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ABSTRACT 

 

Industries are transforming in the fourth industrial revolution, from 

traditional manufacturing and industrial practices to smart 

manufacturing with the assistance of modern smart technology. 

Prognostics is a key science in industry 4.0 which assists in condition-

based maintenance of industrial assets. Hence researchers, scientists and 

different industrial organisations are finding different ways to 

implement prognostics effectively. Prognostics has evolved as an 

essential tool for the estimation of the Remaining Useful Life of the 

critical components of several industrial assets.  

Prognostics requires a large amount of life data of the component or 

system for the accurate estimation of the remaining useful life of that 

component or system. However, the data collection process used for 

prognostics is a cumbersome process which consists of operating the 

asset from healthy condition to failure. It is not advisable to run the asset 

until failure because industrial assets are expensive. Also running the 

asset till failure is a destructive and time-consuming process. This 

situation creates a problem for the data collection process in prognostics 

and health management.  

This thesis focuses on resolving the scarcity of industry-grade 

prognostics data. For this purpose, a mechanism which can generate 

prognostics data without need of running the actual machine has been 

designed and developed. This mechanism uses the historical data of the 

machine for which the user wants to generate data. This historical data 

is condition monitoring data of that machine.  

To resolve the problem of data scarcity, a mechanism is required, which 

can provide the prognostics data similar to the actual data. For this 

purpose, this thesis proposes a solution named as a Generic Prognostics 

Simulator. GPS uses the simulation process for new data generation. 

Primary factors considered while developing this mechanism is; its 
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ability to generate the degradation data of several mechanical 

components. This simulator uses the historical data of asset to generate 

new data sets using several features of that data. A generic algorithm is 

developed for the processing of GPS, i.e. to simulate the datasets.  

The basic need for massive prognostics data can be satisfied using GPS 

without running the actual component until failure. Also, industrial 

organisations can save a large amount of cost and time using GPS for 

the data generation process  

GPS enables data generation from historical condition monitoring data 

which resolves massive data requirement of industries. It also assists in 

training the latest prognostics models developed by academic 

researchers on the industry-grade data generated by GPS. Many research 

students struggle generating new models for prognostics due to lack of 

data; GPS can resolve this problem.  

The validation of the data generation process with the help of GPS using 

historical condition monitoring data consisting of wear and vibration 

data of a milling cutter has been done. The detailed results are discussed 

in chapter number five. Results show the similarity between actual 

datasets and simulated datasets which is illustrated using graphical 

representations of simulated data with the original datasets. 

 

 

 

 

 

 

 

 

 



xiii 

 

Table of Contents 
 

ABSTRACT .......................................................................................... xi 

LIST OF FIGURES ............................................................................ xvi 

LIST OF TABLES ............................................................................. xvii 

ABBREVIATIONS ......................................................................... xviii 

Chapter 1. INTRODUCTION ................................................................ 1 

1.1 Prognostics and Health Management (PHM).......................... 1 

1.2 Prognostics approaches ........................................................... 4 

1.3 Importance of data-driven prognostics .................................... 5 

1.4 Challenges in data-driven prognostics .................................... 7 

1.5 Problem Statement .................................................................. 8 

1.6 The organisation of the thesis.................................................. 9 

Chapter 2. LITERATURE REVIEW ................................................... 10 

2.1 Literature Survey ....................................................................... 10 

2.2 Research Gaps ............................................................................ 12 

2.3 Research Objectives ................................................................... 13 

Chapter 3. OVERVIEW OF DATA-DRIVEN APPROACHES ......... 14 

3.1 Industrial data for prognostics ................................................... 15 

3.2 Conventional Data collection Methods ...................................... 17 

Chapter 4. METHODOLOGY ............................................................. 20 

4.1 Prognostics literature survey ...................................................... 20 

4.2 Study of prognostics data ........................................................... 20 

4.2.1 Features of studied data ...................................................... 21 

4.3 Development of the algorithm for prognostics data simulator .. 21 

4.3.1 Trend associated with the degradation trajectory ............... 21 

4.3.2 Incorporation of Noise in the data ...................................... 25 



xiv 

 

4.3.3 Incorporation of abrupt jumps in the data ........................... 26 

4.3.4 Seasonality addition in the data .......................................... 26 

4.4 The architecture of the proposed prognostic data generation model

.......................................................................................................... 28 

4.5 Mechanism for the actual generation ......................................... 29 

4.5.1 A DC motor......................................................................... 30 

4.5.2 Arduino UNO...................................................................... 31 

4.5.3 Motor Driver (l298n) .......................................................... 32 

4.5.4 Piezoelectric accelerometer ................................................ 33 

4.5.5 TEDS Piezoelectron Coupler .............................................. 34 

4.5.6 Data acquisition card (DAQ) .............................................. 35 

4.5.7 Experimental Setup of GPS ................................................ 35 

4.6 Validation of DC motor vibration readings ............................... 36 

4.6.1 Generation of the databank ................................................. 36 

4.7 Validation of simulated data and motor generated data............. 38 

4.8 Generation of Data-repository ................................................... 38 

4.9 Concept of a generic data simulator ........................................... 39 

4.10 Generation of new datasets using GPS .................................... 39 

4.11 Design and development of UI for GPS .................................. 39 

4.12 Validation of complete GPS by available data by the proposed 

methodology .................................................................................... 41 

Chapter 5. RESULTS AND DISCUSSION ........................................ 42 

5.1 CMD Data for validation of the methodology ........................... 42 

5.2 Results and discussion ............................................................... 45 

CHAPTER 6. CONCLUSION............................................................. 50 

CHAPTER 7 FUTURE SCOPE .......................................................... 51 

APPENDIX A ...................................................................................... 52 



xv 

 

APPENDIX B ...................................................................................... 64 

APPENDIX C ...................................................................................... 67 

REFERENCES .................................................................................... 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

LIST OF FIGURES 

 

Figure 1. Prognostics process within PHM loop [3] .............................. 3 

Figure 2. Different Prognostics Approaches [4] .................................... 4 

Figure 3. Product life degradation [7] .................................................... 8 

Figure 4. The typical flow of data-driven prognostics systems ........... 14 

Figure 5. Gearbox prognostics simulator ............................................. 18 

Figure 6. Gear train prognostics simulator .......................................... 18 

Figure 8. The architecture of the proposed prognostic data generation 

model.................................................................................................... 28 

Figure 9. DC motor .............................................................................. 30 

Figure 10. Arduino Circuit Board ........................................................ 31 

Figure 11. PWM duty cycle ................................................................. 32 

Figure 12. Motor driver connections L298N ....................................... 33 

Figure 13. Accelerometer with a magnetic mount ............................... 33 

Figure 14. Kistler TEDS Piezotron Coupler ........................................ 34 

Figure 15. Data acquisition system ...................................................... 35 

Figure 16. User interface and hardware setup of GPS ......................... 35 

Figure 17. Motor change RPM with an increase in AWV ................... 37 

Figure 18. Change in motor vibration RMS vs AWV ......................... 37 

Figure 19. Home page of GPS UI ........................................................ 40 

Figure 20. Data visualisation using GPS webtool UI .......................... 40 

Figure 21. Complete Methodology of GPS ......................................... 41 

Figure 22. Milling cutter wear data...................................................... 43 

Figure 23. Milling cutter vibration RMS data. .................................... 43 

Figure 24. Vibration RMS data generated using GPS ......................... 45 

Figure 25. Tool Wear data generated using GPS ................................. 46 

Figure 26. Simulated and respective Motor generated RMS data ....... 46 

Figure 27. Simulated and respective Motor generated wear data ........ 47 

Figure 28. Hardware connection of GPS setup .................................... 67 

 



xvii 

 

LIST OF TABLES 

 

Table 1. Features used for prognostics data ......................................... 15 

Table 2. Prognostics Data features of several mechanical components

.............................................................................................................. 17 

Table 3. The failure rate in the bathtub curve ...................................... 22 

Table 4. Specifications of DC motor ................................................... 30 

Table 5. Specifications of motor driver l298n ..................................... 32 

Table 6. Specifications of the uniaxial accelerometer ......................... 34 

Table 7. Milling cutter life data ........................................................... 42 

Table 8 Sample wear data of milling cutter ......................................... 44 

Table 9. Sample vibration RMS data of milling cutter ........................ 44 

Table 10. Cosine similarity index for simulated and hardware generated 

data ....................................................................................................... 48 

Table 11. RMSE for simulated and hardware generated data ............. 48 

Table 12. Colour coding of hardware connections for GPS ................ 68 

 

 

 

 

 

 

 

 

 

 

 



xviii 

 

ABBREVIATIONS 

 

AWV: Analogue Write Value 

CBM: Condition Based Maintenance 

CIM: Change In Mean 

CMD: Condition Monitoring Data 

DC: Direct Current 

ERP: Enterprise Resource Planning 

PHM: Prognostics and Health Management 

RMS: Root Mean Square 

RMSE: Root Mean Square Error 

RPM: Rotation Per Minute 

RSM: Randomly Started Mean 

RTF: Run To Failure 

RUL: Remaining Useful Life 

SD: Sample Datasets 

TS: Time Stamp 

 

 



1 

 

Chapter 1. INTRODUCTION 

Industries are turning towards the fourth industrial revolution. It requires 

technologies such as prognostics implemented in the industry. However, 

a large portion of the industries is facing several problems while 

implementing prognostics. 

Prognostics uses system information for estimation of Remaining Useful 

Life (RUL), i.e. either it uses physical properties of the system for 

predictions, or it uses Condition Monitoring Data (CMD) of the system. 

It has been noticed that the data collection process is costly and time-

consuming. This is the reason for the scarcity of industry-grade 

prognostics data and unavailability of the data for prognostics is one of 

the significant problems in the implementation of prognostics.  Due to 

this problem, many industries are not implementing prognostics. Hence 

the data collection process becomes very crucial for prognostics and to 

resolve the problem of unavailability of a large amount of prognostics 

data is a significant challenge.  

Thesis work identifies the problem of data scarcity and proposes a 

solution to the problem. The solution fulfils the requirement of data in 

the industry. Also, the generation of new datasets can ease the generation 

of new prognostics models to researchers.  

 

1.1 Prognostics and Health Management (PHM) 

PHM is a tool which provides solutions for maintaining the system 

health at the maximum possible level and prevent any breakdowns. A 

prognostics algorithm is implemented where a component degrades with 

respect to operating time and fails after reaching the user-defined 

threshold of degradation parameter. This degradation data is used to 

predict the RUL of that component. The historical data is used by PHM 

for extrapolation of the current trend of degradation and predicting 

possible failure time in the future.  Maintenance is a process of 

preserving the asset health condition. The predicted RUL is an essential 
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concept in decision making for maintenance activities and to prevent 

accidental conditions. 

Prognostics provides information about the current health and expected 

future degradation of the asset used for effective asset management. This 

information can be collected from the diagnostics and prognostics 

system, respectively [1].  PHM is gaining importance in industry and 

academia. 

Diagnostics and prognostics technologies were enabled in the 

mechanical industry, as maintenance technology came into light. 

Implementing maintenance proactively directly reduced the cost of 

maintenance as well as increased machine availability. Prognostics 

assists in scheduling the maintenance exactly before the failure, with the 

use of Condition Based Maintenance (CBM). To achieve this, 

conventional fail and fix maintenance strategy must be switched to 

predict and prevent. CBM is one of the modern technologies that falls 

well within the framework of PHM.    (Lee, et al., 2014) highlights that 

the use of prognostics for estimation of RUL is assisting the 

maintenance activities for the last fifteen years [2].  

PHM provides the user with information about the fault generated in the 

component in an early stage. PHM also assist in monitoring and 

forecasting the severity of the progression of the fault, and to help in the 

planning and autonomously triggering maintenance schedule. Proper 

planning of maintenance activities helps in managing the inventory 

levels of required components for maintenance which directly improves 

the asset management or decisions required for Enterprise Resource 

Planning (ERP). Improved maintenance increases the machine 

availability and productivity of the organisation. 

Figure 1 explains the process of PHM for a system-level prognostic. 

Data captured by sensors contain a large amount of noise, and hence to 

study the trend signature from raw data, it must be pre-processed. To 

study the data, prognostics requires features of this data for analysis. 

Diagnostics provides information about fault generation and 
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interpretation about the severances. Prognostics provides information 

about the remaining functional life of the system. RUL predicted by 

prognostics aids in decision making about maintenance planning. 

 

 

Figure 1. Prognostics process within PHM loop [3] 

 

PHM assistance is essential in large industries such as power generation 

industries. 

Example: 

Wind turbines consist of weighty components such as a gearbox, 

bearings. In case of any breakdown, it is difficult to replace these 

components, since these wind farms are located at remote locations. 

Prognostics estimates the RUL of these critical components to prevent 

the breakdown in the system. Hence implementation of PHM can save 

organisation downtime and extra maintenance cost. 

Industries are applying smart technology to gain the advantages of 

industry 4.0. Prognostics is one of these sophisticated sciences which 

can evolve the old maintenance techniques.  
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As discussed before PHM requires CMD for prediction of RUL. 

However, in India, there are many small-scale industries which do not 

use an electronic data collection process. Many industries use human 

efforts for data documentation on paper, and this makes it challenging 

to implement prognostics. Lack of proper training to machine operators 

makes it more challenging to collect the data correctly. 

 

1.2 Prognostics approaches 

Prognostics approaches mainly divided into three types, Error! R

eference source not found.1.2 shows these types using a block 

diagram. These approaches are based on the input information used by 

the prognostics approach, i.e. either physical properties or the condition 

monitoring data or combination of both. 

 

 

Figure 2. Different Prognostics Approaches [4] 

 

1] Data-Driven Approach 

Data-driven approaches use the CMD (Real-time and historical), 

to predict the RUL of the component. The approach uses the 

datasets to extract degradation trend of the component to predict 

RUL of that component. Historical datasets are used by 

prognostics model to compare the current signature with 

historical data signature. The process requires a massive amount 
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of data for analysis of features in the data and to assess the health 

of an asset with more accuracy.  

 

2] Model-Based Approach 

Model-based approaches focus on the physical aspects of the 

system rather than a statistical one for the generation of a model 

which represents the system behaviour. This approach provides 

better accuracy than the data-driven approaches in the situation 

of a simple system. As the complexity of the system increases 

the number of the component in the system increase, hence 

modelling a single physical model by understanding the whole 

system becomes more difficult. Most industrial systems favour 

the data-driven approach due to higher complexity in the 

industrial machines. 

 

3] Hybrid Approach 

Hybrid approaches user gets the combined properties of the data-

driven approach and model-based approach. This approach 

profits in the way that it gets all the benefits from both the data-

driven and model-based approach.  

For this project work, significant work in the area of data-driven 

prognostics has been done. The reasons to select the data-driven 

approach over a model-based approach is that it is easy to deploy and 

less expensive compared to the model-based approach. 

 

1.3 Importance of data-driven prognostics 

Industries are turning towards the fourth industrial revolution; hence the 

use of sensing technology for condition monitoring is increasing. 

Mechanical systems generate a large amount of data while operating. 

CMD reflects the operating system parameters and performance. Data-
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driven prognostics establish a model which connects these parameters 

to the healthiness of the system and estimate the RUL [4].   

A considerable amount of data is required by Data-driven prognostics 

approach about the system in each healthy state, faulty state and 

transition of healthy to faulty state, which is not easy to obtain. 

Nevertheless, once the data collection is done, the modelling can be done 

in a short period. Hence with the right amount of data available data-

driven prognostics is easy to deploy. 

Several data-driven prognostics models mentioned below require an 

abundance of data for better accuracy. 

Several data-driven models for prognostics: 

Independent Increment Process-Based Model 

Markovian Process-Based Models 

Filtering-Based Models 

Regression-Based Model 

Proportional Hazard Model 

Threshold Regression Model 

Several Industries using data-driven prognostics for RUL estimation: 

Aerospace industry 

Manufacturing Industry 

Electronics Industry 

Mining Industries 

Energy Industry 

Physical modelling requires a simple system, whereas, for complex 

systems, it is impossible to fit a single model which incorporates all 

characteristics of the system. Modern engineering systems are 

overwhelmingly complex because of increasing requirements on their 
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functionalities and qualities [5]. Hence data-driven approaches have 

found superior in such a situation. Unlike the model-based approach, it 

does not require to know about the physical properties of the system or 

the representation of parameters. The only requirement in the data-

driven approach is that the data must have a specific trend over operating 

time [6]. 

Data-driven solutions can provide a piece of unique information about 

the system and the root causes of fault generation. This information can 

help to design the component or can help an operator about handling the 

asset component. Also, data-driven prognostics is inexpensive, accurate 

and can be quickly developed. 

 

1.4 Challenges in data-driven prognostics 

Though data-driven prognostics is easy to deploy, the first step of this 

approach is to collect the CMD for analysis. This data collection process 

is cumbersome and time-consuming since the mechanical component 

takes a long time to reach failure from a healthy state. To collect the 

CMD from an asset, it must run from a healthy state to failure, but it is 

not an economical way to do it since the cost of precision-made 

industrial components is very high.  

Mostly in big industries such as power industry maintenance, of critical 

systems such as a gas turbine or a wind turbine is not an easy task after 

failure. This downtime of the asset costs the organisation a large amount 

of cost and power shortage which is harmful for organisation reputation. 
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Figure 3. Product life degradation [7] 

 

Figure 3 shows a degradation trend with respect to the operating time. 

The signature shown in the upper graph shows degradation detection at 

the current stage. Data-driven prognostics use historical data and predict 

RUL with a specific confidence. To increase the confidence level of 

prediction, a large amount of data containing information about the 

degradation is required.  

 

1.5 Problem Statement 

Unavailability of data reduces the data-driven prognostic algorithm’s 

accuracy up to a large extent. This is the reason why many industries 

cannot apply prognostics models in their organisation. Also, it is 

challenging to collect this data using conventional methods. Prognostics 

is an essential part of the fourth industrial revolution. Indian industries 

are incapable of applying the prognostics due to scarcity of useful 

prognostics data.   

The critical problem of unavailability of industry-grade prognostics data 

is addressed by this thesis. The problem statement of this thesis is to 

design and develop such a mechanism which can help to resolve this 

problem of scarcity of the data using a handful of historical CMD. 
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A UI must be designed and developed for controlling the hardware and 

real-time data visualisation of the data generated by the mechanism. 

Several mechanical components listed in that UI will serve the purpose 

of selection of component for which data is being generated. 

A mechanism has generated which uses a simulation process for new 

data generation with the help of historical CMD. The simulator can 

generate prognostics data for several mechanical components. Hence it 

is named as a GPS. 

 

1.6 The organisation of the thesis 

The previous chapter discusses the importance of prognostics for 

industry 4.0, assisting the maintenance of assets. Chapter 1 also 

discusses the different approaches of prognostics with the importance of 

a data-driven approach. Chapter 2 mentions some essential research 

papers which provides a better insight into the problems and some 

possible solution to the problem of scarcity of data.  

To work in data-driven prognostics, one needs to have basic knowledge 

about the topic. Chapter 3 provides an overview of data-driven 

prognostics and identifies the requirement of industry-grade data. Some 

conventional methods of data collection and their drawbacks are 

mentioned in the third chapter. 

Chapter 4 contains the methodology of this thesis and discusses the 

generic algorithm for the GPS and hardware needed for its working. 

Chapter 5 validates the methodology by the results and discussion. 

Chapter 6 concludes the thesis work and provides information about 

possible future work for improvisation of process. 
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Chapter 2. LITERATURE REVIEW 

For identification of the problem in the data collection process in 

prognostics along with the disadvantages due to lack of data, a 

comprehensive literature survey has been done. This literature survey 

includes the origin of prognostics and conventional data collection 

methods to novel methods of data collection.  

 

2.1 Literature Survey 

Industrial machines often consist of intricate operating systems and 

connection between components and subsystems [8]. Systems are 

required to maintain high-reliability or prone to safety hazards and 

disastrous consequences [9]. Machine breakdown cost for a single day 

in a big industry may cost up to 200000 euros [10]. CBM was first 

introduced in the 1940s. CBM has been seen as an improvisation over 

preventive maintenance by saving the cost of maintenance [11]. 

(Peng, Dong, & Zuo, 2010) was one of the first researchers to wrote 

about the status of prognostics in condition-based maintenance. They 

also established the relationship between reliability, RUL and the 

maintenance cost of the asset [12].  (Gillespie, 2015) discusses all the 

improvisation of CBM [13]. PHM emerged after the use of CBM. One 

of the leading research centre in the field of PHM, Centre for Intelligent 

Maintenance Systems,  has created more than $855 M of the economic 

impact on the industry [14]. 

 The twenty-first century is the age of information. Old simple 

measurements such as oil viscosity or vibration amplitude were used to 

provide some valuable information about the system. However, the 

evolution of computers and sensing technology have changed the 

manufacturing sector, and now data collection methods have improvised 

using electronic data collection recorded in computers without human 

interference provides more in-depth insight into the asset condition [15]. 
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Nowadays, industries are talking about advanced ways for maintenance 

of assets. Industry 4.0 has affected the maintenance approaches for 

industrial assets. (Ferreiro, Konde, Fernández, & Prado, 2017) discusses 

the requirements of machining sector for the 4th industrial revolution. 

They also state that there is a need for new ways to diagnose the fault in 

assets such as prototype test rigs can be used to understand different 

failure modes [16]. 

Prognostics can assist in future maintenance planning, providing the 

advantages in improving safety, maintainability, reliability and 

affordability [9]. However, implementing technology such as 

prognostics in the real industry directly from research face a lot of 

problems [17]. 

Prognostics is categorised in three major approaches which are Data-

driven prognostics, Model-based prognostics and Hybrid approach. The 

model-based approach provides better results for simple systems [18]. 

However, most industries are involved in overwhelmingly complex 

systems. A simple system cannot fulfil the increasing requirements on 

their qualities and functionalities [6].  

Data-driven methods involve monitoring and analysis of functional 

product parameters. A data-driven approach for prognostics is 

recommended when models are not available or when monitoring loads 

and environmental conditions are not possible [19]. 

Data-driven prognostics to use an abundant amount of data in deep 

learning models used in RUL predictions of aerospace systems [20]. 

NASA finds prognostic technology beneficial for the projects consisting 

of launch vehicles and spacecraft [21]. 

A short number of prognostics datasets are unable to train data-driven 

prognostics effectively. This results in poor accuracy of predicted RUL 

[22]. Component degradation data measured during service of asset 

assists prognostics models to analyse the degradation of system 
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functionality. However, collecting degradation data online from 

industrial systems in practice is expensive and complicated [23]. 

Collection of CMD till component failure is a time-consuming process. 

(Skima, Medjaher, & Zerhouni, 2014) use the accelerated life conditions 

data to predict the RUL of MEMS devices [23] [24]. 

Primary problems data-driven prognostics technology while 

implementation in the industry is the unavailability of industry-grade 

data, change in technologies as well as the design of component in a 

short period, no communication between actual maintenance 

practitioner and the researchers. This problem is occurring due to 

incorrect data collection methods or the absence of data collection in the 

industry [25]. 

At the situation of limited datasets availability, model-based approaches 

also fail due to the unavailability of data for validation of the model. 

Also, the model-based approach is expensive [12].  

 (Wang, Yu, Siegel, & Lee, 2008) Discuss a novel methodology for the 

generation of new datasets which will be more realistic. The author 

considers the addition of noise into the data for making it more real [22]. 

A similarity-based data collection is used for the augmentation of data. 

For this purpose, data having a similar signature and origin are compiled 

together [26].  

   

2.2 Research Gaps 

Several papers mentioned above work on the estimation of RUL of the 

component or system. A significant problem in the implementation of 

PHM is the unavailability of the data. Unavailability of data makes data-

driven prognostics less accurate. However, to improve this accuracy, 

some papers used collaborative learning approach or similarity-based 

approach. Also, manufacturing of testing prototypes was suggested for 

data collection and diagnostics. 
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Several papers study the system behaviour in accelerated life conditions. 

Though this process is timesaving, it may not be an economic one. Many 

papers talk about the collaborative prognostics but, unavailability of 

similar assets for collaboration makes it impossible to create a large 

amount of data for prognostics. Survey noticed the absence of the papers 

regarding new prognostics data generation from old CMD. It was 

observed that research is required for the generation of the training 

mechanism, required for training researchers in proper data collection. 

These are some of the primary reasons that industries are not using 

prognostics. Through this thesis work, a solution is proposed, i.e., GPS, 

which can fill the gaps found in the literature. 

 

2.3 Research Objectives 

1. To develop a mechanism which can resolve the problem of scarcity 

of quality prognostics data by generating new prognostics with the help 

of a handful of CMD to generate new data. 

2. To generate industry-grade features in the newly generated 

prognostics datasets without even running the industrial asset. 

3. To make the GPS generic so that it can generate data for several 

mechanical components. 

4. To design and develop a User Interface (UI) for GPS web tool for 

easy access to the GPS from any location and data visualisation. 

5. To validate the proposed methodology using a real dataset. 
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Chapter 3. OVERVIEW OF DATA-DRIVEN 

APPROACHES 

Data-driven prognostics approach uses life data, i.e., CMD of an 

industrial asset to estimate the RUL of that asset. The procedure consists 

of pattern recognition using statistical data analysis techniques to make 

legitimate inferences about the future life of that asset. Model-based 

approaches focus on the physical aspects of the system rather than a 

statistical one for the generation of a model which represents the system 

behaviour. Unlike a physical-based approach, data-driven approaches 

use information from current CMD data to identify the current state of 

an asset and use historical CMD to predict the future state of that asset. 

 

 

Figure 4. The typical flow of data-driven prognostics systems 

 

In Figure 4, PHM hosts three significant tasks which are diagnostics, 

prognostics and condition-based maintenance. Diagnostics assists in the 

identification of the root causes of the fault. This valuable information 

improves the prognostics and helps to design the system. Prognostics 
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use the processed data for prediction of future failure of the system. This 

RUL information aids in effective maintenance scheduling by CBM.  

To fulfil all these functions, data collection and data pre-processing are 

crucial steps.  

Table 1. Features used for prognostics data 

Sr. No. Feature 

1 Mean 

2 Root Mean Square 

3 Standard deviation 

4 Peak value 

5 Standard deviation 

 

Data-driven prognostics approach is especially suitable in case of 

abundance of the Run To Failure (RTF) data. Data-driven prognostics 

model is required to be trained to achieve the with higher accuracy by 

machine learning model. Historical RTF data serves the purpose of 

training the machine learning model used for prediction of RUL. 

Lack of knowledge or imperfect measurement causes the unavailability 

of operational condition or modes of failure, which does not affect the 

data-driven prognostics [27]. 

The first step of data-driven prognostics is the condition monitoring data 

collection. Hence the error in the data collection process can cast the 

entire prediction of RUL. 

 

3.1 Industrial data for prognostics 

Data-driven prognostics approach requires intensive data riches with the 

information about the state of the system. The system provides a change 

in the data pattern when it shifts from a healthy state and a degraded 

state. Various types of industries contain several critical components 

that are responsible for the failure of the whole system. Such 

unidentified failures cost the organisation loss of productivity and miss 
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the deadlines for delivery of products or services. For prognostics of 

system RTF data of these components is required. The primary task is 

to collect data using the most sophisticated method to find the 

parametric changes in this data accurately. 

Through constant inspection, the observed health indicator is usually 

referred to as condition monitoring CMD. CMD may directly or 

indirectly reflect the system health status.  

Examples of CMD are the amount of cutting tool wear, chemical 

viscosity, size of a fatigue crack, vibration amplitude of bearing and the 

light intensity of the bulb. As mechanical system components degrade 

with respect to usage, its health deteriorates. This deterioration can be 

verified using CMD. 

Significant types of data used for prognostics: 

Waveform type 

Vibration, Acoustic emission 

Value type  

Temperature, Pressure, Humidity 

Multidimensional data 

Images, X-ray images 

  

Vibration is one of the most significant features used for fault detection 

in wind turbines. The Root Mean Square (RMS) and peak values of 

vibration of wind turbines help in estimating the RUL of the turbine and 

schedule the maintenance activities accordingly [28]. For low-speed 

bearings, vibration signals are challenging to analyse. That is why 

acoustic emission is a more critical factor for health assessment of low-

speed slew bearings than a vibration [29]. 

Complex mechanical systems such as rotorcraft drivetrains often receive 

breakthrough information from vibration and acoustic emission data 
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assisting the prediction of upcoming failure [30]. Electronic companies 

often use prognostics data for the verification of criticality of electronic 

components. Health assessment of soldered patches is done using 

temperature measurement, which aids in monitoring the soundness of 

electronic components and predicting their RUL [31]. 

 

Table 2. Prognostics Data features of several mechanical 

components 

Sr. 

No. 

Component Common Features 

1 Bearing Vibration, acoustic emission 

2 Gear Vibration, acoustic emission 

3 Shaft Vibration 

4 Pump Vibration, acoustic emission, pressure 

5 Cutting tool Vibration, acoustic emission 

 

3.2 Conventional Data collection Methods 

The first step of Data-driven prognostics is the data collection process. 

The CMD data is collected using different sensors such as 

accelerometer, acoustic emission sensor, temperature sensor. Data-

driven prognostics provide unsatisfactory results in the situation of 

limited data availability since a low number of datasets are incapable to 

train prognostics model effectively. The conventional data collection 

method contains data collected from a healthy state of the component to 

the failure of that component. 

This procedure is time-consuming and expensive. In industries such as 

power generation industry, it is not possible to run the component to the 

failure because of the enormous cost associated with the failure of the 

system. (Example: Gas turbines, aircraft engines and electrical power 

plants. Failure of such components may cost the organisation economic 

loss and loss of human life.) 
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Several customs made accelerated life conditions prognostics simulators 

are available in the market. Such kits contain actual prototypes of the 

mechanical systems used in the industry, such as gearbox assembly, 

bearings assembly. These prognostic simulator setups run in accelerated 

life conditions. This process reduces the time for the collection of data, 

but such simulators have some limitations. 

 

Figure 5. Gearbox prognostics simulator 

 

Figure 5 and Figure 6 show the test rigs available for accelerated testing 

of gearbox and gear train resp. 

 

Figure 6. Gear train prognostics simulator 
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Data collection, with the assistance of various sensors, is the dominant 

task in the overall process.  

 

Following are the limitations of customs made prognostics simulators: 

1] Large capital cost of equipment: Since test rigs are custom made 

according to the actual system, it may be very expensive. 

2] Not generic: These custom-made test rigs cannot generate the data of 

different components  

3] Required planned maintenance: Test rigs require regular maintenance 

is required for the long life of components. 

4] Large size of the setup: Large size of setup makes it difficult to 

relocate its position. 
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Chapter 4. METHODOLOGY 

The methodology consists of complete detailed information about the 

data generated using GPS. The algorithm is designed to replicate several 

features of historical data into new data. Industrial data consist of noise, 

abrupt changes in degradation and seasonality. Algorithms use historical 

CMD for training purpose and sense the presence of such features in 

data and select the features present for new data generation. For a hands-

on experience of the data collection process, a hardware setup has been 

developed which replicates the data generated by the algorithm. 

GPS uses a specific process for the generation of datasets. All the 

process used for data generation is explained below. Every feature used 

by GPS to generate data, and their requirement is explained in this 

chapter. 

 

4.1 Prognostics literature survey 

Several papers were studied in the literature for identification of the 

challenges in data-driven prognostics. To resolve one of the problems of 

data scarcity following work has been done. 

 

4.2 Study of prognostics data 

For resolving the data scarcity problem, a better the solution is 

simulations of prognostics data. For this purpose, a detailed study has 

been done to understand the various types of data. These datasets are no 

use in the raw state and hence must be converted into a simple form. 

Several features were discussed in 3.1 Industrial data for prognostics. 

Several datasets of mechanical components such as milling machine, 

drilling machine were studied for the better insight of industrial 

prognostics data. Many datasets were in raw format. Several online data 

repositories were helpful for easy access to the datasets of several 

mechanical components. 
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4.2.1 Features of studied data 

For the generation of raw prognostics data, it is essential to match the 

frequency of data matched to the original data with the amplitude. 

Without this, it is fruitless to generate new data sets. However, 

significant researchers work on the features of data rather than directly 

on the raw data. To replicate the datasets with the help of such features 

was a challenge. 

 Vibration and acoustic emission are the parameters which can show the 

degradation of several components such as a cutting tool, gear, bearing. 

Pressure can be used as a degrading parameter for the pump. 

 

4.3 Development of the algorithm for prognostics data simulator 

To develop the algorithms which enable the generation of the new data 

using the historical datasets, algorithm have to learn from past data. To 

generate the industry-grade datasets, GPS must incorporate the essential 

feature of industrial data such as the presence of noise and seasonality. 

This prognostics data for different assets is time-series data containing 

different trends, and failure points mathematical modelling is done for 

generating the data of specific trend and failure points as historical 

datasets. Steps to generate the simulated data are stated below. 

4.3.1 Trend associated with the degradation trajectory 

Prognostics data is a time series containing degradation parameter vs 

time. Degradation occurs in mechanical components while usage until 

the failure. The deterioration in the component increases with operating 

time (Example: Crack propagation in gear) as discussed before CMD 

helps in identification of deterioration. Analysis of this data helps the 

assessment of the healthiness of the system. Every component fails with 

the specific trend; hence it is required to generate a methodology which 

incorporates the sensing of this trend in original datasets.  

After sensing the trend in original data sets, the GPS can replicate this 

trend for new data generation. Since the data-driven approaches depend 
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on the pattern of data, which often has a distinct characteristic near the 

end of life, it is robust in predicting near-future behaviours, especially 

toward the end of life [27].  

CMD of vibration, acoustic emission, and temperature have some 

general trends for specific components or systems. These trends may 

consist of a linear trend or exponential or polynomial trend. The generic 

algorithm need is to extract the information about the trend in the sample 

data sets automatically. Failure distribution of mechanical components 

generally described using Weibull distribution. To decide the life of 

simulated components, parameters of Weibull distribution must be 

calculated. 

4.3.1.1 Estimation of Weibull distribution parameters. 

Reliability engineering uses Weibull distribution as one of the most 

widely used lifetime distributions. The failure behaviour of mechanical 

components follows Weibull distribution. The distribution can be in 

the1, 2 and 3 parameter form. These parameters are shape, scale, and 

location parameters. This algorithm uses two parameters Weibull 

distribution for data analysis. Two parameters Weibull distribution 

holds characteristic life (ɳ), shape factor (β). Characteristic life is a unit 

time at which system reliability is at 37% while the shape factor provides 

information about the failure rate. 

Table 3. The failure rate in the bathtub curve 

Sr. 

No. 

Shape factor 

magnitude 

Failure rate 

1 <1 Decreasing 

2 1 Constant 

3 >1 Increasing 

 

There are several methods for the estimation of Weibull distribution 

parameters. 

 i]  Maximum likelihood estimation 

 ii] Least square method 
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This methodology follows the least square method since the large 

sample size provides better results in the maximum likelihood method. 

However, the least-squares estimation method is superior to the 

maximum likelihood estimation method in the situation of a small 

sample size of RTF data [32]. 

The CDF of two-parameter Weibull distribution is given by (𝑖). 

𝐹(𝑥) = 1 − 𝑒
−(

𝑡
ɳ

)
𝛽

          … (𝑖) 

 

After calculations; 

ln [− 𝑙𝑛 (
1

1 − 𝐹(𝑡)
)] = 𝛽 ln(𝑡) − 𝛽 ln(ɳ)     … (𝑖𝑖) 

Y = ln [− 𝑙𝑛 (
1

1−𝐹(𝑡)
)] 

X = ln(𝑡) 

Equation (ii) is a straight-line equation, with a slope of β and an intercept 

of β*ln(η). Plot the line to find the distribution parameter. 

4.3.1.2 Life of the simulated component 

Simulation of time series data requires the time at which component is 

to fail. This step is responsible for the number of data points in the 

simulated dataset. 

𝑇𝑇𝐹 =  𝜂 ∗ (− ln(𝑅𝑎𝑛𝑑(0,1)))
(

1
𝛽

)
        … (𝑖𝑖𝑖) 

Where Rand (0,1) generates, a random number between 0 and 1 with 

uniform distribution, equation (iii) is the inverse function of the Weibull 

reliability function used for the generation of unit time for which the 

simulated component is to run. 

4.3.1.3 Start and threshold point of simulated datasets 

Manufacturing processes cannot produce the mechanical components 

with exact dimensional accuracy; this includes the concept of tolerances 



24 

 

in the metrology. Hence it is not possible to manufacture 100% quality 

products always since it is not economical and is expensive. Due to the 

lack of this accuracy, the health of every component manufactured is 

different. (Example: Wear of cutting tool made with such precision and 

accuracy is not precisely zero at zero-hour time). Hence the starting 

magnitude of the degradation point is different.  

After the estimation of the life of the component, calculate the starting 

and threshold point of the dataset. For this purpose, the application of 

probability distribution on the starting point and endpoints of historical 

datasets is done to generate a random number, which represents the 

starting point of simulation and endpoint of simulation resp.  

The generic algorithm generates a random starting point a threshold 

point using a uniform distribution with maximum and minimum limits 

collected from starting points of degradation parameter in  Sample 

Datasets (SD). The starting point is declared as Randomly Started Mean 

(RSM). 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑎𝑟𝑡 𝑚𝑒𝑎𝑛

= 𝑟𝑎𝑛𝑑𝑜𝑚[min(𝑆𝐷 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡𝑠) , max(𝑆𝐷 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡𝑠)] 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

= 𝑟𝑎𝑛𝑑𝑜𝑚[min(𝑆𝐷 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡𝑠) , max(𝑆𝐷 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡𝑠)] 

4.3.1.4 Mathematical modelling for trend generation 

The prognostics datasets have a start point and threshold and trend 

connecting both points. This trend extraction process requires the 

analysis of SD. The algorithm analyses the trend in sample data sets. 

Equation (iv) shows the mathematical multiplier to generate the 

degradation parameter values at each Time Stamp (TS). It is essential to 

analyse the trend of historical datasets by the equation of the best fit line.  

𝑋 =  
[𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑅𝑆𝑀]

(𝑇𝑇𝐹)𝑛
 … (𝑖𝑣) 

Where ‘n’ is the power according to the historical datasets, (Example: If 

SD has linear data points, the value of n is 1, If SD has ath polynomial 
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order equation, then the simulation generates X value considering n = 

a). 

4.3.1.5 Change in past Time Stamp data 

After the calculation of the starting, threshold point of data, the change 

in the degradation parameter after each TS is calculated until it reaches 

the threshold at TTF. Change In Mean (CIM)  generates the time series 

best fit data, which follows the trend as SD follows.  

𝐶𝐼𝑀 = 𝑅𝑆𝑀 + 𝑋 ∗ [𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒]𝑛    … (𝑣) 

 

4.3.2 Incorporation of Noise in the data 

Industrial assets operated under very harsh environmental conditions; 

hence industrial environment affects the performance of the assets. In 

data, collection process sensors sense the readings from assets with the 

irregularities caused by these irremovable conditions.  

Since noise contaminates industrial data, it produces errors in the data 

collection, storage, and analysis. The presence of noise hinders the 

processing capability of a machine learning algorithm and reduces its 

predictive performance and increase its training time. There is always a 

5 % chance of error in the data in a controlled environment. To prevent 

errors in the prediction due to noise, researchers often use the data 

cleaning process before application [33]. 

Since the noise is an inseparable part of the industrial data, to generate 

realistic datasets, it is required to inject the noise in simulated datasets. 

This injection of noise has a random nature. The inverse function is used 

to incorporate noise in the simulations.  Random numbers generally 

follow the normal distribution. Hence the generation of irregularity in 

the data is injected by the inverse normal function. 

Required parameter for the generation of noise is mean and standers 

deviation of specific TS. CIM is the trend line of the simulated dataset; 

hence it is the mean value for inverse function. Calculate the maximum 
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percentage error of actual value to the trend line in sample dataset to 

calculate the standers deviation values. 

𝑁𝑜𝑖𝑠𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑛𝑣𝑒𝑟𝑠𝑒[𝑅𝑟𝑎𝑛𝑑(0,1), 𝐶𝐼𝑀, 𝐶𝐼𝑀 ∗ (𝐴%)]  … (𝑣𝑖) 

Where A is the maximum percentage deviation of sample datasets to 

respective trendline mean. 

 

4.3.3 Incorporation of abrupt jumps in the data 

According to the change in operating conditions, degradation 

trajectories usually exhibit several features due to sudden shocks and 

physical mutation. This sudden changes in degradation often appear at 

the change in the system (Example: While the change in the phase of the 

workpiece being machined), which makes the estimated value of RUL 

unreliable. This is the reason that GPS should be able to generate jumps 

in degradation data.  

The sudden jumps in the degradation data required to be analysed before 

the data generation. If a cutting tool working tip breaks the vibration 

reading increases drastically. This jump in the data is random but 

generally has some probability of occurrence. This jump probability is 

calculated from the historical datasets. This jump probability is used to 

create the jumps in simulated data. 

For this purpose, a jump probability has been set for the generation of 

drastic jumps in data. The slope of the SD is useful for calculating the 

jump probability. Calculate the slope of data points at each TS. A 

significant value of the slope is considered a jump. Calculate the 

percentage jumps in the data points. This percentage of jumps is the 

jump probability for the generation of datasets. Add this new jump to 

the data points with added noise respective that TS. 

4.3.4 Seasonality addition in the data 

Due to the repetitive nature of several operations of industrial assets, it 

encounters similar operating conditions. Such situations are responsible 

for the generation of a similar trend of data. Example: Milling cutter 
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produces similar data at the identical position of each number of cuts, 

which generates seasonal variation in the condition monitoring data.  

A study performed by (Davey & Flores, 1993) proposes a method for 

finding the presence of seasonal variation using statistical tests. They 

used statistical correlation analysis for identification of seasonality in 

the data with higher confidence [34]. 

Several ways to identify the presence of seasonality in a time series: 

1. Knowledge of the product (such as number of phases in 

the workpiece), 

2. Statistical analysis of the data. 

The seasonality in time series data affects short term forecasting up to a 

large extent. It is also useful in the short-term policy decisions of the 

organisation [35]. 

The seasonality multiplier is calculated from historical datasets to 

implement Seasonality. These multipliers can be multiplied to the 

simulated datasets to get more realistic data with seasonal variations.   
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4.4 The architecture of the proposed prognostic data generation 

model 

 

Figure 7. The architecture of the proposed prognostic data 

generation model 
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4.5 Mechanism for the actual generation  

A mechanism is required which can be controlled using the commands 

of a programmed algorithm. A controller can use these commands to 

control this mechanism, and with the help of the measurable output data 

of that mechanism, replication of simulated data can be done.  For this 

purpose, a parameter is needed, which can be sensed using sensor and 

data can be stored. Vibration is one of the parameters which can be 

generated using a mechanical system. Vibration can be measured with 

the help of accelerometer. 

Systems able to create controlled vibration signals: 

• Electric motors 

• IC engine 

After calculating the vibration RMS of DC motor at different speeds, it 

shows the consistency in the RMS at the respective speed, which makes 

the DC motor reliable for this purpose. 

Advantages of the electric motor over the engine: 

1. Economic 

2. Clean energy 

3. Compact in size 

The generation of datasets can be done on the simulation algorithm. 

However, for training purpose of researchers, hands-on experience is 

required for the data collection process in prognostics. This is the reason 

why GPS is the combination of both the software and hardware. 

Software part already has been discussed in the points above—a 

hardware mechanism required for the replication of the data generated 

by simulations. A detailed explanation of the hardware setup of the GPS 

is done below. 

Pieces of equipment required for the GPS: 

• A Direct Current (DC) motor 

• Arduino UNO board 
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• Motor driver 

• Uniaxial accelerometer 

• Piezoelectric coupler  

• Data acquisition card 

4.5.1 A DC motor 

A plain DC motor is used for the experiment since it is compact and 

easy to supply power to the motor. 

 

Figure 8. DC motor 

DC motor is extensively used industrial element for speed control and 

load characteristics. It is easily controllable and provides precise output; 

hence it is widely used for the commercial purpose [36].  

Table 4. Specifications of DC motor 

Sr. No. Property Value 

1 Voltage range 6-48 volts 

2 RPM range 2400-12000 RPM 

3 Max load current 1000ma 

4 No of Poles 2 
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A small DC motor is used for secure handling of GPS and to keep system 

compact. To control this DC motor algorithm will command the 

controller which control the speed of the motor. 

4.5.2 Arduino UNO 

Arduino UNO is a microcontroller-based electronic board which can be 

programmed using Arduino Integrated Development Environment 

(IDE). User can use Arduino A type port to connect the board with a 

computer to control the microcontroller of Arduino using programs in 

IDE. A motor can be controlled using a motor driver circuit with the 

help of analogue and digital output of Arduino. 

 

Figure 9. Arduino Circuit Board 

Following variables can control the speed of the DC motor: 

1. Voltage 

2. Flux 

3. Resistance 

Controlling the input voltage supply of the DC motor can be an easy 

way to control the speed of the DC motor, as Voltage increases the speed 

of the motor increases. Standard voltage control can cause a lot of power 
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loss on the control system of applications, so the PWM method is widely 

used in the DC motor speed control application [36].  

The basic principle of PWM is to switch power on and off at a specific 

frequency to maintain the duty cycle at the required percentage. The 

terminology of the Duty Cycle is the ratio of ‘ON’ time to the cycle time. 

Duty cycle is specified in the percentage format. Higher the duty cycle 

higher the power. 

 

Figure 10. PWM duty cycle 

4.5.3 Motor Driver (l298n) 

A motor driver is required for adequate control the motor speed. The 

circuit will allow the user to quickly and independently control DC 

motor up to 2A in both directions. This motor driver l298n uses the 

Arduino PWM output as the input. The detailed connections are shown 

in the figure in appendix C. 

 

Table 5. Specifications of motor driver l298n 

Sr. No. Property  Magnitude 

1 Input Voltage 3.2V - 40V DC 

2 Peak output current 2 A 

3 Channels 2 

4 Operating current range 0 – 36 mA 

5 Storage temperature 25 – 130 C 
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Figure 11. Motor driver connections L298N 

 

4.5.4 Piezoelectric accelerometer 

A uniaxial piezoelectric accelerometer is used for sensing the vibrations 

signals of DC motor.   

 

Figure 12. Accelerometer with a magnetic mount 

Manufacturer: Connection Technology Centre, Inc. 

Model: AC102  
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Table 6. Specifications of the uniaxial accelerometer 

Sr. No. Property Magnitude 

1 Sensitivity 100 mv/g 

2 Frequency response 30*900000 CPM 

3 Dynamic Range ± 50 g 

4 Power requirement 18 – 30 Vdc 

5 Temperature range -58 to 250 F 

 

4.5.5 TEDS Piezoelectron Coupler 

Small DC motor can not produce high amplitude vibration signals. The 

magnitude of vibration signals of the DC motor and the magnitude of 

the actual data has a large gap. To convert the magnitude of data 

generated by DC motor vibration up to the magnitude of actual data, the 

motor vibration data must be multiplied with a multiplier. For this 

purpose, a piezoelectric coupler works as an amplifier which amplifies 

the vibration signals of DC motor.  

 

Figure 13. Kistler TEDS Piezotron Coupler 
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4.5.6 Data acquisition card (DAQ) 

A data acquisition system is used to store the signals from an 

accelerometer into the computer system.  

• Model: cDAQ9188XT 

• Max. sampling range: 100Hz to 50KHz 

  

 

Figure 14. Data acquisition system 

 

4.5.7 Experimental Setup of GPS 

 

 

Figure 15. User interface and hardware setup of GPS 

Experimental setup of GPS is shown in which consist of the UI of GPS. 

The housing is shown in the named as GPS consist of DC motor, motor 

driver l298n, Arduino UNO and uniaxial accelerometer attached to the 

base on which motor is mounted. 
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4.6 Validation of DC motor vibration readings 

DC motor produces specific vibration levels at specific Rotation Per 

Minute (RPM). For validating this, an experiment was performed in 

which the speed of DC motor was increased from 0% to 100%. This can 

be done by changing the duty cycle by increasing Analogue Write Value 

(AWV) from 0 to 255 as discussed in 4.5.2 Arduino UNO 

4.6.1 Generation of the databank 

To generate similar values to simulated datasets, the motor needs to run 

on specific speeds so that the accelerometer catches the vibration signals 

at that respective speeds. Vibration signals for different speeds of the 

motor are required to be collected as a databank.  It is not possible to 

generate the data with the same frequency as other industrial assets 

generate. Hence most of the researchers work on the vibration RMS 

signals. 

One common expectation of PHM is its capability to transform the raw 

CMD into actionable information, to facilitate easy maintenance 

decision making [37]. For identification of the variation in the two-

vibration signal, statistical time-domain features can be used. These 

features are mean, RMS, Standard deviation and variance [38]. 

It is easy to calculate the vibration RMS values at each AWV where 

AWV controls the PWM results in control of the speed of the motor and 

respective vibration. AWV range from 0 to 255. As AWV increases the 

duty cycle of PWM increases which is 0% at 0 AWV and 100% at 255 

AWV respectively. 

As the figure below shows, after 165 AWV, the change in RPM of DC 

motor is negligible. This affects the vibration signal generated by the 

motor. After 165 AWV the vibration stabilizes, hence this 165 AWV is 

a threshold after which stable vibration signals are produced by a motor 

which is no use for the generation of degradation signature of increasing 

trajectories of fault. 
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Figure 16. Motor change RPM with an increase in AWV 

 

Figure 17. Change in motor vibration RMS vs AWV 

This change in vibration with respect to speed helps to generate 

prognostics data trajectories. 



38 

 

 

4.7 Validation of simulated data and motor generated data 

For validation of this data, a dataset showing the degradation of a 

mechanical component is required. After studying the data and pre-

processing it before applying the algorithm on it, new data sets can be 

generated. According to the simulated data signature, Arduino sends the 

signals to the motor driver to run the motor on specific speeds. Thus, the 

motor rotates on specific RPM vibration generated by motor will match 

to vibration of specific PRM in the databank. 

This vibration RMS helps in the generation of actual data with the exact 

trend of simulated data. To collect this vibration from the motor 

accelerometer is mounted on the base plate of motor mounting. Since 

the motor cannot vibrate at the amplitude of vibration on which 

industrial machine vibrate. The vibration trend generated by the motor 

is amplified by the coupler. After amplification data, it is stored in the 

computer by the DAQ system. The similarity between actual data and 

simulated data are shown in Chapter 5. 

 

4.8 Generation of Data-repository 

To study different data sets, it is a very crucial step to collect the actual 

datasets form authentic online data repositories. The new datasets 

collected from online data repositories or collected from actual industry 

must be collected in a system-based data repository. This collective data 

repository can act as an independent data repository for GPS.  

After simulation of new data sets using GPS with the help of datasets in 

a data repository, these new datasets can be added to the respective 

component data in the repository. More the components data in the 

repository more utilisation of GPS can be done. 
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4.9 Concept of a generic data simulator  

The algorithm for simulation of prognostics data mentioned in 4.3 

Development of the algorithm for prognostics data simulator can be used 

to generate data of several mechanical components such as milling 

machine, drilling machine. However, the experimental setup developed 

so far can only provide hands-on experience of vibration data collection. 

For data collection of other data such as temperature or pressure, hands-

on experience of data collection is not possible at this moment. 

To generate the prognostics data using GPS, one has to follow all the 

steps mentioned above in the methodology.  

 

4.10 Generation of new datasets using GPS 

Any number of datasets can be produced using GPS and the dedicated 

data repository. A large number of datasets may take few hours to 

generate the data, but it is very less time than actual data collection on 

assets. 

 

4.11 Design and development of UI for GPS 

For smooth operation of GPS, a user-friendly UI has been designed and 

developed. For designing the UI, some study was done to know the basic 

requirements of UI. 

UI is an integral part of software or hardware or hybrid system.  

An ideal UI must content: 

• Easy operation 

• Quick in response 

• Simple yet multifunctional design 

• Effective handling of operational errors. 

UI developed for GPS consist of simple design. It consists of a list of 

components for which GPS can generate the data. As the learning of a 

new dataset is complete that dataset gets added into this list. User can 
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choose the component in the list for data generation, and in a few 

seconds, the user can visualize the real-time data generated by GPS. 

After completion of data, simulation user can save that data to his 

system.  

 

Figure 18. Home page of GPS UI 

 

 Any user can access this UI webtool using the internet. A provision of 

new model generation is provided in UI. New model generation helps a 

new user to upload his data and develop a new model for new data 

generation using GPS. 

 

Figure 19. Data visualisation using GPS webtool UI 
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4.12 Validation of complete GPS by available data by the proposed 

methodology 

 

 

Figure 20. Complete Methodology of GPS 

 

The validation of completer GPS, i.e., backend programmed algorithm, 

data generation using hardware setup and front-end UI/UX, is done. The 

data used for validation is shown in APPENDIX C. Also, results have 

been discussed in the next chapter. 
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Chapter 5. RESULTS AND DISCUSSION 

This chapter explains the details of the data obtained from GPS. As 

discussed in the previous chapter, every step is followed to get these 

results. 

 

5.1 CMD Data for validation of the methodology  

For validation of proposed methodology data of a CNC milling cutter 

(Wear and Vibration RMS) was used.  EMCO MILL E350 CNC three-

axis high-speed vertical milling machine is utilised as the testbed. 

Normal degradation of end milling cutting tool is carried out to study 

the degradation behaviour of the cutting tool. A high-speed steel 6 mm 

milling tool is chosen for analysis. The workpiece used is of mild steel 

of dimension 165mm x 100mm.  

Six end milling tools run to failure data was generated for the following 

operating condition shown in the table. During the machining, force, 

vibration and acoustic signal were monitored continuously during every 

cut of machining the mild steel plate for the length of cut equal to 1320.  

Operating conditions: 

feed=250mm, speed=1300rpm, depth of cut=0.35 

Table 7. Milling cutter life data 

Cutter 

 

Time (No. of 

Cuts) 

 

Failure Modes 

 

1 14 Breakage 

 

2 15 Breakage 

 

3 18 Breakage 

 

4 21 Breakage 

 

5 30 Worn Out 

 

6 31 Worn Out 
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The graphical representation of milling cutter wear and vibration RMS 

data is illustrated in Figure 22 and 23, respectively. Each trajectory 

represents a cutting tool, and the readings were taken after each 

machining cut. 

 

Figure 21. Milling cutter wear data 

 

Figure 22. Milling cutter vibration RMS data. 
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Table 8 Sample wear data of milling cutter 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

0.000 0.000 0.000 0.000 0.000 0.000 

0.011 0.042 0.015 0.029 0.041 0.040 

0.031 0.070 0.025 0.126 0.074 0.117 

0.048 0.081 0.070 0.159 0.149 0.181 

0.053 0.091 0.114 0.189 0.167 0.199 

0.063 0.098 0.135 0.223 0.278 0.241 

0.070 0.112 0.172 0.245 0.312 0.322 

0.076 0.129 0.190 0.262 0.360 0.376 

0.078 0.140 0.208 0.310 0.414 0.430 

0.083 0.165 0.270 0.364 0.467 0.484 

. . . . . . 

. . . . . . 

. . . . . . 

 

Table 9. Sample vibration RMS data of milling cutter 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

0.012872 0.011317 0.012058 0.010966 0.007616 0.009141 

0.013328 0.011826 0.012171 0.01169 0.01114 0.009141 

0.013533 0.012494 0.014541 0.011914 0.011267 0.009207 

0.020338 0.014428 0.0153 0.013185 0.011309 0.009207 

0.032046 0.025749 0.015944 0.013561 0.012257 0.00953 

0.033739 0.03292 0.016397 0.014032 0.012392 0.00953 

0.0339 0.03311 0.026946 0.014611 0.012562 0.011222 

0.034986 0.033973 0.032911 0.018442 0.012708 0.012248 

0.035176 0.037579 0.033481 0.028642 0.012849 0.012409 

0.036783 0.038664 0.034165 0.03794 0.012966 0.012619 

. . . . . . 

. . . . . . 

. . . . . . 

 

Complete data is shown in APPENDIX C 
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5.2 Results and discussion 

As mentioned above a milling cutter dataset are collected by 

conventional condition monitoring procedure. It is tough to generate the 

exact signature from raw data since it is difficult to match the frequency. 

The vibration data is converted in RMS. Each value represents a milling 

cut. Every mechanical asset shows some significant change or 

characteristic before the failure, which is an indicator for the remaining 

life and the severeness of failure. This dataset shows a sudden increase 

in the vibration RMS before one or two cuts of the failure.  

Results show that there are two failure modes which are worn out and 

breakage. Due to the chipping of tool toll fails at an early stage. The 

generic algorithm has considered sample dataset information for the 

generation of new datasets. 

Also, the industry-grade features such as jump can be seen in the 

vibration data.  

 

Figure 23. Vibration RMS data generated using GPS 
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Figure 24. Tool Wear data generated using GPS 

It is crucial to find the similarity and error between both the simulated 

and motor generated data. For both the data of vibration RMS and Wear 

a single dataset has been generated by simulation and then by motor and 

similarity and error calculation has been done. The selected wear and 

vibration data for this calculation is shown in Figure 26 and 27. 

 

 

Figure 25. Simulated and respective Motor generated RMS data 
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Figure 26. Simulated and respective Motor generated wear data 

 

Calculation of cosine similarity index:  

To find the similarity between the results obtained from simulations and 

the motor generated data, a similarity index must be defined. This 

similarity can be quantified as the cosine of the angle between vectors, 

that is, the so-called cosine similarity. Cosine similarity is one of the 

most popular similarity measures applied for clustering [39]. 

Given two vectors datasets A and B their cosine similarity is  

𝐶𝑜𝑠𝑖𝑛𝑒 𝑖𝑛𝑑𝑒𝑥(𝐴, 𝐵) = cos(𝜃) =  
𝐴 ∗ 𝐵

∥ 𝐴 ∥∗∥ 𝐵 ∥
 

 

 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑖𝑛𝑑𝑒𝑥(𝐴, 𝐵)  =  
∑ 𝐴𝑖𝐵𝑖𝑛

𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1 ∗ √∑ (𝐵𝑖)2𝑛

𝑖=1

 

 

 

-Where A and B are n-dimensional arrays. 

 

For calculation of cosine similarity index between data generated by 

simulation and by actual motor data, A single dataset has been 

generated. The similarity index between both simulated data and motor 



48 

 

generated data is shown, below the graphs of each wear data and 

vibration RMS data. 

Table 10. Cosine similarity index for simulated and hardware 

generated data 

Sr. No.  Data Cosine Similarity index 

1 Vibration RMS 0.999968 

2 Wear 0.999984 

 

 

RMSE calculation:  

For calculating the simulated data and the data generated using the 

hardware setup. Root Mean Square Error (RMSE) parameter is used for 

quantification of the error between simulated and motor generated data 

𝑅𝑀𝑆𝐸

=  √∑
[(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎)𝑖 − (𝑀𝑜𝑡𝑜𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎)𝑖]^2

𝑛

𝑛

𝑖=1

 

 

Table 11. RMSE for simulated and hardware generated data 

Sr. No.  Data RMSE 

1 Vibration RMS 0.000489 

2 Wear 0.00267 

 

Several prognostics models are available in the market. These 

prognostics models work on some assumptions. On of such assumption 

is the random failure of the industrial asset. However, a study of the data 

induced that the asset component failure is not random. It is a pattern 

distributed failure, but unavailability of a simulator like GPS creates a 

problem in prognostics models. Now the GPS has been developed to 

resolve this problem; hence it can provide a more realistic effect for the 

prognostics model. 

To design and develop such a mechanism for data generation is a novel 

approach in the research area. This complete process is consisting of an 
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asset component degrading with time, data collection and learning by 

the algorithm to generate simulated datasets. After simulating to provide 

a hands-on experience for training of prognostics for the different asset. 

This process can not be created in the academic background because of 

the lack of actual assets. 

(Example: To generate a prognostics model for gas turbine academic 

researchers do not have enough knowledge for data collection for gas 

turbine since the absence of gas turbine.) However, for generating a 

model for prognostics of the gas turbine, one does not need a gas turbine. 

Using a GPS with sample gas turbine degradation data, one can train for 

start to end process.  
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CHAPTER 6. CONCLUSION  

As prognostics is an essential part of industry 4.0. There are several 

problems in the implementation of prognostics which are already 

discussed in the literature review. This thesis tries to solve one of the 

problems associated with the implementation of prognostics. The data 

collection, to manage the data is not a simple job. Hence among these 

problems, this thesis work tries to resolve data scarcity problems. 

While working on this has been seen the importance of data-driven 

prognostics approaches. This shows that data is actually the soul of 

prognostics. Useful data affect the whole process of RUL estimation. 

Without data, it is impossible to do the prognostics. If data is not of good 

quality accuracy of prognostics model will be reduced. Hence data is 

inseparable pat of prognostics. Hence, we thought about the possible 

ways to resolve this data scarcity problem.  

Then the idea of a data simulator came into existence. So, this thesis 

talks about the complete process for making such simulator. This thesis 

tries to incorporate several industrial features into the simulated data to 

make it more realistic. For these purposes, several factors, such as a 

jump in the data, seasonality in the data. For this purpose, the study of 

several component data was done. Then the development of a 

mechanism using a DC motor was developed. Using the steps in 

methodology, the generation of data was done. The validation of 

generated data was done. For this purpose, cosine similarity and RMSE 

was calculated, which were up to the mark. 

 In this process, our experiment of, use of DC motor to generate such 

type of data was successful. Now because of GPS, new avenues are 

opening.  

 A requirement of a mechanism which resolves data scarcity for 

prognostics was the primary job of this thesis. This work provides new 

avenues to the research in prognostics. 
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CHAPTER 7 FUTURE SCOPE 

 To fulfil everything mentioned above in the industry, some basic things 

must be done before the implementation of GPS. Use of federated or 

collaborative learning can be used for GPS. An independent cyber-

physical system can be developed for the communication purpose of 

GPS with another asset or GPS. 

While talking about academic research, it can be done that this GPS can 

take the decisions and perform the machine to machine communication. 

Star to end the process of academic research must be done. This device 

can be the solution of clubbing this process in one device. Being a 

generic prognostics simulator, only vibration-based data can provide 

hands-on experience, but similar parameters can be incorporated by GPS 

such as temperature, pressure 

Hence new mechanisms must be found to generate measurable 

temperature or pressure generation, which can make this GPS a full 

proof prognostics data simulator. A set of GPSs can be used to generate 

a fleet-based prognostics model. 
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APPENDIX A 

1. Simulation of Prognostics Data 

# Importing the libraries 

import openpyxl 

import numpy as np  

import scipy 

import scipy.stats  

import random 

import math 

import statistics 

import copy 

import xlrd 

import serial as ser 

import time 

import struct 

import subprocess 

import numpy as np 

 

# Provide the path of file containing sample datasets. 

path = "C:\\Users\\hp\\Desktop\\Data.xlsx" 

wb = openpyxl.load_workbook(path) 

# Sheet containing the data(Refer appendix C for data format)  

#Sheet(0) = Data 

#Sheet(1) = Parameters 

#Sheet(2) =Simulation 

sheet = wb.worksheets[0] 

# Remove old sheets in workbook 

Remove1 = wb['Parameters'] 

Remove2 = wb['Simulation'] 
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wb.remove(Remove1) 

wb.remove(Remove2) 

wb.save(path) 

# Create new sheets for storing data 

wb.create_sheet('Parameters',1) 

wb.create_sheet('Simulation',2) 

sheet1 = wb.worksheets[1] 

sheet2 = wb.worksheets[2] 

 

#Array containing single asset datapoints. 

column_vals = [] 

#Array containing the threshold values of each asset. 

column_max = [] 

#Array containing the number of timestamps each sample dataset got.  

life = [] 

 

# Extraction of life and threshold value from sample dataset. 

for i in range(1,sheet.max_column+1): 

    for j in range(1,sheet.max_row+1): 

        if sheet.cell(j,i).value != None: 

            column_vals.append(sheet.cell(j,i).value) 

     

    life.append(len(column_vals)-1) 

    column_max.append(column_vals[-1]) 

    column_vals.clear() 

print(column_max) 

# array containing RTF data of prognostics datasets 

print(life) 
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#scipy.stats.weibull_min.fit provides the parameters of 2 parameter we

ibull distribution. 

x = scipy.stats.weibull_min.fit(life,floc = 0) 

print(x) 

 

#write in excel sheet(1) 

Titles1 = ['rand()', 'eta', 'beta', 'TTF',  'Random start mean', 'Threshold', 

'k', 'Jump probability'] 

for i in Titles1: 

    sheet1.cell(1,Titles1.index(i)+1).value = i 

 

#Parameters of weibull distribution 

sheet1.cell(2,1).value = random.uniform(0,1) 

sheet1.cell(2,2).value = x[2] 

sheet1.cell(2,3).value = x[0] 

c = random.uniform(0,1) 

power = (1/x[0]) 

eta = x[2] 

beta = x[0] 

d = (math.log(c)) 

 

#Time to failure of simulated dataset 

TTF = math.ceil(x[2]  * (-d) ** (power)) 

print(TTF) 

sheet1.cell(2,4).value = TTF 

 

#Calculation of threshold point 

column_max_mean = statistics.mean(column_max) 

column_max1_stdev = statistics.pstdev(column_max) 
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Sim_threshold = np.random.normal(column_max_mean,column_max1

_stdev,1) 

sheet1.cell(2,6).value = float(Sim_threshold) 

print(Sim_threshold) 

 

Time = [] 

Sr_No  = range(1,TTF+1,1) 

for n in Sr_No: 

    Time.append(n) 

#Calculate the origin of trajectory RSM. 

First_vals = [] 

 

for i in range(1,sheet.max_column+1): 

    print(sheet.cell(j,i).value) 

    First_vals.append(sheet.cell(2,i).value) 

First_vals = (np.asarray(First_vals)) 

Random_start_mean = math.ceil(np.mean(First_vals)) 

sheet1.cell(2,5).value = Random_start_mean 

print(Random_start_mean) 

 

k = (Sim_threshold - Random_start_mean)/(TTF**2) 

sheet1.cell(2,7).value = float(k) 

 

#Write the titles in sheet(2) 

Titles3 = ['Serial number','Time','Change in mean','Noise added','Rand',

'Jump magnitude','Cumulative jump','Final parameter','Seasonality mul

t','Final para with seasonality'] 

for i in Titles3: 

    sheet2.cell(1,Titles3.index(i)+1).value = i 

Jump_probability  = 0.5 
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Jump = [] 

#Generate the simulated datasets 

for i in Time: 

    sheet2.cell(Time.index(i)+2,1).value = i 

    sheet2.cell(Time.index(i)+2,2).value = i 

    CIM = Random_start_mean + (k * i **2) 

    #print(CIM) 

    sheet2.cell(Time.index(i)+2,3).value = float(CIM) 

    #Incorporation of noise in data 

    NA = np.random.normal(CIM,CIM*0.05,1) 

    sheet2.cell(Time.index(i)+2,4).value = float(NA) 

    rand = random.uniform(0,1) 

    sheet2.cell(Time.index(i)+2,5).value = rand 

    #Incorporation of jump in data 

    if rand > Jump_probability: 

        a = 0 

        sheet2.cell(Time.index(i)+2,6).value = a 

       

    else: 

        a = random.uniform(0,5) 

        sheet2.cell(Time.index(i)+2,6).value = a 

         

for j in Time: 

    if Time.index(j) == 0: 

        sheet2.cell(Time.index(j)+2,7).value = sheet2.cell(Time.index(j)+

2,6).value 

    else: 

        sheet2.cell(Time.index(j)+2,7).value =  sheet2.cell(Time.index(j)

+2,6).value + sheet2.cell(Time.index(j)+1,7).value 
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    sheet2.cell(Time.index(j)+2,8).value = sheet2.cell(Time.index(j)+2,

7).value + sheet2.cell(Time.index(j)+2,4).value 

 

# Save the data generated 

wb.save(path) 

 

#___________________________________________________ 

 

loc = ("C:\\Users\\hp\\Desktop\\Data.xlsx") 

 

wb = xlrd.open_workbook(loc) 

sheet4 = wb.sheet_by_index(4) 

 

#Simulated RMS values of degradation parameter 

rms_gen = [] 

rms_inc = [1] 

 

for i in range(sheet4.nrows): 

    rms_gen.append(sheet4.cell_value(i, 0)) 

#Calculate he percentage change in the RMS generated after each time 

stamp  

 

for i in range(len(rms_gen)-1): 

    rms_inc.append(((rms_gen[i+1] - rms_gen[i])/rms_gen[i])+1) 

#print(rms_inc) 

# Path of data bank of motor 

loc1 = ("C:\\Users\\hp\\Desktop\\Data bank.xlsx") 

 

wb11 = xlrd.open_workbook(loc1) 

sheet11 = wb11.sheet_by_index(0) 
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#Array containing motor databank 

rms_databank = [] 

#Array containing Analogue write values from 0 to 165 

analog_write =[] 

for i in range(sheet11.nrows): 

    rms_databank.append(sheet11.cell_value(i, 1)) 

    analog_write.append(sheet11.cell_value(i,0)) 

#print(rms_databank) 

 

motor_rms = [] 

first_value = rms_databank[0] 

for i in range(len(rms_inc)): 

    motor_rms.append(first_value*rms_inc[i]) 

    first_value = motor_rms[i] 

#Find the nearest value of datapoint in data bank respective to simulated 

data to maintain the shape of degradation trajectory  

def find_nearest(array, value): 

    array = np.asarray(array) 

    idx = (np.abs(array - value)).argmin() 

    return array[idx] 

 

motor_rms_near_value =[] 

for i in range(len(motor_rms)): 

    motor_rms_near_value.append(find_nearest(rms_databank,motor_r

ms[i] )) 

#print(motor_rms_near_value) 

#Array containing respective AWV for generation of data using the 

motor vibration RMS 

analog_write_near_value=[] 

for i in motor_rms_near_value: 
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    analog_write_near_value.append(analog_write[rms_databank.index(

i)]) 

print(analog_write_near_value) 

analog_write_near_value = list(map(int,analog_write_near_value)) 

print(analog_write_near_value) 

print(len(analog_write_near_value)) 

 

# Muktipler calculation to amplify the RMS of motor 

multiplier=(rms_gen[0])/(motor_rms_near_value[0]) 

 

#Program for arduino to rotate motor at specific AWV from array  

#Send the signals to Arduino port 

ser = ser.Serial('COM3',9600) 

subprocess.Popen(["python", "Motor_raw_data_aquisition.py", str(len(

analog_write_near_value)),str(multiplier)], shell=True) 

time.sleep() 

 

for a1 in analog_write_near_value: 

    ser.write(struct.pack('i',a1)) 

    time.sleep(5) 

 

ser.close() 

 
#--------------------------------------------------- 
 

2. Collection of degradation parameter trend data from motor 

 
# Importing libraries 

import time 

from openpyxl import Workbook 

import numpy as np, csv 
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import pandas as pd 

import nidaqmx as daq, pprint 

import matplotlib.pyplot as plt 

from nidaqmx.stream_readers import AnalogSingleChannelReader, An

alogMultiChannelReader 

import sys 

 

pp = pprint.pprint 

 

fig, axs = plt.subplots() 

fig.canvas.manager.show() 

plt.ion() 

 

#Sampling rate for data acquisition 

sampling_rate = 2500 

 

task = daq.Task() 

task.ai_channels.add_ai_voltage_chan("cDAQ9188XT-

1ADE9F6Mod3/ai1") 

task.timing.cfg_samp_clk_timing(rate = sampling_rate, sample_mode 

= daq.constants.AcquisitionType.CONTINUOUS) 

task.in_stream.input_buf_size = (10**7) 

reader = AnalogMultiChannelReader(task.in_stream) 

 

sample_array = np.zeros([1, sampling_rate], dtype = np.float64) 

task.start() 

#Importing the data from previous program 

no_of_speeds= int(sys.argv[1]) 

multiplier= float(sys.argv[2]) 

dur = 3 
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running_time = dur * no_of_speeds 

num = 0 

 

#No of timestamps in the simulated data 

num_of_files = int(running_time/dur) 

 

t_0 = time.time() - dur - 50 

 

#Store vibration RMS of each timestamp speed of motor. 

for i in range(num_of_files): 

    csvobj = open("RMS_MOTOR\\speed_" + str(i + 1) + ".csv", 'w', ne

wline = '') 

    csvw = csv.writer(csvobj) 

    csvw.writerow(['time', 'v_y']) 

     

    t = np.empty(shape = (0, 0), dtype = np.float64) 

    v_y = np.empty(shape = (0, 0), dtype = np.float64) 

     

    if (time.time() - t_0) < (dur): 

        time.sleep((dur) - time.time() + t_0) 

     

    t_0 = time.time() 

    t_1 = 0 

     

    for num_sec in range(dur*i, dur*(i+1)): 

        t_2 = time.time() 

        plt.xlim([0, num_sec + 5]) 

         

        reader.read_many_sample(data = sample_array, number_of_samp

les_per_channel = sampling_rate) 
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        t = np.linspace(num_sec, num_sec + 1, sampling_rate) 

        v_y = sample_array[0, :] 

     

      

        t_1 = t_1 + (time.time() - t_2) 

        for row_num in range(0, sampling_rate): 

            csvw.writerow([t[row_num].tolist(), v_y[row_num].tolist()]) 

       

      

        axs.plot(t, v_y, 'k-') 

        axs.set_title('Y-axis vibration') 

      

  

        fig.canvas.draw() 

        fig.canvas.flush_events() 

        plt.pause(10**(-5)) 

  

    pp("-----Time taken in acquiring:" + str(t_1)) 

    pp("-----Total time taken: " + str(time.time() - t_0)) 

    #fig.savefig("RMS MOTOR\\speed_" + str(i + 1) + ".png") 

    plt.show() 

    csvobj.close() 

 

task.stop() 

task.close() 

 

wb = Workbook() 
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ws = wb.active 

ws.title = "rms values" 

 

for i in range(num_of_files): 

    df = pd.read_csv("RMS_MOTOR\\speed_" + str(i + 1) + ".csv") 

    df['c'] = df['v_y']**2 

    sum = df['c'].sum(axis = 0) 

    rms = (np.sqrt(sum/float(sampling_rate*dur))) * multiplier 

    #plot this rms vs time after each dur 

    plt.plot(running_time, rms) 

    plt.xlabel('Time') 

    plt.ylabel('RMS') 

    plt.title("RMS") 

    plt.show() 

    df['rms'] = df['v_y']*0 

    df.at[i + 1, 'rms'] = rms 

    del df['c'] 

    ws.cell(column = 1, row = i+1).value = rms 

  

     

# Save the data collected into excel file nemed as rms_speed  

wb.save("RMS_MOTOR\\rms_speed.xlsx") 

 

 

 

 

 

 

 



64 

 

APPENDIX B 

 

Arduino Programs 

1 Motor vibration RMS Databank generation  

Rotate the motor at each analogue write value for 5 sec starting from 0 

to 255 each and capture vibration data for each analogue write value. 

Convert the raw data into RMS values for each 5 seconds. 

// connect motor controller pins to Arduino digital pins 

// motor one 

int enA = 10; 

int in1 = 9; 

int in2 = 8; 

int n; 

void setup() 

{ 

  // set all the motor control pins to outputs 

  Serial.begin(9600); 

  pinMode(enA, OUTPUT); 

  pinMode(in1, OUTPUT); 

  pinMode(in2, OUTPUT); 

 

} 

 

void loop() 

//Rotate motor in increasing AWV in step of 5 seconds 

{  

  for (n=1 ; n<=255 ; n+=5) 

  { Serial.print(n); 

    analogWrite(enA,n);  

    digitalWrite(in1,HIGH); 
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    digitalWrite(in2,LOW); 

    delay (5000);  

  } 

// stop the motor 

    analogWrite(enA,0);  

    digitalWrite(in1,LOW); 

    digitalWrite(in2,LOW); 

    delay (50000); 

   

     

} 

 

2. Rotate motor for specific speeds to generate the required trend 

similar to the simulated data. 

// connect motor controller pins to Arduino digital pins 

// motor one 

int enA = 10; 

int in1 = 9; 

int in2 = 8; 

int n; 

void setup() 

{ 

  // set all the motor control pins to outputs 

  Serial.begin(9600); 

  pinMode(enA, OUTPUT); 

  pinMode(in1, OUTPUT); 

  pinMode(in2, OUTPUT); 

 

} 
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void loop() 

// Get the command from python program to rotate motor for specific 

speeds. 

{if (Serial.available()>0) 

  {n= Serial.read(); 

  if (n>0) 

    { 

    analogWrite(enA,n);  

    digitalWrite(in1,HIGH); 

    digitalWrite(in2,LOW); 

    delay (5000); 

    } 

  else 

    delay(0000); 

    } 

    digitalWrite(in1,LOW); 

    digitalWrite(in2,LOW); 

     

} 
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APPENDIX C 

1. Hardware connections of GPS setup 

 

Figure 27. Hardware connection of GPS setup 
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Colour coding: 

Table 12. Colour coding of hardware connections for GPS 

Sr. No. Color Code Connection 

1  Computer to Arduino 

2  Motor driver l298n +5 power to Arduino 

+5v 

3  Motor driver l298n power ground to 

Arduino ground, SMPS negative 

4  Motor driver l298n +12v power to SMPS 

positive 

5  Motor driver l298n Enable to Arduino 10  

6  Motor driver l298n Input 2 to Arduino 9 

7  Motor driver l298n Input 1 to Arduino 8 

8  Motor driver l298n output to DC motor 

input 

9  Accelerometer to coupler 

10  Coupler to DAQ 

11  DAQ to computer system (LAN) 
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Vibration RMS data of milling cutter  

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

0.009141 0.007616 0.010966 0.012058 0.011317 0.012872 

0.009141 0.01114 0.01169 0.012171 0.011826 0.013328 

0.009207 0.011267 0.011914 0.014541 0.012494 0.013533 

0.009207 0.011309 0.013185 0.0153 0.014428 0.020338 

0.00953 0.012257 0.013561 0.015944 0.025749 0.032046 

0.00953 0.012392 0.014032 0.016397 0.03292 0.033739 

0.011222 0.012562 0.014611 0.026946 0.03311 0.0339 

0.012248 0.012708 0.018442 0.032911 0.033973 0.034986 

0.012409 0.012849 0.028642 0.033481 0.037579 0.035176 

0.012619 0.012966 0.03794 0.034165 0.038664 0.036783 

0.012683 0.01326 0.038887 0.037765 0.042887 0.038758 

0.012982 0.013664 0.05182 0.039015 0.043949 0.042045 

0.013245 0.013664 0.054809 0.039332 0.126267 0.129578 

0.014364 0.013815 0.117195 0.124196 0.129263 0.146192 

0.01473 0.013939 0.117195 0.125688 0.139271  
0.014924 0.013939 0.117901 0.135469   

0.014931 0.013987 0.142411 0.138394   

0.014949 0.01457 0.142474 0.158433   

0.023062 0.014895 0.143952    

0.028111 0.015252 0.148532    

0.039078 0.018666 0.201612    

0.067038 0.03278     

0.078939 0.035019     

0.116845 0.036246     

0.125957 0.038736     

0.137352 0.131496     

0.146226 0.161552     

0.154995 0.163142     

0.157343 0.196304     

0.403206      
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Wear data of milling cutter 

Dataset 

1 
Dataset 

2 
Dataset 

3 
Dataset 

4 
Dataset 

5 
Dataset 

6 

0.000 0.000 0.000 0.000 0.000 0.000 

0.011 0.042 0.015 0.029 0.041 0.040 

0.031 0.070 0.025 0.126 0.074 0.117 

0.048 0.081 0.070 0.159 0.149 0.181 

0.053 0.091 0.114 0.189 0.167 0.199 

0.063 0.098 0.135 0.223 0.278 0.241 

0.070 0.112 0.172 0.245 0.312 0.322 

0.076 0.129 0.190 0.262 0.360 0.376 

0.078 0.140 0.208 0.310 0.414 0.430 

0.083 0.165 0.270 0.364 0.467 0.484 

0.098 0.190 0.297 0.431 0.521 0.538 

0.152 0.197 0.320 0.465 0.612 0.645 

0.192 0.245 0.378 0.538 0.628 0.717 

0.203 0.274 0.406 0.577 0.681 0.753 

0.242 0.331 0.487 0.618 0.751  
0.286 0.393 0.520 0.647   

0.305 0.413 0.550 0.687   

0.329 0.436 0.565 0.763   

0.350 0.458 0.601    

0.410 0.483 0.636    

0.441 0.504 0.672    

0.467 0.529     

0.498 0.555     

0.518 0.581     

0.538 0.607     

0.579 0.633     

0.609 0.659     

0.643 0.685     

0.666 0.710     

0.685 0.791     

0.794      

 

 

 

 



71 

 

REFERENCES 

 

[1]  J. B. Coble, “Merging Data Sources to Predict Remaining Useful 

Life – An Automated Method to Identify Prognostic Parameters,” 

University of Tennessee, Knoxville, 2010. 

[2]  J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao and D. Siegel, 

“Prognostics and health management design for rotary machinery 

systems—Reviews,methodology and applications,” Mechanical 

Systems and Signal Processing, vol. 42, pp. 314-334, 2014.  

[3]  K. Goebel, A. Saxena, M. Daigle, J. Celaya and I. Roychoudhury, 

“Introduction to Prognostics,” in First European Conference of the 

Prognostics and Health Management Society, Dresden, Germany, 

2012.  

[4]  H. M. Elattar, H. K. Elminir and A. M. Riad, “Towards online 

data-driven prognostics system,” Complex & Intelligent Systems, 

vol. 4, p. 271–282, 2018.  

[5]  N. Chen and K. L. Tsui, “Condition monitoring and remaining 

useful life prediction using degradation signals: revisited,” IIE 

transaction , vol. 45, no. 9, 2013.  

[6]  Y. Li, S. Jianming, W. Gong and L. Xiaodong, “A data-driven 

prognostics approach for RUL based on principle component and 

instance learning,” in International conference on Prognostics and 

health management (ICPHM), Beijing, 2016.  

[7]  J. Kamran, G. Rafael and Z. Noureddine, “State of the art and 

taxonomy of prognostics approaches, trends,” Mechanical 

Systems and Signal Processing , vol. 94, no. 15, pp. 214-236, 

2017.  



72 

 

[8]  J. P. MacDuffie and T. Fujimoto, “Why dinosaurs will keep ruling 

the auto industry,” Harvard Business Review, pp. 23-25, 2010.  

[9]  K. L. Tsui, N. Chen, Q. Zhou, Y. Hai and W. Wang, “Prognostics 

and Health Management: A Review on Data Driven Approaches,” 

Hindawi Publishing Corporation Mathematical Problems in 

Engineering, Article ID 793161, 2015.  

[10]  K. Holmberg, K. Komonen, P. Oedewald, M. Peltonen, T. 

Reiman, V. Rouhiainen, J. Tervo and P. Heino, “Safety and 

reliability technology review,” Res Rep BTUO43-031209. VTT 

Industrial, 2004. 

[11]  T. Dong, R. T. Haftka and H. K. Nam, “Advantages of Condition-

Based Maintenance over Scheduled Maintenance using Structural 

Health Monitoring System,” in System Reliability, Intech Open, 

2019.  

[12]  Y. Peng, M. Dong and M. J. Zuo, “Current status of machine 

prognostics in condition-based maintenance: a review,” Int J Adv 

Manuf Technol, vol. 50, p. 297–313, 2010.  

[13]  A. Gillespie, “Condition Based Maintenance: Theory, 

Methodology, & Application,” in Reliability and Maintainability 

Symposium, Tarpon Springs, FL, 2015.  

[14]  D. O. Gray and D. Rivers, “Measuring the Economic Impacts of 

the NSF Industry/University Cooperative Research Centers 

Program: A Feasibility Study,” Industry-University Cooperative 

Research Center Program, National Science Foundation, 

Arlington, Virginia, 2012. 

[15]  M. Wiseman, “A History of CBM (Condition Based 

Maintenance),” 2006. [Online]. Available: 

http://www.omdec.com/moxie/Technical/Reliability/a-history-of-

cbm.shtml. [Accessed 2006]. 



73 

 

[16]  S. Ferreiro, E. Konde, S. Fernández and A. Prado, “INDUSTRY 

4.0: Predictive Intelligent Maintenance for Production 

Equipment,” in EUROPEAN CONFERENCE OF THE 

PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 

Bilbao, Spain, 2017.  

[17]  V. M. Catterson, J. J. A. Costello, W. G. M. S. D. J. McArthur and 

C. J. Wallace, “Increasing the Adoption of Prognostic Systems for 

Health Management in the Power Industry,” Chemical 

Engineering Transactions, vol. 33, pp. 271-276, 2013.  

[18]  F. Elasha, S. Shanbr, X. Li and D. Mba, “Prognosis of a Wind 

Turbine Gearbox Bearing Using Supervised Machine Learning,” 

Sensors, vol. 19, no. 14, 2019.  

[19]  S. Mathew and M. Pecht, “Prognostics of Systems: Approaches 

and Applications,” in Condition monitoring and diagnostic 

engineering management., Maryland, 2011.  

[20]  K. K. Reddy, “Applying Deep Learning for Prognostic Health 

Monitoring of Aerospace and Building Systems,” in Knowledge 

discovery and data mining, San francisco, 2016.  

[21]  D. Luchinsky, S. Osipov, V. Smelyanskiy, C. Kiris, D. Timucin 

and S. H. Lee, “In-Flight Failure Decision and Prognostics for the 

Solid Rocket Buster,” AIAA 43rd AIAA/ASME/SAE/ ASEE Joint 

Propulsion Conference and Exhibit, Cincinnati, OH, July 8-11, 

2007.  

[22]  G. D. Ranasinghe and A. K. Parlikad, “Generating Real-valued 

Failure Data for Prognostics Under the Conditions of Limited Data 

Availability,” in International Conference on Prognostics and 

Health Management (ICPHM), 2019.  

[23]  A. Dawn, C. Joo-Ho and H. K. Nam, “Prediction of remaining 

useful life under different conditions using accelerated life testing 



74 

 

data,” Journal of Mechanical Science and Technology, vol. 32, no. 

6, pp. 2497-2507, 2018.  

[24]  H. Skima, K. Medjaher and N. Zerhouni, “Accelerated life tests 

for prognostic and health management of MEMS devices,” in 

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND 

HEALTH MANAGEMENT SOCIETY 2014, Nantes, France, 2014.  

[25]  A. K. Jardine, D. Lin and D. Banjevic, “A review on machinery 

diagnostics and prognostics implementing condition-based 

maintenance,” Mechanical Systems and Signal Processing , vol. 

20, no. 7, p. 1483–1510, 2005.  

[26]  T. Wang, J. Yu, D. Siegel and J. Lee, “A Similarity-Based 

Prognostics Approach for Remaining Useful Life Estimation of 

Engineered Systems,” in INTERNATIONAL CONFERENCE ON 

PROGNOSTICS AND HEALTH MANAGEMENT, Denver, 

Colorado, USA, 2008.  

[27]  A. Dawn, H. K. Nam and C. Joo-Ho, “Options for Prognostics 

Methods: A review of data-driven and physics-based prognostics,” 

in Annual Conference of the Prognostics and Health Management 

Society, New Orleans, 2013.  

[28]  J. Igba and K. Alemzadeh, “Analysing RMS and peak values of 

vibration signals for condition monitoring of wind turbine 

gearboxes,” Renewable Energy , vol. 91, pp. 90-106, 2016.  

[29]  C. Wahyu, “Vibration and acoustic emission-based condition 

monitoring and prognostic methods for very low speed slew 

bearing,” School of Mechanical, Materials and Mechatronic 

Engineering, University of Wollongong, Wollongong, 2015. 

[30]  E. Bechhoefer and M. Revor, “Rotor track and balance cost benefit 

analysis and impact on operational availability,” American 



75 

 

Helicopter Society 60th Annual Forum, Baltimore, MD, 2004, 

Baltimore, 2018. 

[31]  P. Chauhan and Q. Yu, “Use of Temperature as a Health 

Monitoring Tool for Solder Interconnect Degradation in 

Electronics,” in Prognostics & System Health Management 

Conference PHM-2012, Beijing, 2017.  

[32]  A. R. Kumar and V. Krishnan, “A Study on System Reliability in 

Weibull Distribution,” International Journal of Innovative 

Research in Electrical, Electronics, Instrumentation and Control 

Engineering, vol. 5, no. 3, pp. 38-41, 2017.  

[33]  L. P. F. Garcia, d. Carvalho Andre and A. C. Lorena, “Noisy Data 

Set Identification,” in International Conference on Hybrid 

Artificial Intelligence Systems, Asturias, 2018.  

[34]  A. M. DAVEY and B. E. FLORES, “Identification of Seasonality 

in Time Series: A Note,” Mathl. Comput. Modelling , vol. 18, no. 

6, pp. 73-81, 1993.  

[35]  K. Wallis, “Seasonal adjustment and relations between variables,” 

J. American Stat. Assoc, vol. 69, no. 34, pp. 18-31, 1974.  

[36]  M. R. Khan, K. Mohd and P. Kumar, “Speed Control of DC Motor 

by using PWM,” International Journal of Advanced Research in 

Computer and Communication Engineering, vol. 5, no. 4, pp. 307-

309, 2016.  

[37]  J. Lee, C. Jin, Z. Liu and H. D. Ardakani, “Introduction to Data-

Driven Methodologies for Prognostics and Health Managemen,” 

Probabilistic Prognostics and Health Management of Energy 

Systems, pp. 10-33, 2018.  

[38]  W. Caesarendra and T. Tjahjowidodo, “A Review of Feature 

Extraction Methods in Vibration-Based Condition Monitoring and 



76 

 

Its Application for Degradation Trend Estimation of Low-Speed 

Slew Bearing,” Machines, vol. 5, no. 21, pp. 1-28, 2017.  

[39]  A. Huang, “Similarity Measures for Text Document Clustering,” 

in New Zealand Computer Science Research Student Conference, 

Christchurch, 2008.  

 

 

 


