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ABSTRACT 

Time-frequency (TF) analysis is an active research area in the field of 

signal processing. It has various methodologies to generate TF 

representation like short time Fourier transform (STFT), Hilbert-Huang 

transform (HHT), wavelet transform (WT), Wigner-Ville distribution 

(WVD), empirical wavelet transform (EWT), etc. which help in getting 

better knowledge about a signal. 

In this thesis, we discuss windowed Fourier-Bessel series expansion 

based empirical wavelet transform (WFBSE- EWT) method for analysis 

of non-stationary signals which has been developed by enhancing the 

existing Fourier-Bessel series expansion based empirical wavelet 

transform (FBSE- EWT) method. It is obtained by segmenting the signal 

in time domain by using windows such as Gaussian, Hann, Chebyshev 

and Hamming along with 50% overrun, applying FBSE-EWT on 

individual segments, adding the resulting intrinsic mode functions 

(IMFs) and obtaining the TF representation by applying Hilbert 

transform (HT). This gives us better TF representation as compared to 

the existing method.  
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Chapter 1 

 

Introduction 

 

The life of a human being is surrounded by signals. A signal is a function 

that conveys information about a phenomenon. Signal processing is an 

operation which is applied on a signal in some fashion so that some 

useful information can be extracted. Signal processing is a subfield of 

engineering, in particular electrical engineering that focuses on study, 

alteration, and synthesis of signals such as sound, images, etc. 

 

1.1  Background 

1.1.1 The nature of non-stationary signals 

Signals can be classified and categorized into various types, given 

below. 

• Continuous and discrete signals 

• Periodic and aperiodic signals 

• Power and energy signals 

• Analog and digital signals 

• Stationary and non-stationary signals and many more. 

Most real-life signals are essentially non-stationary, such as speech 

signals, biological signals, civil structure vibration signals, etc. They 

have their statistics changing with time. 

 

1.1.2 The need for time-frequency (TF) analysis  

In Fourier analysis, we assume that signals are infinite in time or of 

periodic nature, but in reality most of the signals are of small duration 

and significantly change over the course of time. Fourier analysis 

analyzes the frequency content of the signal without any details about 

time. This shortcoming leads to the need for TF analysis. 

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Fourier_analysis
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 TF techniques show change in the frequency components of the signal 

with respect to time, providing a more revealing picture of the time 

location of the spectral components of the signal. 

Ideally, the TF distribution function should have the following 

properties: 

• For both the time domain and frequency domain, it should have 

high resolution. 

• No cross terms. 

• It should have lower computational complexity to make sure that 

it gets appropriate time to process a signal and represent it on the 

TF plane. 

 

1.1.3 Existing techniques 

Various existing techniques for TF analysis of non-stationary signals 

are: Wigner-Ville distribution (WVD) [8], short-time Fourier transform 

(STFT) [5,6], wavelet transform (WT) [7], tunable Q-wavelet transform 

(TQWT) [15], empirical mode decomposition (EMD) and Hilbert-

Huang transform (HHT) [9], empirical wavelet transform (EWT) [24], 

etc.  

STFT works by moving window on the signal and obtaining 

corresponding Fourier transform (FT). But, the STFT also has its 

drawbacks, like its TF resolution capability is limited due to the 

uncertainty principle. 

STFT has TF localization, which is spaced equally. Another problem 

with STFT is how to decide the type of window needed and its size too. 

In order to overcome these drawbacks, WT came into the picture. WT 

can be both discrete wavelet transform (DWT) and continuous wavelet 

transform (CWT). WT due to the prefixed nature of the filter banks, they 

fail to disintegrate the signals correctly. Therefore, the TF representation 

achieved is not in accordance with the exact information content present 

in the signal. The wavelet packet transform (WPT) [11, 12], was the 

enhanced version of the WT introduced so as to increase the signal 

adaptability. Although, this way was also confined by the fact that it uses 
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a prefixed basis. In [15], TQWT is explained. In TQWT, Q factor can be 

tuned in conformity to the oscillatory behaviour of the input. The results 

were found better than that of WT. 

All these methods use prefixed basis functions. Hence, they are non- 

adaptive and rigid in nature. The EMD method decomposes the signal 

adaptively into amplitude modulation – frequency modulation (AM-

FM) components. These components are referred to as intrinsic mode 

functions (IMFs). In [16], HHT has been expressed as the sum of EMD 

and Hilbert spectral analysis (HSA). First, EMD decomposes the signal 

in IMFs, and then Hilbert transform (HT) estimates instantaneous 

frequency (IF) and instantaneous amplitude (IA) with the help of the 

IMFs. Further, TF representation is given. Although, EMD faces various 

drawbacks such as mode mixing, no exact mathematical model, noise 

sensitivity, etc. The variational mode decomposition (VMD), 

decomposition of input in a limited number of components is done. 

When compared to EMD, VMD has proved to be more precise in the 

separation of any pair of harmonics, irrespective of the closeness of 

frequencies and relative amplitudes. In [18, 19, 20], the authors 

proposed the representation by enhanced eigen value decomposition of 

the Hankel matrix in collaboration with HT. Although, the WVD gives 

sound localization in both time and frequency, but has its limits due to 

the presence of cross-terms in components of the signal.  

In [23], EWT was suggested for analyzing the non-stationary signals. It 

is an adaptive decomposition technique. FT spectrum is segregated 

using scale-space method followed by the designing of the 

corresponding wavelet filter banks [24]. We will go through EWT in 

detail in the next chapter.  

In [75], Fourier-Bessel series expansion based empirical wavelet 

transform (FBSE-EWT) gives a better estimate of instantaneous 

frequency for short-duration signals by replacing the Fourier spectrum 

to the Fourier Bessel series expansion (FBSE) spectrum. 
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1.2  Motivation 

On comparing FBSE- EWT technique with HHT and EWT for TF 

representation, FBSE- EWT technique provides better resolution i.e. it 

can represent the frequency components that are close enough in TF 

plane, leading to superior TF representation. But, for some non-

stationary signals which get easily separated in the time axis but cannot 

be separated that easily in the frequency axis, FBSE- EWT method fails 

to give a good TF representation. Therefore, an enhanced method is 

beneficial in order to meet the aforesaid drawbacks of the existing 

method. The signal is separated into small time intervals with the help 

of window function and FBSE- EWT is applied on each segment. By 

summing all these components, HT based TF representation is taken. 

The new suggested method has been applied on bat echo signal as well 

as on a synthetic linear frequency modulated signal. Using our proposed 

method, we have got a better TF representation. 

 

1.3  Organization of the thesis 

The further portions of this report are organized in the following 

manner: 

1. Chapter 2 provides a detailed description of EWT and FBSE- 

EWT, along with their properties and drawbacks. HT is also 

discussed. 

2. In Chapter 3, windowed Fourier-Bessel series expansion based 

empirical wavelet transform (WFBSE-EWT) method has been 

explained. The performance evaluation based on mean square 

error (MSE) has also been explained. 

3. Chapter 4 presents results, discussion where comparison of our 

method is done with the existing techniques. 

4. Chapter 5 presents the conclusion of whole work. The directions 

for future research work are also provided in this chapter. 
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1.4  Summary 

In this chapter, we have discussed the nature of real-life signals i.e. non-

stationary nature. Further, we have discussed how the need for TF 

analysis came into the picture and gave us a better view to analyze any 

signal. The existing techniques for TF representation are also explained. 

Our goal is to get a better TF representation. 
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Chapter 2 

 

EWT, FBSE-EWT and HT  

 

Methods such as EMD [16] are used to decompose signals in different 

modes. Although it finds many applications, still it lacks mathematical 

theory. EMD faces various drawbacks such as modes getting mixed, 

boundary effect, stop criteria, etc. This leads to the arising of a new WT 

called EWT. The idea behind this method is extracting different modes 

from the signal and designing a suitable wavelet filter bank. Scale-space 

based approach is used for boundary detection. 

Windowing is applied in order to segment the signal in various sub-

signals. FBSE spectrum is used for the optimal boundary selection. 

Further, filter banks based on the selected boundaries have been 

constructed. 

Bessel functions being damped in nature are used as the basis functions 

in FBSE, this property makes FBSE more competent for non-stationary 

signal analysis. 

HT used to derive the TF representation from the IMFs. 

 

2.1 EWT 

TF analysis comprises of techniques through which we are able to study 

in both the time and frequency domain simultaneously. EWT is one such 

method. 

The method is proposed by Jerome Gilles. Decomposing a signal into 

wavelet tight frames is the key objective of EWT. These frames are built 

adaptively. In [23], the process of EWT on one-dimensional signal has 

been explained. It has been further extended for two-dimensional signal 

[27]. Fig 2.1 represents the block diagram of EWT. 
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Figure 2.1 Block diagram of EWT 

 

The process involved in EWT is explained below [23]: 

• FT of the signal is taken in order to obtain the frequency 

spectrum. 

• With the help of scale-space boundary detection method, 

segmentation of the obtained spectrum has been done. It has 

been segregated into N parts. Boundary frequencies are denoted 

by ωi. These frequencies are bounded in [0,π]. 

• The wavelet and scaling functions are specified as the set of 

band-pass filters for each part. Meyer’s wavelets and Littlewood 

Paley wavelets are used for the construction of filters [30, 57]. 

The scaling function ∆i(ω) is given by, 

∆i(ω) =

{
 

 cos (
Πη(μ,ωi)

2
)               , ⅈf (1 − μωi) ≤ |ω| ≤ (1 + μωi)

1                                                     , ⅈf |ω| ≤ (1 − μωi)

0                                                       , otherwⅈse      

 

                                                                    …………………………2.1 

The wavelet function Ωi(ω) is given by, 
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Ωi(ω) =

{
  
 

  
 

1                           , ⅈf (1 + μωi) ≤ |ω| ≤ (1 − μωi+1)

cos (
Πη(μ,ωi+1)

2
)   , ⅈf (1 − μωi+1) ≤ |ω| ≤ (1 + μωi+1)

sⅈn (
Πη(μ,ωi)

2
)      , ⅈf (1 − μωi) ≤ |ω| ≤ (1 + μωi)

0                                , otherwⅈse                                     ,

 

                                                                  ………………………….2.2 

where,  

η(μ,ωi) = ∅(
(|ω| − (1 − μ)ωi)

2μωi
) 

                                                                …………………………….2.3 

and arbitrary function ∅(h) is given by, 

∅(h) = {
∅(h) + ∅(h + 1) = 1, ⅈf h ∈  [0,1]
1                                      , ⅈf  h ≤ 0
0                                     , ⅈf  h ≥ 1

 

                                                               …………………………….2.4 

The tight frame condition is given as follows, 

μ < mⅈn
i
(
ωi+1 −ωi
ωi+1 +ωi

) 

                                                              ……………………………2.5 

The detail coefficients of ⅈth oscillatory level Xz,Θ(ⅈ, t) and the 

approximation coefficients Xz,∆(0, t) are, 

Xz,Θ(ⅈ, t) = ∫z(α)Θi(α − t) dα 

                                                                     …………………………2.6 

Xz,∆(0, t) = ∫z(α)∆1(α − t)  dα 

                                                                   …………………………..2.7 

Approximate sub-band (SB) signal a0(t) and detail SB signal ai(t) of 

ⅈth level is given by, 

a0(t) =  ∆1(t) ⋆ Xz,∆(0, t) 

                                                                   …………………………..2.8 

ai(t) = Θi(t)  ⋆  Xz,Θ(ⅈ, t) 

                                                                  …………………………..2.9 
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In [25], based on EWT method identification of the type of emotion a 

person is going through using electroencephalogram (EEG) signals has 

been demonstrated. For extracting the features, it uses two selected 

channels during a specific time segment. EEG signal is decomposed in 

various modes using EWT. On the basis of the selected modes, the 

calculation of autoregressive (AR) coefficients is done. These features 

form a feature vector, and further, they are input to the classifier for 

performing emotion identification. 

In [26], decomposition of non-stationary bridge vibration signals using 

the EWT technique has been done. 

Hence, we can say that EWT is a new technique that builds adaptive 

wavelets, and these wavelets have the ability to extract AM-FM 

components of the data. The primary concept behind this is that these 

AM-FM components have a close-packed support spectrum derived by 

FT. Retrieving various modes means segmenting the Fourier spectrum 

and applying filtering with respect to each support that has been 

detected. Through these, a set of functions are built that forms an 

orthonormal basis. It is a fast method too. 

 

2.1.1 Advantages of EWT 

Various advantages of EWT are given below: 

• Calculations are non-recursive. EMD has highly recursive 

calculations that are time-consuming. If we compare it to EMD, 

more consistent decomposition is being provided by EWT. 

• Robust against background noise as compared to the non-

adaptive techniques such as STFT. 

• Modes derived by it are narrow banded functions with fewer 

mixed modes. 

 

2.1.2 Disadvantages of EWT 

The disadvantages of EWT become the base for FBSE-EWT.  

• It has a lesser frequency resolution compared to FBSE-EWT. 
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• In some cases, such as if the signal is formed of two chirps that 

are overlapping in both the domains, time as well as frequency, 

then the EWT fails to separate them. 

 

2.2 Scale-space method for boundary detection 

By convolving the signal with the Gaussian kernel, scale-space 

representation is computed. For calculating this for a discrete signal, the 

formula given in [27] as, 

g(h,m) = ∑ f(h − n)   x(n;m)

P

n=−P

 

                                                           ………………………………2.10 

Where, x(n; t) =
1

√2πm
e
−n2

2m , P = K√m+ 1 and m is a scale parameter 

with 1≤ K≤ 3. The scale-space parameter plays the following role: 

If the scale-space parameter l is increased, the number of minima in the 

representation will decrease, and no new minima will appear. Scale-

space parameter l, in terms of scale parameter m is given below as [8], 

l = √
m

mo
, l = 1,2, … , lmaxⅈmum  

                                                         ………………………………2.11 

Let, mo represent the overall number of initial minima. Thus, in scale-

space plane, each of the initial minima Mi guides to a curve Di . If Qi is 

the lifetime of curve Di , where i=1, 2, 3, 4, 5, . . . M and this lifetime of 

curve is expressed as, 

Qi = maxⅈmum {
l

 the ⅈth  mⅈnⅈmum exⅈsts 
} 

                                                                 …………………………..2.12 

In the histogram, modes are elucidated by the following way: A 

significant mode should be limited by two local minima, which will 

further lead to two long scale-space curves Di . Their values should be 

considerably more than the threshold. Hence, the most appropriate 

threshold (Th) should be estimated for choosing the scale-space curves 

of length significantly more than the threshold value [28]. 
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Due to the non-availability of any prior knowledge of which scales to be 

used in a particular task, the only solution can be the representation of 

the input data signal at multiple scales. This becomes the base of the idea 

of scale-space representation. 

 

The motivation to generate a scale-space representation of a signal under 

analysis has originated from a very basic consideration that the objects 

of real-world are made up of different structures along with that on 

different scales. It implies that real-world things, in contradictory to the 

ideal mathematical body, for example, dots or lines, may look different 

depending upon their different observation scale. Considering an 

example, the concept of a tree is precise at the scale of meters, whereas 

the concepts such as flowers, fruits, buds, etc. are more precise at smaller 

scales as compared to that of a tree. Similarly, for a computer 

vision system when a new scene appears in front of it, and it is having 

no prior information related to it. It has no idea that at which scale it 

should determine the shape of the unknown. Therefore, the only 

reasonable approach can be to collect the information on various scales 

so that it becomes easy to understand the areas where scale variations 

are in occurrence. This makes it clear that scale-space representation 

takes into consideration representation at various scales. 

 

Hence, in other words, we can consider this theory of scale-space 

representation to be a framework for representation on multiple scales. 

It is highly used in signal and image processing. It represents the image 

as a single-parameter family of the smoothened images. The suppression 

of fine-scale structures is done with the help of a parameter, the size of 

the smoothing kernel. 

 

After this, Otsu's method [29], has been utilized to determine the value 

of Th and modes have been derived. Otsu’s method has been explained 

as the next topic below. 

 

https://en.wikipedia.org/wiki/Scale_(ratio)
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
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2.3 Otsu’s threshold detection method 

The Otsu’s method takes its name from Nobuyuki Otsu. This method is 

intended to automated thresholding. This algorithm returns a threshold 

of a particular intensity level separating the pixels into two different 

classes: foreground and background, and has a bimodal histogram 

displaying two peaks. The value of threshold is estimated by either 

maximizing intra-class intensity variance, or by minimizing inter-class 

variance [30]. 

It is effective in low signal to noise and low contrast conditions too. 

In a detailed manner, this method probe for the threshold that can 

minimize the intra-class variance. It is expressed as the weighted sum of 

variances of both the classes, as follows: 

σc
2 (p) = c0(p)σ0

2(p) + c1(p)σ1
2(p) 

                                               ………………………………………2.13 

Where, weights c0 and c1  are the probabilities of the two classes 

foreground and background separated by a threshold p, and σ0
2 andσ1

2 

are the variances of both classes. They are expressed as follows: 

c0(p) = ∑f(j)

p−1

j=0

 

                                             ……………………………………….2.14 

 

c1(p) = ∑ f(j)

K−1

j=t

 

                                                 …………………………………….2.15 

For these two classes, minimizing the intra-class variance is equivalent 

to maximizing inter-class variance as, 

σb
2(p) = σ2 − σc

2(p) = c0(μ0 − μT)
2 + c1(μ1 − μT)

2 

= c0(p)c1(p)[μ0(p) − μ1(p)]
2 

                                               ………………………………………2.16 

Where, μ is the class mean and c being the class probability. Class means  

μ0(p), μ1(p), and μT are given as, 

https://en.wikipedia.org/wiki/Nobuyuki_Otsu
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μ0(p) =
∑ ⅈ
p−1
i=0 f(ⅈ)

c0(t)
 

                                              …………………………………….2.17 

μ1(p) =
∑ ⅈK−1
i=t f(ⅈ)

c1(t)
 

                                              …………………………………….2.18 

μT = ∑ ⅈ

K−1

i=0

f(ⅈ) 

                                             ……………………………………..2.19 

These relations can be verified as: 

c0μ0 + c1μ1 = μT 

                                            …………………………………….. 2.20 

c0 + c1 = 1 

                                           ………………………………………2.21 

These probabilities and means of the class will be evaluated repetitively. 

In steps, Otsu’s method can be given as, 

1. Probabilities and histogram of each and every intensity value is 

computed. 

2. Initial values of class probability and mean is set. 

3. Traversing through all the thresholds from minimum to the 

maximum intensity, keep updating the class probability and 

mean. Simultaneously, keep computing the inter-class variance. 

4. The required threshold will be the one which will correspond to 

the maximum inter-class variance.  

 

2.4 FBSE-EWT 

2.4.1 FBSE 

FBSE of function f(t) is expressed mathematically as, 

f(t) =∑CiJ0 (
βit

N
)

N

i=1

, t = 0,1, …… , N − 1 

                                                 ……………………………………..2.22 
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It makes the use of Bessel functions of zero order. 

where, Ci are FBSE coefficients of f(t), expressed as follows: 

Ci =
2

N2(J1(βi))
2 ∑ t

M−1

i=0

x(t)J0 (
βit

N
) 

                                                       …………………………………2.23 

J0(. ) and J1(.) denote the Bessel functions of order zero and one, 

respectively. 

The positive roots of the Bessel function are represented by βi for i = 1, 

2, 3, 4, . . . N. Here, order i is corresponding to the continuous-time 

frequency fi [4,5], and is related as follows: 

βi ≈
2πfⅈN
fs

 

                                                          ………………………………2.24 

i≈
2fiN

fs
 

                                                          ………………………………2.25 

where, βi ≈ βi−1 + π ≈ ⅈ π and f𝑠 is the sampling frequency. 

 

 

2.4.2 FBSE- EWT method 

In [2], a new methodology based on FBSE-EWT came into the picture. 

It is particularly targeted for the analysis of non- stationary signals. 

The non-stationary nature of Bessel functions are of great use to this 

method. The advantage lies in the point that in Fourier representation, 

the length of the spectrum is half of the signal length in contrast to FBSE, 

providing the same length of both. This makes the frequency resolution 

double for FBSE. 

In [3], using FBSE- EWT heart and respiratory rates from 

photoplethysmogram (PPG) signals have been derived. In [31], with the 

help of sparse autoencoder with support vector machine (SAE-SVM) 

network and FBSE-EWT rhythm identification of focal seizure area has 

been discussed. In this, use of EEG signal has been done. Block diagram 

of FBSE- EWT is given in fig 2.2. 
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Figure 2.2 Block diagram of FBSE- EWT 

 

For finding meaning modes, scale-space representation is used through 

which boundaries are detected and the FBSE spectrum is segmented, 

which results in improved EWT based filter bank and SB signals are 

obtained. By applying the normalized Hilbert transform (NHT), TF 

representation is obtained. 

 

2.5 HT 

For getting the TF representation, the idea of HT has been used in this 

work. It works well on signals with non-stationary and non- linear 

nature. It is like an algorithm. It is used to decompose a signal into IMFs. 

Each and every component will have its HT defined as follows: 
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hj(t) =
1

π
∫

ci(α)

t − α

∞

−∞

dα 

                                                              …………………………….2.26 

The analytic signal z(t) is given by, 

z(t) = c(t) + ⅈh(t) = b(t)eiΩ(t) 

                                                               ……………………………2.27 

Where, IA b(t), phase function Ω and IF ω are expressed as, 

b(t) = √c2 + h2 

                                                              …………………………….2.28 

Ω(t) = arctan(h/c) 

                                                              …………………………….2.29 

ω = dΩ / d t 

                                                              …………………………….2.30 

After the application of HT on every component, the actual signal can 

be expressed as follows: 

c(t) = R{∑bi(t)

n

j=1

exp [j∫ωi(t)d t]} 

                                                           ………………………………2.31 

where, R denotes the real part. 

We will apply the HT to each filter output in order to get the TF 

representation of the WFBSE- EWT. 

HT finds usage in various other fields such as medical imaging, system 

response analysis, sampling of narrowband signals in 

telecommunication, array processing for direction of arrival, etc. 

 

2.6 Window function 

A window is a function that has zero value outside a particular time 

interval. The window function is also known as tampering function and 

apodization function. Mostly, it is symmetric around the middle of the 

interval. It can be multiplied to any signal to get the view of a particular 

time interval that comes inside the window. The window can be of 
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different shapes such as bell-shaped, rectangular, triangular, or any other 

function depending upon the need of the problem. 

In signal processing, it finds multiple applications in the fields such as 

spectral analysis, designing of finite impulse filters, and other 

applications such as antenna design, etc. 

Various windows [82] that can be used for the purpose of analysis can 

be: 

 

2.6.1 Gaussian window 

The Gaussian window is bell-shaped with equal probabilities both sides 

about the mean. It extends till infinity. Its FT is also Gaussian in nature. 

With standard deviation σ and sampling periods M/2, it can be expressed 

as, 

f[n] = exp(−
1

2
(
n − M/2

σM/2
)
2

) ,  0 ≤ n ≤ M 

                                                                  ………………………….2.32 

The plot of Gaussian window is given in fig 2.3. 

 

Figure 2.3 Gaussian window  

 

2.6.2 Rectangular window 

Also known as Dirichlet or Boxcar window, it is one of the simplest 

windows. The rectangular window can be viewed as a series of M values 
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equal to 1 and except that all the values being 0. In the form of an 

equation, it is expressed as follows: 

f[n]=1 

                                                                 ………………………….2.33 

The plot of rectangular window is given in fig 2.4. 

 

Figure 2.4 Rectangular window  

2.6.3 Hamming window 

It was named behind R. W. Hamming, an associate of J. W. Tukey. It 

uses raised cosine. It has non-zero ends. In the time domain, it 

smoothens the autocovariance function. It is also known as an 

apodization or tapering function. 

f(n) = a0 − a1 cos (
2πn

W − 1
)  0 ≤ n ≤ W− 1 

                                                             ……………………………..2.34 

where, a0= 0.54 and a1=0.46. 

The plot of Hamming window is given in fig 2.5. 
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Figure 2.5 Hamming window 

 

2.6.4 Chebyshev window 

Chebyshev window is also known as Dolph-Chebyshev and Dolph 

window. The work of this window is that for a provided width of the 

main lobe, it will reduce side lobe’s Chebyshev norm. Discrete Fourier 

transform (DFT), Fo(k) of the function f0(n) is expressed as, 

F0(k) =
XN(β cos(

πk

N+1
))

XN(β)
.  

                                         =
XN (β cos (

πk

N+1
))

10α
, 0 ≤ k ≤ N 

                                                             ……………………………..2.35 

Fo(k) is real valued. 

l-th polynomial Xl(p) is given by, 

Xl(p) = {

cos(lcos−1(p))                              , ⅈf − 1 ≤ p ≤ 1

cosh(lcosh−1(p))                              , ⅈf p ≥ 1

(−1)lcosh(lcosh−1(p))                     , ⅈf p ≤ −1    

 

                                       ………………………………2.36 

and 

β = cosh(
1

N
cosh−1(10α)) 

                                                          ……………………………….2.37 

The plot of Chebyshev window is shown in fig 2.6. 

https://en.wikipedia.org/wiki/Chebyshev_polynomials


21 
 

 

Figure 2.6 Chebyshev window  

 

 

2.6.5 Hann window 

It is also known as Hann filter, von Hann window, etc. The Hann 

function of length L  used to perform Hann smoothing,  the name of this 

window has been given behind Julius von Hann, an Austrian 

meteorologist. For performing Hann smoothing, we use a function of  L 

length. The function of the window is given by, 

 

f(g) =
1

2
(1 + cos (

2πg

L
))   , |g|≤ ( L/2) 

        = 0                               , otherwise 

                                                         ………………………………..2.38 

f0(n) = f (
L

N
(n −

N

2
))

f0(n) =
1

2
[1 − cos (

2πn

N
)]

        , 0 ≤ |n| ≤ N 

                                                           …………………………….2.39 

N can take either odd or even value. The plot of Hann window is shown 

in fig 2.7. 

https://en.wikipedia.org/wiki/Julius_von_Hann
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Figure 2.7 Hann window 

 

Hann window can also be defined as a continuous combination of 

rectangular windows. The difference between the Hann window and the 

Hamming window is that the Hann window touches zero on both the 

sides, whereas the Hamming window doesn’t touch zero exactly. It ends 

slightly before zero.  

Hann removes the discontinuity, whereas Hamming has a slight amount 

of discontinuity left. 

In this way, we have used various windows for segmenting the signal 

and for its analysis in the further steps. 

 

2.7 Summary 

In this chapter, we have discussed EWT with its advantages and 

disadvantages, boundary detection using scale-space representation, 

Otsu’s thresholding method. In EWT, the empirical scaling functions 

and wavelet functions have been designed as band-pass filters, and 

Meyer's wavelets and Littlewood Paley wavelets have been used to 

design these filters. 

After this, we have discussed the FBSE- EWT method, HT, and various 

types of window functions. 

 



23 
 

Chapter 3 

 

Proposed Method 

 

3.1 Proposed method WFBSE-EWT 

We have proposed a method for analyzing non-stationary signals and 

named it as WFBSE-EWT. We have considered a bat echo signal and a 

synthetic linear frequency modulated signal for that purpose. Fig 3.1 

depicts the block diagram of the proposed method. 

 

Figure 3.1 Block diagram of proposed method 

 

In fig 3.1, + indicates the concatenation process of the obtained 

components. 
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The process proceeds in the following manner: 

The signal is segmented in equal parts using a moving window concept. 

A window is a function that has zero value outside a particular time 

interval. A window function is also known as tampering function and 

apodization function. Various windows used are Gaussian window, 

Hann window, Chebyshev window and Hamming window. As this 

process of windowing causes disturbances and discontinuities on both 

ends, we have done an overlapping of 50% while performing the 

segmentation of the signal in the time domain. For the sub-signals 

obtained, FBSE-EWT is applied for each sub-signal. It refers to 

obtaining the FBSE spectrum of individual sub-signal. Scale-space 

based boundary detection approach applied to find meaningful 

boundaries, which results in design of improved EWT based filter bank 

and finally, SB signals are obtained using filter bank. 

The IMFs are obtained for each segment separately. Further, the IMFs 

are concatenated, and then HT is applied to get the TF representation of 

the signal.  

 

3.2 Performance evaluation 

For evaluating the performance of the TF representation, we compute 

MSE between the expected and the proposed method’s TF 

representation. The MSE is expressed by, 

MSE =
1

RS
∑∑(TF2(f, t) − TF1(f, t))

2
S

t=1

R

f=1

 

                                                               ……………………………..3.1 

where, R- total frequency points. 

           S - total time instants.  

 and TF2 and TF1represent the expected and the proposed method’s TF 

representations, respectively. 
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3.3 Summary 

In this chapter, we have discussed the proposed method to analyze non-

stationary signal using WFBSE-EWT method. The aim is to get a better 

TF representation. The experimental results of these methods are shown 

in the next chapter. This can be observed/viewed that the proposed 

method gives preferably better results than the other approaches 

discussed in Chapter 2. 
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Chapter 4 

 

Simulation results 

The performance of the proposed method has been evaluated by 

applying it to two non-stationary signals. One signal is a real signal, and 

the other one is a synthetic signal. For the real signal bat echo signal has 

been used whereas, on the other hand a synthetic frequency modulated 

signal has also been used.  

The results are obtained by applying different types of windows. 

Further, the results are compared by the existing FBSE- EWT method.  

4.1 Bat echo signal 

This bat chirp has been taken from a large brown bat called Eptesicus 

fuscus from [81]. The duration of the signal is 2.5 milliseconds, with the 

sampling period of 7 microseconds. Fig 4.1 shows the plot of bat-echo 

signal. 

 

Figure 4.1 Bat-echo signal 
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The boundaries detected and the corresponding filter banks can be given 

as in fig 4.2 (a) and 4.2 (b). 

Figure 4.2 (a) Boundaries obtained by FBSE-EWT for bat signal and 

(b) corresponding filter banks. 

 

The IMFs for the FBSE-EWT of bat signal are shown in fig 4.3. 

Order 

M
ag

n
it

u
d

e 

(a) 

(b) 
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Figure 4.3 IMFs of bat signal using FBSE-EWT, where (1.) IMF-1, 

(2.) IMF-2, (3.) IMF-3, (4.) IMF-4, (5.) IMF-5, (6.) IMF-6, (7.) IMF-7, 

(8.) IMF-8, (9.) IMF-9, (10.) IMF-10. 
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IMFs of bat signal using WFBSE-EWT is given below in fig 4.4. 

 

 

 

Figure 4.4 IMFs of bat signal using WFBSE-EWT, where (1.) IMF-1, 

(2.) IMF-2, (3.) IMF-3, (4.) IMF-4, (5.) IMF-5. 

Fig 4.5 depicts TF representation of bat signal using FBSE-EWT. 

 

Figure 4.5 TF representation of bat signal using FBSE- EWT 
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TF representation using WFBSE-EWT for bat signal with Gaussian, 

Hamming, Hann and Chebyshev window are shown in fig 4.6(a), 4.6(b), 

4.6(c) and 4.6(d), respectively. 

 

Figure 4.6 (a) TF representation using Gaussian window in WFBSE-

EWT (bat signal) 

 

Figure 4.6 (b) TF representation using Hamming window in WFBSE-

EWT (bat signal) 
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 Figure 4.6 (c) TF representation using Hann window in WFBSE-EWT 

(bat signal) 

 

Figure 4.6 (d) TF representation using Chebyshev window in WFBSE-

EWT (bat signal) 
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4.2 Synthetic linear frequency modulated signal 

For n varying from 1 to 500. The signal taken is: 

S= (
1

99
) (cos (

1

200
πn + 1)

3

50
n) + (

1

99
) (cos (

3

100
πn + 188)

1

100
n) 

 The time domain representation of the signal is given below in fig 4.7 

along with boundaries and filter banks obtained using FBSE-EWT in fig 

4.8(a) and 4.8(b), respectively. 

 

Figure 4.7 Linear frequency modulated signal 

Figure 4.8 (a) Boundaries obtained by FBSE-EWT for linear frequency 

modulated signal and (b) corresponding filter banks. 
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The IMFs for the FBSE-EWT of linear frequency modulated signal are 

shown below in fig 4.9. 

 

 

 

 

Figure 4.9 IMFs of linear frequency modulated signal using FBSE-

EWT, where (1.) IMF-1, (2.) IMF-2, (3.) IMF-3, (4.) IMF-4, (5.) IMF-

5, (6.) IMF-6, (7.) IMF-7, (8.) IMF-8. 
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IMFs of linear frequency modulated signal using WFBSE-EWT is given 

below in fig 4.10. 

 

Sample Number 

Figure 4.10 IMFs of linear frequency modulated signal using WFBSE-

EWT, where (1.) IMF-1, (2.) IMF-2, (3.) IMF-3, (4.) IMF-4. 

Fig 4.11 depicts TF representation of linear frequency modulated signal 

using FBSE-EWT. 

 

Figure 4.11 TF representation of linear frequency modulated signal 

using FBSE-EWT 
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TF representation using WFBSE-EWT for linear frequency modulated 

signal with Gaussian, Hamming, Hann and Chebyshev window are 

shown in fig 4.12 (a), 4.12 (b), 4.12 (c) and 4.12 (d), respectively. 

 

Figure 4.12 (a) TF representation using Gaussian window in WFBSE-

EWT (linear frequency modulated signal) 

 

Figure 4.12 (b) TF representation using Hamming window in WFBSE-

EWT (linear frequency modulated signal) 
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Figure 4.12 (c) TF representation using Hann window in WFBSE-

EWT (linear frequency modulated signal) 

 

Figure 4.12 (d) TF representation using Chebyshev window in 

WFBSE-EWT (linear frequency modulated signal) 

 

In both the cases fig 4.5 and fig 4.11, we have obtained discontinuous 

TF representation in the case of FBSE-EWT, whereas by using WFBSE-

EWT, there are fewer discontinuities in the representation. 
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Further, the results can be verified by the MSE comparison made 

between the existing method and the proposed method.  

The comparison table of MSE is given below in table 4.1. 

Table 4.1 Comparison table of MSE 

Signals FBSE 

-EWT 

WFBSE 

-EWT 

(Gauss 

-ian) 

WFBSE

- EWT 

(Hamm 

-ing) 

WFBSE

-EWT 

(Hann) 

WFBSE  

-EWT 

(Cheby 

-shev) 

Bat echo 

signal 

9.5124 

e-07 

7.8473 

e-07 

8.0523 

e-06 

8.1028 

e-07 

3.5441 

e-07 

Linear 

frequency 

modulated 

signal 

2.0244 

e-10 

2.0033 

e-10 

2.6695 

e-10 

2.1237 

e-10 

1.4262 

e-10 

 

From the above table, we draw the following conclusions: 

• In both cases, we can observe that Gaussian, Hann and 

Chebyshev window, gives better performance as compared to 

the existing method. 

• But, the MSE for Hamming window is more as compared to the 

existing method. 

• MSE for Chebyshev window is less as compared to all other 

windows. 

 

4.3 Summary 

In this chapter, we have presented the results based on TF representation 

of the existing FBSE-EWT method and WFBSE-EWT method 

(Gaussian window, Hamming window, Hann window and Chebyshev 

window). Further, the discussions have been made by comparing the 
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MSE of the existing and proposed method. The discussion shows that 

the proposed method has been found highly effective. 
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Chapter 5 

 

Conclusion and future work 

 

5.1 Conclusion 

We have proposed WFBSE-EWT method to get a better TF 

representation of non-stationary signals. After comparing the results 

with the existing FBSE-EWT technique, we come to the conclusion that 

using Gaussian, Hann and Chebyshev window, we get better TF 

representation. 

We obtain lesser MSE in case of these three windows, best in the case 

of Chebyshev window.  

 

5.2 Future work 

We can extend this method for two-dimension. Also, the method can be 

improved so that it becomes immune to noise. The proposed method can 

be used to determine the features for the analysis and classification of 

biomedical signals. The method can be studied for the analysis of wide 

class of non-stationary signals and can be compared with other existing 

methods. 
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