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ABSTRACT 

 

Cluster analysis is a key technique in the data analysis and is being applied in a 

variety of engineering and scientific disciplines such as biology, medicine, 

marketing, information retrieval and pattern recognition. Stereotyped 

clustering method propagates dissection effect. To thwart dissection effect, 

many real-time applications uses minimum sum of diameter clustering 

(MSDC) or minimum sum of radii clustering (MSRC). As, MSDC and MSRC 

problems are NP-complete so it is natural to seek approximation algorithms 

with the best provable approximation ratio. This thesis presents approaches for 

generating solutions for clustering problems. The thesis addresses clustering 

problems in three parts: (i) Comparative review of clustering algorithms (ii) 

SAT formulation-based approach, and (iii) Constraint based clustering 

approach 

 

In the first part of this thesis: we investigated approach, distance criterion, 

optimization methods, geometrical properties, assumptions, issues, limitations, 

and time-bound to propose a comprehensive and comparative analysis of 

algorithmic complexity of various exact and approximation clustering 

algorithms for Euclidean, metric and geometric version of MSDC and MSRC 

problem. SAT formulation-based approach: In this approach, we investigate 

the technique for the reduction of the 3-cluster problem into 3-SAT and k-

cluster problem into k-SAT. 

 

In the constraint based clustering approach, we address three types of 

problems: 3-clustering problem for minimum sum of diameter, word clustering 

algorithm based on the k-clustering algorithm, and constraint based 

approximation algorithm for the min-cost k-cover problem. In the 3-clustering 

problem, we proposed a constraint algorithm for three clustering for the 

minimum sum of diameter problem. In the word clustering algorithm, a new 

constraint word clustering algorithm is proposed. The main challenge is to find 

out constraint for words having an asymmetric relationship between them. In 
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this context, we investigated properties of word cloud like symmetric, 

transitive, and implicative and also investigated various types of associations 

like strong, weak, and zero association between words. We proposed a 

constraint word algorithm based on the investigated properties and association. 

Furthermore, we bring the concept of constraints in the min-cost k-cover 

problem to improve the performance. Constraints help in reducing the number 

of distinct maximal discs. By incorporating the constraints into the min-cost k-

cover algorithm, we proposed an approximation algorithm with the improved 

approximation ratio. 
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Chapter 1 

Introduction 

While pursuing any research, researchers have to deal with a wide variety of 

data emanating from all sorts of measurements and observations. A large 

quantity of data is being generated inform of documents, reports, e-mails, and 

web pages are generated from different sources, like as enterprises, 

governments, organizations, and individuals. Generation of data in huge 

quantity leads towards data analysis. Data describe the characteristics of a 

living species, depict the properties of a natural phenomenon, summarize the 

results of a scientific experiment, and record the dynamics of a running 

machinery system. More importantly, data provide a basis for further analysis, 

reasoning, decisions, and ultimately, for the understanding of all sorts of 

objects and phenomena. A systematic and automatic approach is imperative to 

organize this unstructured data without human intervention. Data analysis is 

considered as one of the most essential activities to classify or group data into 

a set of categories or clusters. Further, this has paved the path for cluster 

analysis which is basically concerned with resolving the multifaceted problems 

related to partitioning of entities and to explore constraint clustering algorithm 

for minimum sum of diameter and minimum sum of radii problem.  

1.1 Background 

Following are the points of discussions which are dealt to illustrate 

terminologies and definitions pertaining to the topic of present research. 

 

1.1.1 Cluster analysis 

Cluster analysis [1-2] is mainly concerned with the problem of partitioning a 

given set of entities into homogeneous and well-separated subsets called 

clusters. Cluster analysis is all about finding subset that are homogeneous 

and/or well separated. However, the process of clustering explores natural 

groupings and thereby represents a holistic overview of classes which are in-
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form of collection of documents. Indubitably, in the area of artificial 

intelligence, this concept is popularly known as unsupervised machine 

learning. Cluster analysis [3-5] is a technique to explore the structure of data; it 

is the body of methods that help to describe data, detect useful hidden patterns 

and develops explanations from large amounts of data. Clustering is to identify 

classes of similar objects among a set of objects. Two objects are said to be 

similar if they exhibit a coherent pattern on a subset of dimensions. Cluster 

analysis is a key technique in the data analysis and is being applied in a variety 

of engineering and scientific disciplines such as biology, psychology, 

medicine, marketing, computer vision and remote sensing [6]. Clustering 

techniques have been used in a wide variety of application areas including 

information retrieval, image processing, pattern recognition, DNA microarray 

analysis and E-commerce applications [6‒9]. 

Clustering algorithms partition the data into homogeneous and/or well 

separated classes called clusters. Two important concepts of cluster analysis 

are internal homogeneity and external separation [10-12]. Internal 

homogeneity means patterns in the same cluster should be similar to each other 

and external separation means patterns in different clusters should be different. 

One of the homogeneity measures is the diameter of the cluster. The diameter 

of a cluster is the maximum dissimilarity between any pair of entities in that 

cluster. Minimum diameter clustering is an important and traditional clustering 

method, but in some applications minimum diameter clustering algorithm 

propagates dissection effect [1,4,13]. Dissection effect causes similar objects 

that should be placed in the same cluster to be assigned to different clusters. 

Clusters tend to have fairly equal diameters and this may cause the dissection 

of some natural cluster. To avoid dissection effect, the minimum sum of the 

diameters or minimum sum of radii can be selected as a criterion.  

 

1.1.2 Minimum sum of diameter clustering and minimum sum of radii 

clustering 

Minimum sum of diameter clustering (MSDC) [4] is the partitioning of the 

entities such that the sum of the diameters of the clusters is minimized. 

Minimum sum of radii clustering (MSRC) [4] is the partitioning of the entities 

is like such that the sum of the radii of the clusters is minimized. MSDC and 
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MSRC problems belongs to class of NP-minimization problem [14]. Brucker 

[15] revealed the problem of determining a partition of a given set of N entities 

into k clusters as the sum of the diameters of these clusters is minimum is NP-

complete for k ≥ 3 and its complexity was unknown for k = 2.  

 

1.1.3 Approximation clustering algorithms 

Approximation algorithms [16] are applied to know and find approximate 

solutions for optimization problems. Approximation algorithms are usually 

linked with NP-hard [17] problems. An algorithm is considered to be a 𝜖-

approximate algorithm for a problem P, iff either posses 

 

1) P is a maximization problem and for every instance of P, 

 |
Opt(𝑃) − Apx(𝑃)

Opt(𝑃)
 | ≤ 𝜖   (1) 

Where,  0 < 𝜖 < 1   

 

2) P is a minimization problem and for every instance of P, 

 |
Opt(𝑃) − Apx(𝑃)

Opt(𝑃)
 | ≤ 𝜖,   (2) 

Where, 𝜖 > 0 

Opt(P) is the optimal solution (assuming Opt(P) > 0) and Apx(P) is the derived 

approximate solution. 

 

1.1.4  Constraint clustering  

Constraint clustering [18] is the most prominent area of machine learning and 

data mining-oriented research. Constraints facilitate hands on information 

about the desired partition and strengthen performance of clustering 

algorithms. The key function of clustering algorithms is not only to encompass 

all the domain expert’s requirements but also instrumental in directing the 

algorithm to a desirable set partition by adopting user specified constraints 

whereas constraint clustering stimulates composition of a desirable clustering 

of the instances. Accuracy of clustering algorithms can be improved by 

clubbing such constraints. 
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1.1.5 Terminology 

Definition 1 (k-clustering [19-20]): Let 𝑂 = {𝑂1, 𝑂2, …𝑂𝑁} denote a set of 

𝑁 = |𝑂|entities and 𝐷 = {𝑑𝑖𝑗|𝑖 ≤ 𝑘, 𝑙 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 } a set of dissimilarities 

between pairs of these entities. Dissimilarity 𝑑𝑖𝑗 is a real number and satisfies 

to the conditions  𝑑𝑖𝑗 ≥ 0, 𝑑𝑖𝑖 = 0  and 𝑑𝑖𝑗 = 𝑑𝑗𝑖 for 𝑖, 𝑗 = 1,2, …𝑁.  The k-

clustering of O entities into k clusters 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑘} is such that no cluster 

is empty, any pair of clusters has an empty intersection and the union of all 

clusters is equal to O. Diameter of clusters 𝐶1, 𝐶2, … , 𝐶𝑘 are 

𝑟1, 𝑟2, … , 𝑟𝑘respectively, assuming that 𝑟1 ≥ 𝑟2 ≥ ⋯ ≥ 𝑟𝑘 respectively.  

 

Definition 2 (Diameter of Cluster [4, 10, 21]): The diameter of a cluster 

𝑑(𝐶𝑙) is the maximum dissimilarity between any pair of entities in that cluster. 

In other words, it is the largest dissimilarity between entities in 𝐶𝑙, where 𝐶𝑙 ∈

𝐶. 

 𝑑(𝐶𝑙) =  𝑚𝑎𝑥
𝑂𝑖.𝑂𝑗∈𝐶𝑙

𝑑𝑖𝑗  (3) 

 

Definition 3 (Radii of Cluster [22]): The radii of a cluster 𝑟(𝐶𝑙) is the 

maximum dissimilarity of any point in the cluster from the cluster center. If 

 𝑂𝑖  is the center of cluster 𝐶𝑙 then radii of cluster is given by the formulation: 

 𝑟(𝐶𝑙) =  𝑚𝑎𝑥
𝑂𝑖.𝑂𝑗∈𝐶𝑙

𝑑𝑖𝑗  (4) 

 

Definition 4 (Minimum Sum of Diameter [4, 10]): Minimum sum of 

diameter clustering is the partitioning of the entities viz. the sum of the 

diameters of the clusters is minimized. 

 𝑑(𝐶𝑀) =  Min∑𝑑

𝑘

𝑙=1

(𝐶𝑙) (5) 
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Definition 5 (Minimum Sum of radii [22]): Minimum sum of radii clustering 

is the partitioning of the entities viz. the sum of the radii of the clusters is 

minimized. 

 𝑑(𝑟𝑀) =  Min∑𝑟

𝑘

𝑙=1

(𝐶𝑙) (6) 

1.2  Problem Considered 

The present research makes an attempt to address, study, analyze and resolve 

the problem as: 

1.2.1 Constraint Clustering and k-Clustering to k-SAT 

One of the important applications of cluster analysis is social network analysis 

[23]. In social networks, nodes of the network are people and the links are the 

relationships between people. Social network analysis practitioners collect 

network data, analyses the data and often produce maps or pictures that display 

the patterns of connections between the nodes of the network. These maps 

reveal characteristics of the clusters. Bonding and bridging are two different 

kinds of connectivity in social network. Concept of bonding and bridging are 

translated into Satisfiability (SAT) [24] formulation. In this problem, goal is to 

investigate ML-constraints and CL-constraints with the help of bonding and 

bridging. k-clustering problem is reduced into k-SAT formulation with the help 

of investigates constraints in the social networking. 

 

1.2.2  Partitioning Problem 

A partition [25] of a set U is a subdivision of the set into subsets that are 

disjoint and exhaustive, i.e. every element of U must belong to one and only 

one of the subsets. The subsets Pi in the partition are called cells. Thus 

{𝑃1, 𝑃2, …𝑃𝑟} is a partition of U if two conditions are satisfied: (1) 𝑃𝑖 ∩ 𝑃𝑗 = ∅, 

if 𝑖 ≠ 𝑗 and (2) 𝑃1 ∪ 𝑃2 ∪ …∪ 𝑃𝑟 = 𝑈. In the field of Computer Science, the 

partition problem is an NP-complete problem [25-26] and it is also NP-hard 

[27] to find good approximate solutions for this problem. In 3-partitioning 

there are three partitions, 𝑈 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3. In this research work, bit wise 

technique is used for the generation of partitions. 
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1.2.3 Minimum Sum of Diameter Problem for 3-clustering 

Traditional clustering algorithms like k-clustering algorithm or minimum 

diameter clustering algorithm are highly affected by the dissection effect. In 

dissection effect, similar entities may be assigned to different clusters. To 

avoid this effect, it is proposed to have minimum sum of diameter clustering or 

minimum sum of radii clustering. Approximation algorithms exist for 

minimum sum of diameter for three clustering but still there is no exact 

algorithms is available. The present research investigates exact algorithm for 

minimum sum of diameter for three clustering problem. 

3-clustering is partitioning of O into 3 clusters 𝐶1, 𝐶2, and 𝐶3 such that no 

cluster is empty, any pair of clusters has an empty intersection and the union of 

all clusters is equal to O. Minimum sum of diameter for 3-clustering is 

partitioning of the entities into three clusters such that their sum of diameter of 

cluster is minimum. Mathematically it can be defined  

 
𝑚𝑖𝑛∑𝑑(𝐶𝑖)

3

𝑖=1

 

 

(7) 

Where, 𝑑(𝐶𝑖) is diameter of cluster 𝐶𝑖. 

 

1.2.4  Constraint Word Clustering Algorithm for Asymmetric 

Relationship 

In this research work, a new constraint word clustering [28] algorithm is 

proposed for the given corpus. The proposed method is based on the constraint 

clustering of words. In this context, words are considered similar if they appear 

in similar contexts and contexts are similar if their word affinity clouds are 

equivalent. Different sorts of association among words are identified and 

constraints are identified and generated according to this association. Proposed 

constraint algorithm is applicable for words having asymmetric relationship 

between them; therefore this approach may be useful as a complement to the 

conventional class-based statistical language modeling techniques. 

 

1.2.5 Constraint Clustering for Minimum Sum of Diameter and Radii 

Clustering Problem 
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Consider the min-cost k-cover [29] problem: For a given a set P of n points in 

the plane, objective is to cover the n points by k disks, such that sum of the 

radii of the disks is minimized. The concept of constraints is being introduced 

in min-cost k-cover problem to present a new constraint based min-cost k-

cover algorithm. Investigations formulate that a can-not link constraint always 

separates the optimal solution and reduces cardinality of distinct maximal 

discs. In any instance of min-cost k-cover problem, upper bound and lower 

bound on the number of can-not link constraints are O(n2) and O(k) 

respectively.  

 

1.3  Motivation 

The main motivation behind the present research is to find Boolean 

formulation for clustering problem and find constraint clustering algorithm for 

minimum sum of diameter and minimum sum of radii clustering algorithm. 

Review of literature also reveals that there is no constraint based clustering 

algorithm available in exact and approximate algorithms for minimum sum of 

diameter and radii clustering. All these elements encourage to pursue the 

present study and to develop a new dimension in the clustering algorithm by 

giving constraint clustering algorithm for minimum sum of diameter and radii. 

Motivation behind using for the present research work is to investigate 

algorithms available on minimum sum of diameter and minimum sum of radii, 

and prepare the literature survey on comparison of various techniques of 

minimum sum of diameter and radii clustering. Research also motivates to 

introduce the reduction techniques for 3-cluster to 3-SAT and k-cluster to k-

SAT. Further, constraints based techniques are introduced in word clustering 

algorithms and in approximation algorithm for minimum sum of diameter. 

 

1.4.   Objectives and Scope 

The main objective is to review and draw a comparative analysis of 

algorithmic complexity of various exact and approximation clustering 

algorithms for Euclidean, metric and geometric version of MSDC and MSRC 

problem in chronological order of their evolution. The above comparative 

analysis may open new vistas of knowledge in the field of clustering and 
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address the emerging challenges, relevant issues, innovative ideas, recent 

trends, advancements and future scope for research in MSDC and MSRC 

problem in relation with theoretical computer science. The research deals with 

investigation, identification of constraints and generation of the constraints and 

reducing them into SAT formulation. This implies standard clustering methods 

using constraints to obtain results. The research also aims to highlight 

minimum sum of diameter and minimum sum of radii clustering based on 

constraints. 

The scope of the research is interwoven with situations in which homogeneity 

of the clusters is found with respect to natural grouping. It is applicable in 

routing, in application of location theory and in communication network 

design. An example of application of this theory is reflected in 

telecommunication establishment [30]: a network of base stations (antennas) 

such that all the locations are within the range of some station and sum of 

setup cost (proportional to the diameter/range of the station) of the station is 

minimized. 

 

1.5  Research Gap 

The prior sections have discussed about the existing techniques exclusively 

seen for addressing minimum sum of diameter and minimum sum of radii 

clustering. There are various forms of the clustering technique to group the 

data items. However, there are effectiveness as well as limitations associated 

with almost all the existing systems. 

• The concept of reduction from 3-clustering to 3-SAT and k-cluster to k-

SAT are still unaddressed. Existing reduction techniques focuses only from 

SAT formulation to clustering.  

• Adequate literature survey is not available on minimum sum of diameter 

and radii clustering algorithms that identifies and compare the constraints, 

assumption, issues and complexity of algorithms. 

• Existing word clustering algorithms are not involved in any type of pre-

computation on similarity matrix. Word clustering techniques with pre-

computation that select the input parameters as constraint to identify the 

semantic relationship is not addressed. 
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• Existing clustering algorithms still has an open problem to solve the 

minimum sum of diameter and radii in polynomial time. To reduce the 

time complexity many approximation algorithms are available in literature. 

The complexity of model selection as it is dependent on the cluster 

properties or relationship between the data items as input. Therefore, still 

now, much clarity is not illustrated how to use the constraint-based 

techniques for approximation algorithm for MSDC and MSRC in any 

research work.  

 

1.6  Contribution of Research work 

The research deals with conceptual framework in the field of computer science 

and has its focus on exploring application of constraint-based techniques 

related with cluster analysis. This constraint-based technique derives the 

essential characteristics of the data and facilitates analysis as well as algorithm 

design. The major contributions are as: 

• The research study enables the future researchers to have a comprehensive 

and analyzed information about the application of constraint based 

clustering technique as prior to thesis work no adequate information was 

available to explore the minimum sum of diameter and minimum sum of 

radii clustering algorithm. 

• The research analyzed, identified and generates constraints in the social 

network and reduced them into SAT formulation. In this part, Belonging 

approach is proposed for the reduction of 3-cluster and k-cluster. Reduction 

methodology is formulated to reduce 3-cluster problem into 3-SAT 

formulation and k-cluster problem into k-SAT formulation.  

• The research proposed a bit representation mechanism for the 

representation of partitions and investigated a 3-partitioning algorithm 

based on it. It also investigated constraint based exact algorithm for three 

clustering for minimum sum of diameter problem.  

• We investigated various kinds of association between words in a given 

corpus. It further throws light on how constraint clustering could improve 

the performance of word clustering algorithm for asymmetric relationship 

between words. 
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• The constraint based model in min-cost k-cover algorithm is introduced. 

The analytical results prove that constraint based min-cost k-cover 

algorithm is more time efficient than algorithm which is in existence. 

During the modeling exercise, salient features (constraints) that enhance 

our understanding on the bifurcation of the disks, and therefore, constraints 

are relevant for the design and analysis of efficient min-cost k-cover 

algorithm. 

 

1.7 Thesis Organization 

To cover vast area of cluster analysis and to explore constraints based 

techniques related with minimum sum of diameter and minimum sum of radii 

clustering, the present research is divided into following chapters for better 

conceptual and analytical understanding of the selected research problem. 

Chapter 1 deals background information on the minimum sum of diameter and 

minimum sum of radii clustering algorithm. Chapter 2 is literature review, 

based on previous research carried out in the domain of minimum sum of 

diameter and minimum sum of radii clustering algorithm. Chapter 3 describes 

how the bridging and bonding concepts of social network are transformed into 

SAT formulation. Reduction methodology highlights how 3-cluster problem is 

reduces into 3-SAT formulation and k-cluster problem is reduces into k-SAT 

formulation. Chapter 4 focuses on partitioning problem and exhibits a detailed 

description and experimental results on Bit partitioning method. Bit 

partitioning method is extended to represent exact 3-clustering algorithm for 

minimum sum of diameter clustering. Chapter 5 conveys different types of 

associations exist between words in a corpus. Architecture model for word 

clustering is discusses and then represented a word clustering algorithm for 

asymmetric relationship between words. Chapter 6 unfolds the importance of 

constraints in min-cost k-cover problem. Chapter 7 draws conclusion of 

research work and suggests future scope for research.  
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Chapter 2 

Literature Review 

2.1 Introduction 

Cluster Analysis is one of the fields of research that falls under the sub-

discipline of data analysis. The main reason to apply efforts in this field to 

analyze the vast data generated from reports, e-mails, documents, and web 

pages. The grouping of data provides a basis for analysis, reasoning, taking 

decisions. Clustering algorithms groups the data into separated classes, but due 

to dissection effect similar objects that should be placed in the same cluster to 

be assigned to different clusters.  Minimum sum of diameter clustering is the 

partitioning of the entities such that the sum of the diameters of the clusters is 

minimized. This chapter covers a study of existing research work conducted on 

the minimum sum of diameter and minimum sum of radii clustering. An 

attempt has been made to have glimpse of the entire work done on this subject 

matter across the world. It was observed that there has not been much of 

literature review conducted on the subject matter minimum sum of diameter 

and minimum sum of radii clustering.  

 

2.2 Satisfiability Problem 

A Boolean expression is comprised of variables, parenthesis and the operators. 

A formula is in conjunctive normal form (CNF) if a Boolean expression is 

represented as conjunction of disjunctions, where each disjunction has two 

arguments that may either be variables or the negations of variables. The 

conjunctive normal form of formula is as: (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑎). An 

expression is satisfiable if there are some assignments of 0’s and 1’s to the 

variables that demonstrated the expression of the value 1. The satisfiability 

problem [31, 32] is to determine a Boolean expression, whether it is satisfiable.  

2-satisfiability (2-SAT) [32] is the problem of determining the satisfiability of 

a formula in conjunctive normal form where each clause is delimited to at most 
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two literals. When the clause size is greater than two, the problem is known as 

NP-complete. The Cook-Levin theorem [24] states that the Boolean 

satisfiability problem is basically NP-complete.  2-SAT problem is solvable in 

linear time [33]. 3-satisfiability (3-SAT) is the problem of determining the 

satisfiability of a formula in conjunctive normal form where each clause is 

limited to at most three literals.   

 

2.2.1 Skew Symmetric Directed Graph 

In implicative normal form [34] each disjunction is replaced by one of the two 

implications to which it is equivalent. Disjunction 𝑋1 ∨ 𝑋2  is replaced by: 

�̅�1 ⟶ �̅�2  and 𝑋1 ⟶ 𝑋2. The implicative normal form of a 2-satisfiability 

problem can be represented as an implication graph. A skew-symmetric 

directed graph [34] has one vertex per variable or negated variable. An edge 

connects one vertex to another whenever the corresponding variables are 

related to an implication in the implicative normal form of the instance. If there 

is implication rule 𝑋1 ⟶ 𝑋2 then an edge goes from a vertex 𝑋1 to vertex 𝑋2. 

 

2.2.2 Strongly Connected Component  

Let 𝐺 = (𝑉, 𝐸) be a directed graph. 𝑉′is the set of vertices belong to 𝑉. 𝐸′ is 

the set of edges connecting pairs of vertices in 𝑉′. If 𝑣 and 𝑤 belong to 𝑉′ and 

If there is a path from 𝑣 to 𝑤 and a path from  𝑤 to 𝑣 then the graph 𝐺 =

(𝑉, 𝐸) is called strongly connected components [34-35] of 𝐺. A graph is called 

strongly connected if there is a path from any vertex to any other. The maximal 

strongly connected subgraphs of any graph are vertex-disjoint and are called its 

strong components of it. Algorithm 2.1 produces strongly connected 

component of given graph G in linear time. 

 

2.2.3 Algorithm for Strongly Connected Components 

Data Structures used: 

1. Stack: to store the visited nodes. 

2. Oldnode: an array that contain visited nodes. 

3. Newnode: an array that contains unvisited nodes. 
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4. Depth First Number (DFN): a single dimensional array to hold the 

depth first number. 

5. Low Link (LL):  a single dimensional array to hold the low link value 

of node. Initial value for all nodes is zero. 

6. Count: a counter variable that has initial value of 1. 

 

Algorithm 2.1 Strongly Connected Component SCC(G) 

 

Input: A directed graph 𝐺 = (𝑉, 𝐸), adjacency list L 

Output: A list of the strongly connected components of G 

1. count = 1 

2. for all v in V do mark v “new” 

3.     Initialize STACK to empty 

4.      while there exists a vertex v marked “new” do 

5.          Search(v) 

6.      end while 

7. end for 

 

 

Subroutine:  Search(v) 

 

Input: Vertex v 

Output: Vertex of strongly connected component 

1. Mark v “old” 

2. DFN[v] = count 

3. count = count + 1 

4. LL[v] = DFN [v] 

5. push (v) 

6. for each vertex w on L[v] do 

7.  if (w is marked “new”) then 

8.                  search(w) 

9.                   LL[v] = min (LL[v], LL[w])  

10.  else 

11.               if ((DFN[w] < DFN [v]) and OnStack (w)) then 

12.                       LL[v] = min (DFN [w], LL[v]) 

13.   end if 

14.    end for  

15.   if (LL[v] = DFN[v]) then 

16.         repeat  

17.              pop x from the top of stack;   
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18.              print x  

19.         until x = v; 

20.   end if  

 

Description of Algorithm: 

As we know that the vertices of each strongly connected component are a 

connected subgraph of the spanning forest determined by the depth-first 

search. This connected subgraph is a tree and the root of the tree is called the 

root of the strongly connected component. Depth-first search is used to find the 

strongly connected components of a graph. To find out the strongly connected 

component a function LOWLINK is defined in the following manner:  

LOWLINK[v] = MIN({v} U {w | there is a cross edge or back edge from a 

descendant of v to w. and the root of the strongly connected component 

containing w is an ancestor of v}). 

The LOWLINK computation occurs at lines 4, 9, and 12. At line 4 

LOWLINK[v] is initialized to the depth-first number of vertex v. At line 9 

LOWLINK[v] is set to LOWLINK[w]. if for some son w, LOWLINK[w] is 

less than the current value of LOWLINK[v]. At line 11 we determine whether 

(v, w) is either a back edge or cross edge and we check to see whether the 

strongly connected component containing w has been found. If not, then the 

root of the strongly connected component containing w is an ancestor of v.  

 

 

Figure 2.1: Strongly connected component of graph G  
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At line 12 we set LOWLINK[v] to the depth-first number of w. If it does not 

already have a lower value. When all of the vertices of a node are discovered 

and LOWLINK [v]= DFN[v] then elements from the stack are popped out. 

Stack is emptied and the list of the vertices belong to strongly connected 

component of G. This procedure is performed for all vertices of G. Applying 

the Algorithm 2.1 on the Graph G in Figure 2.1 produces three strongly 

connected component (SCC). 

S1 = {1, 2, 3, 4, 5}  S2 = {7} S3 = {6, 8} 

 

2.2.4  Linear Time Algorithm for 2-SAT Problem  

Aspvall et al. in 1979 [33] presented a linear time algorithm for testing the 

truth of certain quantified Boolean formulas. 

 

2.2.4.1 Procedure to Check Solvability of 2-SAT Problem 

Algorithm in [33] uses properties of directed graphs. Suppose we are given a 

formula 𝐹 = 𝑄1𝑥1𝑄2𝑥2…… .𝑄𝑛𝑥𝑛𝐶  such that C is in conjunctive normal 

form with at most 𝐺(𝐹) with 2n vertices and 2|𝐶|. If we assign truth values to 

the vertices of 𝐺(𝐹),  Such an assignment corresponds to a set of truth values 

for the variables which makes 𝐶 true if and only if:  

(i) For all 𝑖, vertices 𝑥𝑖 and  �̅�𝑖 receive complementary truth values. 

(ii) No edge 𝑢 → 𝑣 has 𝑢 assigned true and 𝑣 assigned false (equivalently, 

no path leads from a true vertex to a false vertex) 

 

Steps of Checking Solvability of 2-SAT Problem: 

a. Find out implicative normal form of disjunction of all pair of variables 

from the conjunctive normal form. 

b. Draw implication graph and a skew-symmetric directed graph from 

implicative normal form where the vertices are the set of literals from a 2-

CNF formula. 

c. Explore the strongly connected component in the implication graph. 

d. Apply 2-satisfiability algorithm to process strongly connected components. 

e. A formula is satisfiable if, and only if, no pair of literals, a and ā, appear in 

the same strongly connected component.  
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Theorem 1. The formula F is true if and only if none of the following three 

conditions holds:  

(i) An existential vertex 𝑢 is in the same strong component as its 

complement �̅� . 

(ii) A universal vertex 𝑢𝑖 is in the same strong component as an existential 

vertex 𝑢𝑗such that 𝑗 < 𝑖 (i.e., 𝑥𝑖 is not quantified within the scope of 𝑄𝑖). 

(iii) There is a path from a universal vertex u to another universal vertex v. 

(This condition consists the case that, 𝑣 = �̅� ). 

2.2.4.2 Steps in 2-satisfiability Procedure 

Step 1. If S is marked then move forwards to the next component. Otherwise if 

some successor of S is marked false or contingent lead to Step 2. Otherwise 

reach to Step 3. 

Step 2. (S has a false or contingent successor.) If S contains one or more 

universal vertices, stop: Theorem 1 condition (iii) holds. Otherwise, mark S 

false and move to Step 5. 

Step 3. (All successors of S are true.) If S contains two or more universal 

vertices, stop: Theorem 2 condition (iii) holds. Otherwise, if S contains one 

universal variable 𝑢𝑖  go ahead with Step 4. Otherwise, mark S true and go to 

Step 5. 

Step 4. (S contains a universal vertex 𝑢𝑖 ) If S contains an existential vertex 

𝑢𝑗 with 𝑗 < 𝑖, stop: Theorem 1 condition (ii) holds. Otherwise, mark S 

contingent and directs to Step 5. 

Step 5. (S is marked successfully.) If 𝑆 = 𝑆′ stop: Theorem 1 condition (i) or 

(iii) holds. Otherwise, skip to Step 6. 

Step 6. 𝑆 = 𝑆′ If S is marked contingent or false and 𝑆′ is a predecessor of S, 

stop: condition Theorem 1 (iii) holds. Otherwise, mark 𝑆′ false if S is true, 

contingent if S is contingent and true if S is false; march towards the next 

component. 

 

2.2.4.3. Description of 2-satisfiability Algorithm 

This algorithm marks each component processed true, false, or contingent. 

Each component has a universal vertex which is marked contingent; each 

component containing only existential variables which is marked either true or 
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false. When a component is marked false, either all its successors are marked, 

at least one of them contingent or false, or all its predecessors are marked, all 

of them are false. It can be easily concluded from Step 2, Step 3, and Step 6 

and the duality property. During the operation of the algorithm, some 

component 𝑆1 is marked false while it has an unmarked predecessor, and then 

there is a path from  𝑆1 to a component S, marked contingent. Similarly, when 

a component is marked true, either all its successors are marked, all true, or all 

its predecessors are marked, at least one true or contingent. Thus, if some 

component 𝑆2 is marked true while it has an unmarked successor, then there is 

a path from some contingent component 𝑆1 to 𝑆2. It follows from these facts 

that if the algorithm stops at Step 2 or Step 6, then condition Theorem 1 (iii) 

holds. If the algorithm stops in Step 3, Step 4, or Step 5, it is obvious that the 

indicated condition holds. Thus, if the algorithm stops prematurely, at least one 

of the Theorem 1 conditions (i)-(iii) holds. If the algorithm does not stop 

prematurely, every component is marked in order to have true or contingent 

component has only true components as successors. Similarly, any false or 

contingent component has only false components as predecessors. This follows 

easily from the operation of the algorithm and the duality property. 

Furthermore, every component and its complement receive complementary 

truth values, and every contingent component has a universal vertex 𝑢𝑖 that 

contains as additional vertices which is only existential vertices 𝑢𝑖 such  𝑖 < 𝑗. 

We can prove that F is true as follows: to each vertex in a true or false 

component, assigned value is true or false, respectively. For any assignment of 

truth values to the universal variables, we assign to each vertex in a component 

containing a universal vertex 𝑈𝑖 the truth value of 𝑥𝑖 if 𝑢𝑖 = 𝑥𝑖 and the 

complementary truth value if 𝑢𝑖 = �̅�𝑖. Thus, in this context F is true.  

 

2.2.4.4 Complexity of 2-satisfiability Algorithm 

2-satisfiability algorithm requires 𝑂(𝑛 +𝑚) time, where m is the number of 

edges in G(F) (twice the number of clauses in C). The algorithm processes 

strong components in the same order as they are generated by the linear-time 

strong components algorithm; thus, strong components algorithm may be used 

with only minor modifications as to solve this evaluation problem.  
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2.3 Literature Survey of 2-clustering Algorithms 

In the following sub points, a great impetus is given on the evolution of NP-

complete problems, polynomial time reduction of NP-complete problems and 

formulation of cluster analysis as mathematical programming. Various 2-

clustering algorithms are also analyzed on the basis of time complexity. 

 

2.3.1 NP-complete Problems and Polynomial-time Reducibility of 

Problems 

Computational problems are quite complex and stimulating hence they have to 

be resolved at the top priority, efficiently and successfully to settle the issue for 

once and all. But contrary to this still there are some problems that are hard to 

be resolved and hence known as NP-hard problems. Computational complexity 

theory is a branch of theoretical computer science which focuses on classifying 

computational problems. In computational complexity theory, there are lots of 

computational problems which can be solved by a non-deterministic Turing 

machine [14] in polynomial time, such a problem is treated as non-

deterministic polynomial (NP) problem [34, 36]. NP problems are the set of 

decision problem [25]. Foundation of NP-complete (non-deterministic 

polynomial complete) problems and the notion of polynomial-time reducibility 

is investigated by Cook [24]. If a polynomial time reduction algorithm exists 

for reducing one problem to another then this means that any polynomial time 

algorithm for the second problem can be converted into a corresponding 

polynomial time algorithm for the first problem. Further it is proved existences 

of a NP-complete problem by showing that the Boolean satisfiability problem 

(SAT) is NP-complete. Karp [17] demonstrated set of 21 computational 

problems which are NP-complete.  

 

 

 

 

 

 

It can be inferred that there is a polynomial time many-one reduction of the 

Boolean satisfiability problem to each of the 21 combinatorial and graph 

Figure 2.2: Algorithm for problem A 

 

Algorithm f Algorithm 

g 

Algorithm 

for problem 

B 

f(x) s 
Solution g(s) of x x 
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theoretical computational problems. It means that many natural computational 

problems are computationally intractable [24]. A large number of 

computational problems when expressed as language recognition problems, 

arising in fields such as mathematical programming, graph theory, 

combinatorics, computational logic and switching theory are NP-complete. 

 

Theorem 2. [24] If a set S of strings is accepted by some nondeterministic 

Turing machine within polynomial time, then S is P-reducible to disjunctive 

normal form tautologies. 

 

According to Theorem 2, any recognition problem can be solved by a 

polynomial time-bounded nondeterministic turing machine that can be reduced 

to the problem of determining whether a propositional formula is a tautology 

or not. Polynomial time reduction [37] implies that first problem can be solved 

deterministically in polynomial time provided a solution which is available for 

solving the second problem. From Figure 2.2 it is clear that if problem B can 

be used to solve A, then problem A can be reduced to problem B. A problem is 

polynomial time reducible: if a polynomial time algorithm f transforms any 

instance x of the problem A into an instance 𝑓(𝑥), together with another 

polynomial time algorithm g that maps any solution s of 𝑓(𝑥) back into a 

solution 𝑓(𝑥) of 𝑥. If algorithm f and algorithm g are efficiently computable, 

then this develops an efficient algorithm for the problem A to reduce into 

problem B. 

 

2.3.2  Formulation of Cluster Analysis as Mathematical Programming  

Rao [19] explored the distance base cluster analysis and focused on the 

problem of optimal partitioning and showed how the problem can be 

formulated as a mathematical programming problem. Problem formulation on 

the basis of different distance-based criterion are as follows: 

 

1) Minimize the within group’s sums of squares distance: In this formulation 

an efficient dynamic programming algorithm is provided, considering entities 

are points on the real line.  
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 Min∑∑𝑤𝑖𝑥𝑖𝑗(𝑞𝑖 − �̅�𝑗)
2

𝑀

𝑗=1

𝑁

𝑖=1

 (8) 

where, �̅�𝑗 = (∑𝑤𝑖𝑥𝑖𝑞𝑖

𝑁

𝑖=1

) ∑𝑤𝑖𝑥𝑖

𝑁

𝑖=1

⁄   

 

∑𝑥𝑖𝑗

𝑀

𝑗=1

= 1  
 

i = 1, 2,... , N 

where,           𝑥𝑖𝑗 = 0 𝑜𝑟 1,   ∀ 𝑖, 𝑗   

Wi is the weight assigned to entity 𝑖, 𝑞𝑖 is a measure assigned to entity i. xij = 1 

or 0 depending on whether entity i is assigned to group j. 

 

2) Minimize the sum of average within group squared distances: Two 

approaches are given to solve the problem: In the first approach, problem is 

treated as a constrained non-linear Boolean programming problem, this 

approach followed the method of Hammer et al. [38]. In the second approach, 

objective function was to linearize at the cost of increasing the number of 

constraints and then solving the resulting problem by adopting linear integer 

programming technique. 

 Min∑[
(∑ ∑ 𝑑𝑖𝑗

2 𝑥𝑖𝑘𝑥𝑗𝑘
𝑁
𝑗=𝑖+1

𝑁−1
𝑗=1 )

∑ 𝑥𝑖𝑘
𝑁
𝑖=1

]

𝑁

𝑘=1

 (9) 

Subjected to: 

∑𝑥𝑖𝑘

𝑀

𝑘=1

= 1 

where, xik > 0, i = 1, 2,. . . , N and k  = 1,2,. . . , N. 

 

3)Minimize the total within group distance: In this formulation, objective 

function of criterion 2 can be reduced into the objective function of criterion 3, 

then linearizing the new objective function and solving the resulting problem 

by applying linear integer programming technique. 

 Min∑(∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

)

𝑀

𝑘=1

 (10) 
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 ∑𝑥𝑖𝑘

𝑁

𝑖=1

= 𝑛𝑘      𝑘 = 1,2, … ,𝑀 (11) 

 

where, nk is the number of entities in group k such that 

∑𝑛𝑘

𝑀

𝑘=1

= 𝑁 

4)Minimize the maximum within group distance: A linear integer programming 

solution is modeled for minimize the maximum within group distance. In this 

solution approach, the number of constraints increases incessantly with N 

(number of entities) and k (number of clusters) and therefore, this formulation 

is computationally useful only for small values of N and k. 

Min Z, 

Subjected to:  

 𝑑𝑖𝑗𝑥𝑖𝑘 + 𝑑𝑖𝑗𝑥𝑗𝑘 − 𝑍 ≤ 𝑑𝑖𝑗 (12) 

where, i = 1, 2, . . . , N-1, j = i+1, i+ 2, . . . , N and k = 1, 2, . . . , M  

 

such that ∑𝑥𝑖𝑘

𝑀

𝑘=1

= 1  i = 1, 2,. . . , N 

 

xij, Z > 0 and integer valued 

 

2.3.3 Minimum Sum of Diameters as NP-complete Problem 

Brucker [15] put forth a problem of partitioning a given set of N entities into k 

clusters, such that the sum of the diameters of these clusters is minimum as an 

NP-complete problem for k ≥ 3 and even has unknown complexity for k = 2. 

The NP-completeness of MSDC problem for k ≥ 3 is an open problem for the 

researchers. When sum of diameter as other than as criterion is chosen, 

clustering algorithms have constraints on the number of entities that can be 

clustered. Hansen et al. [20] examined a complete-link cluster analysis 

algorithm for minimization of maximum dissimilarity between entities in the 

same cluster but it is delimited up to 270 entities. Similarly, Delattre et al. [13] 

solved clustering problem in which both homogeneity and separation of the 
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clusters are simultaneously considered. Their research focused on the concept 

of split and diameter. A single-link algorithm may have a chaining effect [39] 

because of the poor homogeneity of clusters and the complete-link algorithm 

may have dissection effect due to badly separated clusters. This problem is 

solved by using bi-criterion cluster analysis taking both diameter and split 

criteria simultaneously into account to obtain partitions without such defects. 

By considering both criterions simultaneously their algorithm ensures 

maximum homogeneity and maximum separation. Their algorithm is also 

having bound on the number of entities and can determine a minimal complete 

set of efficient partitions with up to 400 entities. 

 

2.3.4 Linear Time Algorithm for 2-SAT Formulation 

Aspvall et al. [33] redefined a linear-time algorithm for the evaluation of a 2-

satisfiabile formula. The algorithm processes the Boolean formula and 

constructs a directed graph from the quantified Boolean formula of n variables. 

In the first step of this algorithm, a directed graph developed on the basis of 

Boolean formula. In the second step of this algorithm, a linear time algorithm 

[35] is found as a strongly connected component. Time complexity of linear 

time algorithm is O(max(n, m)), where n is the number of vertices and m is the 

number of edges. Even et al. [40] dealt with a linear-time algorithm. Schaefer 

et al. [41] also worked on efficient polynomial time solution for conjunctive 

normal formula having only two literals per clause. Their research proposed a 

simple constructive algorithm for the evaluation of formulas having two 

literals per clause, which runs in linear time on a random-access machine. This 

algorithm is based upon the Aho et al. [35] and Tarjan et al. [42] algorithm, 

which talked about strong components of a directed graph in linear time. It 

requires 𝑂(𝑛 +𝑚) time, where n is the number of variables in a Boolean 

formula and m is twice the number of clauses in a Boolean formula.  

 

2.3.5 2-clustering Algorithms for Minimum Sum of Diameter and 

Minimizing the Maximum diameter 

Under this head, various 2-clustering algorithms for the minimum sum of 

diameter and minimization of largest diameter are dealt. Let N is the number of 

entities in a complete graph G, C1 and C2 are clusters and D1 and D2 are their 
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diameter respectively. 2-clustering problem is finding a partition of set O of N 

entities into two non-empty clusters C1 and C2, such that the sum of diameter 

of cluster C1 and cluster C2 is minimized.  Rao [19] researched minimizing the 

maximum diameter clustering problem as mathematical programming through 

linear programming. After this research finding, a huge research gap is 

witnessed due to non-availability of related review of literature. A comparative 

investigation of approach, constraints, issues, running time computation of 

various exact 2-clustering algorithms for minimizing the sum of diameter and 

minimizing the maximum diameter problem is exhibited in Table 2.1. 

 

2.3.5.1 2-clustering algorithm based on 2-SAT Formulation 

2-clustering for minimum sum of diameter is a polynomial time algorithm. 

Complexity of Algorithm 2.2 is 𝑂(𝑁3𝑙𝑜𝑔𝑁). For three or more clusters 

obtaining a minimum sum of diameters partition is an NP-complete problem. 

This 2-clustering algorithm is based on reduction of 2-clustering problem into 

2-SAT formulation. 

 

Theorem 3. Minimum sum of diameters bipartition can be solved in O(N2) 

time by reduction to the determination of the consistency of a quadratic 

Boolean equation. 

 

Proof: Reduction of 2-clustering problem to 2-SAT formula for the bipartition 

{𝐶1, 𝐶2} of O is assigned by associating a Boolean variable xi to each entity of 

O such that: 

 
𝑥𝑖 = {

0, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
1, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

 
(13) 

Assuming,𝑟1 ≥ 𝑟2, Considering a pair {𝑂𝑘, 𝑂𝑙} of entities of O; there are three 

possibilities: 

Case 1: If 𝑑𝑘𝑙 > 𝑟1, then 𝑂𝑘 and 𝑂𝑙 both cannot belong to the same cluster 𝐶1 

or 𝐶2, so the following boolean condition holds: 

 𝑥𝑘𝑥𝑙⋁�̅�𝑘�̅�𝑙 = 0 (14) 

Case 2: If 𝑟1 ≥ 𝑑𝑘𝑙 > 𝑟2, then 𝑂𝑘 and 𝑂𝑙 both cannot belong to the same 

cluster 𝐶2, so the following boolean condition holds: 
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 𝑥𝑘𝑥𝑙 = 0 (15) 

Case 3: If 𝑟2 ≥ 𝑑𝑘𝑙, then there is no restriction on whether 𝑂𝑘 and 𝑂𝑙 both 

should or should not belong to the cluster 𝐶1or 𝐶2.  

After analyzing the binary relation for each pair {𝑂𝑘, 𝑂𝑙} of entities, implied by 

the value of 𝑑𝑘𝑙 with respect to 𝑟1and 𝑟2, formulates a 2-SAT formula. 

 

2-clustering Algorithm Based on Reduction to 2-SAT Formula 

 

Algorithm 2.2 2-clustering Algorithm for MSD  

 

Input: Graph G 

Output: Cluster C1 and Cluster C2 such that sum of diameter is minimized 

1. Build maximum spanning tree to find dmin (first odd cycle in the spanning 

tree) 

2. Identify the set of all candidate edge d1, which are possible candidates for 

D1. 

3. For each candidate d1 in D1: Identify the value of d2 in binary search 

manner such that there exists a partitioning of the cluster graph into two 

sets with diameters not exceeding d1 and d2 respectively. 

4. For each entity xi of the bipartition associate a Boolean variable  

5. Apply Boolean approach to construct a 2-SAT expression E for d1 and d2  

 
𝑥𝑖 = {

0, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
1, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

 
 

6. Check satisfiability of the 2-SAT expression E using algorithm from [33] 

7. If E is satisfiable then search for a lower value of d2 else search for a higher 

value of d2. 

8. Choose D1 and D2 to pair (d1, d2) such that the sum of d1 and d2 is 

minimized. 

 

2.3.5.2 2-clustering Algorithm for Minimizing the Largest Diameter 

Asano et al. [43] presented an algorithm which partitions a set S of n points 

into two subsets so that their largest diameter is minimized in time O(nlogn). 

In this algorithm optimal partition is determined by either a maximum or 

minimum spanning tree.  Monma et al. [44] illustrated an O(n2) algorithm for 

the minimum sum of diameters two clustering. Guénoche et al. [21] presented 

a divisive hierarchical clustering algorithm for selecting the cluster with the 

largest diameter and partitioning it into two clusters whose largest diameter is 

possibly smallest one.  They revealed two such algorithms: first algorithm is 
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just an efficient implementation of Hubert [45] algorithm that find all 

partitions into at most M clusters in O(kn2). For a fixed value of k the time 

complexity of the algorithm is O(n2). Second algorithm is a modified version 

of Rao [19] algorithm, which allows to build a complete hierarchy of partitions 

in O(n2logn) time. 

 

2.3.5.3 2-clustering Algorithm for MSDC Based on Partitioning of Set  

Hershberger [46] presented an algorithm for partitioning a planar set S of n 

points into two subsets so that the sum of the diameters of the subsets is 

minimized that is having bound of 𝑂 (
𝑛𝐿𝑜𝑔2𝑛

𝑙𝑜𝑔𝑙𝑜𝑔𝑛
). 

 

Theorem 4. [46] Given a planar set S of n points, the bipartition 𝑆 = 𝑆1 ∪ 𝑆2, 

that minimizes Diam(S1)+Diam(S2) can be found in O(nlog2n) time. 

 

Algorithm 2.3  PlanarPartition(S) 

Input: Planar Set S of n Points 

Output: Two subsets with minimized sum of the diameters 

1. for i =l to k do 

2.      Merge the points in the radial interval (ri-1,ri] into the voronoi diagram    

     structure  

3.      for each point p in (Si-1, Si] in radial order do 

3.1 Compute the farthest neighbor of p in the Voronoi diagram 

structure; call it  

3.2 Update the diameter 𝐷𝑖𝑎𝑚(𝑆𝑎) = max(𝐷𝑖𝑎𝑚(𝑆𝑎), 𝑑(𝑝, 𝑞)). 

4.      end for  

5. end for 

 

Algorithm 2.3 apply the concept of uses Union-Find algorithm [47] and use the 

concept of interval to identify the values of r when new points are added to the 

list. Merging of list and bi-partitioning is performed by applying Theorem 4. 

Any new point in the sector M, farthest point in the current set S is a or is in T 

or B; it cannot lie in M as shown in Figure 2.3. Any point in T or B is indicated 

that the algorithm doesn’t need to check diameters for a substantial range of 

values of r. If a point q lies in T or B at a distance α from a, then no value of r 

in the following range can give a good partition: (√3𝛼/2) ≤ 𝑟 < 𝛼 



26 

 

 

 

 

 

 

 

 

2.3.5.4 Challenge in the NP-complete Problems  

Zuckerman [48] proved that all original 21 NP-complete problems have a 

version that is hard to approximate and these problems are meaninglessly hard 

to approximate. In fact, one cannot even approximate log(k) of the magnitude of 

these problems to within a constant factor. 3-partitioning is one of the NP-

complete problems from the list of 21 NP-complete problems. Hagauer et al. 

[49] presented an algorithm of O(n2log2 n) for  finding a 3-clustering which 

minimizes the maximum diameter. This algorithm is based on the concept of 

Capoyleas et al. [50], in which any two clusters in an optimal solution can be 

separated by a line.  

 

2.3.5.5 2-clustering Algorithm for MSDC Based on Look-ahead 

Ramnath [51] presented algorithms that dynamically solve 2-SAT instances. 

Algorithm 2.4 dynamically maintains the transitive closure. The input can be 

represented by a weighted graph, Vertex i represented by item ai, edge eij 

represents length lij between vertex i and vertex j. The output is a partitioning 

of the vertex set into two clusters C0 and C1, with diameters D0 and D1 

respectively. Another algorithm dynamically maintains the partitioning of a 

graph into strongly connected components and runs in O(n3) and O(mn) 

respectively, where m is the number of edges in the graph, n is the number of 

vertices. Both algorithms use the notion of perfect deletion lookahead which 

improves the time bound in comparison to notion of partial lookahead [52]. 

Partial lookahead is used to maintain the transitive closure that takes update 

times of O(n2.18) with n0.18 lookahead. Nomain et al. [53] illustrated that 

Ramnath [51] algorithm consistently performed better than P. Hansen et al. [4] 

algorithm.  

 

Figure 2.3: Partitioning of the plane into sectors 

b a 

T 

B 

M 
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Algorithm 2.4 2-ClusteringTransClos(G) 

Input: Weighted graph G 

Output: Two clusters C0 and C1 

1. Identify all edge lengths, d0, that is possible candidates for D0. 

2. Formulate the Type 0 constraint and Type 1 constraints for each edge eij. 

3. Construct Type 0 constraint: If edge length(eij) > d1, then set it as conjunct 

(�̅�𝑖 ∨ �̅�𝑗).  

4. Construct Type 1 constraint: If edge length(eij) > d0 then set it as conjunct 

(𝑥𝑖 ∨ 𝑥𝑗) 

5. Insert all the Type 1 constraint into the constraint graph as undeletable 

edges. 

6. Check constraint graph is satisfiable or not, by applying transitive closure 

or by decomposition it into strongly connected components. If it is not then 

delete the edges until the constraint graph is satisfiable. 

7. Record the pair (d1, d2) such that the sum of d1 and d2 is minimized. 

 

2.3.5.6 Discussion 

In the context of minimum sum of diameter problem, 2-SAT formulation is 

solvable in polynomial; therefore 2-clustering problem is solvable in 

polynomial. To rationalized that 3-clustering problem is NP-complete problem, 

a methodology is proposed in [54] which reduced 3-clustering problem into 3-

SAT formulation, 3-SAT formulation is NP-complete problem; therefore 3-

clustering problem is also NP-complete problem. To rationalize that k-

clustering problem is NP-complete problem; a methodology is proposed in 

[54] which reduced k-clustering problem into k-SAT formulation, k-SAT 

formulation is NP-complete problem; hence k-clustering problem is also NP-

complete problem for minimum sum of diameter. 3-clustering problem can be 

solved in polynomial time, but it requires an exploration of properties of 

tripartite graph. 

 

2.4 Literature Survey of Approximation Clustering Algorithm for 

Minimum Sum of Diameter and Radii Clustering Problem 

Literature survey of approximation clustering algorithms for minimum sum of 

diameter and radii clustering problem is divided into two sections. Section first 

dealt with evolution of approximation algorithms, approximation algorithms 

for NP-complete problem, approximation algorithms to minimize the 

maximum diameter/radii of cluster and approximation algorithms for p-center 
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problem [16]. In Section second, approximation clustering algorithms for 

Euclidean, metric and geometric version of MSDC and MSRC problem are 

analyzed. A comparative investigation of approach, issues, constraints, and 

running time computation complexity of various approximation algorithms of 

MSDC problem, MSRC problem and related problems is shown in Table 2.2 

 

2.4.1 Fundamentals of Approximation Algorithms 

Approximation algorithms are applied to find approximate solutions to 

optimization problems. Approximation algorithms are mostly linked with NP-

hard problems. Following are the definitions of the selected terminologies: 

 

Definition 6 (Polynomial Time Approximation Scheme [55]). A Polynomial 

Time Approximation Scheme (PTAS) is a (1+ϵ) approximation algorithm that 

runs in time polynomial in the size of input but it can be exponential in 1/ ϵ. 

The running time of an PTAS is polynomial in n for every fixed ϵ but can be 

different for different value of ϵ. Thus, running time of an PTAS algorithm can 

be O(n1/ε). 

 

Definition 7 (Quasi-polynomial Time Approximation Scheme [55]). A 

Quasi-polynomial time approximation scheme (QPTAS) algorithm runs in 

time 𝑂(𝑛𝑙𝑜𝑔
𝑐𝑛) for a constant c. 

 

Definition 8 (p-center Problem [56-60]). The p-center problem is to find out 

the optimal location of p nodes so that the maximum distance of a node to its 

nearest center is minimized. P-center problem is NP-hard even in the case of 

planar Euclidean. 

 

2.4.2 Approximation Algorithms on Minimizing Diameter of Cluster and 

Minimizing Radii of the Cluster 

In this sub section, approximation algorithms are analyzed on the basis of 

minimizing the diameter of cluster and minimizing the radii of the clusters. 

.
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Table 2.1: 2-clustering algorithms and minimizing the maximum diameter clustering algorithms: A Comparative Overview 

 

Year 
Authors 

Name 
2-clustering Algorithm Criteria Approach/Concept Constraint/Assumption/Issues 

Time 

Complexity 

1987 Hansen et al. [4] Minimizing the sum of diameter Reduction of 2-clustering to 2-

satisfiability (2-SAT) 

Can’t be extended for k >2  
O(n3log n) 

1988  Asano et al. [43] Minimizing the maximum diameter  

Maximizing the minimum 

intercluster distance 

Maximum spanning tree 

Minimum spanning tree 

For planar set, if convex hull is disjoint 

For convex polygon and vertices 

should be ordered 

O(nlogn) 

O(nlogn) 

1989 Monma et al. [44] Minimizing the sum of diameter Bicoloring vertices of Maximum 

spanning tree 

Algorithm applicable only for  

Euclidean plane with O(n) space 

O(n2) 

1991 Guénoche et al. [21] Minimizing the maximum diameter  Optimal bicolorations of vertices Applicable only for fixed value of k O(n2) 

1992 Hershberger [46] Minimizing the sum of diameter 

 

Minimizing the sum of diameter  

Finding good bipartition and farthest-

point voronoi diagram 

Merge the points in the radial interval 

into the voronoi diagram structure 

Points should lie in a plane 

 

Ratio between diameter & minimum 

inter-point distance should be 

polynomial in n 

O(nlog2n/log 

logn) 

O(nlogn) 

2002 Ramnath [51] Minimizing the sum of diameter  

 

 

Minimizing the sum of diameter 

Dynamically solving the 2-SAT 

instances and dynamically maintaining 

the transitive closure 

Dynamically solving the 2-SAT 

instances and dynamically maintaining 

the partitioning of a graph into strongly 

connected graph 

Applicable only for 2-SAT instances, 

for 3 or more clusters number of 

constraints increase exponentially 

Applicable only for 2-SAT instances, 

for 3 or more clusters number of 

constraints increase exponentially 

O(n3) 

 

 

O(mn) 
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2.4.2.1 2-approximation Algorithm for Minimizing the Maximum 

Intercluster Distance (1985) 

Gonzalez [61] examined an 2-approximation algorithm to minimize the 

maximum intercluster distance that runs in O(kn) time for m dimension, where 

n is the number of points, k is the number of clusters and m represents 

dimensionality (for all value of m). D.S. Hochbaum et al. [62] obtained same 

results but their algorithm is not applicable for m > 1. Their approximation 

algorithm proves successful as long as the set of points satisfies the triangular 

inequality. They found that in two dimensions, (2cos(π/6)-ϵ) or (1.732-ϵ) 

approximation problem is NP-hard for all ϵ > 0. Further, they proved that their 

algorithm is best possible with respect to the approximation bound, if P ≠ NP.  

 

2.4.2.2 Approximation Algorithm Based on Subgraph Technique for NP-

complete Problems 

Hochbaum et al. [63] carried out this study on selected approximation 

algorithms to wide variety of NP-complete problems. In their research, the 

basic approach is to identify a subgraph out of a complete graph satisfying 

certain constraints such that the length of the longest edge included in the 

subgraph is minimized. Moreover, their approximate algorithms for k-

clustering and k-center delivered approximate solutions guaranteed to remains 

present within a constant factor 2 of the optimal solution. Their pragmatic 

approach is highly applicable in routing, location design and communication 

network design.  

 

2.4.2.3 Approximation Algorithm for Pairwise Clustering and Central 

Clustering 

Feder et al. [64] defined two measures of cluster size. First measure is the 

maximum distance between pairs of points in the same cluster which is also 

recognize as pairwise cluster and the second measure is the maximum distance 

between points in each cluster and a chosen cluster center also recognize as the 

central cluster. They proved that approximation clustering in d ≥ 2 dimensions 

is NP hard for α < 1.82(for pairwise cluster) and α < 1.97 (for central cluster). 

They also elucidated a 2-approximation algorithm of running time O(nlogk), 

emanated from box decomposition method [65].  
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2.4.2.4 Approximation Algorithm Based on Geometric Technique 

Capoyleas et al. [50] investigated minimizing the diameter of the cluster or 

minimizing the radii of the cluster problem based on the geometric technique.  

Just like to above stated referred problem, minimizing the maximum radius 

problem is also well known as k-center problem [57]. They study the 

minimizing the diameter or minimizing radii of the clusters problem in 

polynomial time O(n6k), for any fixed value of k and for any monotonic 

increasing function of cluster diameter or radius. Further, they concluded that 

any two clusters in an optimal solution can be separated by a line. In a similar 

work align with this study Megiddo et al. [66] also proved that minimizing the 

maximum cluster area problem and minimizing the sum of all cluster areas 

problem is NP-complete problem. 

 

2.4.2.5 Approximation Algorithm for Minimize the Maximum Diameter 

and Minimize the Maximum Radius 

There are a number of researchers addressed the clustering problem where the 

core objective is to minimize the maximum diameter or minimize the 

maximum radius of a cluster. Plesnik [67] disclosed that minimizing the 

maximum diameter and minimizing the total diameter, even for k=2, cannot be 

efficiently approximated to within factors less than 3/2 and 5/4 respectively 

unless P = NP.  

Megiddo [68] presented an O(n log3n) algorithm for the continuous p-center 

problem and an O(n log2 n log logn) algorithm for a weighted discrete p-center 

problem. Charikar et al. [69] modelled deterministic and randomized 

incremental version of the clustering problem for minimizing the maximum 

radius. Agarwal et al. [70] identified an (1 + 𝜖) approximation algorithm for 

the k-center problem, with running time complexity of 𝑂(𝑛𝑙𝑜𝑔𝑘) +

(𝑘/𝜖)𝑂
(𝑘1−1 𝑑⁄ )

 . Agarwal et al. [71] studied projective clustering problems with 

objective a subtle to cover the set S (set of n point in ℝ𝑑) by k hyper-strips 

(hyper-cylinders) in a manner such that maximum width of a hyperstrip 

(maximum diameter of a hyper-cylinder) is minimized, for positive integer 

value of k. Bădoiu et al. [72] investigated an (1 + 𝜖) approximation algorithm 

for the k-center clustering and k-median clustering problems in Euclidean 
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space based on the construct of core-sets. Running time of the algorithm has 

linear or near linear dependency on the number of points and the dimension, 

and exponential dependency on 1/𝜖 and k.  

 

2.4.3 Approximation Algorithms for MSDC and MSRC problem 

In this subsection, approximation algorithms for MSDC and MSRC problems 

are discussed. 

 

2.4.3.1 Logarithmic Approximation Algorithm to Minimize the Sum of 

Diameter (2000) 

Doddi et al. [29] discovered a logarithmic approximation algorithm for 

minimizing the sum of diameter problem. They regarded that problem of 

partitioning the nodes of a complete edge weighted graph into k clusters is to 

minimize the sum of diameters of the clusters. Algorithm 2.5 is based on the 

novel concept that merging pairs of intersecting clusters do not increase the 

total diameter of clusters, assuming clusters are pairwise disjoints.  

 

Lemma 1. Let I be an instance of minimum sum of diameter clustering given 

by the edge weighted complete graph G(V, E) and integer k. Let C = {C1, C2,. . 

. . Ck} be a collection of subsets of V such that their union is V and the sum of 

the diameters of all the subsets in C is ψ. Suppose Ci and Cj (i ≠ j) are two sets 

in C such that Ci ∩Cj ≠ ϕ. Then total diameter of the collection C obtained by 

deleting Ci and Cj from Cʹ and adding the set Ci U Cj is at most ψ. 

 

Algorithm 2.5 ApproxCMSD(𝑮(𝑽,𝑬), 𝒌) 

 

Input: Complete edge weighted graph G, number of clusters k 

Output: k clusters with minimum sum of diameter 

1. Initialize i = set of |V| singleton clusters. 𝐷 = { {𝑣}:   𝑣 ∈ 𝑉}} 

2. while (|D| > 10k) do  

3. Assign N= set of vertices obtained by selecting one arbitrary vertex from 

each set of D 

4. C = FindCover(G(N,E),k) 

5. D = Merge(D, C) 

6. end while 

7. return(D) 
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Subroutine (1): FindCover (𝐺(𝑁, 𝐸), 𝑘) 

This subroutine return a set of no more than 3𝑘[1 + (ln(|𝑁|/𝑘))] clusters 

which cover N with cost no more than 3𝑘[1 + (ln(|𝑁|/𝑘))](1 + 𝜖)𝑂𝑃𝑇. This 

subroutine call ParametricBMCP (𝐺(𝑁, 𝐸), 𝑘) 

 

Subroutine(2): ParametricBMCP(𝐺(𝑁, 𝐸), 𝑘) 

The Budget Maximum Cover Problem (BMCP) selects a subcollection of sets 

so that the total cost of the selected sets is at most B and the number of 

elements covered by the chosen sets is a maximum. This subroutine generates 

a set of a set of no more than 3k clusters covering (1-1/e)|N| or more vertices 

from N with cost no more than 3(1 + 𝜖). 𝑂𝑃𝑇 for any fixed 𝜖 > 0. This 

subroutine call TransformToSetCover (𝐺(𝑁, 𝐸), 𝑘, 𝑓) 

 

Subroutine(3):TransformToSetCover(𝐺(𝑁, 𝐸), 𝑘, 𝑓)  

This subroutine accepts an instance of CMSD along with a nonnegative value 

f, and produces an instance of the weighted set cover problem. With base set Q, 

and collection W of nonempty subsets of Q, each with a weight. This 

transformation is executed in polynomial time and it’s based on the fact that 

OPT(I′)) < 2 OPT(I) + f, where OPT(I) and OPT(I′) denotes the optimal 

solution value of CMSD problem and weighted set cover problem respectively. 

 

Subroutine (4):Merge(D,C) 

This subroutine uses Lemma 1 and merges element of set C and element of Set 

D such that the overall cost is no more than the sum of the costs of set C and 

set D. They presented a logarithmic approximation algorithm that has no more 

than 10k clusters such the total diameter of generated clusters is within a factor 

O(log (n/k)) of the optimal value for k clusters, where n is the number of nodes 

in the complete graph. Their results rely on transformation of the problem into 

an instance of the weighted set cover problem and budget maximum coverage 

problem [73]. They identified an approximation algorithm for k clusters, such 

that cost of total diameter is at most twice the optimal value (for fixed value of 

k). They also addressed the NP-hardness of minimum sum of diameter 
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clustering problem (satisfying the triangle inequality) and proved that it is NP-

hard to approximate the cost of total diameter to within a factor 2 − 𝜖 of the 

optimal value (for 𝜖 > 0). Finally, they presented an polynomial time 

algorithm considering the underlying graph as a tree with edge weights, 

algorithm runs in O(k2n3) and uses O(kn2) space. 

 

2.4.3.2 Approximation Algorithm for Metric Version of MSDC & MSRC 

Problem  

Charikar et al. [22] presented a primal–dual based constant factor 

approximation algorithm for the points in a metric space to minimize the sum 

of cluster diameters or the sum of cluster radii. They extended k-median 

approximation algorithms of Jain et al. [74] and Charikar et al. [75]. Algorithm 

2.6 is a greedy algorithm that achieves a logarithmic approximation and 

applicable if distance function is asymmetric. They show that there exists a 

polynomial time randomized algorithm that achieves a (3.504 + ϵ) 

approximation for the sum-radii problem using at most k clusters, in running 

time of  𝑛𝑂(
1
𝜀⁄ ). 

They also proved that ∝ approximation algorithm minimizing the sum of radii 

clustering problem yields an 2 ∝ approximation to minimize the sum of 

diameter clustering problem.  

 

Algorithm 2.6 ApxAlgorithm(N)  

 

1. Guess the largest l clusters in the optimal solution. k′ = k – l. The remaining 

steps find at most k′ clusters to cover the points outside the guessed l 

clusters. 

2. Run algorithm primal-dual fixed cost sum-radii with all fixed costs set to z, 

perform a binary search on z to identify two values z1 and z2; such that the 

algorithm produces ≤ k′ clusters for z1 and ≥ k′ clusters for z2. 

3. Let T1 and T2 be the set of tight clusters obtained by the algorithm for z1 

and z2 and Let �̅�1 ⊆ 𝑇1  and �̅�2 ⊆ 𝑇2 be the set of original clusters picked in 

the solution for z1 and z2. Identify clusters in �̅�2 that are disjoint from all 

clusters in �̅�1 . Add these clusters to one at a time to �̅�1, until  |�̅�2| = 𝑘′. 

4. Let F1 denote the final value of �̅�1  and 𝐹2 = �̅�2. Let S1 and S2 represent the 

solutions respectively with |𝐹1| =  𝑘1 ≤ 𝑘′ and|𝐹2| =  𝑘2 ≥ 𝑘′. Expressing 

k′ as combination of k1and k2 with some coefficients a and b.  

5. 𝑎 + 𝑏 = 1, 𝑎. 𝑘1 +  𝑏. 𝑘2 = 𝑘′ 
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6. 𝑎 =  
𝑘2−𝑘′

𝑘2−𝑘1
 ,   𝑏 =  

𝑘′−𝑘1

𝑘2−𝑘1
  

7. Group the clusters, each group containing one cluster from F1 and one or 

more cluster from F2. 

8. Apply probability distribution on the set of numbers nq and allocation of 

clusters is determined by the disjoint sets S1, S2. 

9. Return the better of the two solutions S1 and the solution produced as the 

output of the previous step. 

 

 

LP Formulation for the sum-radii problem: For every center i and radius r, 

𝑦𝑖
(𝑟)

 is an indicator variable that indicates if there is a cluster of radius r 

centered at i.  

 

 min∑∑𝑟. 𝑦𝑖
(𝑟)

𝑟𝑖

 (16) 

 ∀ j∑ ∑ 𝑦𝑖
(𝑟)

𝑟:𝑑(𝑖,𝑗)≤𝑟

≥ 1

𝑖

 (17) 

 

 

∑∑𝑦𝑖
(𝑟) ≤ 𝑘

𝑟𝑖

 (18) 

 

Dual of the LP Problem is 

 

 max∑ ∝𝑗− 𝑘. 𝑧

𝑗

 (19) 

 ∀ 𝑖, 𝑟 ∑ ∝𝑗≤ 𝑟 + 𝑧

𝑗:𝑑(𝑖,𝑗)≤𝑟

 (20) 

 

LP Formulation for the fixed cost sum-radii problem (fi is fixed cost): 

 min∑∑𝑦𝑖
(𝑟). (𝑟 + 𝑓𝑖)

𝑟𝑖

 (21) 

 

 
 
 

∀ j∑ ∑ 𝑦𝑖
(𝑟)

𝑟:𝑑(𝑖,𝑗)≤𝑟

≥ 1

𝑖

 (22) 

 

Dual of the fixed cost sum-radii LP Problem: 
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 max∑ ∝𝑗
𝑗

 (23) 

 

 
 
 

∀ 𝑖, 𝑟 ∑ ∝𝑗≤ 𝑟 + 𝑓𝑖
𝑗:𝑑(𝑖,𝑗)≤𝑟

 (24) 

 

LP formulations of the sum-radii problem can be transformed similar to the LP 

formulations of the fixed costs sum-radii problem by setting the fixed costs fi = 

z. The constraints in the fixed costs sum-radii dual LP equation (23)–(24) are 

exactly the same as the constraints in the sum-radii dual LP equation (19)–

(20). Thus, a feasible solution to the fixed costs sum-radii problem is a feasible 

solution to the sum-radii problem. 

 

2.4.3.3 Approximation Algorithm for Geometric Disk Covering Problem 

Research work of Tov et al. [30] is concerned with geometric disk covering 

problem [76]. Their research work is based one of the geometric disc covering 

problem, placement of base stations in wireless network design. In base station 

placement problem, set of clients are to be covered by collection of disks of 

variable radii around a base station location, such that sum of radii of disk is 

minimized. Similar problem like fixed radius covering problem with given 

potential server locations is considered by Glasser et al. [77].  

Disk covering Problem: Let us consider 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑚} representing base 

locations for placing base stations (servers) and 𝑌 = {𝑦1, 𝑦2, … 𝑦𝑚} 

representing the clients. A base station located at xi has a certain transmission 

range Ri. A client node yj is covered by a base station placed at xi, if yj is 

contained in the disk of radius Ri centered at xi or falls on its boundary. The 

disk covering problem is to finding a collection of servers covering all the 

clients. Where as in minimum sum of radii cover problem, objective is to 

select the transmission radii Ri such that all the clients are covered and the sum 

of the transmission ranges is minimized. They presented a polynomial time 

algorithm of time complexity O((n+m)3) based on dynamic programming for 

the 1-dimensional minimum sum of radii cover problem. Lastly, they also 

identified polynomial time approximation scheme for the minimum sum of 

radii cover problem with approximation ratio of (1+6/k) and time complexity 
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of O(k2(nm)γ+2). Polynomial time approximation scheme is based on a 

modified variant of the hierarchical grid-shifting technique [78]. 

 

2.4.3.4 Approximation Algorithms for Geometric Version of min-size k-

clustering Problem 

Bilo et al. [75] studied geometric versions of the min-size k-clustering 

problems which generalize clustering to minimize the sum of cluster radii 

problem. They also studied PTAS for each instance (X, F, d, α) of the 

minimum sum of radii cover problem, where X is a set of n points with rational 

coordinates on the d-dimensional Euclidean space, F is a non-negative cost 

function associated with each point, and a constant value α. Their algorithm 

extended the idea of plane subdivision from an algorithm of from Erlebach et 

al. [78] that approximates the minimum vertex cover of disk graphs. Their 

algorithm computes an (1 + 𝜖)-approximate solution in 𝑛(
𝛼
𝜖⁄ )
𝑂(𝑑)

time. When 

the points to be clustered are located on a line, clustering to minimize the sum 

of cluster size problem can be solved in polynomial time.  

 

2.4.3.5 Approximation Algorithms for Euclidean Version of min-cost k-

cover Clustering Problem 

Gibson et al. [80] showed that the Euclidean min-cost k-cover problem is 

solvable exactly in polynomial time (on the assumption of some model of 

computation). Optimal k-cover problem can be efficiently computed using 

dynamic programming, as in [81‒82]. Euclidean version of the problem is well 

examined in [29, 30] and it is extended to metric version of probabilistic 

partitions [83‒84].  Other researchers also worked in the same direction, but 

their research work is associated with some limitations like, Alt et al. [85] 

consider a class of geometric facility location problems and showed that the 

NP-hardness result for the MSRC problem can be extended to any α > 1. Alt et 

al. [85] presented O(n4logn) fast constant-factor approximation algorithms that 

cost (4α OPT) for the MSRC problem and also consider various related 

problems. Wei-lin et al. [86] gave a polynomial-time approximation algorithm 

for the ω-constrained k-facility location problem with approximation ratio 
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ω+1+ϵ and proved that ω-constrained facility location problem cannot be 

approximated with in 1 + ln√𝜔 − 1. 

In the geometric version of min-cost k-cover problem, the optimal solution is a 

set of k disks, each of which is centered on some input point and each of which 

has a radius that is the distance between two input points. If input points have 

integer coordinates, cost of such a solution is the sum of square roots of 

integers. Two sums of square roots of integers can be compared in polynomial 

time is an open problem [87‒88]. Comparing two sums of square root of 

integer in polynomial time is an open problem [80].  

 

Theorem 7. [80] There is a polynomial time algorithm that, given a set P of 

points in the plane and an integer k ≥ 1, returns an optimal k-cover of P. 

 

They showed that the Euclidean min-cost k-cover problem (α = 1) is solvable 

exactly in polynomial time (Theorem 7). Aspect ratio (∆) of the input point set 

P, is the ratio of the maximum to minimum inter-point distance within P. 

When ∆ is bounded by a polynomial in n, it yields a randomized algorithm that 

runs in nO(log n·log ∆) time returns an optimal k-cover of P with high probability. 

When Euclidean metric does not hold the model of computation, exact 

algorithm for the Euclidean metric can be translated into an approximation 

algorithm. Algorithm 2.7 runs in polynomial time in the input size and log(1/ϵ) 

and returns a solution of cost at most (1+ϵ) times the optimal solution (0 < ϵ < 

1). 

 

Lemma 2. [80] Consider an optimal κ-cover D for some set 𝑄 ⊆ 𝑃 of points 

contained in a rectangle R. The rectangle R has a separator that intersects at 

most 12 disks in D. 

 

Algorithm 2.7: DC(R, κ, ϕ) 

Input: A balanced rectangle R, an integer κ ≥ 0, and a subset T ⊆ D. 

Output: optimal k-cover  

1. Create a Table (P ∩R, κ, T) if not created. 𝐷′ = { I } 

2. for all choices of separator 𝑙 ∈ 𝐿(𝑅′) do 
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3.  for all choices a set  𝐷0 ⊆ 𝐷  of at most 12 disks (Lemma 2) that  

      intersect l do  

4.        for all choices of κ1, κ2 ≥ 0 such that κ1 + κ2 + D0 < κ do 

5.   Let R1 and R2 be two rectangles into which l partitions 𝑅′.  

                  Let 𝑇1 = {𝐷 ∈ 𝑇 ∪ 𝐷0 |𝐷 intersects 𝑅1}.  

                  Let 𝑇2 = {𝐷 ∈ 𝑇 ∪ 𝐷0 |𝐷 intersects 𝑅2} 

6.          if |T1| ≤ β and |T2| ≤ β then  

7.   Recursively call DC (R1, κ1, T1) U DC (R2, κ2, T2) 

8.              if cost (D0 U Table R1, κ1, T1) U Table (R2, κ2, T2)) < cost (𝐷′)  
 then update 𝐷′ ← 𝐷0 ∪ Table (𝑃 ∩ 𝑅1, 𝜅1, 𝑇1) ∪ Table (𝑃 ∩ 𝑅2, 𝜅2, 𝑇2) 

9. Assign Table (R, κ, T) by 𝐷′  

10.  return. 

 

Description of the algorithm:  

The algorithm begins with a rectangle containing all the points and cuts it into 

two smaller rectangles by selecting a separator line and solves the sub-

problems corresponding to smaller rectangles recursively, assuming disc I is of 

infinite radius. Consider an instance of the Euclidean minimum sum of radii 

covering problem to compute an optimal k-cover of P of n points in the plane. 

Let D be the set of discs, whose center is some 𝑝 ∈ 𝑃 and radius is |pq| for 𝑞 ∈

𝑃, then |D| = n2. In a similar manner, if D is the set of distinct maximum cluster 

then D ≤ n2.  

Algorithm 2.7 is a dynamic programming algorithm which employs balanced 

rectangles to define the subproblems. A rectangle(R) is said to be balanced if 

its width is at least a third of its length, i.e. length(R) ≥ 3 * width(R).  A 

vertical (horizontal) line is critical if it passes through a point in P or a point of 

vertical (horizontal) tangency of some disk in D. A separator for a (balanced) 

rectangle is any line which is perpendicular to its longer side and cuts it in the 

middle third of its longer side. Procedure compress(R) accepts a balanced 

rectangle R′ that contains at least two of the points in P and returns a balanced 

rectangle R such that (a) R′ is contained in R, (b) R′ contains 𝑃 ∩ 𝑅, and (c) for 

any separator for R′, there are points of 𝑃 ∩ 𝑅 in both of the open half-spaces 

that it bounds (and consequently, any separator for R′ partitions 𝑃 ∩ 𝑅 into two 

nonempty subsets). 
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2.4.3.6 Approximation Algorithms for Metric Version of min-cost k-cover 

Clustering Problem 

Gibson at el. [89] explored the metric versions of clustering to minimize the 

sum of radii problem. They generalized the algorithmic approach of Gibson et 

al. [30] to the metric case and then probabilistically partitioned the metric into 

sets. For the k-cover metric problem, they obtained an exact algorithm of 

running time is nO(logn·log ∆), where ∆ (aspect ratio is the ratio between 

maximum interpoint distance and minimum interpoint distance. Proposed 

algorithm is randomized in nature and succeeds with high probability. When, ∆ 

is bounded by a polynomial in n, the running time of the algorithm is quasi-

polynomial. In their research work they proposed an randomized algorithm of 

nO(log n·log ∆) time for k-cover problem, that takes input a set P of n points in a 

metric space, an integer k, and a parameter 𝜖. Cost of the proposed algorithm 

with probability at least ½ is within a multiplicative factor of (1+ϵ) of the 

optimal k-cover.  

 

2.4.3.7 Approximation Algorithms for Euclidean Version of Minimum 

Sum of Radii Cover Problem 

Gibson et al. [90] showed that the Euclidean min-cost k cover problem is 

solvable exactly in polynomial time, under the assumption that the cost of any 

two candidate covers can be compared in polynomial time. Proietti et al. [91] 

also considered a problem closely related to the metric min cost k-cover 

problem or k-radius problem, they proved that the problem is NP-hard. 

 

They showed that there is an algorithm that, given a set P of n points in the 

plane and an integer k ≥ 1, runs in O(n881.T (n)) time and returns an optimal k-

cover of P. Here, T (n) ≥ 1 is an upper bound on the time needed to compare 

the costs of two subsets of D, each of size at most n, and D is the set of n2 disks 

whose center is some p∈ P and whose radius is |pq| for some q∈ P. They 

showed that there is an approximation algorithm if the model of computation is 

bypassed. Given a set P of points in the plane, an integer k ≥ 1, and a 

parameter 0 < 𝜖 < 1, their exists an algorithm that runs in time polynomial in 

the input size and log (1 𝜖⁄ ) and returns a k-cover of P whose cost is at most 
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(1 + 𝜖) times the cost of an optimal k-cover. They presented an algorithm for 

minimum sum of radii cover problem that runs in time nO(1).T(n) and returns an 

optimal solution. Here, C is set of clients and a set F of facilities in ℝ2, n = |F 

∪ C|, and T(n) ≥ 1 is an upper bound on the time required to compare any two 

subsets of D; D consists of the set of O(n2) disks with center at some p ∈ F and 

radius |pq| for some q ∈ C and there is no upper bound on the number of disks. 

 

2.4.3.8 Approximation Algorithms for Metric Version of Clustering to 

Minimize the Sum of Radii Clustering 

Behsaz et al. [92] explored metric versions of clustering to minimize the sum 

of radii. They presented a polynomial time exact algorithm for minimum sum 

of radii cover problem that runs in O(log2n) for metrics of unweighted graphs, 

assuming no singleton clusters are allowed. They searched out an (1 + 𝜖) 

PTAS for the MSDC problem that runs in time nO(1/ ϵ),  set V contains n points 

in ℝ2, an integer k, and an error bound 𝜖 > 0. For the fixed value of k, they 

presented an exact algorithm for MSDC problem of  𝑂(𝑘2𝑛𝑘
2+𝑘+2). 

 

2.5 Conclusion 

 

This chapter presents a detailed survey on exact and approximate algorithms 

for minimum sum of diameter and minimum sum of radii clustering 

algorithms. This chapter covers various algorithm which are scattered in the 

various literatures. This chapter investigates the algorithm on the following 

key factors: formulation/technique, year of evolution, clustering criteria, 

approach and time complexity. In this research, we presented a comparative 

overview of the algorithm in tabular form that identifies issues, constraints, 

assumptions and challenges in the algorithm. MSDC and MSRC clustering 

algorithm is still an open problem due to the existence of many inherent 

constraints and limitation of existing algorithms.  
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Table 2.2: Approximation algorithms for minimum sum of diameter clustering and minimum sum of radii clustering:  A Comparative Overview 

 

Year 
Author 

Name 
Clustering Algorithm Approach/Concept 

Constraint/Assumption/ 

Issues 
 (TC)/ (AF) 

2000 Doddi et 

al. [29] 

Logarithmic approximation algorithm for 

MSDC 

Approximation algorithm for MSDC 

Polynomial time algorithm for MSDC 

Parametric budget maximum 

coverage  

Minimum cost set cover approach 

Dynamic programming 

For no more than 10k clusters 

 

For fixed value of k. 

Underlying graph is assume 

as a tree with edge weights 

AF: O(log (n/k)) 

 

AF: 2 

TC:O(k2n3) 

2004 Charikar et 

al. [22] 

Approximation algorithm for the metric 

version of MSRC 

Based on primal dual algorithm For at most k clusters AF: (3.504 + 𝜖) 

TC: 𝑛𝑂(
1
𝜖⁄ ) 

2005 Tov et al. 

[30] 

Polynomial time algorithm for 1-

dimensional minimum sum of radii cover 

problem 

Polynomial time approximation scheme 

for minimum sum of radii cover problem 

Dynamic program ming 

 

 

Geometric disk covering and  

hierarchical grid-shifting technique 

Clients and servers are 

located on a straight line 

 

constant γ is dependent on k 

TC: O((n+m)3) 

 

 

AF: (1 + 6/k) 

TC: O(k2.(nm)γ+2) 

2005 Bilo et al. 

[79] 

Polynomial time algorithm for min-size 

k-clustering problem 

Polynomial time approximation scheme 

for each instance (X, F, d, α) of the 

geometric min-size k-clustering 

Expressing the problem as integer 

linear programming 

Plane subdivision technique with 

approximating the minimum vertex 

cover of disk graph 

Points should be located on a 

line 

 

For points in Euclidean space 

of constant dimension 

TC: 𝑛𝑂(𝜆
4+𝜉) 

 

AF: (1 + 𝜖) 

TC: 𝑛(
𝛼
𝜖⁄ )𝑂(𝑑) 

2008 Gibson et 

al. [80] 

Approximation algorithm for minimum 

cost k-cover problem for  Euclidean 

metric  

Dynamic programming algorithm 

which uses balanced rectangle as a 

sub problems. 

Model of computation is not 

hold 

AF: (1 + 𝜖) 

TC: polynomial in input 

size and log (1/ϵ) 
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2010 Gibson et 

al. [89] 

Exact algorithm for minimize cost k-

cover problem for  metric case 

Approximation algorithms for minimize 

cost k-cover problem for the metric space 

Probabilistic partitions 

 

Discretization of problem into 

several instances of exact metric k-

cover problem 

Assuming ∆ is polynomial 

bounded by n 

Model of computation does 

not hold 

TC: 𝑛(𝑙𝑜𝑔𝑛.𝑙𝑜𝑔∆) 

 

AF: (1 + 𝜖) 

TC: 𝑛(𝑙𝑜𝑔𝑛.𝑙𝑜𝑔
𝑛

𝜖
) 

2012 Gibson et 

al. [90] 

Polynomial time exact algorithm for 

Euclidean min-cost k-cover problem 

 

Approximation algorithm for the 

Euclidean min-cost k-cover problem 

 

Polynomial time algorithm for Euclidean 

minimum sum of radii cover problem 

Structure possessed by optimal 

solutions is eminently separable by 

a line and dynamic programming 

Introducing the proxy cost for each 

disk and comparing the proxy cost 

of disk rather than actual cost 

Recursive procedure, disk are 

centered only at the facilities and 

not the clients 

Assuming the cost of two 

subsets of D can be compared 

polynomial time 

Model of computation does 

not hold 

 

No upper bound on number 

of disk and a point can be 

client or facility at a time 

TC: O(n881 .T (n)) 

AF: (1 + 𝜖) 

 

TC: Polynomial in the 

input size and log (1/ ϵ) 

 

TC: nO(1) .T (n) 

2012 Bahaz et 

al. [92] 

Polynomial time exact algorithm for 

minimum sum of radii clustering 

problem for metrics of unweighted graph 

 

Polynomial time approximation scheme 

algorithm for MSDC problem for ℝ2 

Polynomial time exact algorithm for the 

MSDC problem 

Reducing the minimum sum of 

radii problem polynomial time to 

the minimum sum of radii problem 

for connected graphs 

In optimal solution convex hulls of 

the clusters are disjoint 

Distance between two vertices of 

different cluster is greater than sum 

of diameters then vertices can be 

separated 

Graph should be  

polynomially bounded, no 

singleton cluster is allowed, 

graph should be connected 

Clusters are not necessary 

defines by a disc  

Applicable only for constant 

value of k 

TC: 𝑛𝑜(𝑙𝑜𝑔
2𝑛) 

 

 

 

AF: (1 + 𝜖) 

TC: nO(1/ ϵ) 

TC: 𝑂(𝑘2𝑛𝑘
2+𝑘+2) 

 



 

44 

 

 

Chapter 3  

 

Reduction of Clustering Problem as 

SAT Statement 

 

3.1 Introduction 

3-Clustering is partitioning a set of entities into three non-empty clusters such 

that there sum of diameter is minimum. Similarly, k-clustering is partitioning a 

set of entities into k non-empty clusters such that there sum of diameter is 

minimum. 3-clustering and k-clustering problem are NP-complete problem. k-

clustering problem is applicable in many real-life applications. k-clustering 

plays important role in social networking. In this chapter, we introduce the 

concept of reduction of 3-clustering problem to 3-SAT formulation and k-

clustering problem to k-SAT formulation.  

 

3.2 Reduction of 3-clustering Problem to 3-SAT Formulation 

Let O =  {O1,  O2, . , . , ON} denote a set of N = |O| entities and  D ={ dkl/ t ≤ k 

≤  N, 1 ≤  1 ≤  N } a set of dissimilarities between pairs of these entities. A 

dissimilarity dkl is a real number and satisfies to the conditions dkt≥ 0, dkk= 0, 

and dkl = dlk for k , l = l , 2 , . . . , N .A partition PM = {C1,  C2, C3  } of the 

entities of O into 3 clusters is such that no cluster is empty, any pair of clusters 

has an empty intersection and the union of all clusters is equal to O. In this 

chapter, three clustering problem for minimum sum of diameter is reduced into 

3-SAT statements using belonging approach. 

 

3.2.1 Belonging Approach 
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3-Clustering is partitioning a set of  𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑛} entities into 3 clusters 

C1, C2 and C3 such that no cluster remains empty, any pair of clusters has an 

empty intersection and the union of all clusters is equal to O.  A belonging 

formulation [94], reduces 3-clustering problem to 3-SAT formulation. 

Consider the three clusters C1, C2 and C3, and r1, r2, r3 are radius respectively 

such that r1 > r2 > r3. An association of variable xi for each entity is formulated 

as follows:  

 𝑥𝑖 = {

𝑝𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
𝑞𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2
𝑟𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

   (25) 

 

Thus, if entity Oj belong to cluster C1 then 𝑝𝑗 = 1, 𝑞𝑗 = 0 and 𝑟𝑗 = 0   

 

3.2.2 Formulation of 3-clustering problem as 3-SAT Formulation 

Constraint type 1: If dkl > r1, then Ok and Ol together cannot belong to the same 

cluster C1, C2 and C3, generated constraints are as: 

a.  if(𝑂𝑘 ∈ 𝐶1) then((𝑂𝑙 ∈ 𝐶2)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑝𝑘 ∧ (𝑞𝑙 ∨ 𝑟𝑙) = 1) 

b.  if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨ 𝑟𝑙) = 1) 

c.  if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1) 

d.  if(𝑂𝑙 ∈ 𝐶1) then((𝑂𝑘 ∈ 𝐶2)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑝𝑙 ∧ (𝑞𝑘 ∨ 𝑟𝑘) = 1) 

e.  if(𝑂𝑙 ∈ 𝐶2) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑞𝑙 ∧ (𝑝𝑘 ∨ 𝑟𝑘) = 1) 

f.   if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1) 

 

Constraint type 2: If  r1 > dkl > r2, then Ok and Ol together cannot belong to the 

same cluster C2 and C3, generated constraints are as: 

a.  if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨ 𝑟𝑙) = 1) 

b.  if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1) 

c.  if(𝑂𝑙 ∈ 𝐶2) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑞𝑙 ∧ (𝑝𝑘 ∨ 𝑟𝑘) = 1) 

d.   if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1) 

 e. (𝑝𝑘 ∨ 𝑝𝑙) = 1 
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Constraint type 3: If r2 > dkl > r3, then Ok and Ol together cannot belong to the 

cluster C3, generated constraints are as: 

a.  if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1) 

b.   if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1) 

c. (𝑝𝑘 ∨ 𝑝𝑙) = 1 

d.  (𝑞𝑘 ∨ 𝑞𝑙) = 1 

 

Constraint type 4: If r3 > dkl   then there is no restriction, Ok and Ol can belong 

to any cluster. 

 

3.2.3 Complexity Computation 

The present research assumed a complete graph G(V, E), having n vertices. 

Number of edges in the graph G will be n*(n-1)/2 or will order of O(n2). Every 

edge belongs to Constraint type 1/ type 2/ type 3/ type 4 and generated 

constraints are in the form of 3-SAT. Hence, number of constraints/clauses 

generated will be 6, 5, 4, 0 respectively. So, for graph G, number of 

constraints/clauses generated will order as O(6n2). Number of nodes (vertices) 

n can belong to 3 clusters so; numbers of generated variables are 3n.  In case of 

minimum sum of radii problem for 3 clusters, all subsets of distinct maximal 

clusters are generated in order of O(n6). Therefore, time complexity to reduce 

3-cluster to 3-SAT for minimum sum of radii problem is O(n8). 

 

3.3 Reduction of k-clustering Problem to k-SAT Statement  

Social networks are social communities of the web, connected via electronic 

mail, websites and web logs, and networking applications such as Twitter, 

Facebook, or LinkedIn. Social network analysis maps and measures formal and 

informal relationships to understand what facilitate or impede the knowledge 

flows that bind interacting units. In social networks [23], "nodes" of the 

network are people and the "links" are the relationships between people. Nodes 

are also used to represent events, ideas, objects, or other things. Social network 

analysis practitioners collect network data, analyses the data and often produce 

maps or pictures that display the patterns of connections between the nodes of 

the network. These maps reveal characteristics of the network that guide 
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participants as they evaluate their network and plan ways to improve their 

collective ability to identify and achieve shared goals. Constraints provide 

guidance about the desired partition and make it possible for clustering 

algorithms to increase their performance. 

 

3.3.1 k-clustering Problem Statement 

Let O =  {O1,  O2, . . . , ON} denote a set of N = |O| entities and  D ={ dij/ i ≤ k 

≤  N, 1 ≤  j ≤  N } a set of dissimilarities between pairs of these entities. A 

dissimilarity dij is a real number and satisfies to the conditions dij≥ 0, dii= 0, 

and dij = dji for i, j = l, 2, . . .  , N. A partition PM = {C1, C2, . . . , Ck} of the 

entities of O into K clusters is such that no cluster is empty, any pair of clusters 

has an empty intersection and the union of all clusters is equal to O.  

 

3.3.2 Transformation of Social Network Concepts into SAT Statement 

Bonding and bridging are two different important connectivity and measures in 

social network. In Figure 3.1 Bonding denotes connections in a tightly bind 

group. Bridging denotes connections to another cluster. Social network 

analysis literature, bonding and bridging are often called closure and brokerage 

respectively. Analyzing network data to measure bonding and bridging helps to 

predict important outcomes such as efficiency and innovation: bonding 

indicates a sense of trusted community where interactions are familiar and 

efficient; bridging indicates access to new pattern or group.  

 

 

 

Figure 3.1: Mapping of bonding and bridging to ML & CL constraints in a social network 
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Homogeneity Bridging Must Link Constraints SAT Statements 

Separation Bonding Can-not Link Constraints SAT Statements 

Business  

Logic 

 

Concept of social networking can be transformed into mathematical model. 

The transformation process is drawn in Figure 3.2. Transformation of business 

logic on the basis of attributes of objects/actor to the properties like 

homogeneity and separations. These properties homogeneity and separations 

are transformed into bonding and bridging respectively to construct social 

network.  Social network concepts are transformed into must link and can-not 

link constraints. These ML and CL constraints are represented in a 

mathematical form of as a SAT statement. 

 

 

                           Figure 3.2: Transformation of business logic into SAT statements 

 

3.3.3. Belonging Approach 

For k-clustering, a belonging approach put forward k-clustering problem as k-

SAT formulation. k-clustering is partitioning a set O = {O1, O2, . . .  , On} entities 

into k clusters C1, C2,…,Ck cluster such that no cluster remains empty, any pair 

of clusters has an empty intersection and the union of all clusters is equal to O. 

Consider C1, C2,…,Ck clusters and r1, r2,….,rk are cluster radius. Such that r1 > 

r2 >….> rk.  An association of variable xi for each entity is formulated as: 

 

 𝑥𝑖 = 

{
 
 

 
 
𝑝𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1  
𝑞𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2   
𝑟𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶3   
…………………… .
𝑡𝑖 , 𝑖𝑓 𝑂𝑖 ∈ 𝐶𝑘−1
𝑠𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶𝑘   

 (26) 

 

Thus, if entity Oj belong to cluster C1 then 𝑝𝑗 = 1, 𝑞𝑗 = 0 and 𝑟𝑗 = 0  
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3.3.4 Formulation of k-clustering Problem as k-SAT Formulation 

Constraint type 1: If dkl > r1, then Ok and Ol together cannot belong to the same 

cluster C1, C2,….,Ck, in this case generated constraints are as: 

a. if(𝑂𝑘 ∈ 𝐶1) then((𝑂𝑙 ∈ 𝐶2)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑝𝑘 ∧ (𝑞𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1) 

b. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1) 

……………………………………………….up to k times for entity  𝑂𝑘 

k. if(𝑂𝑙 ∈ 𝐶𝑘) then((𝑂𝑘 ∈ 𝐶1)and(𝑂𝑘 ∈ 𝐶2)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨

𝑞𝑘 ∨ …∨𝑙 𝑡𝑖) = 1) 

Similarly, constraints are generated up to k times for entity  𝑂𝑙 also. 

So, Number of k-SAT constraints = 2k. 

 

Constraint type 2: If  r1 > dkl > r2, then Ok and Ol cannot belong to the same 

cluster C2, C3,….,Ck, generated constraints are as: 

a. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1) 

b. if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨

𝑞𝑙 ∨ …∨ 𝑠𝑙) = 1) 

In the above stated case, k-SAT constraints are generated for k-1 times for 

entity 𝑂𝑘and 𝑂𝑙, 

(𝑝𝑘 ∨ 𝑝𝑙) = 1 

In the above stated case, 2-SAT constraints are generated only for 1 time, 

So, Number of constraints = 2(k-1) +1 

 

Constraint type 3: If r2 > dkl > r3, then Ok and Ol together cannot belong to the 

same cluster C3, C4,…,Ck, generated constraints are as:  

Similarly, k-SAT constraints are generated for 2(k-2) times for entity 𝑂𝑘and 𝑂𝑙 

and 2-SAT constraints are generated 2 times  

So, Number of constraints = 2(k-2) +2  

Constraint type k: If rk-1 > dkl > rk, then entities Ok and Ol are not belong to the 

same cluster Ck.  
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Similarly, total Number of constraints = 2(k-(k-1)) +k-1 

 

Constraint type k+1: If rk > dkl   then there is no restriction, Ok and Ol can 

belong to any cluster. 

 

3.3.5 Complexity Computation 

The present research assumed that a complete graph G(V, E), having n vertices. 

Number of edges in the graph G will be n*(n-1)/2 or will order of O(n2). Every 

edge will belong to constraint type 1/ type 2/ …./ type k+1 and generated 

constraints are in the form of k-SAT. Hence, number of constraints generated 

is order of O(k), so for n2 edges order will be O(kn2). Number of nodes 

(vertices) n can belong to k clusters so, number of variables generated are 3n.  

In case of minimum sum of radii problem for k clusters, all subsets of distinct 

maximal clusters are generated in O(n2k). Thus, complexity to reduce k-cluster 

problem to k-SAT problem for minimum sum of radii problem is O(kn2k+2). 

 

3.4 Conclusion 

Social network analysis is fast-growing field data mining. Reducing the social 

networking problem into Sat formulation is a good way to analyze the and 

investigates the network data. Boolean approach techniques is used for 

grouping of data items into two clusters for minimum sum of diameter 

clustering. Hansen [4] applied Boolean approach to find out minimum sum of 

diameter for two clusters by translating them into 2-SAT statement. Boolean 

approach is not sufficient to represent the constraint for 3-clustering or k-

clustering. In this research, we extended the concept of reduction of 2-

clustering to 2-SAT. This chapter presents a new formulation for reduction of 

3-clustering to 3-SAT and k-clustering to k-SAT in polynomial time.  
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Chapter 4 

 

Partitioning and Constraint 3-

clustering Algorithm 

 

4.1 Introduction 

Partitioning is a fundamental problem with applications in several fields of 

study. In computer science, the partition problem is an NP-complete problem 

and it is also NP-Hard to find good approximate solutions for this problem.  

Zuckerman [48] shows that all of the problems (21 Problems) listed by Karp 

[17] are NP-Complete and have a version that's hard to approximate. 

Partitioning Problem is one of the problems in the listing of Karp’s 21 

Problems. These versions are obtained from the original problems by adding 

essentially the same, simple constraint. These problems are absurdly hard to 

approximate. Karp [17] also shows that one cannot even approximate 𝑙𝑜𝑔(𝑘) of 

the magnitude of these problems to within a constant factor, where 𝑙𝑜𝑔(𝑘) 

denotes the iterated logarithm, unless NP is recognized by slightly super 

polynomial randomized machines. Application of Partitioning problem are 

very broad. Partitioning problem are applied in various applications [94-95] 

like: In circuit and in VLSI design, in parallel processing, in combinatorial 

optimization, in scheduling of jobs to processors so as to minimize some cost 

and in cluster Analysis 

 

4.2 Partitioning Problem 

 

A Partition of a set U is a subdivision of the set into subsets that are disjoint 

and exhaustive, i.e. every element of U must belong to one and only one of the 

subsets. The subsets Ai in the partition are called cells. Thus  {𝐴1, 𝐴2, … . . , 𝐴𝑟} 
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is a partition of U if two conditions are satisfied: (1) {𝐴1 ∩ 𝐴𝑗 = ∅} if {𝑖 ≠ 𝑗} 

(the cells are disjoint) and (2) {𝐴1 ∪ 𝐴2 ∪ … . .∪ 𝐴𝑟} (the cells are exhaustive).  

 

4.2.1 Terminology 

Stirling numbers of the first kind: They commonly occur in combinatorics, 

where they appear in the study of permutations. Stirling numbers of the first 

kind [96, 97] are written with a small s. The Stirling Numbers of the First Kind 

can be defined as s(n, k) ways of partitioning a set of n elements into k disjoint 

cycles. Stirling numbers of the first kind counts the number of ways to arrange 

n objects into k cycles instead of subsets. Stirling numbers of the first kind are 

represented as 

[ 
𝑛
𝑘
 ] means “n cycle’s k” 

Recursive relation for Stirling numbers of the first kind is 

 [ 
𝑛 + 1
𝑘

 ] = 𝑛 [ 
𝑛
𝑘
 ] + [ 

𝑛
𝑘 − 1

 ] (27) 

Where [ 
𝑛
𝑘
] = |𝑠(𝑛, 𝑘)|  

 

For k > 0, with the initial conditions 

[ 
0
0
 ] = 1 and [ 

𝑛
0
 ] = [ 

0
𝑛
 ] = 0 for n > 0  

 

Stirling number of the second kind: Stirling numbers of the second kind [7, 8] 

occur in the field of mathematics called Combinatorics and in the study of 

partitions. In mathematics, particularly in combinatorics, a Stirling number of 

the second kind is the number of ways to partition a set of n objects into k non-

empty subsets and is denoted by S(n, k). Stirling numbers of the second kind 

are written with a Capital S. Recursive relation for Stirling numbers of the 

second kind is 

 

 {
 𝑛 + 1
𝑘

 } = 𝑘 { 
𝑛
𝑘
 } + {

 𝑛
 𝑘 − 1 

} (28) 

 

 

Where, {
 𝑛 
𝑘
} = |𝑆(𝑛, 𝑘)| 
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for k > 0, with the initial conditions 

{ 
𝑛 
𝑘
} = 1When n = k and { 

𝑛 
1
} = 1 and for 0n  

 

Bell numbers: The Bell numbers describe the number of ways a set with n 

elements can be partitioned into disjoint, non-empty subsets. Starting with B0 = 

B1 = 1. Bell number satisfies the recurrence formula. Figure 4.1 show the 

number of partition generated for B3. 

 𝐵𝑛+1 =∑(
𝑛

𝑘
)𝐵𝑘

𝑛

𝑘=0

 (29) 

 

Each Bell number is a sum of Stirling numbers of the second kind 

 𝐵𝑛+1 =∑{ 
𝑛 
𝑘
}

𝑛

𝑘=1

 (30) 

where{ 
𝑛 
𝑘
} is a Stirling numbers of the second kind {

 𝑛 
𝑘
} = |𝑆(𝑛, 𝑘)| 

 

 

 

 

 

Figure 4.1: Number of partition generated for B3 

 

4.2.2 Bit wise Representation of Partition 

In this method Partitions are represented in the form of bits. For the 3 

partitioning of n-entities 3n bits are required. Each of the n bits represents one 

partition. When 3-partitioning is represented in bit form, a specific pattern is 

generated for 3-Partition for any value of n. In this pattern first n consecutive 

bits represent 1st Partition, next n consecutive bits represent 2nd Partition and 

last n consecutive bits represent 3rd Partition. 

Rule of Belongingness: If an entity Oi belongs to Partition Ci then the ith value 

of Oi is 1 otherwise it is zero. 

Let us consider a set of 5 entities U = {a, b, c, d, e}, 
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Let us a take a sample 

P1 = {a, b, c}, P2 = {e} & P3 = {d} 

Above partition can be represented in bit format as  

 

Partition 1 Partition 2 Partition 3 

a b c d e a b c d e a b c d e 

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 

 

Figure 4.2: Bit wise representation of a partition sample 

 

4.2.3 Rule-Set for 3-BitPartition 

1. Total number of 1’s in 3n bits is always equal to n.(so rest 2n bits are 

always zero) 

2. Among the three cluster, on the same bit position exactly one cluster 

contain value 1 rest will be zero. 

                 In general, for n entities      

                𝐴𝑖⊗𝐵𝑖⊗𝐶𝑖 = 1 where   1 ≤ 𝑖 ≤ 𝑛 

                Where⊗ is exclusive or operator. 

3. Each partition contains at least a single 1 and maximum n-2 1’s. 

4. Decimal value of second partition is always less than first partition. 

5. Decimal value of third partition is always less than second partition. 

6. Decimal value of first combination (tuple) of first cluster always starts 

with the value of power(2, n)-4 

7. Decimal value of last combination (tuple) of third cluster always is 

power (2, n-2)-1. 

 

4.2.4 Algorithm – 3-BitPartition  

 

Algorithm 4.1 3-BitPartition 

Input: Number of elements to be partition 

Output: Bitwise generation of 3 partition 

1. Read n  

2. Initialize i = pow (2, n) -1  

3. for a = pow (2, n) - 4 to 1 do 
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4.  j = Complement(a) & i      

5. if (j ≥ i) 

6.    break;      

7.      for b = j to 1 do 

8.            if (no overlapping of bits between (a & b) and union of (a & b)    

             is not equal to i) then  

9.                 c = (complement of (bitwise or of a & b)) bitwise & with i)  

10.            end if  

11.            if (value of third partition is less than 1st and 2nd partition) then 

12.                   print( dectobin(a), a, dectobin(b), b,  dectobin(c), c))  

13.            end if 

14.       end for 

15. end for  

 

 

Description of Algorithm:  

Algorithm 4.1 generate 3 partitions in the bit format. 3-Partitions are generated 

in the 3n bits. Line no. 2 generates first partition (column) of partition of a 

particular tuple (Constraint no. 1). Line no. 4 checks complement of a is 

greater than a, if yes then it decrements the value of i. This step removes any 

repetition of tuples. Line no. 7 find out possible value of second partition 

(column). Line no. 8 checks whether there is any clash of bits in first partition 

and in second partition (check for Rule no. 2). Line no. 8 also checks third 

partition should contain at least a single 1. Line no. 9 generates the third 

partition. Line no. 11 checks value of third partition is less than first and 

second partition. Subroutine dectobin(int) translates decimal number into a 

binary string which represents a partition. 

 

4.2.5 Characteristics and Validation of Algorithm 

Proposed algorithm is a new approach for the generation and representation of 

3-Partition. Bit approach is far better than other approach. Bit operations are 

used to generate partition and to check for the constraints. So, reduces time 

complexity. In this algorithm no duplicates tuples are generated. The beauty of 

this algorithm is that if the first partition (column) of any tuple is not according 

to constraints then it does not generate second partition (column) and similarly 

if the generated second partition clashes with any with the first cell then it does 



 

56 

 

not generate third partition (column) of the tuple. So, it reduces overall running 

time of the algorithm.  

Algorithm is validated by the number of combinations generated are equal to 

the Stirling number of the second kind. This algorithm is very basic algorithm 

which can be applied in any of the application which requires 3-Partitioning. 

The most beautiful thing is that running time can be further reduced by 

applying Constraints. Constraints will be specific to application. 

 

4.3. 3-Clustering Problem 

3-Clustering is partitioning of O into 3 clusters C1, C2 and C3 such that no 

cluster is empty, any pair of clusters has an empty intersection and the union of 

all clusters is equal to O. Minimum sum of Diameter for 3-Clustering is sum of 

diameter of 3 Cluster is minimum. Mathematically it can be defined as 

Minimum( )()()( 321 CdCdCd ++ ), where d(C) is diameter of cluster C.  

 

4.3.1 Methodology   

In this method Clusters are represented in the form of bits. For the 3 clustering 

of n-entities 3i bits are required. Each of the n bits represents one cluster. 

When 3-Cluster is represented in bit form, a specific pattern is generated for 3-

Partition for any value of n. In this pattern first n consecutive bits represent 1st 

Cluster (Partition), next n consecutive bits represent 2nd Cluster (Partition) and 

last n consecutive bits represent 3rd Cluster (Partition). If an entity Oi belongs 

to Cluster (Partition) Ci then in the ith value of Oi is 1 otherwise it is zero. Let 

us consider a set of 5 entities U = {a, b, c, d, e}. Let us consider a Clustering 

Sample: C1 = {a, b, c}, C2 = {e} and C3 = {d} 

 

 

Cluster 1 Cluster 2 Cluster 3 

a b c d e a b c d e a b c d e 

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 

 

Figure 4.3: Bit representation of 3-cluster 
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 From the fig 4.3 bit representation of C1, C2 and C3 is as 

    C1 = {a, b, c} = 11100 

 C2 = {e}  = 00001 

 C3 = {d} = 00010 

 

4.3.2 Rule-Set  for 3-BitClustering 

1. Total number of 1’s in 3n bits is always equal to n (so rest 2n bits are 

always zero). 

2. Among the three clusters, on the same bit position exactly one cluster 

contain value 1 rest will be zero. 

              In general, for n entities          

              𝐴𝑖⊗𝐵𝑖⊗𝐶𝑖 = 1 where   1 ≤ 𝑖 ≤ 𝑛 

3. Each cluster (partition) contains at least a single 1 and maximum n-2 

1’s. 

4. Decimal value of second cluster (partition) is always less than first 

partition. 

5. Decimal value of third cluster (partition) is always less than second 

partition. 

6. Decimal value of first combination (tuple) of first cluster always starts 

with the value of power(2, n)-4 

7. Decimal value of last combination (tuple) of third cluster always is 

power (2, n-2)-1. 

8. The Minimum Sum of Diameter for 3-Clustering is always less than or 

equal to the third Maximum Dissimilarity value. 

 

4.3.3 Algorithm 

Algorithm 4.2 MinDiameter3-cluster 

Input: A Matrix of n Elements 

Output: Value of minimum sum of diameter for 3-clustering and entities for 

first and second maximum dissimilarity value 

1. Find the Edge having maximum dissimilarity maxedge(D) 

2. Let Op and Oq be the entity having first maximum dissimlarity 

3. Store(Op ,Oq ) Store entities in a array 

4. Partition the elements in two cluster 𝐶1 and 𝐶2  

5. Let 𝑂𝑝 ∈  𝐶1 such that |𝐶1| =   𝑛 − 1 and 𝑂𝑞 ∈  𝐶2 such that |𝐶2| =   1 
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6. Calculate Minimum Sum of Diameter 𝑀1 = MSD(𝐶1, 𝐶2) 

7. Let 𝑂𝑞 ∈  𝐶1 such that |𝐶1| =   𝑛 − 1 and 𝑂𝑝 ∈  𝐶2 such that |𝐶2| =   1 

8. Calculate Minimum Sum of Diameter 𝑀2 = MSD(𝐶1, 𝐶2) 

9. 𝑀3 = Min(𝑀1, 𝑀2) 

10. Find the Edge having second maximum dissimilarity maxedge(D) 

11. Let Ol and Ot be the entity having second maximum dissimlarity 

12. Store(Ol ,Ot ) Store entities in a array 

13. Partition the elements in three cluster 𝐶1 , 𝐶2 and 𝐶3 such that 

14. |𝐶1| =   𝑛 − 2, |𝐶2| =   1, |𝐶3| =   1  

15. If (𝑂𝑙 ∈  𝐶1 and 𝑂𝑡 ∈  𝐶3) then |𝐶1| =   𝑛 − 2 and |𝐶3| =   1 

16. Calculate Minimum Sum of Diameter 𝑀1 = MSD(𝐶1, 𝐶2, 𝐶3) 

17. If (𝑂𝑡 ∈  𝐶1 and 𝑂𝑙 ∈  𝐶3) then |𝐶1| =   𝑛 − 2 and |𝐶3| =   1 

18. Calculate Minimum Sum of Diameter 𝑀2 = MSD(𝐶1, 𝐶2, 𝐶3) 

19. 𝑀4 = Min(𝑀1, 𝑀2) 

20. MSD = Min(𝑀3, 𝑀4) 

21. Store MSD in array 

22. Return 

 

  

Description of Algorithm: 

Algorithm 4.2 find out first maximum dissimilarity and place them into 

different Clusters and finds a cluster that is having minimum value of sum of 

Diameter. Line no 1 to 3 returns pair of entities having first maximum 

dissimilarity and stores in an array. Return pair of entities can be put in two 

different ways in clusters. There are two possible combination (1) Entity 𝑂𝑝 ∈

𝐶1 and 𝑂𝑞 ∈ 𝐶2 and (2) Entity 𝑂𝑝 ∈ 𝐶2 and 𝑂𝑞 ∈ 𝐶1.  Line no. 4 to 9 compute 

cluster from the two-possibility having minimum sum of diameter. Line no. 10 

to 12 return pair of entities having maximum dissimilarity and return pair of 

entities are stored in an array. Line no. 13 to 18 compute cluster for the two 

possibilities (for Second Entity Pair) for minimum sum of diameter. Line no 19 

to 21 find out the minimum value of minimum sum of diameter and stores in 

the array. 

 

Algorithm-  3Bit Clustering  

Input: Number of entities to be clustered in three clusters (n) and a n * n 

Dissimilarity matrix (D) 
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Output: Minimum sum of diameter and corresponding three clustering pattern. 

Variable: MCDBC(Minimum sum of diameter bit clustering) is an array that 

holds the vale return by algorithm BasicMinDia(). MCDBC holds five values, 

first values is minimum sum of diameter, next two values are entities of first 

maximum dissimilarity and last next two values are entities of second 

maximum dissimilarity  

 

Algorithm 4.3 3-clustering for MSD 

Input: A Matrix of n Elements 

Output: Minimum sum of diameter and corresponding three clustering pattern 

1. int *M = BasicMinDia(D) 

2. Store the first maximum dissimlarity into reject list, RejectList(M[1], M 

[2]) 

3. Store the second maximum dissimlarity into reject list, RejectList(M[3], 

M[4]) 

4. Get the minimum values of 3-clusteringMSDC, MSD = M[0] 

5. for C1 = pow (2, n) – 4 to 1 do 

6.        i = complement(C1) 

7.         if (i > C1) 

8.              break;             

9.         end if  

10.    if (FaultyVertex(C1)) then 

11.     add FaultyVertex(C1) to RejectList() 

12.    end if  

13.       for C2 = i to 1 do 

14.           if (FaultyVertex(C2)) then 

15.                 add FaultyVertex(C2) to RejectList() 

16.      end if 

17.    if ((C1 & C2 )  && (C1 || C2 )!= n-1 ) then 

18.                 C3 = (C1 || C2 )       // Generate 3rd Cluster 

19.          if (value of C3 is less than C1 & C2) then 

20.    D = Diameter(C1) + Diameter(C2) +Diameter(C3) 

21.     if ( D <  MSD) then 

22.                 MSD = D; 

23.                            Cluster1 = C1; 

24.                   Cluster2 = C2; 

25.                                  Cluster3 = C3; 

26.           end if  

27.                end if 

28.           end if 
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29.       end for 

30.   end for 

 

Description of Algorithm: 

Algorithm 4.3 Above 3BitCluster algorithm generates 3 Clusters in the bit 

format. 3- Clusters are generated in the 3n bits. Line no. 1 computes minimum 

value of minimum sum of diameter according to Algorithm 4.2. Line no. 2 and 

3 add entities of first & second maximum dissimilarity value to the Reject List. 

Line no. 6 to 9 finds complement of C1 and checks for the constraint no. 4. 

Line no. 10 to 11 check and add the faulty pair of entities to Reject Pair Entity 

List. Line no. 13 generate second cluster. Line no. 14 to 16 check and add the 

faulty pair of entities to Reject Pair Entity List. Line no 17 checks whether 

there is any clash of bits in first cell and in second cell. It also checks third cell 

should contain at least a single 1(Constraint no. 3). Line no. 17 and checks for 

the constraint no. 3, if satisfies then Line no. 18 Generate third cluster. Line no. 

21-25 computes minimum sum of diameter and set minimum value.  

 

4.3.4 Results 

Proposed algorithm is a new approach for the generation and representation of 

3-Cluster. Bit approach is far better than other approach. Numbers of tuples 

generated are verified and are equal to the Stirling number of the second kind, 

so even a single combination is not missed.  From the Table 4.1 and Figure 4.4 

it is very clear that Bit-clustering approaching is far better than traditional 

brute force approach. As the number of entities increases, proposed method 

gives better result than traditional approach. Its time complexity is less because 

of bitwise operation and if it does not generate 2nd cluster if 1st cluster is not 

valid and it does not generate 3rd cluster if 2nd is not valid. So, propose 3-

clustering algorithm takes less time to compute minimum sum of diameter for 

3-clustering. 

 

4.4 Conclusion 

Partitioning problems plays an essential role in theoretical computer science 

and in computational complexity theory. We applied the concept of bit 

representation to generate an algorithm for partitioning problems. The 
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proposed method uses bit operator to generate partition. In this chapter, we 

proposed a 3-Partitioning algorithm. The proposed partitioning algorithm 

doesn’t generate duplicate tuples and generates only 3-partition tuples. 

Applying constraints specific to the application on this algorithm can further 

reduce the time complexity of the algorithm. In this chapter, an algorithm is 

proposed for the Minimum sum of diameter for 3-Clustering. In this method, 

bit operations are used to generate clusters and to check for the feasibility of 

constraints. In this algorithm, no duplicates tuples are generated. If the first 

cluster (column) of any tuple is not according to constraints, then it does not 

generate the second cluster (column). Similarly, if the bit pattern of generated 

second cluster clashes with the first cluster, the algorithm does not generate 

third partition (column) of the tuple. The proposed algorithm takes less time 

than the traditional 3-Clustering algorithm. 

 

Table 4.1: Running time of BitClustering & Brute Force for 3-Clustering 

 

No. of 

Entities 

Time taken 

by Bit 

Clustering 

(in second) 

Time taken 

by Brute 

Force (in 

second) 

3 0.001 0.001 

4 0.001 0.001 

5 0.001 0.001 

6 0.001 0.002 

7 0.001 0.002 

8 0.001 0.002 

9 0.002 0.003 

10 0.003 0.003 

11 0.015 0.085 

12 0.041 0.264 

13 0.11 1.293 

14 0.369 4.189 
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15 1.225 13.55 

16 4.14 44 

17 10.77 65 

18 36 311 

19 101 1012 

20 610 3600 

 

 

 

 

Figure 4.4: Comparison of Brute Force & 3-BitClustering approach 
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Chapter 5 

 

Constraint Word Clustering 

Algorithm for Asymmetric 

Relationship 

 

5.1 Introduction 

Word Clustering is an important problem in web mining, natural language 

processing, automatic word classification, word sense, web analytics, 

computational linguists, and in parsing highly ambiguous syntactic structures 

[98, 99]. Word clustering is a technique for partitioning sets of words into 

subsets of similar words. Cluster of words can be identified on the basis of 

similarity between words or according to the affinities between words. A 

cluster comprises words that are sufficiently affine with each other. Words in 

the same cluster are highly affine and words in different cluster are less affine. 

Word clustering, is a useful approach for improving the performance of 

sentence retrieval, the more similar the words in each cluster, the better the 

performance of the retrieval system. Despite the usefulness of word clustering, 

accurately clustering the words remains a challenging task. 

 

In the context of information retrieval, a new constraint word clustering is 

projected based on the paradigm of constraints for asymmetric relationship 

between words. Constraint word clustering approach is appropriate at 

discovering semantic relationship between words rather than discovering 

syntactic relationship between words. Affinity [99, 101] describes the 

quantitative relationship between words. An affinity describes a quantitative 

relationship between the two words and this in turn helps to identify the 
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clusters of words. A cluster comprises words that are sufficiently affine with 

each other. A first word is sufficiently affine with a second word if the affinity 

between the first word and second word satisfies one or more affinity criteria. 

Present research focuses on the clustering of words based on the finding of 

semantic relationship between words. Semantic relationships between words 

are modelled by identifying the constraints. Present research proposes a 

constraint clustering architecture and algorithm based on the different types of 

constraint associated between words. 

 

5.2 Related Work 

There have been a number of methods proposed in the literature that consider 

word clustering problem. Words with similar co-occurrence distributions is 

explored by Brown et. al. [102], it is based on class-based n-gram model in 

which words are clustered into word classes. Pereira et al. [103] present 

probabilistic membership of words and estimated a soft distributional 

clustering scheme for certain grammatical co-occurrences. In this strategy the 

conditional probability of a word is computed by taking advantage of 

observations of other words that act like this word in this context. A number of 

variant have been developed on this theme, using grammatical constraints such 

as part-of-speech, or morphological units such as lemma, or both [104]. 

Similarity based model are explored in [105-106] which avoids building 

clusters.  

There are algorithms that automatically determine word classes without 

explicit syntactic or semantic knowledge. In [107] all words are gathered into a 

single class at the beginning of the procedure and are successively split to 

maximize the average mutual information of adjacent classes. In [108], a 

similar divisive clustering is proposed, based on binomial posteriori 

distributions on word co-occurrences. Text categorization can be achieved in 

various ways, in [109] Bag-of-Concepts is used to Improve the Performance of 

support vector machines. The impact of feature selection on document 

clustering is discussed in [110]. Hierarchical relationship and associative 

relationship, is a important in automatically building a thesauri or in finding 

associative relationship between words. Identification method [111] based on 
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co-occurrence analysis computer the hierarchical relationships between words. 

Our constraint word clustering method has an advantage over non-constraint 

clustering algorithm that it extracts background knowledge and guides the 

algorithm clustering and makes it more suitable for practical use. 

 

5.3 Methodology  

5.3.1 Affinity Computation and Modelling Based on Co-

occurrence 

Co-occurrence means coincidence or, frequent occurrence of two terms from a 

text corpus alongside each other in a certain order. Word co-occurrence in this 

linguistic sense can be interpreted as an indicator of semantic proximity. The 

global co-occurrence is an absolute or un-normalized metric. For the purpose 

of comparing term co-occurrences between different queries and sets of 

retrieved documents, co-occurrence is normalizing within a practical scale. So, 

co-occurrence values are normalized in the range of practical scale from 0 to 1.  

 

Definition 9. The affinity [112] between any two words wa & wb is defined as 

the ratio of the number of co-occurrence that include both terms wa and wb 

over the maximum of either the number of co-occurrence contexts that include 

wa or the number of co-occurrence contexts that include wb . The Affinity is 

given by the following formula: 

 Affinity(𝑤𝑎 ∩ 𝑤𝑏) =
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

max (𝑃(𝑤𝑎), 𝑃(𝑤𝑏))
 (31) 

 

Definition 10. The directional affinity [112] between word wa & wb is defined 

as the conditional probability of observing word wb, given that word wa was 

observed in a co-occurrence context. Directional affinity is used to describe the 

importance of word of word wa with respect to word wb. The directional 

Affinity (DAffinity) is given by the following formula: 

 DAffinity(𝑤𝑎 ∩ 𝑤𝑏) =  
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

𝑃(𝑤𝑏)
 (32) 
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Definition 11. Average directional affinity [112] of a term wa is the average of 

the directional affinity of a word with all other words in the co-occurrence 

contexts. The average directional Affinity (ADAffinity) is given by the 

following formula: 

 
ADAffinity(𝑤𝑎) =

∑ 𝑃(𝑤𝑎 ∩ 𝑤𝑗)
𝑁

𝑗=1 

𝑁
 

(33) 

 

Definition 12. Differential directional affinity [112] of a term wa is the 

difference of directional affinity wa and average of the directional affinity of 

word wa. Differential directional affinity (DiffDaff) is used to normalize the 

affinity of word with respect to other words.  

 DiffDAff(𝑤𝑎) = Affinity(𝑤𝑎 ∩ 𝑤𝑏) − ADAffinity(𝑤𝑎) (34) 

 

5.3.2  Constraint Word Clustering 

Wagstaff et al. [18] introduced constraints in the area of data mining research. 

Constraints provide guidance about the desired partition and make it possible 

for clustering algorithms to increase their performance. There are two types of 

constraints that were termed as must-link constraint and can-not link 

constraint. In must-link (ML) constraint two instances have to be in the same 

group, ML(a, b) symbolize instance a and b to have be in the same group. In 

cannot-link (CL) constraints two instances must not be placed in the same 

group, CL(a, b) symbolize instance a and b to have be in the different group. 

Let us consider words wa and wb, wcloud(wa) and wcloud (wb) are their 

respective word cloud. 

 

Must Link Constraint: If wcloud(wa) and wcloud(wb) are similar then there 

exist a ML(wa, wb) constraint. It is represented in Boolean formulation as: 

ML(𝑤𝑎, 𝑤𝑏) ⇒  𝑤𝑎𝑘 ∧ 𝑤𝑏𝑘 = 1, where, wak  means word wa belong to kth 

cluster.   
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Can-not Link Constraint : If wcloud(wa) and wcloud (wb) are not similar 

then there exist a CL(wa, wb) constraint. It can be represented as a Boolean 

formulation as: CL(𝑤𝑎, 𝑤𝑏) ⇒ 𝑤𝑎𝑖 ∧ 𝑤𝑏𝑖 = 0 where, wai means word wa 

belong to ith cluster and i ≠ j. 

 

5.4 Word Clustering Architecture 

Constraint word clustering architecture contains two main components: 

knowledge matrix component and clustering component as shown in Figure 

5.1. In this architecture, knowledge matrix component facilitates the building 

of affinity knowledge matrix based on the characteristics of source corpus. By 

varing the similarity criteria/measure different affinity knowledge matrix can 

be generated according to the need. Clustering component identify and 

generate the constraints and produces word cluster. Description of word 

clustering architecture is as follows: 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.1 Architecture of constraint word clustering 

 

Indexer: To search large amounts of text quickly it is required to convert the 

text into a suitable format that allows searching text rapidly. For this purpose, a 

suitable data structure inverted index table is used. Indexer is the component 

that builds the inverted index table from the source corpus. It eliminates the 

slow sequential scanning process of the text. Given a corpus 𝐶 =
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{𝐷1, 𝐷2, … , 𝐷𝑝} containing p text documents, indexer takes this corpus as an 

input, identifies the dictionary terms, eliminates the stop words and builds the 

inverted index table T. 

 

Affinity Knowledge Matrix Generator: Affinity knowledge matrix generator 

builds an affinity knowledge matrix using Algorithm 5.1. It is called 

knowledge matrix because it contains knowledge of whole corpora. It contains 

information that identifies how two words are closely associated. If inverted 

index table T contains information about N words, then corpus matrix 

generator builds a matrix of size N * N. It can be called as global knowledge 

affinity matrix corresponding to corpora C. It takes inverted index table T as 

the input; find out the affinity between each pair of every term of inverted 

index table. If size of inverted index table T is N terms then corpus matrix 

generator generates an N * N directional affinity knowledge matrix. Directional 

Affinity between each pair of term is calculated using (2). Affinity knowledge 

matrix represents the knowledge of corpora; it represents how the words are 

inter-related, degree of closeness between words.  

 

Affinity Sub-knowledge Matrix Generator: This component takes input as a 

seed word and find out the cloud of words which are highly affine with seed 

word. Let us assume that size of word cloud is n. For each word of the cloud 

their respective word clouds are generated. From this word cloud sub-

knowledge matrix is generated of the size n * n. 

 

Constraint Generator: There are mainly two types of constraints Must Link 

(ML) constraint and Can Not (CL) constraint. If two objects are associated 

with ML constraint then they will belong to same group or class. On the other 

hand, if two objects are associated with CL constraint then they will belong to 

different group or class. Constraint generator performs analysis of sub-

knowledge matrix and find out the word cloud which are exactly similar. If the 

directional average affinities of two clouds are equal then two clouds having 

same properties and they have same affinity behavior. If two word clouds are 

similar then there exist a must link constraint between them. Must link 



 

69 

 

constraint between any two words, enforce that the two words belong to the 

same cluster. Based on the analysis of knowledge matrix and word cloud 

following constraints are investigated. 

 

Constraint Word Clustering Algorithm: Constraint word clustering 

algorithm find words which are highly affine with seed words and cluster them 

in such a manner that words in the same cluster are highly affine and words in 

the different cluster are less affine. In the proposed algorithm, existing k-means 

clustering algorithm is modified using concept of constraints.  In the proposed 

constraints word clustering algorithm there are two major modifications, first 

modification is that words are assigned to the centroid (clusters) according to 

constraints and affinity values. Second modification is that centroid of cluster 

is one word, it is not like mean of the cluster like in k-means. In the word 

assignment step of constraint word clustering algorithm, if a word that belongs 

to RuleML and assigned to cluster Ci, then all others words of RuleML are also 

moved to cluster Ci. Similarly, if a word that belongs to RuleCL and assigned 

to cluster Ci, then all others words of RuleCL will not assigned to cluster Ci. 

Hence constraint clustering word algorithm gives good quality of clusters.  

 

5.5 Investigation and Generation of Constraints and Rulesets  

5.5.1 Investigation of Properties and Constraints Generation Based on 

Word Cloud  

 

Following word cloud properties are investigated: 

 

Property 1. Symmetric Property 

if wcloud(wi) = wcloud(wj)  then  wcloud(wj) = wcloud(wi) then it gives 

constraint: ML(wi,wj) 

 

Property 2. Transitive Property 

if wcloud(wi) = wcloud(wj)  and  wcloud(wj) = wcloud(wk)  then  wcloud(wi)  = 

wcloud(wk) then it gives constraint:  ML(wi,wj, wk) 
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Property 3. Implicative Property 

if wcloud(wi) = wcloud(wj)  and if wcloud(wi) = wcloud(wk)   then  wcloud(wj)  

= wcloud(wk) then it gives constraint: ML(wi,wj, wk) 

 

5.5.2 Constraint Generation Based on Association between Words 

Two words are said to be associated if they are having some affinity value 

between them. Words are associated in either in one direction (forward or 

backword) or in both direction or not at all. Constratints are investigated on the 

basis of association between words as follows: 

 

1. Weak Association(One way association): In weak association either the 

word wa is associated with wb or word wb is associated with wa. In weak 

association induces can not link constraint : CL(wa, wb) 

 

2. Strong Association(Two way association): In strong association wa is 

associated with wb and  word wb is also associated with wa. Mathematically,  

Aff(wa, wb) ≠ 0 and  Aff(wa, wb) ≠ 0, it induces no constraint. 

 

3. Zero Association(no association): In strong association wi is not associated 

with wj and  word wj is also not associated with wi. Mathematically,  Aff(wa, 

wb) = 0 and  Aff(wa, wb) = 0. Zero Association induces can not link constraint 

in forward as well as in backward direction: CL(wa, wb) and CL(wb, wa) 

 

5.5.3 Rule Set for Generation for ML and CL Constraints 

In this Rule set are generated from the ML and CL constraint, rule set guide 

the constraint word clustering to obtain the desired partition. 

 

Rule Set for Generation for ML Constraints 

If wa is the common word between any two ML constraints, then ML 

constraint can be merged to form a rule of must link constraint called as 

RuleML. 
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if  ML1= ML(wa, wb) and ML2= ML(wc, wa) then Merge(ML1, ML2) => 

RuleML(wa, wb, wc) = wai ˅ wbi ˅ wci =  1 

In general if a RuleML(w1, w2,…wl) contains l words then it is given by the  

Boolean formula:  

𝑤1𝑘 ∨ 𝑤2𝑘 ∨ …∨ 𝑤𝑙𝑘 = 1 , where 𝑤𝑙𝑘  means word 𝑤𝑙 belong to kth cluster. 

 

Rule Set for CL Constraints 

If wa is the common word between any two CL constraints, then CL constraint 

can be merged to form a rule of can-not link constraint called as RuleCL. if  

CL1= CL(wa, wb) and CL2= CL(wc, wa) then Merge(CL1, CL2) =>  

RuleCL(wa,wb,wc) = wai ˄ wbj ˄ wck =  1, where i ≠ j ≠ k . In general if a 

RuleCL(w1, w2,…wl) contains l words then it is given by the boolean formula: 

𝑤1𝑘 ∧ 𝑤2𝑘 ∧ …∧ 𝑤𝑙𝑘 = 0, where 𝑤𝑙𝑘  means word 𝑤𝑙 belong to kth cluster and 

each word belongs to different cluster. 

 

5.6 Word Clustering Algorithm 

 

Algorithm 5.1 Affinity Knowledge Matrix 

Input:  A Corpus C consisting of documents such that C ={D1, D2,…,Dp}, each 

document D is set of words. 

Output: Affinity Knowledge Matrix (AKM) of size N * N, where N is the 

number of words and Inverted Index Table T. 

1. Indexing of source corpus C to output inverted index table T, size of table T  

     is N. 

2.    for i = 1 to N                   

3.  for j = 1 to N 

4. 𝐴𝐾𝑀[𝑖][𝑗] = 𝐷𝐴𝑓𝑓(𝑤𝑖 ∩ 𝑤𝑗) =  
𝑃(𝑤𝑖 ∩ 𝑤𝑗)

𝑃(𝑤𝑗)
 (1)  

 

 

Description of Algorithm: 

In step 1, source corpus C is indexed and inverted index table T is created. In 

step 2-4 affinity between each pair of word is calculated and a affinity 

knowledge matrix is generated. 
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Algorithm 5.2:  Word Clustering 

Input: Seed word – Sw, Threshold affinity value – δ, number of clusters – k, 

Affinity Knowledge Matrix- AKM, Inverted Index Table – T. 

Output: k cluster of words 

1. if  𝑆𝑤 ∈ 𝑇 then  

Cw = WordCloud(AKM, Sw , δ)   

2. end if  

3. for i = 1 to n do 

4.  Wvi = WordCloud(AKM, wi)  

5. end for  

6. for i = 1 to n do 

7.  for j = 1 to sizeof(Wvi) do 

8.   if  𝑤𝑖𝑗 ∉  𝐶𝑤 then  

9.        delete wi from Wvi 

10.   end if  

11.  end for 

12. end for 

13. ASKM = AffintySubKnowledgeMatrix(Wv1, Wv2, . , . , Wvn)  

14. Analyze ASKM, Let MLC = {ml1, ml2, ., ., ., mlq} are q ML constraints 

are investigated 

15.     ∀ 𝑖, 𝑙, 𝑚, (where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙,𝑚 ≤ 𝑞 ) 

16.   𝐢𝐟 (𝑤𝑖 ∈ 𝑚𝑙𝑙) and (𝑤𝑖 ∈ 𝑚𝑙𝑚) 𝐭𝐡𝐞𝐧  

17.    𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡 = 𝑚𝑒𝑟𝑔𝑒(𝑚𝑙𝑙,𝑚𝑙𝑚)  

18.  end if 

19. Assign k words as centroids c = {c1, c2, ., ., ., ck} of k clusters C= {C1, 

C2, .., ., Ck} 

20. for i = 1 to k do 

21.  𝐶𝑖 = {𝑤𝑗: max (aff((𝑤𝑗 , 𝑐𝑖))∀ 𝑗, 1 ≤ 𝑗 ≤ 𝑛 }  

22.  𝐢𝐟 (𝑤𝑗 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑙𝑖𝑠𝑡) 𝐭𝐡𝐞𝐧 

23.   𝐶𝑖 = {𝑤𝑟:  (𝑤𝑟 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡) ∀ 𝑤𝑟}  

24.  end if  

25. end for 

26. while (old centroids and new centroids are same) do 

27.  for i = 1 to k do 

28.   ƞ =sizeof(Ci) 

29.   for j = 1 to ƞ do 

30.       Ŵvj = WordCloud(SKM, ŵj)     where, (ŵ𝑗 ∈  𝐶𝑖) 

31.       for l = 1 to sizeof(Ŵvj) do 

32.    if  (𝑤𝑖𝑙 ∉  𝐶𝑤) then 
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33.     delete wi from Ŵvj 

34.    end if 

35.      end for 

36.   end for 

37.  end for  

38.  CKM = ClusterSubKnowledgeMatrix(Ŵv1, Ŵv2, . , . , Wvƞ)  

39.  for j = 1 to ƞ do 

40.   𝐴𝐴(𝑤𝑗) =  ∑ 𝐶𝐾𝑀
ƞ
𝑚=1 [𝑗][𝑚] ƞ⁄     

41.   𝑀𝑒𝑎𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐶𝑖) =  ∀𝑤𝑗: (𝑤𝑗 ∈ 𝐶𝑖) ∑ 𝐴𝐴(𝑤𝑗)
ƞ
𝑗=1 ƞ⁄   

42.    𝑐𝑖 = {𝑤𝑗: min(|MeanCluster(𝐶𝑖) − 𝑤𝑗|) ∀ 𝑗, 1 ≤ 𝑗 ≤ ƞ }   

43.  end for 

44. end while 

 

Explanation of Algorithm: 

 In step 1 it is checked whether the input seed word belong to corpus or not. In 

step 2, word cloud is generated corresponding to seed word Sw. Cw contains all 

words which are affine with Sw and whose affinity value is less than δ. In step 

3-5, word clouds are generated for all n belonging to Cw. In step 6-12, spurious 

words are deleted from each word cloud, spurious words are that word which 

does not belong to Cw or which are not affined with Sw. This step normalizes 

the size of each word cloud to n. In step 13, Sub knowledge matrix is generated 

from n word cloud of size n * n. In step 14, Sub knowledge matrix is analyzed 

and ML constraints are generated. In step 14-18, if a word belongs to more 

than one ML constraints then all ML constraints are merged to form a rulelist. 

If ML constraints are not mutually related then, they ML constraints will 

belong to different rulelists. In step 19, randomly k words are assigned as 

centroids of k-clusters. In step 21 words are assigned to their respective 

clusters based on their maximum affinity with the centroids. In step 22-23, if a 

word wr is an element of to a mlrulelist and belongs to a cluster Ci then all 

other words of same rule list are assigned to cluster Ci and their status is 

updated to assigned so assigned words are not checked for comparison and 

assignment. Step 26-42 is executed until there is no change in the centroids of 

two consecutive iterations. In step 26-38, for each word of each cluster, word 

cloud is generated and after removal of spurious words Cluster-knowledge 

matrix is generated. In step 39-40 average affinity of each word in cluster is 
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calculated. In step 41, new mean of each cluster is calculated. In step 42, word 

wj which is closest to the mean of the cluster Cj is assigned as the new centroid 

cluster Cj. 

5.7 Conclusion 

We proposed a method to identify and generate constraints between words that 

identify semantic similarity measure between words and word clouds. We 

investigated different types of association between words and identified 

constraints based on the investigated association between words. Moreover, a 

constraint-based word clustering algorithm is proposed. In the proposed 

approach, words clouds are compared rather than words, which extract 

semantic meaning of words in the respective group of words or in the 

respective affinity sub-knowledge matrix for the generation of constraints. 

Constraints provide guidance about the desired partition and make it possible 

for clustering algorithms to increase the accuracy of clusters generated. 

Proposed approach is applicable for symmetric as well as asymmetric 

relationship between words. Thus, constraint word clustering algorithm is 

useful extension to conventional word clustering algorithm. 
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Chapter 6 

 

Approximation Constraint 

Clustering Techniques 

 

6.1 Introduction 

An approximate algorithm is a way of dealing with NP-completeness for the 

optimization problem. This technique does not guarantee the best solution. The 

goal of an approximation algorithm is to come as close as possible to the 

optimum value in a reasonable amount of time which is at the most polynomial 

time. Such algorithms are called approximation algorithm. In this chapter, 

concept of constraints is being introduced in min-cost k-cover problem to 

present a new constraint-based min-cost k-cover algorithm. We modify the 

𝑂(𝑛881. 𝑇(𝑛)) polynomial time exact algorithm of Gibson et al. [90] to acquire 

another 𝑂(𝑛𝜆. 𝑇(𝑛)) polynomial time constraint-based algorithm, where 𝜆 <

881 and 𝜆 relies on the number of can-not link constraint.  

The proposed technique for the problem of min-cost k-cover is achieves an 

optimal result based on the constraints. The present research identifies the can-

not link constraints and apply these derived constraints in the algorithm for the 

reduction of distinct maximal disks and reduction of all enumerated subsets of 

the distinct maximal disks in minimum sum of radii problem. This in turn 

reduces the number of list entries of exact algorithm. The basis for the 

constraint technique is motivated by an observation that in any instance I of k-

cover, the optimal outcome is at most the maximum radius r of ball 𝐵(𝑣 , 𝑟) 

positioned at  𝑣 ∈ 𝑉 in I. It infers that, in any instance there always exists a 

constraint that separates the optimal solution. 
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6.2 Euclidean min-cost k-cover problem 

The Euclidean min-cost k-cover problem defined as follows. Given a metric d 

defined on a set V of points, we define the ball 𝐵(𝑣, 𝑟) centered at 𝑣 ∈ 𝑉 and 

having radius  𝑟 ≥ 0 to be the set { 𝑞 ∈ 𝑉 | 𝑑(𝑣, 𝑞) ≤ 𝑟}. In the minimum cost 

k-cover problem, we are given a set P of n points and integer k (k > 0). For κ > 

0, computing a κ-cover for subset 𝑄 ⊆ 𝑃 is a set of at most κ balls covering all 

point of set Q and each ball centered at a point in P. The sum of the radii of 

balls is the cost of a set D of ball denoted by cost(D). In the Euclidean version, 

P is given as a set of points in some fixed dimensional Euclidean space Rl, and 

d is the standard Euclidean distance. In the metric version of the min-cost k-

cover problem, we have P and k and the distance d between every pair of 

points in P. 

 

6.3 Preliminaries 

Research commence with the observation that for any instance I of k-cover, the 

solution value is at most the maximum radius r of ball 𝐵(𝑣 , 𝑟) and optimal 

solution is decidedly separable. Thus, it permits to compute an optimal k-cover 

efficiently using constraints. We call a ball of zero radius as singleton ball. 

Similarly, we call a disc of zero radius as singleton disc.  

 

Definition 13. A distinct maximal disc (DMD) is a disc if one cannot add any 

point to it without increasing its radius. Any solution can be reduced into one 

having only distinct maximal disc without increasing the cost. Thus, non-

distinct maximal discs can be ignored to obtain optimal solution. 

 

Lemma 3. For any instance of I of k-cover, the optimal solution value is at 

most the maximum radius r of ball B(v, r) in I. 

Proof. Given any instance of k-cover, a solution 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑘} consisting 

of k balls covering all instance of I. The cost of B is given by the following 

formula cost(𝐵) =  ∑ 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵𝑖)
𝑘
𝑖=1 . Assume balls B2, B3,...,Bk as singleton 

balls. Assign randomly chosen 𝑛 − 𝑘 + 1 points to ball B1 and assign 

remaining 𝑘 − 1 points to 𝑘 − 1 balls such that each ball contains single point. 

Hence, cost(𝐵) = cost(𝐵1) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵1). Therefore the the optimal solution 
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value is at most the maximum radius r of ball B(v, r) in I. 

 

 

Lemma 4. In the min-cost k-cover problem, the number of distinct maximal 

discs is at most n2 

Proof. Let us consider a set of points 𝑃 = {𝑣0, 𝑣1, … 𝑣𝑙}  and 𝑟0, 𝑟1, … 𝑟𝑛 are the 

sorted distance from the point v0 in the ascending order. For any value of 1 < i 

≤ l, consider a ball 𝐵(𝑣𝑜 , 𝑟) of radius r, from the Figure 6.1 it is understood 

that 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1. It means that for 1 < i ≤ l, if 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1 then  𝐵(𝑣0, 𝑟𝑖) =

 𝐵(𝑣0, 𝑟). So, the only distinct maximal disc centered at 𝑣 are 𝐵(𝑣, 𝑟𝑖) for  1 ≤

𝑖 ≤ 𝑙 and 𝑣 is center of 𝑙 ≤ 𝑛. Each point can be the center of at most n 

distinct maximal discs, distinct maximal discs also include disk of radius zero 

or singleton disk, and therefore there are at most n2 distinct maximal discs. The 

figure of separated maximal discs for the problem of min-cost k-cover is at 

most n2 (Lemma 3). This gives critical benefit in the stated problem. Entire 

subclasses of the unrelated disc with size at most l can be enumerated in 

time 𝑂(𝑛2𝑙). For fixed value of l, enumeration of subclasses is calculated in 

polynomial run. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          Figure 6.1: Distinct maximal discs 
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6.4 Constraints based min-cost k-cover Approach 

Wagstaff et. al.  [18] presented imperatives in the zone of information mining 

research. There are two sorts of limitations viz. “must-link” constraint and 

“can-not link” constraint. Two instances must be at similar gathering in must-

link (ML) constraint. ML(a, b) symbolize occurrence a and b to should be in 

the similar group. Two instances must be in the different cluster in cannot-link 

(CL) constraint. CL(a, b) symbolize appearance of a and b should be in the 

distinctive group. Algorithm 1 finds can-not link constraints in any instance I 

of k-cover problem. 

 

6.5 Constraint Algorithm 

Algorithm 6.1 takes input as any instance of I of min-cost k-cover problem. It 

computes an initial feasible solution in accordance to Lemma 1. Can-not link 

constraints are investigated and generated for individually ball 𝐵(𝑜, 𝑟), where 

𝑜 ∈ 𝑂 and r is the radii of the ball.  It returns a set of can-not link constraints. 

 

 

Algorithm 6.1 Constraintcover(I) 

Input: Instance of min-cost k-cover problem 

Output: Set of can-not link constraints 

1. Find an initial feasible solution and compute the cost of initial feasible 

solution(cost(D)) 

2.  For ∀ 𝑣 such that 𝑣 ∈ 𝑉  

3.   For each ball B(v, r) and for ∀ 𝑤 such that 𝑤 ∈ 𝑉,  such that r = |vw| 

(v ≠ w) 

4.    If r > cost(D) then associate can-not link constraint between v and w: 

CL(v, w) 

5.     S = S U CL(v, w) 

6. return S 

 

 

Theorem 8.  Maximum number of can-not link constraints generated in any 

instance I of k-cover problem is order of O(n2). 

Proof. We have instance I of k-cover problem consisting of n points. For any 

two points p, q can-not link constraint exist in 𝐵(𝑣, 𝑟) 𝑖𝑓 𝑟 > |𝑝𝑞| > Icost(𝐷). 

Formally it can be stated as ∃ CL − constraint, If (|𝑝𝑞| >
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Icost(𝐷)) , ∀ 𝑝, 𝑞: 𝑝, 𝑞 ∈ 𝑉. Point p and q can be any point from the V, so 

maximum n2 combination can be possible. This is similar to the finding the 

distinct maximal discs.  The number of distinct maximal discs is at most n2 (by 

Lemma 4). Therefore, Maximum number of can-not link constraints is order of 

O(n2). 

 

Theorem 9.  Minimum number of can-not link constraints generated in any 

instance I of k-cover problem is order of O(k). 

Proof. For k =1, all points of I are covered by a single ball 𝐵(𝑣, 𝑟). Assume 

that a can-not link constraint CL(p, q) exist between any two points p, q of ball 

𝐵(𝑣, 𝑟), then p, q together ∃ 𝐶𝐿(𝑝, 𝑞)|  𝑝, 𝑞 ∈ 𝐵(𝑣, 𝑟)then (𝑝 and (𝑛 −

2)points) ∈ 𝐵1(𝑣,  𝑟1) and point 𝑞 ∈  𝐵2 can-not Then, 𝑛 − 1 points belong to 

B1(v, r1) and point q belong to singleton disk B2. In this manner if there are 𝑘 −

1 can-not link constraints then k balls can cover n points, 𝑛 − 𝑘 + 1 points are 

covered by a ball Bi (v, ri) and rest of the k-1 points are covered by k singleton 

disks. Solution obtained in this way is a feasible and optimal solution (by 

Lemma 1). 

 

Theorem 10. Number of discs in reduced distinct maximal discs is always less 

than distinct maximal discs, |𝐷𝑅| < |𝐷|. 

Proof.  Count of different maximal discs is greatest of n2, and the optimal 

solution contains discs that belong to the group of several maximal discs. Let 

Dr denotes the compact maximal distinct discs. There are always exist at least 

a can-not link constraint in any instance of min-cost k-cover problem (Theorem 

9). If a can-not link constraint belongs to distinct maximal disc then that 

distinct maximal disc will not be part of optimal solution. So, with the help of 

can-not link constraints, it can be verified whether a distinct maximal disc will 

be a part of the canonical optimal solution or not. Hence, can-not link 

constraints reduce the number of distinct maximal cluster. Let S denote set of 

can-not link constraints and α denoted the cardinality of set S, then the 

maximum value of α is O(n2) (by Theorem 8). Applying α constraints (O(n2)) 

on the distinct maximal discs D(O(n2)) reduces D by the significant factor, 

hence |𝐷𝑅| < |𝐷|. 
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Corollary 1: A can-not link constraint clearly separate the optimal solution. 

 

6.6 Constraint based min-cost k-cover algorithm 

Assuming a sample of the Euclidean min-cost k-cover problem which 

comprises of an arrangement of points O on the plane alongside a whole 

number k. Euclidean separation is the distance between any combination of 

points on the plane. Considering the set of distinct maximal discs D with radius 

|pq| and center p ∈ O for some q ∈ U.  D incorporated the disk of radius zero, 

therefore, |D| = n2.  

 

Gibson et al. approach [90]: In a balanced rectangle, the proportion of width to 

length is no less than 1/3. This method utilizes “balanced rectangle” to define 

the sub-task. For a rectangle R, a separator is a line opposite to the lengthier 

side, and it intersects in the middle third of its more extended edge of the R. 

The computation begins with a rectangle 𝑅0 containing every one of the points 

and divides into two littler rectangles by picking a filter line and resolves the 

sub-issues recursively. The “vertical line or horizontal line” is termed critical 

in the event that it either experiences an entity 𝑝 ∈ 𝑃 or if it is tangent to any 

disk in D. Every single vertical line between two back to back basic vertical 

lines converge a similar arrangement of discs. Therefore, there are just Θ(n2) 

vertical or horizontal lines as separators. To get an optimal solution, it is 

required to consider just |𝑇| ≤ 𝛽 = 424. It signifies that span of the dynamic 

programming list is O(n2β+5), which is polynomial limited. 

 

Our Constraint algorithm: A set S of can-not link constraints are generated 

using Algorithm 6.1. The constraint min-cost k-cover algorithm takes 

rectangle 𝑅, a whole number 𝜅 ≥ 0, a subset 𝑇 ⊆ 𝐷, a set of constraint S and 

has a iterative algorithm DC(𝑅, 𝜅, 𝑇, 𝑆). It computes a most favourable solution 

utilizing highest κ discs from the arrangement of arguments in 𝑄 = {𝑞: 𝑞 ∈

(𝑃 ∩ 𝑅)}. A can-not link clearly separate the optimal solution (by Corollary 1). 

This implies that a separator is simulating like a can-not link constraint and 

diving the problem into sub-problem and tackling it recursively. The procedure 
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invokes DC(𝑅0, 𝑘, ∅, 𝑆) to locate finest cover for P by applying α constraints. 

The estimation of the sub-task for a iterative call is put away in a runtime 

programed list List[𝑃 ∩ 𝑅, 𝜅, 𝑇]. In our calculation beginning strides are 

essential initialization step and it stays same as our algorithm takes after the 

means as of algorithm [13]. Numbers of separators are directly proportional to 

the number of distinct maximal disk. Our based constraint approach uses the 

reduced distinct maximal disk instead of the distinct maximal disk so that some 

separators will be decreased. In subsequent steps, can-not link constraints are 

applied on D to obtain reduced distinct maximal discs (Dr), In further steps  𝐷𝑅 

is used for the computation of entries in the list. 

 

Algorithm 6.2 Constraint Clustering 𝐃𝐂(𝑹𝟎, 𝒌, ∅, 𝑺) 

Input: Rectangle 𝑅, whole number 𝜅 ≥ 0, subset 𝑇 ⊆ 𝐷, set of constraint S 

Output: minimum cost k-cover of n points 

1. if event List[𝑃 ∩ 𝑅, 𝜅, 𝑇] already exist return, else, generate it. 

2. Consider 𝑄 = {𝑞: 𝑞 ∈ (𝑃 ∩ 𝑅) } (Assuming T doesn’t contain the q) 

3. if 𝑄 = ∅ then  List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← ∅  else leave from the present point 

4. On the chance that  𝜅 = 0, assign List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← {𝐼}  Echo 

infeasible cover and return from the present step 

5. In the situation |𝑄| = 1, let List[𝑃 ∩ 𝑅, 𝜅, 𝑇] is arrangement of 

singleton disk and return 

6. Invoke procedure compress(R) (to acquire a “balanced rectangle” 𝑅′ 
containing (P∩R)). |𝐿(𝑅′)| is likewise lessened in light of the fact 

number of separators are directly proportional to the cardinality of 

distinct maximal disc. Constraint lessens the cardinality of distinct 

maximal disc along these lines |𝐿(𝑅′)| likewise diminishes. 

7. Initialize a cover 𝐷′ ← {𝐼}. (I is a dummy disc of ∞) 

8. Considering all ranges of partitioning lines 𝑙 ∈ 𝐿(𝑅′) do 

9. Assign 𝐷𝑅 =  𝐷 

10. ∀ disk 𝑑 such that 𝑑 ∈ 𝐷  (for every distinct maximal disk that belongs 

to set D) 

11. Apply can-not link constraints on distinct maximal discs to obtain 

reduced distinct maximal discs (Dr), |𝐷𝑅| < |𝐷| (by Theorem 3) 

12. if there exists a CL constraint among a, b such that points 𝑎, 𝑏 ∈ 𝑑  

then 𝐷𝑅 = 𝐷𝑅 − 𝑑  

13. if ((𝐷0 ⊆ 𝐷𝑟)and |𝐷0| ≤ 12)), for all values of 𝐷0 intersected by l do 

14. for all values of 𝜅1, 𝜅2 ≥ 0  with the goal that (𝜅1 + 𝜅2 + |𝐷0|) ≤ κ do 
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15. Assume (𝑅1and 𝑅2) are two rectangular partitions gained by dividing 

𝑅′through l consider 𝑇1 = {𝐷𝑟 ∈ (𝑇 ∪ 𝐷0)|𝐷𝑟 crosses 𝑅1} and 𝑇2 =
{𝐷𝑟 ∈ (𝑇 ∪ 𝐷0)|𝐷𝑟  crosses 𝑅2} 

16. if  (|𝑇1| ≤ 𝜆 < 𝛽)  and (|𝑇2| ≤ 𝜆) at that point 

17. Invoke DC(𝑅1, 𝜅1, 𝑇1, 𝑆) and DC(𝑅2, 𝜅2, 𝑇2, 𝑆) in an iterative manner 

18. If cost(𝐷0 ∪ List[𝑃 ∩ 𝑅1, 𝜅1, 𝑇1]) ∪  List[𝑃 ∩ 𝑅2, 𝜅2, 𝑇2]) < 𝑐𝑜𝑠𝑡(𝐷
′)  

then at that point change 𝐷′ ← 𝐷0 ∪ List[𝑃 ∩ 𝑅1, 𝜅1, 𝑇1] ∪  List[𝑃 ∩
𝑅2, 𝜅2, 𝑇2] 

19. Allocate List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← 𝐷′  

20. Return 

 

Running Time: The execution duration of a procedure DC(𝑅0, 𝑘, ∅, 𝑆) remains 

limited by number of entries in the list. For a balanced rectangle R, every entry 

in the list is recorded by a collection of points (𝑃 ∩ 𝑅) for some R, a  (𝜅 ≤

𝑘) and a set  𝑇 ⊆ 𝐷 in such a way that |𝑇| ≤ 𝛽 = 424. Proposed constraint 

based approach reduces the β hence, running time also reduces. Number of 

disk inside R, crossed by a separator is maximum 12 (Lemma 2.1 in [90]).  

Number of disk intersecting from outside of is 40(Lemma 2.2 in [90]). 

Assuming total number of separator (horizontal and vertical) is at most 32. In 

this manner, there are at most 32*12 = 384 discs approaching from the 

separators. Total number of disc intersecting from outside and inside the 

rectangle are β =384+40=424. Enumerating all possible set of β takes n2β
 = 

n2*424 =n848. Some other steps are taking a time n5
, giving total computation 

n853. Direct recursion takes n28 time and n24 time for D0, so total running time of 

algorithm is n853+28
 = n28 * n2*(32*12+40)+5 . So, the value of β is = 28 

+2*(32*12+40)+5 = 881. In other words, β is proportional to (28 * 2*(number 

of separator * number of internal disk intersecting R + number of external disk 

intersecting R)+ 5). Number of separator, the number of internal disk 

intersecting R and number of external disk intersecting R are dependent on 

number of distinct maximal disks. Our constraint based algorithm uses the 

reduced distinct maximal disks (Dr) instead of distinct maximal disks (D) so β 

will be reduced to  𝜆. It is not hard to see that applying n2 constraints reduces 

number of distinct maximal discs, which thus enhances the performance of the 

algorithm.  
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6.7 Conclusion 

Constraint based algorithm has attracted researchers due to its characteristic, of 

strengthening the performance of algorithms by adding constraints as a 

parameter.  In this context, usage of a constraint based approach to min-cost k-

cover problem improves the bound of the algorithm. The research portrays 

how constraint based algorithm is convenient and yields better empirical 

results compared to non-constraint algorithms for the min-cost k-cover 

problem. In the min-cost k-cover problem, the number of entries stored in a list 

is bounded by O(n881).  In this research, we identify can-not link constraints 

and proposed an algorithm that decreased the number of the records and the 

number of distinct maximal discs. The reduction of distinct maximal disks 

number enhances the performance of the algorithm by a noteworthy factor. 
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Chapter 7 

 

Conclusion  

 

7.1 Discussion 

Minimum sum of diameter clustering and minimum sum of radii clustering has 

attracted researchers due to its special characteristic, of avoiding dissection 

effect. Therefore, an extensive number of applications are adapting MSDC and 

MSRC technique.  This appears to be a quite novel approach in the area of data 

mining to find minimum sum of diameter and radii clustering via constraints. 

This thesis is set out to apply constraint technique for minimum sum of 

diameter and minimum sum of radii clustering. Our main focus has been 

investigating different constraint based methods in order to enhance the 

clustering algorithm results. Motivation has been on the one hand to reduce 

dimensionality in order to keep running times low and on the other to enhance 

clustering results. 

 

In this thesis, the results of the study are represented as a comparative analysis 

of clustering algorithms in tabular form. Two tables are produced as an 

outcome of the literature review, presented tables provide comprehensive 

evaluation, and drew a comparative analysis of algorithmic on the following 

factors: clustering criteria, approach, constraints, assumptions, issues, and time 

complexity. Various exact and approximation clustering algorithms for 

Euclidean, metric, and geometric versions of the MSDC problem and MSRC 

problem are investigated. The presented comprehensive review helps 

researchers to identify the research gaps to develop more optimized algorithms. 
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The reduction of the clustering problem into SAT formulation plays an 

essential role in analyzing social networking problems. We presented a 

formulation for the reduction of 3-clustering to 3-SAT and k-clustering to k-

SAT. The research portrays how constraint clustering for the minimum sum of 

diameter and radii is convenient and yields better empirical results compared to 

non-constraint clustering algorithms for the minimum sum of diameter and 

radii. Moreover, the research study is quite successful in presenting a new bit 

wise approach for the 3-clustering minimum sum of diameter algorithm. The 

research also explores syntactic relationship between words and finds 

significant increase in the accuracy of word clustering algorithm. Last but not 

the least, the present research reveals that constraint based min cost k-cover 

improves the bound min cost k-cover algorithm. Last but not least, the present 

research reveals that constraint based technique can be applied to 

approximation algorithms. The proposed constraint based method decreased 

the number of the distinct minimal disc, and the proposed algorithm improves 

the bound min cost k-cover algorithm. 

 

 

7.2 Future Scope of the Work 

This section briefly describes the areas that can fall in thesis scope that are 

quite possibly an extension for future scope. The research suggests that in 

order to obtain polynomial time algorithm for 3-clustering, Boolean approach 

can be extended by exploration of properties of tripartite graph. In the present 

research, can-not link constraints reduced the size of the table entries and 

reduced the time complexity of algorithm by a significant factor. It could be 

more interesting to find out more can-not link constraints and must-link 

constraints to reduce the number of call stored in table for min-cost k-cover 

problem. Present model of min-cost k-cover problem is based on minimum 

sum of radii criterion. The way the model is constructed could be also changed 

by using minimum sum of diameter criterion. If the number of distinct 

maximal cluster is bounded by polynomial time then polynomial time 

approximation scheme for MSDC can be modeled.  
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