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Abstract 
 

  

Alcoholism is a seriously addicted habit to most of the youth in the 

present days. It is very necessary to find and diagnosis the alcohol addicts 

as most of them did not realise that they are affected by the alcoholism. In 

old days it is very difficult to find the affected people by conducting 

manual question and answer sessions. But recent studies found that 

alcoholism have significant effects on EEG signals that can be extracted 

from using different computerised methods. In this thesis we have 

discussed one of the methods to find the alcoholism from 

electroencephalogram (EEG) signals. First, we have decomposed the 

EEG signals by using tunable Q factor wavelet transform (TQWT) in to 

different sub bands and determine the energy of each sub band. Then we 

extracted features from different sub bands using Hurst exponent, log 

energy, Shannon entropy, approximate entropy, threshold entropy, and 

normal entropy. Then we have used various classifiers to classify the 

effected and non-effected EEG signals from the extracted features. Then 

we compare different combination of features and classifiers to get the 

best results. In this method we have got an accuracy of 99.2% with and 

area under curve (AUC) of 0.99 for the Shannon entropy and logistic 

regression combination.  
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Chapter 1 

Introduction  

 

1.1 Alcoholism 

 

Alcoholism is considered as mental sickness by the 

diagnostic and statistical mental disorder [1]. In recent day it is 

easy to addicted to alcoholism without knowing it. Generally, the 

person suffering from alcoholic addict have difficulty in 

controlling their desire to take alcohol. Most of them are fully 

aware of the harmful effects of alcohol but they are unable to 

control that habit and even they don’t want others to know that 

they are having this addiction. In recent studies by world health 

organisation (WHO) alcoholism is declared as the fifth highest 

mortality rate among the deadliest diseases in the world [2]. And 

the early alcoholic deaths and moderate alcoholic deaths are more 

in recent days. Moreover, alcohol consumption reportedly 

increases the disability adjusted life year (DALY) and even lead to 

death. It is reported that 6% of deaths are due to alcoholism which 

is approximately around 3.3 million per year [30]. Addiction of 

alcohol may cause serious health issues like liver cancer, 

oesophagus cancer and oral cancer etc. And alcohol effects the 

personal life like relationships with work place and social 
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gatherings. Excessive taking of alcohol causes physiological and 

behavioural changes in that person, and serious damage to the 

nervous system and may cause disability in learning and academic 

performances. 

It is very hard to recognize the alcoholism cases by 

conventional methods. Normally, it is diagnosed in clinics and 

primary heath care centres by assessing responses to irritation by 

cutting down, first drink in the dawn, guilty feeling, and criticism. 

But it was found that it’s rate of positive screening of alcoholic 

subjects is lower than 50% using these questions [3]. The reason 

for few patients not sharing the correct information might be due to 

anxiety of stigmatization and shame. In recent studies revealed 

that, electroencephalogram (EEG) signals can acquired non-

invasively depict the state of brain and they can be effectively used 

for the detection, identification and treatment monitoring of the 

alcoholic patients [4]. 
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1.2 EEG signals 

 

From the research that has been conducted for establish and 

exploring the effect of alcoholism on EEG signals such that they 

will be used for the neurophysiological studies. These assessments 

have shown considerable clinical relation between EEG signals and 

alcohol usage. The alcoholic subjects have differences in the power 

spectrums of the delta (0–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), 

gamma (>30 Hz) and beta (12–30 Hz) frequency sub bands in EEG 

signals [5]. In addition, with the above effects, the subject 

experiences changes in behaviour like seizures and hallucinations 

[6,7,8]. By finding out the variations in power level of the 

frequency sub bands in EEG signals, neurophysiological studies 

can be possible. Research on alcoholic subjects concludes that the 

EEG signals shows higher beta wave, delta wave and theta wave 

[60] power as compared to normal subjects. And increase in the 

beta 3 (20–28 Hz), beta 2 (16–20 Hz), and beta 1 (12–16 Hz) 

frequencies in EEG signals are the caused for parietal and frontal 

region of the alcoholic subjects. The results from Bauer’s study on 

these subjects have showed a considerable change in beta activity 

within the frequency range of 19.5 to 39.8 Hz. The lower dose of 

alcohol which is below 0.5 g/kg can impact task related 

synchronization in theta frequency bands of EEG signals, and 

usage of alcohol in moderate dose may increase the power in alpha 

band (8–12 Hz). With the changes that are in EEG alpha 

topographic localization, activity, morphological nature and 

generalized cortical processes within our brain will get modified. 

And high dosage of alcohol which means exceeding 1.0 g/kg can 
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increase activity of the EEG frequencies which are below 8 Hz. For 

this level of dosage, the lower delta spectral power and fast beta 

have been observed in low-binge and non-binge drinkers in 

contrast with the high-binge drinkers and added synchronization in 

gamma as well as theta frequency bands [9-10]. 

   

1.3 Overview of the existing techniques 

 

In the process based on computer-aided diagnosis (CAD), 

signal processing techniques such as nonlinear dynamics, wavelet 

transforms, and chaos theory are dominantly used in feature 

extraction methods. More-over, artificial intelligence algorithms 

such as enhanced probabilistic networks, neural networks, support 

vector machine (SVM) and principal component analysis (PCA) 

are used to determine minute changes in given signal and the 

diseases can be automated diagnosis. The nonlinear and linear 

methods such as fractal dimension, entropies, correntropy [11] and 

largest Lyapunov exponent are extracted for detecting the deviation 

from the normal [12]. 

 

1.4 Objective 

 

The main objective of this study is that to compare the 

different features that are extracted from the alcoholic and 

controlled EEG signals. And find the best accuracy possible using 

different kind of classifiers. The selected EEG signals are 
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decomposed using TQWT, and from the selected sub bands we 

have to extract different features and then we have to compare 

them. 

   

1.5 Organization of thesis 

The arrangement of the remaining chapters in this thesis is as 

follows: 

In chapter 2 firstly we have discussed about the TQWT and 

then we have explained theoretically about the features that are 

going to be extracted. 

In chapter 3 the proposed methodology is shown and 

explained in detailed, along with various machine learning 

classifiers used, and also the performance merits are discussed. 

In chapter 4 the experimental evaluated results are compared 

for various classifiers and the results are discussed by comparing 

performance indices. 

In this final chapter 5 the thesis is concluded and the scopes 

for the future works are also discussed. 

 

  



14 
 

 

Chapter 2 

Theory related to TQWT, feature 

extraction methods 

 

2.1 Tuneable Q factor wavelet transform 

The transform, that we denoted as the tunable-Q wavelet 

transform (TQWT) [13], is controlled by its oversampling rate 

(redundancy) and the Q-factor. The TQWT is developed using 

perfect reconstruction over-sampled filter banks with scaling 

factors that are real-valued. There are two forms in this transform. 

The first form is for the discrete-time signals having finite length 

and can be implemented effectively with fast Fourier transform 

(FFT). The second form is for the discrete-time signals which are 

defined on all of Z. Modest oversampling rates (e.g. 3-4 times over 

complete) are sufficient for the synthesis/analysis functions of the 

TQWT can be localized well [14]. 

The TQWT I mostly related to the rational dilation wavelet 

transform (RADWT). Similar to the RADWT, the TQWT is also 

fully discrete, and has the perfect reconstruction property, is 

developed in terms of iterated two-channel filter banks, is modestly 

overcomplete, and implemented using the discrete Fourier 

transform (DFT). In contrast to the RADWT, the TQWT is 

conceptually simpler, and can also be more effectively 
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implemented by the radix-2 FFTs, and the parameters are easily 

controllable to the Q-factor of transform. The user can directly 

control the redundancy and Q-factor of the TQWT [15]. 

The filters, on which the TQWT is based, are specified 

directly in the frequency domain, they don’t have rational transfer 

functions. Similar to the fractional spline wavelet transform that is 

also based on filters which are having non-rational transfer 

functions, the DFT provides 1) a means to define the transform for 

finite-length discrete data that preserves the perfect reconstruction 

property exactly and 2) an effective implementation of the signal 

using FFTs [16]. 

The high pass and low-pass sub-band signals created after J-

stages having the frequency responses given by H1
(J)(ω) and 

H0
(J)(ω) respectively as follows: 

 

    𝐻0
(𝐽)

(𝜔) = {
∏ 𝐻0 (

ω

𝛼𝑚),            |𝜔| ≤ 𝛼𝐽𝜋.𝐽−1
𝑚=0

0                         𝛼𝐽𝜋 < 𝜔 ≤ 𝜋.
   (1) 

 

𝐻1
(𝐽)(𝜔) = {

𝐻1(𝜔/𝛼𝐽−1) ∏ 𝐻0 (
𝜔

𝛼𝑚) , (1 − 𝛽)𝛼𝐽−1𝜋 ≤ 𝜔 ≤ 𝛼𝐽−1𝐽−2
𝑚=0

0                      otherwise.
 (2) 

 

Where  

    𝐻0(𝜔) = 𝜃 (
𝜔+(𝛽−1)𝜋

𝛼+𝛽−1
),     (3) 

 

    𝐻1(𝜔) = 𝜃 (
𝛼𝜋−𝜔

𝛼+𝛽−1
).     (4) 
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Here 𝜃(ω) is frequency response of Daubechies filter bank 

and can be given as follows 

𝜃(𝜔) = 0.5(1 + cos(𝜔))√2 − cos(𝜔) , |𝜔| ≤ 𝜋. (5) 

The parameters Q and r are given as, 

𝑟 =
𝛽

1−𝛼
,  (6)  𝑄 =

2−𝛽

𝛽
.    (7) 

By selecting proper values of Q and r we can control the 

characteristics of filter by which we can also control the 

decomposition of the given EEG signal [17]. 

 

 

2.2 Features selection 

2.2.1 Hurst exponent 

  To calculate long term memory of time series we generally 

use Hurst exponent [18]. It belongs to the autocorrelations of time 

series, and decrease rate when raising difference between value 

pairs lags. Theories which have this exponent are actually 

originally developed in hydrology sector for the practical matter of 

finding optimum dam size for the great Nile river (in Africa) 

volatile rain and droughty conditions that has been studied over a 

long period. The name "Hurst exponent", or "Hurst coefficient", 

was from Harold Edwin Hurst (1880–1978), he was a lead 



17 
 

researcher in these studies; and the use of the standard notations H 

for the coefficient also related to his name.    

The mentioned Hurst exponent is referring as a "index of 

dependence" or the "index of long-range dependence". It classifies 

the relative tendency of the time series either to converge strongly 

to the mean or to cluster in a specific direction. The value H is 

usually in the range 0.5–1 which indicates a time series with long-

term positive autocorrelation, which means both that a high value 

in a series shall probably be following by another high value and 

that values a very long time into future shall also tend to be high 

[19]. 

The values in the range of 0 – 0.5 indicates a time series with 

long-term switching between higher and lower values in aside by 

side pairs, which means that a single higher value will probably be 

following by a lower value and thus the value after that shall tend 

to be very high, with this tendency to change between higher and 

lower values lasting a longer time into future work [20]. 

The value H=0.5 will indicate a completely uncorrelated 

time series, but actually in facts it is the most value applicable to 

time series for which this autocorrelation at small time lags will be 

a positive or a negative value but where the absolute values of an 

autocorrelations decay exponentially quickly to zero [21-26].  

Hurst expanded for variation range (R), standard deviation 

(S) the equation by Einstein which converts it to the more generic 

form as, 

 

(𝑅/𝑆)𝑛 =𝑐 ×𝑛𝐻     (8) 
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Usually, the value R/S changes with the scale with an 

increase of a time increment according to this dependence degree 

equal to H which is otherwise the Hurst exponent. 

 

 

2.2.2 Approximate entropy 

 

Functions [27] which verify the additive-type property is 

well related for efficient finding of binary-tree structures and also 

the fundamental splitting property of wavelet packets 

decomposition. Classically the entropy-based criteria match these 

mentioned rules and describe data-related properties for a precise 

representation of a signal. Entropy is a common concept mentioned 

in many areas, mainly in field of signal processing. Many others 

are available and will be easily introduced. If the signal is given 

then the coefficients of signal are in an orthonormal basis [28]. 

In this subject like statistics, approximate entropy (ApEn) is 

a method used to measure the amount of regularity and 

‘unpredictability’ of fluctuations over given time-series. Regularity 

is actually originally measured by precise regularity statistics, 

which has mainly focused on different entropy measures. But 

accurate entropy calculation needs large amounts of data, and 

found results shall be fully influenced by system noise, so it is not 

practical or preferable to apply these methods to experimental data. 

To find approximate entropy, the below algorithm steps must be 

used [29]. 
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1: - Form the given time series data say “v(1), v(2)……v(N)”. 

These are raw data values from measurement equally spaced in 

time.  

2: - keep the ’m’ constant and, an integer, and ‘r’, as a positive real 

number. The given value of ‘m’ must represent the length of 

compared run of given data, and ‘r’ also specifies a filtering level.  

 3: - From the above data make a sequence of vectors 

“x(1),x(2)……., x(N-M+1)” where x(i) = [v(i),v(i+1),……v(i+m-

1)]  

4: - Apply the above sequence to construct, for each of ‘i’ where  

1< i< (N-m+1) 

𝐷𝑖
𝑚(𝑟) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥(𝑗)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐[𝑥(𝑖),𝑥(𝑗)≤𝑟]

𝑁−𝑚+1
  (10) 

𝑐[𝑥, 𝑥∗] = max|𝑢(𝑎) −  𝑢∗(𝑎)|    (11) 

ɸ𝑚(𝑟) = (𝑁 − 𝑚 + 1)−1  ∑ log(𝐷𝑖
𝑚(𝑟))𝑁−𝑚+1

𝑖=1   (12) 

 

                     Approximate entropy = ɸ𝑚(𝑟) − ɸ𝑚+1(𝑟) (13) 

 

  2.2.3 Shannon entropy 

Functions which are having an additive type property are 

well suited for efficient searching of the fundamental splitting. 

Classical entropy criteria will mostly match the conditions and 

describe about information-related properties for an accurate 

representation of the given signal. Entropy for any signal is 

common concept, mostly in signal processing techniques [30-34]. 
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The (nonnormalized) Shannon entropy is given by, 

 E1(xi) = Xi
2 log (Xi

2)   (14) 

so 

E1(x) = ∑ i Xi
2 log (Xi

2)   (15) 

with the convention 0 log (0) = 0. 

In the above expression X is the signal and (Xi) are the 

coefficients of X in an orthonormal basis [35]. 

 

  2.2.4 Log energy entropy 

 

This log energy implies the logarithmic energy, which is also 

a notable feature for EEG signals classification. This has its base in 

potential theory.  The log energy for a signal is found using basic 

Parseval energy theorem [36]. 

Let x(t) is the signal and we need to find its log energy value 

LOEN then, for ‘K’ frequency bins and “l” frame indices 

                                        𝐿𝑂𝐸𝑁 =  log 𝐸𝑥(𝑙)   (16) 

                                   𝐸𝑥(𝑙) =  ∑ |𝑥(𝑘, 𝑙)|2𝐾
𝑘=1    (17) 

 

  2.2.5 Threshold entropy 

  The threshold entropy is defined as, 

E (Xi) = 1 if |Xi| > p and 0 otherwise so  
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E (X) = #{ i if and only if  |Xi | > p} is the number of time 

instants where signal magnitude is greater than the given 

threshold value p [37]. 

 

 

  2.2.6 Norm entropy 

  The norm entropy with 1 ≤ p is given as, 

E (Xi) = |Xi|p so    (18) 

    E (X) = ∑ |𝑋|𝑖
2 = ||X||pp    (19) 

In the above expression X is the signal and (Xi) are the 

coefficients of X in an orthonormal basis [38]. 

 

  2.3 Summary 

 

In this chapter we have discussed about TQWT, and 

different features that are going to be used in the proposed method 

theoretically. In the next chapter we are going to discuss about the 

proposed method with the required waveforms and graphs. 
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Chapter: 3 

 Datasets and proposed method 

  3.1 Introduction 

In this chapter first we are going to discuss about the data set 

that we going to use. And then we are going to decompose the 

EEG signals using TQWT and we will calculate the energy of each 

sub band. Then we have to select the sub bands that are having 

significant energy. From that selected sub bands, we have extracted 

features that are discussed in the previous chapter. From the 

extracted features we have classified using different classification 

techniques.   

3.2 Dataset 

The EEG dataset used in this work was taken from the 

University of California, Irvine Knowledge Discovery in Databases 

(UCI KDD) archive. And it is available in online at the following 

http://kdd.ics.uci.edu/databases/eeg/eeg.data.html. This dataset is 

used to find relation between EEG signals and the correlation to 

alcoholism. This Dataset includes the EEG recordings of 124 

alcoholic and normal patients captured from entire 10/20 standard 

sites or international montage in coordination with Standard 
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Electrode Position Nomenclature of American 

Electroencephalographic Association, 1990. The electrode attached 

to nose is used for ground. The electrode impedance is always less 

than 5k. All of these subjects have gone through 120 trials for 

different stimuli and that consists of 90 images of objects that were 

selected from the images from references [39-42]. These EEG 

signals have event related bio potentials obtained from 64 

electrodes that are applied on scalp. The EEG signals are recorded 

for 32 s with cap (Electro cap Inter-national, ECI) having 61-lead 

electrode. The system was sampled at 12 bits resolution and 256 

Hz. The EEG signals with undesired body and eye movements 

have been excluded and 30 recordings for each alcoholic and 

normal class are considered. This data uses 120 EEG signals of 

each normal and alcoholic class. All of these EEG signals have 

2048 samples recorded for 8 s. The Figure 3.1 shows the example 

of the alcoholic and normal EEG signals respectively [43-46]. 

 

Figure 3.1 EEG dataset alcoholic and controlled 
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3.3 Proposed method 

  The flow chart of the proposed methodology is as follows: 
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3.3.1 Decomposition of EEG signal using TQWT 

The EEG signals are decomposed using TQWT with the 

values of r = 3, J = 8 and Q = 1. And the decomposed sub bands 

are as follows shown in Figure 3.2. 

 

 

 

Figure 3.2 Decomposed sub bands using TQWT 
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3.3.2 Sub-band energy and selection 

First, we have to calculate the energy of each sub band to 

understand which sub band has the maximum significant energy 

and then we have to select sub bands accordingly [47-49]. 

The energy of each sub band is shown in Fig 3.3. 

 

 

     Figure 3.3 Energy of sub bands 

From the energies that are calculated from the sub bands we 

have noticed that maximum change in energy is in lower sub bands 

as compared to higher sub bands so we can ignore the higher sub 

bands even though they contain more energy. 

  



27 
 

 

  3.3.3 Extraction of features 

 Now from the selected sub bands we have to extract the 

features namely Hurst exponent, approximate entropy, Shannon 

entropy, log energy entropy, threshold entropy and norm entropy. 

The features that are acquired from the sub bands is shown in the 

chapter: 4 results and discussion. 

 

3.4 Summary 

In this chapter we have discussed about the dataset that is 

used in this method, the proposed methodology with the 

decomposed sub bands using TQWT, the energy of the sub bands 

and sub band selection based on the energy of sub band, and the 

features that are being used in this method. In the next chapter we 

will discuss about the results.   
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Chapter 4 

Results and discussion 

 

4.1 Tested values of all features 

The following are the tested values of the features extracted 

from the sub bands using different entropy techniques namely 

Hurst exponent, log energy entropy, Shannon entropy, norm 

entropy and threshold entropy. 

The following are the values of Hurst exponent. In the Table 

4.1.1 and Table 4.1.2 we have shown the values of Hurst exponent 

for one controlled and one alcoholic respectively signal which is 

decomposed using TQWT. 

      Table 4.1.1 Tested values of Hurst exponent (alcoholic) 

Hurst exponent Tested values 

HE 1 0.7908 

HE 2 0.8326 

HE 3 0.4932 

HE 4 0.6545 

HE 5 0.5136 

HE 6 0.5997 

HE 7 0.8892 

HE 8 0.9470 

HE 9 0.8672 
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Table 4.1.2 Hurst exponent tested values (controlled) 

Hurst exponent Tested values 

HE 1 0.5632 

HE 2 0.5854 

HE 3 0.7686 

HE 4 0.6652 

HE 5 0.9553 

HE 6 1.0373 

HE 7 0.9016 

HE 8 0.9505 

HE 9 0.8292 

 

In Table 4.1.3 we are going to show the values of Hurst 

exponent of different alcoholic signals. 

Table 4.1.3 Hurst exponent values alcoholic 

S.No HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 

1 0.562 0.585 0.769 0.67 0.955 1.037 0.90161 0.9505 0.829173 

2 0.759 0.563 0.654 0.51 0.834 0.909 0.96474 0.6343 0.925977 

3 0.702 0.564 0.671 0.73 0.747 0.695 0.71223 0.9632 0.931343 

4 0.631 0.577 0.677 0.84 0.952 0.861 0.66752 0.9628 0.91799 

5 0.592 0.648 0.75 0.78 0.999 0.668 0.88425 0.904 0.883871 

6 0.416 0.492 0.498 0.69 0.825 0.836 0.97317 0.9535 0.866933 

7 0.546 0.612 0.626 0.76 1.04 0.91 1.01984 0.797 0.868586 

8 0.646 0.652 0.676 0.84 0.932 0.724 0.8075 0.905 0.869683 

9 0.527 0.635 0.758 0.75 0.98 0.849 0.89774 0.9548 0.852392 

10 0.526 0.606 0.801 0.79 0.982 0.944 0.88757 0.8961 0.791601 

11 0.791 0.684 0.733 0.78 0.919 0.933 0.93581 0.96 0.774086 

12 0.539 0.555 0.649 0.92 0.849 0.956 0.80846 0.957 0.73029 

13 0.559 0.528 0.716 0.92 0.92 0.915 0.71395 0.924 0.794174 

14 0.758 0.73 0.749 0.92 0.722 0.802 0.82003 0.8825 0.825416 

15 0.659 0.668 0.889 0.9 0.967 0.935 0.92946 0.9209 0.82396 

16 0.631 0.632 0.503 0.6 0.946 0.933 1.0081 0.7687 0.801786 

17 0.667 0.631 0.862 0.81 0.737 0.911 0.88763 0.8617 0.800452 

18 0.502 0.52 0.902 0.87 0.605 0.848 0.80621 0.7088 0.822628 

19 0.661 0.652 0.507 0.79 0.795 0.709 0.9386 0.8577 0.828946 

20 0.59 0.629 0.813 0.79 0.691 0.875 0.92333 0.8609 0.81673 



30 
 

In Table 4.1.4 we are going to show the values of Hurst 

exponent of different controlled signals 

Table 4.1.4 Hurst exponent values controlled 

S.No. HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 

1 0.732 0.869 0.982 0.782 1.048 1.002 0.976 0.969 0.693 

2 0.763 0.831 0.863 0.896 0.524 0.924 0.885 0.886 0.829 

3 0.791 0.833 0.493 0.655 0.514 0.6 0.889 0.947 0.867 

4 0.709 0.715 0.979 0.846 0.757 0.614 0.858 0.946 0.856 

5 0.838 0.84 0.905 0.907 0.986 0.657 0.962 0.898 0.902 

6 1.002 1.007 0.651 0.845 0.702 0.881 0.954 0.894 0.877 

7 1.06 1.038 0.835 0.861 0.961 0.854 0.866 0.906 0.882 

8 0.996 1.002 0.688 1.001 0.946 0.632 0.744 0.884 0.861 

9 0.955 0.945 0.929 1.051 0.786 0.91 0.93 0.916 0.819 

10 0.483 0.522 1.039 1.078 1.005 0.982 0.869 0.91 0.757 

11 0.869 0.797 1.118 0.981 0.991 0.975 0.773 0.818 0.712 

12 0.876 0.804 0.729 0.882 0.93 0.884 0.909 0.918 0.753 

13 0.672 0.661 1.093 1.113 0.924 0.879 0.921 0.691 0.81 

14 0.81 0.82 1.068 1.115 1.013 1.005 0.898 0.948 0.843 

15 0.915 0.911 1.079 1.044 0.97 1.021 0.849 1.09 0.889 

16 0.902 0.914 0.645 0.903 0.99 0.854 0.792 0.927 0.932 

17 0.643 0.612 0.781 0.799 0.957 0.945 0.901 0.91 0.9 

18 0.871 0.915 0.898 1.027 0.922 0.975 0.972 0.934 0.728 

19 0.993 1.022 1.09 1.131 0.629 0.919 0.939 0.89 0.819 

20 1.09 1.119 1.1 1.095 0.962 0.671 0.938 0.882 0.819 

 

 

In Table 4.1.5 we give the values of Shannon entropy for one 

alcoholic signal      

       Table 4.1.5 Shannon entropy tested values(alcoholic)   

Shannon entropy Tested values 

SE 1 -5.1897 e+ 03 

SE 2 -1.7173 e+ 03 

SE 3 -3.6257 e+ 03 

SE 4 -3.7080 e+ 03 

SE 5 -6.1192 e+ 03 

SE 6 -1.2548 e+ 04 

SE 7 -7.4258 e+ 03 

SE 8 -1.3609 e+ 04 

SE 9 -1.3122 e+ 04 

 



31 
 

The Table 4.1.6 gives Shannon entropy for one example of 

controlled signal. 

Table 4.1.6 Shannon entropy tested values (controlled) 

 

 

 

 

 

 

 

 

In Table 4.1.7 we are going to show the values of Shannon entropy 

of different alcoholic signals. 

Table 4.1.7 Shannon entropy values alcoholic 

S.No SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 

1 -5894 -2882 -3222 -1663 -1960 -847 -970 -1865 -8442 

2 -5009 -2143 -1990 -1435 -2011 -859 -531 -826.2 -11216 

3 -6993 -2701 -5853 -2583 -1963 -765 -344 -2039 -24806 

4 -8564 -2624 -4348 -2380 -2165 -502 -379 -919.5 -32074 

5 -9121 -3189 -4389 -2926 -969.5 -113 -1413 -1269 -33745 

6 -4892 -4558 -5747 -3093 -883.8 -468 -2788 -572.6 -51331 

7 -2605 -3921 -2280 -1590 -2205 -1502 -719 -4000 -84255 

8 -4795 -3104 -2125 -1180 -698.5 -1410 -231 -8838 -87749 

9 -3564 -3720 -2306 -1317 -1554 -1075 -1985 -541.4 -49048 

10 -3248 -4681 -1697 -1111 -1468 -1712 -1101 -3574 -16963 

11 -4712 -4382 -3258 -1039 -756.9 -2945 -115 -2518 -7300 

12 -2310 -3690 -2089 -1086 -2392 -2846 -83.5 -221.3 -7381 

13 -2529 -2746 -3223 -2295 -1038 -832 -1238 -60.29 -13965 

14 -2704 -2035 -4398 -2846 -151.9 -67.5 -3943 -843.1 -20122 

15 -4763 -2250 -2501 -1668 -1736 -719 -4607 -599.7 -16629 

16 -2782 -3195 -3761 -1358 -1143 -1473 -1866 -1062 -7755 

17 -4316 -3330 -2991 -2425 -98.45 -1021 -752 -2044 -4803 

18 -2323 -1867 -3681 -2640 -224.3 -370 -1580 -1174 -17318 

19 -6160 -2041 -2099 -2014 -182.6 -128 -2635 -5523 -38165 

20 -4513 -3327 -2258 -1729 -659.1 -56.3 -1096 -1697 -41089 

 

Shannon entropy Tested values 

SE 1 -5.8939 e+ 03 

SE 2 -2.8820 e+ 03 

SE 3 -3.2221 e+ 03 

SE 4 -1.6629 e+ 03 

SE 5 -1.9600 e+ 03 

SE 6 -0.8470 e+ 03 

SE 7 -0.9704 e+ 03 

SE 8 -1.8652 e+ 03 

SE 9 -8.4417 e+ 03 
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In Table 4.1.8 we are going to show the values of Shannon entropy 

of different controlled signals. 

Table 4.1.8 Shannon entropy values controlled 

 

 

 

 

 

   

  

S.No SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 

1 -5190 -1717 -3626 -3708 -6119 -5671 -7426 -13609 -13122 

2 -750 -2911 -3954 -5179 -4966 -5593 -5641 -3542 -6280 

3 -19.7 -1094 -199.1 -3102 -3029 -3021 -6572 -17307 -32662 

4 -67.6 -363.2 -2561 -2084 -4425 -7955 -4033 -18391 -46654 

5 -11.2 -408.9 -1194 -1308 -12159 -8956 -5471 -3603 -33834 

6 -71.7 -879.1 -1361 -2752 -8812 -7654 -4231 -8950 -70655 

7 -332 -1726 -4291 -6611 -20244 -7997 -828 -28994 -1E+05 

8 -311 -1548 -1868 -7720 -25238 -7314 -218 -5130 -82326 

9 -24.1 -438.5 -1102 -6403 -23071 -5231 -2963 -2721 -31021 

10 -8.64 -89.45 -3854 -5578 -42714 -8651 -7890 -3069 -13379 

11 -90.1 -419.2 -3559 -4199 -67809 -5639 -6255 -236.2 -9613 

12 -147 -815.7 -4553 -9005 -35785 -6741 -2513 -125.2 -6583 

13 -109 -729.8 -13205 -23244 -19401 -6868 -1321 -494.9 -4598 

14 -95.3 -563.6 -11479 -23624 -64310 -8641 -8786 -1331 -5278 

15 -88.7 -522.9 -1642 -9982 -30572 -2145 -1799 -437.3 -10954 

16 -84.7 -502.8 -2057 -4820 -9045 -1158 -1659 -6200 -17186 

17 -66.4 -430.2 -2592 -11107 -35930 -8931 -2895 -10768 -9115 

18 -124 -692.5 -6575 -21864 -29711 -7531 -1827 -4146 -12495 

19 -169 -963.5 -9096 -23053 -1940 -4473 -592 -21609 -64990 

20 -136 -818.3 -4213 -15118 -10505 -6124 -1018 -21765 -15605 
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The following are the tested values of log energy entropy. In the 

Table 4.1.9 and Table 4.1.10 below we have the values of log energy for 

one controlled and one alcoholic signal respectively. 

    Table 4.1.9 Log energy tested values (controlled) 

Log energy Tested values 

LE 1 -206.14 

LE 2 -145.49 

LE 3 105.897 

LE 4 79.3229 

LE 5 136.1159 

LE 6 185.9579 

LE 7 105.6502 

LE 8 69.0639 

LE 9 44.6649 

 

    Table 4.1.10 log energy tested values (alcoholic) 

Log energy Tested values 

LE 1 -180.6060 

LE 2 -211.4023 

LE 3 30.9622 

LE 4 59.1910 

LE 5 62.9901 

LE 6 60.2892 

LE 7 29.4430 

LE 8 41.8466 

LE 9 56.8049 
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In Table 4.1.11 we are going to show the values of log energy of 

different alcoholic signals. 

Table 4.1.11 log energy tested values (alcoholic) 

S.No LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 

1 
-180.6 -211.4 30.96 59.191 62.99 60.289 29.44 41.85 56.805 

2 
-189.5 -167 6.31 12.724 64.63 33.47 17.14 9.956 60.596 

3 
-218 -139.4 -6.28 -14.71 32.77 25.078 0.208 41.04 72.459 

4 
-264.9 -189.4 26.86 10.854 72.55 12.824 -5.44 16.12 73.152 

5 
-231.9 -148 -15.8 8.2628 37.01 -77.22 32.49 20.83 76.957 

6 
-156.5 -86.44 83.49 30.828 -21.2 -37.36 76.6 29.8 82.157 

7 
-201.6 -72.97 -21.3 -17.15 98.48 39.845 45.64 46.53 87.327 

8 
-235.3 -138.3 -0.97 -24.36 25.03 47.553 1.665 46.8 89.753 

9 
-227.2 -92.23 39.88 22.294 24.46 24.852 60.24 28.41 81.931 

10 
-270.9 -195.3 42.18 -62.99 14.02 69.288 36.4 38.38 67.647 

11 
-186.7 -51.11 40.46 -111.3 37.41 114.72 -23 40.81 54.872 

12 
-214.4 -69.39 -3.79 -17.42 78.14 100.73 -18.9 4.475 50.483 

13 
-205.6 -187.1 37.83 41.008 34.74 39.025 50.71 -0.92 58.063 

14 
-203.3 -180.6 93.5 110.97 -126 -137.6 91.23 21.92 60.38 

15 
-165.2 -86.96 96.75 15.632 68.03 29.129 47.98 28.49 61.293 

16 
-140.3 -23.35 86.9 40.011 37.14 64.1 70.03 24.24 42.646 

17 
-173.2 -61.44 102 53.122 -58.2 31.607 34.6 28.28 43.301 

18 
-239.2 -148.6 131.3 98.224 -76.7 -10.49 58.72 33.17 65.057 

19 
-189.6 -123.7 -20.8 20.893 -104 -86.7 41.9 57.07 77.164 

20 
-174.8 -62.18 1.701 -16.21 -30.8 -118.9 45.91 37.27 69.596 
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In Table 4.1.12 we are going to show the values of log energy of 

different controlled signals. 

Table 4.1.12 log energy tested values (controlled) 

S.No LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 

1 
-206.1 -146 105.9 79.323 136.1 185.96 105.7 69.06 44.665 

2 
-285.6 -50.89 123.8 144.69 131.5 116.23 105.9 48.39 56.775 

3 
-426.6 -49.6 -95 176.08 89.83 86.617 95.41 69.79 78.595 

4 
-418 -148 26.12 55.017 83.36 146.49 92.15 72.97 73.908 

5 
-421.5 -193.4 -47.9 68.462 149.5 218.64 122.6 51.59 75.283 

6 
-504.7 -210.5 7.782 118.24 197.9 187.23 121.1 59.04 87.532 

7 
-375.3 -133.6 94.87 165.57 159.4 138.98 37.6 77.13 74.439 

8 
-385.2 -177 63.74 170.83 197.8 108.32 -2.68 55.62 71.097 

9 
-586.2 -361.9 12.49 220.22 228 157.81 67.86 41.27 64.787 

10 
-827.6 -552.3 192.1 235.69 241.7 248.93 102.1 40.58 49.822 

11 
-494.3 -349.3 96.67 162.32 289.3 270.97 90.5 -3.47 41.517 

12 
-537.6 -369.5 170.6 279.82 199 137.25 88.75 11.96 30.788 

13 
-621.3 -356.6 256.8 310.74 208.9 159.74 119.5 4.557 30.952 

14 
-512.9 -199.4 258.7 374.74 284.5 206.88 103.2 35.79 42.981 

15 
-387.8 -143.8 110.3 281.95 179.6 160.27 60.78 31.39 57.108 

16 
-431.7 -204 0.371 140.7 181.1 64.474 38.52 55.55 64.634 

17 
-452.1 -237.9 70.9 226.5 216.4 180.14 58.3 64.84 41.436 

18 
-504.7 -269.8 205.5 292.74 188.4 176.3 63.66 41.78 55.574 

19 
-355.9 -167.7 137.2 284.5 61.08 118.68 47.76 70.45 88.004 

20 
-435.3 -135.3 209.4 369.81 160.9 160.21 31.07 67.8 93.853 
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The following are the tested values of norm entropy with P = 1.5. 

In the Table 4.1.13 and Table 4.1.14 below we have the values of 

norm entropy for one controlled and one alcoholic signal respectively 

Table 4.1.13 Norm entropy tested values (controlled) 

Norm entropy Tested values 

NE 1 692.2132 

NE 2 526.1381 

NE 3 441.1445 

NE 4 363.6924 

NE 5 307.3101 

NE 6 215.7663 

NE 7 147.5459 

NE 8 185.2892 

NE 9 422.5837 

 

Table 4.1.14 Norm entropy tested values (alcoholic) 

Norm entropy Tested values 

NE 1 664.3496 

NE 2 489.2295 

NE 3 592.9529 

NE 4 568.5409 

NE 5 641.8377 

NE 6 1.0146 e+ 03 

NE 7 576.2522 

NE 8 634.4651 

NE 9 506.7367 
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In Table 4.1.15 we are going to show the values of norm entropy of 

different controlled signals. 

Table 4.1.15 Norm entropy tested values (controlled) 

S.No NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9 

1 664.3 489.2 593 568.5 641.8 1015 576.3 634.5 506.7 

2 296.4 614.2 593.6 733.9 566.4 589.4 757.5 269.8 373 

3 150.6 438.8 141.8 602.4 407 387.4 740.3 756.7 1081 

4 163.6 306 459.9 412.1 435.6 737.6 400.4 789.8 1209 

5 146.1 303.9 274.9 356.7 915.7 1085 809 277.4 1039 

6 154.2 372.9 319.1 524.9 873.2 929.2 764.9 474.6 1747 

7 244.1 497 651.4 834.1 1233 695.6 149.4 1034 2280 

8 235.3 462.9 409.9 924.1 1459 571.7 71.13 344.3 1755 

9 127 256.2 312.8 908.6 1508 948 318.6 233.8 870.4 

10 87.58 144.7 656.1 827 2064 1939 571.3 261 523.8 

11 152.1 244.9 586.7 676.7 2982 2172 501.9 44.7 431.5 

12 159.1 303.7 714.8 1094 1764 951.9 738.2 39.92 326 

13 143.8 304.1 1258 1819 1318 693.5 913.7 72.41 254.1 

14 156.5 323.8 1152 1936 2838 1373 641.7 155.8 296 

15 182.9 344.7 422.4 1191 1543 895.5 239 86.56 491.4 

16 165.2 312.1 384.7 671.6 853.7 253.7 196.3 383 687.6 

17 150.5 289.2 468.8 1159 1822 1086 279.1 545 471.3 

18 164.7 329.7 851.7 1736 1548 1245 234 293.1 516.9 

19 209.3 401.9 942.8 1770 309.9 526.2 140.3 824.4 1663 

20 183.6 383.1 724 1587 884.5 674.6 157.8 854.2 2685 
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In Table 4.1.16 we are going to show the values of norm entropy of 

different alcoholic signals. 

Table 4.1.16 Norm entropy tested values (alcoholic) 

S.No NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9 

1 692.2 526.1 441.1 363.7 307.3 215.8 147.5 185.3 422.6 

2 591.5 513.2 379.7 331.7 308.4 198.8 110.9 100.3 528.7 

3 686.1 550.2 553.5 401.3 292.3 185 81.13 192.3 899.6 

4 742.8 510.7 536.7 433 329.4 156 83.99 100.9 1079 

5 811.2 569.8 533.1 463.2 214.7 68.04 174.9 128.8 1140 

6 624.6 677.2 671.7 491.7 176.5 126.9 314.8 93.52 1454 

7 509.1 642.2 366.1 337.4 365.6 259.8 146.3 267.1 1961 

8 646.1 600.1 381.6 296.3 182 273.3 76.3 434.1 2029 

9 549.8 618 435.8 327.1 249.8 212.5 239.4 92.76 1403 

10 518.2 657.3 365 274 238.1 295.2 162.2 246.1 707.3 

11 661.1 740.5 430.7 250.7 187.9 440 51.54 220.7 397.8 

12 500.3 680.2 376.1 301.3 349.9 408.3 44.08 54.2 383.9 

13 508.3 561 448.8 439.5 215.2 194.1 193.8 27.13 585.9 

14 509.5 492.8 523.9 491.4 64.86 48.96 385.2 113 764.3 

15 564.3 560.2 487 372.2 302.7 196.4 379.7 96.99 673.8 

16 541.8 660 513 345.3 236.9 276.8 253.7 118.3 388.1 

17 607 631.7 496.6 439.5 72.85 217.8 142.2 177.2 295.3 

18 481.5 484.7 570.3 490.2 82.92 121.5 219.7 134.7 694.5 

19 636.7 509.6 382.1 392.4 65.26 64.48 266.1 355.6 1154 

20 735.7 623.2 385.9 344.5 147.8 51.1 175.7 171.2 1224 
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The following are the tested values of threshold entropy with P = 

0.6 

In Table 4.1.17 and Table 4.1.18 below we have the values of 

Threshold entropy for one controlled and one alcoholic signal 

respectively. 

Table 4.1.17 Threshold entropy tested values (alcoholic) 

Threshold entropy Tested values 

TE 1 152 

TE 2 164 

TE 3 104 

TE 4 102 

TE 5 58 

TE 6 60 

TE 7 31 

TE 8 16 

TE 9 14 

 

Table 4.1.18 Threshold entropy tested values (controlled) 

Threshold entropy Tested values 

TE 1 148 

TE 2 153 

TE 3 94 

TE 4 107 

TE 5 55 

TE 6 55 

TE 7 26 

TE 8 15 

TE 9 16 



40 
 

In Table 4.1.19 we are going to show the values of threshold 

entropy of different alcoholic signals. 

Table 4.1.19 Threshold entropy tested values (alcoholic) 

S.No TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 

1 148 153 94 107 55 55 26 15 16 

2 154 161 94 96 56 51 22 13 16 

3 153 167 84 87 49 53 21 15 15 

4 150 157 87 91 52 47 20 13 15 

5 141 160 84 94 50 34 25 13 15 

6 155 177 101 97 39 43 31 16 15 

7 154 173 90 92 58 50 29 16 15 

8 147 162 95 89 52 51 24 15 16 

9 142 174 99 96 49 53 30 15 16 

10 132 153 104 85 50 55 28 15 16 

11 163 173 99 72 51 57 22 14 16 

12 150 160 92 94 56 60 22 13 16 

13 149 154 96 102 52 54 30 10 15 

14 154 161 104 109 28 23 32 15 14 

15 162 173 107 95 52 53 26 15 15 

16 155 185 104 106 50 57 31 14 15 

17 158 179 111 101 38 52 28 14 15 

18 160 164 115 106 33 46 30 15 15 

19 161 167 87 95 25 29 25 16 16 

20 168 175 90 87 41 31 29 15 15 
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In Table 4.1.20 we are going to show the values of Threshold 

entropy of different controlled signals. 

Table 4.1.20 Threshold entropy tested values (controlled) 

S.No TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 TE9 

1 152 164 104 102 58 60 31 16 14 

2 139 171 109 106 58 56 31 16 16 

3 113 190 79 116 56 58 31 15 16 

4 125 178 102 102 55 58 31 16 15 

5 119 169 80 107 60 64 31 16 16 

6 104 155 98 111 64 62 31 15 16 

7 140 167 100 109 56 61 27 16 15 

8 130 161 101 107 58 57 24 16 15 

9 92 134 101 116 62 61 29 15 16 

10 58 95 118 121 63 62 32 14 15 

11 103 136 99 115 63 64 31 12 13 

12 93 127 114 120 60 56 29 15 12 

13 82 119 117 119 62 64 31 10 14 

14 101 161 118 124 64 62 31 14 16 

15 132 177 114 119 62 60 28 16 16 

16 115 163 95 110 62 55 30 16 15 

17 103 156 102 113 61 61 28 16 14 

18 106 147 117 116 60 58 32 13 16 

19 134 167 101 117 51 58 29 16 16 

20 120 170 118 124 57 61 28 15 16 
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 4.2 Accuracy using different classifiers  

Table 4.2.1 shows the accuracy of Hurst exponent with receiver 

operatic characteristics (ROC) curve [54] in Fig 4.2.1.  

Table 4.2.1 Accuracy of Hurst exponent 

Type of classifier Accuracy 

Coarse Gaussian 

SVM [55]  

89.8% 

Logistic regression 

[56] 

84.2% 

Linear discriminant 

[56] 

83.1% 

Medium KNN [57] 86.4% 

Linear SVM [57] 89.2% 
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Figure 4.2.1 ROC of Hurst exponent 

The following Table 4.2.2 shows the accuracy using Shannon 

entropy and ROC curve in Fig 4.2.2. 

  Table 4.2.2 Accuracy of Shannon entropy 

Type of classifier Accuracy 

Coarse Gaussian SVM  91.8% 

Logistic regression 99.2% 

Linear discriminant 95.1% 

Medium KNN 96.4% 

Linear SVM 92.2% 
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      Figure 4.2.2 ROC of Shannon entropy 

The following Table 4.2.3 shows the accuracy of log energy 

entropy and ROC curve in Fig 4.2.3. 

Table 4.2.3 accuracy of log energy entropy 

Type of classifier Accuracy 

Coarse Gaussian SVM  91.8% 

Logistic regression 94.2% 

Linear discriminant 98.4% 

Medium KNN 96.8% 

Linear SVM 98.2% 
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Figure 4.2.3 ROC of log energy entropy 

The following Table 4.2.4 shows the accuracy of norm entropy 

with ROC curve in Fig 4.2.4. 

Table 4.2.4 accuracy of norm entropy 

Type of classifier Accuracy 

Coarse Gaussian SVM  93.8% 

Logistic regression 94.5% 

Linear discriminant 93.1% 

Medium KNN 99% 

Linear SVM 90.2% 
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     Figure 4.2.4 ROC of norm entropy 

The following Table 4.2.5 shows the accuracy of threshold 

entropy with ROC curve in Fig 4.2.5   

     Table 4.2.5 Accuracy of threshold entropy 

Type of classifier Accuracy 

Coarse Gaussian SVM  91.8% 

Logistic regression 94.2% 

Linear discriminant 97.7% 

Medium KNN 96.1% 

Linear SVM 92.2% 

 

 

      Figure 4.2.5 ROC of threshold entropy 
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 4.3 Scatter plot and Confusion matrix 

The following Figure 4.3.1 and Figure 4.3.2 are the Scatter 

plot and Confusion matrix of Hurst exponent respectively. 

     

Figure 4.3.1 scatter plot of Hurst exponent 

 

     Figure 4.3.2 Confusion matrix of Hurst exponent 
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The following Figure 4.3.3 and Figure 4.3.4 are the scatter 

plot and confusion matrix of Shannon entropy respectively.

 

  Figure 4.3.3 Scatter plot of Shannon entropy 

 

   

    Figure 4.3.4 Confusion matrix of Shannon entropy 
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The following Figure 4.3.5 and Figure 4.3.6 are the scatter 

plot and confusion matrix of log energy entropy respectively. 

 

Figure 4.3.5 Scatter plot of log energy entropy 

 

 

   Figure 4.3.6 Confusion matrix of log energy entropy 
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The following Figure 4.3.7 and Figure 4.3.8 are the scatter 

plot and confusion matrix of norm entropy respectively. 

 

    Figure 4.3.7 Scatter plot of norm entropy  

 

 

  Figure 4.3.8 Confusion matrix of norm entropy 
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The following Figure 4.3.9 and Figure 4.3.10 are the scatter 

plot and Confusion matrix of threshold entropy respectively.  

 

    Figure 4.3.9 Scatter plot of threshold entropy  

 

 

   Figure 4.3.10 Confusion matrix of threshold entropy 
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From the above accuracy, ROC, scatter plot and confusion 

matrix we are getting the results as follows shown in Table 4.3.1. 

Table 4.3.1 accuracy of features and classifiers 

Name of the 

feature 

Type of classifier 

used 

accuracy 

Hurst exponent Coarse Gaussian 

SVM  

89.8% 

Shannon 

entropy 

Logistic 

regression 

99.2% 

Log energy 

entropy 

Linear 

discriminant 

98.4% 

Norm entropy Medium KNN 99% 

Threshold 

entropy 

Linear 

discriminant 

97.7% 
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Chapter 5 

Conclusion and future scope 

   

5.1 Conclusion 

Finally, we have compared and proposed a new approach to 

identify the alcoholic and controlled EEG signals using TQWT and 

different feature extraction techniques and classifiers. 

And from the above results we have got an accuracy of 

around 99.2% from Shannon entropy using logistic regression. 
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5.2 Future scope 

In this study we have used the data which is collected in 

1990 using old technology we can record new data using present 

technology and with new classifier techniques we can achieve 

more accurate results.  

And other features like fuzzy entropy and correntropy and 

PCA analysis can be used from getting more knowledge about 

classifying alcoholic and controlled. 

Hardware can be designed for the proposed method and this 

method can be studied for various kinds of biomedical signals. 
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