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Abstract

On account of their simplicity, homogeneous logic representations have drawn at-

tention in the domain of logic synthesis. In such representations, combinational circuits

are often modeled as Directed Acyclic Graph (DAG) wherein terminal nodes represent

primary inputs and other nodes represent same Boolean logic operation. The edges in

DAGs can be complemented where the nodes have a complemented output, which ren-

ders a functionally universal representation. Such homogeneous logic representations

simplify optimization algorithms significantly, hence, assist in e⇥cient implementation.

This thesis performs an analysis into the inversion optimization of a homogeneous

logic representation, referred to as majority inverter graph (MIG) using minority oper-

ations. MIG is a logic representation structure that along with its algebraic properties

and Boolean transformation methods synthesizes circuits with significant optimization

in terms of size, depth, and switching activity. In this work, we first propose rules and

properties for logic representations with minority and inversion operations referred to

as mIG logic synthesis. Subsequently, we propose synthesis techniques based on mi-

nority, majority, and inversion operations, referred to as mMIG synthesis. We propose

an algorithm based on the rules and properties to achieve an optimization in terms

of area reduction and inversion reduction in mMIG-based circuit synthesis. We present

comparison of resource consumption in mMIG logic synthesis with existing MIG synthesis

techniques, and present some important observations towards inverter optimization.

These propsed methods have been tested on various standard benchmark circuits,

such as EPFL benchmark suites, ISCAS’85 and also on lightweight cryptographic block

ciphers and cryptoprimitives. Analysis of the implementation results demonstrates

that the proposed mMIG structure outperforms the existing MIG structure mainly

in term of reduction in inversion count which can have major impact in emerging

technologies such as quantum dot cellular automata (QCA) and spin wave devices (SWDs),

and inversion intensive circuits such as RAM address-decoding circuits.

Keywords: Minority logic, Inversion, Boolean algebra, Majority logic, Inversion

Optimization.
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m(m(z, x, ȳ), x,m(y, x, z̄))) which shows the savings in the inverter

count compared to MIG representation, and Carry(C) as logical OR

operation on all the set of two variable logical ANDed with another

variable expressed in MIG representation, C = M(x, y, z) . . . . . . . . 89

4.21 Implementation of SIMON round function using 2 majority gate,5 mi-

nority gate along with only 2 inverter(mMIG) where Ri, Li denotes the

right half and left half of the word respectively. Si denotes the circular

left shift by i number of bits,Ki denotes key value and the results are

Ri+1,Li+1 respectively in the i
th step of the process. . . . . . . . . . . . 90

4.22 mMIG implementation of the coordinate function g0 where inverters are

saved due to optimized XORn implementation of the circuit where

w, x, y and z are the input Boolean variables. . . . . . . . . . . . . . . . 93

4.23 mMIG implementation of the coordinate function g1 leads to reduce the

inverter count due to mMIG implementation of XORn operation where

w, x, y and z are the input Boolean variables. . . . . . . . . . . . . . . . 93

4.24 MIG and mIG representation of the coordinate function g2 and g3,

depicts the total savings of the inverter count where w, y and z are

input Boolean variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.25 MIG and mMIG implementation of the coordinate function f0, f1, f2 and

f3 shows the reduction in complemented edges(CEs) where w, y and z

are input Boolean variables. . . . . . . . . . . . . . . . . . . . . . . . . 94

xv





List of Tables

3.1 Timing complexities of di⇤erent components of mMIG Algorithm. . . . 65

4.1 Performance Metrics comparison between MIG and mMIG implemen-

tations of IWLS’05 and Arithmetic HDL benchmark circuits on 20-nm

technology node of Kintex UltraScale FPGAs. . . . . . . . . . . . . . . 70

4.2 Resource count ofMIGand mMIG representation of ALU control unit w

here #NMIG, #CEMIG, #NM mMIG, #Nm mMIG, #CEmMIG denotes

number of majority nodes, number of CEs in MIG synthesized circuit,

and number of majority nodes, number of minority nodes and number

of CEs in mMIG synthesized circuit, respectively. . . . . . . . . . . . . . . 75

4.3 Resource count ofMIGand mMIG representation of Int to float con-

verter where #NMIG,#CEMIG,#NM mMIG,#Nm mMIG,#CEmMIG de-

notes number of majority nodes,number of complemented edges in MIG

synthesized circuit and number of majority nodes, number of minority

nodes and number of CEs in mMIG synthesized circuit respectively. . . . 76

4.4 Resource count of MIG and mMIG representation of Lookahead XY

router where #NMIG,#CEMIG,#NM mMIG,#Nm mMIG,#CEmMIG de-

notes number of majority nodes, number of CEs in MIG synthesized

circuit and number of majority nodes, number of minority nodes and

number of CEs in mMIG synthesized circuit, respectively. . . . . . . . . . 76

4.5 Resource consumption for XORn implementation in MIG and mMIG

synthesis methods. min, MAJ, and INV refer to minority, majority,

and inverter operations, respectively. . . . . . . . . . . . . . . . . . . . 87

xvii



4.6 #NMIG: number of MIG nodes, #CEMIG: number of complemented

edges in MIG, #NmIG: number of mIG nodes, #CEmMIG: number of

complemented edges in mMIG in two Addition- Rotation-XOR operation

(ARX) based S-boxes: MARX-2 and SPECKEY. . . . . . . . . . . . . 88

4.7 Resource count of MIG and mMIG of distributed functions in Present

S-box.N,CE,MIG,mMIG refer to nodes,complemented edges,MIG nodes,

and mMIG nodes, respectively. . . . . . . . . . . . . . . . . . . . . . . . 95

xviii



Chapter 1

Introduction

The present day advancement of digital electronic circuits is substantially at-

tributed to the strong coupling between electronic design automation (EDA) tools and

complementary metal oxide semiconductor (CMOS) technology. Over the years, circuits

with higher density and performance enhancement were enabled due to the continu-

ous downscaling CMOS technology [3]. To progress at the same rate, present day EDA

tools are challenged to handle both ever-increasing circuit topologies with growing

functionality and emerging device models with increasing complexity.

Present day EDA tools are fine tuned for CMOS device technology; the underlying

optimization methodologies are tuned to CMOS logic primitives, such as NAND-NOR

or AND-Inverter instances. Such logic primitives are considered to be the ultimate

building blocks over the next decade [4], however, literature does not demonstrate

any evidence that are the optimal basis for any EDA software. In the timeline of EDA,

the design metrics have repeatedly shifted along with technology changes, such as

from cost of transistors to need for speed, and a subsequent shift to reduced power

and energy consumption. An e⇥cient way to implement an optimal hardware design

depends on the way logic functions are represented in EDA tools.

In present day world, relentless evolution of electronic devices and products is

threatened by physical limitations of conventional CMOS technology to further scale

down transistor size. To satisfy futuristic constraints and sustain Moore’s prediction,

recent research is focusing its attention on emerging nanotechnologies as candidates
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for replacing traditional CMOS. Nanotechnologies, however, often carry di⇤erent logic

primitives, for instance, majority and XOR, for which contemporary logic synthesis

techniques are not fully satisfactory from multiple performance metrics. We attempt

to address the following evolving question: “Can present day logic synthesis techniques

demonstrate better performance metrics if based on new, di⇥erent, logic primitives?”.

In this thesis we address the performance metrics of inverter minimization, which incur

a huge overhead in designs, such as RAM address decoding circuit.

1.1 Logic Synthesis in EDA

Logic synthesis is a key component in EDA tools, as logic functions are extracted

from high level programming languages (for e.g. C, C++), and hardware descrip-

tion languages (HDLs) (for e.g. Verilog/VHDL). Optimization of such extracted logic

functions is crucial to achieve e⇥cient implementations. Due to the vastness of prob-

lem size and plurality of choices, present day logic optimization has been a daunting

task, which has necessitated design automation. Over the years, logic synthesis has

progressed through combining theoretical results and engineering practices. The idea

of design optimality has been obscured by factors, such as circuit complexity, delay,

and power consumption. In absence of precise objective function of the mentioned

factors and prevalence of large design space, tool flows have largely been dependent

on heuristics. Present day logic synthesis techniques aim to push the limits of perfor-

mance throughput upwards, and power consmption downwards. These factors have

been compounded by other metrics, such as, testability, reliability, and area reduction.

Typical EDA tools constitute front-end and back-end phases that comprise algo-

rithms and methods used to design complex electronics systems. As shown in Fig-

ure 1.1, taking a high level description (HDL) of an electronic circuit design, an EDA flow

proceeds through several logic abstractions and generates an implementation compris-

ing primitives from the technology library [1]. The main steps comprising the flow are

high level synthesis, logic synthesis, and physical design. High level synthesis trans-

forms a programming language description or HDL into register transfer language (RTL)
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Figure 1.1: Logic Optimization in front-end and back-end phases of EDA design flow.

netlist. The logic synthesis performs optimization and maps a circuit from RTL netlist

into standard cells (ASICs) or look up tables (FPGAs).

The low level synthesis phase performs place and route operations wherein physical

resources are assigned to the mapped logical elements followed by routing which in-

terconnects the placed logic elements. The focus of this work is on logic optimization

in the logic synthesis phase. Conventional primitive gates used in logic synthesis are

AND, OR, and INV. Present day logic optimization methods exploit local functionality

of primitive gates and the topology over which the circuit is described. For instance,

two-level AND-OR logic circuits, also called sum-o-products (SOPs) work on optimizing

the cubes (inherently AND functions) and their sum (OR function) [5].

In multi-level logic representations, logic gates exhibit an unbounded functional-

ity, implying that each element can represent an arbitrary logic function. However,

these logic elements are represented as SOP polynomials, which are factorized into

AND/ORs [6]. However, present day research focus on new compact representations of

logic functions, such as majority and inverter operations [2], which are combined to-

gether with powerful manipulation and combination techniques. The state-of-the-art

design tools, while performing optimization in terms of area or depth reduction of the

circuit, make extensive use of such homogeneous logic circuits.
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1.2 Motivation

Present day EDA tools encounter challenges that are harder than ever as design

sizes in CMOS technology approach the ultimately achievable limit. Analysis of new

logic primitives can enhance the potential of logic synthesis and formal verification

tools that presently exist in CMOS technology. New logic primitives can enable such

tools reach points in design space that were not accessible earlier [7].

Further, research of new logic primitives is necessitated due to the emergence

of new nanotechnologies that o⇤er enhanced functionality over conventional (CMOS)

switches [8]. In logic optimization, the circuit representation is manipulated to mini-

mize a certain performance metric, such as, area (number of nodes or elements), logic

depth (maximum number of levels), or interconnections (number of nets or wires),

etc. In the EDA timeline, the standard logic representation has moved across various

schemes, such as, sum-of-product (SOP) form, product-of-sums (POS) form, directed

acyclic graph (DAG) representation [9]. Most of the recent technologies such as Spin

Wave Devices (SWD) [10], Quantum-dot Cellular Automata (QCA) [11], and resistive

random access memories (RRAM) [12] are based on majority logic and present scope

of optimal implementation. In fault-tolerant computing paradigm, the cost models

illustrate that majority gate can be implemented at the same cost as AND/OR gate [13].

In other words, the present day EDA tools necessitate emerging logic synthesis tech-

niques and abstractions to attain chosen performance metrics [14]. An approach

towards synthesis of RRAM-based logic circuits using MIGs was proposed in [15]. In

[16], the memristive behavior of RRAM is captured as a majority based logic operation

for e⇥cient synthesis of logic-in-memory circuits and systems.

In [2], a logic representation structure called majority inverter graph (MIG) was

proposed which comprises three-input majority nodes and complemented edges, thus

forming a directed acyclic graph structure. MIG-based logic synthesis methods have

demonstrated superior performance e⇥ciency for both standard CMOS and emerging

technologies [2]. The work proposed Boolean algebra involving majority and inversion

operations that led to strong optimization depicted by reduction in average delay, area
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and, power over multiple academic and industrial benchmark circuits. In addition,

the MIG synthesis technique and the optimizer (MIGHty) employs inherent properties

of MIGs, such as bit error masking in circuit optimizations. For arithmetic benchmark

circuits, the synthesis technique enables 16% depth reduction in LUT-6 circuits com-

pared to implementations in ABC synthesis tool. With the advent of majority gates

with larger fan-in in emerging technologies, the work in [17] proposed novel majority

logic synthesis flow for majority gates with arbitrary number of inputs. Optimization

methods of MIGs in sequential circuits was first examined in [18]. The work demon-

strated an improvement of 9% and 38% in area and delay performance metrics as

compared to ABC tool.

In MIGs, inversion operations are represented as complemented edges (CEs).

Emerging technologies that are built using only majority and inverter operations

demonstrate that minimization of inverters plays an important role as area and de-

lay cost metrics depend heavily on the number of inversion operations in the cir-

cuit [19, 20]. In [20], minimization of complemented edges relied on recursive applica-

tion of inverter propagation axiom to move complemented edges on the inputs to the

respective output. A set of transformation rules without a⇤ecting the depth and the

size of MIG was applied on all majority nodes of the circuit. The work demonstrated

how the minimization of complemented edges a⇤ected circuit performances in Spin

Wave Devices (SWD) and Quantum Cellular Automata (QCA) based technology.

In this work, we demonstrate how minority operation along with majority and

inverter graph (mMIG) representation for a Boolean function can aid to MIG based logic

synthesis for improved reduction in inverter count. We first propose Boolean algebra

for minority inverter graph (mIG) and mMIG synthesized circuits, followed by multiple

case studies of performance improvement for MIG synthesized circuits with minority

operations on design and implementation of basic functional blocks that form the core

of datapath elements in ISCAS’85 benchmark circuits, EPFL benchmark circuits, and

circuits embedded in crypto-processor designs.
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1.3 Background

In automated EDA design flow, multilevel logic synthesis plays an important role

towards finding Boolean functions with better quality while considering di⇤erent cost

functions. The cost functions comprise number of logic gates, logic depth, and switch-

ing activity targeted towards better area, performance, and energy, respectively [21].

To address this issue, e⇥cient representation and optimization of Boolean functions

are key features [7]. For instance, compact logic representations aim to contain mini-

mal number of primitive elements, such as, literals, sum-of-product terms, and gates

to have a small hardware footprint requiring as few library elements as possible.

Conventional logic representation forms comprise two level forms, such as, product-

of-sums (POS) and sum-of-product (SOP) forms. Over the years, such representation

forms have been augmented by e⇥cient heuristic and exact optimization algorithms.

With rapid progress in VLSI technology platforms, standard logic representations

moved towards directed acyclic graph (DAG) representations where nodes represent

logic gates, and directed edges represent the wires connecting the nodes.

The work in this work is based on [2] that depicted how majority and inversion

operations through a set of transformation methods can be used to derive MIG alge-

braic optimization methods. The set of transformation methods were based on a set of

axioms and derived theorems of Boolean algebra, such as commutativity, associativity,

distributivity, and inverter propagation. The MIG representation used other inherent

properties of majority function, such as bit-error masking, to further optimize the syn-

thesized circuits. The experimental results demonstrated that the circuit optimized

MIG representations could achieve depth reduction of up to 7% in circuits implemented

in LUT-6 technology by the ABC tool [22]. The transformations also reduced circuit

size as well as power activity when compared to similar AIG optimization. In addi-

tion to reducing the average delay, area and power in standard CMOS circuits, MIG

based circuit synthesis has also explored multiple majority operator-based nanotech-

nologies [23]. This has led to a renewed interest in circuits synthesized in majority

operations followed by optimization [24, 25], producing competitive results in CMOS
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ASICs and Field Programmable Gate Arrays (FPGAs).

For beyond-CMOS technologies, such as TFET and SpinFETs, physical implementa-

tion of inverter is more expensive than majority operation, which motivates us to aim

to reduce inverter count in circuit implementations [24]. Furthermore, emerging tech-

nologies, which employ majority and inversion operations for circuit representations,

area and delay cost of the respective implementations have significant dependence on

the inverter count in the circuit [20]. Hence, in such technologies, minimization of

number of inverters is a big challenge. The work in [20] used inverter propagation

across two and higher levels to reduce the overall inverter count. However, these

methods have limitations where the number of inverters in the smaller subtrees are

small. Circuits that have predominantly NAND or NOR logic gates over a large num-

ber of smaller subtrees around leaf nodes can be one such instance. In this work,

we demonstrate how an optimization method based on minority, majority

operations and interconnecting complemented edges (CEs) can lead to a

significant reduction in the number of inverter count.

We first demonstrate the derived theorems of Boolean algebra for mIG circuit rep-

resentations, followed by various subclasses of derived theorems. This is followed by

case studies of various combinatorial circuits used in various applications. However,

we state here that our optimizations assume that the standard cell library implemen-

tation of minority and majority operations consume equivalent amount of resources

in terms of area and delay. Furthermore, in present-day FPGA platforms, such as

SPARTAN-6 device family, an LUT6 (six-input lookup table) hardware primitive en-

ables implementation of eight majority, or eight minority gates, or a combination of

eight majority/minority gates in the same LUT, as both majority and minority logic

mapping consume the same amount of resources when they are mapped to an LUT

implementation.
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1.4 Thesis Contributions

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

Contribution I:

We propose a set of rules for Boolean algebra in minority inverter graph (mIG) and

minority-majority-inverter graph (mMIG) representation of a circuit.

Contribution II: We have explored the use of proposed rules. For each set of rules,

we demonstrate the class of rules where mIG and mMIG representations yield better

performance as compared to MIG representation in terms of reducing the count of

inversion operations (demonstrated as a reduction in CEs in the circuit graph).

Contribution III:

We have proposed novel mMIG logic optimization algorithms for size and depth

optimization of the circuit, which comprises reshaping algorithm, inverter propagation

algorithm, etc.

Contribution IV:

We present case studies of various combinatorial logic circuits in EPFL, ISCAS’85

benchmark circuits, and lightweight cryptographic primitives, which demonstrate mi-

nority operation along with majority and inversion operations yield better resource

optimization in terms of reduction in CEs as compared to only majority and inversion

operations.

Contribution V:

We further demonstrate circuit instances which, when implemented with minority,

majority, and inversion operations (we refer to it as mMIG synthesized circuits) yield

reduced cost in terms of inverter count (and hence reduced net delay in the critical

path), and smaller signal switching power as compared to MIG circuit representations.

Contribution VI:

We propose the logic synthesis optimization flow in mMIG synthesis as shown in

Figure 1.2. Considering an input circuit in MIG synthesis, the optimization steps for
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Figure 1.2: Logic synthesis optimization flow involving mMIG based Boolean algebra.

mMIG synthesis proceeds through the following three phases:

(i) Functional and Graph Decomposition: The MIG topology is partitioned into

logic cones as determined by the outputs of the circuit, and substitute majority

nodes driving a complemented edge (CE) with a minority node. Each logic cone

is further split into smaller partitions which comprise only connected majority

nodes, only connected minority nodes, and groups comprising interconnected

majority and minority nodes.

(ii) Logic Minimization: In this phase, we apply size optimization of each sub-

partition by reducing the complementary edges (CEs) through inverter propaga-

tion and replacement of majority node and immediate inversion with minority

gate, wherever possible in each partition.

(iii) Post-Processing: We apply a set of axioms and proposed derived theorems, such

as, relevance, reconvergence swapping, and substitution on the mMIG logic ob-

tained from the logic optimization phase to achieve reduction in both, comple-

mented edges (CEs) and size.
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1.5 Organization of the Thesis

This thesis is organized into five chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This chapter describes the background knowledge of logic synthesis techniques,

the motivation of our work, and the contribution of this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter provides a detailed literature survey and a summary of various logic

representation techniques and data structure in the logic synthesis technique.

Chapter 3 (Reducing Inversion Overhead with Minority Operations)

In this chapter, we propose a set of transformative algebraic rules for minority

inverter graph (mIG), representation properties, and Boolean algebra corresponding

to minority logic data structure. Subsequently, we present a minority-majority

inverter graph (mMIG), its representation properties, and transformative algebraic

rules followed by the mMIG logic optimization algorithm, which majorly comprises

reshaping algorithm, INV propagation algorithm, mMIG size optimization algorithm.

Chapter 4 (Experimental Results: Case Study and Comparison)

In this chapter, we have shown a comparative assessment of the logic optimization

algorithm that we proposed for mMIG implementations with corresponding MIG

implementations. It contains experimental results of standard combinational circuits

from EPFL benchmark suites, ISCAS’85 benchmark suites and combinational circuits

that form the core of certain cryptographic primitives in both private and public key

cryptography.

Chapter 5 (Conclusions and Future Work)

This chapter briefly describes the contribution of this thesis and the possible

future directions of our work.
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Chapter 2

Literature Survey

Since its origin, the overall problem of logic synthesis has been centered around

finding the “best implementation of a logic circuit”. The term “best” often depends

on the goals, such as circuit complexity, delay, and/or power consumption for com-

binational logic synthesis. The initial approach to address this problem dwelt upon

sum-of-product (SOP) representations, which focused on reducing the cardinality of

product terms called implicants or logic covers. Typical representations of SOPs, such

as programmable logic arrays (PLAs) had rectangular shapes with rows corresponding

to product terms. Hence, reducing the count of product terms imply area reduction

as well. The first logic synthesis algorithm, Quine-McCluskey algorithm solves for

exact minimization of logic cover [26]. With usage of advanced data structures, the

algorithm solved most benchmarks. To reduce computing time, several heuristic min-

imization approaches of two level forms were preferable over exact minimization [1].

Such an instance is ESPRESSO, which yielded irredundant covers with near-optimal

size [27].

On similar lines, logic synthesis research has been extensively devoted to exclusive-

sum-of-product (ESOP) minimization [28]. Similar to ESPRESSO, single-output or

multiple-output functions are optimized as an intermediate step of logic synthesis

flow. In the domain of quantum computing circuits, ESOP minimization is important

as ESOP forms can be transformed into cascaded To⇤oli gates providing a reversible

logic solution. In 1980s, with the advent of CMOS technology and semicustom design
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styles, scientific research emerged in contemporary logic synthesis.

The initial problem comprised transforming logic functions into “best” intercon-

nections of primitives of technology library. As a result, many solution e⇤orts partition

synthesis into technology-independent phase, wherein interconnections between blocks

are minimized irrespective of the underlying technology. This was followed by a tech-

nology mapping step where primitives from library are chosen. With ever-changing

technology specifications, recent e⇤orts addressing the problem, “What should be the

maximum dimension of a logic block to achieve an optimum realization subjected to

specific constraints?”. Optimality in this case may imply minimum area, i.e., sum

of area consumed by selected library cells [29, 30, 31], or minimum delay [32, 33],

which is the critical path delay of the circuit, which can be computed once the cells

are chosen and verified after physical design phase. The optimality problem can also

be defined in terms of satisfiability (SAT). With availability of increasingly powerful

computer resources, increasingly larger optimal circuits (targeting area or delay) can

be computed. However, given the large design space, the main issue is the practicality

of such an approach for very large circuits. Such present-day circuits comprise mil-

lions of NAND-equivalent gates. Nevertheless, divide-and-conquer approach is applied

by decomposing logic networks into logic blocks, and logic blocks are synthesized using

exact methods.

In addition, the “optimal” implementations of functional blocks are put up as

library primitives; the primitives can be instantiated by logic synthesis algorithms at

runtime. This design flow helps restraining from possible blow-up in size of Boolean

function representations, hence forms underlying input to optimization algorithms. In

the next section, we present logic representations that are used to capture e⇥ciently

logic circuits as interconnection of blocks and assist heuristic-based and exact method-

based optimization methods.
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2.1 Logic Representation

One of the most important factors that determine e⇥cient hardware implementa-

tions is the way that logic functions are represented in EDA tools. The two important

factors that determine the structure of logic representation are as follows:

(i) Logic representations aim to comprise least number of primitive elements, for

e.g., literals, sum-of-product terms, nodes in a circuit graph in order to have small

hardware footprint and require as less number of library elements as possible.

(ii) Logic representations must be simple enough to have smaller rules for optimiza-

tion.

Typical data structures, such as two-level representations [1] or binary decision di-

agrams (BDDs) [34, 35], are chosen for representations depending upon the trade-o⇤

between compactness and ease of optimization.

In the initial years of EDA, the standard logic representation form was the sum-of-

products (SOP) form, i.e, a disjunction (OR) of conjunctions (AND) of literals [36]. This

form was used in programmable logic array (PLA) technology wherein the functional-

ity was implemented as SOP [37]. Other two-level forms that were analysed comprise

product-of-sums (POS) and EX-SOP [28]. Two-level logic exhibits compactness for small

logic functions only, beyond which it is hard to e⇥ciently map to silicon. Neverthe-

less, two-level logic representation has been e⇥cient heuristic and exact optimization

algorithms.

With advent of technology scaling and emerging VLSI technologies, standard logic

representation shifted from two-level logic to directed acyclic graphs (DAGs). In DAG-

based representation, nodes denote logic functions of gates, and directed edges rep-

resent wires connecting the nodes. The nods can have representations in SOPs which

leverage the e⇥ciency of two-level forms. In general, each node is assigned a typical

function while an edge can be a regular or a complemented one. A prominent ex-

ample of DAG where each node realize the same function is binary decision diagram

(BDDs) [38]. In a BDD, a node is a 2 ◊ 1 multiplexer. Another instance of such a
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DAG is the AND-OR-Inverter Graph (AOIG), wherein nodes represent two-input ANDs.

Circuit topologies in AIG can be optimized by using conventional Boolean algebra

and derived theorems. In AIGs, local transformations render small resource footprint

through various logic optimization rules. Hence, AOIGs have become one of the present

representation standards for logic synthesis.

Another node functionality that possess enhanced expressiveness and have more

varied optimization strategies as compared to conventional AOIGs, hence, leading to

superior synthesis results are the majority nodes. Such homogeneous structures enable

algebraic rewriting, which reshape circuit partitions to reduce the number of nodes and

levels [39]. A circuit designer can build up a database of precomputed circuit topologies

of a function. For a particular topology, the designer can compute the corresponding

function, and ascertain whether replacing the topology with a precomputed topology

leads to an improvement.

2.2 Logic Optimization

Logic optimization entails transforming a logic representation to minimize a a per-

formance metrics. Some usual performance metrics comprise size (number of nodes),

depth (maximum number of levels), interconnections (number of edges/complemented

edges). Such optimization algorithms are strongly coupled to the data structures on

which they are run. For instance, minimization of two-level SOPs can be achieved

by reducing the number of terms. Such minimization is achieved by the program

ESPRESSO [27], which incorporates both, an optimal implementation of Quine Mc-

Cluskey algorithm [26] for exact minimization, and fast near-optimal heuristics [40].

Further, minimization through exact method in BDDs was attained in [41] and through

heuristics.

Over the decades, various approaches have been taken towards logic optimization,

which comprise algebraic methods that are based on polynomial algebra [42, 43], al-

gebraic rewriting based on algebraic axioms and theorems [39], and Boolean methods

based on Boolean algebra [44, 45, 46]. In all these approaches, heuristics are applied
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to select the variant and sequence of transformations.

As this thesis deals with DAG based data structures, we mention certain aspects of

DAG-based logic optimization methods. Typically such optimizations are classified into

two groups: algebraic methods which are fast and Boolean methods which are slow but

may achieve better results [47]. Conventional algebraic methods assume that the DAG

nodes are transformed into SOP form and consider them as polynomial expressions [1,

48]. The algebraic operations are applied on each DAG node until further optimization

is not feasible. The basic algebraic operations comprise extraction, decomposition,

factoring, substitution, and balancing [47, 43].

In comparison to algebraic methods, Boolean methods consider the functions on the

basis of their Boolean nature and don’t cares to achieve a better solution [46, 49, 50].

Functional decomposition is another Boolean method which represents the original

function by smaller component functions [51]. A more scalable approach to functional

decomposition is BDD decomposition that can be applied recursively while exploiting

optimization opportunities, which are not achievable by algebraic methods [52, 53, 54].

It is to mention that main hindrance in developing Boolean algorithms is due to

unlimited design space of choices.

Logic optimization results demonstrate that DAG nodes in data structure, such as,

AOIG, when subjected to one type of logic transformations, such as, balancing, refactor-

ing, and rewriting have reinforced improved results [39, 48, 55]. In algebraic rewriting,

AIG subgraphs are replaced with equivalent AIG implementations through a combi-

nation of balancing and refactoring logic transformation steps. Repeated application

of local and powerful transformation steps often lead to reduction in depth levels and

area. However, researchers observed that Boolean methods can still yield better per-

formance as compared to AIG optimization in many circuit topologies instances [56].

In this thesis, the work is based on the basic operations of majority (MAJ) and

inversion (INV) nodes. We use the term inversion operation and complemented edge

(CE) interchangeably. As shown in Figure 2.1, the majority function is at the center

of Boolean function classification [1].

We state some existing Boolean an algebraic optimization techniques of the data
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Figure 2.1: Majority function in the center of Boolean function classification [1].

structure MIG and how such techniques enable reaching to new points in the design

space.

2.3 Preliminaries

In this thesis, we consider the set of Boolean functions, Bn ⇧⌃ B, where B = {0, 1}

denotes the set of binary Boolean values. The conjunction (AND) and disjunction (OR)

operators are represented by the symbols ⇥ and �, respectively. The inversion (INV)

operator is denoted by � operator and 0/1 represent teh false/true logic values. The

standard Boolean algebra operates on the set (B,⇥,�,� ). Boolean algebra comprises

the operations identity, commutativity, associativity, distributivity, and complement

axioms over ⇥, �, and � operators.

The axiomatization of Boolean algebra defined by the logic arguments and axioms

are valid (soundness) and provable (completeness) [57]. A logic circuit is a directed

acyclic graph (DAG), wherein nodes refer to logic functions, and directed edges denote

interconnections between the nodes. The direction of edges in such DAGs indicate

the flow of computation from the inputs to the outputs. In this thesis, we refer to
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logic function and logic circuit interchangeably. A logic circuit is homogeneous if each

logic node represents the same logic function, and edges can possess a regular or

complemented attribute. The depth of a node is defined as the length of the longest

path from any primary input to that node. The depth of the logic circuit is the largest

depth among all nodes. The size of a logic circuit is the number of nodes in the circuit.

The majority function is a logic function which falls in the class of self-dual function

as shown in Figure 2.1. A logic function f(a, b, . . . , c) is self-dual if f = f
�(a�, b�, . . . , c�).

By the property of complementation, self-dual function can also be formulated as

f
� = f(a�, b�, . . . , c�). Hence, the majority function defined as f(a, b, c) = (a ⇥ b) � (b ⇥

c) � (c ⇥ a) is a self-dual function [1].

2.3.1 Majority Function

The majority function M on n inputs (n being odd) returns the truth value taken

by more than half of the inputs. The function M returns the truth value one if k

number of input variables (k ⌥ �n
2  ) are equal to one. For instance, the three-input

majority function can be represented as M(x, y, z) = (x ⇥ y) � (y ⇥ z) � (x ⇥ z).

Moreover, (x � y) ⇥ (y � z) ⇥ (x � z) is also a valid representation for M . Based on

majority and inversion operations, majority-inverter-graph (MIG) data structure have

been proposed in [2]. In the next section, we revisit the representation properties and

demonstrate the Boolean algebra that fits in the MIG data structure.

2.3.2 Majority Inverter Graphs

A majority inverter graph (MIG) is a homogeneous logic circuit, wherein each node

represents a majority function with an indegree of 3; the edges in the graph can

be a regular or complemented. A majority operation defined as M(x, y, z) works as

conjunction operation, AND(x,y) when z = 0, and as disjunction operation OR(x,y)

when z = 1. An MIG representation for the logic circuit f = (x3 � (x2 ⇥ (x�
1 ⇥ x0)�))

is shown in Figure 2.2. The conventional AOIG circuit is first taken as the input,

which comprises of AND, OR, and INV operations. The INV operation is shown as a
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complemented edge (CE) in the figure. The circuit is transformed into MIG circuit by

replacing the AND (OR) operations with majority (MAJ) nodes, wherein one input is set

to zero (one) truth value.

Figure 2.2: AOIG to MIG representation for the circuit, f = (x3 � (x2 ⇥ (x�
1 ⇥ x0)�)),

and further MIG depth optimization. The operator ⇥ and � represent AND and OR
operations, respectively.

Moving a one step further in the figure, applying distributivity property on two

lower nodes in MIG leads to depth reduction of the circuit. We next state the MIG

Boolean algebra based on which logic transformations and optimizations are carried

out.

2.3.3 MIG Boolean Algebra

The MIG Boolean algebra is defined over the set (B,M,
�
, 0, 1) where M is the

majority operator. In this thesis, we use “ ” and “ � ” notations for inversion operation

interchangeably. The five primitive transformation rules, referred to as ⌃, form an

axiomatic system as follows,

(i) Commutativity, ⌃.C: M(x, y, z) = M(x, z, y) = M(y, x, z)

(ii) Majority, ⌃.M : M(x, y, x) = M(x, x, z) = x, M(x, y, x�) = y

(iii) Associativity, ⌃.A: M(x, u,M(y, u, z)) = M(y, u,M(x, u, z)) =

M(z, u,M(y, u, x))

(iv) Distributivity, ⌃.D: M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)

(v) Inverter Propagation, ⌃.I : M(x�
y
�
, z

�) = M
�(x, y, z)
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In addition to these axioms, several other properties or theorems were derived from

⌃ in (B,M,
�
, 0, 1). This set of rules were referred to as ⌅ and are described hereafter,

(i) Relevance, ⌅.R: M(x, y, z) = M(x, y, zx/y�)

(ii) Complementary Associativity, ⌅.C: M(x, u,M(y, u�
, z)) = M(x, u,M(y, x, z))

(iii) Substitution, ⌅.S: M(x, y, z) = M(v,M(v�,Mv/u(x, y, z), u),M(v�,Mv/u�(x, y, z), u�))

In the above set of rules, the symbol zx/y denotes replacement operation, i.e.,

x is replaced with y in all occurrences of z. The relevance rule replaces re-

convergent variables with neighboring variables. For instance, in function f =

M(x, y,M(w, z�,M(x, y, z))), variables x and y are reconvergent as they occur in both

lower and upper majority operations. The relevance property replaces x with y
� in the

lower majority operation as, f = M(x, y,M(w, z�,M(y�, y, z))), which further reduces

to M(x, y, w).

The complementary associativity rule involves variables which are present in oppo-

site polarities as shown by variable u in the equation. The substitution rule applies to

variable replacement in non-reconvergent case. All the rules in ⌅ can be derived from

⌃ [2]. The set (B,M,
�
, 0, 1) along with axioms in ⌃ and derivable theorems in ⌅ form

the complete majority logic system. The primary data structure for (B,M,
�
, 0, 1) is

an MIG and the associated logic transformation tools are axioms from ⌃ and derived

theorems from ⌅. It is possible to transform an MIG-based implementation of a cir-

cuit, ⇥, into another logically equivalent MIG-based circuit ⇤, through a sequence of

transformations from ⌃ and ⌅ [2] .

The work in [2] use mathematical theory [58] to define a consistent logic optimiza-

tion framework. It presented experimental evidence on the benefits predicted by the

proposed theory. Results demonstrate significant depth reduction in logic circuits im-

plemented in MIG as compared to state-of-the-art logic synthesis techniques, such as

AOIG.
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2.4 Significance of MIG based Synthesis

In recent years, optimization in logic synthesis have received quite an attention by

researchers [21, 17, 18]. Chu et al. [21] have added exclusive-OR(XOR) operations

with MIG structure and proposed two identities which shows circuit optimization in

XOR-MIG, referred to as XMG, whose experimental results on EPFL benchmark

suites has shown optimization in depth and size. As XOR logic gate occupies more

space than minority logic so we have decided to go with the second one. On using

mMIG structure to represent any XMG structure is always having added advantage

in terms of especially inversion count.

[59],[60] introduced the network synthesis tool that worked for majority logic as well

as minority logic. Recent nano-technologies, such as tunneling phase logic (TPL) and

single electron tunneling (SET) are solely based on minority logic whereas quantum

cellular automata (QCA) is based on majority logic. It has also shown the e⇤ectiveness

of this approach compared with very popular Boolean synthesis approach. It leads to

an idea to synthesize the large network using both, majority logic gate and minority

gate which will cover all the recent technologies. It has compared the quality of the

network of majority gates by counting the gates and number of levels.

In automated EDA design flow, multilevel logic synthesis plays an important role

towards finding Boolean functions with better quality while considering di⇤erent cost

functions. The cost functions comprise number of logic gates, logic depth, and switch-

ing activity targeted towards better area, performance, and energy, respectively [21].

To address this issue, e⇥cient representation and optimization of Boolean functions

are key features [7]. For instance, compact logic representations aim to contain mini-

mal number of primitive elements, such as, literals, sum-of-product terms, and gates

to have a small hardware footprint requiring as few library elements as possible.

Conventional logic representation forms comprise two level forms, such as, product-

of-sums (POS) and sum-of-product (POS) forms. Over the years, such representation

forms have been augmented by e⇥cient heuristic and exact optimization algorithms.

With rapid progress in VLSI technology platforms, standard logic representations
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moved towards directed acyclic graph (DAG) representations where nodes represent

logic gates, and directed edges represent the wires connecting the nodes.

The work in this thesis is based on [2] that depicted how majority and inversion

operations through a set of transformation methods can be used to derive MIG alge-

braic optimization methods. The set of transformation methods were based on a set

of axioms and derived theorems of Boolean algebra, such as commutativity, associa-

tivity, distributivity, and inverter propagation. The MIG representation used other

inherent properties of majority function, such as bit-error masking, to further opti-

mize the synthesized circuits. The experimental results demonstrated that the circuit

optimized MIG representations could achieve depth reduction of up to 7% in circuits

implemented in LUT-6 technology by the ABC tool [22]. The transformations also

reduced circuit size as well as power activity when compared to similar AIG optimiza-

tion. In addition to reducing the average delay, area and power in standard CMOS

circuits, MIG based circuit synthesis has also explored multiple majority operator-

based nanotechnologies [23]. This has led to a renewed interest in circuits syntheiszed

in majority operations followed by optimization [24, 25], producing competitive results

in CMOS ASICs and Field Programmable Gate Arrays.

For beyond-CMOS technologies, such as tunnel field e⇥ect transistor (TFET) and

spin polarized tunnel field e⇥ect transistor (Spin-FETs), physical implementation of in-

verter is more expensive than majority operation, which motivates us to aim to reduce

inverter count in circuit implementations [24]. Furthermore, emerging technologies,

which employ majority and inversion operations for circuit representations, area and

delay cost of the respective implementations have significant dependence on the in-

verter count in the circuit [20]. Hence, in such technologies, minimization of number

of inverters is a big challenge. The work in [20] used inverter propagation across two

and higher levels to reduce the overall inverter count. However, these methods have

limitations where the number of inverters in the smaller subtrees are small. Circuits

that have predominantly NAND or NOR logic gates over a large number of smaller

subtrees around leaf nodes can be one such instance. It has also been shown that the

minimization cannot be applied on every node of MIG structure so in order to deal
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with these issues we have proposed several algorithms.

In this thesis, we demonstrate how an optimization method based on mi-

nority, majority operations and interconnecting complemented edges (CEs)

can lead to a significant reduction in the number of inverter count.

We first demonstrate the derived theorems of Boolean algebra for mIG circuit rep-

resentations, followed by various subclasses of derived theorems. This is followed by

case studies of various combinatorial circuits used in various applications. However,

we state here that our optimizations assume that the standard cell library implemen-

tation of minority and majority operations consume equivalent amount of resources

in terms of area and delay. Furthermore, in present-day FPGA platforms such as

SPARTAN6 device family, a single LUT6 (six-input lookup table) hardware primitive

enables implementation of eight majority, or eight minority gates, or a combination of

eight majority/minority gates in the same LUT, as both majority and minority logic

mapping consume the same amount of resources when they are mapped to a LUT

implementation.
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Chapter 3

Reducing Inversion Overhead with

Minority Operations

In emerging technologies, circuits comprising majority (MAJ) and complemented

edges (CEs), minimization of inverters plays a crucial role since area and delay costs

depend on the count of CEs in such circuits. Inversion minimization has a profound im-

pact on emerging technologies, such as spin wave devices (SWDs), Quantum-dot cellular

automata (QCAs), and resistive random access memories (RRAMs) [20].

In this chapter, we present transformation rules and instances, wherein minority

mode instead of majority node and its output CE leads to improved reduction in CEs

in MIG-based circuits. Our minority-based circuit synthesis also aids in circuits, which

comprise millions of NAND/NOR-based design of logic gates whose direct implementation

using minority function requires no inversion operation. However, such reduction is not

possible when such implementations are performed using only majority and inversion

operations.

Transformation rules are the most e⇤ective way to achieve optimization in the

graph-based logic circuits. In this thesis, several rules are introduced in minority in-

verter graph (mIG) and minority majority inverter graph (mMIG) synthesis to show its

logical representation and properties, which helps to achieve the compact implemen-

tation of the circuit. The proposed logical transformations in mIG includes theorems

derivable from Boolean algebra axioms. The proposed set of rules comprises:
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(i) associativity rules (⌃�
.Anrv,⌃�

.An2v) demonstrate the similar nature of adjacent

Boolean variable with two variants, one rule between reconvergent and non-

convergent variable, and another between two non-reconvergent variables.

(ii) distributivity rule (⌃�
.D) for reducing three-level cascaded minority nodes to a

two-level topology.

(iii) derived theorems that comprise swapping reconvergence rules

(⌅�
.SR

1
n2v, . . . ,⌅

�
.SR

4
n2v), (⌅

�
.SR

1
nrv, . . . ,⌅

�
.SR

4
nrv) where reconvergent Boolean

variables are swapped with other reconvergent or nonreconvergent Boolean

variables. This rule is important for reducing logical depth when a Boolean

variable (both reconvergent and non-reconvergent) is present in a critical path.

(iv) Relevance rule (⌅�
.R) and Substitution rule (⌅�

.S) enlarges the circuit so that

other rules and theorems when applied results in optimized circuit in terms of

area and depth through iterated absorption and elimination transformations.

In mMIG, we apply Boolean algebraic methods in a heuristic fashion, which mainly

includes operations, such as push-up, push-down, swapping Boolean variable (reconver-

gent with reconvergent or nonreconvergent with nonreconvergent or reconvergent with

nonreconvergent), which leads to functionally equivalent optimal structure comprising

less number of inverters.

Min

u x

Min

y z

Min

u z

Min

y x

Figure 3.1: An example to demonstrate role of algebraic transformation in mMIG for
inverter reduction of the function f = m(u, x̄,m(x̄, y, z̄)). The transformation is ob-
tained by swapping reconvergent Boolean variable x with non-reconvergent Boolean
variable z of the bottom most node, which removes all four inverters, hence, significant
area reduction as well.
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The proposed set of rules for mMIG comprises:

(i) Elimination rule (⌅mMIG.El) removes redundant nodes of mMIG.

(ii) Absorption rule (⌅mMIG.Ab1,⌅mMIG.Ab2) absorbs or combines a minority node

and a majority operation and replaces them with either a majority or a minority

node.

(iii) Swapping reconvergence rule (⌅mMIG.SR1, . . . ,⌅mMIG.SR3) swaps reconvergent

and non-reconvergent variables in both regular and complemented forms.

(iv) Relevance rule (⌅mMIG.R1, . . . ,⌅mMIG.R8) is applied when two reconvergent

variables occur in two consecutive levels; as both reconvergent variables are

in upper level, each occurrence of one is replaced by the complemented form of

the other variable in the lower variable. This renders the third variable in lower

level relevant, and hence moves to the upper level.
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3.1 Introduction to Minority logic

In MIG-based circuit synthesis, the property inverter propagation fails to reduce

the inverter count if the connectivity of CEs is small but count of CEs is significantly

large. Two CEs are connected if they CEs have a common majority node. This small

connectivity property motivates us to propose minority node for reducing inverter

count.

Several case studies show a significant reduction in inverter count by using only mi-

nority logic. One such motivational instance can be seen in Section 4.4, where XOR3

implemented using mIG consumes less number of inverter operations as compared to

that in MIG implementation. This property can be observed from the generic equation

of XORn as we show later in our case studies in next chapter. Another such sim-

ple yet motivational circuit instances can be observed in the Figure 3.2. A minority

logic circuit is a homogeneous logic network with an indegree of 3, where each node

represents a minority logic function,

min(x, y, z) = x̄ȳ + ȳz̄ + x̄z̄ (3.1)

The operation yields a logical one output when there are two or more logical zeros

at its inputs x, y, z. The minority function is self-dual, similar to majority function [2],

which can be represented in conjunctive normal form (CNF) and disjunctive normal

form (DNF) as:

min(x, y, z) = x̄ȳ � ȳz̄ � x̄z̄ = (x̄ � ȳ)(ȳ � z̄)(x̄ � z̄) (3.2)

Further, the minority function deduces to one Boolean input value if any two input

Boolean variables either always take same values or hold complemented values of each

other as,

min(x, x, z) = x̄ min(x, x̄, z) = z̄ (3.3)

In terms of representation, minority logic involves only a minority operator, which
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makes it a universal operator that can be used for the synthesis of any basic logical

operations and can thus produce an inverter, an OR gate, or an AND gate. For instance,

some of the operations can be derived as follows: NAND: xy = min(x, y, 0), AND: xy =

min(min(x, y, 0), 0, 1), NOR: x+ y = min(x, y, 1), OR: x + y = min(min(x, y, 1), 0, 1),

and NOT: x̄ = min(x, 0, 1). From the gate realizations, minority logic yields far more

optimal implementations in case of NAND-NOR based standard cell library. The universal

property of minority operator leads us to the following theorem.

Theorem 1. Minority logic gate is a universal logic gate.

Proof. In an analogy to the existing majority inverter graph (MIG), a minority oper-

ator is an inversion of majority operation. If all three inputs are subjected to the

same input value, it operates as an inversion operation. Hence, a minority logic gate

can implement both majority and inversion operations, thus reaching all points in

representation space as that by an MIG data structure.

We consider a logic function as f = (x1 + (x2(x3 + x4))), where x̄ denotes an

inversion operation on x and + denotes a logical OR operation. Fig 3.2 represents

majority inverter graph (MIG) representation followed by minority inverter graph (mIG)

Min

.

x

u y z

Min

f1

Min

y

u x z

Min

f1Min

x1

x2

x3 x4

1

1
1

Min
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x2x3

1

11

MinMin

x4 x1

f f

Maj

x1

x2

x3 x4

1

1
1

Maj
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f

Figure 3.2: (a) MIG representation of f = (x1+(x2 · (x3 + x4)�)�)� and, (b) its equivalent
mIG representation followed by optimized version of mIG leading to depth optimized
circuit, (c) mIG representations that demonstrate one form of Swapping reconvergence
(��

.SR) to implement such optimizations. Inversion operations at the output of a
node are represented as complemented edges, i.e., edges with bubbles.
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for this logic function leads to a reduction of three inversion operations. The mIG

representation can be further optimized for depth reduction, as shown in the figure

with the mIGOpt version using one form of swapping reconvergence as an optimization

rule.

In continuation, we now propose a set of Boolean algebra rules corresponding to

minority logic data structure, algebraic optimization rules to achieve compact imple-

mentation in mIG synthesis. For this purpose, we have introduced a new Boolean

algebra similar to [2] and propose following optimization rules.

3.2 Optimization Rules in Minority Logic

In this section, we propose transformation rules based on minority function in

the form of mIG Boolean algebra and then propose derived theorems which includes

variants of the primitive transformation. We state here that if the technology library

contains only minority and inverter standard cells, the equivalent minority representa-

tion for inversion operation, x̄ = min(x, x, x) = min(x, 0, 1), incurs a larger hardware

footprint in implementation. Hence, we consider both minority and inversion opera-

tions in our circuit representation system.

3.2.1 mIG Boolean Algebra

We propose a novel Boolean algebra, defined over the set (B,m, 0, 1), wherem is the

minority node with three input Boolean variables. Theminority logic has five primitive

transformation rules which comprises the possible variants of these transformation

rules as mentioned below.

• Commutativity, ⇥�.C: m(x, y, z) = m(y, x, z) = m(z, y, x).

• Minority, ⇥�.m:

if(x==y), m(x, x, z)=m(y, y, z)=x̄ = ȳ, else if(x==ȳ), m(x, x̄, z) = z̄.

• Associativity, ⇥�.A: We define two variants of ⇥�.A, namely, associativ-

ity of two non-reconvergent variables (⇥�.An2v), and associativity of a non-
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reconvergent variable and a neighboring reconvergent variable (⇥�.Anrv) as fol-

lows,

– ⇥�.An2v :

m̄(x, u, m̄(u, y, z))=m̄(z, u, m̄(u, y, x))=m̄(y, u, m̄(u, x, z)).

– ⇥�.Anrv : m(x̄, u,m(u, y, z))=m(ū, x,m(x, y, z)).

• Distributivity, ⇥�.D:

m(x̄, ȳ, m(u, v, z))=m(m(x, y, u),m(x, y, v), z̄).

• Inverter Propagation, ⇥�.I: m�(x, y, z) = m(x̄, ȳ, z̄).

These five transformation rules in ⌃� depicts the behavior of minority function

over the three input Boolean variables namely, x,y and z. Axiom ⌃�
.C shows the

commutative property of the minority operator. Axiom ⌃�
.A defines an associative

property over three input parameter. Axiom ⌃�
.D exhibits the distributive property

of minority operator, which will be later helpful to eliminate the minority node in

the circuit. In Axiom ⌃�
.I, inversion propagation of minority operation is stated,

which demonstrates inverter reduction in circuit topology when two or more inputs of

minority node have CE or, the output and more than one input of minority node has

CE.

3.3 Derived Theorems

In this subsection, we propose a set of derived theorems for mIG synthesis technique

as ⌅�. Firstly, we mention the derived theorems in MIG synthesis that involved shared

Boolean variables with only opposite polarities (0/1) or replacement of reconvergent

variables. In mIG synthesis, we observe that in addition to opposite polarities, shared

variables with same polarities (0/0 or 1/1) have their own respective properties. We

state these properties as derived theorems in this section.
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3.3.1 Swapping Reconvergence rule in mIG

In MIG, complementary associativity ⌅ · C involves shared Boolean variables with

opposite polarities in two consecutive levels. On the other hand, in mIG, a similar case

involves swapping shared variables, defined as ⌅�
.SR, with both opposite polarities

as well as same polarities across two consecutive levels. The selection of opposite or

same polarities of shared variables to be swappped depends on the circuit topology.

We define two variants of ⌅�
.SR, namely, swapping between non-reconvergent and

reconvergent variable (⌅�
.SRnrv) and swapping between two non-reconvergent variables

(⌅�
.SRn2v). The circuits obtained by applying both these variants are functionally

equivalent. Consider the circuit instances in Figure 3.3 and Figure 3.4. If tx, tu, ty, tz

are the logic delay of the circuits driving the nodes x, u, y, and z, respectively, selection

of either of these variants is determined with respect to the optimal implementation

of the circuit, which depends on the following conditions. If tu > max(tx, ty, tz) then

select ⌅�
.SRnrv, else if tz > max(tx, tu, ty) then we select ⌅�

.SRn2v property. Upon

applying the variants of the Swapping reconvergence, position of the reconvergent

and the nonreconvergent critical variables get changed, hence, it reduces the inverter

count if the propagation is from right to left or vice-versa, as observed in Figure 3.3

and Figure 3.4.

The transformation rules in the swapping reconvergence category are as follows:

⌅�
.SR

1
n2v : m(x, u,m(ū, y, z)) ⌦ m(z̄, u,m(ū, x̄, y)) ⌦ m(ȳ, u,m(ū, x̄, z))

Proof.

m(x, u,m(ū, y, z)) = m(m(x̄, ū, ū),m(x̄, ū, y), z̄)(⇥�.D)

m(m(x̄, ū, ū),m(x̄, ū, y)) = m(z̄, u,m(x̄, ū, y))(⇥�.m)

Depending on the inversion operation of the independent variables, ⌅�
.SR

1
n2v trans-
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Figure 3.3: The circuits in (a), (b), (c), and (d) depict swapping reconvergence
property(⌅�

.SRn2v) in mIG structure wherein a nonreconvergent Boolean variable is
swapped with another nonreconvergent variable as a result of which one nonreconver-
gent variable moves one level up towards the primary output.

forms to the following rules in Swapping Reconvergence,

⌅�
.SR

2
n2v : m(x, ū,m(u, y, z)) ⌦ m(z̄, ū,m(u, x̄, y)) ⌦ m(ȳ, ū, m(u, x̄, z))

Proof.

m(x, ū,m(u, y, z)) = m(m(x̄, u, u),m(x̄, u, y), z̄)(⇥�.D)

m(m(x̄, u, u),m(x̄, u, y), z̄) = m(z̄, ū,m(u, x̄, y))(⇥�.m)
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⌅�
.SR

3
n2v : m(x̄, u,m(ū, y, z)) ⌦ m(z̄, u,m(ū, x, y)) ⌦ m(ȳ, u,m(ū, x, z))

Proof.

m(x̄, u,m(ū, y, z)) = m(m(x, ū, ū),m(x, ū, y), z̄)(⇥�.D)

m(m(x, ū, ū),m(x, ū, y), z̄) = m(z̄, u,m(ū, x, y))(⇥�.m)

⌅�
.SR

4
n2v : m(x̄, ū,m(u, y, z)) ⌦ m(ȳ, ū,m(u, x, z)) ⌦ m(z̄, ū, m(u, x, y))

Proof.

m(x̄, ū,m(u, y, z)) = m(m(x, u, u),m(x, u, z), ȳ)(⇥�.D)

m(m(x, u, u), m(x, u, z), ȳ) = m(ȳ, ū,m(u, x, z))(⇥�.m)

Further, we propose that ⌅�
.SR property also applies between non-reconvergent

and reconvergent variables as follows,

(i) ⌅�
.SR

1
nrv: m(x, u,m(ū, y, z)) ⌦ m(u, x,m(x, y, z)).

(ii) ⌅�
.SR

2
nrv: m(x, ū,m(u, y, z)) ⌦ m(ū, x,m(x, y, z)).

(iii) ⌅�
.SR

3
nrv: m(x̄, u,m(ū, y, z)) ⌦ m(u, x̄,m(x̄, y, z)).

(iv) ⌅�
.SR

4
nrv: m(x̄, ū,m(u, y, z)) ⌦ m(ū, x̄,m(x̄, y, z)).
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Figure 3.4: A variant of the Swapping reconvergence property, i.e, ⌅�
.SRnrv where

swapping of reconvergent (shared) Boolean variable with nonreconvergent Boolean
variable can be observed in all four cases (a), (b), (c), and (d) as a result of which
reconvergent variable pushed-up one level. Further, (a),(d) leads to inverter reduction.

3.3.2 Relevance rule in mIG

The second rule, relevance ⌅�
.R, applies to the set of reconvergent variables, defined

as m(x, y, z) = m(x, y, zx/ȳ) where x/ȳ implies replacing the reconvergent variable x

with variable ȳ for every occurrence of variable z.

We now demonstrate a case where the relevance rule in mIG representation has

improved circuit delay optimization as compared to a case where relevance rule is

applied in MIG representation.

Consider the logic function, f = M(x, y,M(w, z̄,M(x, y, z))) implemented in MIG

representation as shown in Figure 3.5(a). Suppose the input w to f is driven by a

logic function f1. We assume that the critical path of f comprises f1. The critical

path delay of f is defined as, tf = tf1 + 2tM , where tf1 and tM is the delay of f1 and

majority gate M , respectively. From [2], the relevance property ⌅.R replaces x with

y
� in the bottom majority gate followed by ⌃.M . The equivalent circuit reduces to

f
� = M(x, y, w), whose delay computes to t

�
f = tf1 + tM , thus resulting in reduction

of overall delay of f as, ⌥tf = tf ↵ t
�
f as tM .

33



Maj

Maj

Maj

x y z w

Maj

yx w

Min

Min

Min

x y z w

Min

yx z

Figure 3.5: Relevance property depicted in (a) MIG representation of function f =
M(x, y,M(w, z̄,M(x, y, z))) which takes the third input variable of middle node and
puts it in the final node by applying ⌅.R,⌃.M respectively, (b) mIG representation of
function F = m(x, y,m(w, z�,m(x, y, z))) takes the third input variable of the bottom
node and puts it in the final node by applying ⌅�

.R, and ⌃�
.m, respectively.

Further, consider the logic function in mIG representation, F =

m(x, y,m(w, z�,m(x, y, z))) shown in Figure 3.5(b). Suppose the input z to F

is driven by a logic function F1, and the critical path of F comprises F1. The critical

path delay of F is defined as tF = tF1 + 2tm + tinv, where tF1 , tm, and tinv is the logic

delay of F1, minority gate m, and inverter, respectively. From relevance property

⌅�
.R, the representation for F reduces to F = m(x, y, z), and the associated critical

path delay as t�F = tF1 + tm. The overall reduction in critical path delay of F can be

computed as ⌥tF = tF ↵ t
�
F = tinv + tm.

If the logic delay of standard cells of minority and a majority gates are considered

equal, i.e., tm = tM , application of ⌅�
.R in minority gate has a better delay optimiza-

tion than ⌅.R in majority gate by a tinv delay, i.e., one inverter delay. For a cascaded

system of n stages in mIG and MIG representations, ⌅�
.R yields a better delay reduction

over ⌅.R by an amount of n · tinv.

Both mIG and MIG implementations of F = m(x, y,m(w, z�,m(x, y, z))) comprises

three reconvergent variables, namely, x, y, and z. Each of these variables can have two

polarities, leading to 64 possible circuit transformations.

Each such transformation can have either an mIG implementation or an MIG imple-
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Figure 3.6: Out of 16 possible transformations for reconvergent variable, nine possible
transformations are shown here that depicts smaller count of complemented edges (CE)
and smaller count of majority/minority nodes, i.e, size optimization. The logical depth
of the mIG network is also reduced if a left to right transformation is applied.

mentation. However, we find 16 transformations wherein MIG synthesis method yields

reduced inverter count as compared to mIG synthesis. This improved performance in

mIG is shown in Figure 3.6 and Figure 3.7. In addition, we identify that mIG imple-

mentation of 16 other transformations have a smaller inverter count as compared to

the respective MIG implementation, which are as follows:

(i) M(x̄, ȳ,M(M(x, ȳ, z̄), z̄, w))⌦m(x̄, ȳ, m(y, z̄, w))

(ii) M(x̄, ȳ,M(M(x, ȳ, z̄), z, w))⌦m(x̄, ȳ, m(y, z, w))

(iii) M(x̄, ȳ,M(M(x, ȳ, z), z̄, w)⌦m(x̄, ȳ, m(y, z̄, w))
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Figure 3.7: Out of 16, seven possible transformation are shown here that depicts size
and depth optimization as achieved by applying relevance and minority rules.

(iv) M(x̄, ȳ,M(M(x, ȳ, z), z, w))⌦m(x̄, ȳ, m(y, z, w))

(v) M(x̄, y,M(M(x, ȳ, z̄), z̄, w))⌦m(x̄, y,m(y, z̄, w))

(vi) M(x̄, y,M(M(x, ȳ, z̄), z, w))⌦m(x̄, y,m(y, z, w))

(vii) M(x̄, y,M(M(x, ȳ, z), z̄, w))⌦m(x̄, y,m(y, z̄, w))

(viii) M(x̄, y,M(M(x, ȳ, z), z, w))⌦m(x̄, y,m(y, z, w))

(ix) M(x, ȳ,M(M(x, ȳ, z̄), z̄, w))⌦m(x, ȳ,m(y, z̄, w))

(x) M(x, ȳ,M(M(x, ȳ, z̄), z, w))⌦m(x, ȳ,m(y, z, w))

(xi) M(x, ȳ,M(M(x, ȳ, z), z̄, w))⌦m(x, ȳ,m(y, z̄, w))

(xii) M(x, ȳ,M(M(x, ȳ, z), z, w))⌦m(x, ȳ,m(y, z, w))

(xiii) M(x, y,M(M(x, ȳ, z̄), z̄, w))⌦m(x, y,m(y, z̄, w))

(xiv) M(x, y,M(M(x, ȳ, z̄), z, w))⌦m(x, y,m(y, z, w))

(xv) M(x, y,M(M(x, ȳ, z), z̄, w))⌦m(x, y,m(y, z̄, w))

(xvi) M(x, y,M(M(x, ȳ, z), z, w))⌦m(x, y,m(y, z, w))
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There exist another mutually disjoint set of 16 transformations where in MIG trans-

formation yields smaller inverter count. Hence, in some circuit topologies, mIG-based

synthesis leads to smaller inversion count and in others MIG performs better.

3.3.3 Substitution rule in mIG

The third rule, substitution, ⌅�
.S, is proposed as m(x, y, z) =

m(v̄, mv/u(x, y, z),m(ū,mv/ū(x, y, z), v̄). This rule results in intermediate circuit

enlargement, as a result of which primitive and algebraic transformations are applied

to obtain the optimized circuit with fewer inverter and minority nodes. One such

instance of ⌅�
.S is shown in Figure 3.8, which demonstrates that the function

f = x ⇤ y ⇤ z when implemented in mIG synthesis incurs two less inverters in count

as compared to MIG synthesis.
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Figure 3.8: mIG implementation of f = x⇤ y ⇤ z and optimisation using substitution
rule, ⌅�

.S. The optimized implementation of f in mIG representation consumes two
less inversion operations as compared to optimized implementation in MIG represen-
tation [2].

37



3.4 Introduction to minority-Majority-Inverter

Graphs (mMIG)

Consider a logic topology represented algebraically as, f =

g(x, y, g(w, z̄, g(x, y, z))), which was mentioned in Subsection 3.3.2 to motivate

the need of shifting from mIG to mMIG. The function f is represented as cascaded

stages of function g. The function g is represented using majority function as well as

minority function. As we have seen 16 comparable cases where mIG performs better

than MIG in term of resource count, there exist another mutually disjoint set of 16

transformations out of a total 32 comparable cases where MIG performs better than

mIG in terms of resource count. It gives us an intuition to start looking at the topology

implementation using both functions, majority as well as the minority, which we

together consider as minority-majority-inverter graph (mMIG) synthesis approach.

Considering several case studies, which includes implementations of standard com-

binational circuits, lightweight cryptographic block ciphers discussed in Section 4.3,

Section 4.4, Section 4.5, Section 4.6, Section 4.7,Section 4.8, we achieved significant

amount of inverter reduction which motivated our intuition. Hence, from hereon, we

focus further on the mMIG algebraic transformation methods as this is the best way to

achieve optimization in the graph-based network that comprises the entire technology

library. To attain improved performance, we have adopted a two-pronged approach

comprising a greedy approach and a divide-and-conquer approach.

(i) Greedy approach: In this approach, we identify subgraph instances in MIG im-

plementation where replacing a majority gate and an inverter gate at its output

with a minority gate leads to a reduction in inversion count. As a result, this

leads to reduced area without analyzing the complete circuit result, as shown in

Algorithm 3, 4, which is present in main logic optimization in Algorithm 1

(ii) Divide and conquer approach: We use this approach in Algorithm 5, where a

circuit is divided into partitions based on the logic cones. These partitions are

then optimized (with respect to count of inverters) on the basis of MIG, mIG, and
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mMIG Boolean algebraic transformation rules.

In the next section, we present minority-majority inverter graph (mMIG) and its

logical representation; its variaous properties are expressed using various forms of

transformation rules. Furthermore, the set of rules is proposed on the constructed

multilevel mMIG network to implement logic optimization in terms of the number of

resources, i.e., size optimization, and reducing the number of levels of the mMIG

network, i.e., depth optimization. Finally, we propose several algorithms for logic

optimization. Fig 3.19 depicts a high-level overview of the major steps that comprise

our methodology.

3.4.1 mMIG logic representation

An mMIG is a combinational logic network that comprises three-input minority,

three-input majority node along with inversion operations represented as CEs. We

consider fM = f(M(x, y, z)) as a function that defined over majority operation tak-

ing x, y, z as input variable, fI as an inverter function comprising only complemented

edges, fm = f(m(u, v, w)) as function defined over minority operation, and the func-

tion fmMIG defined over input Boolean variable x, y, z, u, v, w are used in mMIG syn-

thesis defined as,

fMIG = f(fM , fI) fmIG = f(fm, fI)

fM = xy + yz + xz (3.4)

fm = x̄ȳ + ȳz̄ + x̄z̄ (3.5)

fmMIG = f(fMIG, fmIG) (3.6)

We use terms inverter and complemented edges (CEs) interchangeably in the re-

maining thesis. In mMIG, edges are marked as a regular or a complemented attribute.

In the remainder of the thesis, a three-input majority function or minority function
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referred to as majority function or minority function, respectively.

Upon considering the output edges from a node, following three scenarios can

arise,

Case (I): Nodes with one outgoing edge. This is a general case which is already

analyzed.

Case (II): If outgoing edges of the node is two (say e1 and e2). There are four possible

scenarios:

(i) both e1 and e2 are uncomplemented: In this case, the nodes are restored in their

original forms.

(ii) e1 is complemented and e2 is uncomplemented: e1 is at the output of minority

node, and e2 is at output of majority node with the same input value.

(iii) e1 is uncomplemented and e2 is complemented: This is equivalent to the previous

case.

(iv) both e1 and e2 are complemented: It leads to following two possible cases:

• Subcase II(a): When node is majority then we can consider it as two unique

minority nodes.

• Subcase II(b): When node is minority then we can consider it as two unique

majority nodes.

Case (III): If outgoing edges of the node is greater than two. This will lead to a

hypergraph which may require di⇤erent optmization analysis to be considered.

3.5 Optimization rules in Minority Majority logic

In graph-based logic networks, the transformation rules are decisive in determining

the extent of achieved optimization. The rules can take multiple forms for the same

graph topology. Selection of desirable transformation is done on the basis of which

transformation leads to lesser resource count, especially in the terms of inverter op-

erations. We minimize the CEs of multilevel mMIG synthesized circuits using algebraic
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Figure 3.9: (a) A majority node when both the output edges are complemented is
equivalent to a minority node with two uncomplemented output edges, (b) A majority
node with two output edges, one complemented and one uncomplemented, is equiva-
lent to a pair of majority and minority nodes driven by the same set of inputs, x, y,
and z.

transformation procedure, which includes a set of elimination, absorption, and reshap-

ing followed by other transformative rules. These algebraic transformation procedures

in mMIG synthesis use following possible operations for optimization steps,

(i) The rules substitute majority nodes and the CEs which they drive with minority

nodes.

(ii) The rules can push-up or push-down reconvergent/nonreconvergent Boolean vari-

able across the consecutive levels, as a result of which the levels of the corre-

sponding variables will change.

(iii) The rules can swap between reconvergent variable with a nonreconvergent vari-

able at the same levels which results in graph comprising fewer number of CEs.

3.5.1 Inverter Reduction using Algebraic Transformation

To reduce resource count, especially in count of CEs of a multilevel graph-based net-

work comprising minority nodes, majority nodes, and CEs, we apply algebraic transfor-

mation methods. Heuristically, we check whether using swapping operation, push-up,

or push-down operations between two reconvergent Boolean variables, or a reconvergent

Boolean variable with a nonreconvergent Boolean variable leads to a graph topology
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f1...f4 represents the intermediate output and dashed line represents the intermediate
edges of the circuit.

demonstrating inverter reduction. In an iteration of applying transformations for a

certain graph structure, we select that transformation greedily that leads to maximal

reduction in count of CEs.

We first demonstrate the procedure for minimizing CEs after proposing the complete

set of algebraic transformations for all possible classes.

Let us consider Min and Maj as representations of minority node and majority node

in the mMIG logic synthesis approach, respectively. As basic topology, we consider

all four possible permutations comprising a minority node and a majority node as

depicted in Figure 3.10

Let us consider subcases (a), (b) from Fig 3.11 in order to get the transformation

rules associated with that topology. Fig 3.11(a) contains five nonreconvergent vari-

ables. Each of these variables can have two polarities, leading to 32 possible circuit

transformations. The presence of only nonreconvergent variables hinders its candidacy

for any transformation rule. Fig 3.11(b) is classified into (i) and (ii) based on the num-

ber of reconvergent variables, which contains both reconvergent and nonreconvergent

variables. Based on the two possible polarities, it leads to a total of 32 + 32 = 64

possible structures. These structures can be further classified into three di⇤erent cat-

egories based on the propagation of reconvergent and nonreconvergent variables. As

a result, the number of possible structures for Fig 3.11(b) is 192 (= 64 ◊ 3). Hence,

combining cases of Fig 3.11(b), Fig 3.11(d), Fig 3.11(f) and Fig 3.11(h) gives total of
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768 (= 192◊ 4) possible structures that comprises the scope of rule formation.

All possible circuit instances in mMIG are demonstrated in Figure 3.11. To achieve

optimization, a set of rules is proposed, which is based on the observed characteristics

of mMIG algebraic transformation rules, such as swapping, absorbing, exclusion, and

convergence. In total, there are 768 possible transformations for mMIG synthesis

which are classified based on the property, whose corresponding rules are mentioned

in [61].
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Figure 3.11: 12 basic mMIG topologies without inverter are classified based on the
number of reconvergent variables (⌅ 2). x, y, z, u and w are input Boolean variables
where f1, . . . , f12 depict the output of mMIG topology.

Based on the optimization class, these possible transformations are broadly classi-

fied in the form of algebraic rules. The classes include, Elimination rule, Absorption

rule, Swapping reconvergence rule, and Relevance rule. The optimization class consists

of several forms of rules that are yet to be assigned based on their inherent property.

Based on the above classification, transformation rules are categorized on the basis

of optimization class as:

• Class 1: Optimization only in number of CEs if we follow the variable propa-

gation either from left to right or right to left. The transformation rules in this

class are as follows:
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1. m(u, x,m(x, y, z)) ⌦ m(u, ȳ,m(ȳ, x̄, z)) ⌦ m(u, z̄,m(z̄, y, x̄))

2. m(u, x,m(x, y, z̄)) ⌦ m(u, ȳ,m(ȳ, x̄, z̄)) ⌦ m(u, ȳ,M(y, x, z))

3. m(u, x,m(x, ȳ, z)) ⌦ m(u, z̄,m(z̄, ȳ, x̄)) ⌦ m(u, z̄,M(y, x, z))

4. m(u, x,m(x̄, y, z̄)) ⌦ m(ȳ, x,m(x̄, ū, z̄)) ⌦ m(ȳ, x,M(x, u, z))

5. m(u, x,m(x̄, ȳ, z)) ⌦ m(y, x,m(x̄, ū, z)) ⌦ m(z̄, x,m(x̄, ȳ, ū))

6. m(u, x,m(x̄, ȳ, z̄)) ⌦ m(y, x,m(x̄, ū, z̄)) ⌦ m(z, x,m(x̄, ȳ, ū))

⌦ m(y, x,M(x, u, z)) ⌦ m(z, x,M(x, y, u))

7. m(u, x̄,m(x, y, z)) ⌦ m(ȳ, x̄,m(x, ū, z)) ⌦ m(z̄, x̄,m(x, y, ū))

8. m(u, x̄,m(x, y, z̄)) ⌦ m(ȳ, x̄,m(x, ū, z̄)) ⌦ m(z, x̄,m(x, y, ū))

9. m(u, x̄,m(x, ȳ, z)) ⌦ m(y, x̄,m(x, ū, z)) ⌦ m(z̄, x̄,m(x, ȳ, ū))

10. m(u, x̄,m(x̄, y, z̄)) ⌦ m(u, z,m(z, y, x)) ⌦ m(u, ȳ,m(ȳ, x, z̄))

11. m(u, x̄,m(x̄, ȳ, z)) ⌦ m(u, y,m(y, x, z)) ⌦ m(u, z̄,m(z̄, ȳ, x))

12. m(u, x̄,m(x̄, ȳ, z̄)) ⌦ m(u, x̄,M(z, y, x))

13. m(ū, x,m(x, y, z)) ⌦ m(ū, ȳ,m(ȳ, x̄, z))

14. m(ū, x,m(x̄, y, z̄)) ⌦ m(z, x,m(x̄, y, u))

15. m(ū, x,m(x̄, ȳ, z)) ⌦ m(y, x,m(x̄, u, z))

16. m(ū, x,m(x̄, ȳ, z̄)) ⌦ m(y, x,m(x̄, u, z̄))

17. m(ū, x̄,m(x, y, z̄)) ⌦ m(z, x̄,m(x, y, u))

18. m(ū, x̄,m(x, ȳ, z)) ⌦ m(y, x̄, x̄,m(x, u, z))

19. m(ū, x̄,m(x, ȳ, z̄)) ⌦ m(y, x̄,m(x, u, z̄))

20. m(ū, x̄,m(x̄, y, z̄)) ⌦ m(ū, z,m(x, y, z))

21. m(ū, x̄,m(x̄, ȳ, z)) ⌦ m(ū, y,m(x, y, z))

22. m(ū, x̄,m(x̄, ȳ, z̄)) ⌦ m(ū, y,m(x, y, z̄))

23. m(u, x,M(x̄, ȳ, z̄)) ⌦ m(u, x,m(x, y, z)).

24. m(u, x̄,M(x̄, ȳ, z̄)) ⌦ m(ȳ, x̄,M(x̄, u, z̄)) ⌦ m(z̄, x̄,M(x̄, ȳ, u))

⌦ m(u, x̄,m(x, y, z))

25. m(ū, x,M(x̄, ȳ, z̄)) ⌦ m(ū, x,m(x, y, z))
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26. m(ū, x̄,M(x̄, y, z)) ⌦ m(y, x̄,M(x̄, ū, z)) ⌦ m(z, x̄,M(x̄, y, ū))

27. m(ū, x̄,M(x̄, y, z̄)) ⌦ m(y, x̄,M(x̄, ū, z̄)) ⌦ m(y, x̄,m(x, y, z))

⌦ m(z̄, x̄,M(x̄, y, ū))

28. m(ū, x̄,M(x̄, ȳ, z)) ⌦ m(ȳ, x̄,M(x̄, ū, z)) ⌦ m(z, x̄,M(x̄, ȳ, ū))

⌦ m(z, x̄,m(x, y, u))

29. m(ū, x̄,M(x̄, ȳ, z̄)) ⌦ m(ȳ, x̄,M(x̄, ū, z̄)) ⌦ m(z̄, x̄,M(x̄, ȳ, ū))

⌦ m(ū, x̄,m(x, y, z)) ⌦ m(ȳ, x̄,m(x, u, z)) ⌦ m(z̄, x̄,m(x, y, u))

30. M(u, x,M(x̄, ȳ, z̄)) ⌦ M(u, x,m(x, y, z))

31. M(u, x̄,M(x̄, ȳ, z̄)) ⌦ M(ȳ, x̄,M(x̄, u, z̄)) ⌦ M(z̄, x̄,M(x̄, ȳ, u))

32. M(ū, x,M(x̄, ȳ, z̄)) ⌦ M(ū, x,m(x, y, z))

33. M(ū, x̄,M(x, ȳ, z̄)) ⌦ m(u, x,M(x̄, y, z))

34. M(ū, x̄,M(x̄, y, z̄)) ⌦ m(u, x,M(x, ȳ, z))

35. M(u, x̄,m(x, y, z)) ⌦ M(ȳ, x̄,m(x, ū, z)) ⌦ M(z̄, x̄,m(x, y, ū))

36. M(u,m(x̄, y, z)) ⌦ M(ȳ, x,m(x̄, ū, z)) ⌦ M(z̄, x,m(x̄, y, ū))

37. M(ū, x̄,M(x̄, ȳ, z)) ⌦ m(u, x,M(x, y, z̄))

38. M(ū, x̄,M(x̄, ȳ, z̄)) ⌦ m(u, x,M(x, y, z))

• Class 2: Size optimization in the terms of number of CEs as well as majority

nodes or minority nodes, and Depth optimization. The transformation rules in

this class are as follows:

1. m(x, y,m(x, y, z)) ⌦ m(x, y, z̄)

2. m(x, y,m(x, y, z̄)) ⌦ m(x, y, z)

3. m(x, y,m(x, ȳ, z)) ⌦ ȳ

4. m(x, y,m(x, ȳ, z̄)) ⌦ ȳ

5. m(x, y,m(x̄, y, z)) ⌦ x̄

6. m(x, y,m(x̄, y, z̄)) ⌦ x̄

7. m(x, y,m(x̄, ȳ, z)) ⌦ m(x, y, z̄)
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8. m(x, y,m(x̄, ȳ, z̄)) ⌦ m(x, y, z)

9. m(x, ȳ,m(x, y, z)) ⌦ y

10. m(x, ȳ,m(x, y, z̄)) ⌦ y

11. m(x, ȳ,m(x, ȳ, z)) ⌦ M(x̄, y, z)

12. m(x, ȳ,m(x, ȳ, z̄)) ⌦ m(x, ȳ, z)

13. m(x, ȳ,m(x̄, y, z)) ⌦ M(x̄, y, z)

14. m(x, ȳ,m(x̄, y, z̄)) ⌦ m(x, ȳ, z)

15. m(x, ȳ,m(x̄, ȳ, z)) ⌦ x̄

16. m(x, ȳ,m(x̄, ȳ, z̄)) ⌦ x̄

17. m(x̄, y,m(x, y, z)) ⌦ x

18. m(x̄, y,m(x, y, z̄)) ⌦ x

19. m(x̄, y,m(x, ȳ, z)) ⌦ M(x, ȳ, z)

20. m(x̄, y,m(x, ȳ, z̄)) ⌦ m(x̄, y, z)

21. m(x̄, y,m(x̄, y, z)) ⌦ M(x, ȳ, z)

22. m(x̄, y,m(x̄, y, z̄)) ⌦ m(x̄, y, z)

23. m(x̄, y,m(x̄, ȳ, z)) ⌦ ȳ

24. m(x̄, y,m(x̄, ȳ, z̄)) ⌦ ȳ

25. m(x̄, ȳ,m(x, y, z)) ⌦ M(x, y, z)

26. m(x̄, ȳ,m(x, y, z̄)) ⌦ M(x, y, z̄)

27. m(x̄, ȳ,m(x, ȳ, z)) ⌦ x

28. m(x̄, ȳ,m(y, x̄, z̄)) ⌦ y

29. m(x̄, ȳ,m(x̄, y, z)) ⌦ y

30. m(x̄, ȳ,m(x̄, y, z̄)) ⌦ y

31. m(x̄, ȳ,m(x̄, ȳ, z)) ⌦ M(x, y, z)

32. m(x̄, ȳ,m(x̄, ȳ, z̄)) ⌦ M(x, y, z̄)

33. M(x, y,m(x, y, z)) ⌦ M(x, y, z̄)
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34. M(x, y,m(x, y, z̄)) ⌦ M(x, y, z)

35. M(x, y,m(x, ȳ, z)) ⌦ y

36. M(x, y,m(x, ȳ, z̄)) ⌦ y

37. M(x, y,m(x̄, y, z)) ⌦ x

38. M(x, y,m(x̄, y, z̄)) ⌦ x

39. M(x, y,m(x̄, ȳ, z)) ⌦ M(x, y, z̄)

40. M(x, y,m(x̄, ȳ, z̄)) ⌦ M(x, y, z)

41. M(x, ȳ,m(x, y, z)) ⌦ ȳ

42. M(x, ȳ,m(x, y, z̄)) ⌦ ȳ

43. M(x, ȳ,m(x, ȳ, z)) ⌦ m(x̄, y, z)

44. M(x, ȳ,m(x, ȳ, z̄)) ⌦ M(x, ȳ, z)

45. M(x, ȳ,m(x̄, y, z)) ⌦ m(x, y, z)

46. M(x, ȳ,m(x̄, y, z̄)) ⌦ M(x, ȳ, z)

47. M(x, ȳ,m(x̄, ȳ, z)) ⌦ x

48. M(x, ȳ,m(x̄, ȳ, z̄)) ⌦ x

49. M(x̄, y,m(x, y, z)) ⌦ x̄

50. M(x̄, y,m(x, y, z̄)) ⌦ x̄

51. M(x̄, y,m(x, ȳ, z)) ⌦ m(x, ȳ, z)

52. M(x̄, y,m(x, ȳ, z̄)) ⌦ M(x̄, y, z)

53. M(x̄, y,m(x̄, y, z)) ⌦ m(x, ȳ, z)

54. M(x̄, y,m(x̄, y, z̄)) ⌦ M(x̄, y, z)

55. M(x̄, y,m(x̄, ȳ, z)) ⌦ y

56. M(x̄, y,m(x̄, ȳ, z̄)) ⌦ x̄

57. M(x̄, ȳ,m(x, y, z)) ⌦ m(x, y, z)

58. M(x̄, ȳ,m(x, y, z̄)) ⌦ m(x, y, z̄)

59. M(x̄, ȳ,m(x, ȳ, z)) ⌦ x̄
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60. M(x̄, ȳ,m(x, ȳ, z̄)) ⌦ x̄

61. M(x̄, ȳ,m(x̄, y, z)) ⌦ ȳ

62. M(x̄, ȳ,m(x̄, y, z̄)) ⌦ ȳ

63. M(x̄, ȳ,m(x̄, ȳ, z)) ⌦ m(x, y, z)

64. M(x̄, ȳ,m(x̄, ȳ, z̄)) ⌦ m(x, y, z̄

65. m(x, y,M(x, y, z)) ⌦ m(x, y, z) ⌦ m(x, z,M(x, y, z)) ⌦ m(z, y,M(x, y, z))

66. m(x, y,M(x, y, z̄)) ⌦ m(x, y, z̄) ⌦ m(z̄, y,M(x, y, z̄)) ⌦ m(x, z̄,M(x, z̄, y))

67. m(x, y,M(x, ȳ, z)) ⌦ x̄

68. m(x, y,M(x, ȳ, z̄)) ⌦ x̄

69. m(x, y,M(x̄, y, z)) ⌦ ȳ

70. m(x, y,M(x̄, y, z̄)) ⌦ ȳ ⌦ m(z, y,M(z̄, y, x̄))

71. m(x, y,M(x̄, ȳ, z)) ⌦ m(x, y, z) ⌦ m(z, y,M(z̄, ȳ, x)) ⌦ m(x, z,M(x̄, z̄, y))

72. m(x, y,M(x̄, ȳ, z̄)) ⌦ m(x, y, z) ⌦ m(z, y,M(z̄, ȳ, x))

73. m(x, ȳ,M(x, y, z)) ⌦ x̄

74. m(x, ȳ,M(x, y, z̄)) ⌦ x̄

75. m(x, ȳ,M(x, ȳ, z)) ⌦ m(x, ȳ, z) ⌦ m(z, ȳ,M(z, ȳ, x))

76. m(x, ȳ,M(x, ȳ, z̄)) ⌦ M(x̄, y, z)

77. m(x, ȳ,M(x̄, y, z)) ⌦ m(x, ȳ, z)

78. m(x, ȳ,M(x̄, y, z̄) ⌦ M(x̄, y, z)

79. m(x, ȳ,M(x̄, ȳ, z) ⌦ y

80. m(x, ȳ,M(x̄, ȳ, z̄)) ⌦ y

81. m(x̄, y,M(x, y, z)) ⌦ ȳ

82. m(x̄, y,M(x, y, z̄)) ⌦ ȳ

83. m(x̄, y,M(x, ȳ, z)) ⌦ m(x̄, y, z)

84. m(x̄, y,M(x, ȳ, z̄)) ⌦ M(x, ȳ, z)

85. m(x̄, y,M(x̄, y, z)) ⌦ m(x̄, y, z)
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86. m(x̄, y,M(x̄, y, z̄)) ⌦ M(x, ȳ, z)

87. m(x̄, y,M(x̄, ȳ, z)) ⌦ x

88. m(x̄, y,M(x̄, ȳ, z̄)) ⌦ x

89. m(x̄, ȳ,M(x, y, z)) ⌦ M(x, y, z̄)

90. m(x̄, ȳ,M(x, y, z̄)) ⌦ M(x, y, z)

91. m(x̄, ȳ,M(x, ȳ, z)) ⌦ y

92. m(x̄, ȳ,M(x, ȳ, z̄)) ⌦ y

93. m(x̄, ȳ,M(x̄, y, z)) ⌦ x

94. m(x̄, ȳ,M(x̄, y, z̄)) ⌦ x

95. m(x̄, ȳ,M(x̄, ȳ, z)) ⌦ M(x, y, z̄)

96. m(x̄, ȳ,M(x̄, ȳ, z̄)) ⌦ M(x, y, z)

• Class 3: In this class, the variable in the critical path of the circuit propagates

towards the output, thus leading to decrease in the depth of the circuit. The

transformations in this class are as follows:

1. m(u, x,m(x, ȳ, z̄)) ⌦ m(u, y,m(y, x̄, z̄)) ⌦ m(u, z,m(z, ȳ, x̄))

2. m(u, x,m(x̄, y, z)) ⌦ m(ȳ, x,m(x̄, ū, z)) ⌦ m(z̄, x,m(x̄, y, ū))

3. m(u, x̄,m(x, ȳ, z̄)) ⌦ m(y, x̄,m(x, ū, z̄)) ⌦ m(z, x̄,m(x, ȳ, ū))

4. m(u, x̄,m(x̄, y, z)) ⌦ m(u, ȳ,m(ȳ, x, z)) ⌦ m(u, z̄,m(z̄, y, x))

5. m(ū, x,m(x, y, z̄)) ⌦ m(ū, z,m(z, y, x̄))

6. m(ū, x,m(x, ȳ, z)) ⌦ m(ū, y,m(y, x̄, z))

7. m(ū, x,m(x, ȳ, z̄)) ⌦ m(ū, y,m(y, x̄, z̄))

8. m(ū, x,m(x̄, y, z)) ⌦ m(ȳ, x,m(x̄, u, z))

9. m(ū, x̄,m(x, y, z)) ⌦ m(ȳ, x̄,m(x, u, z))

10. m(ū, x̄,m(x̄, y, z)) ⌦ m(ū, ȳ,m(ȳ, x, z))

11. m(u, x,M(x, y, z)) ⌦ m(y, x,M(x, u, z) ⌦ m(z, x,M(x, y, u))

12. m(u, x,M(x, y, z̄)) ⌦ m(y, x,M(x, u, z̄)) ⌦ m(z̄, x,M(x, y, u))
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13. m(u, x,M(x, ȳ, z)) ⌦ m(ȳ, x,M(x, u, z)) ⌦ m(z, x,M(x, ȳ, u))

14. m(u, x,M(x, ȳ, z̄)) ⌦ m(ȳ, x,M(x, u, z̄)) ⌦ m(z̄, x,M(x, ȳ, u))

15. m(u, x̄,M(x̄, y, z)) ⌦ m(y, x̄,M(x̄, u, z)) ⌦ m(z, x̄,M(x̄, y, u))

16. m(u, x̄,M(x̄, y, z̄)) ⌦ m(y, x̄,M(x̄, u, z̄)) ⌦ m(z̄, x̄,M(x̄, y, u))

17. m(u, x̄,M(x̄, ȳ, z)) ⌦ m(ȳ, x̄,M(x̄, u, z)) ⌦ m(z, x̄,M(x̄, ȳ, u))

18. m(ū, x,M(x, y, z)) ⌦ m(y, x,M(x, ū, z)) ⌦ m(z, x,M(x, y, ū))

19. m(ū, x,M(x, y, z̄)) ⌦ m(z̄, x,M(x, y, ū)) ⌦ m(y, x,M(x, ū, z̄))

20. m(ū, x,M(x, ȳ, z)) ⌦ m(ȳ, x,M(x, ū, z)) ⌦ m(z, x, ȳ, ū)

21. m(ū, x,M(x, ȳ, z̄)) ⌦ m(ȳ, x,M(x, ū, z̄)) ⌦ m(z̄, x,M(x, ȳ, ū))

22. M(u, x,M(x, y, z)) ⌦ M(y, x,M(x, u, z)) ⌦ M(z, x,M(x, y, u))

23. M(u, x,M(x, y, z̄)) ⌦ M(y, x,M(x, u, z̄)) ⌦ M(z̄, x,M(x, y, u))

24. M(u, x,M(x, ȳ, z)) ⌦ M(ȳ, x,M(x, u, z)) ⌦ M(z, x,M(x, ȳ, u))

25. M(u, x,M(x, ȳ, z̄)) ⌦ M(ȳ, x,M(x, u, z̄)) ⌦ M(z̄, x,M(x, ȳ, u))

26. M(u, x̄,M(x̄, y, z)) ⌦ M(y, x̄,M(x̄, u, z)) ⌦ M(z, x̄,M(x̄, y, u))

27. M(u, x̄,M(x̄, y, z̄)) ⌦ M(z̄, x̄,M(x̄, y, u)) ⌦ M(y, x̄,M(x̄, u, z̄))

28. M(u, x̄,M(x̄, ȳ, z)) ⌦ M(z, x̄,M(x̄, ȳ, u)) ⌦ M(ȳ, x̄,M(x̄, u, z))

29. M(ū, x,M(x, y, z)) ⌦ M(y, x,M(x, ū, z) ⌦ M(z, x,M(x, y, ū))

30. M(ū, x,M(x, y, z̄)) ⌦ M(y, x,M(x, ū, z̄)) ⌦ M(z̄, x,M(x, y, ū))

31. M(ū, x,M(x, ȳ, z)) ⌦ M(ȳ, x,M(x, ū, z)) ⌦ M(z, x,M(x, ȳ, ū))

32. M(ū, x,M(x, ȳ, z̄)) ⌦ M(ȳ, x,M(x, ū, z̄)) ⌦ M(z̄, x,M(x, ȳ, ū))

33. M(ū, x̄,M(x̄, y, z)) ⌦ M(y, x̄,M(x̄, ū, z)) ⌦ M(z, x̄,M(x̄, y, ū))

All the proposed classes of transformation rules fulfil the primary goal of reducing

the CEs. Some classes of the rules lead to direct reduction of CEs, whereas others

reduce CEs after some primitive transformation rules.

A heuristic approach for inverter reduction using algebraic transformation is pro-

posed as:
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(i) The set of transformation rules in Class 1 is applied if and only if the number of

reconvergent variables is only one and the pairs are minority-minority, minority-

majority, and majority-minority.

(ii) The set of transformation rules in Class 2 is applied if and only if the number of

reconvergent is two and the pairs are minority-minority, majority-minority, and

minority majority.

(iii) The set of transformation rules in Class 3 is applied if and only if propagation of

critical either reconvergent or nonreconvergent Boolean variable does not a⇤ect

any intermediate result.

A set of rules based on the observed characteristic of mMIG algebraic transformation

rules, such as swapping, absorbing, exclusion, convergence is proposed. In total, there

can be 768 possible transformations for mMIG synthesis as follows:

• There are possible cases which lead to either partial optimization or complete

optimization either in terms of size or depth or both.

• A set of rules can be grouped and renamed based on the observed property.

• There are some cases whose equivalent structures could not be formulated.

• Not every rule leads to size optimization or depth optimization.

• These rules will cover all three partitions of mMIG synthesized circuit as discussed

in Algorithm 5, where only connected minority nodes, connected majority nodes,

and connected majority-minority nodes are considered for separate set of trans-

formation rules.

• There is a similar topology that exists for most of the structure, which com-

prises an equal count of majority nodes and minority nodes, but lesser inversion

operations if propagation of variables are from left to right or from right to left.
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3.5.2 Elimination rule in mMIG synthesis

Elimination rules in mMIG comprise extended scenarios which can be optimized in

term of the number of CEs or number of majority nodes/minority nodes. Elimination

rules are shown in Figure 3.12.
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Figure 3.12: Eight instances of elimination rules are listed for each of the eight circuit
outputs e1, . . . , e8 results in compact mMIG synthesized circuit.

The elimination rules in mMIG synthesis comprise cases wherein two back-to-back

cascaded minority and majority nodes are eliminated with input signals that drive the

circuit. Some instances of elimination rules are, ⌅mMIG.El are, M(x,m(x, x, y), z) =

z, M(x,m(x, x, y), z) = x, m(x,M(x, x, y), z) = x, etc. mMIG synthesis captures such

scenarios wherein a system of nodes are eliminated resulting in circuits with reduced

area. The transformations, namely, associativity, complementary associativity, and

distributivity properties solely perform elimination of only majority or only minority

nodes. However, in case of connected majority-minority nodes, the proposed elimina-

tion rule reduces the number of intermediate steps of removing the redundant nodes

much faster, thus achieving reduced area in smaller number of iterations.

52



3.5.3 Absorption rule in mMIG

We propose the following absorption rules in mMIG logic synthesis. These rules

involve absorbing or combining a minority node and a majority node and replace the

nodes with either a majority or minority node. The absorption property of this rule

in term of majority or minority nodes is illustrated in Figure 3.13.
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Figure 3.13: Absorption rule for replacing a connected set of majority and minority
nodes with lesser number of either majority or minority nodes.

This class of transformation rules comprises the following variants:

1. ⌅mMIG.Ab1: When upper node is majority and bottom node is minority.

(a) M(x, y,m(x, y, z)) ⌦ M(x, y, z̄)

2. ⇤mMIG.Ab2: When upper node is minority and bottom node is a majority

node.

(a) m(x, y,M(x, y, z)) ⌦ m(x, y, z)

3.5.4 Swapping Reconvergence rule ⌅mMIG.SR in mMIG

We propose swapping reconvergence rule in mMIG synthesis as follows. It includes

swapping of reconvergent and nonreconvergent Boolean variables comprising either

complemented or regular variables, either from input to output or vice-versa, as per the

specific application while implementing the circuit. Inverter reduction is attained by

using swapping of reconvergent variable or nonreconvergent variable either with another

reconvergent variable or nonreconvergent variable as depicted in the Figure 3.14. A
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simple circuit instance shown in Figure 3.15 depicts depth and size optimization using

multiple variants of swapping reconvergence property in mMIG.
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Figure 3.14: (a),(b) depicts the swapping of nonreconvergent Boolean variables with
nonreconvergent Boolean variables, which reduces inverter count if propagation is from
the right-hand side to the left-hand side; the same swapping rule applies in (c) also
between reconvergent and nonreconvergent Boolean variable.

The transformation rules in this category are as follows:

(i) ⌅mMIG.SR1:M(u, x̄,m(x, y, z)) ⌦ M(ȳ, x̄, m(x, ū, z)) ⌦ M(z̄, x̄, m(x, y, ū)),

(ii) ⌅mMIG.SR2:M(u, x,m(x̄, y, z)) ⌦ M(ȳ, x,m(x̄, ū, z)) ⌦ M(z̄, x,m(x̄, y, ū)),

(iii) ⌅mMIG.SR3:M(u, x,m(x, y, z)) ⌦ M(x, u,m(u, ȳ, z̄))

3.5.5 Relevance ⌅mMIG.R rule in mMIG

The proposed rule shows relevance nature of the reconvergent variable. It signifies

the importance of specific input Boolean variables present in a critical path, which

lies either at the bottom-most position or in any intermediate position. This property

is convenient in case of a critical variable which is present in a critical path, and it

renders mMIG synthesized circuit highly optimized. ⌅mMIG is having added advantage

over ⌅MIG and ⌅mIG as depicted in the Figure 3.16.

The transformation rules in this category are as follows:
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Figure 3.15: Depth and size optimization using swapping reconvergence rules
⌅mMIG.SR1 and ⌅mMIG.SR2 in mMIG circuit. Inverter operation count is reduced
from two inversion operations to one inversion operation.

(i) ⌅mMIG.R1:M(x, y,m(M(x, y, z), z̄, w)) ⌦ M(x, y, w̄)

(ii) ⌅mMIG.R2:M(x̄, ȳ, m(M(x̄, ȳ, z), z̄, w)) ⌦ M(x̄, ȳ, w̄) ⌦ m(x, y, w)

(iii) ⌅mMIG.R3:M(x̄, ȳ, m(M(x, y, z), z̄, w)) ⌦ M(x̄, ȳ, w̄) ⌦ m(x, y, w)

(iv) ⌅mMIG.R4:M(x, y,m(M(x̄, ȳ, z), z̄, w)) ⌦ M(x, y, z)

(v) ⌅mMIG.R5:m(x, y,M(m(x, y, z), z̄, w)) ⌦ M(x̄, ȳ, z) ⌦ m(x, y, z̄)

(vi) ⌅mMIG.R6:m(x̄, ȳ,M(m(x̄, ȳ, z), z̄, w)) ⌦ M(x, y, 0)

(vii) ⌅mMIG.R7:m(x̄, ȳ,M(m(x, y, z), z̄, w)) ⌦ M(x, y, z)

(viii) ⌅mMIG.R8:m(x, y,M(m(x̄, ȳ, z), z̄, w)) ⌦ M(x, y, 0)

3.6 mMIG Logic Optimization Algorithm

In this section, we illustrate logic optimization algorithms in mMIG synthesis that

renders size optimization and reduction of inversion operations through elimination,
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Figure 3.16: In (a),(b) and (c), replace x with y
� for occurrence of z at the bottom node

by using ⌅�
.R. This is followed by application of ⌃�

.m which results in intermediate
input Boolean critical variable to reduce to resultant majority node/minority node.
In (d),(e),(f),(g) and (h), the resultant node contains the input Boolean variable that
is input to the leaf node as a majority node or minority node.

absorption, swapping reconvergence, relevance, and other transformation rules in mi-

nority and majority logic synthesis methods.

The logic optimization algorithm is demonstrated in Algorithm 1. It takes the MIG

synthesized circuit as the input which is obtained by direct conversion from AND-OR-

Inverter Graph, i.e., AOIG ⌃ MIG. and applies a set of optimization algorithms that

comprise XOR optimization, CE reduction, reshaping, inversion propagation, and mMIG
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size optimization algorithms. Depending on the conditions satisfied, such as existence

or parity of count of XOR operations or scope of CE reduction, the optimization

algorithms are applied to yield a logic optimized circuit comprising majority nodes,

minority nodes, and CEs.

Algorithm 1: mMIG Logic Optimization Algorithm
Input: Circuit ⇥ in MIG representation
Output: Optimized circuit ⇥� in mMIG representation
if (XOR operations in(⇥)) then

⇥ � XORn Optimization(⇥);
end
else if (Check Reduction CE(⇥)) then

⇥ � Reshape(⇥);
// O(M) where M = number of Majority nodes.
⇥ � INV propagation(⇥);
// O(M) where M = number of Majority nodes.

end
else

⇥� � ⇥;
return(⇥�);

end
⇥� � mMIG Size Optimization(⇥);
return(⇥�);

3.6.1 XOR n Optimization in mMIG

The XOR n optimization step first identifies all two-input XOR gates (denoted

as XOR2) and three-input XOR (denoted as XOR3) gates, and optimizes the corre-

sponding MIG synthesized partitions with mMIG synthesis approach as mentioned later

in Section 4.4. We further extend these transformations towards optimization of n-

input XOR gates in the circuit. We demonstrate that optimal circuit implementations

for even and odd values of n shall have di⇤erent realizations.
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Algorithm 2: Check Reduction CE(⇥)

Input: Circuit ⇥ in MIG representation
Output: TRUE/FALSE
for Each majority node M in ⇥ do

if ((M(x, y, z)——M(x, y, z)—— M(x, y, z)——M(x, y, z)) then
return(TRUE);

end
else if (M(x, a, z)&&(a == constant)) then

return(TRUE);
end

else if (M(x, a, z)&&(a == constant)) then
return(TRUE);

end

else if (M(x, a, b)&&(a == constant)&&(b == constant)) then
return(TRUE);

end
else

return(FALSE);
end

end

3.6.2 Check Reduction CE Algorithm

The Check Reduction CE algorithm, described in Algorithm 2, identifies locations

in MIG synthesized circuit where the complemented edges (CEs) can be reduced. In-

stances of nodes where CEs can be reduced have expressions such as, M(x, y, z),

M(x, y, z), M(x, y, z), and M(x, y, z). After identification, such instances of majority

operations are replaced with minority operation as mentioned in Reshaping algorithm

in the next section.

3.6.3 Reshaping Algorithm

The Reshaping algorithm replaces the identified majority nodes (in previous sec-

tion) with larger number of CEs with minority nodes.

As mentioned in Algorithm 3, the majority nodes were identified based on the

polarities at the output of majority node, and that of the input signals, x, y, and z

as mentioned in the algorithm. Instances of the reshaping process are shown in the
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Figure 3.17

3.6.4 INV propagation Algorithm

The INV propagation algorithm, described in Algorithm 4, enumerates all cases

wherein propagation of inversion operation from input to output, or vice versa leads

to a reduced count of CEs in mMIG synthesis.

The algorithm identifies all such cases wherein either the majority node is restored

or substituted with a minority node after propagation of CE. Some instances of the

inverter propagation are shown in Figure 3.18.

Algorithm 3: Reshape(⇥)

Input: Circuit ⇥ in MIG representation
Output: Transformed mMIG synthesized circuit ⇥�

for (each majority node M(x, y, z) in ⇥) do
switch (M,x, y, z) do

case (M,x, y, z) do
m(x, y, z) � M(x, y, z)

case (M,x, y, z) do
m(x, y, z) � M(x, y, z)

case (M,x, y, z) do
m(x, y, z) � M(x, y, z)

case (M,x, y, z) do
m(x, y, z) � M(x, y, z)

case (M,x, a, z) do
m(x, a, z) � M(x, a, z)

case (M,x, a, z) do
m(x, a, z) � M(x, a, z)

case (M,x, a, b) do
m(x, a, b) � M(x, a, b)

end
⇥� � ⇥;
return(⇥�);

end
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Figure 3.17: Reshaping process in Algorithm 3 on circuit ⇥ transforms circuits in
(i), . . . , (vii) to attain compact implementation of the circuit, where x, y, z are input
Boolean variables, a and b are constants, and f1, . . . , f7 are output functions.

3.6.5 Filtering CEs Algorithm

We define two CEs are connected if they share a common majority node. Based

on the count of connected complemented edges (CEs) and disconnected CEs, this

algorithm follows two di⇤erent ways,

(i) if count of disconnected CEs in the circuit is available then replacement operation

is performed where it replaces majority node and CE with minority node.

(ii) if count of connected CEs in the circuit is available then it calls INV propagation

algorithm.
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3.6.6 mMIG Size Optimization Algorithm

The mMIG Size Optimization algorithm, described in Algorithm 5, initially, splits

the mMIG synthesized circuit ⇥, into three partitions:

• PM(⇥): This partition of mMIG synthesized circuit ⇥, comprises a connected set

of only majority nodes; the number of nodes in the set, defined as |PM(⇥)| ⌥ 2.

The constructed partition is subjected to a set of transformation rules from

[2], which comprise majority axiom (⌃.M), distributivity (⌃.D), associativity

(⌃.A), complementary associativity (⌅.C), relevance (⌅.R), and substitution

(⌅.S), which involve a set of connected majority nodes only. The sequence of

rules reduces the size of the partition and count of the associated complemented

edges (CEs).

• Pm(⇥): This partition of mMIG synthesized circuit ⇥, comprises a connected set

Algorithm 4: INV propagation(⇥)

Input: Circuit ⇥ in mMIG representation
Output: Transformed mMIG synthesized circuit ⇥�

for (each majority node M(x, y, z) in ⇥) do
switch (M,x, y, z) do

case (M,x, y, z) do
M(x, y, z) � M(x, y, z)

case (M,x, y, z) do
M(x, y, z) � M(x, y, z)

case ((M,x, a, z)&&(a == constant)) do
M(x, a, z) � M(x, a, z)

case (M,x, y, z) do
m(x, y, z) � M(x, y, z)

case (M,x, a, z) do
m(x, a, z) � M(x, a, z)

case (M,x, a, z) do
m(x, a, z) � M(x, a, z)

case (M,x, a, b) do
m(x, a, b) � M(x, a, b)

end
⇥� � ⇥;
return(⇥�);

end
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Figure 3.18: Inverter propagation process in Algorithm 4 on circuit ⇥ transforms
subgraphs (i), . . . , (vii) to obtain compact implementation of the circuit, where x, y, z
are input Boolean variables, a and b are constants and f1, . . . , f7 are output functions.

of only minority nodes; the number of nodes in the set, defined as |Pm(⇥)| ⌥ 2.

The generated partition is subjected to a set of transformation rules proposed

in Section 3.2, which comprise associativity involving reconvergent and non-

reconvergent variables (⌃�
.An2v, Anrv), swapping reconvergence (⌅�

.SR), and rel-

evance (⌅�
.R). The rules are applied on a set of connected minority nodes only in

the partition Pm(⇥) in a sequence to reduce the size and depth of the partition,

and count of the associated complemented edges (CEs) in the partition.

• PmM(⇥): This partition defined as, ⇥ \ PM(⇥) \ Pm(⇥), is the residual parti-

tion after computing PM(⇥) and Pm(⇥). The partition is a connected com-

ponent comprising majority nodes, minority nodes, and complementary edges

(CEs). Computing a connected system or a subpartition of only majority
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nodes or only minority nodes is not possible in this partition. For any PM

in this partition, defined as, PM(PmM(⇥)), the cardinality of such a set satisfies,

|PM(PmM(⇥))| ⌅ 1. Similarly, for a partition comprising only minority nodes,

the cardinality of the set satisfies |Pm(PmM(⇥))| ⌅ 1. A set of transformation

rules from mMIG synthesis is proposed in Section 3.4. The set comprises elimina-

tion (⌅mMIG.El), absorption (⌅mMIG.Ab1,⌅mMIG.Ab2), swapping reconvergence

(⌅mMIG.SR1, . . . ,⌅mMIG.SR3), and relevance (⌅mMIG.R1, . . . ,⌅mMIG.R8),

which are applied in a specific sequence to reduce the CEs in the partition,

PmM(⇥).

The run-time complexities of these algorithms are mentioned in Table 3.1.

Network G

Preprocess to decompose network into
logic cones

is n a majority
function/minority 

function/connected
minority-
majority
�function?
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�into�

majority/minority
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Optimization mMIG Algebraic�

Optimization

mIG Algebraic�
Optimization

Optimized all 
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Yes, Only Minority 
function

Yes, Only Majority 
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� �Yes, Both� Minority&
� � Majority� � function

No

Yes

No

For each node n
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END

Figure 3.19: Flow diagram providing an overview of our minority-majority network
optimization methodology.
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Algorithm 5: mMIG Size Optimization(⇥)

Input: Circuit ⇥ in mMIG representation
Output: Size optimized mMIG synthesized circuit ⇥�

Create partition PM(⇥) comprising only M(x, y, z) nodes, |PM(⇥) ⌥ 2|;
// Partition PM(⇥) � ⇥, comprising majority nodes only, # nodes
⌥ 2
Create partition Pm(⇥) comprising only m(x, y, z) nodes, |Pm(⇥) ⌥ 2|;
// Partition Pm(⇥) � ⇥, comprising minority nodes only, # nodes
⌥ 2
PmM(⇥) � ⇥ \ PM(⇥) \ Pm(⇥);
Check partition PmM(⇥) is a connected component and �PM , Pm, s.t.,
|PM(PmM(⇥)) ⌅ 1| && |Pm(PmM(⇥)) ⌅ 1|; // Partition PmM(⇥)
comprising connected majority and minority nodes only, # nodes
in each PM � PmM and Pm � PmM is ⌅ 1
for (⇥1 � PM(⇥)) do

⌃.ML⇥R(⇥1) ; // Optimizations on PM(⇥) partition
⌃.DR⇥L(⇥1);
⌃.A(⇥1); ⌅.C(⇥1) ; // From [2]
⌅.R(⇥1); ⌅.S(⇥1);
⌃.ML⇥R(⇥1); ⌃.DR⇥L(⇥1);

end
for (⇥2 � Pm(⇥)) do

⌃�
.mL⇥R(⇥2); // Optimizations on Pm(⇥) partition

⌃�
.DR⇥L(⇥2);

⌃�
.An2v(⇥2); ⌃�

.Anrv(⇥2);
⌅�
.SR

1
n2v(⇥2); ⌅�

.SR
2
n2v(⇥2);

⌅�
.SR

3
n2v(⇥2); ⌅�

.SR
4
n2v(⇥2);

⌅�
.SR

1
nrv(⇥2); ⌅�

.SR
2
nrv(⇥2);

⌅�
.SR

3
nrv(⇥2); ⌅�

.SR
4
nrv(⇥2);

⌅�
.R

(⇥2); ⌅�
.S(⇥2);

⌃�
.mL⇥R(⇥2); ⌃�

.DR⇥L(⇥2);
end
for (⇥3 � PmM(⇥)) do

⌅mMIG.El(⇥3); // Optimizations on PmM(⇥) partition
⌅mMIG.Ab1(⇥3);
⌅mMIG.Ab2(⇥3); ⌅mMIG.SR1(⇥3);
⌅mMIG.SR2(⇥3); ⌅mMIG.SR3(⇥3);
⌅mMIG.R1(⇥3); ⌅mMIG.R2(⇥3);
⌅mMIG.R3(⇥3); ⌅mMIG.R4(⇥3);
⌅mMIG.R5(⇥3); ⌅mMIG.R6(⇥3);
⌅mMIG.R7(⇥3); ⌅mMIG.R8(⇥3);

end
⇥� � ⇥1 ✏ ⇥2 ✏ ⇥3;
return(⇥�);

64



Algorithm 6: Filtering CEs
Input: Circuit ⇥ in MIG representation
Output: Optimized circuit ⇥� in mMIG representation
if (Count Disconnected CEs In(⇥)) then

Replacement Majority logic and CEs in ⇥ � Minority logic;
end
; // O(m) ⇣DCEs where DCEs= #Disconnected CEs, m =# minority
nodes
else if (Count Connected CEs In(⇥)) then

⇥ � INV propagation(⇥);
; // O(M) ⇣ CCEs where CCEs= #Connected CEs, M =# Majority
nodes

end
return(⇥�);

Table 3.1: Timing complexities of di⇤erent components of mMIG Algorithm.

mMIG Algorithm
Worst case

time complexity
Termination Condition/ Remarks

mMIG Logic Optimization Algorithm
max(O(X), O(M2

),

time complexity(mMIG Size Optimization Algorithm))

Where X is the number of XOR operations, M is the

total number of majority nodes in the MIG circuit.

Check Reduction CE Algorithm O(M) where M is number of Majority nodes.
When there is no majority node satisfying the

mentioned condition.

Reshaping Algorithm O(M) where M is number of Majority nodes.
When there is no majority node satisfying the

mentioned condition.

INV propagation Algorithm O(M) where M is number of Majority nodes.
When there is no majority node satisfying the

mentioned condition.

Filtering CE Algorithm max(O(m ⇣DCEs), O(M ⇣ CCEs))

m and M are the number of minority,

majority nodes respectively, and DCEs, CCEs is the

total count of disconnected edges, connected

edges. respectively.
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Chapter 4

Experimental Results: Case Study and

Comparison

In this section, we have shown the comparison between MIG and mMIG implementa-

tions of standard combinatorial circuits, lightweight cryptographic block ciphers and

cyptoprimitives [62]. All the comparisons are shown in this paper made by count-

ing the resources in both the structure which includes number of majority, minority

and CEs. This paper mainly investigates the reduction in CEs through counting and

percentage of CE reduction.

We have used two di⇤erent approaches to obtain synthesized circuit with minimal

number of resources especially in the term of CEs.

First approach: It includes the optimization of the optimised MIG synthesized cir-

cuit from [2]. To achieve this goal, we have written script called, mMIGhty tool to

convert the MIG synthesized circuit to mMIG synthesized circuit using minority logic

where inverters are suppressed using NAND and NOR equivalent representation. It

reads files in Verilog format and writes back a Verilog description of the optimized

mMIG. Suppose Boolean variable x, y and z are two input logical operations like and,

or represented using &, | operators respectively. Assume x = ȳ&z̄, we have converted

x into (y|z) which requires 0 inverter if it does using minority logic, result of which

equivalent circuit but with lesser number of CEs.

Second Approach: Another approach comes under the complete construction of the

circuit from the network graph(lets say G) whose complete flow can be observed in
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the Figure 3.19. where resources are optimized based on the nature of the function.

We have used connected property of CEs in above discussed both the approaches. We

define two CEs are connected if they share a common majority node. Circuits with

smaller connectedness restricts optimization in inverter count in MIG-based implemen-

tations. In such cases, mMIG-based implementations can lead to significant inverter

reduction by capturing the inversion within minority node, wherever applicable in the

circuit.

we perform a comparative assessment of the logic optimization algorithm that

we proposed for mMIG implementations with corresponding MIG implementations of

standard combinational circuits from IWLS’05 open core and arithmetic benchmark

circuits, EPFL benchmark circuits, ISCAS’85 benchamrk circuits, and combinational

circuits that form the core of certain cryptographic primitives in both private and

public key cryptography. Compact implementation of such cryptographic primitives is

important to meet resource-constrained requirements of lightweight cryptography [62,

63] in terms of hardware and energy footprint, hence, they have been considered for

comparative evaluation of the proposed mMIG synthesis technique.

4.1 IWLS’05 Open Core benchmarks and larger

arithmetic HDL benchmarks

In this section, we provide performance results of mMIG implementations of

IWLS2005 benchmark and arithmetic benchmark circuits on Kintex UltraScale FPGA

platform on 20nm VLSI technology.The IWLS 2005 benchmark suite was published by

International Workshop on Logic and Synthesis (IWLS). It comprises MCNC, ISCAS

and ITC’99 suites and few OpenCores along with other designs [64].

Metrics used for comparison between MIG with mMIG: In addition to in-

verter reduction in mMIG circuit synthesis, we consider other performance metrics,

such as signal switching power, resource count in LUTs, and total net delay in the

critical path of the synthesized circuit as follows:
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(i) Reduction in inverter count reduces number of nodes in the circuit. As a result,

it also decreases the total switching power of signals in the circuit. This aspect

is demonstrated in Figure 4.4, wherein significant reduction in signal switching

power is observed in mMIG synthesized circuits.

(ii) In the critical path, reduction in inverter count reduces the number of nets from

the primary inputs to the primary outputs. Hence, it reduces the total net delay

in the entire critical path. This is observed in comparison of total net delay in

the critical path for MIG-synthesized and mMIG-syntheized circuits as shown

in Figure 4.1.

FPGA Implementation results: In Table 4.1, we demonstrate the e⇥cacy of mMIG

synthesis technique in comparison to MIG synthesis with performance metrics stated

in previous section. The results are shown on 15 benchmark circuits, which comprises

eight open core IWLS’05 benchmark circuits and seven Arithmetic HDL circuits. In

addition, we demonstrate comparative results of net delay in critical path, logic delay,

LUT count and on-chip dynamic signal power in Figure 4.1, Figure 4.2, Figure 4.3,

and Figure 4.4, respectively.

Figure 4.1 shows the improvement in net delay in mMIG synthesis as compared

to MIG logic synthesis technique. There are some circuits namely, c10, c12, where

it does not improve parameters due to dominant presence of AND and OR logic

gates which are optimally represented in MIG than mMIG. Figure 4.2 demonstrates

improvements in the logic delay in some circuits. In such circuits, replacing majority

and inverter with minority eliminates the fan-out delay of the majority and fan-in delay

of inverter. Due to this reduced fan-in and fan-out delay of the system, the overall

propagation delay or logic delay of the circuit also reduces. Figure 4.3 compares the

LUT count which shows significant improvement in most of the cases, result of which

mMIG synthesized circuit requires lesser resource count. Figure 4.4 compares on-chip

dynamic signal power which shows significant improvement. Elimination of inverter

nodes in certain cases reduces the total number of signal transitions in the overall

circuit, hence, the dynamic switching power of the signals also reduces.
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Table 4.1: Performance Metrics comparison between MIG and mMIG implementations
of IWLS’05 and Arithmetic HDL benchmark circuits on 20-nm technology node of
Kintex UltraScale FPGAs.

Benchmark
#I/Os

On-Chip Power Resources

(CLB LUTs)

Critical Path Parameters

Open Core IWLS’05
Dynamic

Static
# max
levels

Total delay
(ns)

Logic delay
(ns)

Net delay
(ns)Signal Logic I/O

MIG usb phy
113/111

1.615W (5%) 0.25W (1%) 29.1W (94%) 1.147W (3%) 82 5 9.919 1.709 8.21
mMIG usb phy 1.615W (5%) 0.25W (1%) 29.1W (94%) 1.167W (3%) 80 5 6.366 1.678 4.688
MIG ss pcm

106/98
1.375W (4%) 0.254 W (1%) 31.72W(95%) 1.336W 71 5 7.031 1.707 5.324

mMIG ss pcm 2.044W (4%) 0.265 W (1%) 47.896W(95%) 1.336W 68 5 5.779 1.529 4.25
MIG sasc

133/132
2.752W(5%) 0.414W(1%) 45.56W (94%) 2.21W 127 4 7.8 1.729 6.071

mMIG sasc 3.821W(5%) 0.445W(1%) 68.257w (94%) 2.353W 127 5 6.378 1.69 4.688
MIG simple spi

148/147
3.252W (6%) 0.557W (1%) 46.804W (93%) 2.376W(4%) 183 6 9.477 1.834 7.643

mMIG simple spi 3.168W (6%) 0.532W (1%) 46.752W (93%) 2.361W(4%) 184 6 8.821 1.729 7.092
MIG pci spoci ctrl

85/76
1.275W(6%) 0.407W(2%) 22.871W (93%) 0.926W 178 8 9.308 2.151 7.157

mMIG pci spoci ctrl 1.782W(6%) 0.512W(2%) 28.446W (92%) 0.886W 221 6 8.9 1.99 6.91
MIG i2c

147/142
2.962W(7%) 0.618W (1%) 34.529W (92%) 1.482W 220 6 9.228 1.887 7.341

mMIG i2c 3.696W(7%) 0.63W (1%) 51.74W (92%) 1.539W 219 6 8.147 1.811 6.336
MIG spi

274/276
10.123W (11%) 4.104W (4%) 78.073W (85%) 4.39W (5%) 806 9 11.072 2.105 8.967

mMIG spi 8.453W (11%) 3.06W (4%) 65.243W (85%) 4.39W (5%) 657 9 11.15 2.099 9.048
MIG des area

368/72
13.498W (19%) 4.285W (5%) 54.886W (75%) 4.391W (6%) 883 10 16.837 2.024 14.813

mMIG des area 12.657W (18%) 3.828W (5%) 54.946W (77%) 4.391W (6%) 789 9 16.004 1.99 14.014
Arithmetic HDLs

MIG hamming
200/7

34.391W(50%) 24.605W(36%) 9.439W (14%) 4.391W(6%) 517 18 17.544 3.037 14.507
mMIG hamming 29.12W(47%) 26.116W(42%) 6.302W (11%) 1.766W(3%) 492 18 16.272 4.204 12.068

MIG sqrt32
32/16

14.841W(43%) 12.593W(37%) 6.885W(20%) 1.291W (4%) 492 59 38.741 8.448 30.293
mMIG sqrt32 13.932W(43%) 11.252W (35%) 6.910W (22%) 1.193W (4%) 435 59 40.202 9.424 30.778
MIG square

64/127
96.5 W (41%) 61.5W (26%) 77.83W (33%) 4.4W (2%) 3942 18 22.045 3.547 18.5

mMIG square 73.3 W (24%) 54.62 W (19%) 77.69 W (57%) 4.39 W (2%) 3352 17 20.112 3.553 16.56
MIG div16

32/32
8.513W (36%) 6.912W (30%) 7.923W (34%) 0.891W 1060 41 29.659 6.682 22.977

mMIG div16 8.322W (37%) 6.524W (29%) 7.889W (34%) 0.874W 1043 41 30.97 6.81 24.15
MIG tv80

373/404
7.971W (13%) 2.737W (5%) 43.868W (82%) 2.768W (6%) 740 14 17.5 2.842 14.659

mMIG tv80 8.018W (15%) 2.812W (5%) 43.857W (80%) 2.780W (5%) 754 14 16.779 2.767 14.012
MIG revx

20/25
67.347W (46%) 68.705 W (47%) 10.755W (7%) 4.391W (3%) 1612 43 31.306 6.753 24.553

mMIG revx 54.911W (44%) 60.486W (48%) 10.668W (8%) 4.391W(3%) 1541 43 29.023 7.071 21.952
MIG log32

32/32
397.149W (53%) 333.7W (45%) 17.59W (2%) 4.391W (1%) 9247 62 51.424 9.289 42.135

mMIG log32 297.396W (51%) 273.45W (46%) 17.565W (3%) 4.391W (1%) 8090 62 46.083 9.774 36.309
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Figure 4.1: Net delays in IWLS’05 and HDL arithmetic benchmark circuits.
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Figure 4.2: Logic delay in IWLS’05 and HDL arithmetic benchmark circuits.
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Figure 4.3: LUT count in IWLS’05 and HDL arithmetic benchmark circuits.

4.2 Random/Control Combinatorial Circuits from

EPFL benchmark suite

In this section, we demonstrate comparison result in reduction of inversion oper-

ations in mMIG synthesis as compared to MIG synthesis for combinational circuits in
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Figure 4.4: On-chip dynamic signal power in IWLS’05 and HDL arithmetic benchmark
circuits.

EPFL combinational benchmark suite [65]. These random/control benchmark circuits

comprise a significant amount of two-input logical AND operation. Implementation of

the AND gate using only mIG creates a huge amount of additional overhead due to

CEs, so this overhead is minimized using mMIG representation of the circuits whose

underlying representation is shown in Figure 4.5.

4.2.1 ALU Control Unit

This benchmark circuit is a simple ALU Control Unit with seven inputs and 26 out-

puts. It comprises various signals that control ALU operations, register load operation,

memory read/write operations, and jump instructions. The circuit comprises 174 AND

operations and 10 logic levels. The resource consumption in number of majority nodes,

complementary edges (CEs) for all outputs in bothMIG synthesis and mMIG synthesis is

shown in Figure 4.6 and the results are illustrated in Table 4.2.

The mMIG synthesis has the largest optimization in cases where it replaces a ma-

jority node and CE at its output by a minority gate. From the results of percentage

reduction in CEs shown in Figure 4.8, the mMIG synthesis achieves the largest reduction
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Figure 4.5: MIG representation of two-input logical AND operation considering both
the polarities leads to four possible structure shown as (a),(b),(c) and (d), Similarly,
(e),(f),(g) and (h) denotes the mIG representation of the same. Fundamental represen-
tation (a),(h) will be chosen over (e),(d) to nullify the impact of CEs and (b),(c),(f)
and (g) are the similar representation in the view of resource count.

in CEs with 93.3% for halt output signal as compared toMIGsynthesis. However, there

is one output signal, bgez in the circuit, in which no CEs were removed in mMIG synthe-

sis. For other outputs, the percentage reduction values in CEs due to mMIG synthesis

range from 28.6% to 87%, and average percentage reduction in CEs across all outputs

to 64.1%.

4.2.2 Int to Float Converter

This EPFL benchmark circuit computes integer to floating point conversion. The

input is an integer in binary format with 10 bits. The output is a floating point value

with a four bit mantissa signal and three bit exponent. The resource count in number

of majority nodes (#NMIG), number of complemented edges (#CEMIG) for MIG, and

number of majority nodes (#NM mMIG), number of minority nodes (#Nm mMIG), and

number of complemented edges (#CEmMIG) in mMIG synthesis is shown in Figure 4.7

and the results are tabulated in Table 4.3. The results show a large reduction in

count of complemented edges for all mantissa output bits in mMIG synthesis as shown

in Figure 4.9. For mantissa output bits, the percentage reduction in complementary
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Figure 4.6: Resource count comparison of number of majority modes (#NMIG), com-
plemented edges (#CEMIG) in MIG synthesized circuit and number of majority nodes
(#NM mMIG), minority nodes (#Nm mMIG), and complemented edges (#CEmMIG) in
mMIG synthesized circuit in ALU Control Unit in EPFL benchmark circuit.
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Table 4.2: Resource count ofMIGand mMIG representation of ALU control unit w here
#NMIG, #CEMIG, #NM mMIG, #Nm mMIG, #CEmMIG denotes number of major-
ity nodes, number of CEs in MIG synthesized circuit, and number of majority nodes,
number of minority nodes and number of CEs in mMIG synthesized circuit, respectively.

MIG mMIG

Output #NMIG #CEMIG #NMIG #NmIG #CEmMIG

Sel reg dst[0] 16 14 11 5 4
Sel reg dst[1] 15 23 6 9 5
Sel alu opB[0] 16 23 6 10 3
Sel alu opB[1] 18 29 6 12 5

alu op[0] 23 25 16 7 11
alu op[1] 13 16 8 5 6
alu op[2] 14 17 7 7 3

alu op ext[0] 21 25 12 9 7
alu op ext[1] 13 16 7 6 4
alu op ext[2] 15 23 6 9 5
alu op ext[3] 16 23 8 8 7

halt 8 15 1 7 1
reg write 18 23 11 7 9
Sel pc opA 6 7 5 1 5
Sel pc opB 6 9 3 3 3

beqz 8 11 4 4 3
bnez 8 9 6 2 5
bgez 8 7 8 0 7
bltz 8 9 6 2 5
Cin 23 24 16 7 10
jump 4 5 3 1 3
invA 15 18 9 6 6
invB 9 12 4 5 2

mem write 13 23 3 10 3
Sel wb 8 14 2 6 2
Total 322 420 174 148 124

edges in mMIG synthesis as compared to MIG synthesis are 66.7%, 67.4%, 61.1%, and

66.7%. For exponent outputs, the respective percentage reduction values are 58.8%,

60%, and 83.3%, respectively.
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Table 4.3: Resource count ofMIGand mMIG representation of Int to float converter
where #NMIG,#CEMIG,#NM mMIG,#Nm mMIG,#CEmMIG denotes number of ma-
jority nodes,number of complemented edges in MIG synthesized circuit and number
of majority nodes, number of minority nodes and number of CEs in mMIG synthesized
circuit respectively.

MIG mMIG
Output #NMIG #CEMIG #NMIG #NmIG #CEmMIG

M [0] 44 54 26 18 18
M [1] 71 86 42 29 28
M [2] 33 36 22 11 14
M [3] 13 12 9 4 4
E[0] 37 34 27 10 14
E[1] 27 20 21 6 8
E[2] 7 6 4 3 1
Total 232 248 151 81 87

4.2.3 Lookahead XY router

This EPFL benchmark circuit is a router implementation for network-on-chips. It

represents a lookahead XY router which achieves low latency, high throughput com-

munication in a network-on-chip system. The original AIG implementation comprises

257 nodes with 54 logic levels. The mMIG synthesis results is demonstrated in Fig-

ure 4.10 and in the Table 4.4. The router comprises 30 output ports, however, the

number of active output ports is only three, as shown in the figure. The percentage

reduction in complemented edges in mMIG synthesis with respect toMIGsynthesis for

these three outputs are 57.7%, 58.7%, and 60%, respectively. This large reduction in

inverter count implies a significant reduction in hardware footprint as well.

Table 4.4: Resource count of MIG and mMIG representation of Lookahead XY router
where #NMIG,#CEMIG,#NM mMIG,#Nm mMIG,#CEmMIG denotes number of ma-
jority nodes, number of CEs in MIG synthesized circuit and number of majority nodes,
number of minority nodes and number of CEs in mMIG synthesized circuit, respectively.

MIG mMIG

Output #NMIG #CEMIG #NMIG #NmIG #CEmMIG

Output[0] 393 440 266 127 186
Output[1] 867 995 575 292 411
Output[2] 858 991 561 297 397
Total 2118 2426 1402 716 994
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Figure 4.7: Resource count comparison of number of majority modes (#NMIG), com-
plemented edges (#CEMIG) in MIG synthesized circuit and number of majority nodes
(#NM mMIG), minority nodes (#Nm mMIG), and complemented edges (#CEmMIG) in
mMIG synthesized circuit in Int to float circuit in EPFL benchmark circuit.

4.3 c432 ISCAS’85 benchmark circuit

The c432 ISCAS benchmark circuit is a 27-channel interrupt controller with 36

inputs and 7 outputs, and comprises 160 gates; the outputs are mentioned with labels

N430, N431, N432, N223, N329, N370, N421. We refer to a circuit that drives each of

the seven outputs of c432 as a logic cone, (LCi, 1 ⌅ i ⌅ 7) of c432. We consider nand2,

nand3, and nand4 as the binary, ternary, and quaternary NAND logic operations,

respectively. We represent each logic cone as fi(g1, g2, . . . , gn), a tuple of all logic

gates g1, g2, . . . , gn, comprising the logic cone. Further, nor2, xor2, and and2 denote

binary NOR, binary XOR, and binary AND operations, respectively. The c432
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Figure 4.8: Percentage reduction in complementary edges in mMIG logic synthesis of
EPFL benchmark circuits in ALU Control Unit

benchmark circuit comprises of the following seven logic cones as follows:

LC1 : N223 = f1(nand2, and9), LC2 : N329 = f2(nand2, xor2, nor2, and9), LC3 :

N370 = f3(nand2, nor2, xor2, and9), LC4 : N421 = f4(nand4, nand2, xor, nor2,

and8), LC5 : N430 = f5(nand4, nand2, xor2, nor2), LC6 : N431 = f6(nand4, nand2,

nand3, xor2, nor2), LC7 : N432 = f7(nand4, nand2, xor2, nor2)

where f1, . . . , f7 are the Boolean functions used to compute the output of the

respective logic cones. Bulky logic cones among the seven logic cone namely are

LC5, LC6, LC7 whose MIG, mIG and mMIG representation are shown in Figure 4.11,

Figure 4.12, Figure 4.13 respectively.

We consider the logic cone LC4 for inversion operation count analysis in both MIG

and mMIG synthesis methods which is demonstrated in Figure 4.14
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Figure 4.9: Percentage reduction in complementary edges in mMIG logic synthesis of
EPFL benchmark circuits in Int to float converter in Random/control benchmarks.

LC4 consists of 8865 nand2, 1855 nor2, 8 nand4, 819 xor2, and 1 and8 operations,

upon which MIG synthesis leads to an inversion operation count of 8865, 1855, 8,

1638 and zero, respectively. However, in mMIG synthesis, no inversion operations are

required in any of the logic operations due to the proposed rules and derived theorems.

Hence, it leads to a saving of 12, 366 inversion operations in this logic cone leading to

compact implementation. Similar inversion optimizations are applicable to other logic

cones of c432 benchmark circuit.
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Figure 4.10: Resource count comparison of number of majority modes (#NMIG), com-
plemented edges (#CEMIG) in MIG synthesized circuit and number of majority nodes
(#NM mMIG), minority nodes (#Nm mMIG), and CEs (#CEmMIG) in mMIG synthe-
sized circuit, and percentage reduction in complemented edges in mMIG synthesis %
Reduction CEmMIG in lookahead XY router circuit in EPFL benchmark circuit.

4.4 Optimizing linear functions: XORn implemen-

tations

In this section, we initially state optimized MIG and mMIG implementation of n-

input XOR gates, referred to as XORn, starting with n = 2 followed by its detection

and synthesis.
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Figure 4.11: mMIG representation of the logic cone(LC5) of c432(ISCAS’85 bench-
mark ) circuit whose output (N430) have derived from the function f5 =
nand4(z1, z2, z3, nand2(z3, z4)) depicts the lesser number of inverter count compared
to MIG representation. z1...z4 are the intermediate value generated while deriving the
output of the logic cone LC5.

4.4.1 XOR2 implementation

The XOR operation involving two variables x and y can be expressed in MIG

synthesis as M(M(y, 1̄, x̄), 1,M(x, 1̄, ȳ)), which comprises 3 majority and 2 inversion

operations shown in Figure 4.17(a). In mMIG synthesis, XOR2 can be implemented

as m(m(x, 1, y), 1,M(x, 1̄, y)), which incurs 2 minority, 1 majority, and no inverter

operation, leading to reduction of 2 inversion operations as shown in Figure 4.17(b).
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Figure 4.12: mIG representation of the logic cone(LC6) of c432(ISCAS’85
benchmark ) circuit whose output (N431) have derived from the func-
tion f6 = nand4(z1, z2, z5, nand4(z2, z3, z4, z5)) uses one variant of swapping
reconvergence(⌅�

.SR
2
n2v) transformation rule decreases the level by 2 of LC6 followed

by mMIG representation reduces the total inverter count, result of which area is reduced
compared to MIG representation where z1...z5 are the intermediate value generated
while deriving the output of LC6.
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Figure 4.13: mMIG representation of the logic cone(LC7) of c432(ISCAS’85 bench-
mark) circuit whose output (N432) have derived from the function f7 =
nand4(z1, nand2(z2, z3), nand4(z2, z4, z5, z6), nand4(z2, z4, z7, z8)) shows the significant
amount of inverter reduction than MIG implementation. z1...z8 are the intermediate
value generated while deriving the output of LC7.

4.4.1.1 XOR3 implementation

In MIG synthesis, XOR3 function, expressed as x ⇤ y ⇤ z is implemented as

M(M(z, x̄, y), x,M(ȳ, x̄, z̄)) which comprises three majority and for inversion opera-

tions. Applying inversion propagation operation, reduces the overhead by two invert-

ers. Neverthless, this is not the optimal case. Optimality is achieved using mMIG
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Figure 4.14: Topological representation of the logic cone LC4 of c432(ISCAS’85
benchmark circuit) which comprises four, two and eight Boolean input logical opera-
tions such as NAND4(N4),NAND2(N2),NOR2(n2),XOR2(X2), and AND8 where
N4, N2, n2 optimally represented using only minority function and AND8 represented
using only majority function while XOR2 comprises majority as well as minority func-
tion, can be referred from Table 4.5 and dashed line shows the intermediate

representation of XOR3 as M(M(z, x̄, y), x,m(y, x, z)) which costs two majority, one

minority, and only one inversion operation as observed in Figure 4.18.

In MIG synthesis, XOR3 expressed as x ⇤ y ⇤ z is implemented as

M(M(z, x̄, y), x,M(ȳ, x̄, z̄)) which comprises 3 majority and 4 inversion operations

shown in Figure 4.19(a). However, in mMIG synthesis, XOR3 can be optimally ex-

pressed as m(m(z, x, ȳ), x,m(y, x, z̄)), which incurs 3 minority and 2 inversion opera-

tions, leading to a reduction of 2 inversion operations shown in Figure 4.19(b).

4.4.2 Optimizing XORn implementation

An n-input XOR, depending on parity of n, can be implemented with XOR3 and

XOR2 as,

XORn =

�
⇥⇤

⇥⌅

(�n
2  ↵ 1)XOR3 and 1XOR2 if n is even

(�n
2  ↵ 1)XOR3 if n is odd

Hence, from implementations of XOR2 and XOR3, we can compute the required
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Figure 4.15: Resource count comparison of logic cones(LC1...LC3) from the prespective
of number of minority nodes (#NmmIG), complemented edges (#CEmIG) compared
toMIGsynthesized circuit in c432 of ISCAS’85 benchmark circuit.

resources for XORn operation in MIG and mMIG synthesis techniques as shown in

Table 4.5. For even (odd) n, mMIG method consumes approximately (exactly) half the

number of inverter as compared to MIG method. However, we again reiterate that our

assumption is that both minority and majority operation consumes same resources in

area if they exist in standard cell library of the technology.

4.4.3 Detecting and Synthesizing XOR operations

Due to the complexity of exact synthesis method[24] and recent technologies whose

physical implementation of inverter is more expensive than majority operation[20], it
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Figure 4.16: Resource count comparison of logic cones(LC4...LC7) of mIG synthesized
circuit in the term of number of minority nodes (#Nm mIG), and complemented edges
(#CEmIG) in c432 of ISCAS’85 benchmark circuit.
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Figure 4.17: mMIG representation of XOR2 function f = x⇤ y requires no CEs, result
of which no additional overhead which is not true in the case of MIG representation.
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propagation operation from [2] and two net delay value, whereas (b) mMIG imple-
mentation of f requires two majority nodes and one minority node with only one CE
and one net delay value. This implies an improvement in CE count and net delay of
single unit in XOR3 operation.
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Figure 4.19: mIG representation of XOR3 function f = x ⇤ y ⇤ z requires fewer
inverter, which is quickly achieved upon applying operations ⌅�

.S followed by ⌃�
.m

compared to MIG representation.

Table 4.5: Resource consumption for XORn implementation in MIG and mMIG synthe-
sis methods. min, MAJ, and INV refer to minority, majority, and inverter operations,
respectively.

Synthesis Method MIG mMIG

XORn (even n)
3�n

2  MAJ,
(4�n

2  ↵ 2) INV
(3�n

2  ↵ 1) min, 1 MAJ,
2(�n

2  ↵ 1)INV

XORn (odd n)
3(�n

2  ↵ 1) MAJ,
4(�n

2  ↵ 1) INV
3(�n

2  ↵ 1) min,
2(�n

2  ↵ 1) INV

87



is quite necessary to recognize all the XOR operations first and reshape it accordingly

so that resultant structure consumes less number of inversion operations otherwise

inverters will cause an additional overhead. Several rules are proposed in [21], which

will be considered for the detection of XOR operation followed by its optimized mMIG

representation as shown in the Table 4.5.

4.5 ARX-boxes: MARX-2 and SPECKEY

The class of ARX operations comprising modular addition, rotation, and XOR,

form an important crypto-primitve that has fast performance with compact imple-

mentation in addition to resilience against timing based side channel attacks. We

consider two important ARX boxes, MARX2 and SPECKEY [66]. MARX-2 is a 32-

bit ARX box comprising two 8-bit modular additions, two 8-bit XOR2 operations, and

left circular shift operations of 1, 2, 3, 7 bits. SPECKEY comprises one 16-bit modular

addition, 16 XOR2 additions, and left circular shift of 2 and 7 bits. The respective

resource consumption of both these ARX-boxes when mapped to MIG synthesis and

mMIG synthesis is depicted in Table 4.6.

Table 4.6: #NMIG: number of MIG nodes, #CEMIG: number of complemented edges
in MIG, #NmIG: number of mIG nodes, #CEmMIG: number of complemented edges
in mMIG in two Addition- Rotation-XOR operation (ARX) based S-boxes: MARX-2
and SPECKEY.

#Resources MIG #Resources mMIG
ARX Boxes Operation

#NMIG #CEMIG #NMIG #NmIG #CEmMIG

16 XOR2 48 32 16 32 0
MARX-2

Two mod 28 addition 64 60 18 46 28
16 XOR2 48 32 16 32 0

SPECKEY
One mod 216 addition 64 62 17 47 30

4.6 Carry Save Adder: CSA

To reduce gate delays, a carry-save adder is introduced, which is heavily used for

fast multiplication. While designing a circuit, it gives added advantage on the partial
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sum(say S) and partial carry(say C) operation defined over input Boolean variable (say

x, y, and z). Consider S = x⇤y⇤z and C = xy+yz+xz, whose mIG implementation

depicts the saving of the inverter count, as shown in Figure 4.20.

Maj

zyx

c
Min

Min Minx

x xz y z

s

Figure 4.20: Representation of the Sum(S) as logical XOR operation on three input
Boolean variables say x,y, and z in mIG as S = m(m(z, x, ȳ), x,m(y, x, z̄))) which
shows the savings in the inverter count compared to MIG representation, and Carry(C)
as logical OR operation on all the set of two variable logical ANDed with another
variable expressed in MIG representation, C = M(x, y, z)

4.7 SIMON Round function

We consider an optimized implementation of round function of SIMON2n, which is

a lightweight Feistel block cipher with block size of 2n. The SIMON round function [67]

is an ARX construction with a balanced Feistel structure defined with the following

equations: temp � x, x � y ⇤ (S(x)&S
8(x)) ⇤ k, y � temp, where x, y are n-bit

signals, and S
j is a left circular shift operation by j bits. A SIMON2n round function,

for n = 16, incurs following resource consumption,

As the construction has an optimized implementation where a two-input AND op-

eration implemented using one, three-input majority logic gate, a three-input XOR

operation implemented using three, three-input minority logic gates, and a two-input

XOR operation implemented using one majority logic gate and two, three-input mi-

nority logic gates. Therefore, for n=16, 16 XOR3 (optimally represented in MIG as 48

MAJ, 64 INV and in mMIG 48 min, 32 INV), 16 XOR2 (optimally represented in MIG

as 48 MAJ, 32 INV and in mMIG 32 min, 16 INV), 16 AND2 (optimally represented

in MIG as 16 MAJ and in mMIG 16 MAJ). Hence, 112 MAJ operations and 96 INV
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operations are required in MIG synthesis technique, whereas in mMIG synthesis, 80

min, 32 MAJ, and 32 INV operations are required. This demonstrates that mMIG

synthesis technique requires 64 INV operations lesser for a SIMON2n round. For a

given n, the inverter count reduces by 4n in mMIG synthesis method.

The construction has an optimized implementation as shown in Figure 4.21 a two-

input AND operation implemented using 1 three-input majority logic gate, a three-

input XOR operation implemented 3 three-input minority logic gates, and a two-input

XOR operation implemented using 1 majority logic gate and 2 three-input minority

logic gates.

Min
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s1
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Figure 4.21: Implementation of SIMON round function using 2 majority gate,5 mi-
nority gate along with only 2 inverter(mMIG) where Ri, Li denotes the right half and
left half of the word respectively. S

i denotes the circular left shift by i number of
bits,Ki denotes key value and the results are Ri+1,Li+1 respectively in the i

th step of
the process.

4.8 Present S-box

We consider the implementation of 4 ◊ 4 substitution box (S-box), denoted as

S(x), in PRESENT lightweight block cipher. It comprises two cascaded 4 ◊ 4 (four-

bit input and four-bit output) vectorial Boolean functions, G and F , represented

as (S(x) = F (G(x))). Both G and F comprise four coordinate functions, namely,

g0, g1, g2, g3, and f0, f1, f2, f3, respectively, as G(x, y, z, w) = (g3, g2, g1, g0), and

F (x, y, z, w) = (f3, f2, f1, f0). The coordinate functions are defined as
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g0 = 1⇤ w ⇤ xy ⇤ xz ⇤ yz, (4.1)

g1 = 1⇤ x⇤ z ⇤ yw ⇤ zw, (4.2)

g2 = 1⇤ y ⇤ z (4.3)

g3 = y ⇤ z ⇤ w (4.4)

f0 = z ⇤ yw, (4.5)

f1 = y ⇤ z ⇤ xw, (4.6)

f2 = x⇤ zw (4.7)

f3 = y ⇤ z ⇤ w ⇤ xw, (4.8)

The above functions comprise two,three,four, and five-input logical XOR opera-

tions and two-input logical AND operations whose e⇥cient implementation in mMIG

includes representation of n input XOR using XOR2 and XOR3 comprising majority

and minority operator depicted in table 4.5 whereas, AND operation uses only ma-

jority operator. mMIG representation of g0, g1 are demonstrated in the Figure 4.22,Fig-

ure 4.23 respectively, whereas MIG and mIG representation of g2, g3, f0, f1, f2, f3 are

shown in Figure 4.24, Figure 4.25. Consider the intermediate output hi, 0 ⌅ i ⌅ 10,

are intermediate outputs of G and F functions which are used in gi, 0 ⌅ i ⌅ 3, and
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fi, 0 ⌅ i ⌅ 3 functions are represented as follows,

h0 = M(x, 0, z) (4.9)

h1 = M(x, 0, y) (4.10)

h2 = m(m(h0, w̄, h̄1), w̄,m(h1, w̄, h̄0)) (4.11)

h3 = M(y, 0, z) (4.12)

h4 = M(y, 0, w) (4.13)

h5 = m(m(x̄, z, h̄4), z,m(h4, z, x)) (4.14)

h6 = M(w, 0, z) (4.15)

h7 = M(x, 0, w) (4.16)

h8 = M(x̄, 0, w) (4.17)

h9 = M(M(h0, w, h1), w̄,M(h̄1, w, h̄0)) (4.18)

h10 = M(M(z, x, h4), x̄,M(h̄4, x, z̄)) (4.19)

Now, the mMIG synthesis of all the coordinate functions using the above intermediate

function(hi) are shown below,

g0 = M(M(h3, 0, h̄9), 1,M(h9, 0, h̄3)) (4.20)

g1 = M(M(h6, 0, ¯h10), 1,M(h10, 0, h̄6)) (4.21)

g2 = M(M(z, 0, y), 1,M(ȳ, 0, z̄)) (4.22)

g3 = M(M(z, w̄, y), w,M(ȳ, w̄, z̄)) (4.23)

f0 = M(M(z, 0, h̄4), 1,M(h4, 0, z̄)) (4.24)

f1 = M(M(z, ȳ, h7), y,M(h̄7, ȳ, z̄)) (4.25)

f2 = M(M(x, 0, h̄6), 1,M(h6, 0, x̄)) (4.26)

f3 = M(M(z, ȳ,M(x̄, 0, w)), y,M(M̄(x̄, 0, w), ȳ, z̄)) (4.27)

Table 4.7 demonstrates the count of the individual operations in the decomposition
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Figure 4.22: mMIG implementation of the coordinate function g0 where inverters are
saved due to optimized XORn implementation of the circuit where w, x, y and z are
the input Boolean variables.
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Figure 4.23: mMIG implementation of the coordinate function g1 leads to reduce the
inverter count due to mMIG implementation of XORn operation where w, x, y and z

are the input Boolean variables.

functions g0, . . . , g3 and f0, . . . , f3, which would be required in MIG synthesis and mMIG

synthesis methods. As results show, the inverter count in mMIG synthesis is 15, which
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Figure 4.24: MIG and mIG representation of the coordinate function g2 and g3, depicts
the total savings of the inverter count where w, y and z are input Boolean variables.

Maj

wx 1

Min

Min Miny

y yz

f3

z

Maj

Maj Maj1

1 1y

f2

y
Maj

wz 1

Min

Min Miny

y yz

f1

z
Maj

wx 1

Maj

Maj Maj1

1 1z

f0

z
Maj

wy 1

Figure 4.25: MIG and mMIG implementation of the coordinate function f0, f1, f2 and f3

shows the reduction in complemented edges(CEs) where w, y and z are input Boolean
variables.
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Table 4.7: Resource count of MIG and mMIG of distributed functions in Present S-
box.N,CE,MIG,mMIG refer to nodes,complemented edges,MIG nodes, and mMIG nodes,
respectively.

Logic gates MIG mMIG

Function #XOR3 #XOR2 #AND2 #NMIG #CEMIG #NmIG #NMIG #CEmMIG

g0 1 1 3 11 5 3 3 5

g1 0 1 2 6 3 2 4 3

g2 0 1 0 3 4 1 2 0

g3 1 1 0 3 4 3 0 2

f0 0 1 1 4 2 2 2 0

f1 1 1 1 4 4 3 1 2

f2 0 1 1 4 2 2 2 0

f3 1 1 1 4 5 3 1 3

Total 4 8 9 39 29 19 15 15

is approximately half of the inverter count in MIG synthesis technique. The total

number of majority and minority operations are also lesser in mMIG than MIG where

#NMIG, #NmIG, #CEMIG, #CEmMIG denotes number of MIG nodes, number of mIG

nodes, number of complemented edges of the MIG and number of complemented edges

of the mMIG, respectively.
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Chapter 5

Conclusions and Future Work

In this thesis, we propose an mMIG synthesis technique, which comprises minority

nodes in addition to pre-existing majority and inversion operations (referred to as

complemented edges). Despite the soundness and completeness property of MIG-based

circuit synthesis, the proposed synthesis technique aims to reduce the count of inver-

sion operations as compared to MIG synthesis approach leading to reduced area and

delay metrics of the target circuit when implemented for beyond-CMOS technologies.

We demonstrate a set of Boolean algebra rules for minority operations, and further

propose a set of transformation rules for logic optimization in mMIG synthesis.

The proposed rules when applied in a specific sequence as demonstrated in the

proposed algorithms of mMIG based implementations demonstrate reduction in inverter

count or CEs over a range from 57.7% to 93.3% in EPFL combinational benchmark

suite, and by almost 50% in S-box of PRESENT lightweight cipher and ARX boxes

of MARX-2 and SPECKEY. In addition, we demonstrate circuits that have a large

run of XOR operations such as XORn for a large n can be heavily optimized in terms

of inversion count. We state that exploring the sequence of transformation rules can

have an important implication on reduction of inversion operations, which remains an

important future research direction of this approach.
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5.1 Summmary of Research Achievements

To summarize the contributions of this thesis are as follows:

(i) Set of rules based on mIG: We proposed a set of algebraic transformation rules

for Boolean algebra in minority inverter graph(mIG) in Chapter 3 of Section 3.1

mainly consists the variants of Associativity rule, Swapping reconvergence rule,

Relevance rule, and the substitution rule.

(ii) Set of rules based on mMIG: We proposed a set of algebraic transformation

rules for novel logic representational structure minority-majority-inverter graph

(mMIG) in Chapter 3 of Section 3.4 consists the large collection of the optimization

class(categorized in three class) whose main focus is to reduce the CEs along

with the little focus on the complete size and depth optimization, Elimination

rule, Absorption rule, Swapping reconvergence rule along with its variant, and

Relevance rule along with its variant can be find in Section 3.5.

(iii) Optimization algorithm for mMIG: We proposed novel mMIG logic optimization

algorithm in Chapter 3 of Section 3.6 to achieve size and depth optimization of the

circuit mainly comprises reshaping algorithm, inverter propagation algorithm uses

Greedy approach and mMIG size optimization algorithm uses Divide and conquer

approach.

(iv) Case study for mIG and Comparison with MIG: We present case studies in

Chapter 4 of Section 4.3, 4.4 shows c432(ISCAS’85 standard benchmark circuit),

linear function(XOR3) respectively along with multiple circuit instances.

(v) Performance metrics for mMIG and Comparison with MIG: We present

performance metrics that can be used for comparative result analysis

which includes Net delay, Logic delay, LUT count, On-chip dynamic

signal power, in addition to count of CEs.

(vi) Case study for mMIG and Comparison with MIG: We present several case

studies in Chapter 4 of Section 4.2, 4.3, 4.1 shows standard benchmark circuits

98



EPFL, ISCAS’85, IWLS’05, Arithmetic HDL respectively, lightweight crypto-

graphic primitives and combinational circuits can be find in Section 4.5, 4.8, 4.7,

4.6, 4.4 and along with this several circuit instances are used for the comparison.

(vii) Optimization flow in mMIG: We propose the logic synthesis optimization flow

comprises three phases namely, Functional and Graph Decomposition comes un-

der pre-processing phase where input circuit in MIG synthesis is partitioned into

logic cones which is determined by the output of the circuit followed by further

splitting into smaller partitions which comprises only connected majority nodes,

only connected minority nodes, and group comprising interconnected majority

and minority nodes. Logic Minimization deals with the replacement of major-

ity node and immediate inversion with minority gate on each sub-partition and

finally, Post-Processing phase applies a set of algebraic transformation rules, pro-

posed derived theorems on the mMIG logic obtained from the logic minimization

phase to achieve both reduction in CEs and size.

5.2 Future research directions

Despite significant progress in the topic of inverter reduction, future scope of work

can be explored in several interesting research directions:

(i) Transformation rules that will assist in fault masking of mIG, MIG, mMIG or con-

tributing to side-channel resilience of synthesized circuits.

(ii) Ease of detection of Hardware Trojans in mMIG-based circuit synthesis.

(iii) Exploring the sequence of transformation rules will have huge impact on reduc-

tion of inversion, area reduction and reduction in critical path of combinational

circuits.
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