shows the how the data is 

handled in the machine learning process.  

 

 

 

 

 

 

 

 

 

 

Figure 3. 1: Machine learning steps 
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3.2 Training, Validation and Testing Set 

There were 1436 traces in total. Out of which 677 traces 

were used for training and for validation. Using this, the 

model was trained and used to project the data for testing set 

which consist of 759 traces. These traces were also split 

according to the eleven different categories in order to see 

the sensitivity of each category to prediction. Figure 3.2 

shows the classification of data into three different 

categories during the machine learning process. 

 

 

 

 

 

 

 

 

Figure 3. 2: Classification of data in Machine Learning 

3.3 Target 

The metric chosen to measure performance here is IPC 

(Instructions retired per cycle). It is one of the major aspects 

of a processor’s performance. It is the average number of 

instructions executed per clock. 

Performance ∝ 1/(run time)  

1/(run time) = (Frequency*IPC)/instruction count 

An increase in IPC indicates an improvement in processor 

performance. It usually ranges between 0.3 to 4. It is an 

excellent metric to judge the overall performance of a 

Training data (optimize 

the model’s parameter 

values) 

Validation 

data (optimize 

the model’s 

architecture) 

Testing data 

(evaluate the 

optimized 

model) 
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processor with respect to different applications. An IPC of 1 

is considered acceptable for HPC applications but the 

expected IPC varies according to the different application 

domains. Its value is affected by various factors like memory 

stalls, instruction starvation, branch miss prediction, cache 

misses and long latency instructions. 

3.4 Metrics 

The features that would help in target prediction are chosen 

from a set consisting of large number of metrics. The total 

set of metrics was divided into into: 

1) Workload dependent features: 

These features do not change from generation to generation. 

Their values are dependent on the particular benchmark 

only. It is independent of the change in processor 

configurations. Examples for these features are int_32b, 

execution_count_simd_fp, etc. 

2) Hardware dependent features: 

These features changes from generation to generation 

depending on the processor hardware configurations. 

Example: icache misses, l2_hit, dcu_miss,etc. 

3.5 Features 

The features chosen to predict the IPC are as follows:  
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3.5.1 Hardware dependent features 

 

3.5.1.1 Baclear: 

It estimates the fraction of cycles lost when an early branch 

prediction is corrected by a later branch prediction. The 

branch prediction unit (BPU) is unable to provide correct 

prediction and it is corrected by other branch handling 

mechanisms. It happens when the code has many branches 

that can’t be consumed by BPU. 

 

3.5.1.2 alloc_window: 

This metric measures how memory is allocated for the 

window of a given size. It is given by allocate / 

cycles_uop_allocated. 

 

3.5.1.3 dtlb_hit: 

 

 It estimates the number of times the first-level data TLB 

(DTLB) is hit. The memory                  contains a page table 

which maps virtual and physical memory. To reduce 

reference to these recently used portions of these are cached 

in Translation-look-aside buffers (TLB) which are consulted 

for every virtual address translation. Similar to data caches 

farther the request hast to go to get satisfied worse the impact 

on performance. 
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3.5.1.4 icache_miss 

 

Instruction cache misses are failed attempts at reading data 

in cache which results in main memory access leading to 

longer latency. They cause the largest delay because the 

processor has to wait till instruction is fetched from main 

memory. 

 

3.5.1.5 l2_hit 

 

It is the last and longest latency level in memory hierarchy 

before the main memory is accessed. They incur a 

performance penalty. 

 

3.5.1.6 stlb_hit 

 

Loads that hit the second level data translation buffer. 

 

3.5.1.7 all_branch_retired 

 

Number of branch instructions retired for all branch types. 

 

3.5.1.8 itlb_miss 

 

It is the number of page walk requests due to instruction 

translation look aside buffer misses. 
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3.5.2 Workload dependent features: 

 

3.5.2.1 skl_execution_count_simd_fp 

 

It is the count of single instruction, multiple data floationg 

point instructions. 

 

3.5.2.2 int_32b 

 

It is the share of int 32b uops executed. It is given by 

skl_execution_count_int_stack_32b / execution_count. 

 

3.5.2.3 int_64b 

 

It is the share of int 64b uops executed. It is given by 

skl_execution_count_int_stack_64b / execution_count. 

 

3.5.2.4 x87 

 

It is the share of x87 uops executed. It is given by 

skl_execution_count_X87 / execution_count. 

 

3.5.2.5 vec 

 

It is the share of x87 uops executed. It is given by 

skl_execution_count_simd_fp / execution_count. 
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3.5.2.6 INST_FDIV 

 

There is an integer divide functional element within the 

integer unit. This is the count of instruction required in 

executing a floating point division. 

 

 

3.6 Flow 

 

Figure 3. 3: Proposed Workflow for Performance 

Estimation 

Figure 3.3 describes the whole flow used in this system. The 

hardware and workload features associated with the different 

workloads are fed to the machine learning models as well as 

an automated ML solution. This data is used to train the 

model. Using this model, we can predict the performance of 

the next generation processors. 

 



22 

 

3.7 Machine Learning Steps 

1. Problem formulation 

2. Data Collection 

3. Data preparation 

4. Model Selection 

5. Training the model 

6. Evaluation of the model 

7. Hyperparameter tuning 

8. Making predictions 

3.8 Data Exploration and Preprocessing 

The main steps involved in data preparation are data 

formatting, cleaning and sampling [27]. 

3.8.1.1 Data Formatting 

If the data is not available in a format you can work with, 

this step is used. The data was present in the relational 

databases was converted into an excel format so that 

machine learning steps could be done easily on it. 

3.8.1.2 Cleaning the data 

Not all data instances carried full data. Hence this missing 

data has to be fixed first. There are several methods that can 

be used here like deleting the rows which contains missing 

data, mean/median imputation and predicting the missing 

values. Deletion of rows is the most most simple approach, 

but the disadvantage is that it reduces the sample size. We 

have used mean imputation here where the mean value of the 

particular metric which had empty rows was calculated and 

the mean was imputed for the missing rows. 
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3.8.1.3 Sampling the data 

Sometimes there would be far more data than necessary, and 

we need to take only the necessary data otherwise it would 

lead to longer running times reducing the efficiency of the 

machine learning model. 

3.9 Model Building 

In machine learning, it is important to choose a correct 

model for training. A model is a mathematical 

representation of a real-world process. This model is 

provided with the training dataset and the model learns 

from it. Then validation is done on validation dataset from 

the results of which the best model is chosen from. Here the 

model used is Random Forest Regressor. Also, the training 

dataset was fed into an automated enterprise solution for 

machine learning which give us a dashboard of the best 

models that can be used for the particular problem 

depending on the validation score. 

3.10 Decision Tree Regression 

It builds the regression models in the form of a tree structure 

[28]. It breaks down the dataset in to smaller and smaller 

subset and the decision tree is incrementally developed. It is 

arrived at a result by asking a series of questions to the tree, 

each question reducing the set of values that can be a 

possible output until the model gets confident to make a 

single prediction. The model determines the content and 

order of questions. The result is a tree with decision nodes 

and leaf nodes. A decision node has two or more branches. 

Leaf node represents a decision. The topmost decision node 
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in a tree is called root node. It forms an excellent foundation 

for various other models like random Forest [29]. Figure 3.4 

show the Decision Tree Regression Model. 

 

Figure 3. 4: Decision Tree Regression 

 

3.11 Random Forest Regression: 

It is a supervised machine learning algorithm which depends 

on ensemble learning. Ensemble learning means different 

algorithms are joined or you repeat the same algorithm 

several times to build a more powerful prediction model. The 

Random Forest algorithm combines several algorithms of 

same type, i.e. Multiple decision trees and hence a forest is 

created and hence the name Random Forest [30] [31]. The 

basic steps involved I Random Forest algorithm are: 

1. Pick N random data instances from the dataset. 
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2. Build a decision tree based on these instances. 

3. Choose the number of trees you want and repeat steps 1 and 

2. 

4. For Regression problem, each tree in the forest predicts an 

output Y for each record. The final value is decided by taking 

average of values predicted by all the trees in the forest. 

3.12 Evaluation of the model 

Evaluation of the model was done using RMSE (Root Mean 

Square Error). Root mean square is a standard measure to 

calculate the error in predicting the target in a machine 

learning model. The lower the RMSE the better your model 

has learnt [32].        

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁
 

It measures the standard deviation of predicted values 

against actual values. 

3.13 K- Fold Cross Validation 

Performance of a model increases as the size of training set 

increases. Also, the model performance estimates are more 

consistent when the validation set is large. Hence it is 

advisable to use as much data possible in validation and 

training. Hence, we use the cross-validation method to 

maximize the data available for each of these sets [33]. This 

process involves: 

1. Splitting the data into two or more sections called folds. 
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2. Creating one model per fold, the data assigned to that fold is 

used for validation and the rest is used for training. 

 

 

Figure 3. 5: K- Fold Cross Validation 

 

Advantage: 

It gives better estimate of the model performance. 

Disadvantage: 

It has multiple passes and hence it is computationally 

expensive and takes longer to run. 
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3.14 Making predictions 

The predictions were made on test data which was a 

complete Blackbox to the machine learning model. The test 

data consisted of 759 data instances whose IPC were 

predicted. 
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Chapter 

4. Power Estimation using Machine 

Learning Techniques 
 

4.1 Overview 

Power is computed by multiplying a set of event costs (EC) 

by the corresponding performance simulator derived activity 

factor (AF). ECs are organized in a hierarchy with the FUBs 

forming the lowest level and proceeding upwards through 

Units, Clusters and finally Core as a whole. 

iEC
n

i
iAFidlepowersFub *

1
' 

=
+=

 

Power is usually computed as dynamic capacitance, Cdyn, 

which is independent of operating voltage and frequency. 

AFs are unitless ratios in the range [0,1] that represents the 

portion of cycle in which a particular activity occurs. ECs 

are the sum of dynamic capacitances associated with a single 

occurrence of a particular activity. Each fub is also assigned 

an idle EC, which is the dynamic capacitance produced 

every cycle corresponding to an AF of 1. The idle EC 

represents the free running clocks.  

 4.2 Dataset 

The data is obtained by running the same set of benchmarks 

used for power estimation on a tool which does Architectural 
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power modelling for the core. Thus, the power numbers 

corresponding to each workload was obtained. 

4.3 Training, Validation and Testing Set 

The traces used for power estimation are the same as that of 

performance estimation, thus 1436 traces were used. 677 

traces were used for training and for validation. This data 

was used to train the model and the target was predicted for 

759 traces which forms the testing set. 

4.4 Target 

The target was the power numbers for each particular 

workload. 

4.5 Features 

The features used to predict the power were the hardware 

dependent and workload dependent metrics. Some metrics 

which were used to predict the performance were reused 

here and some new metrics were added. 

4.5.1 Hardware dependent features 

 

4.5.1.1 dtlb_hit 

 

4.5.1.2 all_branch_retired 

 

4.5.1.3 alloc_window 

 

4.5.1.4 baclear 

 

4.5.1.5 l2_hit 
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4.5.1.6 stlb_hit 

 

4.5.1.7 itlb_miss 

 

4.5.1.8 cycles 

It indicates the number of cycles required to complete a 

particular instruction. 

 

4.5.1.9 Instructions retired: 

It is an important hardware performance event and calculates 

how many instructions were completely executed. 

 

4.5.1.10 mlc_data_read_for_ifu 

IFU stands for instruction Fetch Unit. It fetches up to 16 

bytes of instruction bytes each cycle from the instruction 

cache to the instruction length decoder (ILD).  

 

4.5.1.11 execution_count_wb 

 

It is the execution count for writeback caching (WB). Any 

new processor data is written to the cache and not in the 

memory. The memory write process is only performed when 

the cache data needs to be edited or purged for new content. 

 

4.5.2 Workload dependent features: 

 

4.5.2.1 skl_execution_count_simd_fp 

4.5.2.2 int_64b 

4.5.2.3 vec 
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4.5.2.4 int_32b 

4.5.2.5 x87 

4.6 Flow 

 

 
 

Figure 4. 1: Proposed Workflow for Power Estimation 

 

Figure 4.6 illustrated the flow used to estimate power using 

machine learning techniques. It uses the hardware and 

workload features from previous generation processors to 

train the Machine Learning model and predicts the power of 

next generation processors for the different workloads which 

mimics the real-world applications. 

 4.7 Data Exploration and Preprocessing: 

The major change here was in the data exploration an data 

preprocessing step to get the data in the format we required. 

The power data had to be combined with the data from 

performance simulator to map the power numbers to the 
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architectural and workload features. Once this was achieved 

the data was cleaned by imputing the null values by the mean 

of the particular feature. 

 4.8 Model building 

Two models were used here for comparison: Random Forest 

Regressor and Gradient Boosting algorithm. 

4.9 Gradient Boosting Regression 

In boosting, each tree is fit on the modified version of 

original tree [34]. The baseline for this model is the 

AdaBoost algorithm [35] which puts more weight on those 

instances which are difficult to classify and less on those that 

are handled well. It begins by training a decision tree where 

all observations are assigned equal weight. After the 

evaluation of the first tree, weights are increased on those 

observations that are difficult to classify and less on those 

that are well handled. The second tree is grown based on this 

weighted data. The idea is to improve the predictions of the 

first tree. The classification error is calculated from this 2-

tree ensemble model and we grow the third tree to predict 

the revised residuals. The same process is repeated for a 

certain number of iterations. Prediction s of final ensemble 

model is based on the weighted sum of output of previous 

trees. 

The major difference in Ada boost algorithm and Gradient 

Boosting is the way in which they identify the shortcomings 

of weak learners. Ada boost identifies it by using high 

weight data points while gradient boost performs by using 

gradients in loss function. Loss function is a measure of how 



33 

 

good the model’s coefficients are at fitting the underlying 

data. 

4.10 Hyperparameter Tuning: 

Hyperparameters define the model architecture. These 

cannot be learnt from the training process. They are fixed 

before training begins. They explain the complexity of the 

model and their parameters like how fast it should learn [36].  

 

4.10.1 Hyperparameters used for tuning 

Gradient Boosting Regressor: 

 

n_estimators: It indicates the number of boosting stages to 

perform. Since gradient boosting is fairly robust to 

overfitting, hence large number leads to better performance. 

Default value is 100. 

 

learning_rate: It determines the impact of each tree on the 

final outcome. Gradient Boost starts with an initial estimate, 

this keeps on updating according to the output of each tree. 

The learning rate controls the magnitude of this change in 

the estimates. Default value is 0.1. 

 

max_depth: It limits the number of nodes in the tree. Default 

value is 3. 

 

Subsample: The fraction of samples to be used for fitting the 

individual base learners. Default value is 1. 
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4.10.2 GridSearchCV 

 

We have used the approach of GridSearchCV for 

hyperparameter tuning. It looks through each combination of 

hyperparameters. It generates candidates from a grid of 

parameter values specified. A score function is taken to 

evaluate the parameter setting. We have chosen mean 

squared error here. 

 

4.10.3 Optimized parameters 

  

 

 

 

 

  

Table 4. 1: Optimized hyperparameters of Gradient 

Boosting Regressor 

 

Table 4.1 shows the hyperparameters obtained after tuning 

the model. The model was again trained with the new 

optimized parameters and results were calculated on the 

basis of this new model. 

 

 

 

Hyperparameter Default 

Value 

Optimal 

Value 

n_estimators 100 2000 

subsample 1 0.5 

max_depth 3 4 

learning rate 0.1 0.01 
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Chapter  

5. Power and Performance 

Estimation using automated ML 

Modelling 

 

5.1 Introduction 

It is a predictive analytics automation platform to rapidly 

build and deploy predictive models. It streamlines the data 

science process, leading to faster results and fewer 

integration steps. Figure 5.1 shows the steps involved in the 

Automated ML modelling process. 

 

 

Figure 5. 1: Steps involved in Automated ML modelling 

 

5.2 Advantages 

1. Data Exploration/ Analysis 

2. Model recommendation 

3. Time to value 

4. Prediction accuracy 

5. Data ingestion 

6. Data Export 

7. Model deployment 

8. Model export 

 



36 

 

5.3 How it works? 

To build an accurate predictive model it is required to search 

through a nearly infinite combination of data 

transformations, models, features, algorithms and tuning 

parameters. This Enterprise solution simplifies model 

development by performing a parallel heuristic search for the 

best model or ensemble of models, based on the 

characteristics of the data and the prediction target. By cost-

effectively evaluating thousands of models in parallel across 

a large cluster of servers, the solution delivers the best 

predictive model in the shortest amount of time. 

The common predictive modeling workflow is to perform an 

exploratory data analysis (EDA), select a target feature to 

predict, select a performance metric, and search for the 

algorithm to model the domain. With the solution, the 

algorithm search is automatically performed for you. 

• Import data and work with datasets 

• Optionally, set advanced options 

• Build your models 

• Evaluate your models 

• Unlock holdout 

• Make predictions 

5.4 Importing the data 

Importing the data can be done from a local file, an external 

datasource, from a URL or from HDFS. 

 

https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html#transform-feature
https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html#transform-feature
https://datarobotpoc.intel.com/docs/users-guide/basics/load-data.html
https://datarobotpoc.intel.com/docs/users-guide/advanced/index.html
https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html
https://datarobotpoc.intel.com/docs/users-guide/basics/evaluate-model/index.html
https://datarobotpoc.intel.com/docs/users-guide/basics/unlocking-holdout.html
https://datarobotpoc.intel.com/docs/users-guide/deploy/predictions/index.html
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5.5 Exploratory Data Analysis and Model 

building 

In this stage we select the target which needs to be predicted 

and the solution starts analyzing the data we provided and 

creates summary statistics based on this data. The feature 

correlation with the target is also performed in this phase. 

After this model building begins and we can choose an 

optimization metric of our choice (like RMSE) to evaluate 

the performance of the model. Once this phase ends the 

solution comes up with leaderboard which showcases the 

best models for our problem statement. 

5.6 Leaderboard 

This is one of the most important feature in this solution 

where it exhaustively search in its repository for the best 

model that would suit the data we provided and then builds 

up a leaderboard of different models depending on their 

ranking with respect to any validation metric like RMSE, 

Gini Norm, MAE, R squared, etc. New models blending 

already existing models are also used in this process. It gives 

us suggestions on which model is best for deployment, 

which is the most accurate model, and which is the fastest 

model. Figure 5.2 shows an example of how leaderboard 

looks like. 
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Figure 5. 2 Leaderboard of models 

 

5.7 Disadvantages 

The problem with this automated solution is that we have 

very less control in the overall machine learning process. It 

is difficult to choose the internal model characteristics like 

hyperparameters of our choice. Another main problem with 

this approach is that it provides less debuggability. It is 

difficult to know the exact reason why a particular model 

came at the top of the leaderboard i.e. what characteristics or 

pattern in the data made it at the top or bottom of the 

leaderboard. 
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Chapter  

6. Results and Discussion 

 

In this chapter we have discussed the results of the proposed 

method. The RMSE of various methods, error graph and 

error area are plotted.  

6.1 Performance Estimation 

6.1.1 RMSE Values 

 

Decision Tree 

Regressor 

Random Forest 

Regressor 

Automated 

Solution 

1.033 0.88 0.84 

 

Table 6. 1: RMSE Values of different models for 

performance estimation 

 

6.1.2 Error graph 

 

The grey lines in the graph indicates the deviation of 

predicted values from actual target values. The x axis shows 

the different workloads and y axis shows the predicted IPC 

values. 
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Figure 6. 1: Error Graph of Decision Tree Regressor 

 

 

Figure 6. 2: Error graph of RandomForest Regressor
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Figure 6. 3: Error Graph using Automated ML solution 

 

6.1.3 Error Area graph 

This graph indicates the deviation of predicted values from 

actual values in terms of area. The larger the error area less 

accurate is the prediction. Here x axis denotes a sample of 

workloads axis denote the predicted IPC values. 

                                          

 

     Figure 6. 4 Error Area Graph of DecisionTreeRegressor 
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          Figure 6. 5: Error Area Graph for Random Forest 

Regressor 

 

 

Figure 6. 6: Error Area Graph using Automated ML 

solution 

 

Thus, we can see that Random Forest Regressor performs 

well here among our models. 
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6.1.4 Sensitivity of different categories of traces 

to the model  

The sensitivity of different categories of traces to the model 

(Random Forest Regressor), i.e. how prediction accuracy 

varies depending on the category is calculated. RMSE of the 

predicted values of each particular category of traces is used 

as a measure to know how well the categories respond to the 

model.  

        

Table 6.2: Sensitivity of different categories to Random 

Forest Regressor for Performance Estimations 

 

CATEGORY RMSE 

AppleSAW 1.41714 

FSPEC17 0.613354 

ISPEC06 1.040431 

ISPEC17 0.748692 

SYSmark 0.92 

client 0.990454 

embedded 0.905956 

games 0.727266 

kernel 2.29 

multimedia 1.009672 

FSPEC06 (whole category 

hidden from training) 
0.929292 
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Here we can see that the category ‘kernel’ had the highest 

RMSE which means predicting IPC values for the category 

‘kernel’ produced much lesser accurate results. This is 

because this category consisted of lot of outliers in the data. 

 

6.2 Power Estimation: 

6.2.1 RMSE Values 

 

Table 6. 3: RMSE Values of different models for power 

estimation 

 

6.2.2 Error graph 

The grey lines in the graph indicates the deviation of 

predicted values from actual Power values. The x axis shows 

the different workloads and y axis shows the predicted IPC 

values. 

 

 

Random Forest 

Regressor 

Gradient Boosting 

Regressor 

(After Hypertuning) 

Automated 

Solution 

137.01 114.4 109 
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Figure 6. 7: Error Graph of Random Forest Regressor 

 

 

Figure 6. 8: Error graph of Gradient Boosting Regressor 

 

 



46 

 

 

 

Figure 6. 9: Error graph using Automated ML Solution 

 

6.2.3 Error Area graph 

This graph indicates the deviation of predicted values from 

actual values in terms of area. The larger the error area less 

accurate is the prediction. Here x axis denote a sample of 

workloads and y axis denote the predicted Power values.  

                                        

 

Figure 6. 10: Error Area Graph of RandomForestRegressor 
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Figure 6. 11: Error Area Graph for Gradient Boosting 

Regressor 

 

Figure 6. 12: Error Area Graph using Automated ML 

solution 

Thus, we can see that Gradient Boosting Regressor 

performs better here among our models. 

6.2.4 Sensitivity of the model to different 

categories of traces 

This is the sensitivity of the model (Gradient Boosting 

Regressor) on how it predicts the target values according to 



48 

 

different categories of traces. RMSE of the predicted values 

of each particular category of traces is calculated. 

 

Table 6. 4: Sensitivity of different metrics to Gradient 

Boosting Regressor for Power Estimation 

                       

Here we can see that the category ‘kernel’ had the highest 

RMSE which means predicting Power values for the 

category ‘kernel’ produced much lesser accurate results. 

This is because this category consisted of lot of outliers in 

the data. 

 

 

 

 

CATEGORY RMSE 

AppleSAW 126.08 

FSPEC17 94.41 

ISPEC06 109.38 

ISPEC17 74.94 

SYSmark 67.07 

client 96.2 

embedded 92.54 

games 151.7 

kernel 262.46 

multimedia 97.93 

FSPEC06 (whole category 

hidden from training) 187.02 
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Chapter 

7. Conclusions and Scope for Future 

Work 

 

7.1 Conclusion 

Power and Performance estimation at an early stage in SoC 

lifecycle is always the need of the hour. Here we have 

explored methods to estimate power and performance in a 

faster way and with fair accuracy making use of Machine 

learning techniques. This method can help to save lot of time 

because the traditional performance simulators and power 

estimation tools take a couple of hours to project the power 

and performance. Meanwhile here we utilize the previous 

generation data to project the power and performance for 

next generation. 

7.2 Future Work 

This machine learning technology can be further expanded 

by plugging the previous generation data to an automated 

ML solution which can provide a leaderboard of all suitable 

models from its repository, hence making it easier for us to 

choose which model can be used to predict the target. This 

can be made possible by developing a Python API which can 

automatically feed the data produced in any particular 

generation to the automated system from which the power 

and performance of the next generation processors can be 

calculated. There can be also a mechanism to identify the 

outliers in the data which potentially can reduce the accuracy 
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of the prediction and eliminate them to get better projection 

of power and performance data. 
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