
PERFORMANCE AND POWER ESTIMATION

USING DATAMINING THROUGH MACHINE

LEARNING TECHNIQUES

M.Tech. Thesis

By

GAYATRI VIJAYAKUMAR

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2020

PERFORMANCE AND POWER ESTIMATION

USING DATAMINING THROGH MACHINE

LEARNING TECHNIQUES

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

GAYATRI VIJAYAKUMAR

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2020

TNDIAI\ INSTITUTE OIl TECHNOLOGY
INDORE

CANDIDATE' S DECLARATION
I hereby certify that the work rvhich is bcing presented in the thesis entitled

PERFORMANCE AND POWER ESTIMATION USING DATAN{INING THROGH
MACIIINE LFIARNIIiG TI'ICIINIQUES in the partial firl{lllrnent o1'the rcquirernents for rhe

award of the degree of N{ASTEII OF TECIINOLOGY anci subruirrecl in the DISCIPLINE OF
ELECTRICAL BNGINEERING, Indian Institute of -l'echnology Indore, is an authelric

record of my own work carried out during the tirne period fiom July 2018 to.lune 2020 under the

supervision of Dr. Abhinoy Kumar Singh. Inspire Faculty and Dr. Saptarshi Ghosh, Assistant

Professor.

-lhe
matter presented in this tl-resis has not been sr,rbinitted by n-re for the award o1. any other

degree of this or any other institute.

1-1 * (.. {. -.a. {t'J. c

Signature of the student with date
GAYATRI VIJAYAKUMAR

This is to cenrfy that the above statement made by the candidate is correct to the best of
myiour

0E
Signature S Llperursor' of

M.Tech. thesis (with date)
DR. ABIIINOY KUMAR STNGII

Signature of PSPC Member l/l
Date:

CAYATRMJAYAKpMAR has successfully given his/her M.Tech. Oral Ex

hc,d on r,.o11lr\
I /L(P[,,,J tw, snfi

' Sd?l^h*A; 6ry/tr*r,,
Signature(s) of Supervrsor(s) of,M.fech. rhesis L7rrryy\t-,rfl Convener. DpCC
Date: 22I'b E IZO rD 6lwsu 1 Date:

Signatr-rre of the
M.Tech. thesis (with date)

DR. SAPT'ARSII GIIOSII

amlnatlon

Signature ol' PSPCMcrrber l/ I

Date: 2_?.o6. Loza

22-06-2020

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God Almighty for giving me the

strength, knowledge, ability and opportunity to undertake this Thesis work

and to persevere and proceed successfully.

I would like to express my sincere gratitude to my Thesis Supervisors, Dr.

Abhinoy Kumar Singh and Dr. Saptarshi Ghosh for their constant

support, encouragement and guidance throughout the Thesis work. I would

also like extend my heartfelt gratitude to my PSPC members, Dr. Ram

Bilas Pachori and Dr. Somnath Dey and CSP Program Coordinator, Dr.

Swaminathan R for their valuable suggestions and feedback.

Furthermore, I would also like to thank all the faculty members and the staff

at IIT Indore for their cooperation throughout my study and thesis work. I

am thankful to the Discipline of Electrical Engineering of IIT Indore for

providing all the facilities and resources required for the completion of this

work.

I am extremely indebted to Melwyn Scudder, Engineering Manager, Intel

Technology who has always been an exemplary and visionary mentor. He

always found time off his busy schedule to address my doubts and guide me

through the right path by his invaluable technical expertise.

I am also grateful to all my colleagues who were always a constant source

of happiness and motivation for their unfailing support and continuous

encouragement throughout my years of study. Finally, I express my

profound gratitude to my family who always believed in me and who are

my pillars of strength. This accomplishment would have been impossible

without them.

Dedicated to my family

i

ABSTRACT

The development of fast and efficient processors is an inevitable requirement in today’s

automated world. New architectures that are robust and can handle complex real-time

applications have to be developed. But how to find the optimum architecture and the

hardware configurations in the shortest and accurate way is an open question. If the

configurations must be changed after the prototype is created since it does not satisfy the

customer requirements, then it will become a tedious and time-consuming process and

the whole flow will need to get repeated again which is highly undesirable. Therefore, an

early and exact determination of an efficient processor architecture is needed before the

hardware development even starts.

Modern processing systems with heterogeneous components have numerous

configuration and design options such as the number and types of cores, frequency, and

memory bandwidth. Hardware architects are confronted with hundreds of design

parameters which can be combined in many arbitrary ways to develop new architectures.

Different hardware and software configuration parameters should be evaluated by

estimating the power and performance corresponding to each set without the availability

of the real hardware. This highlights the importance of rapid performance and power

estimation mechanisms.

In this work, we propose a method to estimate power and performance of different

workloads for a hardware configuration using machine learning techniques. After training

the model with the data from previous generation processors, we will be able to predict

the performance and power of the new generation processors with different hardware and

workload features associated with that processor without having to run the simulation.

This can help the architecture design team to select the best architectural configuration

and build the design with optimal power and performance in a faster way to decrease

turnaround times in the product lifecycle and increase the product goodness.

ii

iii

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

ACRONYMS .. viii

1. Introduction ... 1

1.1 Power and Performance Estimation .. 1

1.2 Power and Performance Engineering .. 2

1.3 What are workloads? ... 2

1.4 Design Space Exploration ... 3

1.5 Artificial Intelligence .. 4

1.6 Machine Learning and its types .. 5

1.7 Motivation ... 7

1.8 Objective ... 7

1.9 Organization of Thesis .. 8

2. Review of past work and problem formulation 10

2.1 State of the art technologies for Performance Estimation 10

2.1.1 Performance Simulators ... 10

2.1.2 Analytical Models... 11

2.2 State of the art technologies for Architectural power modelling 11

2.3 Current Workflow ... 12

2.4 Proposed model ... 14

3. Performance Estimation using Machine Learning Techniques .. 15

3.1 Dataset ... 15

3.2 Training, Validation and Testing Set .. 16

3.3 Target .. 16

3.4 Metrics ... 17

3.5 Features ... 17

3.5.1 Hardware dependent features ... 18

3.5.2 Workload dependent features: .. 20

iv

3.6 Flow ... 21

3.7 Machine Learning Steps .. 22

3.8 Data Exploration and Preprocessing ... 22

3.9 Model Building ... 23

3.10 Decision Tree Regression.. 23

3.11 Random Forest Regression: .. 24

3.12 Evaluation of the model .. 25

3.13 K- Fold Cross Validation .. 25

3.14 Making predictions .. 27

4. Power Estimation using Machine Learning Techniques 28

4.1 Overview ... 28

4.2 Dataset ... 28

4.3 Training, Validation and Testing Set .. 29

4.4 Target .. 29

4.5 Features ... 29

4.5.1 Hardware dependent features ... 29

 4.5.2 Workload dependent features: .. 30

4.6 Flow ... 31

4.7 Data Exploration and Preprocessing: .. 31

4.8 Model building .. 32

4.9 Gradient Boosting Regression ... 32

4.10 Hyperparameter Tuning .. 33

4.10.1 Hyperparameters used for tuning Gradient Boosting Regressor

 ... 33

4.10.2 GridSearchCV .. 34

4.10.3 Optimized parameters ... 34

5. Power and Performance Estimation using automated ML

Modelling ... 35

5.1 Introduction ... 35

5.2 Advantages .. 35

5.3 How it works? ... 36

v

5.4 Importing the data ... 36

5.5 Exploratory Data Analysis and Model building 37

5.6 Leaderboard ... 37

5.7 Disadvantages.. 38

6. Results and Discussion .. 39

6.1 Performance Estimation .. 39

6.1.1 RMSE Values ... 39

6.1.2 Error graph .. 39

6.1.3 Error Area graph ... 41

6.1.4 Sensitivity of different categories of traces to the model 43

6.2 Power Estimation: ... 44

6.2.1 RMSE Values ... 44

6.2.2 Error graph .. 44

6.2.3 Error Area graph ... 46

6.2.4 Sensitivity of the model to different categories of traces 47

7. Conclusions and Scope for Future Work 49

7.1 Conclusion ... 49

7.2 Future Work .. 49

REFERENCES .. 51

vi

LIST OF FIGURES

Figure 1. 1: Workflow in power and performance estimation 3

Figure 1. 2: Artificial Intelligence and the subsets 4

Figure 1. 3: Types of Machine learning .. 6

Figure 2. 1: Study Structure .. 13

Figure 2. 2 Current Workflow .. 14

Figure 3. 1: Machine learning steps .. 15

Figure 3. 2: Classification of data in Machine Learning 16

Figure 3. 3: Proposed Workflow for Performance Estimation 21

Figure 3. 4: Decision Tree Regression .. 24

Figure 3. 5: K- Fold Cross Validation .. 26

Figure 4. 1: Proposed Workflow for Power Estimation 31

Figure 5. 1: Steps involved in Automated ML modelling 35

Figure 5. 2 Leaderboard of models ... 38

Figure 6. 1: Error Graph of Decision Tree Regressor 40

Figure 6. 2: Error graph of RandomForest Regressor……………………40

Figure 6. 3: Error Graph using Automated ML solution 40

Figure 6. 4 Error Area Graph of DecisionTreeRegressor 41

Figure 6. 5: Error Area Graph for Random Forest Regressor 42

Figure 6. 6: Error Area Graph using Automated ML solution 42

Figure 6. 7: Error Graph of Random Forest Regressor 45

Figure 6. 8: Error graph of Gradient Boosting Regressor 45

Figure 6. 9: Error graph using Automated ML Solution 46

Figure 6. 10: Error Area Graph of RandomForestRegressor 46

Figure 6. 11: Error Area Graph for Gradient Boosting Regressor 47

Figure 6. 12: Error Area Graph using Automated ML solution 47

vii

LIST OF TABLES

Table 4. 1: Optimized hyperparameters of Gradient Boosting Regressor 34

Table 6. 1: RMSE Values of different models for performance estimation

... 39

Table 6.2: Sensitivity of different categories to Random Forest Regressor

for Performance Estimations... 43

Table 6. 3: RMSE Values of different models for power estimation 44

Table 6. 4: Sensitivity of different metrics to Gradient Boosting Regressor

for Power Estimation .. 48

viii

ACRONYMS

SOC System On Chip

PRQ Production Release Qualification

ML Machine Learning

IPC Instructions Retired per cycle

BPU Branch Prediction Unit

TLB Translation Look-aside buffer

RMSE Root Mean Square Error

EC Event cost

AF Activity Factor

EDA Exploratory Data Analysis

URL Uniform Resource Locator

HDFS Hadoop Distributed File System

1

Chapter

1. Introduction

1.1 Power and Performance Estimation

Power and Performance estimation of processors is an

important stage in the development of an SOC because this

will eventually pave way to provide the best architecture

possible to meet the demands of the customer [1].

Benchmark developers work on modelling the processor

performance for a given workload and processor architects

estimate the power and performance with respect to these

workloads. Thus, while developing the architecture,

hardware architects perform pathfinding with respect to

performance and power, incorporates the changes to be

made thereby developing the best architecture for

production. Performance and Power estimation is an

important and crucial stage in SOC development to meet the

time-to-market constraints. So, developing a power and

performance estimation model which is fast and accurate can

be very useful to processor architects since it will help them

to design and fine tune future processors. It can help them to

understand how the variation in different knobs like

frequency, cache size, etc. can affect power and

performance. From this they can understand how a processor

would behave when subjected to a particular workload

which emulates a certain application or event.

2

1.2 Power and Performance Engineering

Performance improvement is a constant demand from

customers and it’s a responsibility to set and meet new

performance and power targets with each new generation of

processors. Performance improvement is as important as

functional improvement since a new feature added by

compromising performance is futile. Thus, always

performance should be kept in mind while any architectural

changes are made. In the product lifecycle we have

Technology Readiness [2], Product Definition, Pre - Silicon

Validation, Post Silicon Validation and Post PRQ.

Technology Readiness includes setting product performance

requirements, Workload modelling and Design Space

Exploration using different methods like analytical models.

Performance Requirements are set by various factors like

Current product Performance, Market Research, Customer

Feedback, Academic Research, Industry trends,

Generational Requirements, Competitive Requirements,

Landing zone requirements.

1.3 What are workloads?

Workloads or benchmarks are a means to measure how the

processor performs in a customer environment. In fact, the

workloads emulate the customer environments. Workload

creation is in itself a whole different domain where lot of

effort is put to create the workloads that best mimic the

environments on which the processors run [3]. It helps us to

know how well our processor will perform by measuring

their power and performance before it actually reaches the

customers and ranks them among their peers. So, finding a

variety of workloads that together represent a large fraction

3

of customer environments is crucial to meet product

performance objectives. Then we analyze how these

workloads scale over a variety of parameters like frequency

changes, core counts, cache size, etc.

 1.4 Design Space Exploration

Figure 1. 1: Workflow in power and performance

estimation

The workloads which emulate the customer environments

are fed to different models like analytical, cycle accurate

models or through hardware experiments by which the

processor performance and power is calculated. If the design

goals are not met then we go back and change different

knobs like frequency, cache size, number of cores and other

hardware configurations and estimate the power and

performance gains using any of the models. This process is

4

repeated until the design goals are met and finally high-level

design is formed. Figure 1.1 illustrates the overall workflow

till the high-level design formation.

1.5 Artificial Intelligence

Artificial Intelligence is a branch which is growing and

being used extensively to solve many problems in day-to-

day lives and in the industries [4]. It is a way to enable

machines to think like human brain. Machine learning is a

subset of Artificial Intelligence where the system learns from

the data given to it. It analyzes, understands and finds a

certain pattern in the data. It can take decisions with

minimum human intervention. The computer is trained to

automate tasks which would otherwise be impossible or

exhaustive for a human being. Deep Learning is a subset of

machine learning that mimics the functioning of neurons in

human body. It uses neural networks to analyze different

patterns in the data. The depth of the model is decided by the

number of layers in the model. Figure 1.2 describes how

Artificial Intelligence, Machine Learning and Deep

Learning are related.

Figure 1. 2: Artificial Intelligence and the subsets

5

1.6 Machine Learning and its types

Machine Learning algorithms can be trained using three

prominent methods: Supervised Learning, Unsupervised

learning and Reinforcement Learning.

In Supervised Learning, we have prior knowledge of the

output values of training samples. We have labelled inputs.

Hence, the major goal in this type of learning is to learn a

function, given a sample of data and desired outputs, that

best approximates the relationship between the input and

output variable [5]. Supervised learning can be further

divided into Classification and Regression problems.

Classification problems are when the output variable is

category which can be a binary like if you have ‘a disease’

or ‘not’ or a number of categories like predicting different

colours ‘red’, ‘blue’, etc. Regression problems [6] are when

the output data is a real value. Eg. housing prices, weights,

etc.

In Unsupervised machine learning [7], the input dataset is

unlabeled. Here the goal is to model the underlying structure

or distribution of data so that the model can learn more from

the data. Algorithms are left on their own to learn the

interesting structures in the data. It is further divided into

clustering and dimensionality problems.

In a clustering problem [8] the aim is to find the inherent

groupings in the data like grouping the customers according

to purchase behavior. In dimensionality problem [9], the

model discovers rules for large portion of data like people

who buy X also tend to buy Y.

6

In Reinforcement Learning, trial and error method is used to

come up with a solution for the problem [10]. To enable the

machine to do what we want, rewards or penalties are

awarded according to the action it performs. The goal is to

maximize the total reward. The model does not have any

clue on how to solve the puzzle. It is upto the model on how

to perform the task and maximize the reward starting from

totally random trials to finishing with sophisticated tactics.

The input is an initial state from which the model starts.

There can be many possible outputs as there are variety of

solutions to the problem. The model is trained on the input,

it returns a state and the user decides whether to reward or

punish the model based on the input. The model keeps

learning and the best solution is decided based on maximum

reward. Figure 1.3 shows the types of

 Figure 1. 3: Types of Machine learning

Machine

Learning
Supervised

Learning

Reinforcement

Learning

Unsupervised

Learning

Dimensionality

Clustering

Identity

Fraud

Detection

Image

Classification

Diagnostics

Market

Forecasting

Estimating

Life

Expectancy

Population

growth

prediction

Structure

Discovery Meaningful

Compression

Big Data

Visualization

Targeted

Marketing Customer

Segmentation

Real Time

Decisions
Robot

Navigation
Learning

Task

7

The problem we have in hand is a regression problem and

uses supervised learning method where the power and

performance values are predicted based on the input data

from previous generations of processors.

1.7 Motivation

Estimating power and performance for the software stack

running real-world applications is a key aspect to pre-Si

system-level Hardware design. Current techniques are either

fast enough to run the software stack but are quite inaccurate

or provide accurate projections but are slow. With increasing

accuracy, the speed of the simulators falls off. In the cycle-

accurate (CA) performance simulators, the speed of the

simulator typically drops to the extent where it is difficult to

run actual software on top of the system [11] [12]. The new

processors would be used on sophisticated applications

which require the need to run long running workloads to

estimate power and performance and yet provide feedback

in shorter time. Thus, we can identify a gap in the present

modelling methodology. We need a faster yet accurate

model by which long running workloads can be run easily in

shorter time and hence the power and performance can be

estimated for the particular hardware configuration.

1.8 Objective

We propose a methodology here which makes use of

Machine Learning techniques in order to predict power and

performance of processors in a shorter time with fair

accuracy. It extends the concept of using performance

monitoring counters [13] [14] which can be broadly divided

into hardware and workload features, to estimate power and

8

performance. We also have looked at an Automated ML

solution which can be an extension to this work to have the

whole system in place on a larger scale and we have explored

the feasibility of using this solution. Thus, the proposed flow

will result in early performance and power projection and

reduces the turnaround time for the projection. It can also

scrape out the need to develop performance simulators with

each generation of processors which is in itself a time-

consuming process. Instead here we untap the potential of

previous generation data of the processors via Machine

Learning Techniques to produce an effective methodology

for projection of power and performance.

1.9 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 covers the review of past works on power and

performance estimation and the proposed methodology.

Chapter 3 explains how hardware and workload features can

be used to predict performance of the processor using

Machine Learning Techniques and how these features have

a direct correlation in impacting the power and performance.

Chapter 4 presents the Power estimation using the

performance monitoring counters and how the Machine

Learning model can be tuned to increase the prediction

capabilities. Chapter 5 introduces the Automated ML

modelling solution which offers a wide range of capabilities

and the feasibility of using this solution to estimate power

and performance. Chapter 6 covers the results achieved

using this methodology to predict the power and

performance as well as the results using the automated ML

solution. We have also seen how the different categories of

9

workloads respond differently to the Machine Learning

model. Chapter 7 explains the scope of future work in this

area and the conclusion.

10

 Chapter

2. Review of past work and problem

formulation

Power and performance projection are important part of

SOC lifecycle. Hence the techniques used for these are

widely explored.

2.1 State of the art technologies for

Performance Estimation

There are different methods existing to perform power and

performance estimation. The tradeoff here is between

accuracy and speed.

2.1.1 Performance Simulators

C++ based simulation environment or System C

environment [15] are used for detailed processor

performance stimulation using real life benchmarks. Many

works have been developed in this space like building a

System C framework for design space exploration and

processor simulation [16]. Co-simulation methodologies

using System C as hardware modelling language and on an

Instruction Set Simulator as model of the processor has been

explored [17]. The disadvantage with this approach is that it

is very time consuming as large number of instructions are

executed per benchmark. Each benchmark would contain a

several millions of instructions. Thus, simulation of such

large amount of instruction counts would take several hours

or days even on today’s fastest machines.

11

2.1.2 Analytical Models

They use algebraic sub-models and analytical formulas to

estimate power and performance. These provide an insight

into the interaction between the application and processor.

They might use simple mathematical equations for a

particular part of the design [18] to complex processor

models with numerous formulas. They are much faster than

cycle level simulation. There are two steps involved in

estimation an application performance on a particular

processor configuration. First step is to profile the

application and the analytic model is applied on the top of

the profiled data [19]. The next step is to apply mathematical

formulas. Though this is a faster approach, accuracy is much

lesser than cycle accurate simulators. If the model has to be

more accurate, there is a need to formulate more complex

formulas and hence it leads to a time-consuming

development phase. Also, every design change poses the risk

of complete invalidation of the postulated formula and hence

it is much difficult to start all over again. We can see

processor models directed at performance evaluation in [20]

and [21]. However, in [22] the process of formulation of

such a model and the enormous efforts behind it becomes

evident.

2.2 State of the art technologies for

Architectural power modelling

It is known that design-based power estimation is more accurate

than architectural power modeling. But design-based power

estimation is very compute-intensive and requires stable RTL,

which is not available until late in the project. Hence

architectural power modelling is used to deliver usable results

12

very early in the lifecycle of a project [23]. In order to best

incorporate available information from design-based tools,

architectural power models are typically designed in an

evolutionary chain, with the power model for the newest product

being represented as a set of deltas against the previous product’s

power model. At the oldest product in the chain, a power model

built via regression against a trusted design-based power model

is used. As products move forward in their lifecycle, gradual

improvements to the quality of the power model are made and

automatically carried through to subsequent generations in

parallel development. The older power models are gradually

changed into models which are directly regressed against a

design-based power model. As a result of this methodology, for

much of their lifetime a power model is actually defined in terms

of scaling factors or features, which represent deltas against the

previous power model. The best solution to estimate power

using this methodology is to build power estimators into cycle

accurate simulators which are used to understand the effect of

architectural choices in performance [24].

2.3 Current Workflow

The most commonly used flow for architectural performance

and power projection are performance simulators [25]. The

input for the simulator are the workloads which are large

instruction traces [26] and the output from simulators are the

stat files which are fed into a database.

A configuration is called an experiment. A study contains

one or more experiments. Studies that run on performance

simulator produce stat files. An experiment contains all the

simulator results for the traces ran on the corresponding

configuration (jobs). Stat files include stats of different

13

metrics, for many traces, and many experiments. Figure 2.1

describes the study structure.

Figure 2. 1: Study Structure

The simulator outputs stat files for each job, which include

many metrics, as well as logfiles describing the status of the

job run on the simulator. Stat files and log files are the input

of the database management solution. Simulators usually run

a trace list (N traces) on various configurations (M cfgs).

Each run is called a job (ie.1 trace on 1 cfg, total: NxM jobs).

Each job run produces a stat file with various metrics. These

stats are uploaded into the database management solution.

Figure 2.2 is a simplified diagram of how power and

performance is projected using the current flow.

14

Figure 2. 2 Current Workflow

2.4 Proposed model

A particular set of configurations and workloads would

produce a given performance metric and power. The most

commonly used metric for performance measurement is the

instructions retired per cycle. In this method the input data is

a combination of workloads and several metrics which has

been obtained from the previous generations and we apply

ML algorithms over this data to estimate power and

performance. The target would be any of the performance

metric like instructions retired per cycle or power. The inputs

or features affecting the target will be workloads and

configurations. Thus, the target can be predicted for a given

set of workload and configurations. The result is compared

to enterprise solution which automatically provides a

leaderboard of ML models. Finally, we will see how this

methodology performs at par with the state-of-the-art

technologies.

Instruction

Traces for

different

workloads

Hardware

configurations

Performance

Simulator

Performance

and Power

projection

15

Chapter

3. Performance Estimation using

Machine Learning Techniques

 3.1 Dataset

Design architects try different configurations on benchmarks

or workloads and project power and performance at an early

stage of RTL to make chips that would meet the product

requirements. Studies run daily on performance simulators

thereby producing thousands of stats files. Thus large

magnitude of data is produced. This data is stored in a system

used for architecture performance work making the storage,

management, analysis and visualization of such large

amounts of data easier. The data used for this model is taken

from this system. Figure 3.1 shows the how the data is

handled in the machine learning process.

Figure 3. 1: Machine learning steps

Dataset

Training

Validation

Testing

Data

Exploration

and

Preprocessing

Data from h5

files which is

obtained from

(n-1) Simulator

runs

Handling

Missing

Values

• Deletion

• Mean

Imputation

16

3.2 Training, Validation and Testing Set

There were 1436 traces in total. Out of which 677 traces

were used for training and for validation. Using this, the

model was trained and used to project the data for testing set

which consist of 759 traces. These traces were also split

according to the eleven different categories in order to see

the sensitivity of each category to prediction. Figure 3.2

shows the classification of data into three different

categories during the machine learning process.

Figure 3. 2: Classification of data in Machine Learning

3.3 Target

The metric chosen to measure performance here is IPC

(Instructions retired per cycle). It is one of the major aspects

of a processor’s performance. It is the average number of

instructions executed per clock.

Performance ∝ 1/(run time)

1/(run time) = (Frequency*IPC)/instruction count

An increase in IPC indicates an improvement in processor

performance. It usually ranges between 0.3 to 4. It is an

excellent metric to judge the overall performance of a

Training data (optimize

the model’s parameter

values)

Validation

data (optimize

the model’s

architecture)

Testing data

(evaluate the

optimized

model)

17

processor with respect to different applications. An IPC of 1

is considered acceptable for HPC applications but the

expected IPC varies according to the different application

domains. Its value is affected by various factors like memory

stalls, instruction starvation, branch miss prediction, cache

misses and long latency instructions.

3.4 Metrics

The features that would help in target prediction are chosen

from a set consisting of large number of metrics. The total

set of metrics was divided into into:

1) Workload dependent features:

These features do not change from generation to generation.

Their values are dependent on the particular benchmark

only. It is independent of the change in processor

configurations. Examples for these features are int_32b,

execution_count_simd_fp, etc.

2) Hardware dependent features:

These features changes from generation to generation

depending on the processor hardware configurations.

Example: icache misses, l2_hit, dcu_miss,etc.

3.5 Features

The features chosen to predict the IPC are as follows:

18

3.5.1 Hardware dependent features

3.5.1.1 Baclear:

It estimates the fraction of cycles lost when an early branch

prediction is corrected by a later branch prediction. The

branch prediction unit (BPU) is unable to provide correct

prediction and it is corrected by other branch handling

mechanisms. It happens when the code has many branches

that can’t be consumed by BPU.

3.5.1.2 alloc_window:

This metric measures how memory is allocated for the

window of a given size. It is given by allocate /

cycles_uop_allocated.

3.5.1.3 dtlb_hit:

 It estimates the number of times the first-level data TLB

(DTLB) is hit. The memory contains a page table

which maps virtual and physical memory. To reduce

reference to these recently used portions of these are cached

in Translation-look-aside buffers (TLB) which are consulted

for every virtual address translation. Similar to data caches

farther the request hast to go to get satisfied worse the impact

on performance.

19

3.5.1.4 icache_miss

Instruction cache misses are failed attempts at reading data

in cache which results in main memory access leading to

longer latency. They cause the largest delay because the

processor has to wait till instruction is fetched from main

memory.

3.5.1.5 l2_hit

It is the last and longest latency level in memory hierarchy

before the main memory is accessed. They incur a

performance penalty.

3.5.1.6 stlb_hit

Loads that hit the second level data translation buffer.

3.5.1.7 all_branch_retired

Number of branch instructions retired for all branch types.

3.5.1.8 itlb_miss

It is the number of page walk requests due to instruction

translation look aside buffer misses.

20

3.5.2 Workload dependent features:

3.5.2.1 skl_execution_count_simd_fp

It is the count of single instruction, multiple data floationg

point instructions.

3.5.2.2 int_32b

It is the share of int 32b uops executed. It is given by

skl_execution_count_int_stack_32b / execution_count.

3.5.2.3 int_64b

It is the share of int 64b uops executed. It is given by

skl_execution_count_int_stack_64b / execution_count.

3.5.2.4 x87

It is the share of x87 uops executed. It is given by

skl_execution_count_X87 / execution_count.

3.5.2.5 vec

It is the share of x87 uops executed. It is given by

skl_execution_count_simd_fp / execution_count.

21

3.5.2.6 INST_FDIV

There is an integer divide functional element within the

integer unit. This is the count of instruction required in

executing a floating point division.

3.6 Flow

Figure 3. 3: Proposed Workflow for Performance

Estimation

Figure 3.3 describes the whole flow used in this system. The

hardware and workload features associated with the different

workloads are fed to the machine learning models as well as

an automated ML solution. This data is used to train the

model. Using this model, we can predict the performance of

the next generation processors.

22

3.7 Machine Learning Steps

1. Problem formulation

2. Data Collection

3. Data preparation

4. Model Selection

5. Training the model

6. Evaluation of the model

7. Hyperparameter tuning

8. Making predictions

3.8 Data Exploration and Preprocessing

The main steps involved in data preparation are data

formatting, cleaning and sampling [27].

3.8.1.1 Data Formatting

If the data is not available in a format you can work with,

this step is used. The data was present in the relational

databases was converted into an excel format so that

machine learning steps could be done easily on it.

3.8.1.2 Cleaning the data

Not all data instances carried full data. Hence this missing

data has to be fixed first. There are several methods that can

be used here like deleting the rows which contains missing

data, mean/median imputation and predicting the missing

values. Deletion of rows is the most most simple approach,

but the disadvantage is that it reduces the sample size. We

have used mean imputation here where the mean value of the

particular metric which had empty rows was calculated and

the mean was imputed for the missing rows.

23

3.8.1.3 Sampling the data

Sometimes there would be far more data than necessary, and

we need to take only the necessary data otherwise it would

lead to longer running times reducing the efficiency of the

machine learning model.

3.9 Model Building

In machine learning, it is important to choose a correct

model for training. A model is a mathematical

representation of a real-world process. This model is

provided with the training dataset and the model learns

from it. Then validation is done on validation dataset from

the results of which the best model is chosen from. Here the

model used is Random Forest Regressor. Also, the training

dataset was fed into an automated enterprise solution for

machine learning which give us a dashboard of the best

models that can be used for the particular problem

depending on the validation score.

3.10 Decision Tree Regression

It builds the regression models in the form of a tree structure

[28]. It breaks down the dataset in to smaller and smaller

subset and the decision tree is incrementally developed. It is

arrived at a result by asking a series of questions to the tree,

each question reducing the set of values that can be a

possible output until the model gets confident to make a

single prediction. The model determines the content and

order of questions. The result is a tree with decision nodes

and leaf nodes. A decision node has two or more branches.

Leaf node represents a decision. The topmost decision node

24

in a tree is called root node. It forms an excellent foundation

for various other models like random Forest [29]. Figure 3.4

show the Decision Tree Regression Model.

Figure 3. 4: Decision Tree Regression

3.11 Random Forest Regression:

It is a supervised machine learning algorithm which depends

on ensemble learning. Ensemble learning means different

algorithms are joined or you repeat the same algorithm

several times to build a more powerful prediction model. The

Random Forest algorithm combines several algorithms of

same type, i.e. Multiple decision trees and hence a forest is

created and hence the name Random Forest [30] [31]. The

basic steps involved I Random Forest algorithm are:

1. Pick N random data instances from the dataset.

25

2. Build a decision tree based on these instances.

3. Choose the number of trees you want and repeat steps 1 and

2.

4. For Regression problem, each tree in the forest predicts an

output Y for each record. The final value is decided by taking

average of values predicted by all the trees in the forest.

3.12 Evaluation of the model

Evaluation of the model was done using RMSE (Root Mean

Square Error). Root mean square is a standard measure to

calculate the error in predicting the target in a machine

learning model. The lower the RMSE the better your model

has learnt [32].

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁

It measures the standard deviation of predicted values

against actual values.

3.13 K- Fold Cross Validation

Performance of a model increases as the size of training set

increases. Also, the model performance estimates are more

consistent when the validation set is large. Hence it is

advisable to use as much data possible in validation and

training. Hence, we use the cross-validation method to

maximize the data available for each of these sets [33]. This

process involves:

1. Splitting the data into two or more sections called folds.

26

2. Creating one model per fold, the data assigned to that fold is

used for validation and the rest is used for training.

Figure 3. 5: K- Fold Cross Validation

Advantage:

It gives better estimate of the model performance.

Disadvantage:

It has multiple passes and hence it is computationally

expensive and takes longer to run.

27

3.14 Making predictions

The predictions were made on test data which was a

complete Blackbox to the machine learning model. The test

data consisted of 759 data instances whose IPC were

predicted.

28

Chapter

4. Power Estimation using Machine

Learning Techniques

4.1 Overview

Power is computed by multiplying a set of event costs (EC)

by the corresponding performance simulator derived activity

factor (AF). ECs are organized in a hierarchy with the FUBs

forming the lowest level and proceeding upwards through

Units, Clusters and finally Core as a whole.

iEC
n

i
iAFidlepowersFub *

1
' 

=
+=

Power is usually computed as dynamic capacitance, Cdyn,

which is independent of operating voltage and frequency.

AFs are unitless ratios in the range [0,1] that represents the

portion of cycle in which a particular activity occurs. ECs

are the sum of dynamic capacitances associated with a single

occurrence of a particular activity. Each fub is also assigned

an idle EC, which is the dynamic capacitance produced

every cycle corresponding to an AF of 1. The idle EC

represents the free running clocks.

 4.2 Dataset

The data is obtained by running the same set of benchmarks

used for power estimation on a tool which does Architectural

29

power modelling for the core. Thus, the power numbers

corresponding to each workload was obtained.

4.3 Training, Validation and Testing Set

The traces used for power estimation are the same as that of

performance estimation, thus 1436 traces were used. 677

traces were used for training and for validation. This data

was used to train the model and the target was predicted for

759 traces which forms the testing set.

4.4 Target

The target was the power numbers for each particular

workload.

4.5 Features

The features used to predict the power were the hardware

dependent and workload dependent metrics. Some metrics

which were used to predict the performance were reused

here and some new metrics were added.

4.5.1 Hardware dependent features

4.5.1.1 dtlb_hit

4.5.1.2 all_branch_retired

4.5.1.3 alloc_window

4.5.1.4 baclear

4.5.1.5 l2_hit

30

4.5.1.6 stlb_hit

4.5.1.7 itlb_miss

4.5.1.8 cycles

It indicates the number of cycles required to complete a

particular instruction.

4.5.1.9 Instructions retired:

It is an important hardware performance event and calculates

how many instructions were completely executed.

4.5.1.10 mlc_data_read_for_ifu

IFU stands for instruction Fetch Unit. It fetches up to 16

bytes of instruction bytes each cycle from the instruction

cache to the instruction length decoder (ILD).

4.5.1.11 execution_count_wb

It is the execution count for writeback caching (WB). Any

new processor data is written to the cache and not in the

memory. The memory write process is only performed when

the cache data needs to be edited or purged for new content.

4.5.2 Workload dependent features:

4.5.2.1 skl_execution_count_simd_fp

4.5.2.2 int_64b

4.5.2.3 vec

31

4.5.2.4 int_32b

4.5.2.5 x87

4.6 Flow

Figure 4. 1: Proposed Workflow for Power Estimation

Figure 4.6 illustrated the flow used to estimate power using

machine learning techniques. It uses the hardware and

workload features from previous generation processors to

train the Machine Learning model and predicts the power of

next generation processors for the different workloads which

mimics the real-world applications.

 4.7 Data Exploration and Preprocessing:

The major change here was in the data exploration an data

preprocessing step to get the data in the format we required.

The power data had to be combined with the data from

performance simulator to map the power numbers to the

32

architectural and workload features. Once this was achieved

the data was cleaned by imputing the null values by the mean

of the particular feature.

 4.8 Model building

Two models were used here for comparison: Random Forest

Regressor and Gradient Boosting algorithm.

4.9 Gradient Boosting Regression

In boosting, each tree is fit on the modified version of

original tree [34]. The baseline for this model is the

AdaBoost algorithm [35] which puts more weight on those

instances which are difficult to classify and less on those that

are handled well. It begins by training a decision tree where

all observations are assigned equal weight. After the

evaluation of the first tree, weights are increased on those

observations that are difficult to classify and less on those

that are well handled. The second tree is grown based on this

weighted data. The idea is to improve the predictions of the

first tree. The classification error is calculated from this 2-

tree ensemble model and we grow the third tree to predict

the revised residuals. The same process is repeated for a

certain number of iterations. Prediction s of final ensemble

model is based on the weighted sum of output of previous

trees.

The major difference in Ada boost algorithm and Gradient

Boosting is the way in which they identify the shortcomings

of weak learners. Ada boost identifies it by using high

weight data points while gradient boost performs by using

gradients in loss function. Loss function is a measure of how

33

good the model’s coefficients are at fitting the underlying

data.

4.10 Hyperparameter Tuning:

Hyperparameters define the model architecture. These

cannot be learnt from the training process. They are fixed

before training begins. They explain the complexity of the

model and their parameters like how fast it should learn [36].

4.10.1 Hyperparameters used for tuning

Gradient Boosting Regressor:

n_estimators: It indicates the number of boosting stages to

perform. Since gradient boosting is fairly robust to

overfitting, hence large number leads to better performance.

Default value is 100.

learning_rate: It determines the impact of each tree on the

final outcome. Gradient Boost starts with an initial estimate,

this keeps on updating according to the output of each tree.

The learning rate controls the magnitude of this change in

the estimates. Default value is 0.1.

max_depth: It limits the number of nodes in the tree. Default

value is 3.

Subsample: The fraction of samples to be used for fitting the

individual base learners. Default value is 1.

34

4.10.2 GridSearchCV

We have used the approach of GridSearchCV for

hyperparameter tuning. It looks through each combination of

hyperparameters. It generates candidates from a grid of

parameter values specified. A score function is taken to

evaluate the parameter setting. We have chosen mean

squared error here.

4.10.3 Optimized parameters

Table 4. 1: Optimized hyperparameters of Gradient

Boosting Regressor

Table 4.1 shows the hyperparameters obtained after tuning

the model. The model was again trained with the new

optimized parameters and results were calculated on the

basis of this new model.

Hyperparameter Default

Value

Optimal

Value

n_estimators 100 2000

subsample 1 0.5

max_depth 3 4

learning rate 0.1 0.01

35

Chapter

5. Power and Performance

Estimation using automated ML

Modelling

5.1 Introduction

It is a predictive analytics automation platform to rapidly

build and deploy predictive models. It streamlines the data

science process, leading to faster results and fewer

integration steps. Figure 5.1 shows the steps involved in the

Automated ML modelling process.

Figure 5. 1: Steps involved in Automated ML modelling

5.2 Advantages

1. Data Exploration/ Analysis

2. Model recommendation

3. Time to value

4. Prediction accuracy

5. Data ingestion

6. Data Export

7. Model deployment

8. Model export

36

5.3 How it works?

To build an accurate predictive model it is required to search

through a nearly infinite combination of data

transformations, models, features, algorithms and tuning

parameters. This Enterprise solution simplifies model

development by performing a parallel heuristic search for the

best model or ensemble of models, based on the

characteristics of the data and the prediction target. By cost-

effectively evaluating thousands of models in parallel across

a large cluster of servers, the solution delivers the best

predictive model in the shortest amount of time.

The common predictive modeling workflow is to perform an

exploratory data analysis (EDA), select a target feature to

predict, select a performance metric, and search for the

algorithm to model the domain. With the solution, the

algorithm search is automatically performed for you.

• Import data and work with datasets

• Optionally, set advanced options

• Build your models

• Evaluate your models

• Unlock holdout

• Make predictions

5.4 Importing the data

Importing the data can be done from a local file, an external

datasource, from a URL or from HDFS.

https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html#transform-feature
https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html#transform-feature
https://datarobotpoc.intel.com/docs/users-guide/basics/load-data.html
https://datarobotpoc.intel.com/docs/users-guide/advanced/index.html
https://datarobotpoc.intel.com/docs/users-guide/basics/model-data.html
https://datarobotpoc.intel.com/docs/users-guide/basics/evaluate-model/index.html
https://datarobotpoc.intel.com/docs/users-guide/basics/unlocking-holdout.html
https://datarobotpoc.intel.com/docs/users-guide/deploy/predictions/index.html

37

5.5 Exploratory Data Analysis and Model

building

In this stage we select the target which needs to be predicted

and the solution starts analyzing the data we provided and

creates summary statistics based on this data. The feature

correlation with the target is also performed in this phase.

After this model building begins and we can choose an

optimization metric of our choice (like RMSE) to evaluate

the performance of the model. Once this phase ends the

solution comes up with leaderboard which showcases the

best models for our problem statement.

5.6 Leaderboard

This is one of the most important feature in this solution

where it exhaustively search in its repository for the best

model that would suit the data we provided and then builds

up a leaderboard of different models depending on their

ranking with respect to any validation metric like RMSE,

Gini Norm, MAE, R squared, etc. New models blending

already existing models are also used in this process. It gives

us suggestions on which model is best for deployment,

which is the most accurate model, and which is the fastest

model. Figure 5.2 shows an example of how leaderboard

looks like.

38

Figure 5. 2 Leaderboard of models

5.7 Disadvantages

The problem with this automated solution is that we have

very less control in the overall machine learning process. It

is difficult to choose the internal model characteristics like

hyperparameters of our choice. Another main problem with

this approach is that it provides less debuggability. It is

difficult to know the exact reason why a particular model

came at the top of the leaderboard i.e. what characteristics or

pattern in the data made it at the top or bottom of the

leaderboard.

39

Chapter

6. Results and Discussion

In this chapter we have discussed the results of the proposed

method. The RMSE of various methods, error graph and

error area are plotted.

6.1 Performance Estimation

6.1.1 RMSE Values

Decision Tree

Regressor

Random Forest

Regressor

Automated

Solution

1.033 0.88 0.84

Table 6. 1: RMSE Values of different models for

performance estimation

6.1.2 Error graph

The grey lines in the graph indicates the deviation of

predicted values from actual target values. The x axis shows

the different workloads and y axis shows the predicted IPC

values.

40

Figure 6. 1: Error Graph of Decision Tree Regressor

Figure 6. 2: Error graph of RandomForest Regressor

41

Figure 6. 3: Error Graph using Automated ML solution

6.1.3 Error Area graph

This graph indicates the deviation of predicted values from

actual values in terms of area. The larger the error area less

accurate is the prediction. Here x axis denotes a sample of

workloads axis denote the predicted IPC values.

 Figure 6. 4 Error Area Graph of DecisionTreeRegressor

42

 Figure 6. 5: Error Area Graph for Random Forest

Regressor

Figure 6. 6: Error Area Graph using Automated ML

solution

Thus, we can see that Random Forest Regressor performs

well here among our models.

43

6.1.4 Sensitivity of different categories of traces

to the model

The sensitivity of different categories of traces to the model

(Random Forest Regressor), i.e. how prediction accuracy

varies depending on the category is calculated. RMSE of the

predicted values of each particular category of traces is used

as a measure to know how well the categories respond to the

model.

Table 6.2: Sensitivity of different categories to Random

Forest Regressor for Performance Estimations

CATEGORY RMSE

AppleSAW 1.41714

FSPEC17 0.613354

ISPEC06 1.040431

ISPEC17 0.748692

SYSmark 0.92

client 0.990454

embedded 0.905956

games 0.727266

kernel 2.29

multimedia 1.009672

FSPEC06 (whole category

hidden from training)
0.929292

44

Here we can see that the category ‘kernel’ had the highest

RMSE which means predicting IPC values for the category

‘kernel’ produced much lesser accurate results. This is

because this category consisted of lot of outliers in the data.

6.2 Power Estimation:

6.2.1 RMSE Values

Table 6. 3: RMSE Values of different models for power

estimation

6.2.2 Error graph

The grey lines in the graph indicates the deviation of

predicted values from actual Power values. The x axis shows

the different workloads and y axis shows the predicted IPC

values.

Random Forest

Regressor

Gradient Boosting

Regressor

(After Hypertuning)

Automated

Solution

137.01 114.4 109

45

Figure 6. 7: Error Graph of Random Forest Regressor

Figure 6. 8: Error graph of Gradient Boosting Regressor

46

Figure 6. 9: Error graph using Automated ML Solution

6.2.3 Error Area graph

This graph indicates the deviation of predicted values from

actual values in terms of area. The larger the error area less

accurate is the prediction. Here x axis denote a sample of

workloads and y axis denote the predicted Power values.

Figure 6. 10: Error Area Graph of RandomForestRegressor

47

Figure 6. 11: Error Area Graph for Gradient Boosting

Regressor

Figure 6. 12: Error Area Graph using Automated ML

solution

Thus, we can see that Gradient Boosting Regressor

performs better here among our models.

6.2.4 Sensitivity of the model to different

categories of traces

This is the sensitivity of the model (Gradient Boosting

Regressor) on how it predicts the target values according to

48

different categories of traces. RMSE of the predicted values

of each particular category of traces is calculated.

Table 6. 4: Sensitivity of different metrics to Gradient

Boosting Regressor for Power Estimation

Here we can see that the category ‘kernel’ had the highest

RMSE which means predicting Power values for the

category ‘kernel’ produced much lesser accurate results.

This is because this category consisted of lot of outliers in

the data.

CATEGORY RMSE

AppleSAW 126.08

FSPEC17 94.41

ISPEC06 109.38

ISPEC17 74.94

SYSmark 67.07

client 96.2

embedded 92.54

games 151.7

kernel 262.46

multimedia 97.93

FSPEC06 (whole category

hidden from training) 187.02

49

Chapter

7. Conclusions and Scope for Future

Work

7.1 Conclusion

Power and Performance estimation at an early stage in SoC

lifecycle is always the need of the hour. Here we have

explored methods to estimate power and performance in a

faster way and with fair accuracy making use of Machine

learning techniques. This method can help to save lot of time

because the traditional performance simulators and power

estimation tools take a couple of hours to project the power

and performance. Meanwhile here we utilize the previous

generation data to project the power and performance for

next generation.

7.2 Future Work

This machine learning technology can be further expanded

by plugging the previous generation data to an automated

ML solution which can provide a leaderboard of all suitable

models from its repository, hence making it easier for us to

choose which model can be used to predict the target. This

can be made possible by developing a Python API which can

automatically feed the data produced in any particular

generation to the automated system from which the power

and performance of the next generation processors can be

calculated. There can be also a mechanism to identify the

outliers in the data which potentially can reduce the accuracy

50

of the prediction and eliminate them to get better projection

of power and performance data.

51

REFERENCES

[1] T. S. J. Abhijit Ray, "Practical Techniques for Performance

Estimation of Processors," in Proceedings of the 9th International

Database Engineering & Application Symposium (IDEAS’05), 2005.

[2] G. Z. a. Z. K. H. Jie, "Research on evaluation method of electronic

product maturity," in IEEE 2nd International Conference on

Computing, Control and Industrial Engineering, Wuhan, 2011.

[3] V. Datla, "Software Performance Workload Modelling,"

International Journal of Computer Applications Technology and

Research, vol. Volume 6, no. Issue 1, pp. 13-18, 2017.

[4] H.-D. Wehle, "Machine Learning, Deep Learning, and AI: What’s

the Difference?," in Data Scientist Innovation Day, 2017.

[5] N. T. a. A. S. A. Singh, "A review of supervised machine learning

algorithms," in 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, 2016.

[6] J. Li, "Regression and Classification in Supervised Learning," in

International Conference on Computing and Big Data, Taiwan,

2019.

[7] R. S. a. A. Abraham, "Comparison of Supervised and Unsupervised

Algorithms for Pattern Classification," International Journal of

Advanced Research in Artificial Intelligence, vol. Vol. 2, 2013.

[8] D. &. C. P. &. M. R. Greene, "Unsupervised Learning and

Clustering," in Applied and Computational Mechanics, 2008.

[9] A. K. Cherukuri, "Analysis of unsupervised dimensionality

reduction techniques," Computer Science and Information Systems ,

2009.

[10] W. Q. a. Z. Zhongli, "Reinforcement learning model, algorithms and

its application," in International Conference on Mechatronic

Science, Electric Engineering and Computer (MEC), Jilin, 2011.

52

[11] R. S. V. P. R. a. B. J. Shang Li, "Rethinking Cycle Accurate DRAM

Simulation," in Proceedings of the International Symposium on

Memory Systems, New York, 2019.

[12] K. L. B. S. a. M. L. H. Cain, "Precise and accurate processor

simulation," in Workshop on Computer Architecture Evaluation

Using Commercial Workloads, Feb. 2002.

[13] X. W. a. V. Taylor, "Utilizing Hardware Performance Counters to

Model and Optimize the Energy and Performance of Large Scale

Scientific Applications on Power-Aware Supercomputers," in IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), Chicago, IL, Chicago, 2016.

[14] W. L. B. a. L. K. John, "Complete System Power Estimation Using

Processor Performance Events," IEEE Transactions on Computers,

vol. vol. 6, no. no. 4, pp. pp. 563-577, April 2012.

[15] C. Jaber, "High-Level soc modeling and performance estimation

applied to a multi-core implementation of LTE enodeb physical

layer," in Télécom ParisTech, 2011.

[16] M. R. C. D. D. F. Johannes Kohl, "A SystemC Based Framework

forCycle Accurate Processor Simulationand Parameter Analysis," in

International Federation of Automatic Control, 2016.

[17] S. M. G. P. a. M. P. F. Fummi, "Native ISS-SystemC integration for

the co-simulation of multi-processor SoC," in Proceedings Design,

Automation and Test in Europe Conference and Exhibition, Paris,

2004.

[18] E. Berg, "A statistical multi-processor cache model," in IEEE

International Symposium on Performance Analysis of Systems and

Software, 206.

[19] S. V. d. Steen, "Analytical Processor Performance and Power

Modeling Using Micro-Architecture Independent Characteristics,"

IEEE Transactions on Computers, Vols. vol. 65, no. 12, pp. pp.

3537-3551, 1 Dec. 2016.

53

[20] G. D. a. H. D. Wilding M, "Efficient Simulation of Formal Processor

Models," 1998.

[21] G. W. C. a. C. Hardin.D, "Single-

ThreadedFormalProcessorModels:EnablingProofandHigh-

SpeedExecution," 1999.

[22] M. S. a. D. F. M. Reichenbach, "Analytical Model for the

Optimization of Self-Organizing Image Processing Systems

Utilizing Cellular Automata," in 14th IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed

Computing Workshops, Newport Beach, 2011 .

[23] C. S. B. R. a. K. W. C. S. Song, "A Simplified and Accurate Model

of Power-Performance Efficiency on Emergent GPU Architectures,"

in IEEE 27th International Symposium on Parallel and Distributed

Processing, Boston, 2013 .

[24] A. T. M. T. G. D. Kim N.S., "Challenges for Architectural Level

Power Modeling," Graybill R., Melhem R. (eds) Power Aware

Computing. Series in Computer Science, 2002.

[25] D. J. K. C. a. S. H. Jintaek Kang, "Fast Performance Estimation and

Design Space Exploration of Manycore-based Neural Processors," in

56th ACM/IEEE Design Automation Conference (DAC), Las Vegas,

2019 .

[26] W.-K. C. S. d. J. A. E. R. M. M. D. D. M. J. C. Sanjay Bhansali,

"Framework for Instruction-level Tracing and Analysis of Program

Executions," in Proceedings of the 2nd International Conference on

Virtual Execution Environments, 2006.

[27] D. K. a. P. E. P. S. B. Kotsiantis, "Data Preprocessing for Supervised

Leaning," INTERNATIONAL JOURNAL OF COMPUTER

SCIENCE , vol. VOLUME 1, NUMBER 1 2006.

[28] Y. L. a. Y. L. J. Chen, "Predictive model based on decision tree

combined multiple regressions," in 13th International Conference on

Natural Computation, Fuzzy Systems and Knowledge Discovery

(ICNC-FSKD), Guilin, 2017.

54

[29] I. M. a. A. S. S. Pathak, "An Assessment of Decision Tree based

Classification and Regression Algorithms," in 3rd International

Conference on Inventive Computation Technologies (ICICT),

Coimbatore, India, 2018.

[30] D. M. N. d. F. Misha Denil, "Narrowing the Gap: Random Forests,"

in Proceedings of the 31 st International Conference on Machine,

Beijing, China, 2014.

[31] G. Biau, "Analysis of a Random Forests Model," Journal of

Machine Learning Research , pp. 1063-1095, 2012.

[32] A. Zheng, Evaluating Machine Learning Models, O'Reilly Media,

Inc, 2015.

[33] T. L. L. H. Refaeilzadeh P., Cross-Validation, Springer, Boston,

MA, 2009.

[34] R. E. S. Yoav Freund, "A Short Introduction to Boosting," Journal

of Japanese Society for Artificial Intelligence, vol. 14, pp. 771-780,

September, 1999.

[35] L. H. ,. X. B. TU Chengsheng, "AdaBoost typical Algorithm and its

application research," in MATEC Web of Conferences, ICMITE,

2017.

[36] A.-L. B. a. B. B. Philipp Probst, "Tunability: Importance of

Hyperparameters of Machine," Journal of Machine Learning

Research 20, pp. 1-32, 2019.

