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Abstract

For most of the pattern recognition and machine learning tasks, deep learning is

performing well in recent years. Solving these machine learning tasks require large

size deep neural networks (DNNs). Many state-of-the-art DNNs consists of millions

of training parameters and arithmetic operations. Increase in size of deep neural

network models results in high computational and memory space needs. Therefore,

realization of these models on low power devices is possible with some approximation

while retaining the accuracy of network. Many recent works have proposed different

data quantization techniques. Most of these works require retraining of DNNs after

quantization for reducing the accuracy loss due to quantization. Other works which

do not retrain the network after quantization, suffer loss in accuracy.

This thesis presents a scalable technique for representing trained parameters of

deep neural networks in such a way that these trained parameters can be used for

computational and memory-efficient inference phase of deep neural networks. This

technique consists of two variations i.e. log 2 lead , and ALigN . log 2 lead provides

a single template for parameter representation and ALigN adaptively adjusts the

template according to different layers of DNN for producing even better results. We

have taken three different DNNs, AlexNet, VGG-16, and Resnet-18, and we quantize

them using 8-bit version of our schemes and found minimal loss in accuracy compared

to full precision network. For evaluating the efficiency of our technique, we have

applied our proposed techniques for image classification and segmentation tasks. We

have also presented a multiplier design for efficient multiplication of values represented

in our proposed templates.

Keywords: Machine learning, deep neural networks, quantization, multipliers,

classification, segmentation
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Chapter 1

Introduction

Deep learning is the fast-growing field of machine learning which is widely used

for state-of-the-art machine learning tasks like image classification, speech recogni-

tion, visual object recognition, object detection, and many others [12]. Deep Neural

Networks (DNNs) are the models of deep learning composed of multiple processing

layers to learn the data patterns in different layers of neural network. Large size DNNs

having millions of computation units and learning parameters are required for com-

plex machine learning tasks. These large size DNNs demand high computation and

memory for training and inference phases. Therefore, training of these network mod-

els occurs on high-performance architectures like graphics processing units (GPUs).

However, the realization of these DNNs on embedded systems and end-user devices is

nearly infeasible due to excessive computational needs. There are many applications

[13, 14] nowadays, which are using DNNs. A few of them are as follows.

In self-driving cars [13], deep learning based decision-making architectures pro-

cess streams of observations coming from different on-board sources, such as cameras,

radars, and other sensors. These streams are applied to the deep networks for training

and inference. Further, image captioning [14] involves different phases, including the

encoding of the image. For image encoding, deep neural networks like AlexNet, VG-

GNet, ResNet, GoogLeNet, and Inception networks are commonly used [3, 5, 11, 15].

These models require lot of memory and computations for encoding. Deep neural

networks are also used in the healthcare domain for Cancer diagnostics [16] and tasks
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like image recognition and segmentation [17].

In this thesis, we focus on the possible ways of reducing computations and memory

needs to realize deep neural network models on low computation devices.

1.1 Background

Large size DNNs are used for solving complex classification task of machine learn-

ing. Training and inference are two phases of deep neural networks that use feed-

forward and backpropagation. Due to the complex structure, these DNNs result in

a higher number of training parameters. Therefore, high-performance parallel archi-

tectures, like GPUs are used for training the neural networks. These architectures

use single-precision floating-point parameters for high network accuracy. However,

dealing with so many network parameters on low computation devices need some ap-

proximation measures. A plethora of recent works has proposed different types of low

bit-width quantization techniques and hardware accelerators to reduce the memory

and computations of trained DNN models. Approximation in deep neural networks is

also implemented using sparsity in networks [18], dynamic fixed point and logarith-

mic quantization schemes [19, 20], sampling-based technique [21] and clustering-based

technique [22]. For example, Google cloud tensor processing units (TPUs) use the

BFloat16 [23], a 16-bit number format with 7 bits for storing fraction part, for re-

ducing the memory footprint and computation cost. The use of 16-bit format instead

of 32-bit single-precision floating-point format allows the system to implement more

complex deep learning models with a slight reduction in the precision of numbers.

Further, few researchers propose DNN computation with 8 bits or even less number

of bits. Some of these proposed methods involve retraining or fine-tuning of DNN for

healing the accuracy loss due to low bit-width parameters.
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1.2 Motivation

DNNs are resilient to small errors. A slight reduction in the precision of parame-

ters in DNN does not show a significant impact on network accuracy. Leveraging this

fact, recent research works have shown that large size deep neural networks can be

implemented with low computation and storage needs using different network approx-

imation techniques [4, 24, 25, 26]. However, these approximation techniques require

computationally expensive retraining of the network for reducing the error that arises

due to approximation. Hence, there is a need to develop approximation techniques

without the requirement of retraining. Few researchers have developed the iterative

quantization methods for finding reduced bit-width parameters of network [22, 10].

These iterative approaches can be time-consuming.

To overcome the retraining and iterative process, we propose a quantization based

technique for pre-trained deep neural networks. Some researchers have proposed the

approaches with layerwise analysis of network for compression [22, 27]. We also

propose the parameter representation technique which analyses each layer of DNN

and reduces the parameter quantization error even further. In deep neural networks,

multiplication operation is the most computation hungry operation. Few researchers

avoid multiplication operation in DNNs by using bit-shift and addition operations [28,

29, 30]. Our proposed technique also uses bit-shift and addition for efficient inference

of DNN. Further, some works have developed the DNN accelerators based on GPU,

FPGA, and ASIC hardware for various machine learning applications [31]. Hardware

accelerator using our proposed parameter technique is a future direction for our work.

Overall, this thesis seeks to address various issues of quantization based approximation

for efficient training and inference of DNNs.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop a quantization based parameter representation technique for pre-

3



trained deep neural networks that retains the precision of parameters after the

quantization.

(ii) To enable the technique scalable in terms of bit-width for different state-of-the-

art DNNs.

(iii) To develop a quantization technique that can provide different configurations of

quantization for different layers of DNN.

(iv) To develop quantization technique that allows multiplier less arithmetic for DNN

inference.

1.4 Thesis Contributions

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

Contribution I:

A lot of works show that large size deep neural networks can be compressed for

efficient implementation using quantization based representations. In this thesis, we

introduce a novel quantization method of DNN parameters for efficient inference of

pre-trained DNNs. This scheme provides a single template to store the parameters

with low bit-width while retaining the precision of parameters. Our technique does

not require the retraining or fine-tuning of the network for maintaining the network

accuracy.

Contribution II:

We further explore the quantization technique for deep networks with even higher

accuracy. We observe that different layers of deep neural networks have different distri-

bution of parameters. Therefore, we present the variation of our other contribution to

provide different quantization templates for different layers of the network. By intro-

ducing this additional degree of freedom, our scheme reduces the quantization induced

error even further. Our technique is optimized for DNN parameters, it provides better
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accuracy than state-of-the-art quantization techniques for the dynamic range -1 to +1.

1.5 Organization of the Thesis

This thesis is organized into six chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This current chapter describes background knowledge of approximation in deep

neural networks, the motivation of our work, and the contributions of this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter provides a detailed literature survey and a summary of various

state-of-the-art DNN compression methods.

Chapter 3 (Quantization of Pre-trained Neural Networks)

In this chapter, proposed quantization based techniques are presented for DNNs.

Chapter 4 (Quantitative Analysis of the Proposed Techniques)

In this chapter, we present quantitative analysis of proposed methods using

quantization error and decimal accuracy calculation.

Chapter 5 (Hardware Realization of Proposed Techniques)

In this chapter, we describe the proposed processing element and multiplier design

for hardware realization of proposed technique.

Chapter 6 (Conclusions and Future Work)

This chapter concludes the contribution of this thesis and the possible future

directions of our work.
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Chapter 2

Literature Survey and Research

Methodology

This chapter provides a detailed literature review for quantization in deep neural

networks. We have divided the whole literature review into five sections. Section 2.1

provides preliminaries on deep neural networks, IEEE floating point format and fixed

point format, before proceeding to the literature survey in further sections. Section

2.2 discusses current DNN quantization including the different schemes, Section 2.3

provides a brief literature on machine learning specific data formats, and Section 2.4

describes about hardware accelerators used for deep learning. In the Section 2.5, we

discuss the quantitative analysis of number representation.

2.1 Preliminaries

This section provides preliminaries on deep neural networks, IEEE floating point

format and fixed point format, which helps to understand further sections.

2.1.1 Deep Neural Networks

DNNs use two computation phases, i.e., forward propagation and backpropagation,

for performing training and inference. Networks undergo supervised training proce-

dures to find the optimal training parameters. Deep neural networks are the stack of

7



multiple types of layers of neurons. Type of these layers are as follows:

(i) Convolutional layer: Convolutional layers are used for feature extraction from

input vectors. These layers consist of a set of convolutional kernels. Each kernel

matrix slides over the input image, elementwise multiplication occurs, and the

resultant matrix is passed on to the next layer of DNN.

(ii) Pooling layer: These layers sub-samples and reduces the size of the feature

map. Max pooling and average pooling are frequent pooling layers. The below

equation describes the max pooling operation calculating feature value fout using

n-sized pooling window.

Output of max pooling operation is:

fout = max(f1, f2, f3, ..., fn) (2.1)

(iii) Fully connected layer: A fully connected layer is also termed as a dense

layer. Each neuron of a fully connected layer is connected to every previous

layer neuron. Fully connected and convolutional layers perform a weighted sum

of input features and weight parameter ‘w’. After that activation functions ϕ

are applied to the addition of weighted sum and bias ‘b’ for introducing the

non-linearity. Sigmoid and Relu are the frequently used activation functions

for DNNs. Every neuron consists of an activation function and output of that

is referred to as activation. Below equation describes the output of the fully

connected neuron:

y = ϕ

(
n∑

i=1

fiwi + b

)
(2.2)

Figure 2.1 of AlexNet [3] shows the example of typical architecture of deep neural

network. 224x224 dimensional image is input to this network. This network consists

of convolutional layers, max-pooling layers, and dense layers. The output layer is

having 1000 nodes, each node represents one class of output.
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Figure 2.1: Network architecture of Alexnet by Krizhevsky et al. [3]

Since in this thesis, we propose the quantization-based parameter representation

techniques for DNNs. Hence, the IEEE real value representation needs to be discussed

in detail.

2.1.2 IEEE-754 Floating Point Number Representation [1]

IEEE-754 provides the standards for representing real values in floating-point for-

mat. Floating point format consists of sign, exponent, and mantissa bits as shown

in figure 2.2. Exponent represents the range of format and mantissa represents the

precision of format. In the table 2.1, we show the different variations of floating-point

representation.

Figure 2.2: Example of floating point number [4]
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Table 2.1: Variations of floating point representation [4]

Format Total bit-width Exponent bit-width Mantissa bit-width
Double precision floating point 64 11 52
Single precision floating point 32 8 23
Half precision floating point 16 5 10

2.1.3 Fixed Point Approximation [2]

Deep neural network inference uses single-precision 32-bit floating-point numbers

for parameter representation. This 32-bit number format limits the implementation

of DNNs on low computation and memory devices. The fixed-point format offers to

represent the parameters in reduced bits with different integer and fractional lengths.

Fixed-point format consists of a N -bit signed integer mantissa and a global scaling

factor f shared among all fixed-point values. That gives the decimal value of Integer

x 2-f. In the table 2.2, we show the examples of 8-bit and 10-bit fixed point format.

Table 2.2: Examples of 8-bit and 10-bit fixed point format. fxp-x.y shows x bits for
integer length and y bits for fractional length.

N Bit-width Format Integer f Binary representation Decimal value

8-bit
fxp-2.5 93 5 10.11101 2.90625
fxp-3.4 93 4 101.1101 5.8125
fxp-4.3 93 3 1011.101 11.625

10-bit
fxp-4.5 463 5 1110.01111 14.46875
fxp-5.4 463 4 11100.1111 28.9375
fxp-6.3 463 3 111001.111 57.875

Further, we describe the neural network quantization for approximating the pa-

rameters.

2.2 Neural Network Quantization

Over the last few years, researchers have used different approximation techniques

[32] for reducing the computations of deep neural networks while maintaining the

accuracy of networks, such as dropout, network pruning, and quantization. In this

thesis, we are mainly focusing on the quantization technique for DNN approximation

that is quite popular. Doing a fixed-point approximation of the network parameters

is one direction. Chen et al. [33] have used fixed-point format for representing the
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parameters of DNNs with low bit-width. They have significantly reduced the com-

putational efforts and memory costs in DNNs using fixed-point format compared to

floating-point arithmetic. Quantization of neural network parameters can be applied

during training or after training. In 2014, Courbariaux et al. [4] present the DNN

training with low precision fixed-point parameters and shown very little accuracy loss

compared to single-precision floating-point format. In this work, they use 20-bit and

12-bit DNN parameters to increase the efficiency of computation hungry multiplica-

tion operation in forward propagation and backpropagation. Further, in 2015, few

researchers [24, 34] reduce the precision of network parameters even more by using bi-

nary and ternary parameters. Courbariaux et al. [25] present the binary quantization

of DNN activations along with weights.

In XNOR-Net [26], authors use binary kernel and inputs for efficient convolutional

operation in DNNs. Shuchang et al. stochastically quantize parameter gradients to low

bit-width numbers during backward pass before propagating them to the convolutional

layers in DoReFa-Net [35]. Gysel et al. [27] use dynamic fixed point technique for

quantization along with retraining of network. In QUENN technique [22], authors

find different bit-width for different layers of DNNs using an iterative approach. Vogel

et al. [10] quantize the network by iteratively finding the optimal step size of the

quantization of each layer’s parameters. Mordido and Keirsbilck [21] use the Monte

Carlo Method for sampling the pre-trained parameters of the network.

The most basic DNN approximation is to use fixed point quantized parame-

ters [4, 24, 34]. However, fixed point quantization of DNN parameters suffers the

loss of precision in quantized parameters. In our techniques, we retain the preci-

sion of parameters after the quantization. Some techniques use retraining of DNN

with quantized parameters for reducing the error in accuracy introduced by quanti-

zation [4, 24, 34, 25, 26, 35, 27, 36]. However, these techniques cannot be applied to

the pre-trained network. Few researchers [22, 10] use iterative approaches for find-

ing the optimal quantization for network parameters. In our technique, we quantize

the DNN in single pass and can be applied to pre-trained network. In the tech-

niques [34, 25, 10, 28, 29, 30, 36], bit-shift operation is used in place of computationally

11



costly multiply-operation.

A survey is presented next for different types of quantization schemes applied in

deep neural networks.

2.2.1 Linear Quantization

Linear quantization maps large set of values into lower set of values [37]. In DNNs,

parameters are represented in single-precision 32-bit floating-point format. Using lin-

ear quantization, parameters can be represented less number of bits. Equations 2.3, 2.4

and 2.5 describes the method to convert float32 data tensor x to N-bit fixed point ten-

sor xquant.

Figure 2.3: 7-bit Linear quantization of VGG-16 [5] Conv1 2 layer weights pre-trained
on ImageNet dataset [6]

∆ = clip

(
max (| x |)

2N−1
, 2N−1, 2−(N−1)

)
(2.3)

∆ = 2 ** clip (round(log2(∆)), N − 1,−N + 1) (2.4)
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xquant = clip
(
round

( x

∆

)
, 2N−1 − 1,−2N−1

)
∆ (2.5)

where round() function rounds the value to nearest integer and clip() function is below

clip(x,Max,Min) =


x, Min < x < Max

Max, x ≥Max

Min, otherwise

In Figure 2.3, we consider the weights of a pre-trained DNN convolutional layer of full

precision and linearly quantize in 7-bit fixed-point representation. Linear quantization

converts the wide set of floating-point values into a discrete set of values. Parameters

of deep neural networks are normalized, so most of the weight parameter values are

near 0.

2.2.2 Power of 2 Quantization (log2 Quantization)

Power of 2 quantization is also referred to as logarithmic base 2 quantization [29].

Most of the DNN weights and activation values are non-uniformly distributed. There-

fore, logarithmic-scaled quantization is used for DNNs. This quantization also allows

to multiply the numbers with bit-shift operations. Equations 2.6 and 2.7 describe

the method to convert the full precision data tensor to power of 2 quantized data

tensor. Figure 2.4 shows the power of 2 quantization of DNN layer’s full precision

weights shown in the Figure 2.3. Compared to the linear quantization, power of 2

quantization provides more number representation within the same range.

ˆxquant = clip (round (log2(| x |)) , 0, N) (2.6)

∆ = xquant = sign(x)2 ˆxquant (2.7)

sign(x) =


+1, if x>0

0, if x=0

−1, if x<0
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Figure 2.4: Power of 2 quantization of VGG-16 [5] Conv1 2 layer weights pre-trained
on ImageNet dataset [6]

2.2.3 Two-Hot Quantization

The quantization technique proposed in [10] divides the Float32 parameter into two

segments i.e., MSBs and LSBs. It then performs the log2 quantization of the MSBs

and LSBs separately and then adds the MSBs-quantized and LSBs-quantized values

to achieve the final quantized value. This technique can recover some quantization

induced errors; however, it also ignores all the significant bits after the leading 1 in

both segments (MSBs and LSBs).

2.2.4 Dynamic Fixed Point Quantization

Dynamic fixed point is the variation of fixed point format [22, 27]. In this tech-

nique, fractional length (FL) for data representation is chosen based on the range of

parameters. For quantizing the layers of DNN, different FLs are used according to the

layer’s parameter range. Number representation for dynamic fixed point is as follows:

Quantized value = (−1)sign.2−FL

W−2∑
i=0

2i.mi (2.8)

where ‘W’ is bit-width and ‘m’ mantissa value.

In recent years, researchers have shown interest in providing number formats spe-

cific to deep neural networks, which are discussed in the following section.
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2.3 DNN Specific Number Formats

In the past years, many application-specific data representation formats are in-

troduced. Google’s bfloat16 [7, 23] and minifloat [27] are machine learning specific

number formats for speeding up the computation time and reducing the memory re-

quirements.

(i) Bfloat16, 16-bit brain floating point: Google’s bfloat16 [23] is a 16-bit num-

ber representation format. It utilizes reduced precision of the numbers to provide

high-performance tensor processing units (TPUs). This format uses 8-bits for

exponent and 7-bits for precision as shown in Figure 2.5. Compared to the

half-precision floating-point format, bfloat16 uses more number of exponent bits

to increase the dynamic range of values represented by the format. Range of

bfloat16 is from ∼ 1e−38 to ∼ 3e38.

Figure 2.5: Bfloat16 format [7]

(ii) Minifloat: Gysel et al. [27] introduced an 8-bit format for representing DNNs

weights and activation. Minifloat follows the IEEE-754 standards with some

modification. However, 8-bit minifloat format [27] does not consider all the

representations for normalized parameters and activations of DNNs.

Later, in the quantitative analysis, we compare our techniques with bfloat16 and

minifloat to discuss the number representation capabilities of our techniques indepen-

dent of DNNs. Since the proposed methods of this thesis can be used for hardware

accelerators, we provide a brief discussion of the hardware accelerators used for deep

neural networks in the subsequent Section 2.4.
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2.4 Hardware Accelerators for DNNs

Over the years, the advancement of multicore processors and accelerators has

made it possible to implement computationally heavy machine-learning algorithms

such as deep neural networks [31]. GPU (graphics processing units), FPGA (Field

programmable gate arrays), and ASIC ( application-specific integrated circuit) based

processors and accelerators are commonly used for machine learning algorithms.

(i) GPU-based Accelerators: As GPU’s are high performance and memory ar-

chitecture, many researchers consider GPU-based inference for deep learning.

Denton et al. [38] propose the technique of GPU-based inference by finding the

low-rank approximation of the convolutional layer and then fine-tuning. They

achieve 2x speedup in the performance while maintaining the accuracy within

1% of the non-approximated model. NVIDIA [39] presents Turing architecture

for training and inference for DNN models. Han et al. [40] reduce storage space

of AlexNet and VGG-16 model by 35x and 49x respectively, by using network

pruning and Huffman coding.

(ii) FPGA-based Accelerators: Compared to GPU based accelerators, FPGA ac-

celerators produce less throughput, still, many researchers focus on implementing

one or more DNN architectures on FPGA. This is because FPGAs are recon-

figurable and programable. Xhang et al. [41] analyze computing and memory

requirement of layers of convolutional neural network and accordingly find the

optimal solution for design space. Suda et al. [42] implement the VGG network

for classification on the OpenCL-based FPGA accelerator.

(iii) ASIC-based Accelerators: Despite larger design time, ASIC-based accelera-

tors can achieve high performance and efficiency. DaDianNao [43] uses a custom

multichip architecture for machine learning tasks. Chen et al. [44] introduce

re-configurable accelerator with higher number of processing elements for Deep

convolutional networks.
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Next, we discuss the techniques for quantitave analysis of quantized number rep-

resentations.

2.5 Quantitative Analysis of Number Representa-

tions

After the quantization process, quantized values have less precision compared to

full precision value, due to the use of low bit-width. Therefore, quantization introduces

some error in data while providing storage and processing benefits. For analyzing

the efficacy of the quantization technique, many researchers have done quantitative

analysis of quantization error.

Training of DNN occurs with full precision parameters. These trained full precision

(exact) parameters are quantized and used for efficient inference. Absolute and relative

errors provide the error difference between quantized and exact values as described in

Equations 2.9 and 2.10, respectively.

absolute error = |Xquantized −Xexact| (2.9)

relative error =

∣∣∣∣Xquantized −Xexact

Xexact

∣∣∣∣ (2.10)

where X is the scalar value.

In Ristretto framework [27], researchers use signal-to-quantization noise ratio

(SQNR) for quantifying the quantization error. Further, John et al. [45] have proposed

a decimal accuracy metric to compare the effectiveness of number representation as

defined by the Equation 2.11.

decimal accuracy = −log10

∣∣∣∣∣− log10

(
Xquantized

Xexact

)∣∣∣∣∣ (2.11)

There are many measures available for quantitative analysis. Absolute error, rel-

ative error, and decimal accuracy are the commonly used measures which we use for

our analysis.
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Chapter 3

Quantization of Pre-trained Neural

Networks

In this chapter, we present deep neural network parameter quantization techniques,

which are named as L2L (log 2 lead) and ALigN. This proposed work is inspired by

nonlinear quantization of values for reduced computations. As mentioned earlier, tra-

ditional quantization techniques require retraining or fine-tuning of DNN with quan-

tized parameters to minimize the quantization induced errors. However, our quan-

tization techniques can be applied directly to pre-trained DNN for inference. The

proposed quantization methods also provide a unique representation of parameters to

replace the multiplication operation with bit-shift and addition. For experimentation,

we take different sizes of state-of-the-art DNNs and quantize them using proposed

techniques. Their performance is evaluated for classification and segmentation tasks.

3.1 L2L: Log 2 Lead Quantization of Pretrained

Neural Networks

This section describes the proposed quantization technique L2L (Log 2 Lead) for

DNN. The proposed fixed-point quantization technique attempts to minimize the

quantization induced errors by identifying and storing the most significant 1’s in the

parameters of a pre-trained DNN.
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3.1.1 Template of Quantization

As the trained parameters are represented in single-precision floating-point scheme

(32 bits), the identification of the 1’s which have higher significance can notably reduce

the quantization generated errors. To identify the significant 1’s in Float32-based

parameters, Figure 3.1 and Figure 3.2 give histograms of the leading 1’s in all the

weights and biases of two different layers of VGG-16 network. As shown, the leading

1 for most of the trained parameters (weights and biases) occurs at some distinct bit

positions; for example, for the weights of Conv1 2 and Conv4 1 layers, the leading 1

frequently occurs at bit position -6 and -8 respectively. However, there are also some

weights with very low-values and having the leading 1 occurring at bit position -15.
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(b) Biases of a single layer

Figure 3.1: Histogram of leading 1’s for all weights and biases for pre-trained VGG-
16 [5] Conv1 2 layer

In our proposed log 2 lead technique, we utilize log2 to detect the position of the

leading 1 in a fraction. However, to limit the quantization errors, log 2 lead also ob-

serves the following bits locations after the leading 1 location. For N-bit quantization,

Figure 3.3 shows the template of our proposed log 2 lead quantization scheme. The

first bit is reserved for showing the sign of the quantized parameter. Following dN−1
2
e

bits are reserved for storing the location of the leading 1 in the original non-quantized

parameter. The remaining bits are used to store the values of the following bN−1
2
c bits

after the leading 1.

For example, for the leading 1 histograms in Figure 3.1 and N = 8, the leading 1
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(a) Weights of a single layer (b) Biases of a single layer

Figure 3.2: Histogram of leading 1’s for all weights and biases for pre-trained VGG-
16 [5] Conv4 1 layer

at bit position −12 would be represented as a binary number ‘1100’ by the ‘leading

one location’ field in the template shown in Figure 3.3. Moreover, to increase the

precision of the quantized value, we always analyze bN−1
2
c+ 1 bits after the leading 1

and round the values (round towards +∞) to bN−1
2
c bits.

The rounding of bN−1
2
c+1 bits further helps in retaining the precision of a rounded

number. For example, Figure 3.4 shows an example of quantizing a fractional number

0.217884 using the proposed log 2 lead technique. The leading 1 is found at bit location

−3 which is stored in our template as a binary number 0011. After the leading 1,

following four bits are analyzed and rounded to binary pattern 110. The corresponding

quantized value is 0.21875.

S Leading One Location

Remaining Locations

1-bit
𝑁−1

2
-bits

𝑁−1

2
-bits

Figure 3.3: Template for proposed quantization technique

3.1.2 L2L Quantization Example

Compared to our proposed technique, a typical log2 quantization as described in

Eq. 2.6 and Eq. 2.7 (Chapter 2) would only find a single leading 1 for each weight and
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0.217884 0.00110111110001110011111011101110…

Quantized value 2−3 + 2−4 + 2−50.21875

0 0 0 1 1 1 1 0log_2_lead representation

Figure 3.4: log 2 lead quantization example
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(b) Biases Distribution

Figure 3.5: Distribution of weights and biases for pre-trained VGG-16 [5] Conv1 2
layer

discard all other bit locations. Due to ignoring of all other bit locations for comput-

ing the quantized value, the log2 quantization can introduce substantial quantization

errors.

We have computed the classification accuracy of pre-trained ResNet-18 and VGG-

16 DNNs and found that quantization errors can be healed significantly in the final

output of a DNN by utilizing 8 bits for L2L quantization (discussed in Section 4.2 of

Chapter 4).

Figure 3.6 and Figure 3.7 show the quantization of weights and biases of two dif-

ferent layers of VGG-16 given in Figure 3.5 when using linear, power of 2, and L2L

quantizations. It can be observed that the proposed L2L technique provides more dis-

crete fixed-point values and better coverage for quantizing Float32-based parameters

than the linear and power of 2 quantization schemes.
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(c) log 2 lead quantization

Figure 3.6: Quantization of pre-trained weights of Conv1 2 layer of VGG-16 [5]
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Figure 3.7: Quantization of pre-trained biases of Conv1 2 layer of VGG-16 [5]
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3.2 ALigN: Adaptive Layerwise Quantization of

Pre-trained Neural Networks

In this section, we describe the adaptive layerwise variation of our L2L technique,

i.e., ALigN. ALigN scheme provides multiple templates for DNN parameter represen-

tation and reduces the quantization induced error even further.

3.2.1 Template of Quantization
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Figure 3.8: Histogram of leading 1’s for all weights and biases for pre-trained VGG-
16 [5] Conv1 1 layer

Figure 3.9: ALigN template for N-bit quantization

The quantization induced errors can be minimized by utilizing the available quan-

tization bit-width intelligently. The proposed L2L technique, although minimizes the

quantization induced errors, has a fixed template for representing the quantized pa-

rameters of all layers in a pre-trained DNN. For example, as shown in Figure 3.3,
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it always utilizes dN−1
2
e-bits for storing the position of leading 1 in an N -bit quan-

tization. We analyze the distribution of parameters for various layers of pre-trained

DNNs. We observe that for some layers, the fixed dN−1
2
e-bits for storing the leading

1 position are not used efficiently. For example, Figure 3.8 presents the leading 1

histogram of the weights and biases of the Conv1 1 layer of a pre-trained VGG-16. It

can be observed that the leading 1 for these parameters mostly occurs at bit position

−3. Bit position −3 can be stored in 2 bits (magnitude of bit position is stored) while

log 2 lead uses a fixed template of 4 bits for storing leading 1 position (when taking

N = 8). To resolve this problem, we propose ‘ALigN ’, an adaptive log 2 lead quanti-

zation technique. ALigN technique can provide multiple configurations of leading one

location storage and following bits storage, as described in Figure 3.9. Further, we

describe the layerwise analysis for choosing appropriate ALigN configurations.

3.2.2 Adaptive Analysis of Neural Network

In ALigN technique, we analyze the parameters of each layer to identify a suitable

number of bits for storing the leading 1 in the original non-quantized parameters of

each layer to reduce the corresponding quantization induced errors. Figure 3.10 and

Figure 3.11 show the average quantization induced errors by varying the number of bits

reserved for storing the leading 1 location in L2L scheme for the parameters of two

different layers of a pre-trained VGG-16 network. For the weights of the Conv1 1

layer, assigning a single bit for storing the leading 1 location produces minimum

quantization errors. However, the quantization of the parameters of the Conv1 2

layer requires 3-bits for generating the smallest error. Therefore, it is advantageous to

align the L2L scheme according to the distribution of the parameters of each layer of

a pre-trained network. Eq. 3.1 and Eq. 3.2 show our technique for finding the optimal

number of bits Lw and Lb for storing the leading 1 locations of weights and biases,

respectively, for each layer. After determining Lw and Lb adaptively for each layer, we

quantize the parameters of each layer by storing leading 1 in L-bits and utilizing the

remaining locations for storing N−L−1 following bits. Figure 3.9 shows the updated

template of our proposed quantization scheme, ALigN, to represent the quantized
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values. As shown, for an N-bit ALigN quantization, there is no fixed boundary for

storing the leading 1 location.

Lw = argminLw(Average{|wquant − w|}) (3.1)

Lb = argminLb
(Average{|bquant − b|}) (3.2)

where argminL selects the L (number of bits for storing leading 1 location) which

gives minimum average difference.
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Figure 3.10: Average error for different number of bits for leading one position for
weights and biases for pre-trained VGG-16 [5] Conv1 1 layer
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Figure 3.11: Average error for different number of bits for leading one position all
weights and biases for pre-trained VGG-16 [5] Conv1 2 layer
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3.3 Experiments

For the application-level evaluation of linear, power of 2, dynamic fixed point,

L2L, and ALigN quantization, we have used TensorFlow framework [46]. Using the

framework, we have implemented a variety of networks with different datasets to

test the efficacy of our proposed quantization techniques for image classification and

semantic segmentation accuracies of quantized networks. These results are discussed

in Sections 3.3.1 and 3.3.2. In the experiments below, we show the superiority of our

ALigN scheme. All the experiments below have been done with 8-bit ALigN technique.

This is because once we use more bits, for example, 10-bits, we do not see a definite

effect on classification accuracy. This aspect has been discussed in more detail in the

next chapter.

3.3.1 Image Classification

For image classification task, we have taken small and large size deep neural net-

work for variety of datasets. For the MNIST dataset [47], we have trained a lightweight

neural network consisting of convolution layers (Conv), Maxpool layer, and fully con-

nected layers (FC), as described in Table 3.1. The MNIST dataset contains 60,000

and 10,000 greyscale training and testing images, respectively, at a resolution of 28

x 28 pixels. After training the network on 60,000 images, we have applied different

8-bit (N=8) quantization schemes on the trained parameters. The application-level

accuracy results are reported in Table 3.2. The linear and L2L quantization have

nearly similar output accuracy compared to the single-precision Float32 representa-

tion. The power of 2 quantization considers only the most significant 1 in the fraction;

therefore, it has produced comparatively reduced output accuracy. ALigN quanti-

zation technique offers the same classification accuracy as produced by the baseline

Float32-based implementation.

We also test the lightweight neural network described in Table 3.1 on CIFAR-10

dataset [48] to assess the accuracy of our proposed quantization schemes. CIFAR-10

dataset contains 50,000 training and 10,000 32x32 RGB images. These images are
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Table 3.1: Description of networks used for classification of MNIST and CIFAR-10
datasets

Layer
MNIST Network CIFAR-10 Network

Kernel Size Total Kernels Kernel Size Total Kernels

Conv1 5x5 32 5x5 64

Maxpool - - 3x3 -

Conv2 5x5 64 5x5 64

Maxpool 2x2 - 3x3 -

FC1 - 512 - 384

FC2 - 512 - 192

Softmax - 10 - 10

Table 3.2: Classification accuracy of lightweight neural networks on MNIST and
CIFAR-10 dataset with 8-bit quantized weights and biases for different quantization
schemes

Quantization MNIST CIFAR-10
w, b quantized Accuracy [%] Accuracy [%]

Float32 98.18 85.1
8-bit linear 98.13 85.1
Power of 2 97.6 73.5

L2L 98.12 85.1
ALigN 98.18 85.1

Float32 vs L2L -0.06 0.0
Float32 vs ALigN 0.0 0.0

classified into 10 labeled classes. Lightweight neural network classification accuracy

results for 10,000 images using different 8-bit quanitzation schemes are reported in

Table 3.2 (see last column). The power of 2 quantization has shown significant accu-

racy drop due to limited coverage of the dynamic range of fractional numbers under

consideration. The L2L and ALigN quantization have produced comparable results

to the single-precision Float32-based results.

To evaluate the efficacy of our proposed techniques on a large dataset, we also

test a variety of deep neural networks (see below) on ImageNet dataset [6]. The

ImageNet dataset hosts 1.2 million and 50, 000 RGB images for training and valida-

tion, respectively. These images are classified into 1000 different categories. For our

experimentation, we take pre-trained AlexNet [3], VGG-16 [5] and ResNet-18 net-
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works [11]. For effective comparison, we improve the inference accuracy of power of 2

quantization scheme by utilizing the post-quantization retraining, which minimizes its

quantization induced errors. AlexNet network contains 5 convolutional layers followed

by 3 fully connected layers. For the ImageNet validation set, the pre-trained AlexNet

has 53.89% and 77.62% Top-1 and Top-5 accuracies, respectively, using the baseline

single-precision Float32 weights, biases, and activations. We quantize the weights and

biases of this network with linear, power of 2, dynamic fixed-point, L2L, and ALigN

quantization schemes. Except for the dynamic fixed-point scheme, all quantization

schemes have an 8-bit width. The dynamic fixed-point quantization employs differ-

ent bit-widths for different layers. For example, for weights and biases of the conv1,

conv2, conv3, and conv4 layers, it applies twelve bits, whereas, for the parameters of

the conv5 layer, it utilizes ten bits. Similarly, for the parameters of FC6, FC7, and

FC8 layers, it uses sixteen, twelve, and six bits, respectively. The Top-5 and Top-1

classification accuracies are shown in Table 3.3. The L2L quantization scheme pro-

vides better output accuracies than the linear, power of 2, and dynamic fixed-point

quantization schemes. When compared with Float32, the drop in Top-5 and Top-1

percentage classification accuracies are only 0.12 and 0.01 respectively for the L2L

scheme. Based upon the adaptive layerwise analysis of the network, Table 3.4 shows

the number of bits (Lx) delimited to store the leading 1 location for parameters of

each layer for an 8-bit ALigN quantization scheme. The remaining 8−Lx− 1 bits are

assigned for storing the bit values following the leading 1. Compared to the baseline

Float32 accuracy, the ALigN scheme produces the same output accuracy.

The VGG-16 network mainly consists of 13 convolution layers with kernel size

3× 3 and 3 fully connected layers. For the 50, 000 validation images, the pre-trained

network has 85.74% and 64.72% Top-5 and Top-1 classification accuracies using the

single-precision Float32-based parameters and activations. We apply various 8-bit

quantization schemes on the pre-trained parameters and evaluate for classification

accuracy. These results are presented in Table 3.5. In this experiment with VGG-

16 network, the activations have Float32 precision, and the weights and biases are

quantized to 8-bit precision. For the dynamic fixed-point quantization scheme, except
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Table 3.3: Classification accuracy of AlexNet network [3] on ImageNet dataset [6] with
quantization of weights and biases using different schemes

AlexNet [3] Top-5 [%] Top-1 [%]
Float32 77.62 53.89

8-bit linear 76.95 53.11
Power of 2 (without retraining) 65.45 40.72

Power of 2 (with retraining) 75.63 47.19
Dynamic fixed point 74.21 50.24

L2L 77.50 53.88
ALigN 77.67 53.99

Float32 vs L2L -0.12 -0.01
Float32 vs ALigN +0.05 +0.1

Table 3.4: No. of bits selected for storing the leading 1 location of parameters of
AlexNet [3] and VGG-16 [5] networks using 8-bit ALigN technique

AlexNet
Layer Conv1 Conv2 Conv3 Conv4

Bits for Leading 2 3 3 3

VGG-16
Layer Conv1 1 Conv1 2 Conv2 1 Conv2 2 Conv3 1 Conv3 2 Conv3 3 Conv4 1

Bits for Leading 1 2 3 3 3 3 3 3

AlexNet
Layer Conv5 FC6 FC7 FC8

Bits for Leading 3 3 3 3

VGG-16
Layer Conv4 2 Conv4 3 Conv5 1 Conv5 2 Conv5 3 FC6 FC7 FC8

Bits for Leading 3 3 3 3 3 3 3 3

for the FC6 layer, which is quantized to 8 bits, all other layers have Float32 precision.

Compared to the linear quantization, power of 2 quantization, and dynamic fixed-

point quantization, our proposed techniques L2L and ALigN produce better Top-5 and

Top-1 classification accuracies. The drop in Top-5 and Top-1 percentage classification

accuracies for L2L scheme is only by 0.1 and 0.21, respectively. The ALigN scheme

also produces better results than others and reduces the Top-5 and Top-1 percentage

classification accuracies (drop by 0.03 and 0.1 only, respectively). The corresponding

number of bits, to store the leading 1 location of the trained parameters of each layer,

are again shown in Table 3.4.

We also evaluate our proposed quantization schemes on the residual network

ResNet-18 with the ImageNet validation set. Table 3.6 shows the corresponding Top-5

and Top-1 accuracies of the quantized pre-trained network with 8-bit linear, power of

2, L2L, and ALigN schemes. Our proposed quantization schemes again outperform

other quantization techniques in the respective classification accuracies. For example,
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compared to the baseline Float32-based classification accuracies, the L2L has only

0.38 and 0.8 drops in the Top-5 and Top-1 percentage classification accuracies, respec-

tively. The ALigN scheme improves the Top-1 percentage classification accuracy by

0.12 when compared with the corresponding baseline accuracy. However, the Top-5

percentage accuracy is dropped by 0.1, which is still better than those achieved with

the other quantization schemes.

3.3.2 Image Segmentation

To further evaluate the efficacy of our proposed quantization techniques, we also

consider the semantic segmentation task. For this purpose, we utilize the Fully Convo-

lutional Network (FCN) [8] and PASCAL Visual Object Classes (VOC) 2012 validation

set [9]. The FCN utilizes the thirteen convolutional layers of VGG-16 [5] for perform-

ing semantic segmentation. The PASCAL VOC 2012 validation dataset contains 1449

images in 20 different classes. Further, we use the intersection over union (IU) met-

ric for measuring the efficiency of presented quantization techniques for the semantic

segmentation task. Table 3.7 shows the results of applying 8-bit linear, power of 2,

dynamic fixed point, L2L, and ALigN quantization schemes on the pre-trained FCN.

For the dynamic fixed-point quantization scheme, except for the FC6 layer, which is

linearly quantized to 8 bits, all other layers have Float32 precision. As shown by the

results, the pre-trained FCN has a mean IU of 61.8% using single-precision Float32-

Table 3.5: Classification accuracy of VGG-16 network [5] on ImageNet dataset [6] with
quantization of weights and biases using different schemes

VGG-16 [5] Top-5 [%] Top-1 [%]
Float32 85.74 64.72

8-bit linear 82.55 59.8
Power of 2 (without retraining) 0.63 0.1

Power of 2 (with retraining) 56.25 30.78
Dynamic fixed point 83.63 61.43

L2L 85.64 64.51
ALigN 85.71 64.62

Float32 vs L2L -0.1 -0.21
Float32 vs ALigN -0.03 -0.1
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Table 3.6: Classification accuracy of ResNet-18 network [11] on ImageNet dataset [6]
with quantization of weights and biases using different schemes

Resnet-18 [11] Top-5 [%] Top-1 [%]
Float32 88.94 69.30

8-bit linear 88.47 68.70
Power of 2 (without retraining) 5.37 1.49

Power of 2 (with retraining) 86.84 65.45
L2L 88.56 68.41

ALigN 88.84 69.42
Float32 vs L2L -0.38 -0.8

Float32 vs ALigN -0.1 +0.12

based parameters. Compared to this baseline result, the 8-bit linear quantization

displays a loss of 1% in the mean IU, whereas The dynamic fixed-point quantization

schemes produce no loss in the mean IU. L2L scheme has only a 0.5% loss in the

mean IU, while ALigN quantization schemes produce no loss. Figure 3.12 shows the

visual results of applying different quantization schemes on the pre-trained FCN for

one single image from the PASCAL VOC 2012 validation dataset. As shown by the

images, the ALigN produces minimal differences in the pixel values when compared

with the Float32-based representation.

Table 3.7: Mean IU of FCN8 [8] network on PASCAL VOC 2012 validation set [9]
with quantization of weights and biases using different schemes

FCN8 [8] Mean IU [%]
Float32 61.8

8-bit linear 60.8
Power of 2 (without retraining) 3.5

Power of 2 (with retraining) 21.1
Dynamic fixed point 61.8

L2L 61.3
ALigN 61.8

Float32 vs L2L -0.5
Float32 vs ALigN 0.0
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(a) Original Image (b) Single precision float32

(c) 8-bit linear quantization (d) Pixel difference between single-
precision Float32 and 8-bit linear
quantization

(e) Power of 2 quantization (f) Pixel difference between single-
precision float32 and Power of 2
quantization
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(g) Dynamic fixed point quantiza-
tion

(h) Pixel difference between single-
precision float32 and Dynamic
fixed point quantization

(i) log 2 lead quantization (j) Pixel difference between
single-precision float32 and
log 2 lead quantization

(k) ALigN quantization (l) Pixel difference between single-
precision float32 and ALigN

Figure 3.12: Object detection comparison with different quantization schemes using
FCN8 [8] network on PASCAL VOC 2012 validation set [9]
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3.4 Summary

In this chapter we have proposed two quantization based techniques for parameter

representation of pre-trained deep neural networks. First technique (L2L) provides

a fixed template for quantizing the DNN parameters by storing the most significant

bits of values after the leading 1 position, and gives less quantization errors than

existing techniques. Second technique (ALigN) adaptively analyses each layer of the

neural network and provides efficient configuration of storing substantial bits. ALigN

technique reduces the quantization error even further. We quantize small and large

neural networks and perform classification tasks using different datasets to evaluate

the proposed methods. Under the large DNNs category, state-of-the-art networks of

AlexNet, VGG-16, and Resnet-18 are tested on the ImageNet dataset for inference.

Further, we have also performed the segmentation task using the FCN8 network

for PASCAL VOC dataset. For both the classification and segmentation tasks, the

accuracy and mean IU of DNNs quantized with 8-bit proposed quantization techniques

is only slightly less than a full precision Float32 based network. In this way, we

achieve a considerable reduction in the computational and memory requirements of

DNN inference at the cost of a slight drop in accuracy. In the next Chapter 4, we

discuss the quantitative analysis of the proposed techniques to evaluate their efficacy.
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Chapter 4

Quantitative Analysis of the Proposed

Techniques

Until now, we have tested our techniques on a variety of deep neural network

models using different datasets. Here, we perform error analysis in a different way.

First, In Section 4.1, without considering the classification and segmentation tasks,

we check the average error in different layers on two types of pre-trained networks

AlexNet and VGG-16. For this, we use the error terms defined in Chapter 2. Further,

in Section 4.2, we discuss the decimal accuracy measures for 8-bit and 16-bit ALigN

technique. For this, we generate equally spaced points in the range of -1 to +1 and

quantize these points using different configurations of our ALigN technique.

4.1 Quantization Induced Errors

In this section, we discuss quantization error in the deep neural network layers and

individual parameters. Section 4.1.1 describes the average error induced in the DNN

layers and section 4.1.2 presents the relative error in DNN parameters.

4.1.1 Average Error in DNN Layers

We quantize different layers of pre-trained VGG-16 and AlexNet networks, using

L2L, ALigN, and various other quantization schemes to evaluate the average quanti-
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zation error in these layers. We compute the average error of each layer using equa-

tion 4.1. The original weights, in single-precision Float32, are quantized to 8-bits.

Figures 4.1 and 4.2 show the average errors in different layers of AlexNet and VGG-

16 networks, respectively. The traditional power of 2 quantization suffers the most

from quantization produced errors. It is found that, for both networks, our proposed

techniques always bear a minimal amount of quantization error in each layer.

Average error =
1

nj

nj∑
i=1

∣∣∣∣Xiquant −Xifloat

∣∣∣∣ (4.1)
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Figure 4.1: Comparison of average quantization induced errors for quantized weights
of convolution layers of AlexNet [3] between ALigN, log 2 lead, linear and power of 2
quantization schemes.

Further, ALigN always generates lesser errors than the L2L quantization scheme

as it efficiently utilizes the available quantization bit-width. In Figure 4.2, it can be

observed that linear quantization performs better than the L2L quantization for layer

conv1 1. In the L2L technique, the allocation of fixed four bits for storing the leading

1 location of the conv1 1 layer has resulted in under-utilization of these bits. This

layer parameters do not require more bits for storing the leading 1 location. However,

ALigN adaptively selects the number of bits for storing the position of the leading 1

for each layer, and it always performs better than the linear quantization.
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Figure 4.2: Comparison of average quantization induced errors for quantized weights
of convolution layers of VGG-16 [5] between ALigN, log 2 lead, linear and power of 2
quantization schemes

4.1.2 Relative Error in DNN Parameters

To further investigate the distribution of quantization induced errors, we compare

the relative error distribution of quantized weights for two different layers of VGG-16

and AlexNet networks using different quantization schemes as shown in Figure 4.3

and 4.4. Quantized relative error is calculated using equation 2.10, which is again

summarized below [45]

relative error =

∣∣∣∣Xquant −Xfloat

Xfloat

∣∣∣∣ (4.2)

It is observed that for both the networks, most of the quantization generated

errors for L2L are limited to a narrow band of values (0 — 0.1), whereas the relative

errors generated by linear quantization are spread over a broader spectrum (0 — 0.8).

The ALigN further reduces these errors and limits them to even a narrower band

than L2L.
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(c) ALigN quantization

Figure 4.3: Relative error distribution of quantized weights of Conv1 layer from
AlexNet [3] using different quantization schemes
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(b) log 2 lead quantization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Relative Error

0
2500
5000
7500

10000
12500
15000
17500
20000

O
cc

ur
re

nc
es

(c) ALigN quantization

Figure 4.4: Relative error distribution of quantized weights of Conv1 2 layer from
VGG-16 [5] using different quantization schemes
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4.2 Decimal Accuracy Measures

To show the efficacy of our proposed quantization schemes for the parameters of

pre-trained DNNs, we compare its decimal accuracy in the range of -1 to +1 with

bfloat16 [23] and minifloat [27] (this is independent of DNNs). The decimal accuracy,

defined in equation 4.3, represents the capability of a number system to represent

Float32-based numbers [45].

Decimal Accuracy = −log10

∣∣∣∣∣− log10

(
Xquant

Xfloat

)∣∣∣∣∣ (4.3)

(a) Minifloat (b) ALigN -1 6

(c) ALigN -3 4 (d) ALigN -6 1

Figure 4.5: Decimal accuracy of different 8-bit quantization schemes

First, we compare the decimal accuracy of 8-bit ALigN representations with mini-

float in Figure 4.5. Higher decimal accuracy shows better number representation ca-

pability. It can be observed that 8-bit ALigN representations provide higher decimal

accuracy compared to minifloat. Further, we compare the decimal accuracy of 16-bit
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(a) Bfloat16 (b) ALigN -1 14

(c) ALigN -7 8 (d) ALigN -14 1

Figure 4.6: Decimal accuracy of different 16-bit quantization schemes
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ALigN representations with bloat16 in Figure 4.6. As evident from various subfigures,

ALigN again performs better than that.

For better comparative analysis, we show the worst decimal accuracy of different

quantization schemes in Figure 4.7. For 8-bit quantization, the ALigN-1 6 (1 bit

reserved for storing the leading one location and 6 bits allocated to store the following

bits) provides the best results among all other 8-bit variations. Similarly, ALigN-

1 14 scheme provides the highest decimal accuracy. The ALigN-7 8 scheme provides

slightly better performance than the bfloat16.

Figure 4.7: Decimal accuracy of different quantization schemes for the active range
of values of pre-trained parameters (−1 to +1). ALigN -x y shows x bits reserved for
storing the leading 1 location and y bits allocated to store the following values after
leading 1 location.

Figure 4.8 shows the average decimal accuracy of the pre-trained weights of a single

layer, Conv1 2, of VGG-16 network using different quantization schemes. For 8-bit

quantization, the ALigN-3 4 scheme produces better results than other corresponding

8-bit schemes. The ALigN-3 12 configuration represents the quantized weights with

the highest accuracy. Similar results can be generated for other layers of the deep

neural network.

Further, we have observed that quantization-induced errors can be significantly
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Figure 4.8: Average decimal accuracy of the weights of Conv1 2 layer of VGG-16 [5]
network using different quantization schemes. ALigN -x y shows x bits reserved for
storing the leading 1 location and y bits allocated to store the following values after
leading 1 location.

reduced by deploying an 8-bit ALigN scheme. Table 4.1 presents the Top-1 and Top-

5 percentage classification accuracies using various bit-widths for the ALigN scheme

for two state-of-the-art DNNs. As shown by the results, the classification accuracy

improves for the both networks by increasing the quantization bit-width.

However, increasing quantization bit-width beyond 8 bits does not have a signif-

icant effect on classification accuracy. The corresponding cost in terms of resource

utilization, critical path delay, and energy consumption of the hardware implementa-

tion of the quantized DNN also grows with the rising quantization bit-width.

Table 4.1: ALigN-based quantization of two state-of-the-art DNNs using different
bit-widths

Quantization
Bit-width

ResNet-18 VGG-16
Top-5 % Top-1 % Top-5 % Top-1 %

Float32 88.94 69.3 85.74 64.72
6 86.59 65.71 85.13 63.65
7 88.61 68.33 85.64 64.53
8 88.84 69.42 85.71 64.62
9 89.05 69.2 85.74 64.71
10 88.95 69.34 85.7 64.67
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4.3 Summary

This chapter provides a detailed quantitative analysis of proposed quantization

techniques. We have presented quantization induced errors in various layers of DNN

and error distribution on the parameter level. Decimal accuracy describes the num-

ber of representation capabilities of parameter representation. Therefore, we have

compared the decimal accuracy of the proposed techniques with bfloat16 and mini-

float. We have also discussed the quantization error by varying the bit-width of the

ALigN scheme. Our proposed techniques significantly reduce the quantization error

and provide higher decimal accuracy compared to other quantization techniques.
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Chapter 5

Hardware Realization of Proposed

Techniques

In this chapter, we present the hardware realization of the proposed quantization

techniques, which reduces the hardware resources needed for quantized parameter pro-

cessing. For the multiplication operation involved in convolutional and fully-connected

layers, we have designed a processing element (PE) that reduces the hardware re-

sources. In this PE, computation hungry multiplication operation turns into low

computation bit-shift and addition operations. We also present the comparison of

resource utilization for the proposed multiplier and linear multiplier.

5.1 Processing Element

For accelerated computation in hardware, processing elements are used that rep-

resent the computational core. An increase in computational efficiency of processing

elements results in an overall increase in the hardware design performance. Linear

and logarithmic PEs are commonly used processing elements for quantized deep neu-

ral network parameters [29].

Processing elements usually refer to a combination of components to perform some

specific task. Vogel et al. [10] proposed a processing element that uses shift and addi-

tion operations for the multiplication of quantized weights W and activations X, and

the same is shown Figure 5.1, which forms our base. In this section, we first describe
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the algorithm for processing the proposed quantized parameters for multiplication,

and then we discuss the new multiplier design.

Figure 5.1: PE for two-hot quantized weights multiplication [10]

5.1.1 Algorithm for DNN Parameters Processing

The quantized weights consist of a dynamic range of values between -1 to +1.

Therefore, it is not possible to realize the multiplier with fixed number of shift

operations. This variable number of shift operations may lead to an increase in

overall hardware resources. To tackle this problem, Algorithm 1 describes a novel

resource-efficient implementation of the multiplication of an N-bit fixed-point feature

with an N-bit L2L- or ALigN-based quantized weight. First, it analyses the bN−1
2
c

‘remaining locations’ bits for quantized weight, for each set bit, it performs the shift

operation and adds the value to result (lines 2-4). Lines 5-7 show the shifting of the

output according to the ‘leading one location’ bits. For ALigN-based implementation,

different layers can have different configurations for storing the leading 1 location

and the remaining bits. Algorithm 1 allows us to adapt the multiplier for each layer

independently by changing the number of bits for storing leading 1 location and

remaining bits. We have proposed lookup tables for implementing Algorithm 1.
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Algorithm 1: Multiplication using L2L and ALigN

Input: Feature: x, Weight: w encoded in L2L or ALigN format

Output: y

y ← x

for i← 1 to bN−1
2
c do

if w
[
bN−1

2
c − i

]
6= 0 then

y ← y + (x >> i)

for j ← 0 to dN−1
2
e − 1 do

if w
[
bN−1

2
c+ j

]
6= 0 then

y ← y >> 2j

return y

5.1.2 Multiplier Design

In the convolutional and fully connected layers of DNN, multiplication and accu-

mulation of activation and parameters occur. Equation (5.1) and Figure 5.2 describe

the multiplication of single-precision Float32 based parameters and activations. In

Ristretto [27], authors replace the weight parameter w with quantized weights param-

eters q as shown in Equation (5.2). Then, they multiply the power of 2 quantized value

q to x by using shift operation, and each multiplied value is further added to get the

approximated output of a particular neuron as described in Equation (5.3). Similarly,

Vogel et al. [29] propose a multiplier design using bit-shift and addition operations to

reduce the computational resources required for multiplication.

output =
∑
i

xi.wi (5.1)

qi = round(log2(wi)) (5.2)

output ≈
∑
i

xi >> qi (5.3)

However, just considering the single-bit binary for parameter representation reduces

the precision of values. In our techniques, we retain the precision of parameters and
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use bit-shift and addition operations for the multiplication operation.

Figure 5.2: single precision floating point multiplication of activation weights of a
DNN layer

Figure 5.3: Multiplier-free multiplication of 8-bit quantized weights and single preci-
sion float activation

Figure 5.3 shows the multiplication of full precision activation x and 8-bit quantized

weight w using shift and addition operations. First, the remaining location bits are
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compared for shift and addition. Then, we shift the result by analyzing leading one

location bits.

5.2 Experimentation

We have implemented proposed Processing Element using Algorithm 1 in VHDL

for Xilinx Virtex-7 xc7v585tffg1157-3 FPGA using Xilinx-Vivado-17.4. Xilinx state-of-

the-art FPGAs provide 6-input lookup tables (LUTs) for implementing various types

of combinational and sequential logic. Our processing element utilizes these lookup

tables. We compare the resource utilization of our proposed PE with Vivado standard

multiplier IPs in Table 5.1. That is, we show the classification accuracies for VGG-

16 network on ImageNet dataset using L2L and linear quantization with different

bit-width for weights. We have implemented an 8-bit configuration of the proposed

technique, i.e., L2L (4 bits for storing leading one location and 3 bits for storing

remaining location). However, proposed implementation can be easily converted to

other adaptive ALigN configurations. We have implemented various bit-width linear

quantized multipliers and compared the accuracies as shown in Table 5.1.

The baseline for experimentation is single-precision Float32 based Top-5 and Top-

1 accuracies i.e., 85.74% and 64.72%, respectively, which are not listed in the table.

Top-5 and Top-1 accuracies of L2L based parameters and activation are higher, and

lookup table resources are also lower than an 8-bit linear quantized multiplier. With

the increase of bits, the number of LUT resources for the Vivado multiplier IP increase

rapidly. Even with 18 bits of precision, the accuracy of linearly quantized weights

design is only marginally better than L2L, despite consuming more than twice the

area of L2L design.
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Table 5.1: Comparison of resource utilization of proposed PE and Vivado multiplier
IPs along with corresponding classification accuracies for VGG-16 [5] network on Im-
ageNet dataset [6]

Achieved
Accuracy

Design
Quantization
Scheme

Feature size
(bits)

Weight size
(bits)

Resources
(LUTs) Top-5 [%] Top-1 [%]

PE log 2 lead (L2L) 8 8 67 85.63 64.47
IP Linear 8 8 85 82.55 59.83
IP Linear 8 9 89 85.34 64.26
IP Linear 8 10 109 85.56 64.52
IP Linear 8 11 111 85.72 64.65
IP Linear 8 18 166 85.7 64.67

5.3 Summary

This chapter describes the hardware realization of the proposed parameter repre-

sentation techniques. We have presented a processing element for the multiplication of

parameters quantized with the proposed quantization techniques. We have also shown

that the proposed PE efficiently utilizes the bit-shift and addition operations instead

of the computationally heavy multiplication operation. We have also compared the

resources required for implementing the proposed 8-bit log 2 lead based processing el-

ement with different bit-width Vivado standard multiplier IPs. Our technique requires

the least number of resources as well.
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Chapter 6

Conclusions and Future Work

This thesis has primarily investigated different approximation techniques used in

deep neural networks. In particular, we have developed two quantization based approx-

imation techniques that can be applied to pre-trained deep neural networks. First,

we have proposed a single template based DNN parameter quantization technique

called L2L. Further, we have introduced a quantization technique called ALigN that

involves adaptive layerwise analysis of DNNs to find the most significant bits of pa-

rameters. The layerwise analysis further reduces quantization induced error. These

proposed quantization techniques have been evaluated on various benchmark datasets

and results compared with various state-of-the-art quantization techniques.

We have tested the proposed techniques on AlexNet, VGG-16, and ResNet-18

DNNs for image classification on ImageNet dataset. For image segmentation task, we

have used FCN8 DNN on PASCAL Visual Object Classes dataset. For both the tasks,

image classification, and segmentation, we have observed only a slight reduction in

accuracy using 8-bit L2L and ALigN based quantized parameters compared to Float32

based parameters. Using our quantization schemes, we have also proposed a multiplier

design that uses bit-shift and addition operations. Our proposed multiplier has shown

≈ 39% reduction in hardware resource utilization compared to Vivado area-optimized

multiplier IP.
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6.1 Summary of Research Achievements

The objectives specified in Section 1.3 have been successfully fulfilled by the fol-

lowing contributions:

(i) L2L: Single template based quantization: We have proposed a

quantization-based parameter representation technique, L2L, for deep neural

networks in Chapter 3, which can be applied on pre-trained neural networks.

This technique analyzes the Float32-based DNN parameters and identifies the

bit positions of the most important bits. These bits help in retaining the pre-

cision of parameters. The proposed method is less computationally expensive

compared to retraining, fine-tuning, and iteration based traditional DNN quan-

tization methods. For the evaluation of our technique, we have quantized small

and large deep neural networks and compared the accuracy of image classifi-

cation on various datasets. For VGG-16 and ResNet-18 network, we observe

around 0.24 drop in Top-5 accuracy using our 8-bit L2L technique, compared

to full precision 32-bit parameters. L2L also significantly heals the quantization

induced error in parameters of these DNNs.

(ii) ALigN: Adaptive multi-template based quantization: We have explored

multi-template based parameter representation technique called ALigN for DNN

quantization in Chapter 3. This approach adaptively aligns the available quanti-

zation bit-width according to leading 1 position of parameters of each layer. By

providing different quantization templates for each layer, this approach reduces

the quantization error further as compared to L2L technique. ALigN technique

also does not require retraining or iterative approach for quantization. Further,

we have presented various bit-width of the proposed scheme for two state-of-

the-art DNNs. VGG-16 and ResNet-18 DNNs show only 0.065 drop in Top-5

accuracy using 8-bit ALigN technique compared to full precision 32-bit parame-

ters.

54



6.2 Future Research Directions

Despite significant progress in the field of approximating deep neural networks, it

can be explored in several interesting future directions as follows:

(i) DNN quantization using sampling techniques: Sampling is the process of

selecting a subset of a large population that possesses the behavior of the entire

population. Importance sampling has been used for different convex optimization

problem. Katharopoulos and Fleuret [49, 50] propose the methods to reduce the

gradient variance of stochastic gradient descent by using importance sampling

on training set of deep learning networks. Using these methods, they speed up

the training process of deep neural networks and reduces training loss. Further,

Mordido et al. [21] propose a quantization scheme for pre-trained training us-

ing importance sampling. With their quantization approach, they quantize the

weight parameters and activation of the neural network and reduce the memory

and computation requirement for inference. Seo et al. [51] use the kernel den-

sity estimation to obtain the probability density function (PDF) of convolutional

neural network parameters and perform sampling through this PDF. With this

approach, they quantize the deep convolutional neural network parameters in

low bit-width. However, their approach suffers the computation of fine-tuning

the quantized parameters. By taking a cue from the approaches mentioned

above, other sampling techniques such as deterministic sampling and probability

density-based sampling techniques can be explored for the quantization of deep

neural networks.

(ii) Training of DNN with log 2 lead and ALigN quantized parameters:

In our approach, we have applied our proposed quantization techniques on pre-

trained deep neural networks to reduce the computation and memory needs dur-

ing the inference phase of DNNs. Our approach can be further enhanced for

even training with quantized parameters, as our technique retains the precision

of parameter and provides a dynamic range for training. Hubara et al. [36] pro-

pose training of deep neural network models with reduced bit-width parameters.
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Training with these quantized parameters reduces the computations involved

in forward and backpropagation. Few researchers also present efficient training

using quantized parameters [4, 34].

(iii) Hardware accelerator for DNN using log 2 lead and ALigN techniques:

We have developed a processing element for multiplication using bit-shift and

addition operations for values quantized with the proposed technique. Some

works have proposed full hardware accelerators for deep neural network process-

ing [40, 44, 42]. Our proposed processing element can also be enhanced for a full

hardware accelerator for DNNs.

For other possible future directions, we can also consider the proposed L2L and

ALigN quantization techniques for natural language processing and text generation

tasks of machine learning.
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