
1

MAC INTERFACES WITH ETHERNET PHY

M.Tech. Thesis

By

SAI KIRAN KANCHERLA

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2020

i

MAC INTERFACES WITH ETHERNET PHY

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

Master of Technology

in

Electrical Engineering

with specialization in

VLSI Design and Nanoelectronics

By

SAIKIRAN KANCHERLA

`

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2020

ii

iii

ACKNOWLEDGEMENTS

 First and foremost , I would like to express my gratitude to Dr. SAPTARSHI GHOSH Assistant

Professor at IIT INDORE whose efforts and guidance helped me in completing my M. Tech. dissertation work

successfully. I am extremely thankful to my supervisor PANCHAKSHARI SAHUKAR Senior Lead Engineer

at NXP semiconductor for his motivation to help me to get deep knowledge of the research area and supporting

me throughout the life cycle of my M. Tech. dissertation work.

 I am also thankful to Dr. Vipul Singh, Head of the Electronics Engineering Department, for his fruitful

guidance through the early years of chaos and confusions. I wish to thank the faculty members and supporting

staff of Electronics Engineering Department for their full support and heartiest co-operation.

 This thesis would not have been possible without the support of my friends. My deepest regards to my

Parents for their blessings, affection and continuous support.

SAIKIRAN

1802102016

iv

Abstract

 With the unexpected rate of growth in technology, demand for a high speed and high performance devices

has increased. IP digital Designing is now at a avery challenging state where requirement of complex design

is growing exponentially. Designer can now design chips with lakhs of transistors on a single chip. Verilog

hardware discription languages provide an ease to develop such complex designs.

 AMBA bus architecture is one such complex design which can be developed using verilog. The APB which

is a part of AMBA bus design is implemented in this project using verilog and verified using testbench.

 Often, when the chip is manufactured there will be a lot of silicon bugs. These bugs can arise for a number

of reasons such as manufacturing defects or improper design etc. These bugs can be anywhere on the chip. To

pin point the bugs present in a specific area, additional logic is added to the design. This additional logic will

not impact the main functions of the chip. One such logic is the ability for the chip to test itelf. This is called

Built in self test (BIST). This comes under “design for Testibility”. A module for this issue is developed in

this project. On an Ethernet PHY chip, Data is transferred over data path between the PHY and MAC layers

of OSI Model. In the validation stage of the chip these data paths are checked for silicon bugs using BIST

engine module discussed in depth.

 An insight on different media independent interfaces is also given. These interfaces are divided based on the

clockspeed, port requirement etc and best features of each interface is highlighted.

v

TABLE OF CONTENTS

LIST OF FIGURES …………………………………….………………………………..vii

LIST OF TABLES……………………………………………………………………….viii

ACRONYMS…………………………………………………………………………...….ix

Chapter 1: Introduction……………………………………………………………………1

Chapter 2: Implementation of AMBA APB PROTOCOL………………………………3

2.1 Amba and its bus architecture……………………………………………………………………….3

2.2 APB protocol………………………………………………………………………………………..4

2.3 APB Master & APB Slave connections…………………………………………………………….5

2.4 Input and Output Signals……………………………………………………………………………6

2.5 APB finite state machine……………………………………………………………………………6

2.6 WRITE and READ operations………………………………………………………………………8

2.7 Regression PERL Script…………………………………………………………………………….9

2.8 Simulation waveforms……………………………………………………………………………...12

Chapter 3: Interface Design for APB bridge and PHY layer registers…………………14

3.1 Problem statement…………………………………………………………………………………...14

3.2 Interfacing APB Bridge With PHY…………………………………………………………………15

3.3 Verilog Code and testbench…………………………………………………………………………16

3.4 Simulation Results…………………………………………………………………………………..17

Chapter 4 : Introduction to “MAC interfaces with Ethernet PHY”…………………….18

4.1 Introduction OSI Model………………………………………………………………………………18

4.2 MAC and PHY layers………………………………………………………………………...………19

4.3 MII interface………………………………………………………………………………………….20

4.4 MII vs RMII vs GMII vs SGMII…………………………………………………………………….23

4.5 Ethernet frame format………………………………………………………………………………..23

4.6 FCS calculation………………………………………………………………………………………24

vi

Chapter 5 : Design and implementation of Built In Self-Test (BIST) engine……….….25

5.1 Built In Self-Test Generator & Checker……………………………………………………………..25

5.2 Block diagram of BIST Engine………………………………………………………………………27

5.3 BIST Generator………………………………………………………………………………………28

5.4 BIST Checker…………………………………………………………………………………..…….29

5.5 BIST Registers ……………………………………………………………………………………..30

5.6 BIST Programming sequence………………………………………………………………………..37

5.7 Simulation Waveforms……………………………………………………………………………….39

Chapter 6 : Conclusion……………………………………………………………………..47

vii

LIST OF FIGURES

Fig 2.1 AMBA bus architecture……………………………………………………….……………………3

Fig 2.2 block diagram of APB…………………………………………………………….………………..5

Fig 2.3 FSM diagram of APB………………………………………………………………………………6

Fig 2.4 Write Cycle of APB SLAVE……………………………………………………………………….8

Fig 2.5 READ Cycle of APB SLAVE……………………………………………….……………………..9

Fig 2.6 LOG file………………………………………………………………………………………..….10

Fig 2.7 Block diagram showing perl regression Action…………………………………………………..11

Fig 2.8 RESULT file………………………………………………………………………………………11

Fig 2.9 Simulation waveform for write and read cycles…………………………………………………..12

Fig 2.10 Simulation waveform showing random write and read cycles…………………………..………13

Fig 3.1 CR write cycle timing diagram……………………………………………………………………14

Fig 3.2 CR read cycle timing diagram…………………………………………………………………….15

Fig 3.3 block diagram of interface between APB bridge and PHY……………………………………….16

Fig 3.4 simulation waveform of the interface……………………………………………………………..17

Fig 4.1 OSI model…………………………………………………………………………………………18

Fig 4.2 MAC and PHY layer……………………………………………………………………………....19

Fig 4.3. Ethernet frame format……………………………………………………………………………..23

Fig 5.1 Typical diagram of BIST engine & ETHERNET/SGMII PHY…………………………………………….25

Fig 5.2 Data flow showing diagram of possible scenario……………………………………………………………26

Fig 5.3: Block diagram of Bist engine……………………………………………………………………...27

Fig 5.4 : Test Bench Driving BIST ENGINE………………………………………………………………38

Fig 5.5 Accessing the registers……………………………………………………………………………..39

viii

LIST OF TABLES

Table 4.1.1 : MII TX ports…………………………………………………………………………………20

Table 4.1.2 : MII RX ports…………………………………………………………………………………20

Table 4.2.1 : GMII TX ports……………………………………………………………………………….21

Table 4.2.2 : GMII RX ports……………………………………………………………………………….21

Table 4.3 : RGMII ports…………………………………………………………………………………....22

Table 4.4 : SUMMARY OF MII VS GMII VS RGMII VS SGMII……………………………………….23

Table 5.1 : Register bank…………………………………………………………………………………..35

ix

ACRONYMS

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

AHB Advanced High Performance Bus

ASB Advanced System Bus

BIST Built In Self-Test

CRC Cyclic Redundancy Check

FCS Frame Check Sequence

DUT Design under test

FSM Finite State Machine

GMII Gigabit Media Independent Interface

MAC Media Access Control

MII Media Independent Interface

 PERL PERL scripting language

 PHY Physical Transceiver

 RGMII Reduced Gigabit Media Independent Interface

 SGMII Serial Gigabit Media Independent Interface

 SoC System-on-Chip

 SFD Start of frame Delimiter

1

Chapter 1

Introduction

 Digital designing has evolved from designing a few hundred transistors to million transistors on a chip.

A digital designer creates the hardware specifications, makes a description and then implements the logic.

Hardware description Languages HDLs are used to make the tool understand the design and bring out the

connections for the logic. So, dealing with millions of transistors is taken care of by these computer tools

making it very easy for the designers to design any complex logic without limiting to the hardness in

implementation.

 Design flow :

The above design flow shows the steps through which a chip goes through before tape out. This is a very

simplified version. After making the specification for hardware, RTL is developed. The RTL is then subjected

to rigorous testing for functionality and bugs. Then an optimal location is chosen on the chip to give the best

results.

Design Specifications

RTL

IMPLEMENTATION

LOGIC VERIFICATION

Physical layout

Floor planning and

Place & Route

Behavioral description

2

Goal :

The main focus of the project is to develop RTL for AMBA APB protocol and use this module for the

implementation of BIST engine. In-depth functional verification will also be done.

Overview:

 Chapter 2 and 3 gives an insight about the AMBA APB slave and its applications. Protocol

specifications are explained and these milestones are reached which is explained using the simulation

waveform. Chapter 3 explains how APB slave protocol can be used with other designs.

 Chapter 4 gives an over view on how data transfer take places from one network point to other. It

describes how different layers of OSI models are used for safely transferring the data. Standard formats, Error

correcting techniques are also explained.

 Chapter 5 deals with the implementation of BIST engine, a DFT application, which helps in finding

silicon bugs in post validation phase of the chip.

 Verilog HDL is used for the implementation of the designs and each module functionality is verified

using test benches.

3

Chapter 2

Implementation Of AMBA APB Protocol

2.1 Amba and its bus architecture:

Advanced Microcontroller Bus Architecture (AMBA) is a communication system used on ‘System on

chip’(SOC). It is an open standard interconnection for the purpose of connecting different blocks in a System-

on-Chip .It is used for designing high performance embedded systems. It is used as “on chip” bus.

AMBA bus architecture consists of three parts,

▪ Advanced High Performance Bus(AHB).

▪ Advanced System Bus (ASB).

▪ Advanced Peripheral Bus (APB).

The AMBA specification are:[refer 9]

• This is development of embedded microcontroller products with one or more CPUs or signal processors.

• This is highly reusable peripheral appropriate for full-custom, standard cell and gate array technologies.

• It provides a road-map for advanced cached CPU cores and the development of peripheral libraries to

minimize the silicon infrastructure required to support efficient on-chip.

Fig 2.1 AMBA bus architecture

• Advanced High-performance Bus (AHB): The AMBA AHB is used to connect the high bandwidth

devices. It is used for applications where operating frequency is high. The AHB acts as the high-

DMA BUS master

External memory

high bandwidth

ON chip RAM

ARM

PROCESSOR

APB

bridge

Timer

PIO Keyboar

d

UART

AHB

APB

4

performance system backbone bus. Devices such as DMA BUS MASTER, ON CHIP RAM, external

memory etc are connected on AHB. It enables us to connect the different devices in an efficient way.

AHB is also simplifies synthesis and automated test methodologies to achieve high efficient design flow.

It also implements

• Back to back read-write transactions.

• Transferring the bus control. .

• Single clock edge operation.

• Large data transfers over bus.

• Advanced System Bus (ASB): The AMBA ASB is for system modules. It is used as an alternative bus

suitable for high speed and high bandwidth applications.it is used where AHB applications are not

possible. ASB also supports the efficient connection different processors.

• Advanced Peripheral Bus (APB): The AMBA APB is a for low-power peripherals.

2.2 APB Protocol :

 APB is the part of AMBA APB PROTOCOL. It is used where devices with low speed and low

bandwidth are need to connect to the high speed devices such as ARM processor. AMBA APB is power

consumption is very low due to its simple working steps. The interface complexity to support peripheral

functions is greatly reduced. This member of AMBA protocol family is designed to support low-speed

peripherals such as UARTs, keypads.

 APB can be used in conjunction with either version of the system bus. It does not support pipelined

transfers. It can only support single transfer at time. All the transitions happen the positive edge or at the

negative edge of the clock. This makes it very easy to integrate APB device with any other designs. It is

mainly used to access the control registers of the peripheral device. Reading the data from the peripheral

device and write the data to the peripheral device is an important feature of the design. This working

procedure is done through Finite State Machine.

Different versions of APB : [6]

 The APB Specification Rev E, 1998, is now not used and advanced versions are as follows:

• AMBA 2 APB Specification

This specification defines the interface signals, the basic read and write transfers, and the two APB

components the APB bridge and the APB slave.

• AMBA 3 APB Protocol Specification v1.0

The following interface signals are added:

• PREADY A ready signal to indicate completion of an APB transfer.

5

• PSLVERR An error signal to indicate the failure of a transfer.

This version of the specification is referred to as APB3.

• AMBA APB Protocol Specification v2.0:

The following interface signals are added:

• PPROT A protection signal to support both non-secure and secure transactions on APB.

• PSTRB A write strobe signal to enable sparse data transfer on the write data bus.

This version of the specification is referred to as APB4.

In this thesis, AMBA APB 2 is implemented.

2.3 APB Master & APB Slave connections:

Basic Block Diagram Of APB:

Fig 2.2 block diagram of APB

In the above figure, APB master and APB slave are shown. APB master acts as the bridge between the slave

and AHB side. Different signals are shown in the above diagram which are explained in detailed. Pclk,

PRESET, PSEL, PADDR, PWRITE, PWDATA are inputs to the APB slave. PRDATA and PREADY are

the outputs.

2.4 Input and Output Signals :

These input and Output signals are standard signals defined in AMBA APB.

• PCLOCK : This represents the clock governing the transfers. The rising edge of PCLK times all

transfers on the APB.

6

• PRESET: System bus equivalent Reset. The APB reset signal is active LOW.

• PADDR: This is the APB address bus. It can be up to 32 bits wide and is driven by the peripheral bus

bridge unit.

• PSEL: The APB bridge unit generates this signal to each peripheral bus slave. It indicates that the

slave device is selected and that a data transfer is required. There is a PSEL signal for each slave.

• PENABLE : This signal indicates the second and subsequent cycles of an APB transfer.

• PWRITE: It’s a directional signal. It indicates an APB write access when HIGH and an APB read

access when LOW.

• PRDATA: The selected slave drives this bus during read cycles when PWRITE is LOW. This bus

can be up to 32-bits wide.

• PREADY: The slave uses this signal to extend an APB transfer.

2.5 APB finite state machine :

The following state diagram explains the operations of an APB.

Fig 2.3 FSM diagram of APB [1]

7

1. IDLE: This is the default state of the APB. In this state PSEL and PENABLE are low. When

transfer is required, PSEL is made high and the state jumps to SETUP phase. If there is no

transfer, it will remain in IDLE.

2. SETUP: When a transfer is required the bus moves into the SETUP state, where the appropriate

select signal, PSELx, is asserted. SETUP STATE is only for one cycle. At the next positive clock

cycle, the FSM jumps to ACCESS .

3. ACCESS: The PENABLE signal is made high in the ACCESS state. The address, write, select,

and write data signals must remain stable during the transition from the SETUP to ACCESS state.

Exit from the ACCESS state is controlled by the PREADY signal from the slave:

(a) If PREADY is held LOW by the slave then the FSM state remains in the ACCESS state.

(b) If PREADY is driven HIGH by the slave then the ACCESS state is exited and the bus returns to

the IDLE state provided there are no more transfer. If a transfer is made, then bus moves directly to

the SETUP state.

2.6 WRITE and READ operations:

Write Cycle:

Fig 2.4 Write Cycle of APB SLAVE[1]

The write transfer starts with the address, write data, write signal and select signal all changing after the

rising edge of the clock T1. The first clock cycle of the transfer is called the Setup phase.

After the following clock edge the enable signal is asserted at T2, PENABLE, and this indicates that the

Access phase is taking place. The address, data and control signals all remain valid throughout the Access

8

phase. The transfer completes at the end of this cycle. The enable signal, PENABLE, is deserted at the end of

the transfer at T3 . The select signal, PSEL also goes LOW unless the transfer is to be followed immediately

by another transfer to the same peripheral.

PREADY signal from the slave can extend the transfer. During an Access phase, when PENABLE is HIGH,

the transfer can be extended by driving PREADY LOW. The following remain unchanged for the additional

cycles: PADDR , PWRITE , PSEL , PENABLE, PWDATA.

Read Cycle:

 During read operation the PENABLE, PSEL, PADDR PWRITE, signals are asserted at the clock edge

SETUP cycle. At the clock edge ACCESS cycle, the PENABLE, PREADY are asserted and PRDATA is

also read during this phase.

 The slave must provide the data before the end of the read transfer. PREADY signal can extend the

transfer. The transfer is extended if PREADY is driven LOW during an Access phase. The protocol ensures

that the following remain unchanged for the additional cycles: PADDR , PWRITE , PSEL , PENABLE.

Fig 2.5 Read Cycle of APB SLAVE[1]

Test Plan :

After being well versed with the protocol , RTL code was written. Simultaneously a test plan was prepared.

As we know that this consists of : 8 bit address bus, 32 bit data bus, memory of 255. Accordingly following

tests were coded:-

1. Basic set ,reset ,clock check

9

2. The test to Write and Read to every valid location according to protocol. A special test of 00,AA,55 and

FF. These values are written and read in every register.

This test checks that whether every bit of all registers are being occupied legally.

3. Every legal address is written into. These values are stored for reference. Then whole memory is read . It

should match with all the values in reference.

4. Test to alternatively write and reading on register location. In this , first write on a particular address is

followed by immediate read on that address is carried out. All values should match with reference.

5. Test for writing at various locations and Randomly Reading from those stored locations.

6. Default read check. This test should read the default value of the register if nothing is written to it.

7. Error for Invalid addresses. This is negative test. Invalid values should display appropriate response on

application

2.7 Regression PERL Script :

 One important thing to keep in mind during verification planning is to know its limitations. For industrial

size programs, it is not realistic to expect the written code to naturally cover high level invariants or temporal

properties. Its not that the code can’t be written but the complexity and time to resources ratio required is not

sustainable. Regression is a way to circumvent this problem.

Regression testing means you can run a test suite on your design at any time in an easy manner which require

little additional setup and little analysis. The idea is that you can retest everything whenever something changes

or periodically as a matter of course. Regression verification can be seen as an additional layer to improve the

verification process. As regression test suites tend to grow with each found defect, test automation is frequently

involved. Each test should report an unambiguous indication of pass or fail. This is also referred to as the Self-

Checking Testbench. Viewing

Fig 2.6 Log file

10

waveforms is great for diagnosing problems, but not the way to repetitively assess whether your test and

your design is working.

So for APB various testcases were written to check every functionality of the DUT. With increased number

of testcases and bug fixes, running every testcase manually every time is cumbersome. The next step was to

automate the testbench for regression testing. This implies that with an automated testbench, the operator

doesn’t need to run the testbench manually for each Testcase.

Fig 2.7 Block diagram showing perl regression Action

Fig 2.8 Result file

PERL takes the different test case scenarios and keeps each test case in the test bench one after the other and

runs the DUT. The resultant log file for each test case is stored separately in a log file. Now for any number

of Testcases, by running the script alone the operator can see the results at one location. Result file can be

viewed to check which test case is PASSED and which testcase has FAILED.

11

2.8 Simulation Waveforms :

Test 1:

Fig 2.9 Simulation waveform for write and read cycles

The above waveform show a write cycle followed by a Read cycle.

• After the reset signal, Psel is made high.

• Then Pwrite is also made high to start a write cycle first.

• Then Penable signal is asserted and the data transfer takes place.

• Pready can be seen HIGH indicating the completion of the transfer.

• Also notice that the Psel line is not made low. This indicated that another transfer is going to take place at

the same peripheral.

• Now, Pwrite is made low indicating a read cycle. At the same address a write cycle is performed

followed by a read cycle. So the data transferred in the write cycle will be read back in the read cycle.

Test 2 :

In this test 2, data is being randomly written at different address locations and data is read back at a randomly

chosen address location. Multiple such test are conducted

12

Fig 2.10 Simulation waveform showing random write and read cycles

Conclusion :

 Now the AMBA APB Protocol timing diagram are achieved, we can use this APB slave logic in the

Ethernet PHY to access the Ethernet control register by an ARM processor which is working on AMBA.

This is explained clearly in the chapter 4.

13

Chapter 3

Interface Design for APB bridge and PHY layer registers

3.1 Problem statement :

 In the previous chapter, APB slave protocol is explained. Also, how the control registers are accessed using

the APB signals is also shown. But not all chips in the market use APB slave protocol. So question arises

how to connect such circuits and access their registers.

Solution : The best solution is to build an interface which can help to understand the 3rd party chipset signals

and creates a bridge between APB bridge and the 3rd part PHY. To do so we have to understand and map the

signals correctly. This chapter explains about the interface which can help to access the registers of such

device.

Specification of the 3rd party chipset :

CR Parallel interface : The CR Parallel interface is a synchronous, 16-bit data/address parallel port provided

for on-chip access to control registers inside the PHY. The CR Parallel interface is enabled when input

cr_para_sel is asserted to 1. While access to these registers is not required for normal PHY operation, this

interface is included for users that want to access some of the PHY's diagnostic features during normal

operation or to override some of the PHY's control signals.

The CR Parallel interface consists of following PHY interface signals: cr_para_addr, cr_para_clk,

cr_para_rd_data, cr_para_rd_en, cr_para_wr_data, cr_para_wr_en, and cr_para_ack; and is enabled when

input cr_para_sel is set to 1.

Fig 3.1 CR write cycle timing diagram

14

Fig 3.2 CR read cycle timing diagram

3.2 Interfacing APB bridge with PHY :By observing the above timing diagram, we can understanding the

working of the respective signals.

• Cr_para_sel need to be high for the transfer to take place.

• Cr_para_rd_en should be high for a read cycle .

• cr_para_wr-en should be high for a write cycle.

• After each transfer cr_para_ack is made high by the device.

• Cr_para_wr_data is the input data to be written on to the device registers

• Cr_para_rd_data is the data read from the registers

Realation between APB slave signals and 3rd party device signals :Now we need to establish a relation

between the signals so that we can access the registers .

pclk

preset

psel

pwrite

paddr

pwdata

prdata

pready

Cr_para_ rst

Cr_para_ sel

 Cr_para_ rd_en

 Cr_para_ wr_en

Cr_para_ addr

Cr_para_ wr_data

Cr_para_ rd_data

Cr_para_ ack

Cr_para_clk

0

1

15

Fig 3.3 block diagram of interface between APB bridge and PHY

3.3 VERILOG and Testbench :

A interface is now built using the Verilog RTL code. The input side of the interface is APB slave and on the

output side is the 3rd party chip. The Interface will take in the inputs from the APB bridge and generate the

output signals which can be understood by the PHY.

Pclk signal is given to the cr_para_clk inpujt of the PHY. Preset is connected to the cr_para_rst. Similarly

other signals are generated.

Read and write cycle enable signals :

• When pwrite is 0, it denote a read cycle. So the interface will make cr_para_rd_en high when pwrite

is 0.

• When pwrite is 1, it denotes a write cycle. So the interface will now make cr_para_wr_en high.

The outputs of the PHY are cr_para_ack and cr_para_rd_data. These two signals are connected to the Pready

and prdata signals of the APB slave.

A test is developed as shown below :

16

 The test bench is developed which can perform the actions of the APB bridge. The test bench will

generate the signals according to the APB slave protocol. This generated signals are sent to the interface

which will intern generate the signals for the PHY. Different test case scenarios are also made and tested.

3.4 Simulation Waveforms :

Fig 3.4 simulation waveform of the interface

In the waveform, we can see the paddr of 16’h2022 is being sent to the signal cr_para_addr. When pwrite is

high, the cr_para_wr_en is high. When pwrite is low, cr_para_rd-en is high. A write cycle followed by a read

cycle is performed and the results are obtained.

Conclusion :

 If the timing diagram of the PHY which doesn’t support APB protocol is known, then we can

implement an interface and successfully access the registers without any timing issues.

17

Chapter 4

Introduction to “MAC interfaces with Ethernet PHY”

4.1 Introduction OSI Model

Fig 4.1 OSI model

The OSI model is Open systems Interconnection model which is standard for communication and networking.

There are many communication systems available. This model helps in creating a bridge between all of them.

It helps in interoperability among the networking systems.

Application layer 7:

• This layer is responsible for the user interface. Examples of application layer protocols are

HTTP,SMTP,FTP etc.

• It deals with issues like network transparency and resource allocation

Presentation layer 6:

• This layer is responsible for data translation for a network. It deals with syntax of the data to be sent

or received.

• Main activities are translation, compression, encryption

Session layer 5:

• Session layer is responsible for synchronization between the communicating devices

• It creates checkpoints between the devices and checks for errors

Transport layer 4:

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATALINK

PHYSICAL

Receive data Transmit data

18

• Transport layer is a very important layer as it takes care of the order in which data is sent and received

.

• Data is securely sent without any duplication. It converts data into small segments.

Network layer 3:

• Network layer tracks the location of the communicating device over a network.

• It decides the best path for transferring data.

Data link layer 2:

• Data link layer decide the format in which data has to be transferred.

• It helps in identifying the correct device to make a transfer.

• It has two layers datalink control layer and media access control layer.

Physical layer 1:

• This is the physical layer which converts the bits into electrical or optical signals to transmit the data

over a media.

4.2 MAC AND PHY layers :-

Fig 4.2 MAC and PHY layer

What is a Ethernet MAC?

The MAC is abbreviation for media access controller. The MAC layer is a part of Data link layer. It has two

main functions. Data which is to be transferred is encapsulated using a head and a tail part. Data is converted

into a frame and then transferred. Additional data is also added for Error detection reception. It can start a

frame transmission and also resend a frame incase of a failure.

What is an Ethernet PHY?

19

The PHY is the abbreviation for physical interface transceiver. It is responsible for sending the data bits from

one device to another over a networking media. It converts the bits into electrical or optical signal for

transferring the data over the media. It can also reconvert the received frames from electrical to ones and zeros.

4.3 Media Independent Interface (MII)

The Media Independent Interface (MII) is a standard interface. This will establish a connection between

Ethernet MAC and ethernet PHY. media independent term represents that different kinds of PHYs can be

connected to the MAC devices without having to change the design.

The MII can support :

• Two specific data rates, 100 Mb/s and 10 Mb/s.

• 4bit interface clocked at 25 MHz for 100 Mbit/s, 2.5 MHz for 10 Mbit/s

Table 4.1.1 : MII TX ports

Table 4.1.2: MII RX ports

20

Gigabit Media Independent Interface (GMII)

Gigabit Media Independent Interface (GMII) is also an interface between the Media Access Control (MAC)

device and the physical layer (PHY).

The GMII can support :

• data speed up to 1Gbps ,

• 8 bit data interface with clockspeed of 125 MHz,

Table 4.2.1 : GMII TX ports

Table 4.2.2 : GMII RX ports

Signal name Description

GTX_CLK Clock signals for 1gbps signals

TXD[7..0] Data to be transmitted

TX_EN Transmitter enable

TX_ER Transmitter error

Signal name Description

RX_CLK Received clock

RXD[7..0] Received data

RX_DV Received data is valid

RX_ER Received data is corrupted

COL Data collision

CS Carrier sense

21

Reduced Gigabit Media Independent Interface (RGMII)

RGMII uses half the number of pins as used in the GMII interface. The number of pins are reduced and data

is transferred at the two edges of the same clock. The positive edge and negative both are used for

transferring the data. carrier-sense and collision-detection signals are removed.

The RGMII can support :

• data rates up to 1000 Mbit/s,

• 8 bit data interface clocked at 125 MHz.

Table 4.3 : RGMII ports

Signal name Description

TXC Clock signal

TXD[3..0] Data to be transmitted

TX_CTL
transmitter enable and transmitter error are used in

same pin

RXC Received clock signal

RXD[3..0] Received data

RX_CTL
Data valid and error detections signals are used in same

pin by muxing

Serial Gigabit Media Independent Interface (SGMII)

The Serial Gigabit Media Independent Interface (SGMII) is an improved version of MII. It also connects the

MAC and PHY layers. Reduced power and ports makes it better than GMII

• It operate at 1.25 Gbaud at clockspeed of 625 MHz. Double data rate interface is used.

• Differential pair signaling is used which will reduce the noise.

22

Table 4.4 SUMMARY OF MII VS GMII VS RGMII VS SGMII :

4.5 IEEE 802.3 Ethernet Frame Format :-

Fig 4.3. Ethernet frame format

Preamble :

• Ethernet frame begins with alternating zero’s and one’s.

• It helps the receiver to understand that a frame is about to come.

Start Frame Delimiter SFD :

• It is two bytes of 8’hd5.After the sfd, addresses begin.

Destination and source addresses :

• They are each 6 bytes. They contain the addresses of the destination MAC and source MAC address

Type/ length :

• It is 2 bytes. It can be either type of the payload data or the length of the data.

Payload :

• The main data to be transferred is called the payload

• It is of 46 to 1500 bytes. It can be future divided based on the type of data.

INTERFACE SPEED(Mbps) DUPLEX No of

Pins

Clock speed(Mhz)

MII 10/100 FULL/HALF 16 2.5/25

GMII 10/100/1000 FULL 24 125

RGMII 10/100/1000 FULL/HALF 12 125

SGMII 10/100/1000 FULL/HALF 10 625

23

FCS : Frame check sequence

• This is 4 bytes of data which is used for error correction.

4.6 Cyclic Redundancy Check (CRC) :- The below method is taken from the reference [2]

Cyclic Redundancy Check (CRC) is method to detect errors in the received data. It comes from the branch

of linear block code and is widely used in communication systems. An additional code is created using the

data to be sent and it is added at the end of the data.

• Message bits as polynomial M(x) = 𝑥3 + 𝑥2 + 𝑥 + 1

• Standard generating polynomial G(x) = 𝑥4 + 𝑥 + 1

𝑴(𝒙)∗𝑥4

G(x)
 =

𝑥7+𝑥6+𝑥5+𝑥4

𝑥4+𝑥+1
=𝑥3 + 𝑥2 + 𝑥 +

𝑥

𝑥4+𝑥+1

The remainder is x. so the corresponding CRC-4 of 1111 is 0010. At the sending side, the bits 11110010 will

be forwarded.

Extending the concept for CRC-32

𝒙𝟑𝟐 + 𝒙𝟐𝟔+𝒙𝟐𝟑+𝒙𝟐𝟐+𝒙𝟏𝟔 + 𝒙𝟏𝟐 + 𝒙𝟏𝟏 + 𝒙𝟏𝟎 + 𝒙𝟖+𝒙𝟕 + 𝒙𝟓 + 𝒙𝟒 + 𝒙𝟐 + 𝒙 + 𝟏

 The CRC encoding theory is based on polynomial manipulation using modulo2 arithmetic . The modulo2

arithmetic is realized by XOR gate. Therefore the coding of CRC means that transforming the information bits

into the bits that can be divided by the generated multinomial. At the receiver side, we can use the generated

multinomial G(x) to divide the received code. If the result is zero, there is no error, or else the error emerged.

 The generated crc register is appended to the ethernet frame and sent to the checker. On the checker

side, we can decode received fcs either by calculating fcs of the received pay load bits and comparing it with

received FCS.

 The CRC-32 polynomial is 04C1 1DB7h. In order to avoid the influence of extra zeros in front of the DPP,

the initial value of CRC-32 is 0xFFFF FFFF. CRC-32 is calculated for all bytes of the Data Packet Payload.

Avoiding the influence of extra zeros at the end of the DPP, complementing the remainder of CRC-32. The

inversion of the CRC-32 remainder adds an offset of 0xFFFF FFFF that will create a constant CRC-32 residual

of C704DD7Bh at the receiver side, called magic number.[2]

CONCLUSION :-

 The best MII interface which can be taken is SGMII interface with 8 pin outputs. 32 bit Cyclic Redundancy

checksum can be used to verify the received frames after transmitting over data paths.

24

 CHAPTER 5

Design and Implementation of Built In Self-Test (BIST) Engine

5.1 Ethernet PHY Built In Self-Test Generator & Checker :

Built In Self-Test Generator & Checker enables the ethernet PHY to test its data path without MAC.

MAC layer sends ethernet frames to the PHY layer over media independent interface(MII) and these frames

pass through the data path and reach MII receive side. To replicate this action, BIST Generator is used to

generate the ethernet frame. On the other side of data path, BIST checker will receive this frame and checks

for errors. If errors are found, then data path has to be checked for silicon bugs.

Below diagram depicts the general system level block diagram of presence of Bist engine:

Fig 5.1 Typical diagram of BIST engine & ETHERNET/SGMII PHY

The block with BIST generator and BIST checker is called as BIST engine and it is connected through the data

path line of the ETHERNET/ SGMII PHY. Data traverses from BIST generator through the data path and

finally to the checker.

There are multiple ways to interface Bist engine with single PHY or with multiple PHYs’.

Block diagram with data flow shows the possible scenarios:

In the diagram, SGMII chip is connected to an ETHERNET PHY. Two sets of BIST generators and checkers

are shown. SGMII BIST generator is the one connected to the SGMII PHY side and ETHERNET BIST

generator is the one connected to the ETHERNET PHY side. Similarly SGMII BIST checker AND

ETHERNET BIST checker are also used.

SGMII BIST generator and checker makes the SGMII BIST engine. And ETHERNET BIST generator and

checker make the ETHERNET BIST engine.

ETHERNET traffic generator is an external generator used while performing post Si validation. It will also

generate the ethernet frame and sends them over the data path same like BIST generator.

25

Fig 5.2 Data flow showing diagram of possible scenario

Here is the possible data flow:

• EPHY Bist generator - EPHY TX – EPHY RX – (EPHY Bist checker) - SGMII TX – SGMII RX –

SGMII Bist checker (ORANGE PATH)

• SGMII Bist generator - SGMII TX – SGMII RX – (SGMII Bist checker) - EPHY TX – EPHY RX –

EPHY Bist checker (CYAN PATH)

• External ethernet traffic generator - EPHY RX – EPHY Bist checker (GREY PATH)

• External ethernet traffic generator - SGMII RX – SGMII Bist checker (BLACK PATH)

Advantages of having two sets of BIST engine (BIST generator and BIST checker):

1. Simultaneously both PHY can be tested .

• EPHY standalone and SGMII standalone.

• Start from EPHY Bist generator end with SGMII Bist checker. If SGMII Bist checker results

fail, then we know the issue is in EPHY or SGMII or EPHY to SGMII interface .

• Start from SGMII Bist generator end with EPHY Bist checker. If SGMII Bist 36 checker results

fail, then we know the issue is in EPHY or SGMII or EPHY to SGMII interface.

2. Risk involved in clock muxing and data muxing is avoided.

3. Design size is not bulky.

4. If wrapper is created including SGMII IP and Bist engine(apb slave, bist gen, bist checker), then

wrapper can be seamlessly reused in any other projects (wrapper would have been verified).

Disadvantage:

1. User has to programme two BIST engine

26

5.2 Block diagram of BIST Engine:

Fig 5.3: Block diagram of Bist engine

Bist generator and checker starts working when the respective enable bits are set. BIST generator generate the

ethernet frames according to the frame length and other configuration bits. This frame is sent through a MUX

to the ethernet PHY and is tapped by the BIST checker. BIST checker performs the CRC calculations and then

set the status. The status registers (and statistic registers) can be analysed to find the issue, if any. There are

two modes of operation They are validation mode and production mode.

Production mode:

 This mode can be used by the production test. In this mode, programmable total number of frames are sent

and expect the same total number of frames at the checker. Total number of frames can be a combination of

programmable good frames and programmable error injected frames (FCS corrupt) or can be either one. In the

BIST checker, after a BIST Done (after timeout), BIST status indicates the BIST is fail or pass. If the BIST is

failed, then check the individual flag bits which indicates the actual reasons for fail.

This mode can be used during the validation stage as well

27

Validation mode:

This mode is very useful when the external ethernet tester is used to test the DUT. In this mode, external

ethernet tester generates ethernet frames and the statistics are issued by the BIST checker. BIST checker issues

a statistics of good frames received, bad frames received, number of frames in which rx_er is set when rxdv is

high.

5.3 BIST Generator:

The BIST Generator is capable of generating the IEEE 802.3 ethernet frame format with varying frame length

and different types of payload data. Once BIST generator is set, it starts generating the ethernet frame according

to configuration. This module works for GMII interface and data converter for MII is outside the scope of

BIST engine.

Complete custom frame :-

PREAMBLE, SFD and IPG:-

Data length for preamble and IPG are programmable

DA & SA:

Destination and Source addresses are up to 6 bytes each and are configured using the registers BIST_DA and

BIST_SA. Higher bytes of DA and SA are sent first .

T/L:

To make it easy and completeness, fixed some value is sent always (instead of indicating frame length count)

and is not checked in BIST checker.

FRAME PAYLOAD LENGTH:-

BIST generator is capable of generating different payload sizes. Here is the supported types:

➢ It can generate fixed programmable number of bytes for every frame.

➢ It can start with programmable number of bytes and then keep incrementing by one byte for every

subsequent frames

 ➢ Random data length is chosen with a minimum of 46 bytes.

Preamble

 7bytes

SFD

1 byte

DA

6 bytes

SA

6 bytes

T/L

 2 bytes

Packet Data

46-1500

bytes

FCS

4bytes

IPG

12 bytes

28

Here is the supported payload data type:

➢ Ramp data pattern

➢ Fixed programmable value

➢ PRBS data (from LFSR)

 Generated random sequence depends on the seed value. BIST generator can choose seed value to be either

random number or a programmable number. If the programmable number is chosen, then the same value is

loaded to initialize for every ethernet frame. If the random number type is chosen, then random seed value is

used to initialize for every ethernet frame.

FCS :-

The Frame Check Sequence is calculated from DA to frame-data and appended to the frame payload. To

process 8 bits per clock cycle, 8-bit parallel CRC-32 is used for FCS. BIST Generator also generates the GMII

transmit interface control signals (TX_EN & TX_ER = 1’b0 always) along with the TXD.

ERROR INJECTION:-

BIST generator provides FCS (Frame Check Sequence) Error Insertion. FCS Error insertion allows sending

frames with wrong FCS value. FCS Error insertion allows programmable error insertion, where programmed

number of outgoing frames will have FCS error. This should be detected by BIST checker as an error frame.

FRAME COUNT:

Number of good frames and error frames is programmable. Hence total number of generated frames will be

number of good frames plus number of error injected frames. In validation mode, BIST generator is not

required, hence these are not required.

5.4 BIST Checker:

The BIST checker feature is to qualify the received ethernet frame and generate the status and various statistical

results. Bist checker is enabled by programming a configuration bit. BIST checker is not tied with BIST

generator and altogether can independently work.

FCS calculation:

BIST checker monitors the received bit stream for the SFD bit pattern. If pattern is detected, it will perform

Cyclic Redundancy Check on received data pattern until the end of frame (RX_DV falling edge). If this result

is equal to the magic number of the standard 8 bit CRC-32 (32’hC704_DD7B) then the received frame is good

else the frame is termed as bad.

Good frame and Bad frame counters:

Good frame counter keep counting the good frame and bad frame counter keep counting the bad frame. These

counters are available for host to read at any point of time (for both validation and production modes).

29

In validation mode, these counters are used as a statistical registers. If the clear bit is set, then these counters

are resetted and starts counting from zero for any new good and bad frames.

Production mode BIST Fail status :

Following error status is reported when BIST done is set (BIST done is set when expected good frames and

expected bad frames is received or timed out, which ever event happens first).

1. Good frame fail:

If the expected number of good frames are not received, then bit flag is set.

2. Bad frame fail:

 If the expected number of bad frames are not received, then bit flag is set (Error is injected, but

not received)

3. rx_dv is not detected:

If RX_DV is not received by the BIST checker, then this status is set.

4. RX_ER detected:

This status is set when rx_er is set with rx_dv is high

Note: BIST_CHECK_DONE and BIST Fail flags are not valid in validation mode

5.5 BIST Registers :

 BIST generator control :- BIST_GEN_CTRL

This is a 16 bits register which controls the controls of the BIST generator. Its default value is 0x0004.

• BIST Generator enable : BIST_GEN_EN

This bit controls the BIST generator’s enable signals. When BIST_GEN_EN is zero, then BIST

generator is disabled, else when it is one BIST generator is enabled.

• Payload data type :

 This is of two bits.

➢ 00 - Programmable data is sent

➢ 01 - Ramp data is sent

➢ 10 - PRBS output is sent (see BIST_PRBS_SELECT)

➢ 11 - Not used

• PRBS SELECT: BIST_PRBS_SELECT

 Different types of PRBS is selected

➢ 1’b0 – PRBS7

➢ 1’b1 – PRBS13

• LFSR RANDOM VALUE ENABLE : LFSR_RANDOM_EN

30

 This bit selects the seed value of the LFSR.

➢ 1’b0: Seed value is taken from BIST_LFSR_SEED register

➢ 1’b1: Seed value is taken from random value

• GENERATOR MODE : BIST_GEN_MODE

 Controls whether BIST is operating in validation mode or production mode.

➢ 1’b0 – Production mode. BIST generator generates number of programmed good frame

and number of programmed bad frames.

➢ 1’b1 – Validation mode. Bist generator is not used.

Preamble and IPG data length: PREAMBL_IPG_SIZE

This register is loaded with the preamble and IPG data length.

PREAMBLE_LENGTH: Length of preamble in bytes.

IPG_LENGTH: Length of IPG in bytes (96 bits as per IEEE standard).

BIST_DA_0: Lower 16 bits [15:0] of DA value .

BIST_DA_1: middle 16 bits [31:16] of DA value .

BIST_DA_2: higher 16 bits [47:32] of DA value .

BIST_SA_0: Lower 16 bits [15:0] of SA value.

BIST_SA_1: middle 16 bits [31:16] of SA value.

BIST_SA_2: higher 16 bits [47:32] of SA value .

Payload control register : PAYLOAD_CTRL

This register controls the payload data.

• Constant payload data: CONST_PAYLD_DATA

When constant data type is chosen, then the value from this register is taken.

• Payload length select: PAYLD_LENGTH_SEL

 Indicates the increment in payload size :

➢ 2’b00- No increment in payload size (Always PAYLOAD_LENGTH) .

➢ 2’b01- Increment in payload size by 1 (Begin with PAYLOAD_LENGTH) .

➢ 2’b10- Random number is taken as payload size with a minimum value of 46 bytes.

➢ 2’b11- Not used.

Payload length:

This register is loaded with payload length.

PAYLOAD_LENGTH: Length of frame payload data in bytes.

31

Good Frame Count : BG_GOODFRAME_CNT

This register is loaded with Number of good frames to be generated by BIST generator.

Bad Frame Count : BG_BADFRAME_CNT

This register is loaded with Number of good frames to be generated by BIST generator.

BIST LFSR SEED value : BIST_LFSR_SEED

This register is loaded with Initial value to be loaded into the LSFR for PRBS data.

Generator Status : BIST_GEN_STATUS

This register denotes the status of the generator.

• BIST_GEN_DONE :

This status flag is set when programmed number of good frame and bad frame are completely generated

and sent.

Bist Checker Control Register :

This register controls the BIST checker.

• BIST_CHECKER_EN

➢ Bist checker enable

 0 – Bist checker is disabled

 1 – Bist checker is enabled

• BIST_CHECK_MODE

➢ Controls whether BIST is operating in validation mode or production mode.

1’b0 – Production mode. Bist checker checks for BIST done and BIST fail status.

1’b1 – Validation mode. Bist checker keep checking the good frames, bad frames and rx_er

when rx_dv is set. Results are available in statistical registers.

• STATISTC_CNT_RST

➢ If this bit is set, then resets all status – BIST_STATUS, GOOD_FRAME_CNT,

BAD_FRAME_CNT.

➢ This bit resets good frame counter, bad frame counter and rx_er detected frame counter.

➢ After reset, all status registers hold fresh values.

➢ This bit is self-clearing bit. This bit is used only when BIST is in validation mode.

➢

Bist Checker Good Frame Count :

• BC_GOODFRAME_CNT :

32

➢ Expected number of good frames generated by BIST generator.

➢ This register is used to indicated expected good frames is received or not.

Bist Checker Bad Frame Count :

• BC_BADFRAME_CNT :

➢ Expected number of bad frames generated by BIST generator.

➢ This register is used to indicated expected bad frames is received or not.

Bist Timer:

This register contains the time out value.

• BIST_WAIT_TIMER :

➢ Timer timeout value for checking all status in production mode. This count begins when BIST

checker is enabled. Hence this register should be programed before BIST checker is enabled.

➢ Ideally this value should be- time taken to send all frames by the BIST generator plus latency

from BIST generator to BIST checker plus additional time to program BIST generator and

checker enable bit.

➢ This is time out register and is useful when expected good number of frames and bad number

of frames is not received. In this condition, time out asserts BIST_CHECK_DONE status.

➢ This count is in terms of microseconds.

Bist Production Mode Status :

BIST status used when BIST is in production mode and NOT valid for validation mode.

• BIST_CHECK_DONE :

➢ This bit indicates BIST status is ready for reading. This bit is set when expected good number

of frames and bad number of frames is received or timed out.

• BIST_CHECK_FAIL

➢ Indicates at least one of the following error status is set:

 1. Good frame fail: If the expected number of good frames are not received, then bit flag is set.

 2. Bad frame fail: If the expected number of bad frames are not received, then bit flag is set

(Error is injected, but not received)

 3. rx_dv is not detected: If RX_DV is not received by the BIST checker, then this status is set.

4. RX_ER detected: This status is set when rx_er is set with rx_dv is high.

33

➢ If BIST_CHECK_DONE is set and BIST_CHECK_FAIL is logic zero, then it is said to be

PASSED. If BIST_CHECK_DONE is set and BIST_CHECK_FAIL is logic high, then it is

said to be FAIL.

• GOOD_FRAME_FAIL:

 If the expected number of good frames are not received, then bit flag is set.

• BAD_FRAME_FAIL:
If the expected number of bad frames are not received, then bit flag is set (Error is injected, but

not received)

• RXDV_DETECT_ER:
If RX_DV is not received by the BIST checker, then this status is set.

• RX_ER_DETECT_ER:
This status is set when rx_er is set with rx_dv is high

Bist Received Good Frame Count :

• GOOD_FRAME_CNT:
➢ Counts the number frames for which CRC magic number is matched.

➢ This can be used in both production mode and validation mode.

➢ This counter can be reset by programmable bit to count fresh good frame (in validation mode).

Bist Received Bad Frame Count :

• BAD_FRAME_CNT:

➢ Counts the number frames for which CRC magic number is NOT matched.

➢ This can be used in both production mode and validation mode.

➢ This counter can be reset by programmable bit to count fresh bad frame (in validation mode).

Bist Error Frame Count:

This register stores the error frames for which RX_ER detected when rx_dv is set.

• RX_ER_FRAME_CNT:

➢ Counts the number frames for which rx_er is detected when rx_dv is high.

➢ This can be used in both production mode and validation mode.

34

5.1 Register Table:

These register are accessed using the APB SLAVE protocol as explained in chapter 2.

REGISTER NAME ADDRESS Power on default

value

ACCESS

BIST_GEN_CTRL 0x0 POD: 0x0004 RW

PREAMBL_IPG_SIZE 0x1 POD: 0x0C07 RW

BIST_DA_0 0x2 POD: 0x0000 RW

BIST_DA_1 0x3 POD: 0x0000 RW

BIST_DA_2 0x4 POD: 0x0000 RW

BIST_SA_0 0x5 POD: 0x0000 RW

BIST_SA_1 0x6 POD: 0x0000 RW

BIST_SA_2 0x7 POD: 0x0000 RW

PAYLOAD_CTRL 0x8 POD: 0x0066 RW

PAYLOAD_LENGTH 0x9 POD: 0x0064 RW

BG_GOODFRAME_CNT 0xA POD: 0x0064 RW

BG_BADFRAME_CNT 0xB POD: 0x0000 RW

BIST_LFSR_SEED 0xC POD: 0xFFFF RW

BIST_GEN_STATUS 0xD POD: 0x0000 RO

35

REGISTER NAME ADDRESS Power on default

value

ACCESS

BIST_CHECK_CTRL 0x18 POD: 0x0000 RW

BC_GOODFRAME_CNT 0x19 POD: 0x0064 RW

BC_BADFRAME_CNT 0x1A POD: 0x0000 RW

BIST_WAIT_TIMER 0x1B POD: 0x00FF RW

BIST_PROD_STATUS 0x1C POD: 0x0000 RO

GOOD_FRAME_CNT 0x1D POD: 0x0000 RO

BAD_FRAME_CNT 0x1E POD: 0x0000 RO

RX_ER_FRAME_CNT 0x1F POD: 0x0000 RO

Note: RW is read and write access. RO is read only.

36

5.6 BIST Programming sequence :

Production Mode:

1. Wait for Link up

2. Set BIST_GEN_MODE and BIST_GEN_MODE for production mode

3. Program all relevant registers which controls BIST generator to generate required frames (except BIST

generator enable)

4. Program all relevant registers which controls BIST checker (except BIST checker enable)

 5. Program BIST_WAIT_TIMER

 6. Enable BIST checker

7. Enable BIST generator

8. Poll BIST_CHECK_DONE status bit.

9. If BIST_CHECK_DONE is set, then read BIST_CHECK_FAIL.

10. If BIST_CHECK_DONE is set and BIST_CHECK_FAIL is logic zero, then it is said to be PASSED. If

BIST_CHECK_DONE is set and BIST_CHECK_FAIL is logic high, then it is said to be FAIL. Check

further status flag to know the reason for failure.

 11. If needed (as this mode can be enabled during validation stage too) read GOOD_FRAME_CNT,

BAD_FRAME_CNT, RX_ER_FRAME_CNT

 12. If wish to repeat the same step, disable both BIST generator and BIST checker. Follow step 2-11 or step

6-11 as per the requirement

Validation Mode:

1. Wait for Link up

2. Run external ethernet tester to generate the traffic

3. Set BIST_CHECK_MODE for validation mode

4. Enable BIST checker

5. Wait for some time to receive frames

6. Read GOOD_FRAME_CNT, BAD_FRAME_CNT, RX_ER_FRAME_CNT

7. Program STATISTC_CNT_RST bit to reset all statistic registers

 8. If needed, follow step 4-5

37

Testbench :

Fig 5.4 : Test Bench Driving BIST ENGINE

Above figure shows the flow of signals from testbench to the DUT and from DUT to the testbench.

Step 1 : load the BIST control register values.

Step 2: BIST registers will drive the BIST engine by giving enable signals.

• BIST generator and checker will now start and results will be store in status registers of BIST register

bank

Step 3: Read the status register and analyse the results.

5.7 Simulation Results :

First step to run the BIST engine is to Load the Registers with desired values. All the results are divided

based on validation mode and production mode

Accessing the registers :

Fig 5.5 Accessing the registers

38

In the above simulation waveform, multiple write cycle are performed. At address 0x0000 and 0x0018

Enable signals are made high. And this is seen by bist_gen_en and bist_check_en going high after the cycle.

Generator Inputs :

Fig 5.6 Waveform 1

In this waveform, generator mode is zero representing production mode. And number of

good frames are 16’h0032 and number of bad frames are 16’h0002. These are the inputs

taken for this test.

Destination and Source addresses:-

 Fig 5.7 waveform 2

39

The waveform 2 shows how 16 bit address is converted to a 48 bit address in side a generator. 6 bytes of

data represents the address in ethernet frame format.

Default Values :

Fig 5.8 waveform 3

In the waveform3, we can see the power on default value(refer register table) are sent by the register bank

when a reset signal is applied. Also when lfsr_random_en value is zero, default value 16’hFFFF is used as a

seed value for PRBS.

Generator Outputs:

Fig 5.9 Waveform 4

The waveform 4 is showing the first generated frame. It started with 7 bytes of preamble 8’h55. Followed by

SFD 8’Dd5. Then the address shown in waveform 2 are followed. Tx_en_cnt shows the frame number.

40

Fig 5.10 waveform 5

In waveform 5, we can see the outputs transmission enable and error signals. As the number

of frames are sent, count keeps increasing. And frame is valid only if error is zero and enable

is high.

Fig 5.11 waveform 6

In waveform 6, when count reaches 16’h0034 (number of good frames + number of bad frames, refer

waveform 1) transmission is completed and bist generator status is updated, bist_gen_done goes high.

41

Checker Inputs & Outputs:

Fig 5.12 Waveform 7

In the waveform 7, checker enable can be seen high and it receives the generator output. Expected number of

good frames and bad frames are also sent.

Detecting Good frames and Bad frames :

 Fig 5.13 Waveform 8

Fig 5.14 Waveform 9

Magic number

42

In waveform 8, we can see the magic number (32’hC704DD7B, refer chapter 4). When this number is

calculated then the received frame is good. In waveform 9, this magic number is not achieved so this frames

comes under bad.

Fig 5.15 Waveform 10

In waveform 10, total number of good frames and bad frames calculated are shown. We can see that it

matches with input values.

Status Registers

Fig 5.16 Waveform 11

In waveform 11, when bist checker done is high, we can see the different flag register results. As the good

frame count is matched the good frame fail is low.

Similarly As the bad frame count is matched all the bad frames are properly detected by the checker so the

bad_frame_fail is low.

Also, rx_dv and rx_er are also low indicating the received frames are valid with no errors.

43

Different data types :

Fig 5.17 Waveform 12

In this test, constant data type is selected with incrementing data length. For every frame data length is

incremented by 1. And in every frame, data is constant ie 8’h AD. We can generate different combination of

such datatypes and data length and these can be verified at checker side.

Error cases :

Fig 5.18 Waveform 13

In waveform 13, expected number of frames does not match with received number of frames causing an

error in the test.

Bad_frame_fail and good_frame_fail goes high indicating this issue.

44

Validation Mode Simulation Results :

Until now, Production mode results are shown. Now the bist mode is changed to validation. Here frames are

continuously sent and number of good frames and bad frames are captured.

Fig 5.19 Waveform 14

Fig 5.20 Waveform 15

In the waveforms 14 & 15, when read statistics signal is sent, then the number of good frames

and bad frames until that instant are captured and count is made to zero. The counter keeps on

increasing until a new read signal is sent. In validation mode only good frame and bad frame

counters are checked.

Conclusion :

 BIST Engine module is designed and the ethernet frames are successfully generated by the BIST generator

which are verified by the BIST checker. Different status flags can be accessed from the register bank to

understand which type of error is detected by the checker.

45

CHAPTER 6

Conclusion And Future Scope

 AMBA APB protocol is clearly understood and implemented using Verilog HDL. AMBA bus

architecture and APB slave working is explained in detailed. The simulated waveform has been compared with

the specification mentioned in [6] and the results match. So this module can be used in any design whose

registers are to be accessed by an AMBA architecture Processor or a master.

 An interface is designed and it is successful in accessing the registers of the PHY chips which doesn’t

support the AMBA bus structure.

 Different media independent interfaces are explained and understood. The best MII interface which

can be taken is SGMII interface with 8 pin outputs. SGMII interface is by far the best interface in terms of

clock speed and number of pins. 32 bit Cyclic Redundancy checksum can be used to verify the received frames

after transmitting over data paths. A successful design is developed using Verilog RTL to find the silicon bugs

using BIST engine module. Different types of frames are generated and sent over the data path where the

checker verified the data.

 In future, the BIST generator Module can be modified to create continuous frames which will be

helpful in analysing the data during thermal testing. BIST engine can also be improved to work for multiple

interfaces for 100Mbps and 1000Mbps by sampling the data. Single BIST engine can be made to work for 4

output ports and 8 output ports with a simple sampling logic which reduces the requirement of having separate

modules for different speeds.

46

REFERENCES

[1] Design & Implementation of Advance Peripheral Bus Protocol. International Journal of Scientific

Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015.

[2] The 8-bit parallel CRC-32 research and Implementation in USB 3.0, 2012 International Conference on

Computer Science and Service System

[3] KOU Ke-nan, RU Xiao, SUN Zhi-yue, REN Guang-hui “Research on parallel CRC32 algorithm based

on SATA interface”, The Techniques of Automation &Application, vol. 29, pp. 40-43,August 2010.

[4] LI You-mou,“The design of the 8bits parallel CRC-32 soft-core in Ethernet”,Journal of Xi’an University

of Post and Telecommunication, vol.11, pp.32-35, sep. 2006

[5] International Journal of Computer Applications (0975 – 8887) Volume 95– No.21, June 2014 29 Design

and Verification of AMBA APB Protocol

[6] ARM, “AMBA Specification Overview”, http://www.arm.com/. .

[7] Samir Palnitkar, “Verilog HDL: A guide to Digital Design and Synthesis (2nd Edition), Pearson, 2008.

[8] Santhi Priya Sarekokku, K. Rajasekhar, “Design and Implementation of APB Bridge based on AMBA

AXI 4.0,” IJERT, Vol.1, Issue 9, Nov 2012.

[9] Design & Implementation of Advance Peripheral Bus Protocol International Journal of Scientific

Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015 ISSN: 2395-3470

www.ijseas.com

