

APPROACHES TO MINIMUM

SUM OF DIAMETER AND RADII

CLUSTERING

Ph.D. Thesis

By

RAJKUMAR JAIN

DISCIPLINE OF COMPUTER SCIENCE &

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

JULY 2018

APPROACHES TO MINIMUM

SUM OF DIAMETER AND RADII

CLUSTERING

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

RAJKUMAR JAIN

DISCIPLINE OF COMPUTER SCIENCE &

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

JULY 2018

ACKNOWLDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor Dr.

Narendra S. Chaudhari, for the continuous support of my Ph.D. study and

related research, for his guidance, encouragement, patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor and

mentor for my Ph.D. study. This doctoral programme was possible only

because of the unconditional support provided by Sir. I consider it as a

excellent opportunity to do my doctoral programme under his guidance and to

learn from his research expertise.

Besides my advisor, I would like to thank the rest of my thesis committee

members Dr. Anand Parey and Dr. Ram Bilas Pachori for their suggestions,

insightful comments, encouragement, and continuous motivation towards my

research. My sincere thanks go to Dr. Surya Prakash, Dr. Aruna Tiwari, Dr.

Abhishek Shrivastava, and Dr. Kapil Ahuja for discussion and motivation.

Without their precious support, it would not be possible to conduct this

research.

I would like to thank Shailendra Verma, Lalit Jain, Prahalad Singh Panwar,

Dheeraj Verma from the Discipline of Computer Science and Engineering for

their constant support and help. The thesis would not have come to a

successful completion, without the help received from the staff of the

Academic section. I would like to thank Tapesh Parihar and all other

administrative staff members for their support at all times. I express my

appreciation to my friends Jaya Thomas, Prakash Chandra Sharma, Neetesh

Saxena, Varun Bajaj, Rajat, Rudresh, Rajendra and Sadaf all extended their

support in a very special way. I want to thank Mrs. Swati Chaudhari for their

support and constant encouragement.

Last, but not least, I would like to dedicate this thesis to my parents, my sisters,

my wife and my brother, for their love, patience, and understanding; they

allowed me to spend most of the time on this thesis.

Dated Rajkumar Jain

Dedicated to my parents

v

ABSTRACT

Cluster analysis is a key technique in the data analysis and is being applied in a

variety of engineering and scientific disciplines such as biology, medicine,

marketing, information retrieval and pattern recognition. Stereotyped

clustering method propagates dissection effect. To thwart dissection effect,

many real-time applications uses minimum sum of diameter clustering

(MSDC) or minimum sum of radii clustering (MSRC). As, MSDC and MSRC

problems are NP-complete so it is natural to seek approximation algorithms

with the best provable approximation ratio. This thesis presents approaches for

generating solutions for clustering problems. The thesis addresses clustering

problems in three parts: (i) Comparative review of clustering algorithms (ii)

SAT formulation-based approach, and (iii) Constraint based clustering

approach

In the first part of this thesis: we investigated approach, distance criterion,

optimization methods, geometrical properties, assumptions, issues, limitations,

and time-bound to propose a comprehensive and comparative analysis of

algorithmic complexity of various exact and approximation clustering

algorithms for Euclidean, metric and geometric version of MSDC and MSRC

problem. SAT formulation-based approach: In this approach, we investigate

the technique for the reduction of the 3-cluster problem into 3-SAT and k-

cluster problem into k-SAT.

In the constraint based clustering approach, we address three types of

problems: 3-clustering problem for minimum sum of diameter, word clustering

algorithm based on the k-clustering algorithm, and constraint based

approximation algorithm for the min-cost k-cover problem. In the 3-clustering

problem, we proposed a constraint algorithm for three clustering for the

minimum sum of diameter problem. In the word clustering algorithm, a new

constraint word clustering algorithm is proposed. The main challenge is to find

out constraint for words having an asymmetric relationship between them. In

vi

this context, we investigated properties of word cloud like symmetric,

transitive, and implicative and also investigated various types of associations

like strong, weak, and zero association between words. We proposed a

constraint word algorithm based on the investigated properties and association.

Furthermore, we bring the concept of constraints in the min-cost k-cover

problem to improve the performance. Constraints help in reducing the number

of distinct maximal discs. By incorporating the constraints into the min-cost k-

cover algorithm, we proposed an approximation algorithm with the improved

approximation ratio.

vii

LIST OF PUBLICATIONS

International Journal

1. Jain R. and Chaudhari N.S. (2016), On Constraint Clustering to

Minimize the Sum of Radii, International Journal of Engineering and

Advanced Technology, 5(6), 236-239.

2. Jain R. and Chaudhari N.S. (2012), A New Bit Wise Technique For 3-

Partitioning Algorithm, International Journal on Computer Application

(IJCA) in Special Issue of International Journal of Computer

Applications on Optimization and On-chip Communication, 1, 1-5.

3. Jain R. and Chaudhari N.S. (2011), Representation of K-Cluster

Constraint as K-SAT in Social Networking, International Journal on

Computer Application (IJCA) Special Issue of International Journal of

Computer Applications on Evolution in Networks and Computer

Communications, 1, 13-18.

International Conferences

1. Jain, R. and Chaudhari, N.S., (2015), Constraint Word Clustering

Algorithm for Asymmetric Relationship, Proceeding of International

Conference on Computer, Control and Communication Technologies,

Thailand, pp. 109-115.

2. Jain, R. and Chaudhari, N.S., (2012), A New 3-Clustering Algorithm

for Minimum Sum of Diameter Using Bit Representation, Proceeding

of 7th IEEE Conference International Conference Industrial Electronics

and Applications (ICIEA), Singapore, pp. 2004-2009.

viii

3. Jain, R. and Chaudhari, N.S., (2011), Identification and Generation of

Constraints in Social Networks, Proceeding of IEEE International

Level conference on Emerging Trends in Networks & Computer

Communications, India, pp. 11-14.

4. Jain, R. and Chaudhari, N.S., (2011), Formulation of 3-Clustering as a

3-SAT Problem, Proceeding of Fifth Indian International Conference

on Artificial Intelligence, India, pp. 465-472.

National Convention

1. Jain, R. and Chaudhari, N.S., (2011), Cluster Analysis in Social

Networks & 2-CNF, Twenty Fifth National Convention of Computer

Engineers and National Seminar on Networked Home Systems and

Services, India, pp. 169-172.

ix

TABLE OF CONTENTS

LIST OF FIGURES. xiv

LIST OF TABLES. xv

LIST OF ALGORITHMS. xvi

ACRONYMS. xvii

Chapter 1: Introduction.

1.1 Background.

1.1.1 Cluster Analysis.

1.1.2 MSDC & MSRC Problem.

1.1.3 Approximation Clustering Algorithm.

1.1.4 Constraint Clustering.

1.1.5 Terminology.

1.2 Problems Considered.

1.2.1 Constraint Clustering and k-Clustering to k-SAT.

1.2.2 Partitioning Problem.

1.2.3 MSDC Problem for 3-clustering.

1.2.4 Constraint Word Clustering Algorithm for Asymmetric

Relationship.

1.2.5 Constraint Clustering for MSDC & MSRC Problem.

1.3 Motivation.

1.4 Objectives & Scope.

1.5 Research Gap.

1.6 Contribution of Research Work.

1.7 Thesis Organization.

1

1

1

2

3

3

4

5

5

5

6

6

6

7

7

8

9

10

Chapter 2: Literature Review.

2.1 Introduction.

2.2 Satisfiability Problem.

2.2.1 Skew Symmetric Directed Graph.

2.2.2 Strongly Connected Graph.

2.2.3 Algorithm for Strongly Connected Components.

2.2.4 Linear Time Algorithm for 2-SAT Problem.

11

11

11

12

12

12

15

x

2.2.4.1 Procedure to Check Solvability of 2-SAT

problem.

2.2.4.2 Steps in 2-satisfiability Procedure

2.2.4.3 Description of 2-satisfiability Algorithm.

2.2.4.4 Complexity of 2-satisfiability Algorithm.

2.3 Literature Survey of 2-clustering Algorithms.

2.3.1 NP-complete Problems and Polynomial-time Reducibility of

Problems .

2.3.2 Formulation of Cluster Analysis as Mathematical

Programming .

2.3.3 Minimum Sum of Diameters as NP-complete Problem.

2.3.4 Linear Time Algorithm for 2-SAT Formulation.

2.3.5 2-clustering Algorithms for Minimum Sum of Diameter and

Minimizing the Maximum Diameter .

2.3.5.1 Reduction of 2-clustering Problem into 2-SAT

Formulation.

2.3.5.2 2-clustering Algorithm for Minimizing the

Largest Diameter.

2.3.5.3 2-clustering Algorithm for MSDC Based on

Partitioning of Set.

2.3.5.4 Challenges in the NP-complete Problems.

2.3.5.5 2-clustering Algorithm for MSDC Based on

Look-ahead.

2.3.5.6 Discussion.

2.4 Literature Survey of Approximation Clustering Algorithm for MSDC

& MSRC Problem.

2.4.1 Fundamentals of Approximation Algorithms.

2.4.2 Approximation Algorithms on Minimizing Diameter of

Cluster and Minimizing Radii of the Cluster.

2.4.2.1 2-approximation Algorithm for Minimizing the

Maximum Intercluster Distance.

2.4.2.2 Approximation Algorithm Based on Subgraph

Technique for NP-complete Problems.

15

16

16

17

18

18

19

21

22

22

23

24

25

26

26

27

27

28

28

30

30

xi

2.4.2.3 Approximation Algorithm for Pairwise Clustering

and Central Clustering.

2.4.2.4 Approximation Algorithm Based on Geometric

Technique.

2.4.2.5 Approximation Algorithm to Minimize the

Maximum Diameter and Minimize the Maximum

Radius.

2.4.3 Approximation Algorithms for MSDC and MSRC problem. .

2.4.3.1 Logarithmic Approximation Algorithm to MSD. .

2.4.3.2 Approximation Algorithm for Metric Version of

MSDC & MSRC Problem.

2.4.3.3 Approximation Algorithm for Geometric Disk

Covering Problem.

2.4.3.4 Approximation Algorithms for Geometric

Version of min-size k-clustering Problem.

2.4.3.5 Approximation Algorithms for Euclidean Version

of Min-cost k-cover Clustering Problem.

2.4.3.6 Approximation Algorithms for Metric Version of

min-cost k-cover Clustering Problem.

2.4.3.7 Approximation Algorithms for Euclidean Version

of Minimum Sum of Radii Cover Problem.

2.4.3.8 Approximation Algorithms for Metric Version of

Clustering to Minimize the Sum of Radii

Clustering.

2.5 Conclusion.

30

31

31

32

32

34

36

37

37

40

40

41

41

Chapter 3: Reduction of Clustering Problem as SAT Statement.

3.1 Introduction

3.2 Reduction of 3-clustering Problem to 3-SAT Formulation.

3.2.1 Belonging Approach.

3.2.2 Formulation of 3-clustering Problem as 3-SAT formulation. .

3.2.3 Complexity Computation.

3.3 Reduction of k-clustering Problem to k-SAT formulation.

3.3.1 k-clustering Problem Statement.

44

44

44

44

45

46

46

47

xii

3.3.2 Transformation of Social Network into SAT Statement.

3.3.3 Belonging Approach.

3.3.4 Formulation of k-clustering problem as k-SAT formulation. .

3.3.5 Complexity Computation.

3.4 Conclusion.

Chapter 4: Partitioning and Constraint 3-clustering Algorithm.

4.1 Introduction.

4.2 Partitioning Problem.

4.2.1 Terminology.

4.2.2 Bit wise Representation of Partition.

4.2.3 Rule-Set for 3-BitPartition.

4.2.4 Algorithm for 3-BitPartition.

4.2.5 Characteristics and Validation of Algorithm.

4.3 3-Clustering Problem.

4.3.1 Methodology.

4.3.2 Rule-Set for 3-BitClustering.

4.3.3 Algorithm.

4.3.4 Results.

4.4 Conclusion.

47

48

49

50

50

51

51

51

52

53

54

54

55

56

56

57

57

60

61

Chapter 5: Constraint Word Clustering Algorithm for Asymmetric

Relationship.

5.1 Introduction.

5.2 Related Work.

5.3 Methodology.

5.3.1 Affinity Computation and Modelling Based on Co-

occurrence.

5.3.2 Constraint Word Clustering.

5.4 Architecture of Word Clustering.

5.5 Investigation and Generation of Constraints and Rulesets.

5.5.1 Investigation of Properties and Generation of Constraints

Based on Word Cloud.

5.5.2 Generation of Constraints Based on Association Between

Words.

63

63

64

65

65

66

67

69

69

70

xiii

5.5.3 Rule Set for Generation for ML and CL Constraints.

5.6 Word Clustering Algorithm.

5.7 Conclusion.

70

71

74

Chapter 6: Approximation Constraint Clustering Techniques.

6.1 Introduction. ..

6.2 Euclidean min-cost k-cover problem.

6.3 Preliminaries.

6.4 Constraints based min-cost k-cover Approach.

6.5 Constraint Algorithm.

6.6 Constraint based min-cost k-cover algorithm.

6.7 Conclusion.

75

75

76

76

77

78

80

83

Chapter 7: Conclusion and Scope for Future Work.

7.1 Discussion.

7.2 Future Scope of the work.

Bibliography

84

84

85

86

xiv

LIST OF FIGURES

2.1 Strongly connected component of graph G 14

2.2 Algorithm for problem A 18

2.3 Partitioning of the plane into sectors 26

3.1 Mapping of bonding and bridging to ML & CL constraints in

social network

47

3.2 Transformation of business logic into SAT statements 48

4.1 Number of partitions generated for B3 53

4.2 Bit wise representation of a partition sample 54

4.3 Bit representation of 3-cluster 56

4.4 Comparison of brute force & 3-bitclustering approach 62

5.1 Architecture of constraint word clustering 67

6.1 Distinct maximal discs 77

xv

LIST OF TABLES

2.1 2-clustering algorithms and minimizing the maximum

diameter clustering algorithms: A comparative overview

29

2.2 Approximation algorithms for minimum sum of diameter

clustering and minimum sum of radii clustering: A

comparative overview

42

4.1 Running time of BitClustering & brute force for 3-Clustering 61

xvi

LIST OF ALGORITHMS

2.1 Strongly Connected Component SCC(G) 12

2.2 2-clustering Algorithm for MSD 24

2.3 PlanarPartition(S) 25

2.4 2-ClusteringTransClos(G) 27

2.5 ApproxCMSD(𝐺(𝑉, 𝐸), 𝑘) 32

2.6 ApxAlgorithm(N) 34

2.7 DC(R, κ, ϕ) 38

4.1 3-BitPartition 54

4.2 MinDiameter3-cluster 57

4.3 3-clustering for MSD 59

5.1 Affinity Knowledge Matrix 71

5.2 Word Clustering 72

6.1 Constraintcover(I) 78

6.2 Constraint Clustering DC(𝑅0, 𝑘, ∅, 𝑆) 81

xvii

ACRONYMS

MSDC: Minimum Sum of Diameter Clustering

MSRC: Minimum Sum of Radii Clustering

NP-hard: Non-deterministic Polynomial Hard

NP-Complete: Non-deterministic Polynomial Complete

SAT: Satisfiability

2-SAT: 2-Satisfiability

3-SAT: 3-Satisfiability

k-SAT: k-Satisfiability

ML: Must Link

CL: Can-Not Link

CNF: Conjunctive Normal Form

PTAS: Polynomial Time Approximation Scheme

QPTAS: Quasi-Polynomial Time Approximation Scheme

TC: Time Complexity

AF: Approximation Factor

DMD: Distinct Maximal Disc

1

Chapter 1

Introduction

While pursuing any research, researchers have to deal with a wide variety of

data emanating from all sorts of measurements and observations. A large

quantity of data is being generated inform of documents, reports, e-mails, and

web pages are generated from different sources, like as enterprises,

governments, organizations, and individuals. Generation of data in huge

quantity leads towards data analysis. Data describe the characteristics of a

living species, depict the properties of a natural phenomenon, summarize the

results of a scientific experiment, and record the dynamics of a running

machinery system. More importantly, data provide a basis for further analysis,

reasoning, decisions, and ultimately, for the understanding of all sorts of

objects and phenomena. A systematic and automatic approach is imperative to

organize this unstructured data without human intervention. Data analysis is

considered as one of the most essential activities to classify or group data into

a set of categories or clusters. Further, this has paved the path for cluster

analysis which is basically concerned with resolving the multifaceted problems

related to partitioning of entities and to explore constraint clustering algorithm

for minimum sum of diameter and minimum sum of radii problem.

1.1 Background

Following are the points of discussions which are dealt to illustrate

terminologies and definitions pertaining to the topic of present research.

1.1.1 Cluster analysis

Cluster analysis [1-2] is mainly concerned with the problem of partitioning a

given set of entities into homogeneous and well-separated subsets called

clusters. Cluster analysis is all about finding subset that are homogeneous

and/or well separated. However, the process of clustering explores natural

groupings and thereby represents a holistic overview of classes which are in-

2

form of collection of documents. Indubitably, in the area of artificial

intelligence, this concept is popularly known as unsupervised machine

learning. Cluster analysis [3-5] is a technique to explore the structure of data; it

is the body of methods that help to describe data, detect useful hidden patterns

and develops explanations from large amounts of data. Clustering is to identify

classes of similar objects among a set of objects. Two objects are said to be

similar if they exhibit a coherent pattern on a subset of dimensions. Cluster

analysis is a key technique in the data analysis and is being applied in a variety

of engineering and scientific disciplines such as biology, psychology,

medicine, marketing, computer vision and remote sensing [6]. Clustering

techniques have been used in a wide variety of application areas including

information retrieval, image processing, pattern recognition, DNA microarray

analysis and E-commerce applications [6‒9].

Clustering algorithms partition the data into homogeneous and/or well

separated classes called clusters. Two important concepts of cluster analysis

are internal homogeneity and external separation [10-12]. Internal

homogeneity means patterns in the same cluster should be similar to each other

and external separation means patterns in different clusters should be different.

One of the homogeneity measures is the diameter of the cluster. The diameter

of a cluster is the maximum dissimilarity between any pair of entities in that

cluster. Minimum diameter clustering is an important and traditional clustering

method, but in some applications minimum diameter clustering algorithm

propagates dissection effect [1,4,13]. Dissection effect causes similar objects

that should be placed in the same cluster to be assigned to different clusters.

Clusters tend to have fairly equal diameters and this may cause the dissection

of some natural cluster. To avoid dissection effect, the minimum sum of the

diameters or minimum sum of radii can be selected as a criterion.

1.1.2 Minimum sum of diameter clustering and minimum sum of radii

clustering

Minimum sum of diameter clustering (MSDC) [4] is the partitioning of the

entities such that the sum of the diameters of the clusters is minimized.

Minimum sum of radii clustering (MSRC) [4] is the partitioning of the entities

is like such that the sum of the radii of the clusters is minimized. MSDC and

3

MSRC problems belongs to class of NP-minimization problem [14]. Brucker

[15] revealed the problem of determining a partition of a given set of N entities

into k clusters as the sum of the diameters of these clusters is minimum is NP-

complete for k ≥ 3 and its complexity was unknown for k = 2.

1.1.3 Approximation clustering algorithms

Approximation algorithms [16] are applied to know and find approximate

solutions for optimization problems. Approximation algorithms are usually

linked with NP-hard [17] problems. An algorithm is considered to be a 𝜖-

approximate algorithm for a problem P, iff either posses

1) P is a maximization problem and for every instance of P,

 |
Opt(𝑃) − Apx(𝑃)

Opt(𝑃)
 | ≤ 𝜖 (1)

Where, 0 < 𝜖 < 1

2) P is a minimization problem and for every instance of P,

 |
Opt(𝑃) − Apx(𝑃)

Opt(𝑃)
 | ≤ 𝜖, (2)

Where, 𝜖 > 0

Opt(P) is the optimal solution (assuming Opt(P) > 0) and Apx(P) is the derived

approximate solution.

1.1.4 Constraint clustering

Constraint clustering [18] is the most prominent area of machine learning and

data mining-oriented research. Constraints facilitate hands on information

about the desired partition and strengthen performance of clustering

algorithms. The key function of clustering algorithms is not only to encompass

all the domain expert’s requirements but also instrumental in directing the

algorithm to a desirable set partition by adopting user specified constraints

whereas constraint clustering stimulates composition of a desirable clustering

of the instances. Accuracy of clustering algorithms can be improved by

clubbing such constraints.

4

1.1.5 Terminology

Definition 1 (k-clustering [19-20]): Let 𝑂 = {𝑂1, 𝑂2, …𝑂𝑁} denote a set of

𝑁 = |𝑂|entities and 𝐷 = {𝑑𝑖𝑗|𝑖 ≤ 𝑘, 𝑙 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 } a set of dissimilarities

between pairs of these entities. Dissimilarity 𝑑𝑖𝑗 is a real number and satisfies

to the conditions 𝑑𝑖𝑗 ≥ 0, 𝑑𝑖𝑖 = 0 and 𝑑𝑖𝑗 = 𝑑𝑗𝑖 for 𝑖, 𝑗 = 1,2, …𝑁. The k-

clustering of O entities into k clusters 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑘} is such that no cluster

is empty, any pair of clusters has an empty intersection and the union of all

clusters is equal to O. Diameter of clusters 𝐶1, 𝐶2, … , 𝐶𝑘 are

𝑟1, 𝑟2, … , 𝑟𝑘respectively, assuming that 𝑟1 ≥ 𝑟2 ≥ ⋯ ≥ 𝑟𝑘 respectively.

Definition 2 (Diameter of Cluster [4, 10, 21]): The diameter of a cluster

𝑑(𝐶𝑙) is the maximum dissimilarity between any pair of entities in that cluster.

In other words, it is the largest dissimilarity between entities in 𝐶𝑙, where 𝐶𝑙 ∈

𝐶.

 𝑑(𝐶𝑙) = 𝑚𝑎𝑥
𝑂𝑖.𝑂𝑗∈𝐶𝑙

𝑑𝑖𝑗 (3)

Definition 3 (Radii of Cluster [22]): The radii of a cluster 𝑟(𝐶𝑙) is the

maximum dissimilarity of any point in the cluster from the cluster center. If

 𝑂𝑖 is the center of cluster 𝐶𝑙 then radii of cluster is given by the formulation:

 𝑟(𝐶𝑙) = 𝑚𝑎𝑥
𝑂𝑖.𝑂𝑗∈𝐶𝑙

𝑑𝑖𝑗 (4)

Definition 4 (Minimum Sum of Diameter [4, 10]): Minimum sum of

diameter clustering is the partitioning of the entities viz. the sum of the

diameters of the clusters is minimized.

 𝑑(𝐶𝑀) = Min∑𝑑

𝑘

𝑙=1

(𝐶𝑙) (5)

5

Definition 5 (Minimum Sum of radii [22]): Minimum sum of radii clustering

is the partitioning of the entities viz. the sum of the radii of the clusters is

minimized.

 𝑑(𝑟𝑀) = Min∑𝑟

𝑘

𝑙=1

(𝐶𝑙) (6)

1.2 Problem Considered

The present research makes an attempt to address, study, analyze and resolve

the problem as:

1.2.1 Constraint Clustering and k-Clustering to k-SAT

One of the important applications of cluster analysis is social network analysis

[23]. In social networks, nodes of the network are people and the links are the

relationships between people. Social network analysis practitioners collect

network data, analyses the data and often produce maps or pictures that display

the patterns of connections between the nodes of the network. These maps

reveal characteristics of the clusters. Bonding and bridging are two different

kinds of connectivity in social network. Concept of bonding and bridging are

translated into Satisfiability (SAT) [24] formulation. In this problem, goal is to

investigate ML-constraints and CL-constraints with the help of bonding and

bridging. k-clustering problem is reduced into k-SAT formulation with the help

of investigates constraints in the social networking.

1.2.2 Partitioning Problem

A partition [25] of a set U is a subdivision of the set into subsets that are

disjoint and exhaustive, i.e. every element of U must belong to one and only

one of the subsets. The subsets Pi in the partition are called cells. Thus

{𝑃1, 𝑃2, …𝑃𝑟} is a partition of U if two conditions are satisfied: (1) 𝑃𝑖 ∩ 𝑃𝑗 = ∅,

if 𝑖 ≠ 𝑗 and (2) 𝑃1 ∪ 𝑃2 ∪ …∪ 𝑃𝑟 = 𝑈. In the field of Computer Science, the

partition problem is an NP-complete problem [25-26] and it is also NP-hard

[27] to find good approximate solutions for this problem. In 3-partitioning

there are three partitions, 𝑈 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3. In this research work, bit wise

technique is used for the generation of partitions.

6

1.2.3 Minimum Sum of Diameter Problem for 3-clustering

Traditional clustering algorithms like k-clustering algorithm or minimum

diameter clustering algorithm are highly affected by the dissection effect. In

dissection effect, similar entities may be assigned to different clusters. To

avoid this effect, it is proposed to have minimum sum of diameter clustering or

minimum sum of radii clustering. Approximation algorithms exist for

minimum sum of diameter for three clustering but still there is no exact

algorithms is available. The present research investigates exact algorithm for

minimum sum of diameter for three clustering problem.

3-clustering is partitioning of O into 3 clusters 𝐶1, 𝐶2, and 𝐶3 such that no

cluster is empty, any pair of clusters has an empty intersection and the union of

all clusters is equal to O. Minimum sum of diameter for 3-clustering is

partitioning of the entities into three clusters such that their sum of diameter of

cluster is minimum. Mathematically it can be defined

𝑚𝑖𝑛∑𝑑(𝐶𝑖)

3

𝑖=1

(7)

Where, 𝑑(𝐶𝑖) is diameter of cluster 𝐶𝑖.

1.2.4 Constraint Word Clustering Algorithm for Asymmetric

Relationship

In this research work, a new constraint word clustering [28] algorithm is

proposed for the given corpus. The proposed method is based on the constraint

clustering of words. In this context, words are considered similar if they appear

in similar contexts and contexts are similar if their word affinity clouds are

equivalent. Different sorts of association among words are identified and

constraints are identified and generated according to this association. Proposed

constraint algorithm is applicable for words having asymmetric relationship

between them; therefore this approach may be useful as a complement to the

conventional class-based statistical language modeling techniques.

1.2.5 Constraint Clustering for Minimum Sum of Diameter and Radii

Clustering Problem

7

Consider the min-cost k-cover [29] problem: For a given a set P of n points in

the plane, objective is to cover the n points by k disks, such that sum of the

radii of the disks is minimized. The concept of constraints is being introduced

in min-cost k-cover problem to present a new constraint based min-cost k-

cover algorithm. Investigations formulate that a can-not link constraint always

separates the optimal solution and reduces cardinality of distinct maximal

discs. In any instance of min-cost k-cover problem, upper bound and lower

bound on the number of can-not link constraints are O(n2) and O(k)

respectively.

1.3 Motivation

The main motivation behind the present research is to find Boolean

formulation for clustering problem and find constraint clustering algorithm for

minimum sum of diameter and minimum sum of radii clustering algorithm.

Review of literature also reveals that there is no constraint based clustering

algorithm available in exact and approximate algorithms for minimum sum of

diameter and radii clustering. All these elements encourage to pursue the

present study and to develop a new dimension in the clustering algorithm by

giving constraint clustering algorithm for minimum sum of diameter and radii.

Motivation behind using for the present research work is to investigate

algorithms available on minimum sum of diameter and minimum sum of radii,

and prepare the literature survey on comparison of various techniques of

minimum sum of diameter and radii clustering. Research also motivates to

introduce the reduction techniques for 3-cluster to 3-SAT and k-cluster to k-

SAT. Further, constraints based techniques are introduced in word clustering

algorithms and in approximation algorithm for minimum sum of diameter.

1.4. Objectives and Scope

The main objective is to review and draw a comparative analysis of

algorithmic complexity of various exact and approximation clustering

algorithms for Euclidean, metric and geometric version of MSDC and MSRC

problem in chronological order of their evolution. The above comparative

analysis may open new vistas of knowledge in the field of clustering and

8

address the emerging challenges, relevant issues, innovative ideas, recent

trends, advancements and future scope for research in MSDC and MSRC

problem in relation with theoretical computer science. The research deals with

investigation, identification of constraints and generation of the constraints and

reducing them into SAT formulation. This implies standard clustering methods

using constraints to obtain results. The research also aims to highlight

minimum sum of diameter and minimum sum of radii clustering based on

constraints.

The scope of the research is interwoven with situations in which homogeneity

of the clusters is found with respect to natural grouping. It is applicable in

routing, in application of location theory and in communication network

design. An example of application of this theory is reflected in

telecommunication establishment [30]: a network of base stations (antennas)

such that all the locations are within the range of some station and sum of

setup cost (proportional to the diameter/range of the station) of the station is

minimized.

1.5 Research Gap

The prior sections have discussed about the existing techniques exclusively

seen for addressing minimum sum of diameter and minimum sum of radii

clustering. There are various forms of the clustering technique to group the

data items. However, there are effectiveness as well as limitations associated

with almost all the existing systems.

• The concept of reduction from 3-clustering to 3-SAT and k-cluster to k-

SAT are still unaddressed. Existing reduction techniques focuses only from

SAT formulation to clustering.

• Adequate literature survey is not available on minimum sum of diameter

and radii clustering algorithms that identifies and compare the constraints,

assumption, issues and complexity of algorithms.

• Existing word clustering algorithms are not involved in any type of pre-

computation on similarity matrix. Word clustering techniques with pre-

computation that select the input parameters as constraint to identify the

semantic relationship is not addressed.

9

• Existing clustering algorithms still has an open problem to solve the

minimum sum of diameter and radii in polynomial time. To reduce the

time complexity many approximation algorithms are available in literature.

The complexity of model selection as it is dependent on the cluster

properties or relationship between the data items as input. Therefore, still

now, much clarity is not illustrated how to use the constraint-based

techniques for approximation algorithm for MSDC and MSRC in any

research work.

1.6 Contribution of Research work

The research deals with conceptual framework in the field of computer science

and has its focus on exploring application of constraint-based techniques

related with cluster analysis. This constraint-based technique derives the

essential characteristics of the data and facilitates analysis as well as algorithm

design. The major contributions are as:

• The research study enables the future researchers to have a comprehensive

and analyzed information about the application of constraint based

clustering technique as prior to thesis work no adequate information was

available to explore the minimum sum of diameter and minimum sum of

radii clustering algorithm.

• The research analyzed, identified and generates constraints in the social

network and reduced them into SAT formulation. In this part, Belonging

approach is proposed for the reduction of 3-cluster and k-cluster. Reduction

methodology is formulated to reduce 3-cluster problem into 3-SAT

formulation and k-cluster problem into k-SAT formulation.

• The research proposed a bit representation mechanism for the

representation of partitions and investigated a 3-partitioning algorithm

based on it. It also investigated constraint based exact algorithm for three

clustering for minimum sum of diameter problem.

• We investigated various kinds of association between words in a given

corpus. It further throws light on how constraint clustering could improve

the performance of word clustering algorithm for asymmetric relationship

between words.

10

• The constraint based model in min-cost k-cover algorithm is introduced.

The analytical results prove that constraint based min-cost k-cover

algorithm is more time efficient than algorithm which is in existence.

During the modeling exercise, salient features (constraints) that enhance

our understanding on the bifurcation of the disks, and therefore, constraints

are relevant for the design and analysis of efficient min-cost k-cover

algorithm.

1.7 Thesis Organization

To cover vast area of cluster analysis and to explore constraints based

techniques related with minimum sum of diameter and minimum sum of radii

clustering, the present research is divided into following chapters for better

conceptual and analytical understanding of the selected research problem.

Chapter 1 deals background information on the minimum sum of diameter and

minimum sum of radii clustering algorithm. Chapter 2 is literature review,

based on previous research carried out in the domain of minimum sum of

diameter and minimum sum of radii clustering algorithm. Chapter 3 describes

how the bridging and bonding concepts of social network are transformed into

SAT formulation. Reduction methodology highlights how 3-cluster problem is

reduces into 3-SAT formulation and k-cluster problem is reduces into k-SAT

formulation. Chapter 4 focuses on partitioning problem and exhibits a detailed

description and experimental results on Bit partitioning method. Bit

partitioning method is extended to represent exact 3-clustering algorithm for

minimum sum of diameter clustering. Chapter 5 conveys different types of

associations exist between words in a corpus. Architecture model for word

clustering is discusses and then represented a word clustering algorithm for

asymmetric relationship between words. Chapter 6 unfolds the importance of

constraints in min-cost k-cover problem. Chapter 7 draws conclusion of

research work and suggests future scope for research.

11

Chapter 2

Literature Review

2.1 Introduction

Cluster Analysis is one of the fields of research that falls under the sub-

discipline of data analysis. The main reason to apply efforts in this field to

analyze the vast data generated from reports, e-mails, documents, and web

pages. The grouping of data provides a basis for analysis, reasoning, taking

decisions. Clustering algorithms groups the data into separated classes, but due

to dissection effect similar objects that should be placed in the same cluster to

be assigned to different clusters. Minimum sum of diameter clustering is the

partitioning of the entities such that the sum of the diameters of the clusters is

minimized. This chapter covers a study of existing research work conducted on

the minimum sum of diameter and minimum sum of radii clustering. An

attempt has been made to have glimpse of the entire work done on this subject

matter across the world. It was observed that there has not been much of

literature review conducted on the subject matter minimum sum of diameter

and minimum sum of radii clustering.

2.2 Satisfiability Problem

A Boolean expression is comprised of variables, parenthesis and the operators.

A formula is in conjunctive normal form (CNF) if a Boolean expression is

represented as conjunction of disjunctions, where each disjunction has two

arguments that may either be variables or the negations of variables. The

conjunctive normal form of formula is as: (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑎). An

expression is satisfiable if there are some assignments of 0’s and 1’s to the

variables that demonstrated the expression of the value 1. The satisfiability

problem [31, 32] is to determine a Boolean expression, whether it is satisfiable.

2-satisfiability (2-SAT) [32] is the problem of determining the satisfiability of

a formula in conjunctive normal form where each clause is delimited to at most

12

two literals. When the clause size is greater than two, the problem is known as

NP-complete. The Cook-Levin theorem [24] states that the Boolean

satisfiability problem is basically NP-complete. 2-SAT problem is solvable in

linear time [33]. 3-satisfiability (3-SAT) is the problem of determining the

satisfiability of a formula in conjunctive normal form where each clause is

limited to at most three literals.

2.2.1 Skew Symmetric Directed Graph

In implicative normal form [34] each disjunction is replaced by one of the two

implications to which it is equivalent. Disjunction 𝑋1 ∨ 𝑋2 is replaced by:

�̅�1 ⟶ �̅�2 and 𝑋1 ⟶ 𝑋2. The implicative normal form of a 2-satisfiability

problem can be represented as an implication graph. A skew-symmetric

directed graph [34] has one vertex per variable or negated variable. An edge

connects one vertex to another whenever the corresponding variables are

related to an implication in the implicative normal form of the instance. If there

is implication rule 𝑋1 ⟶ 𝑋2 then an edge goes from a vertex 𝑋1 to vertex 𝑋2.

2.2.2 Strongly Connected Component

Let 𝐺 = (𝑉, 𝐸) be a directed graph. 𝑉′is the set of vertices belong to 𝑉. 𝐸′ is

the set of edges connecting pairs of vertices in 𝑉′. If 𝑣 and 𝑤 belong to 𝑉′ and

If there is a path from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣 then the graph 𝐺 =

(𝑉, 𝐸) is called strongly connected components [34-35] of 𝐺. A graph is called

strongly connected if there is a path from any vertex to any other. The maximal

strongly connected subgraphs of any graph are vertex-disjoint and are called its

strong components of it. Algorithm 2.1 produces strongly connected

component of given graph G in linear time.

2.2.3 Algorithm for Strongly Connected Components

Data Structures used:

1. Stack: to store the visited nodes.

2. Oldnode: an array that contain visited nodes.

3. Newnode: an array that contains unvisited nodes.

13

4. Depth First Number (DFN): a single dimensional array to hold the

depth first number.

5. Low Link (LL): a single dimensional array to hold the low link value

of node. Initial value for all nodes is zero.

6. Count: a counter variable that has initial value of 1.

Algorithm 2.1 Strongly Connected Component SCC(G)

Input: A directed graph 𝐺 = (𝑉, 𝐸), adjacency list L

Output: A list of the strongly connected components of G

1. count = 1

2. for all v in V do mark v “new”

3. Initialize STACK to empty

4. while there exists a vertex v marked “new” do

5. Search(v)

6. end while

7. end for

Subroutine: Search(v)

Input: Vertex v

Output: Vertex of strongly connected component

1. Mark v “old”

2. DFN[v] = count

3. count = count + 1

4. LL[v] = DFN [v]

5. push (v)

6. for each vertex w on L[v] do

7. if (w is marked “new”) then

8. search(w)

9. LL[v] = min (LL[v], LL[w])

10. else

11. if ((DFN[w] < DFN [v]) and OnStack (w)) then

12. LL[v] = min (DFN [w], LL[v])

13. end if

14. end for

15. if (LL[v] = DFN[v]) then

16. repeat

17. pop x from the top of stack;

14

18. print x

19. until x = v;

20. end if

Description of Algorithm:

As we know that the vertices of each strongly connected component are a

connected subgraph of the spanning forest determined by the depth-first

search. This connected subgraph is a tree and the root of the tree is called the

root of the strongly connected component. Depth-first search is used to find the

strongly connected components of a graph. To find out the strongly connected

component a function LOWLINK is defined in the following manner:

LOWLINK[v] = MIN({v} U {w | there is a cross edge or back edge from a

descendant of v to w. and the root of the strongly connected component

containing w is an ancestor of v}).

The LOWLINK computation occurs at lines 4, 9, and 12. At line 4

LOWLINK[v] is initialized to the depth-first number of vertex v. At line 9

LOWLINK[v] is set to LOWLINK[w]. if for some son w, LOWLINK[w] is

less than the current value of LOWLINK[v]. At line 11 we determine whether

(v, w) is either a back edge or cross edge and we check to see whether the

strongly connected component containing w has been found. If not, then the

root of the strongly connected component containing w is an ancestor of v.

Figure 2.1: Strongly connected component of graph G

3

1

2

4

5

6

7 8

15

At line 12 we set LOWLINK[v] to the depth-first number of w. If it does not

already have a lower value. When all of the vertices of a node are discovered

and LOWLINK [v]= DFN[v] then elements from the stack are popped out.

Stack is emptied and the list of the vertices belong to strongly connected

component of G. This procedure is performed for all vertices of G. Applying

the Algorithm 2.1 on the Graph G in Figure 2.1 produces three strongly

connected component (SCC).

S1 = {1, 2, 3, 4, 5} S2 = {7} S3 = {6, 8}

2.2.4 Linear Time Algorithm for 2-SAT Problem

Aspvall et al. in 1979 [33] presented a linear time algorithm for testing the

truth of certain quantified Boolean formulas.

2.2.4.1 Procedure to Check Solvability of 2-SAT Problem

Algorithm in [33] uses properties of directed graphs. Suppose we are given a

formula 𝐹 = 𝑄1𝑥1𝑄2𝑥2…… .𝑄𝑛𝑥𝑛𝐶 such that C is in conjunctive normal

form with at most 𝐺(𝐹) with 2n vertices and 2|𝐶|. If we assign truth values to

the vertices of 𝐺(𝐹), Such an assignment corresponds to a set of truth values

for the variables which makes 𝐶 true if and only if:

(i) For all 𝑖, vertices 𝑥𝑖 and �̅�𝑖 receive complementary truth values.

(ii) No edge 𝑢 → 𝑣 has 𝑢 assigned true and 𝑣 assigned false (equivalently,

no path leads from a true vertex to a false vertex)

Steps of Checking Solvability of 2-SAT Problem:

a. Find out implicative normal form of disjunction of all pair of variables

from the conjunctive normal form.

b. Draw implication graph and a skew-symmetric directed graph from

implicative normal form where the vertices are the set of literals from a 2-

CNF formula.

c. Explore the strongly connected component in the implication graph.

d. Apply 2-satisfiability algorithm to process strongly connected components.

e. A formula is satisfiable if, and only if, no pair of literals, a and ā, appear in

the same strongly connected component.

16

Theorem 1. The formula F is true if and only if none of the following three

conditions holds:

(i) An existential vertex 𝑢 is in the same strong component as its

complement �̅� .

(ii) A universal vertex 𝑢𝑖 is in the same strong component as an existential

vertex 𝑢𝑗such that 𝑗 < 𝑖 (i.e., 𝑥𝑖 is not quantified within the scope of 𝑄𝑖).

(iii) There is a path from a universal vertex u to another universal vertex v.

(This condition consists the case that, 𝑣 = �̅�).

2.2.4.2 Steps in 2-satisfiability Procedure

Step 1. If S is marked then move forwards to the next component. Otherwise if

some successor of S is marked false or contingent lead to Step 2. Otherwise

reach to Step 3.

Step 2. (S has a false or contingent successor.) If S contains one or more

universal vertices, stop: Theorem 1 condition (iii) holds. Otherwise, mark S

false and move to Step 5.

Step 3. (All successors of S are true.) If S contains two or more universal

vertices, stop: Theorem 2 condition (iii) holds. Otherwise, if S contains one

universal variable 𝑢𝑖 go ahead with Step 4. Otherwise, mark S true and go to

Step 5.

Step 4. (S contains a universal vertex 𝑢𝑖) If S contains an existential vertex

𝑢𝑗 with 𝑗 < 𝑖, stop: Theorem 1 condition (ii) holds. Otherwise, mark S

contingent and directs to Step 5.

Step 5. (S is marked successfully.) If 𝑆 = 𝑆′ stop: Theorem 1 condition (i) or

(iii) holds. Otherwise, skip to Step 6.

Step 6. 𝑆 = 𝑆′ If S is marked contingent or false and 𝑆′ is a predecessor of S,

stop: condition Theorem 1 (iii) holds. Otherwise, mark 𝑆′ false if S is true,

contingent if S is contingent and true if S is false; march towards the next

component.

2.2.4.3. Description of 2-satisfiability Algorithm

This algorithm marks each component processed true, false, or contingent.

Each component has a universal vertex which is marked contingent; each

component containing only existential variables which is marked either true or

17

false. When a component is marked false, either all its successors are marked,

at least one of them contingent or false, or all its predecessors are marked, all

of them are false. It can be easily concluded from Step 2, Step 3, and Step 6

and the duality property. During the operation of the algorithm, some

component 𝑆1 is marked false while it has an unmarked predecessor, and then

there is a path from 𝑆1 to a component S, marked contingent. Similarly, when

a component is marked true, either all its successors are marked, all true, or all

its predecessors are marked, at least one true or contingent. Thus, if some

component 𝑆2 is marked true while it has an unmarked successor, then there is

a path from some contingent component 𝑆1 to 𝑆2. It follows from these facts

that if the algorithm stops at Step 2 or Step 6, then condition Theorem 1 (iii)

holds. If the algorithm stops in Step 3, Step 4, or Step 5, it is obvious that the

indicated condition holds. Thus, if the algorithm stops prematurely, at least one

of the Theorem 1 conditions (i)-(iii) holds. If the algorithm does not stop

prematurely, every component is marked in order to have true or contingent

component has only true components as successors. Similarly, any false or

contingent component has only false components as predecessors. This follows

easily from the operation of the algorithm and the duality property.

Furthermore, every component and its complement receive complementary

truth values, and every contingent component has a universal vertex 𝑢𝑖 that

contains as additional vertices which is only existential vertices 𝑢𝑖 such 𝑖 < 𝑗.

We can prove that F is true as follows: to each vertex in a true or false

component, assigned value is true or false, respectively. For any assignment of

truth values to the universal variables, we assign to each vertex in a component

containing a universal vertex 𝑈𝑖 the truth value of 𝑥𝑖 if 𝑢𝑖 = 𝑥𝑖 and the

complementary truth value if 𝑢𝑖 = �̅�𝑖. Thus, in this context F is true.

2.2.4.4 Complexity of 2-satisfiability Algorithm

2-satisfiability algorithm requires 𝑂(𝑛 +𝑚) time, where m is the number of

edges in G(F) (twice the number of clauses in C). The algorithm processes

strong components in the same order as they are generated by the linear-time

strong components algorithm; thus, strong components algorithm may be used

with only minor modifications as to solve this evaluation problem.

18

2.3 Literature Survey of 2-clustering Algorithms

In the following sub points, a great impetus is given on the evolution of NP-

complete problems, polynomial time reduction of NP-complete problems and

formulation of cluster analysis as mathematical programming. Various 2-

clustering algorithms are also analyzed on the basis of time complexity.

2.3.1 NP-complete Problems and Polynomial-time Reducibility of

Problems

Computational problems are quite complex and stimulating hence they have to

be resolved at the top priority, efficiently and successfully to settle the issue for

once and all. But contrary to this still there are some problems that are hard to

be resolved and hence known as NP-hard problems. Computational complexity

theory is a branch of theoretical computer science which focuses on classifying

computational problems. In computational complexity theory, there are lots of

computational problems which can be solved by a non-deterministic Turing

machine [14] in polynomial time, such a problem is treated as non-

deterministic polynomial (NP) problem [34, 36]. NP problems are the set of

decision problem [25]. Foundation of NP-complete (non-deterministic

polynomial complete) problems and the notion of polynomial-time reducibility

is investigated by Cook [24]. If a polynomial time reduction algorithm exists

for reducing one problem to another then this means that any polynomial time

algorithm for the second problem can be converted into a corresponding

polynomial time algorithm for the first problem. Further it is proved existences

of a NP-complete problem by showing that the Boolean satisfiability problem

(SAT) is NP-complete. Karp [17] demonstrated set of 21 computational

problems which are NP-complete.

It can be inferred that there is a polynomial time many-one reduction of the

Boolean satisfiability problem to each of the 21 combinatorial and graph

Figure 2.2: Algorithm for problem A

Algorithm f Algorithm

g

Algorithm

for problem

B

f(x) s
Solution g(s) of x x

19

theoretical computational problems. It means that many natural computational

problems are computationally intractable [24]. A large number of

computational problems when expressed as language recognition problems,

arising in fields such as mathematical programming, graph theory,

combinatorics, computational logic and switching theory are NP-complete.

Theorem 2. [24] If a set S of strings is accepted by some nondeterministic

Turing machine within polynomial time, then S is P-reducible to disjunctive

normal form tautologies.

According to Theorem 2, any recognition problem can be solved by a

polynomial time-bounded nondeterministic turing machine that can be reduced

to the problem of determining whether a propositional formula is a tautology

or not. Polynomial time reduction [37] implies that first problem can be solved

deterministically in polynomial time provided a solution which is available for

solving the second problem. From Figure 2.2 it is clear that if problem B can

be used to solve A, then problem A can be reduced to problem B. A problem is

polynomial time reducible: if a polynomial time algorithm f transforms any

instance x of the problem A into an instance 𝑓(𝑥), together with another

polynomial time algorithm g that maps any solution s of 𝑓(𝑥) back into a

solution 𝑓(𝑥) of 𝑥. If algorithm f and algorithm g are efficiently computable,

then this develops an efficient algorithm for the problem A to reduce into

problem B.

2.3.2 Formulation of Cluster Analysis as Mathematical Programming

Rao [19] explored the distance base cluster analysis and focused on the

problem of optimal partitioning and showed how the problem can be

formulated as a mathematical programming problem. Problem formulation on

the basis of different distance-based criterion are as follows:

1) Minimize the within group’s sums of squares distance: In this formulation

an efficient dynamic programming algorithm is provided, considering entities

are points on the real line.

20

 Min∑∑𝑤𝑖𝑥𝑖𝑗(𝑞𝑖 − �̅�𝑗)
2

𝑀

𝑗=1

𝑁

𝑖=1

 (8)

where, �̅�𝑗 = (∑𝑤𝑖𝑥𝑖𝑞𝑖

𝑁

𝑖=1

) ∑𝑤𝑖𝑥𝑖

𝑁

𝑖=1

⁄

∑𝑥𝑖𝑗

𝑀

𝑗=1

= 1

i = 1, 2,... , N

where, 𝑥𝑖𝑗 = 0 𝑜𝑟 1, ∀ 𝑖, 𝑗

Wi is the weight assigned to entity 𝑖, 𝑞𝑖 is a measure assigned to entity i. xij = 1

or 0 depending on whether entity i is assigned to group j.

2) Minimize the sum of average within group squared distances: Two

approaches are given to solve the problem: In the first approach, problem is

treated as a constrained non-linear Boolean programming problem, this

approach followed the method of Hammer et al. [38]. In the second approach,

objective function was to linearize at the cost of increasing the number of

constraints and then solving the resulting problem by adopting linear integer

programming technique.

 Min∑[
(∑ ∑ 𝑑𝑖𝑗

2 𝑥𝑖𝑘𝑥𝑗𝑘
𝑁
𝑗=𝑖+1

𝑁−1
𝑗=1)

∑ 𝑥𝑖𝑘
𝑁
𝑖=1

]

𝑁

𝑘=1

 (9)

Subjected to:

∑𝑥𝑖𝑘

𝑀

𝑘=1

= 1

where, xik > 0, i = 1, 2,. . . , N and k = 1,2,. . . , N.

3)Minimize the total within group distance: In this formulation, objective

function of criterion 2 can be reduced into the objective function of criterion 3,

then linearizing the new objective function and solving the resulting problem

by applying linear integer programming technique.

 Min∑(∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

)

𝑀

𝑘=1

 (10)

21

 ∑𝑥𝑖𝑘

𝑁

𝑖=1

= 𝑛𝑘 𝑘 = 1,2, … ,𝑀 (11)

where, nk is the number of entities in group k such that

∑𝑛𝑘

𝑀

𝑘=1

= 𝑁

4)Minimize the maximum within group distance: A linear integer programming

solution is modeled for minimize the maximum within group distance. In this

solution approach, the number of constraints increases incessantly with N

(number of entities) and k (number of clusters) and therefore, this formulation

is computationally useful only for small values of N and k.

Min Z,

Subjected to:

 𝑑𝑖𝑗𝑥𝑖𝑘 + 𝑑𝑖𝑗𝑥𝑗𝑘 − 𝑍 ≤ 𝑑𝑖𝑗 (12)

where, i = 1, 2, . . . , N-1, j = i+1, i+ 2, . . . , N and k = 1, 2, . . . , M

such that ∑𝑥𝑖𝑘

𝑀

𝑘=1

= 1 i = 1, 2,. . . , N

xij, Z > 0 and integer valued

2.3.3 Minimum Sum of Diameters as NP-complete Problem

Brucker [15] put forth a problem of partitioning a given set of N entities into k

clusters, such that the sum of the diameters of these clusters is minimum as an

NP-complete problem for k ≥ 3 and even has unknown complexity for k = 2.

The NP-completeness of MSDC problem for k ≥ 3 is an open problem for the

researchers. When sum of diameter as other than as criterion is chosen,

clustering algorithms have constraints on the number of entities that can be

clustered. Hansen et al. [20] examined a complete-link cluster analysis

algorithm for minimization of maximum dissimilarity between entities in the

same cluster but it is delimited up to 270 entities. Similarly, Delattre et al. [13]

solved clustering problem in which both homogeneity and separation of the

22

clusters are simultaneously considered. Their research focused on the concept

of split and diameter. A single-link algorithm may have a chaining effect [39]

because of the poor homogeneity of clusters and the complete-link algorithm

may have dissection effect due to badly separated clusters. This problem is

solved by using bi-criterion cluster analysis taking both diameter and split

criteria simultaneously into account to obtain partitions without such defects.

By considering both criterions simultaneously their algorithm ensures

maximum homogeneity and maximum separation. Their algorithm is also

having bound on the number of entities and can determine a minimal complete

set of efficient partitions with up to 400 entities.

2.3.4 Linear Time Algorithm for 2-SAT Formulation

Aspvall et al. [33] redefined a linear-time algorithm for the evaluation of a 2-

satisfiabile formula. The algorithm processes the Boolean formula and

constructs a directed graph from the quantified Boolean formula of n variables.

In the first step of this algorithm, a directed graph developed on the basis of

Boolean formula. In the second step of this algorithm, a linear time algorithm

[35] is found as a strongly connected component. Time complexity of linear

time algorithm is O(max(n, m)), where n is the number of vertices and m is the

number of edges. Even et al. [40] dealt with a linear-time algorithm. Schaefer

et al. [41] also worked on efficient polynomial time solution for conjunctive

normal formula having only two literals per clause. Their research proposed a

simple constructive algorithm for the evaluation of formulas having two

literals per clause, which runs in linear time on a random-access machine. This

algorithm is based upon the Aho et al. [35] and Tarjan et al. [42] algorithm,

which talked about strong components of a directed graph in linear time. It

requires 𝑂(𝑛 +𝑚) time, where n is the number of variables in a Boolean

formula and m is twice the number of clauses in a Boolean formula.

2.3.5 2-clustering Algorithms for Minimum Sum of Diameter and

Minimizing the Maximum diameter

Under this head, various 2-clustering algorithms for the minimum sum of

diameter and minimization of largest diameter are dealt. Let N is the number of

entities in a complete graph G, C1 and C2 are clusters and D1 and D2 are their

23

diameter respectively. 2-clustering problem is finding a partition of set O of N

entities into two non-empty clusters C1 and C2, such that the sum of diameter

of cluster C1 and cluster C2 is minimized. Rao [19] researched minimizing the

maximum diameter clustering problem as mathematical programming through

linear programming. After this research finding, a huge research gap is

witnessed due to non-availability of related review of literature. A comparative

investigation of approach, constraints, issues, running time computation of

various exact 2-clustering algorithms for minimizing the sum of diameter and

minimizing the maximum diameter problem is exhibited in Table 2.1.

2.3.5.1 2-clustering algorithm based on 2-SAT Formulation

2-clustering for minimum sum of diameter is a polynomial time algorithm.

Complexity of Algorithm 2.2 is 𝑂(𝑁3𝑙𝑜𝑔𝑁). For three or more clusters

obtaining a minimum sum of diameters partition is an NP-complete problem.

This 2-clustering algorithm is based on reduction of 2-clustering problem into

2-SAT formulation.

Theorem 3. Minimum sum of diameters bipartition can be solved in O(N2)

time by reduction to the determination of the consistency of a quadratic

Boolean equation.

Proof: Reduction of 2-clustering problem to 2-SAT formula for the bipartition

{𝐶1, 𝐶2} of O is assigned by associating a Boolean variable xi to each entity of

O such that:

𝑥𝑖 = {

0, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
1, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

(13)

Assuming,𝑟1 ≥ 𝑟2, Considering a pair {𝑂𝑘, 𝑂𝑙} of entities of O; there are three

possibilities:

Case 1: If 𝑑𝑘𝑙 > 𝑟1, then 𝑂𝑘 and 𝑂𝑙 both cannot belong to the same cluster 𝐶1

or 𝐶2, so the following boolean condition holds:

 𝑥𝑘𝑥𝑙⋁�̅�𝑘�̅�𝑙 = 0 (14)

Case 2: If 𝑟1 ≥ 𝑑𝑘𝑙 > 𝑟2, then 𝑂𝑘 and 𝑂𝑙 both cannot belong to the same

cluster 𝐶2, so the following boolean condition holds:

24

 𝑥𝑘𝑥𝑙 = 0 (15)

Case 3: If 𝑟2 ≥ 𝑑𝑘𝑙, then there is no restriction on whether 𝑂𝑘 and 𝑂𝑙 both

should or should not belong to the cluster 𝐶1or 𝐶2.

After analyzing the binary relation for each pair {𝑂𝑘, 𝑂𝑙} of entities, implied by

the value of 𝑑𝑘𝑙 with respect to 𝑟1and 𝑟2, formulates a 2-SAT formula.

2-clustering Algorithm Based on Reduction to 2-SAT Formula

Algorithm 2.2 2-clustering Algorithm for MSD

Input: Graph G

Output: Cluster C1 and Cluster C2 such that sum of diameter is minimized

1. Build maximum spanning tree to find dmin (first odd cycle in the spanning

tree)

2. Identify the set of all candidate edge d1, which are possible candidates for

D1.

3. For each candidate d1 in D1: Identify the value of d2 in binary search

manner such that there exists a partitioning of the cluster graph into two

sets with diameters not exceeding d1 and d2 respectively.

4. For each entity xi of the bipartition associate a Boolean variable

5. Apply Boolean approach to construct a 2-SAT expression E for d1 and d2

𝑥𝑖 = {

0, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
1, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

6. Check satisfiability of the 2-SAT expression E using algorithm from [33]

7. If E is satisfiable then search for a lower value of d2 else search for a higher

value of d2.

8. Choose D1 and D2 to pair (d1, d2) such that the sum of d1 and d2 is

minimized.

2.3.5.2 2-clustering Algorithm for Minimizing the Largest Diameter

Asano et al. [43] presented an algorithm which partitions a set S of n points

into two subsets so that their largest diameter is minimized in time O(nlogn).

In this algorithm optimal partition is determined by either a maximum or

minimum spanning tree. Monma et al. [44] illustrated an O(n2) algorithm for

the minimum sum of diameters two clustering. Guénoche et al. [21] presented

a divisive hierarchical clustering algorithm for selecting the cluster with the

largest diameter and partitioning it into two clusters whose largest diameter is

possibly smallest one. They revealed two such algorithms: first algorithm is

25

just an efficient implementation of Hubert [45] algorithm that find all

partitions into at most M clusters in O(kn2). For a fixed value of k the time

complexity of the algorithm is O(n2). Second algorithm is a modified version

of Rao [19] algorithm, which allows to build a complete hierarchy of partitions

in O(n2logn) time.

2.3.5.3 2-clustering Algorithm for MSDC Based on Partitioning of Set

Hershberger [46] presented an algorithm for partitioning a planar set S of n

points into two subsets so that the sum of the diameters of the subsets is

minimized that is having bound of 𝑂 (
𝑛𝐿𝑜𝑔2𝑛

𝑙𝑜𝑔𝑙𝑜𝑔𝑛
).

Theorem 4. [46] Given a planar set S of n points, the bipartition 𝑆 = 𝑆1 ∪ 𝑆2,

that minimizes Diam(S1)+Diam(S2) can be found in O(nlog2n) time.

Algorithm 2.3 PlanarPartition(S)

Input: Planar Set S of n Points

Output: Two subsets with minimized sum of the diameters

1. for i =l to k do

2. Merge the points in the radial interval (ri-1,ri] into the voronoi diagram

 structure

3. for each point p in (Si-1, Si] in radial order do

3.1 Compute the farthest neighbor of p in the Voronoi diagram

structure; call it

3.2 Update the diameter 𝐷𝑖𝑎𝑚(𝑆𝑎) = max(𝐷𝑖𝑎𝑚(𝑆𝑎), 𝑑(𝑝, 𝑞)).

4. end for

5. end for

Algorithm 2.3 apply the concept of uses Union-Find algorithm [47] and use the

concept of interval to identify the values of r when new points are added to the

list. Merging of list and bi-partitioning is performed by applying Theorem 4.

Any new point in the sector M, farthest point in the current set S is a or is in T

or B; it cannot lie in M as shown in Figure 2.3. Any point in T or B is indicated

that the algorithm doesn’t need to check diameters for a substantial range of

values of r. If a point q lies in T or B at a distance α from a, then no value of r

in the following range can give a good partition: (√3𝛼/2) ≤ 𝑟 < 𝛼

26

2.3.5.4 Challenge in the NP-complete Problems

Zuckerman [48] proved that all original 21 NP-complete problems have a

version that is hard to approximate and these problems are meaninglessly hard

to approximate. In fact, one cannot even approximate log(k) of the magnitude of

these problems to within a constant factor. 3-partitioning is one of the NP-

complete problems from the list of 21 NP-complete problems. Hagauer et al.

[49] presented an algorithm of O(n2log2 n) for finding a 3-clustering which

minimizes the maximum diameter. This algorithm is based on the concept of

Capoyleas et al. [50], in which any two clusters in an optimal solution can be

separated by a line.

2.3.5.5 2-clustering Algorithm for MSDC Based on Look-ahead

Ramnath [51] presented algorithms that dynamically solve 2-SAT instances.

Algorithm 2.4 dynamically maintains the transitive closure. The input can be

represented by a weighted graph, Vertex i represented by item ai, edge eij

represents length lij between vertex i and vertex j. The output is a partitioning

of the vertex set into two clusters C0 and C1, with diameters D0 and D1

respectively. Another algorithm dynamically maintains the partitioning of a

graph into strongly connected components and runs in O(n3) and O(mn)

respectively, where m is the number of edges in the graph, n is the number of

vertices. Both algorithms use the notion of perfect deletion lookahead which

improves the time bound in comparison to notion of partial lookahead [52].

Partial lookahead is used to maintain the transitive closure that takes update

times of O(n2.18) with n0.18 lookahead. Nomain et al. [53] illustrated that

Ramnath [51] algorithm consistently performed better than P. Hansen et al. [4]

algorithm.

Figure 2.3: Partitioning of the plane into sectors

b a

T

B

M

27

Algorithm 2.4 2-ClusteringTransClos(G)

Input: Weighted graph G

Output: Two clusters C0 and C1

1. Identify all edge lengths, d0, that is possible candidates for D0.

2. Formulate the Type 0 constraint and Type 1 constraints for each edge eij.

3. Construct Type 0 constraint: If edge length(eij) > d1, then set it as conjunct

(�̅�𝑖 ∨ �̅�𝑗).

4. Construct Type 1 constraint: If edge length(eij) > d0 then set it as conjunct

(𝑥𝑖 ∨ 𝑥𝑗)

5. Insert all the Type 1 constraint into the constraint graph as undeletable

edges.

6. Check constraint graph is satisfiable or not, by applying transitive closure

or by decomposition it into strongly connected components. If it is not then

delete the edges until the constraint graph is satisfiable.

7. Record the pair (d1, d2) such that the sum of d1 and d2 is minimized.

2.3.5.6 Discussion

In the context of minimum sum of diameter problem, 2-SAT formulation is

solvable in polynomial; therefore 2-clustering problem is solvable in

polynomial. To rationalized that 3-clustering problem is NP-complete problem,

a methodology is proposed in [54] which reduced 3-clustering problem into 3-

SAT formulation, 3-SAT formulation is NP-complete problem; therefore 3-

clustering problem is also NP-complete problem. To rationalize that k-

clustering problem is NP-complete problem; a methodology is proposed in

[54] which reduced k-clustering problem into k-SAT formulation, k-SAT

formulation is NP-complete problem; hence k-clustering problem is also NP-

complete problem for minimum sum of diameter. 3-clustering problem can be

solved in polynomial time, but it requires an exploration of properties of

tripartite graph.

2.4 Literature Survey of Approximation Clustering Algorithm for

Minimum Sum of Diameter and Radii Clustering Problem

Literature survey of approximation clustering algorithms for minimum sum of

diameter and radii clustering problem is divided into two sections. Section first

dealt with evolution of approximation algorithms, approximation algorithms

for NP-complete problem, approximation algorithms to minimize the

maximum diameter/radii of cluster and approximation algorithms for p-center

28

problem [16]. In Section second, approximation clustering algorithms for

Euclidean, metric and geometric version of MSDC and MSRC problem are

analyzed. A comparative investigation of approach, issues, constraints, and

running time computation complexity of various approximation algorithms of

MSDC problem, MSRC problem and related problems is shown in Table 2.2

2.4.1 Fundamentals of Approximation Algorithms

Approximation algorithms are applied to find approximate solutions to

optimization problems. Approximation algorithms are mostly linked with NP-

hard problems. Following are the definitions of the selected terminologies:

Definition 6 (Polynomial Time Approximation Scheme [55]). A Polynomial

Time Approximation Scheme (PTAS) is a (1+ϵ) approximation algorithm that

runs in time polynomial in the size of input but it can be exponential in 1/ ϵ.

The running time of an PTAS is polynomial in n for every fixed ϵ but can be

different for different value of ϵ. Thus, running time of an PTAS algorithm can

be O(n1/ε).

Definition 7 (Quasi-polynomial Time Approximation Scheme [55]). A

Quasi-polynomial time approximation scheme (QPTAS) algorithm runs in

time 𝑂(𝑛𝑙𝑜𝑔
𝑐𝑛) for a constant c.

Definition 8 (p-center Problem [56-60]). The p-center problem is to find out

the optimal location of p nodes so that the maximum distance of a node to its

nearest center is minimized. P-center problem is NP-hard even in the case of

planar Euclidean.

2.4.2 Approximation Algorithms on Minimizing Diameter of Cluster and

Minimizing Radii of the Cluster

In this sub section, approximation algorithms are analyzed on the basis of

minimizing the diameter of cluster and minimizing the radii of the clusters.

.

29

Table 2.1: 2-clustering algorithms and minimizing the maximum diameter clustering algorithms: A Comparative Overview

Year
Authors

Name
2-clustering Algorithm Criteria Approach/Concept Constraint/Assumption/Issues

Time

Complexity

1987 Hansen et al. [4] Minimizing the sum of diameter Reduction of 2-clustering to 2-

satisfiability (2-SAT)

Can’t be extended for k >2
O(n3log n)

1988 Asano et al. [43] Minimizing the maximum diameter

Maximizing the minimum

intercluster distance

Maximum spanning tree

Minimum spanning tree

For planar set, if convex hull is disjoint

For convex polygon and vertices

should be ordered

O(nlogn)

O(nlogn)

1989 Monma et al. [44] Minimizing the sum of diameter Bicoloring vertices of Maximum

spanning tree

Algorithm applicable only for

Euclidean plane with O(n) space

O(n2)

1991 Guénoche et al. [21] Minimizing the maximum diameter Optimal bicolorations of vertices Applicable only for fixed value of k O(n2)

1992 Hershberger [46] Minimizing the sum of diameter

Minimizing the sum of diameter

Finding good bipartition and farthest-

point voronoi diagram

Merge the points in the radial interval

into the voronoi diagram structure

Points should lie in a plane

Ratio between diameter & minimum

inter-point distance should be

polynomial in n

O(nlog2n/log

logn)

O(nlogn)

2002 Ramnath [51] Minimizing the sum of diameter

Minimizing the sum of diameter

Dynamically solving the 2-SAT

instances and dynamically maintaining

the transitive closure

Dynamically solving the 2-SAT

instances and dynamically maintaining

the partitioning of a graph into strongly

connected graph

Applicable only for 2-SAT instances,

for 3 or more clusters number of

constraints increase exponentially

Applicable only for 2-SAT instances,

for 3 or more clusters number of

constraints increase exponentially

O(n3)

O(mn)

30

2.4.2.1 2-approximation Algorithm for Minimizing the Maximum

Intercluster Distance (1985)

Gonzalez [61] examined an 2-approximation algorithm to minimize the

maximum intercluster distance that runs in O(kn) time for m dimension, where

n is the number of points, k is the number of clusters and m represents

dimensionality (for all value of m). D.S. Hochbaum et al. [62] obtained same

results but their algorithm is not applicable for m > 1. Their approximation

algorithm proves successful as long as the set of points satisfies the triangular

inequality. They found that in two dimensions, (2cos(π/6)-ϵ) or (1.732-ϵ)

approximation problem is NP-hard for all ϵ > 0. Further, they proved that their

algorithm is best possible with respect to the approximation bound, if P ≠ NP.

2.4.2.2 Approximation Algorithm Based on Subgraph Technique for NP-

complete Problems

Hochbaum et al. [63] carried out this study on selected approximation

algorithms to wide variety of NP-complete problems. In their research, the

basic approach is to identify a subgraph out of a complete graph satisfying

certain constraints such that the length of the longest edge included in the

subgraph is minimized. Moreover, their approximate algorithms for k-

clustering and k-center delivered approximate solutions guaranteed to remains

present within a constant factor 2 of the optimal solution. Their pragmatic

approach is highly applicable in routing, location design and communication

network design.

2.4.2.3 Approximation Algorithm for Pairwise Clustering and Central

Clustering

Feder et al. [64] defined two measures of cluster size. First measure is the

maximum distance between pairs of points in the same cluster which is also

recognize as pairwise cluster and the second measure is the maximum distance

between points in each cluster and a chosen cluster center also recognize as the

central cluster. They proved that approximation clustering in d ≥ 2 dimensions

is NP hard for α < 1.82(for pairwise cluster) and α < 1.97 (for central cluster).

They also elucidated a 2-approximation algorithm of running time O(nlogk),

emanated from box decomposition method [65].

31

2.4.2.4 Approximation Algorithm Based on Geometric Technique

Capoyleas et al. [50] investigated minimizing the diameter of the cluster or

minimizing the radii of the cluster problem based on the geometric technique.

Just like to above stated referred problem, minimizing the maximum radius

problem is also well known as k-center problem [57]. They study the

minimizing the diameter or minimizing radii of the clusters problem in

polynomial time O(n6k), for any fixed value of k and for any monotonic

increasing function of cluster diameter or radius. Further, they concluded that

any two clusters in an optimal solution can be separated by a line. In a similar

work align with this study Megiddo et al. [66] also proved that minimizing the

maximum cluster area problem and minimizing the sum of all cluster areas

problem is NP-complete problem.

2.4.2.5 Approximation Algorithm for Minimize the Maximum Diameter

and Minimize the Maximum Radius

There are a number of researchers addressed the clustering problem where the

core objective is to minimize the maximum diameter or minimize the

maximum radius of a cluster. Plesnik [67] disclosed that minimizing the

maximum diameter and minimizing the total diameter, even for k=2, cannot be

efficiently approximated to within factors less than 3/2 and 5/4 respectively

unless P = NP.

Megiddo [68] presented an O(n log3n) algorithm for the continuous p-center

problem and an O(n log2 n log logn) algorithm for a weighted discrete p-center

problem. Charikar et al. [69] modelled deterministic and randomized

incremental version of the clustering problem for minimizing the maximum

radius. Agarwal et al. [70] identified an (1 + 𝜖) approximation algorithm for

the k-center problem, with running time complexity of 𝑂(𝑛𝑙𝑜𝑔𝑘) +

(𝑘/𝜖)𝑂
(𝑘1−1 𝑑⁄)

 . Agarwal et al. [71] studied projective clustering problems with

objective a subtle to cover the set S (set of n point in ℝ𝑑) by k hyper-strips

(hyper-cylinders) in a manner such that maximum width of a hyperstrip

(maximum diameter of a hyper-cylinder) is minimized, for positive integer

value of k. Bădoiu et al. [72] investigated an (1 + 𝜖) approximation algorithm

for the k-center clustering and k-median clustering problems in Euclidean

32

space based on the construct of core-sets. Running time of the algorithm has

linear or near linear dependency on the number of points and the dimension,

and exponential dependency on 1/𝜖 and k.

2.4.3 Approximation Algorithms for MSDC and MSRC problem

In this subsection, approximation algorithms for MSDC and MSRC problems

are discussed.

2.4.3.1 Logarithmic Approximation Algorithm to Minimize the Sum of

Diameter (2000)

Doddi et al. [29] discovered a logarithmic approximation algorithm for

minimizing the sum of diameter problem. They regarded that problem of

partitioning the nodes of a complete edge weighted graph into k clusters is to

minimize the sum of diameters of the clusters. Algorithm 2.5 is based on the

novel concept that merging pairs of intersecting clusters do not increase the

total diameter of clusters, assuming clusters are pairwise disjoints.

Lemma 1. Let I be an instance of minimum sum of diameter clustering given

by the edge weighted complete graph G(V, E) and integer k. Let C = {C1, C2,. .

. . Ck} be a collection of subsets of V such that their union is V and the sum of

the diameters of all the subsets in C is ψ. Suppose Ci and Cj (i ≠ j) are two sets

in C such that Ci ∩Cj ≠ ϕ. Then total diameter of the collection C obtained by

deleting Ci and Cj from Cʹ and adding the set Ci U Cj is at most ψ.

Algorithm 2.5 ApproxCMSD(𝑮(𝑽,𝑬), 𝒌)

Input: Complete edge weighted graph G, number of clusters k

Output: k clusters with minimum sum of diameter

1. Initialize i = set of |V| singleton clusters. 𝐷 = { {𝑣}: 𝑣 ∈ 𝑉}}

2. while (|D| > 10k) do

3. Assign N= set of vertices obtained by selecting one arbitrary vertex from

each set of D

4. C = FindCover(G(N,E),k)

5. D = Merge(D, C)

6. end while

7. return(D)

33

Subroutine (1): FindCover (𝐺(𝑁, 𝐸), 𝑘)

This subroutine return a set of no more than 3𝑘[1 + (ln(|𝑁|/𝑘))] clusters

which cover N with cost no more than 3𝑘[1 + (ln(|𝑁|/𝑘))](1 + 𝜖)𝑂𝑃𝑇. This

subroutine call ParametricBMCP (𝐺(𝑁, 𝐸), 𝑘)

Subroutine(2): ParametricBMCP(𝐺(𝑁, 𝐸), 𝑘)

The Budget Maximum Cover Problem (BMCP) selects a subcollection of sets

so that the total cost of the selected sets is at most B and the number of

elements covered by the chosen sets is a maximum. This subroutine generates

a set of a set of no more than 3k clusters covering (1-1/e)|N| or more vertices

from N with cost no more than 3(1 + 𝜖). 𝑂𝑃𝑇 for any fixed 𝜖 > 0. This

subroutine call TransformToSetCover (𝐺(𝑁, 𝐸), 𝑘, 𝑓)

Subroutine(3):TransformToSetCover(𝐺(𝑁, 𝐸), 𝑘, 𝑓)

This subroutine accepts an instance of CMSD along with a nonnegative value

f, and produces an instance of the weighted set cover problem. With base set Q,

and collection W of nonempty subsets of Q, each with a weight. This

transformation is executed in polynomial time and it’s based on the fact that

OPT(I′)) < 2 OPT(I) + f, where OPT(I) and OPT(I′) denotes the optimal

solution value of CMSD problem and weighted set cover problem respectively.

Subroutine (4):Merge(D,C)

This subroutine uses Lemma 1 and merges element of set C and element of Set

D such that the overall cost is no more than the sum of the costs of set C and

set D. They presented a logarithmic approximation algorithm that has no more

than 10k clusters such the total diameter of generated clusters is within a factor

O(log (n/k)) of the optimal value for k clusters, where n is the number of nodes

in the complete graph. Their results rely on transformation of the problem into

an instance of the weighted set cover problem and budget maximum coverage

problem [73]. They identified an approximation algorithm for k clusters, such

that cost of total diameter is at most twice the optimal value (for fixed value of

k). They also addressed the NP-hardness of minimum sum of diameter

34

clustering problem (satisfying the triangle inequality) and proved that it is NP-

hard to approximate the cost of total diameter to within a factor 2 − 𝜖 of the

optimal value (for 𝜖 > 0). Finally, they presented an polynomial time

algorithm considering the underlying graph as a tree with edge weights,

algorithm runs in O(k2n3) and uses O(kn2) space.

2.4.3.2 Approximation Algorithm for Metric Version of MSDC & MSRC

Problem

Charikar et al. [22] presented a primal–dual based constant factor

approximation algorithm for the points in a metric space to minimize the sum

of cluster diameters or the sum of cluster radii. They extended k-median

approximation algorithms of Jain et al. [74] and Charikar et al. [75]. Algorithm

2.6 is a greedy algorithm that achieves a logarithmic approximation and

applicable if distance function is asymmetric. They show that there exists a

polynomial time randomized algorithm that achieves a (3.504 + ϵ)

approximation for the sum-radii problem using at most k clusters, in running

time of 𝑛𝑂(
1
𝜀⁄).

They also proved that ∝ approximation algorithm minimizing the sum of radii

clustering problem yields an 2 ∝ approximation to minimize the sum of

diameter clustering problem.

Algorithm 2.6 ApxAlgorithm(N)

1. Guess the largest l clusters in the optimal solution. k′ = k – l. The remaining

steps find at most k′ clusters to cover the points outside the guessed l

clusters.

2. Run algorithm primal-dual fixed cost sum-radii with all fixed costs set to z,

perform a binary search on z to identify two values z1 and z2; such that the

algorithm produces ≤ k′ clusters for z1 and ≥ k′ clusters for z2.

3. Let T1 and T2 be the set of tight clusters obtained by the algorithm for z1

and z2 and Let �̅�1 ⊆ 𝑇1 and �̅�2 ⊆ 𝑇2 be the set of original clusters picked in

the solution for z1 and z2. Identify clusters in �̅�2 that are disjoint from all

clusters in �̅�1 . Add these clusters to one at a time to �̅�1, until |�̅�2| = 𝑘′.

4. Let F1 denote the final value of �̅�1 and 𝐹2 = �̅�2. Let S1 and S2 represent the

solutions respectively with |𝐹1| = 𝑘1 ≤ 𝑘′ and|𝐹2| = 𝑘2 ≥ 𝑘′. Expressing

k′ as combination of k1and k2 with some coefficients a and b.

5. 𝑎 + 𝑏 = 1, 𝑎. 𝑘1 + 𝑏. 𝑘2 = 𝑘′

35

6. 𝑎 =
𝑘2−𝑘′

𝑘2−𝑘1
 , 𝑏 =

𝑘′−𝑘1

𝑘2−𝑘1

7. Group the clusters, each group containing one cluster from F1 and one or

more cluster from F2.

8. Apply probability distribution on the set of numbers nq and allocation of

clusters is determined by the disjoint sets S1, S2.

9. Return the better of the two solutions S1 and the solution produced as the

output of the previous step.

LP Formulation for the sum-radii problem: For every center i and radius r,

𝑦𝑖
(𝑟)

 is an indicator variable that indicates if there is a cluster of radius r

centered at i.

 min∑∑𝑟. 𝑦𝑖
(𝑟)

𝑟𝑖

 (16)

 ∀ j∑ ∑ 𝑦𝑖
(𝑟)

𝑟:𝑑(𝑖,𝑗)≤𝑟

≥ 1

𝑖

 (17)

∑∑𝑦𝑖
(𝑟) ≤ 𝑘

𝑟𝑖

 (18)

Dual of the LP Problem is

 max∑ ∝𝑗− 𝑘. 𝑧

𝑗

 (19)

 ∀ 𝑖, 𝑟 ∑ ∝𝑗≤ 𝑟 + 𝑧

𝑗:𝑑(𝑖,𝑗)≤𝑟

 (20)

LP Formulation for the fixed cost sum-radii problem (fi is fixed cost):

 min∑∑𝑦𝑖
(𝑟). (𝑟 + 𝑓𝑖)

𝑟𝑖

 (21)

∀ j∑ ∑ 𝑦𝑖
(𝑟)

𝑟:𝑑(𝑖,𝑗)≤𝑟

≥ 1

𝑖

 (22)

Dual of the fixed cost sum-radii LP Problem:

36

 max∑ ∝𝑗
𝑗

 (23)

∀ 𝑖, 𝑟 ∑ ∝𝑗≤ 𝑟 + 𝑓𝑖
𝑗:𝑑(𝑖,𝑗)≤𝑟

 (24)

LP formulations of the sum-radii problem can be transformed similar to the LP

formulations of the fixed costs sum-radii problem by setting the fixed costs fi =

z. The constraints in the fixed costs sum-radii dual LP equation (23)–(24) are

exactly the same as the constraints in the sum-radii dual LP equation (19)–

(20). Thus, a feasible solution to the fixed costs sum-radii problem is a feasible

solution to the sum-radii problem.

2.4.3.3 Approximation Algorithm for Geometric Disk Covering Problem

Research work of Tov et al. [30] is concerned with geometric disk covering

problem [76]. Their research work is based one of the geometric disc covering

problem, placement of base stations in wireless network design. In base station

placement problem, set of clients are to be covered by collection of disks of

variable radii around a base station location, such that sum of radii of disk is

minimized. Similar problem like fixed radius covering problem with given

potential server locations is considered by Glasser et al. [77].

Disk covering Problem: Let us consider 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑚} representing base

locations for placing base stations (servers) and 𝑌 = {𝑦1, 𝑦2, … 𝑦𝑚}

representing the clients. A base station located at xi has a certain transmission

range Ri. A client node yj is covered by a base station placed at xi, if yj is

contained in the disk of radius Ri centered at xi or falls on its boundary. The

disk covering problem is to finding a collection of servers covering all the

clients. Where as in minimum sum of radii cover problem, objective is to

select the transmission radii Ri such that all the clients are covered and the sum

of the transmission ranges is minimized. They presented a polynomial time

algorithm of time complexity O((n+m)3) based on dynamic programming for

the 1-dimensional minimum sum of radii cover problem. Lastly, they also

identified polynomial time approximation scheme for the minimum sum of

radii cover problem with approximation ratio of (1+6/k) and time complexity

37

of O(k2(nm)γ+2). Polynomial time approximation scheme is based on a

modified variant of the hierarchical grid-shifting technique [78].

2.4.3.4 Approximation Algorithms for Geometric Version of min-size k-

clustering Problem

Bilo et al. [75] studied geometric versions of the min-size k-clustering

problems which generalize clustering to minimize the sum of cluster radii

problem. They also studied PTAS for each instance (X, F, d, α) of the

minimum sum of radii cover problem, where X is a set of n points with rational

coordinates on the d-dimensional Euclidean space, F is a non-negative cost

function associated with each point, and a constant value α. Their algorithm

extended the idea of plane subdivision from an algorithm of from Erlebach et

al. [78] that approximates the minimum vertex cover of disk graphs. Their

algorithm computes an (1 + 𝜖)-approximate solution in 𝑛(
𝛼
𝜖⁄)
𝑂(𝑑)

time. When

the points to be clustered are located on a line, clustering to minimize the sum

of cluster size problem can be solved in polynomial time.

2.4.3.5 Approximation Algorithms for Euclidean Version of min-cost k-

cover Clustering Problem

Gibson et al. [80] showed that the Euclidean min-cost k-cover problem is

solvable exactly in polynomial time (on the assumption of some model of

computation). Optimal k-cover problem can be efficiently computed using

dynamic programming, as in [81‒82]. Euclidean version of the problem is well

examined in [29, 30] and it is extended to metric version of probabilistic

partitions [83‒84]. Other researchers also worked in the same direction, but

their research work is associated with some limitations like, Alt et al. [85]

consider a class of geometric facility location problems and showed that the

NP-hardness result for the MSRC problem can be extended to any α > 1. Alt et

al. [85] presented O(n4logn) fast constant-factor approximation algorithms that

cost (4α OPT) for the MSRC problem and also consider various related

problems. Wei-lin et al. [86] gave a polynomial-time approximation algorithm

for the ω-constrained k-facility location problem with approximation ratio

38

ω+1+ϵ and proved that ω-constrained facility location problem cannot be

approximated with in 1 + ln√𝜔 − 1.

In the geometric version of min-cost k-cover problem, the optimal solution is a

set of k disks, each of which is centered on some input point and each of which

has a radius that is the distance between two input points. If input points have

integer coordinates, cost of such a solution is the sum of square roots of

integers. Two sums of square roots of integers can be compared in polynomial

time is an open problem [87‒88]. Comparing two sums of square root of

integer in polynomial time is an open problem [80].

Theorem 7. [80] There is a polynomial time algorithm that, given a set P of

points in the plane and an integer k ≥ 1, returns an optimal k-cover of P.

They showed that the Euclidean min-cost k-cover problem (α = 1) is solvable

exactly in polynomial time (Theorem 7). Aspect ratio (∆) of the input point set

P, is the ratio of the maximum to minimum inter-point distance within P.

When ∆ is bounded by a polynomial in n, it yields a randomized algorithm that

runs in nO(log n·log ∆) time returns an optimal k-cover of P with high probability.

When Euclidean metric does not hold the model of computation, exact

algorithm for the Euclidean metric can be translated into an approximation

algorithm. Algorithm 2.7 runs in polynomial time in the input size and log(1/ϵ)

and returns a solution of cost at most (1+ϵ) times the optimal solution (0 < ϵ <

1).

Lemma 2. [80] Consider an optimal κ-cover D for some set 𝑄 ⊆ 𝑃 of points

contained in a rectangle R. The rectangle R has a separator that intersects at

most 12 disks in D.

Algorithm 2.7: DC(R, κ, ϕ)

Input: A balanced rectangle R, an integer κ ≥ 0, and a subset T ⊆ D.

Output: optimal k-cover

1. Create a Table (P ∩R, κ, T) if not created. 𝐷′ = { I }

2. for all choices of separator 𝑙 ∈ 𝐿(𝑅′) do

39

3. for all choices a set 𝐷0 ⊆ 𝐷 of at most 12 disks (Lemma 2) that

 intersect l do

4. for all choices of κ1, κ2 ≥ 0 such that κ1 + κ2 + D0 < κ do

5. Let R1 and R2 be two rectangles into which l partitions 𝑅′.

 Let 𝑇1 = {𝐷 ∈ 𝑇 ∪ 𝐷0 |𝐷 intersects 𝑅1}.

 Let 𝑇2 = {𝐷 ∈ 𝑇 ∪ 𝐷0 |𝐷 intersects 𝑅2}

6. if |T1| ≤ β and |T2| ≤ β then

7. Recursively call DC (R1, κ1, T1) U DC (R2, κ2, T2)

8. if cost (D0 U Table R1, κ1, T1) U Table (R2, κ2, T2)) < cost (𝐷′)
 then update 𝐷′ ← 𝐷0 ∪ Table (𝑃 ∩ 𝑅1, 𝜅1, 𝑇1) ∪ Table (𝑃 ∩ 𝑅2, 𝜅2, 𝑇2)

9. Assign Table (R, κ, T) by 𝐷′

10. return.

Description of the algorithm:

The algorithm begins with a rectangle containing all the points and cuts it into

two smaller rectangles by selecting a separator line and solves the sub-

problems corresponding to smaller rectangles recursively, assuming disc I is of

infinite radius. Consider an instance of the Euclidean minimum sum of radii

covering problem to compute an optimal k-cover of P of n points in the plane.

Let D be the set of discs, whose center is some 𝑝 ∈ 𝑃 and radius is |pq| for 𝑞 ∈

𝑃, then |D| = n2. In a similar manner, if D is the set of distinct maximum cluster

then D ≤ n2.

Algorithm 2.7 is a dynamic programming algorithm which employs balanced

rectangles to define the subproblems. A rectangle(R) is said to be balanced if

its width is at least a third of its length, i.e. length(R) ≥ 3 * width(R). A

vertical (horizontal) line is critical if it passes through a point in P or a point of

vertical (horizontal) tangency of some disk in D. A separator for a (balanced)

rectangle is any line which is perpendicular to its longer side and cuts it in the

middle third of its longer side. Procedure compress(R) accepts a balanced

rectangle R′ that contains at least two of the points in P and returns a balanced

rectangle R such that (a) R′ is contained in R, (b) R′ contains 𝑃 ∩ 𝑅, and (c) for

any separator for R′, there are points of 𝑃 ∩ 𝑅 in both of the open half-spaces

that it bounds (and consequently, any separator for R′ partitions 𝑃 ∩ 𝑅 into two

nonempty subsets).

40

2.4.3.6 Approximation Algorithms for Metric Version of min-cost k-cover

Clustering Problem

Gibson at el. [89] explored the metric versions of clustering to minimize the

sum of radii problem. They generalized the algorithmic approach of Gibson et

al. [30] to the metric case and then probabilistically partitioned the metric into

sets. For the k-cover metric problem, they obtained an exact algorithm of

running time is nO(logn·log ∆), where ∆ (aspect ratio is the ratio between

maximum interpoint distance and minimum interpoint distance. Proposed

algorithm is randomized in nature and succeeds with high probability. When, ∆

is bounded by a polynomial in n, the running time of the algorithm is quasi-

polynomial. In their research work they proposed an randomized algorithm of

nO(log n·log ∆) time for k-cover problem, that takes input a set P of n points in a

metric space, an integer k, and a parameter 𝜖. Cost of the proposed algorithm

with probability at least ½ is within a multiplicative factor of (1+ϵ) of the

optimal k-cover.

2.4.3.7 Approximation Algorithms for Euclidean Version of Minimum

Sum of Radii Cover Problem

Gibson et al. [90] showed that the Euclidean min-cost k cover problem is

solvable exactly in polynomial time, under the assumption that the cost of any

two candidate covers can be compared in polynomial time. Proietti et al. [91]

also considered a problem closely related to the metric min cost k-cover

problem or k-radius problem, they proved that the problem is NP-hard.

They showed that there is an algorithm that, given a set P of n points in the

plane and an integer k ≥ 1, runs in O(n881.T (n)) time and returns an optimal k-

cover of P. Here, T (n) ≥ 1 is an upper bound on the time needed to compare

the costs of two subsets of D, each of size at most n, and D is the set of n2 disks

whose center is some p∈ P and whose radius is |pq| for some q∈ P. They

showed that there is an approximation algorithm if the model of computation is

bypassed. Given a set P of points in the plane, an integer k ≥ 1, and a

parameter 0 < 𝜖 < 1, their exists an algorithm that runs in time polynomial in

the input size and log (1 𝜖⁄) and returns a k-cover of P whose cost is at most

41

(1 + 𝜖) times the cost of an optimal k-cover. They presented an algorithm for

minimum sum of radii cover problem that runs in time nO(1).T(n) and returns an

optimal solution. Here, C is set of clients and a set F of facilities in ℝ2, n = |F

∪ C|, and T(n) ≥ 1 is an upper bound on the time required to compare any two

subsets of D; D consists of the set of O(n2) disks with center at some p ∈ F and

radius |pq| for some q ∈ C and there is no upper bound on the number of disks.

2.4.3.8 Approximation Algorithms for Metric Version of Clustering to

Minimize the Sum of Radii Clustering

Behsaz et al. [92] explored metric versions of clustering to minimize the sum

of radii. They presented a polynomial time exact algorithm for minimum sum

of radii cover problem that runs in O(log2n) for metrics of unweighted graphs,

assuming no singleton clusters are allowed. They searched out an (1 + 𝜖)

PTAS for the MSDC problem that runs in time nO(1/ ϵ), set V contains n points

in ℝ2, an integer k, and an error bound 𝜖 > 0. For the fixed value of k, they

presented an exact algorithm for MSDC problem of 𝑂(𝑘2𝑛𝑘
2+𝑘+2).

2.5 Conclusion

This chapter presents a detailed survey on exact and approximate algorithms

for minimum sum of diameter and minimum sum of radii clustering

algorithms. This chapter covers various algorithm which are scattered in the

various literatures. This chapter investigates the algorithm on the following

key factors: formulation/technique, year of evolution, clustering criteria,

approach and time complexity. In this research, we presented a comparative

overview of the algorithm in tabular form that identifies issues, constraints,

assumptions and challenges in the algorithm. MSDC and MSRC clustering

algorithm is still an open problem due to the existence of many inherent

constraints and limitation of existing algorithms.

42

Table 2.2: Approximation algorithms for minimum sum of diameter clustering and minimum sum of radii clustering: A Comparative Overview

Year
Author

Name
Clustering Algorithm Approach/Concept

Constraint/Assumption/

Issues
 (TC)/ (AF)

2000 Doddi et

al. [29]

Logarithmic approximation algorithm for

MSDC

Approximation algorithm for MSDC

Polynomial time algorithm for MSDC

Parametric budget maximum

coverage

Minimum cost set cover approach

Dynamic programming

For no more than 10k clusters

For fixed value of k.

Underlying graph is assume

as a tree with edge weights

AF: O(log (n/k))

AF: 2

TC:O(k2n3)

2004 Charikar et

al. [22]

Approximation algorithm for the metric

version of MSRC

Based on primal dual algorithm For at most k clusters AF: (3.504 + 𝜖)

TC: 𝑛𝑂(
1
𝜖⁄)

2005 Tov et al.

[30]

Polynomial time algorithm for 1-

dimensional minimum sum of radii cover

problem

Polynomial time approximation scheme

for minimum sum of radii cover problem

Dynamic program ming

Geometric disk covering and

hierarchical grid-shifting technique

Clients and servers are

located on a straight line

constant γ is dependent on k

TC: O((n+m)3)

AF: (1 + 6/k)

TC: O(k2.(nm)γ+2)

2005 Bilo et al.

[79]

Polynomial time algorithm for min-size

k-clustering problem

Polynomial time approximation scheme

for each instance (X, F, d, α) of the

geometric min-size k-clustering

Expressing the problem as integer

linear programming

Plane subdivision technique with

approximating the minimum vertex

cover of disk graph

Points should be located on a

line

For points in Euclidean space

of constant dimension

TC: 𝑛𝑂(𝜆
4+𝜉)

AF: (1 + 𝜖)

TC: 𝑛(
𝛼
𝜖⁄)𝑂(𝑑)

2008 Gibson et

al. [80]

Approximation algorithm for minimum

cost k-cover problem for Euclidean

metric

Dynamic programming algorithm

which uses balanced rectangle as a

sub problems.

Model of computation is not

hold

AF: (1 + 𝜖)

TC: polynomial in input

size and log (1/ϵ)

43

2010 Gibson et

al. [89]

Exact algorithm for minimize cost k-

cover problem for metric case

Approximation algorithms for minimize

cost k-cover problem for the metric space

Probabilistic partitions

Discretization of problem into

several instances of exact metric k-

cover problem

Assuming ∆ is polynomial

bounded by n

Model of computation does

not hold

TC: 𝑛(𝑙𝑜𝑔𝑛.𝑙𝑜𝑔∆)

AF: (1 + 𝜖)

TC: 𝑛(𝑙𝑜𝑔𝑛.𝑙𝑜𝑔
𝑛

𝜖
)

2012 Gibson et

al. [90]

Polynomial time exact algorithm for

Euclidean min-cost k-cover problem

Approximation algorithm for the

Euclidean min-cost k-cover problem

Polynomial time algorithm for Euclidean

minimum sum of radii cover problem

Structure possessed by optimal

solutions is eminently separable by

a line and dynamic programming

Introducing the proxy cost for each

disk and comparing the proxy cost

of disk rather than actual cost

Recursive procedure, disk are

centered only at the facilities and

not the clients

Assuming the cost of two

subsets of D can be compared

polynomial time

Model of computation does

not hold

No upper bound on number

of disk and a point can be

client or facility at a time

TC: O(n881 .T (n))

AF: (1 + 𝜖)

TC: Polynomial in the

input size and log (1/ ϵ)

TC: nO(1) .T (n)

2012 Bahaz et

al. [92]

Polynomial time exact algorithm for

minimum sum of radii clustering

problem for metrics of unweighted graph

Polynomial time approximation scheme

algorithm for MSDC problem for ℝ2

Polynomial time exact algorithm for the

MSDC problem

Reducing the minimum sum of

radii problem polynomial time to

the minimum sum of radii problem

for connected graphs

In optimal solution convex hulls of

the clusters are disjoint

Distance between two vertices of

different cluster is greater than sum

of diameters then vertices can be

separated

Graph should be

polynomially bounded, no

singleton cluster is allowed,

graph should be connected

Clusters are not necessary

defines by a disc

Applicable only for constant

value of k

TC: 𝑛𝑜(𝑙𝑜𝑔
2𝑛)

AF: (1 + 𝜖)

TC: nO(1/ ϵ)

TC: 𝑂(𝑘2𝑛𝑘
2+𝑘+2)

44

Chapter 3

Reduction of Clustering Problem as

SAT Statement

3.1 Introduction

3-Clustering is partitioning a set of entities into three non-empty clusters such

that there sum of diameter is minimum. Similarly, k-clustering is partitioning a

set of entities into k non-empty clusters such that there sum of diameter is

minimum. 3-clustering and k-clustering problem are NP-complete problem. k-

clustering problem is applicable in many real-life applications. k-clustering

plays important role in social networking. In this chapter, we introduce the

concept of reduction of 3-clustering problem to 3-SAT formulation and k-

clustering problem to k-SAT formulation.

3.2 Reduction of 3-clustering Problem to 3-SAT Formulation

Let O = {O1, O2, . , . , ON} denote a set of N = |O| entities and D ={ dkl/ t ≤ k

≤ N, 1 ≤ 1 ≤ N } a set of dissimilarities between pairs of these entities. A

dissimilarity dkl is a real number and satisfies to the conditions dkt≥ 0, dkk= 0,

and dkl = dlk for k , l = l , 2 , . . . , N .A partition PM = {C1, C2, C3 } of the

entities of O into 3 clusters is such that no cluster is empty, any pair of clusters

has an empty intersection and the union of all clusters is equal to O. In this

chapter, three clustering problem for minimum sum of diameter is reduced into

3-SAT statements using belonging approach.

3.2.1 Belonging Approach

45

3-Clustering is partitioning a set of 𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑛} entities into 3 clusters

C1, C2 and C3 such that no cluster remains empty, any pair of clusters has an

empty intersection and the union of all clusters is equal to O. A belonging

formulation [94], reduces 3-clustering problem to 3-SAT formulation.

Consider the three clusters C1, C2 and C3, and r1, r2, r3 are radius respectively

such that r1 > r2 > r3. An association of variable xi for each entity is formulated

as follows:

 𝑥𝑖 = {

𝑝𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
𝑞𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2
𝑟𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2

 (25)

Thus, if entity Oj belong to cluster C1 then 𝑝𝑗 = 1, 𝑞𝑗 = 0 and 𝑟𝑗 = 0

3.2.2 Formulation of 3-clustering problem as 3-SAT Formulation

Constraint type 1: If dkl > r1, then Ok and Ol together cannot belong to the same

cluster C1, C2 and C3, generated constraints are as:

a. if(𝑂𝑘 ∈ 𝐶1) then((𝑂𝑙 ∈ 𝐶2)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑝𝑘 ∧ (𝑞𝑙 ∨ 𝑟𝑙) = 1)

b. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨ 𝑟𝑙) = 1)

c. if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1)

d. if(𝑂𝑙 ∈ 𝐶1) then((𝑂𝑘 ∈ 𝐶2)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑝𝑙 ∧ (𝑞𝑘 ∨ 𝑟𝑘) = 1)

e. if(𝑂𝑙 ∈ 𝐶2) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑞𝑙 ∧ (𝑝𝑘 ∨ 𝑟𝑘) = 1)

f. if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1)

Constraint type 2: If r1 > dkl > r2, then Ok and Ol together cannot belong to the

same cluster C2 and C3, generated constraints are as:

a. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨ 𝑟𝑙) = 1)

b. if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1)

c. if(𝑂𝑙 ∈ 𝐶2) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶3)) ⇒ (𝑞𝑙 ∧ (𝑝𝑘 ∨ 𝑟𝑘) = 1)

d. if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1)

 e. (𝑝𝑘 ∨ 𝑝𝑙) = 1

46

Constraint type 3: If r2 > dkl > r3, then Ok and Ol together cannot belong to the

cluster C3, generated constraints are as:

a. if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨ 𝑞𝑙) = 1)

b. if(𝑂𝑙 ∈ 𝐶3) then((𝑂𝑘 ∈ 𝐶1)or(𝑂𝑘 ∈ 𝐶2)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨ 𝑞𝑘) = 1)

c. (𝑝𝑘 ∨ 𝑝𝑙) = 1

d. (𝑞𝑘 ∨ 𝑞𝑙) = 1

Constraint type 4: If r3 > dkl then there is no restriction, Ok and Ol can belong

to any cluster.

3.2.3 Complexity Computation

The present research assumed a complete graph G(V, E), having n vertices.

Number of edges in the graph G will be n*(n-1)/2 or will order of O(n2). Every

edge belongs to Constraint type 1/ type 2/ type 3/ type 4 and generated

constraints are in the form of 3-SAT. Hence, number of constraints/clauses

generated will be 6, 5, 4, 0 respectively. So, for graph G, number of

constraints/clauses generated will order as O(6n2). Number of nodes (vertices)

n can belong to 3 clusters so; numbers of generated variables are 3n. In case of

minimum sum of radii problem for 3 clusters, all subsets of distinct maximal

clusters are generated in order of O(n6). Therefore, time complexity to reduce

3-cluster to 3-SAT for minimum sum of radii problem is O(n8).

3.3 Reduction of k-clustering Problem to k-SAT Statement

Social networks are social communities of the web, connected via electronic

mail, websites and web logs, and networking applications such as Twitter,

Facebook, or LinkedIn. Social network analysis maps and measures formal and

informal relationships to understand what facilitate or impede the knowledge

flows that bind interacting units. In social networks [23], "nodes" of the

network are people and the "links" are the relationships between people. Nodes

are also used to represent events, ideas, objects, or other things. Social network

analysis practitioners collect network data, analyses the data and often produce

maps or pictures that display the patterns of connections between the nodes of

the network. These maps reveal characteristics of the network that guide

47

participants as they evaluate their network and plan ways to improve their

collective ability to identify and achieve shared goals. Constraints provide

guidance about the desired partition and make it possible for clustering

algorithms to increase their performance.

3.3.1 k-clustering Problem Statement

Let O = {O1, O2, . . . , ON} denote a set of N = |O| entities and D ={ dij/ i ≤ k

≤ N, 1 ≤ j ≤ N } a set of dissimilarities between pairs of these entities. A

dissimilarity dij is a real number and satisfies to the conditions dij≥ 0, dii= 0,

and dij = dji for i, j = l, 2, . . . , N. A partition PM = {C1, C2, . . . , Ck} of the

entities of O into K clusters is such that no cluster is empty, any pair of clusters

has an empty intersection and the union of all clusters is equal to O.

3.3.2 Transformation of Social Network Concepts into SAT Statement

Bonding and bridging are two different important connectivity and measures in

social network. In Figure 3.1 Bonding denotes connections in a tightly bind

group. Bridging denotes connections to another cluster. Social network

analysis literature, bonding and bridging are often called closure and brokerage

respectively. Analyzing network data to measure bonding and bridging helps to

predict important outcomes such as efficiency and innovation: bonding

indicates a sense of trusted community where interactions are familiar and

efficient; bridging indicates access to new pattern or group.

Figure 3.1: Mapping of bonding and bridging to ML & CL constraints in a social network

f

g

h

c d

e
Homogeneity

S
ep

aratio
n

Bonding

ba

CL Constraint

Cluster 1 Cluster 2

j

k

i

Cluster 3

Bridging

ML Constraint

48

Homogeneity Bridging Must Link Constraints SAT Statements

Separation Bonding Can-not Link Constraints SAT Statements

Business

Logic

Concept of social networking can be transformed into mathematical model.

The transformation process is drawn in Figure 3.2. Transformation of business

logic on the basis of attributes of objects/actor to the properties like

homogeneity and separations. These properties homogeneity and separations

are transformed into bonding and bridging respectively to construct social

network. Social network concepts are transformed into must link and can-not

link constraints. These ML and CL constraints are represented in a

mathematical form of as a SAT statement.

 Figure 3.2: Transformation of business logic into SAT statements

3.3.3. Belonging Approach

For k-clustering, a belonging approach put forward k-clustering problem as k-

SAT formulation. k-clustering is partitioning a set O = {O1, O2, . . . , On} entities

into k clusters C1, C2,…,Ck cluster such that no cluster remains empty, any pair

of clusters has an empty intersection and the union of all clusters is equal to O.

Consider C1, C2,…,Ck clusters and r1, r2,….,rk are cluster radius. Such that r1 >

r2 >….> rk. An association of variable xi for each entity is formulated as:

 𝑥𝑖 =

{

𝑝𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶1
𝑞𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶2
𝑟𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶3
…………………… .
𝑡𝑖 , 𝑖𝑓 𝑂𝑖 ∈ 𝐶𝑘−1
𝑠𝑖, 𝑖𝑓 𝑂𝑖 ∈ 𝐶𝑘

 (26)

Thus, if entity Oj belong to cluster C1 then 𝑝𝑗 = 1, 𝑞𝑗 = 0 and 𝑟𝑗 = 0

49

3.3.4 Formulation of k-clustering Problem as k-SAT Formulation

Constraint type 1: If dkl > r1, then Ok and Ol together cannot belong to the same

cluster C1, C2,….,Ck, in this case generated constraints are as:

a. if(𝑂𝑘 ∈ 𝐶1) then((𝑂𝑙 ∈ 𝐶2)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑝𝑘 ∧ (𝑞𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1)

b. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1)

……………………………………………….up to k times for entity 𝑂𝑘

k. if(𝑂𝑙 ∈ 𝐶𝑘) then((𝑂𝑘 ∈ 𝐶1)and(𝑂𝑘 ∈ 𝐶2)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑟𝑙 ∧ (𝑝𝑘 ∨

𝑞𝑘 ∨ …∨𝑙 𝑡𝑖) = 1)

Similarly, constraints are generated up to k times for entity 𝑂𝑙 also.

So, Number of k-SAT constraints = 2k.

Constraint type 2: If r1 > dkl > r2, then Ok and Ol cannot belong to the same

cluster C2, C3,….,Ck, generated constraints are as:

a. if(𝑂𝑘 ∈ 𝐶2) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶3)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑞𝑘 ∧ (𝑝𝑙 ∨

𝑟𝑙 ∨ …∨ 𝑠𝑙) = 1)

b. if(𝑂𝑘 ∈ 𝐶3) then((𝑂𝑙 ∈ 𝐶1)or(𝑂𝑙 ∈ 𝐶2)or. . . or(𝑂𝑙 ∈ 𝐶𝑘)) ⇒ (𝑟𝑘 ∧ (𝑝𝑙 ∨

𝑞𝑙 ∨ …∨ 𝑠𝑙) = 1)

In the above stated case, k-SAT constraints are generated for k-1 times for

entity 𝑂𝑘and 𝑂𝑙,

(𝑝𝑘 ∨ 𝑝𝑙) = 1

In the above stated case, 2-SAT constraints are generated only for 1 time,

So, Number of constraints = 2(k-1) +1

Constraint type 3: If r2 > dkl > r3, then Ok and Ol together cannot belong to the

same cluster C3, C4,…,Ck, generated constraints are as:

Similarly, k-SAT constraints are generated for 2(k-2) times for entity 𝑂𝑘and 𝑂𝑙

and 2-SAT constraints are generated 2 times

So, Number of constraints = 2(k-2) +2

Constraint type k: If rk-1 > dkl > rk, then entities Ok and Ol are not belong to the

same cluster Ck.

50

Similarly, total Number of constraints = 2(k-(k-1)) +k-1

Constraint type k+1: If rk > dkl then there is no restriction, Ok and Ol can

belong to any cluster.

3.3.5 Complexity Computation

The present research assumed that a complete graph G(V, E), having n vertices.

Number of edges in the graph G will be n*(n-1)/2 or will order of O(n2). Every

edge will belong to constraint type 1/ type 2/ …./ type k+1 and generated

constraints are in the form of k-SAT. Hence, number of constraints generated

is order of O(k), so for n2 edges order will be O(kn2). Number of nodes

(vertices) n can belong to k clusters so, number of variables generated are 3n.

In case of minimum sum of radii problem for k clusters, all subsets of distinct

maximal clusters are generated in O(n2k). Thus, complexity to reduce k-cluster

problem to k-SAT problem for minimum sum of radii problem is O(kn2k+2).

3.4 Conclusion

Social network analysis is fast-growing field data mining. Reducing the social

networking problem into Sat formulation is a good way to analyze the and

investigates the network data. Boolean approach techniques is used for

grouping of data items into two clusters for minimum sum of diameter

clustering. Hansen [4] applied Boolean approach to find out minimum sum of

diameter for two clusters by translating them into 2-SAT statement. Boolean

approach is not sufficient to represent the constraint for 3-clustering or k-

clustering. In this research, we extended the concept of reduction of 2-

clustering to 2-SAT. This chapter presents a new formulation for reduction of

3-clustering to 3-SAT and k-clustering to k-SAT in polynomial time.

51

Chapter 4

Partitioning and Constraint 3-

clustering Algorithm

4.1 Introduction

Partitioning is a fundamental problem with applications in several fields of

study. In computer science, the partition problem is an NP-complete problem

and it is also NP-Hard to find good approximate solutions for this problem.

Zuckerman [48] shows that all of the problems (21 Problems) listed by Karp

[17] are NP-Complete and have a version that's hard to approximate.

Partitioning Problem is one of the problems in the listing of Karp’s 21

Problems. These versions are obtained from the original problems by adding

essentially the same, simple constraint. These problems are absurdly hard to

approximate. Karp [17] also shows that one cannot even approximate 𝑙𝑜𝑔(𝑘) of

the magnitude of these problems to within a constant factor, where 𝑙𝑜𝑔(𝑘)

denotes the iterated logarithm, unless NP is recognized by slightly super

polynomial randomized machines. Application of Partitioning problem are

very broad. Partitioning problem are applied in various applications [94-95]

like: In circuit and in VLSI design, in parallel processing, in combinatorial

optimization, in scheduling of jobs to processors so as to minimize some cost

and in cluster Analysis

4.2 Partitioning Problem

A Partition of a set U is a subdivision of the set into subsets that are disjoint

and exhaustive, i.e. every element of U must belong to one and only one of the

subsets. The subsets Ai in the partition are called cells. Thus {𝐴1, 𝐴2, … . . , 𝐴𝑟}

52

is a partition of U if two conditions are satisfied: (1) {𝐴1 ∩ 𝐴𝑗 = ∅} if {𝑖 ≠ 𝑗}

(the cells are disjoint) and (2) {𝐴1 ∪ 𝐴2 ∪ … . .∪ 𝐴𝑟} (the cells are exhaustive).

4.2.1 Terminology

Stirling numbers of the first kind: They commonly occur in combinatorics,

where they appear in the study of permutations. Stirling numbers of the first

kind [96, 97] are written with a small s. The Stirling Numbers of the First Kind

can be defined as s(n, k) ways of partitioning a set of n elements into k disjoint

cycles. Stirling numbers of the first kind counts the number of ways to arrange

n objects into k cycles instead of subsets. Stirling numbers of the first kind are

represented as

[
𝑛
𝑘
] means “n cycle’s k”

Recursive relation for Stirling numbers of the first kind is

 [
𝑛 + 1
𝑘

] = 𝑛 [
𝑛
𝑘
] + [

𝑛
𝑘 − 1

] (27)

Where [
𝑛
𝑘
] = |𝑠(𝑛, 𝑘)|

For k > 0, with the initial conditions

[
0
0
] = 1 and [

𝑛
0
] = [

0
𝑛
] = 0 for n > 0

Stirling number of the second kind: Stirling numbers of the second kind [7, 8]

occur in the field of mathematics called Combinatorics and in the study of

partitions. In mathematics, particularly in combinatorics, a Stirling number of

the second kind is the number of ways to partition a set of n objects into k non-

empty subsets and is denoted by S(n, k). Stirling numbers of the second kind

are written with a Capital S. Recursive relation for Stirling numbers of the

second kind is

 {
 𝑛 + 1
𝑘

 } = 𝑘 {
𝑛
𝑘
 } + {

 𝑛
 𝑘 − 1

} (28)

Where, {
 𝑛
𝑘
} = |𝑆(𝑛, 𝑘)|

53

for k > 0, with the initial conditions

{
𝑛
𝑘
} = 1When n = k and {

𝑛
1
} = 1 and for 0n

Bell numbers: The Bell numbers describe the number of ways a set with n

elements can be partitioned into disjoint, non-empty subsets. Starting with B0 =

B1 = 1. Bell number satisfies the recurrence formula. Figure 4.1 show the

number of partition generated for B3.

 𝐵𝑛+1 =∑(
𝑛

𝑘
)𝐵𝑘

𝑛

𝑘=0

 (29)

Each Bell number is a sum of Stirling numbers of the second kind

 𝐵𝑛+1 =∑{
𝑛
𝑘
}

𝑛

𝑘=1

 (30)

where{
𝑛
𝑘
} is a Stirling numbers of the second kind {

 𝑛
𝑘
} = |𝑆(𝑛, 𝑘)|

Figure 4.1: Number of partition generated for B3

4.2.2 Bit wise Representation of Partition

In this method Partitions are represented in the form of bits. For the 3

partitioning of n-entities 3n bits are required. Each of the n bits represents one

partition. When 3-partitioning is represented in bit form, a specific pattern is

generated for 3-Partition for any value of n. In this pattern first n consecutive

bits represent 1st Partition, next n consecutive bits represent 2nd Partition and

last n consecutive bits represent 3rd Partition.

Rule of Belongingness: If an entity Oi belongs to Partition Ci then the ith value

of Oi is 1 otherwise it is zero.

Let us consider a set of 5 entities U = {a, b, c, d, e},

54

Let us a take a sample

P1 = {a, b, c}, P2 = {e} & P3 = {d}

Above partition can be represented in bit format as

Partition 1 Partition 2 Partition 3

a b c d e a b c d e a b c d e

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0

Figure 4.2: Bit wise representation of a partition sample

4.2.3 Rule-Set for 3-BitPartition

1. Total number of 1’s in 3n bits is always equal to n.(so rest 2n bits are

always zero)

2. Among the three cluster, on the same bit position exactly one cluster

contain value 1 rest will be zero.

 In general, for n entities

 𝐴𝑖⊗𝐵𝑖⊗𝐶𝑖 = 1 where 1 ≤ 𝑖 ≤ 𝑛

 Where⊗ is exclusive or operator.

3. Each partition contains at least a single 1 and maximum n-2 1’s.

4. Decimal value of second partition is always less than first partition.

5. Decimal value of third partition is always less than second partition.

6. Decimal value of first combination (tuple) of first cluster always starts

with the value of power(2, n)-4

7. Decimal value of last combination (tuple) of third cluster always is

power (2, n-2)-1.

4.2.4 Algorithm – 3-BitPartition

Algorithm 4.1 3-BitPartition

Input: Number of elements to be partition

Output: Bitwise generation of 3 partition

1. Read n

2. Initialize i = pow (2, n) -1

3. for a = pow (2, n) - 4 to 1 do

55

4. j = Complement(a) & i

5. if (j ≥ i)

6. break;

7. for b = j to 1 do

8. if (no overlapping of bits between (a & b) and union of (a & b)

 is not equal to i) then

9. c = (complement of (bitwise or of a & b)) bitwise & with i)

10. end if

11. if (value of third partition is less than 1st and 2nd partition) then

12. print(dectobin(a), a, dectobin(b), b, dectobin(c), c))

13. end if

14. end for

15. end for

Description of Algorithm:

Algorithm 4.1 generate 3 partitions in the bit format. 3-Partitions are generated

in the 3n bits. Line no. 2 generates first partition (column) of partition of a

particular tuple (Constraint no. 1). Line no. 4 checks complement of a is

greater than a, if yes then it decrements the value of i. This step removes any

repetition of tuples. Line no. 7 find out possible value of second partition

(column). Line no. 8 checks whether there is any clash of bits in first partition

and in second partition (check for Rule no. 2). Line no. 8 also checks third

partition should contain at least a single 1. Line no. 9 generates the third

partition. Line no. 11 checks value of third partition is less than first and

second partition. Subroutine dectobin(int) translates decimal number into a

binary string which represents a partition.

4.2.5 Characteristics and Validation of Algorithm

Proposed algorithm is a new approach for the generation and representation of

3-Partition. Bit approach is far better than other approach. Bit operations are

used to generate partition and to check for the constraints. So, reduces time

complexity. In this algorithm no duplicates tuples are generated. The beauty of

this algorithm is that if the first partition (column) of any tuple is not according

to constraints then it does not generate second partition (column) and similarly

if the generated second partition clashes with any with the first cell then it does

56

not generate third partition (column) of the tuple. So, it reduces overall running

time of the algorithm.

Algorithm is validated by the number of combinations generated are equal to

the Stirling number of the second kind. This algorithm is very basic algorithm

which can be applied in any of the application which requires 3-Partitioning.

The most beautiful thing is that running time can be further reduced by

applying Constraints. Constraints will be specific to application.

4.3. 3-Clustering Problem

3-Clustering is partitioning of O into 3 clusters C1, C2 and C3 such that no

cluster is empty, any pair of clusters has an empty intersection and the union of

all clusters is equal to O. Minimum sum of Diameter for 3-Clustering is sum of

diameter of 3 Cluster is minimum. Mathematically it can be defined as

Minimum()()()(321 CdCdCd ++), where d(C) is diameter of cluster C.

4.3.1 Methodology

In this method Clusters are represented in the form of bits. For the 3 clustering

of n-entities 3i bits are required. Each of the n bits represents one cluster.

When 3-Cluster is represented in bit form, a specific pattern is generated for 3-

Partition for any value of n. In this pattern first n consecutive bits represent 1st

Cluster (Partition), next n consecutive bits represent 2nd Cluster (Partition) and

last n consecutive bits represent 3rd Cluster (Partition). If an entity Oi belongs

to Cluster (Partition) Ci then in the ith value of Oi is 1 otherwise it is zero. Let

us consider a set of 5 entities U = {a, b, c, d, e}. Let us consider a Clustering

Sample: C1 = {a, b, c}, C2 = {e} and C3 = {d}

Cluster 1 Cluster 2 Cluster 3

a b c d e a b c d e a b c d e

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0

Figure 4.3: Bit representation of 3-cluster

57

 From the fig 4.3 bit representation of C1, C2 and C3 is as

 C1 = {a, b, c} = 11100

 C2 = {e} = 00001

 C3 = {d} = 00010

4.3.2 Rule-Set for 3-BitClustering

1. Total number of 1’s in 3n bits is always equal to n (so rest 2n bits are

always zero).

2. Among the three clusters, on the same bit position exactly one cluster

contain value 1 rest will be zero.

 In general, for n entities

 𝐴𝑖⊗𝐵𝑖⊗𝐶𝑖 = 1 where 1 ≤ 𝑖 ≤ 𝑛

3. Each cluster (partition) contains at least a single 1 and maximum n-2

1’s.

4. Decimal value of second cluster (partition) is always less than first

partition.

5. Decimal value of third cluster (partition) is always less than second

partition.

6. Decimal value of first combination (tuple) of first cluster always starts

with the value of power(2, n)-4

7. Decimal value of last combination (tuple) of third cluster always is

power (2, n-2)-1.

8. The Minimum Sum of Diameter for 3-Clustering is always less than or

equal to the third Maximum Dissimilarity value.

4.3.3 Algorithm

Algorithm 4.2 MinDiameter3-cluster

Input: A Matrix of n Elements

Output: Value of minimum sum of diameter for 3-clustering and entities for

first and second maximum dissimilarity value

1. Find the Edge having maximum dissimilarity maxedge(D)

2. Let Op and Oq be the entity having first maximum dissimlarity

3. Store(Op ,Oq) Store entities in a array

4. Partition the elements in two cluster 𝐶1 and 𝐶2

5. Let 𝑂𝑝 ∈ 𝐶1 such that |𝐶1| = 𝑛 − 1 and 𝑂𝑞 ∈ 𝐶2 such that |𝐶2| = 1

58

6. Calculate Minimum Sum of Diameter 𝑀1 = MSD(𝐶1, 𝐶2)

7. Let 𝑂𝑞 ∈ 𝐶1 such that |𝐶1| = 𝑛 − 1 and 𝑂𝑝 ∈ 𝐶2 such that |𝐶2| = 1

8. Calculate Minimum Sum of Diameter 𝑀2 = MSD(𝐶1, 𝐶2)

9. 𝑀3 = Min(𝑀1, 𝑀2)

10. Find the Edge having second maximum dissimilarity maxedge(D)

11. Let Ol and Ot be the entity having second maximum dissimlarity

12. Store(Ol ,Ot) Store entities in a array

13. Partition the elements in three cluster 𝐶1 , 𝐶2 and 𝐶3 such that

14. |𝐶1| = 𝑛 − 2, |𝐶2| = 1, |𝐶3| = 1

15. If (𝑂𝑙 ∈ 𝐶1 and 𝑂𝑡 ∈ 𝐶3) then |𝐶1| = 𝑛 − 2 and |𝐶3| = 1

16. Calculate Minimum Sum of Diameter 𝑀1 = MSD(𝐶1, 𝐶2, 𝐶3)

17. If (𝑂𝑡 ∈ 𝐶1 and 𝑂𝑙 ∈ 𝐶3) then |𝐶1| = 𝑛 − 2 and |𝐶3| = 1

18. Calculate Minimum Sum of Diameter 𝑀2 = MSD(𝐶1, 𝐶2, 𝐶3)

19. 𝑀4 = Min(𝑀1, 𝑀2)

20. MSD = Min(𝑀3, 𝑀4)

21. Store MSD in array

22. Return

Description of Algorithm:

Algorithm 4.2 find out first maximum dissimilarity and place them into

different Clusters and finds a cluster that is having minimum value of sum of

Diameter. Line no 1 to 3 returns pair of entities having first maximum

dissimilarity and stores in an array. Return pair of entities can be put in two

different ways in clusters. There are two possible combination (1) Entity 𝑂𝑝 ∈

𝐶1 and 𝑂𝑞 ∈ 𝐶2 and (2) Entity 𝑂𝑝 ∈ 𝐶2 and 𝑂𝑞 ∈ 𝐶1. Line no. 4 to 9 compute

cluster from the two-possibility having minimum sum of diameter. Line no. 10

to 12 return pair of entities having maximum dissimilarity and return pair of

entities are stored in an array. Line no. 13 to 18 compute cluster for the two

possibilities (for Second Entity Pair) for minimum sum of diameter. Line no 19

to 21 find out the minimum value of minimum sum of diameter and stores in

the array.

Algorithm- 3Bit Clustering

Input: Number of entities to be clustered in three clusters (n) and a n * n

Dissimilarity matrix (D)

59

Output: Minimum sum of diameter and corresponding three clustering pattern.

Variable: MCDBC(Minimum sum of diameter bit clustering) is an array that

holds the vale return by algorithm BasicMinDia(). MCDBC holds five values,

first values is minimum sum of diameter, next two values are entities of first

maximum dissimilarity and last next two values are entities of second

maximum dissimilarity

Algorithm 4.3 3-clustering for MSD

Input: A Matrix of n Elements

Output: Minimum sum of diameter and corresponding three clustering pattern

1. int *M = BasicMinDia(D)

2. Store the first maximum dissimlarity into reject list, RejectList(M[1], M

[2])

3. Store the second maximum dissimlarity into reject list, RejectList(M[3],

M[4])

4. Get the minimum values of 3-clusteringMSDC, MSD = M[0]

5. for C1 = pow (2, n) – 4 to 1 do

6. i = complement(C1)

7. if (i > C1)

8. break;

9. end if

10. if (FaultyVertex(C1)) then

11. add FaultyVertex(C1) to RejectList()

12. end if

13. for C2 = i to 1 do

14. if (FaultyVertex(C2)) then

15. add FaultyVertex(C2) to RejectList()

16. end if

17. if ((C1 & C2) && (C1 || C2)!= n-1) then

18. C3 = (C1 || C2) // Generate 3rd Cluster

19. if (value of C3 is less than C1 & C2) then

20. D = Diameter(C1) + Diameter(C2) +Diameter(C3)

21. if (D < MSD) then

22. MSD = D;

23. Cluster1 = C1;

24. Cluster2 = C2;

25. Cluster3 = C3;

26. end if

27. end if

28. end if

60

29. end for

30. end for

Description of Algorithm:

Algorithm 4.3 Above 3BitCluster algorithm generates 3 Clusters in the bit

format. 3- Clusters are generated in the 3n bits. Line no. 1 computes minimum

value of minimum sum of diameter according to Algorithm 4.2. Line no. 2 and

3 add entities of first & second maximum dissimilarity value to the Reject List.

Line no. 6 to 9 finds complement of C1 and checks for the constraint no. 4.

Line no. 10 to 11 check and add the faulty pair of entities to Reject Pair Entity

List. Line no. 13 generate second cluster. Line no. 14 to 16 check and add the

faulty pair of entities to Reject Pair Entity List. Line no 17 checks whether

there is any clash of bits in first cell and in second cell. It also checks third cell

should contain at least a single 1(Constraint no. 3). Line no. 17 and checks for

the constraint no. 3, if satisfies then Line no. 18 Generate third cluster. Line no.

21-25 computes minimum sum of diameter and set minimum value.

4.3.4 Results

Proposed algorithm is a new approach for the generation and representation of

3-Cluster. Bit approach is far better than other approach. Numbers of tuples

generated are verified and are equal to the Stirling number of the second kind,

so even a single combination is not missed. From the Table 4.1 and Figure 4.4

it is very clear that Bit-clustering approaching is far better than traditional

brute force approach. As the number of entities increases, proposed method

gives better result than traditional approach. Its time complexity is less because

of bitwise operation and if it does not generate 2nd cluster if 1st cluster is not

valid and it does not generate 3rd cluster if 2nd is not valid. So, propose 3-

clustering algorithm takes less time to compute minimum sum of diameter for

3-clustering.

4.4 Conclusion

Partitioning problems plays an essential role in theoretical computer science

and in computational complexity theory. We applied the concept of bit

representation to generate an algorithm for partitioning problems. The

61

proposed method uses bit operator to generate partition. In this chapter, we

proposed a 3-Partitioning algorithm. The proposed partitioning algorithm

doesn’t generate duplicate tuples and generates only 3-partition tuples.

Applying constraints specific to the application on this algorithm can further

reduce the time complexity of the algorithm. In this chapter, an algorithm is

proposed for the Minimum sum of diameter for 3-Clustering. In this method,

bit operations are used to generate clusters and to check for the feasibility of

constraints. In this algorithm, no duplicates tuples are generated. If the first

cluster (column) of any tuple is not according to constraints, then it does not

generate the second cluster (column). Similarly, if the bit pattern of generated

second cluster clashes with the first cluster, the algorithm does not generate

third partition (column) of the tuple. The proposed algorithm takes less time

than the traditional 3-Clustering algorithm.

Table 4.1: Running time of BitClustering & Brute Force for 3-Clustering

No. of

Entities

Time taken

by Bit

Clustering

(in second)

Time taken

by Brute

Force (in

second)

3 0.001 0.001

4 0.001 0.001

5 0.001 0.001

6 0.001 0.002

7 0.001 0.002

8 0.001 0.002

9 0.002 0.003

10 0.003 0.003

11 0.015 0.085

12 0.041 0.264

13 0.11 1.293

14 0.369 4.189

62

15 1.225 13.55

16 4.14 44

17 10.77 65

18 36 311

19 101 1012

20 610 3600

Figure 4.4: Comparison of Brute Force & 3-BitClustering approach

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Series1 Series2 Series 1 - BitClustering , Series 2 Brute Force

ti
m

e
 i

n
 s

e
c

number of entites

63

Chapter 5

Constraint Word Clustering

Algorithm for Asymmetric

Relationship

5.1 Introduction

Word Clustering is an important problem in web mining, natural language

processing, automatic word classification, word sense, web analytics,

computational linguists, and in parsing highly ambiguous syntactic structures

[98, 99]. Word clustering is a technique for partitioning sets of words into

subsets of similar words. Cluster of words can be identified on the basis of

similarity between words or according to the affinities between words. A

cluster comprises words that are sufficiently affine with each other. Words in

the same cluster are highly affine and words in different cluster are less affine.

Word clustering, is a useful approach for improving the performance of

sentence retrieval, the more similar the words in each cluster, the better the

performance of the retrieval system. Despite the usefulness of word clustering,

accurately clustering the words remains a challenging task.

In the context of information retrieval, a new constraint word clustering is

projected based on the paradigm of constraints for asymmetric relationship

between words. Constraint word clustering approach is appropriate at

discovering semantic relationship between words rather than discovering

syntactic relationship between words. Affinity [99, 101] describes the

quantitative relationship between words. An affinity describes a quantitative

relationship between the two words and this in turn helps to identify the

64

clusters of words. A cluster comprises words that are sufficiently affine with

each other. A first word is sufficiently affine with a second word if the affinity

between the first word and second word satisfies one or more affinity criteria.

Present research focuses on the clustering of words based on the finding of

semantic relationship between words. Semantic relationships between words

are modelled by identifying the constraints. Present research proposes a

constraint clustering architecture and algorithm based on the different types of

constraint associated between words.

5.2 Related Work

There have been a number of methods proposed in the literature that consider

word clustering problem. Words with similar co-occurrence distributions is

explored by Brown et. al. [102], it is based on class-based n-gram model in

which words are clustered into word classes. Pereira et al. [103] present

probabilistic membership of words and estimated a soft distributional

clustering scheme for certain grammatical co-occurrences. In this strategy the

conditional probability of a word is computed by taking advantage of

observations of other words that act like this word in this context. A number of

variant have been developed on this theme, using grammatical constraints such

as part-of-speech, or morphological units such as lemma, or both [104].

Similarity based model are explored in [105-106] which avoids building

clusters.

There are algorithms that automatically determine word classes without

explicit syntactic or semantic knowledge. In [107] all words are gathered into a

single class at the beginning of the procedure and are successively split to

maximize the average mutual information of adjacent classes. In [108], a

similar divisive clustering is proposed, based on binomial posteriori

distributions on word co-occurrences. Text categorization can be achieved in

various ways, in [109] Bag-of-Concepts is used to Improve the Performance of

support vector machines. The impact of feature selection on document

clustering is discussed in [110]. Hierarchical relationship and associative

relationship, is a important in automatically building a thesauri or in finding

associative relationship between words. Identification method [111] based on

65

co-occurrence analysis computer the hierarchical relationships between words.

Our constraint word clustering method has an advantage over non-constraint

clustering algorithm that it extracts background knowledge and guides the

algorithm clustering and makes it more suitable for practical use.

5.3 Methodology

5.3.1 Affinity Computation and Modelling Based on Co-

occurrence

Co-occurrence means coincidence or, frequent occurrence of two terms from a

text corpus alongside each other in a certain order. Word co-occurrence in this

linguistic sense can be interpreted as an indicator of semantic proximity. The

global co-occurrence is an absolute or un-normalized metric. For the purpose

of comparing term co-occurrences between different queries and sets of

retrieved documents, co-occurrence is normalizing within a practical scale. So,

co-occurrence values are normalized in the range of practical scale from 0 to 1.

Definition 9. The affinity [112] between any two words wa & wb is defined as

the ratio of the number of co-occurrence that include both terms wa and wb

over the maximum of either the number of co-occurrence contexts that include

wa or the number of co-occurrence contexts that include wb . The Affinity is

given by the following formula:

 Affinity(𝑤𝑎 ∩ 𝑤𝑏) =
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

max (𝑃(𝑤𝑎), 𝑃(𝑤𝑏))
 (31)

Definition 10. The directional affinity [112] between word wa & wb is defined

as the conditional probability of observing word wb, given that word wa was

observed in a co-occurrence context. Directional affinity is used to describe the

importance of word of word wa with respect to word wb. The directional

Affinity (DAffinity) is given by the following formula:

 DAffinity(𝑤𝑎 ∩ 𝑤𝑏) =
𝑃(𝑤𝑎 ∩ 𝑤𝑏)

𝑃(𝑤𝑏)
 (32)

66

Definition 11. Average directional affinity [112] of a term wa is the average of

the directional affinity of a word with all other words in the co-occurrence

contexts. The average directional Affinity (ADAffinity) is given by the

following formula:

ADAffinity(𝑤𝑎) =

∑ 𝑃(𝑤𝑎 ∩ 𝑤𝑗)
𝑁

𝑗=1

𝑁

(33)

Definition 12. Differential directional affinity [112] of a term wa is the

difference of directional affinity wa and average of the directional affinity of

word wa. Differential directional affinity (DiffDaff) is used to normalize the

affinity of word with respect to other words.

 DiffDAff(𝑤𝑎) = Affinity(𝑤𝑎 ∩ 𝑤𝑏) − ADAffinity(𝑤𝑎) (34)

5.3.2 Constraint Word Clustering

Wagstaff et al. [18] introduced constraints in the area of data mining research.

Constraints provide guidance about the desired partition and make it possible

for clustering algorithms to increase their performance. There are two types of

constraints that were termed as must-link constraint and can-not link

constraint. In must-link (ML) constraint two instances have to be in the same

group, ML(a, b) symbolize instance a and b to have be in the same group. In

cannot-link (CL) constraints two instances must not be placed in the same

group, CL(a, b) symbolize instance a and b to have be in the different group.

Let us consider words wa and wb, wcloud(wa) and wcloud (wb) are their

respective word cloud.

Must Link Constraint: If wcloud(wa) and wcloud(wb) are similar then there

exist a ML(wa, wb) constraint. It is represented in Boolean formulation as:

ML(𝑤𝑎, 𝑤𝑏) ⇒ 𝑤𝑎𝑘 ∧ 𝑤𝑏𝑘 = 1, where, wak means word wa belong to kth

cluster.

67

Sub-knowledge

 Matrix

Sub-knowledge

 Matrix

Input Seed word (Sw)

Rule-Set

Affinity Sub-knowledge

Matrix Generator

Constraint

Generator

Constraint Word

Clustering Algorithm

Word

Clusters

Dictionary

Term

Knowledge

 Matrix Component

Indexer Affinity Knowledge

Matrix Generator Source

Corpus

 CSV doc

Graphical

Tool

Clustering

Component

Can-not Link Constraint : If wcloud(wa) and wcloud (wb) are not similar

then there exist a CL(wa, wb) constraint. It can be represented as a Boolean

formulation as: CL(𝑤𝑎, 𝑤𝑏) ⇒ 𝑤𝑎𝑖 ∧ 𝑤𝑏𝑖 = 0 where, wai means word wa

belong to ith cluster and i ≠ j.

5.4 Word Clustering Architecture

Constraint word clustering architecture contains two main components:

knowledge matrix component and clustering component as shown in Figure

5.1. In this architecture, knowledge matrix component facilitates the building

of affinity knowledge matrix based on the characteristics of source corpus. By

varing the similarity criteria/measure different affinity knowledge matrix can

be generated according to the need. Clustering component identify and

generate the constraints and produces word cluster. Description of word

clustering architecture is as follows:

Figure 5.1 Architecture of constraint word clustering

Indexer: To search large amounts of text quickly it is required to convert the

text into a suitable format that allows searching text rapidly. For this purpose, a

suitable data structure inverted index table is used. Indexer is the component

that builds the inverted index table from the source corpus. It eliminates the

slow sequential scanning process of the text. Given a corpus 𝐶 =

68

{𝐷1, 𝐷2, … , 𝐷𝑝} containing p text documents, indexer takes this corpus as an

input, identifies the dictionary terms, eliminates the stop words and builds the

inverted index table T.

Affinity Knowledge Matrix Generator: Affinity knowledge matrix generator

builds an affinity knowledge matrix using Algorithm 5.1. It is called

knowledge matrix because it contains knowledge of whole corpora. It contains

information that identifies how two words are closely associated. If inverted

index table T contains information about N words, then corpus matrix

generator builds a matrix of size N * N. It can be called as global knowledge

affinity matrix corresponding to corpora C. It takes inverted index table T as

the input; find out the affinity between each pair of every term of inverted

index table. If size of inverted index table T is N terms then corpus matrix

generator generates an N * N directional affinity knowledge matrix. Directional

Affinity between each pair of term is calculated using (2). Affinity knowledge

matrix represents the knowledge of corpora; it represents how the words are

inter-related, degree of closeness between words.

Affinity Sub-knowledge Matrix Generator: This component takes input as a

seed word and find out the cloud of words which are highly affine with seed

word. Let us assume that size of word cloud is n. For each word of the cloud

their respective word clouds are generated. From this word cloud sub-

knowledge matrix is generated of the size n * n.

Constraint Generator: There are mainly two types of constraints Must Link

(ML) constraint and Can Not (CL) constraint. If two objects are associated

with ML constraint then they will belong to same group or class. On the other

hand, if two objects are associated with CL constraint then they will belong to

different group or class. Constraint generator performs analysis of sub-

knowledge matrix and find out the word cloud which are exactly similar. If the

directional average affinities of two clouds are equal then two clouds having

same properties and they have same affinity behavior. If two word clouds are

similar then there exist a must link constraint between them. Must link

69

constraint between any two words, enforce that the two words belong to the

same cluster. Based on the analysis of knowledge matrix and word cloud

following constraints are investigated.

Constraint Word Clustering Algorithm: Constraint word clustering

algorithm find words which are highly affine with seed words and cluster them

in such a manner that words in the same cluster are highly affine and words in

the different cluster are less affine. In the proposed algorithm, existing k-means

clustering algorithm is modified using concept of constraints. In the proposed

constraints word clustering algorithm there are two major modifications, first

modification is that words are assigned to the centroid (clusters) according to

constraints and affinity values. Second modification is that centroid of cluster

is one word, it is not like mean of the cluster like in k-means. In the word

assignment step of constraint word clustering algorithm, if a word that belongs

to RuleML and assigned to cluster Ci, then all others words of RuleML are also

moved to cluster Ci. Similarly, if a word that belongs to RuleCL and assigned

to cluster Ci, then all others words of RuleCL will not assigned to cluster Ci.

Hence constraint clustering word algorithm gives good quality of clusters.

5.5 Investigation and Generation of Constraints and Rulesets

5.5.1 Investigation of Properties and Constraints Generation Based on

Word Cloud

Following word cloud properties are investigated:

Property 1. Symmetric Property

if wcloud(wi) = wcloud(wj) then wcloud(wj) = wcloud(wi) then it gives

constraint: ML(wi,wj)

Property 2. Transitive Property

if wcloud(wi) = wcloud(wj) and wcloud(wj) = wcloud(wk) then wcloud(wi) =

wcloud(wk) then it gives constraint: ML(wi,wj, wk)

70

Property 3. Implicative Property

if wcloud(wi) = wcloud(wj) and if wcloud(wi) = wcloud(wk) then wcloud(wj)

= wcloud(wk) then it gives constraint: ML(wi,wj, wk)

5.5.2 Constraint Generation Based on Association between Words

Two words are said to be associated if they are having some affinity value

between them. Words are associated in either in one direction (forward or

backword) or in both direction or not at all. Constratints are investigated on the

basis of association between words as follows:

1. Weak Association(One way association): In weak association either the

word wa is associated with wb or word wb is associated with wa. In weak

association induces can not link constraint : CL(wa, wb)

2. Strong Association(Two way association): In strong association wa is

associated with wb and word wb is also associated with wa. Mathematically,

Aff(wa, wb) ≠ 0 and Aff(wa, wb) ≠ 0, it induces no constraint.

3. Zero Association(no association): In strong association wi is not associated

with wj and word wj is also not associated with wi. Mathematically, Aff(wa,

wb) = 0 and Aff(wa, wb) = 0. Zero Association induces can not link constraint

in forward as well as in backward direction: CL(wa, wb) and CL(wb, wa)

5.5.3 Rule Set for Generation for ML and CL Constraints

In this Rule set are generated from the ML and CL constraint, rule set guide

the constraint word clustering to obtain the desired partition.

Rule Set for Generation for ML Constraints

If wa is the common word between any two ML constraints, then ML

constraint can be merged to form a rule of must link constraint called as

RuleML.

71

if ML1= ML(wa, wb) and ML2= ML(wc, wa) then Merge(ML1, ML2) =>

RuleML(wa, wb, wc) = wai ˅ wbi ˅ wci = 1

In general if a RuleML(w1, w2,…wl) contains l words then it is given by the

Boolean formula:

𝑤1𝑘 ∨ 𝑤2𝑘 ∨ …∨ 𝑤𝑙𝑘 = 1 , where 𝑤𝑙𝑘 means word 𝑤𝑙 belong to kth cluster.

Rule Set for CL Constraints

If wa is the common word between any two CL constraints, then CL constraint

can be merged to form a rule of can-not link constraint called as RuleCL. if

CL1= CL(wa, wb) and CL2= CL(wc, wa) then Merge(CL1, CL2) =>

RuleCL(wa,wb,wc) = wai ˄ wbj ˄ wck = 1, where i ≠ j ≠ k . In general if a

RuleCL(w1, w2,…wl) contains l words then it is given by the boolean formula:

𝑤1𝑘 ∧ 𝑤2𝑘 ∧ …∧ 𝑤𝑙𝑘 = 0, where 𝑤𝑙𝑘 means word 𝑤𝑙 belong to kth cluster and

each word belongs to different cluster.

5.6 Word Clustering Algorithm

Algorithm 5.1 Affinity Knowledge Matrix

Input: A Corpus C consisting of documents such that C ={D1, D2,…,Dp}, each

document D is set of words.

Output: Affinity Knowledge Matrix (AKM) of size N * N, where N is the

number of words and Inverted Index Table T.

1. Indexing of source corpus C to output inverted index table T, size of table T

 is N.

2. for i = 1 to N

3. for j = 1 to N

4. 𝐴𝐾𝑀[𝑖][𝑗] = 𝐷𝐴𝑓𝑓(𝑤𝑖 ∩ 𝑤𝑗) =
𝑃(𝑤𝑖 ∩ 𝑤𝑗)

𝑃(𝑤𝑗)
 (1)

Description of Algorithm:

In step 1, source corpus C is indexed and inverted index table T is created. In

step 2-4 affinity between each pair of word is calculated and a affinity

knowledge matrix is generated.

72

Algorithm 5.2: Word Clustering

Input: Seed word – Sw, Threshold affinity value – δ, number of clusters – k,

Affinity Knowledge Matrix- AKM, Inverted Index Table – T.

Output: k cluster of words

1. if 𝑆𝑤 ∈ 𝑇 then

Cw = WordCloud(AKM, Sw , δ)

2. end if

3. for i = 1 to n do

4. Wvi = WordCloud(AKM, wi)

5. end for

6. for i = 1 to n do

7. for j = 1 to sizeof(Wvi) do

8. if 𝑤𝑖𝑗 ∉ 𝐶𝑤 then

9. delete wi from Wvi

10. end if

11. end for

12. end for

13. ASKM = AffintySubKnowledgeMatrix(Wv1, Wv2, . , . , Wvn)

14. Analyze ASKM, Let MLC = {ml1, ml2, ., ., ., mlq} are q ML constraints

are investigated

15. ∀ 𝑖, 𝑙, 𝑚, (where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙,𝑚 ≤ 𝑞)

16. 𝐢𝐟 (𝑤𝑖 ∈ 𝑚𝑙𝑙) and (𝑤𝑖 ∈ 𝑚𝑙𝑚) 𝐭𝐡𝐞𝐧

17. 𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡 = 𝑚𝑒𝑟𝑔𝑒(𝑚𝑙𝑙,𝑚𝑙𝑚)

18. end if

19. Assign k words as centroids c = {c1, c2, ., ., ., ck} of k clusters C= {C1,

C2, .., ., Ck}

20. for i = 1 to k do

21. 𝐶𝑖 = {𝑤𝑗: max (aff((𝑤𝑗 , 𝑐𝑖))∀ 𝑗, 1 ≤ 𝑗 ≤ 𝑛 }

22. 𝐢𝐟 (𝑤𝑗 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑙𝑖𝑠𝑡) 𝐭𝐡𝐞𝐧

23. 𝐶𝑖 = {𝑤𝑟: (𝑤𝑟 ∈ 𝑚𝑙𝑟𝑢𝑙𝑒𝑙𝑖𝑠𝑡) ∀ 𝑤𝑟}

24. end if

25. end for

26. while (old centroids and new centroids are same) do

27. for i = 1 to k do

28. ƞ =sizeof(Ci)

29. for j = 1 to ƞ do

30. Ŵvj = WordCloud(SKM, ŵj) where, (ŵ𝑗 ∈ 𝐶𝑖)

31. for l = 1 to sizeof(Ŵvj) do

32. if (𝑤𝑖𝑙 ∉ 𝐶𝑤) then

73

33. delete wi from Ŵvj

34. end if

35. end for

36. end for

37. end for

38. CKM = ClusterSubKnowledgeMatrix(Ŵv1, Ŵv2, . , . , Wvƞ)

39. for j = 1 to ƞ do

40. 𝐴𝐴(𝑤𝑗) = ∑ 𝐶𝐾𝑀
ƞ
𝑚=1 [𝑗][𝑚] ƞ⁄

41. 𝑀𝑒𝑎𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐶𝑖) = ∀𝑤𝑗: (𝑤𝑗 ∈ 𝐶𝑖) ∑ 𝐴𝐴(𝑤𝑗)
ƞ
𝑗=1 ƞ⁄

42. 𝑐𝑖 = {𝑤𝑗: min(|MeanCluster(𝐶𝑖) − 𝑤𝑗|) ∀ 𝑗, 1 ≤ 𝑗 ≤ ƞ }

43. end for

44. end while

Explanation of Algorithm:

 In step 1 it is checked whether the input seed word belong to corpus or not. In

step 2, word cloud is generated corresponding to seed word Sw. Cw contains all

words which are affine with Sw and whose affinity value is less than δ. In step

3-5, word clouds are generated for all n belonging to Cw. In step 6-12, spurious

words are deleted from each word cloud, spurious words are that word which

does not belong to Cw or which are not affined with Sw. This step normalizes

the size of each word cloud to n. In step 13, Sub knowledge matrix is generated

from n word cloud of size n * n. In step 14, Sub knowledge matrix is analyzed

and ML constraints are generated. In step 14-18, if a word belongs to more

than one ML constraints then all ML constraints are merged to form a rulelist.

If ML constraints are not mutually related then, they ML constraints will

belong to different rulelists. In step 19, randomly k words are assigned as

centroids of k-clusters. In step 21 words are assigned to their respective

clusters based on their maximum affinity with the centroids. In step 22-23, if a

word wr is an element of to a mlrulelist and belongs to a cluster Ci then all

other words of same rule list are assigned to cluster Ci and their status is

updated to assigned so assigned words are not checked for comparison and

assignment. Step 26-42 is executed until there is no change in the centroids of

two consecutive iterations. In step 26-38, for each word of each cluster, word

cloud is generated and after removal of spurious words Cluster-knowledge

matrix is generated. In step 39-40 average affinity of each word in cluster is

74

calculated. In step 41, new mean of each cluster is calculated. In step 42, word

wj which is closest to the mean of the cluster Cj is assigned as the new centroid

cluster Cj.

5.7 Conclusion

We proposed a method to identify and generate constraints between words that

identify semantic similarity measure between words and word clouds. We

investigated different types of association between words and identified

constraints based on the investigated association between words. Moreover, a

constraint-based word clustering algorithm is proposed. In the proposed

approach, words clouds are compared rather than words, which extract

semantic meaning of words in the respective group of words or in the

respective affinity sub-knowledge matrix for the generation of constraints.

Constraints provide guidance about the desired partition and make it possible

for clustering algorithms to increase the accuracy of clusters generated.

Proposed approach is applicable for symmetric as well as asymmetric

relationship between words. Thus, constraint word clustering algorithm is

useful extension to conventional word clustering algorithm.

75

Chapter 6

Approximation Constraint

Clustering Techniques

6.1 Introduction

An approximate algorithm is a way of dealing with NP-completeness for the

optimization problem. This technique does not guarantee the best solution. The

goal of an approximation algorithm is to come as close as possible to the

optimum value in a reasonable amount of time which is at the most polynomial

time. Such algorithms are called approximation algorithm. In this chapter,

concept of constraints is being introduced in min-cost k-cover problem to

present a new constraint-based min-cost k-cover algorithm. We modify the

𝑂(𝑛881. 𝑇(𝑛)) polynomial time exact algorithm of Gibson et al. [90] to acquire

another 𝑂(𝑛𝜆. 𝑇(𝑛)) polynomial time constraint-based algorithm, where 𝜆 <

881 and 𝜆 relies on the number of can-not link constraint.

The proposed technique for the problem of min-cost k-cover is achieves an

optimal result based on the constraints. The present research identifies the can-

not link constraints and apply these derived constraints in the algorithm for the

reduction of distinct maximal disks and reduction of all enumerated subsets of

the distinct maximal disks in minimum sum of radii problem. This in turn

reduces the number of list entries of exact algorithm. The basis for the

constraint technique is motivated by an observation that in any instance I of k-

cover, the optimal outcome is at most the maximum radius r of ball 𝐵(𝑣 , 𝑟)

positioned at 𝑣 ∈ 𝑉 in I. It infers that, in any instance there always exists a

constraint that separates the optimal solution.

76

6.2 Euclidean min-cost k-cover problem

The Euclidean min-cost k-cover problem defined as follows. Given a metric d

defined on a set V of points, we define the ball 𝐵(𝑣, 𝑟) centered at 𝑣 ∈ 𝑉 and

having radius 𝑟 ≥ 0 to be the set { 𝑞 ∈ 𝑉 | 𝑑(𝑣, 𝑞) ≤ 𝑟}. In the minimum cost

k-cover problem, we are given a set P of n points and integer k (k > 0). For κ >

0, computing a κ-cover for subset 𝑄 ⊆ 𝑃 is a set of at most κ balls covering all

point of set Q and each ball centered at a point in P. The sum of the radii of

balls is the cost of a set D of ball denoted by cost(D). In the Euclidean version,

P is given as a set of points in some fixed dimensional Euclidean space Rl, and

d is the standard Euclidean distance. In the metric version of the min-cost k-

cover problem, we have P and k and the distance d between every pair of

points in P.

6.3 Preliminaries

Research commence with the observation that for any instance I of k-cover, the

solution value is at most the maximum radius r of ball 𝐵(𝑣 , 𝑟) and optimal

solution is decidedly separable. Thus, it permits to compute an optimal k-cover

efficiently using constraints. We call a ball of zero radius as singleton ball.

Similarly, we call a disc of zero radius as singleton disc.

Definition 13. A distinct maximal disc (DMD) is a disc if one cannot add any

point to it without increasing its radius. Any solution can be reduced into one

having only distinct maximal disc without increasing the cost. Thus, non-

distinct maximal discs can be ignored to obtain optimal solution.

Lemma 3. For any instance of I of k-cover, the optimal solution value is at

most the maximum radius r of ball B(v, r) in I.

Proof. Given any instance of k-cover, a solution 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑘} consisting

of k balls covering all instance of I. The cost of B is given by the following

formula cost(𝐵) = ∑ 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵𝑖)
𝑘
𝑖=1 . Assume balls B2, B3,...,Bk as singleton

balls. Assign randomly chosen 𝑛 − 𝑘 + 1 points to ball B1 and assign

remaining 𝑘 − 1 points to 𝑘 − 1 balls such that each ball contains single point.

Hence, cost(𝐵) = cost(𝐵1) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵1). Therefore the the optimal solution

77

value is at most the maximum radius r of ball B(v, r) in I.

Lemma 4. In the min-cost k-cover problem, the number of distinct maximal

discs is at most n2

Proof. Let us consider a set of points 𝑃 = {𝑣0, 𝑣1, … 𝑣𝑙} and 𝑟0, 𝑟1, … 𝑟𝑛 are the

sorted distance from the point v0 in the ascending order. For any value of 1 < i

≤ l, consider a ball 𝐵(𝑣𝑜 , 𝑟) of radius r, from the Figure 6.1 it is understood

that 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1. It means that for 1 < i ≤ l, if 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1 then 𝐵(𝑣0, 𝑟𝑖) =

 𝐵(𝑣0, 𝑟). So, the only distinct maximal disc centered at 𝑣 are 𝐵(𝑣, 𝑟𝑖) for 1 ≤

𝑖 ≤ 𝑙 and 𝑣 is center of 𝑙 ≤ 𝑛. Each point can be the center of at most n

distinct maximal discs, distinct maximal discs also include disk of radius zero

or singleton disk, and therefore there are at most n2 distinct maximal discs. The

figure of separated maximal discs for the problem of min-cost k-cover is at

most n2 (Lemma 3). This gives critical benefit in the stated problem. Entire

subclasses of the unrelated disc with size at most l can be enumerated in

time 𝑂(𝑛2𝑙). For fixed value of l, enumeration of subclasses is calculated in

polynomial run.

 Figure 6.1: Distinct maximal discs

 B(v0,rn)

 B(v0,r3)

 vn

 B(v0,r)

 v0 v1 v2 v3

 B(v0,r1)

 B(v0,r2)

78

6.4 Constraints based min-cost k-cover Approach

Wagstaff et. al. [18] presented imperatives in the zone of information mining

research. There are two sorts of limitations viz. “must-link” constraint and

“can-not link” constraint. Two instances must be at similar gathering in must-

link (ML) constraint. ML(a, b) symbolize occurrence a and b to should be in

the similar group. Two instances must be in the different cluster in cannot-link

(CL) constraint. CL(a, b) symbolize appearance of a and b should be in the

distinctive group. Algorithm 1 finds can-not link constraints in any instance I

of k-cover problem.

6.5 Constraint Algorithm

Algorithm 6.1 takes input as any instance of I of min-cost k-cover problem. It

computes an initial feasible solution in accordance to Lemma 1. Can-not link

constraints are investigated and generated for individually ball 𝐵(𝑜, 𝑟), where

𝑜 ∈ 𝑂 and r is the radii of the ball. It returns a set of can-not link constraints.

Algorithm 6.1 Constraintcover(I)

Input: Instance of min-cost k-cover problem

Output: Set of can-not link constraints

1. Find an initial feasible solution and compute the cost of initial feasible

solution(cost(D))

2. For ∀ 𝑣 such that 𝑣 ∈ 𝑉

3. For each ball B(v, r) and for ∀ 𝑤 such that 𝑤 ∈ 𝑉, such that r = |vw|

(v ≠ w)

4. If r > cost(D) then associate can-not link constraint between v and w:

CL(v, w)

5. S = S U CL(v, w)

6. return S

Theorem 8. Maximum number of can-not link constraints generated in any

instance I of k-cover problem is order of O(n2).

Proof. We have instance I of k-cover problem consisting of n points. For any

two points p, q can-not link constraint exist in 𝐵(𝑣, 𝑟) 𝑖𝑓 𝑟 > |𝑝𝑞| > Icost(𝐷).

Formally it can be stated as ∃ CL − constraint, If (|𝑝𝑞| >

79

Icost(𝐷)) , ∀ 𝑝, 𝑞: 𝑝, 𝑞 ∈ 𝑉. Point p and q can be any point from the V, so

maximum n2 combination can be possible. This is similar to the finding the

distinct maximal discs. The number of distinct maximal discs is at most n2 (by

Lemma 4). Therefore, Maximum number of can-not link constraints is order of

O(n2).

Theorem 9. Minimum number of can-not link constraints generated in any

instance I of k-cover problem is order of O(k).

Proof. For k =1, all points of I are covered by a single ball 𝐵(𝑣, 𝑟). Assume

that a can-not link constraint CL(p, q) exist between any two points p, q of ball

𝐵(𝑣, 𝑟), then p, q together ∃ 𝐶𝐿(𝑝, 𝑞)| 𝑝, 𝑞 ∈ 𝐵(𝑣, 𝑟)then (𝑝 and (𝑛 −

2)points) ∈ 𝐵1(𝑣, 𝑟1) and point 𝑞 ∈ 𝐵2 can-not Then, 𝑛 − 1 points belong to

B1(v, r1) and point q belong to singleton disk B2. In this manner if there are 𝑘 −

1 can-not link constraints then k balls can cover n points, 𝑛 − 𝑘 + 1 points are

covered by a ball Bi (v, ri) and rest of the k-1 points are covered by k singleton

disks. Solution obtained in this way is a feasible and optimal solution (by

Lemma 1).

Theorem 10. Number of discs in reduced distinct maximal discs is always less

than distinct maximal discs, |𝐷𝑅| < |𝐷|.

Proof. Count of different maximal discs is greatest of n2, and the optimal

solution contains discs that belong to the group of several maximal discs. Let

Dr denotes the compact maximal distinct discs. There are always exist at least

a can-not link constraint in any instance of min-cost k-cover problem (Theorem

9). If a can-not link constraint belongs to distinct maximal disc then that

distinct maximal disc will not be part of optimal solution. So, with the help of

can-not link constraints, it can be verified whether a distinct maximal disc will

be a part of the canonical optimal solution or not. Hence, can-not link

constraints reduce the number of distinct maximal cluster. Let S denote set of

can-not link constraints and α denoted the cardinality of set S, then the

maximum value of α is O(n2) (by Theorem 8). Applying α constraints (O(n2))

on the distinct maximal discs D(O(n2)) reduces D by the significant factor,

hence |𝐷𝑅| < |𝐷|.

80

Corollary 1: A can-not link constraint clearly separate the optimal solution.

6.6 Constraint based min-cost k-cover algorithm

Assuming a sample of the Euclidean min-cost k-cover problem which

comprises of an arrangement of points O on the plane alongside a whole

number k. Euclidean separation is the distance between any combination of

points on the plane. Considering the set of distinct maximal discs D with radius

|pq| and center p ∈ O for some q ∈ U. D incorporated the disk of radius zero,

therefore, |D| = n2.

Gibson et al. approach [90]: In a balanced rectangle, the proportion of width to

length is no less than 1/3. This method utilizes “balanced rectangle” to define

the sub-task. For a rectangle R, a separator is a line opposite to the lengthier

side, and it intersects in the middle third of its more extended edge of the R.

The computation begins with a rectangle 𝑅0 containing every one of the points

and divides into two littler rectangles by picking a filter line and resolves the

sub-issues recursively. The “vertical line or horizontal line” is termed critical

in the event that it either experiences an entity 𝑝 ∈ 𝑃 or if it is tangent to any

disk in D. Every single vertical line between two back to back basic vertical

lines converge a similar arrangement of discs. Therefore, there are just Θ(n2)

vertical or horizontal lines as separators. To get an optimal solution, it is

required to consider just |𝑇| ≤ 𝛽 = 424. It signifies that span of the dynamic

programming list is O(n2β+5), which is polynomial limited.

Our Constraint algorithm: A set S of can-not link constraints are generated

using Algorithm 6.1. The constraint min-cost k-cover algorithm takes

rectangle 𝑅, a whole number 𝜅 ≥ 0, a subset 𝑇 ⊆ 𝐷, a set of constraint S and

has a iterative algorithm DC(𝑅, 𝜅, 𝑇, 𝑆). It computes a most favourable solution

utilizing highest κ discs from the arrangement of arguments in 𝑄 = {𝑞: 𝑞 ∈

(𝑃 ∩ 𝑅)}. A can-not link clearly separate the optimal solution (by Corollary 1).

This implies that a separator is simulating like a can-not link constraint and

diving the problem into sub-problem and tackling it recursively. The procedure

81

invokes DC(𝑅0, 𝑘, ∅, 𝑆) to locate finest cover for P by applying α constraints.

The estimation of the sub-task for a iterative call is put away in a runtime

programed list List[𝑃 ∩ 𝑅, 𝜅, 𝑇]. In our calculation beginning strides are

essential initialization step and it stays same as our algorithm takes after the

means as of algorithm [13]. Numbers of separators are directly proportional to

the number of distinct maximal disk. Our based constraint approach uses the

reduced distinct maximal disk instead of the distinct maximal disk so that some

separators will be decreased. In subsequent steps, can-not link constraints are

applied on D to obtain reduced distinct maximal discs (Dr), In further steps 𝐷𝑅

is used for the computation of entries in the list.

Algorithm 6.2 Constraint Clustering 𝐃𝐂(𝑹𝟎, 𝒌, ∅, 𝑺)

Input: Rectangle 𝑅, whole number 𝜅 ≥ 0, subset 𝑇 ⊆ 𝐷, set of constraint S

Output: minimum cost k-cover of n points

1. if event List[𝑃 ∩ 𝑅, 𝜅, 𝑇] already exist return, else, generate it.

2. Consider 𝑄 = {𝑞: 𝑞 ∈ (𝑃 ∩ 𝑅) } (Assuming T doesn’t contain the q)

3. if 𝑄 = ∅ then List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← ∅ else leave from the present point

4. On the chance that 𝜅 = 0, assign List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← {𝐼} Echo

infeasible cover and return from the present step

5. In the situation |𝑄| = 1, let List[𝑃 ∩ 𝑅, 𝜅, 𝑇] is arrangement of

singleton disk and return

6. Invoke procedure compress(R) (to acquire a “balanced rectangle” 𝑅′
containing (P∩R)). |𝐿(𝑅′)| is likewise lessened in light of the fact

number of separators are directly proportional to the cardinality of

distinct maximal disc. Constraint lessens the cardinality of distinct

maximal disc along these lines |𝐿(𝑅′)| likewise diminishes.

7. Initialize a cover 𝐷′ ← {𝐼}. (I is a dummy disc of ∞)

8. Considering all ranges of partitioning lines 𝑙 ∈ 𝐿(𝑅′) do

9. Assign 𝐷𝑅 = 𝐷

10. ∀ disk 𝑑 such that 𝑑 ∈ 𝐷 (for every distinct maximal disk that belongs

to set D)

11. Apply can-not link constraints on distinct maximal discs to obtain

reduced distinct maximal discs (Dr), |𝐷𝑅| < |𝐷| (by Theorem 3)

12. if there exists a CL constraint among a, b such that points 𝑎, 𝑏 ∈ 𝑑

then 𝐷𝑅 = 𝐷𝑅 − 𝑑

13. if ((𝐷0 ⊆ 𝐷𝑟)and |𝐷0| ≤ 12)), for all values of 𝐷0 intersected by l do

14. for all values of 𝜅1, 𝜅2 ≥ 0 with the goal that (𝜅1 + 𝜅2 + |𝐷0|) ≤ κ do

82

15. Assume (𝑅1and 𝑅2) are two rectangular partitions gained by dividing

𝑅′through l consider 𝑇1 = {𝐷𝑟 ∈ (𝑇 ∪ 𝐷0)|𝐷𝑟 crosses 𝑅1} and 𝑇2 =
{𝐷𝑟 ∈ (𝑇 ∪ 𝐷0)|𝐷𝑟 crosses 𝑅2}

16. if (|𝑇1| ≤ 𝜆 < 𝛽) and (|𝑇2| ≤ 𝜆) at that point

17. Invoke DC(𝑅1, 𝜅1, 𝑇1, 𝑆) and DC(𝑅2, 𝜅2, 𝑇2, 𝑆) in an iterative manner

18. If cost(𝐷0 ∪ List[𝑃 ∩ 𝑅1, 𝜅1, 𝑇1]) ∪ List[𝑃 ∩ 𝑅2, 𝜅2, 𝑇2]) < 𝑐𝑜𝑠𝑡(𝐷
′)

then at that point change 𝐷′ ← 𝐷0 ∪ List[𝑃 ∩ 𝑅1, 𝜅1, 𝑇1] ∪ List[𝑃 ∩
𝑅2, 𝜅2, 𝑇2]

19. Allocate List[𝑃 ∩ 𝑅, 𝜅, 𝑇] ← 𝐷′

20. Return

Running Time: The execution duration of a procedure DC(𝑅0, 𝑘, ∅, 𝑆) remains

limited by number of entries in the list. For a balanced rectangle R, every entry

in the list is recorded by a collection of points (𝑃 ∩ 𝑅) for some R, a (𝜅 ≤

𝑘) and a set 𝑇 ⊆ 𝐷 in such a way that |𝑇| ≤ 𝛽 = 424. Proposed constraint

based approach reduces the β hence, running time also reduces. Number of

disk inside R, crossed by a separator is maximum 12 (Lemma 2.1 in [90]).

Number of disk intersecting from outside of is 40(Lemma 2.2 in [90]).

Assuming total number of separator (horizontal and vertical) is at most 32. In

this manner, there are at most 32*12 = 384 discs approaching from the

separators. Total number of disc intersecting from outside and inside the

rectangle are β =384+40=424. Enumerating all possible set of β takes n2β
 =

n2*424 =n848. Some other steps are taking a time n5
, giving total computation

n853. Direct recursion takes n28 time and n24 time for D0, so total running time of

algorithm is n853+28
 = n28 * n2*(32*12+40)+5 . So, the value of β is = 28

+2*(32*12+40)+5 = 881. In other words, β is proportional to (28 * 2*(number

of separator * number of internal disk intersecting R + number of external disk

intersecting R)+ 5). Number of separator, the number of internal disk

intersecting R and number of external disk intersecting R are dependent on

number of distinct maximal disks. Our constraint based algorithm uses the

reduced distinct maximal disks (Dr) instead of distinct maximal disks (D) so β

will be reduced to 𝜆. It is not hard to see that applying n2 constraints reduces

number of distinct maximal discs, which thus enhances the performance of the

algorithm.

83

6.7 Conclusion

Constraint based algorithm has attracted researchers due to its characteristic, of

strengthening the performance of algorithms by adding constraints as a

parameter. In this context, usage of a constraint based approach to min-cost k-

cover problem improves the bound of the algorithm. The research portrays

how constraint based algorithm is convenient and yields better empirical

results compared to non-constraint algorithms for the min-cost k-cover

problem. In the min-cost k-cover problem, the number of entries stored in a list

is bounded by O(n881). In this research, we identify can-not link constraints

and proposed an algorithm that decreased the number of the records and the

number of distinct maximal discs. The reduction of distinct maximal disks

number enhances the performance of the algorithm by a noteworthy factor.

84

Chapter 7

Conclusion

7.1 Discussion

Minimum sum of diameter clustering and minimum sum of radii clustering has

attracted researchers due to its special characteristic, of avoiding dissection

effect. Therefore, an extensive number of applications are adapting MSDC and

MSRC technique. This appears to be a quite novel approach in the area of data

mining to find minimum sum of diameter and radii clustering via constraints.

This thesis is set out to apply constraint technique for minimum sum of

diameter and minimum sum of radii clustering. Our main focus has been

investigating different constraint based methods in order to enhance the

clustering algorithm results. Motivation has been on the one hand to reduce

dimensionality in order to keep running times low and on the other to enhance

clustering results.

In this thesis, the results of the study are represented as a comparative analysis

of clustering algorithms in tabular form. Two tables are produced as an

outcome of the literature review, presented tables provide comprehensive

evaluation, and drew a comparative analysis of algorithmic on the following

factors: clustering criteria, approach, constraints, assumptions, issues, and time

complexity. Various exact and approximation clustering algorithms for

Euclidean, metric, and geometric versions of the MSDC problem and MSRC

problem are investigated. The presented comprehensive review helps

researchers to identify the research gaps to develop more optimized algorithms.

85

The reduction of the clustering problem into SAT formulation plays an

essential role in analyzing social networking problems. We presented a

formulation for the reduction of 3-clustering to 3-SAT and k-clustering to k-

SAT. The research portrays how constraint clustering for the minimum sum of

diameter and radii is convenient and yields better empirical results compared to

non-constraint clustering algorithms for the minimum sum of diameter and

radii. Moreover, the research study is quite successful in presenting a new bit

wise approach for the 3-clustering minimum sum of diameter algorithm. The

research also explores syntactic relationship between words and finds

significant increase in the accuracy of word clustering algorithm. Last but not

the least, the present research reveals that constraint based min cost k-cover

improves the bound min cost k-cover algorithm. Last but not least, the present

research reveals that constraint based technique can be applied to

approximation algorithms. The proposed constraint based method decreased

the number of the distinct minimal disc, and the proposed algorithm improves

the bound min cost k-cover algorithm.

7.2 Future Scope of the Work

This section briefly describes the areas that can fall in thesis scope that are

quite possibly an extension for future scope. The research suggests that in

order to obtain polynomial time algorithm for 3-clustering, Boolean approach

can be extended by exploration of properties of tripartite graph. In the present

research, can-not link constraints reduced the size of the table entries and

reduced the time complexity of algorithm by a significant factor. It could be

more interesting to find out more can-not link constraints and must-link

constraints to reduce the number of call stored in table for min-cost k-cover

problem. Present model of min-cost k-cover problem is based on minimum

sum of radii criterion. The way the model is constructed could be also changed

by using minimum sum of diameter criterion. If the number of distinct

maximal cluster is bounded by polynomial time then polynomial time

approximation scheme for MSDC can be modeled.

86

Bibliography

[1] Cormack R. M. (1971), A review of classification, Journal of the Royal

Statistical Society, Series A, 134, 321‒367.

[2] Hartigan J. A. (1975), Clustering algorithms, John Wiley & Sons, New

York.

[3] Anderberg M. R. (1973), Cluster analysis for applications, academic,

New York.

[4] Hansen P., Jaumard B., (1987), Minimum sum of diameters clustering,

Journal of Classification, 4, 215–226.

[5] Gordon A. D. (1981), Classification: methods for the exploratory

analysis of multivariate Data, Chapman and Hall, New York.

[6] Jain A., Dubes R. (1988), Algorithms for clustering data. Prentice-Hall,

Inc., Englewood Cliffs, NJ.

[7] Raghavan P. (1997), Information retrieval algorithms: a survey. In:

Saks M E ed. Proceedings of 8th ACM-SIAM Symposium on Discrete

Algorithms (SODA’97), New Orleans, Louisiana, pp. 11–18.

[8] Duds R., Hart P. (1973), Pattern classification and scene analysis,

Wiley-Interscience, New York, NY.

[9] Wang H., Pei J. (2008), Clustering by pattern similarity, Journal of

Computer Science and Technology, 23(4), 481‒496.

[10] Hansen P, Jaumard B. (1997), Cluster analysis and mathematical

programming, Mathematical Programming, 79, 191‒215.

[11] Xu R., Wunsch D. (2005), Survey of clustering algorithms, IEEE

Transaction Neural Networks, 16, 645‒678.

[12] Duran B. S., Odell P. L. (1974), Cluster Analysis: A Survey,

Heidelberg: Springer-Verlag.

[13] Delattre M., Hansen P. (1980), Bicriterion cluster analysis, IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI,

2(4), 277‒291.

[14] Xiong H. (1996), Some undecidable problems on approximation of NP

87

optimization Problems, Journal of Computer Science and Technology,

11(2), 126‒132.

[15] Brucker P. (1978), On the complexity of clustering problems, In:

Beckmann M, Kunzi H P eds. Optimization and Operations Research,

Lecture Notes in Economics and Mathematical Systems, 157th edition,

Heidelberg: Springer-Verlag, 45‒54.

[16] Sahni S, Gonzalez T F. (1976), P-complete approximation problems,

Journal of ACM, 23, 555-565.

[17] Karp R. M. (1972), Reducibility among combinatorial problems,

Complexity of Computer Computations, Miller R E, Thatcher J W,

New York: Plenum, 85–103.

[18] Wagsta K., Cardie C. (2000), Clustering with instance-level constraints,

In: Proceedings of the Seventeenth International Conference on

Machine Learning, pp. 1103-1110.

[19] Rao M. R. (1971), Cluster analysis and mathematical programming,

Journal of the American Statistical Association, 66(335), 622‒626.

[20] Hansen P., Delattre M. (1978), Complete-link cluster analysis by graph

coloring, Journal of the American Statistical Association, 73(362),

397‒403.

[21] Guénoche A., Hansen P., Jaumard B. (1991), Efficient algorithms for

divisive hierarchical clustering with the diameter criterion, Journal of

Classification, 8, 5‒30.

[22] Charikar M., Panigraphy R. (2004), Clustering to minimize the sum of

cluster diameters, Journal of Computer and Systems Sciences, 68(2),

417-441.

[23] Mishra N., Schreiber R., Stanton I., Tarjan R. E. (2007), Clustering

Social Networks, Springer, Lecture Notes in Computer Science, 2007,

4863, 56-67.

[24] Cook S A. (1971), The complexity of theorem proving procedures. In:

Proceeding of the 3rd Annual ACM Symposium Theory Computing, pp.

151‒158.

[25] Garey M. R., Johnson D. S. (1979), Computers and Intractability: A

Guide to the Theory of NP-Completeness, Freeman, San Francisco.

[26] Welch J. W. (1983), Algorithmic complexity: three NP-hard problems

88

in computational statistics, Journal of Statistical Computation and

Simulation, 15, 17‒25.

[27] Zuckerman D. (1993), NP-complete problems have a version that's

hard to approximate, Structure in Complexity Theory Conference, In:

Proceedings of the Eighth Annual, IEEE, pp. 305‒312.

[28] H. Li, N. Abe (2002), Word Clustering and Disambiguation Based on

Co-occurrence Data, Journal of Natural Language Engineering, 8(1), 25

– 42.

[29] Doddi S. R., Marathe M. V., Ravi S. S. et al. (2000), Approximation

algorithms for clustering to minimize the sum of diameters, Nordic

Journal of Computing, 7 (3), 185–203.

[30] Lev-Tov N., Peleg D. (2005), Polynomial time approximation schemes

for base station coverage with minimum total radii, Computer

Networks, 47, 489‒501.

[31] Hopcroft J. E., Ullman J. D. (1979), Introduction to automata theory,

languages and computation, Addison-Wesley, pp. 324- 325

[32] Kolen J. F. (2002), An on-line Satisfiability for conjunctive normal

form expressions with two literals, Flairs -02, Proceedings, pp.187 –

191.

[33] Aspvall B., Plass M. F., Tarjan R. E. (1979), A Linear-time algorithm

for testing the truth of certain quantified Boolean formulas, Information

Processing Letters, 8, 121‒123.

[34] Hopcroft J. E, Ullman J. D. (1969), Formal Language and their

Relation to Automata, Addison-Wesley, Reading, Mass.

[35] Aho A. V., Hopcroft I. E., UIlman J. D. (1974), The Design and

Analysis of Computer Algorithms Addison-Wesley, Reading, MA.

[36] Sahni S. (1974), Computationally related problems, SIAM Journal of

Computing, 3(4), 262‒279.

[37] Dasgupta S., Papadimitriou C. H., Vazirani U. V. (2006), Algorithms,

McGraw-Hill Higher Education, pp. 244‒245.

[38] Hammer P. L., Rudeanu S. (1968), Boolean Methods in Operations

Research and Related Areas, New York: Spriniger-Verlag.

[39] Johnson S. C. (1967), Hierarchical clustering schemes, Psychometrika,

32, 241‒254.

89

[40] Even S., Itai S., Shamir A. (1976), On the complexity of time table and

multi-commodity flow problems, SIAM Journal of Computing, 5(4),

691‒703.

[41] Schaefer T. J. (1978), The complexity of satisfiability problems. In:

Lipton R J, Burkhard, Walter W A, Savitch J et al. eds. Proceeding of

10th Annual ACM Symposium Theory Computing, San Diego,

California, USA, pp. 216‒226.

[42] Tarjan R. E. (1992), Depth fist search and linear graph algorithms,

SIAM Journal of Computing, 1(2), 146‒160.

[43] Asano T., Bhattacharya B., Keil M. et al. (1988), Clustering algorithms

based on minimum and maximum spanning trees. In: Proceeding of the

4th Annual symposium on Computational geometry, Urbana-

Champaign, IL. ACM Press, pp. 252‒257.

[44] Monma C., Suri S. (1989), Partitioning points and graphs to minimize

the maximum or the sum of diameters. In: Proceedings of the sixth

International conference on the Theory and applications of graphs,

Wiley, New York.

[45] Hubert L. (1973), Monotone invariant clustering procedures.

Psychometrika, 38(1), 47‒62.

[46] Hershberger J. (1992), Minimizing the sum of diameters efficiently,

Computational Geometry: Theory and Applications, Elsevier, 2,

111‒118.

[47] Gabow H. N., Tarjan R. E. (1985), A linear-time algorithm for a special

case of disjoint set union, Journal of Computing System Science, 30,

209-221.

[48] Zuckerman D. (1996), On unapproximable versions of NP-complete

problems, SIAM Journal of Computing, 25, pp. 1293–1304.

[49] Hagauera J., Rote G. (1997), Three-clustering of points in the plane,

Computational Geometry, 8(2), 87–95.

[50] Capoyleas V., Rote G., Woeginger G. (1991), Geometric clusterings,

Journal of Algorithms, 12, 341‒356.

[51] Ramnath S. (2002), Forewarned is fore-armed: dynamic digraph

connectivity with lookahead speeds up a static clustering algorithm.

Algorithm Theory-SWAT 2002, Lecture Notes in Computer Science,

90

2368, 220‒229.

[52] Khanna S., Motwani R., Wilson R. H. (1996), On certificates and

lookahead on dynamic graph problems. In: Clarkson K L ed.

Proceeding of 7th ACM-SIAM Symposium, Discrete Algorithms, San

Francisco, California, 222‒231.

[53] Noman Z., Khan M. (2002), Performance of two algorithms in

minimum sum of diameters clustering. In: 35th Annual Midwest

Instruction and Computing Symposium, Iowa.

[54] Jain R., Chaudhari N. S. (2011), Formulation of 3-clustering as a 3-

SAT problem, In: Proceeding of Fifth Indian International Conference

on Artificial Intelligence (IICAI), India, 2011, pp. 465-472.

[55] Gonzalez T. F. (2007), Handbook of Approximation Algorithms and

Metaheuristics (Chapman & Hall/Crc Computer & Information Science

Series), Chapman & Hall/CRC, New York.

[56] Fowler R. J., Paterson M. S., Tanimoto S. L. (1981), Optimal packing

and covering problem are NP complete, Information Processing

Letters, 12(3), 133‒137.

[57] Megiddo N., Supowit K. J. (1984), On the complexity of some

common geometric location problems, SIAM Journal of Computing,

13(1), 182‒196.

[58] Drezner Z. (1984), The p-centre problem-heuristic and optimal

algorithms, The Journal of the Operational Research Society, 35(8),

741‒748.

[59] Dyer M., Frieze A. M. (1985), A simple heuristic for the p-center

problem. Operation Research Letter, 3, 285–288.

[60] Hochbaum D. S., Pathria A. (1997), Generalized p-center problems:

complexity results and approximation algorithms, European Journal of

Operational Research, 100(3), 594‒607.

[61] Gonzalez T. F. (1985), Clustering to minimize the maximum

intercluster distance, Theoretical Computer Science, 38, 293‒306.

[62] Hochbaum D. S., Shmoys D. B. (1984), Powers of graphs: a powerful

approximation technique for bottleneck problems. In: DeMillo R A ed.

Proceeding of Symposium on the Theory of Computing Washington,

DC, USA, ACM, 324‒333.

91

[63] Hochbaum D. S., Shmoys D. B. (1986), A unified approach to

approximation algorithms for bottleneck problems, Journal of the

ACM, 33(3), pp. 533‒550.

[64] Feder T., Greene D. H. (1988), Optimal algorithms for approximate

clustering, In: Simon J ed. Proceeding of 20th Annual ACM

Symposium Theory Computing, Chicago, Illinois, USA. ACM, pp.

434‒444.

[65] Vaidya P. M. (1986), An optimal algorithm for the all-nearest-

neighbors problem, In: Proceeding 27th IEEE FOCS Toronto, Canada,

IEEE Computer Society, pp. 117–122.

[66] Megiddo N., Tamir A., Zemel E. et al. (1982), On the complexity of

locating linear facilities in the plane, Operations Research Letters, 1,

194–197.

[67] Plesnik J. (1982), Complexity of decomposing graphs into factors with

given diameters or radii, Mathematica Slovaca, 32(4), 379–388.

[68] Megiddo N., Tamir A. (1983), A new results on the complexity of p-

center problems, SIAM Journal of Computing, 12(4), 751–758.

[69] Charikar M., Chekuri C., Feder T. et al. (1997), Incremental clustering

and dynamic information retrieval, In: Leighton F T, Shor P W eds.

Proceeding of 29th Annual ACM Symposium on Theory of Computing

El Paso, Texas, USA, ACM, pp. 624‒635.

[70] Agarwal P. K., Proeopiuc C. M. (1998), Exact and approximate

algorithms for clustering, In: Karloff H J ed. Proceeding of 9th ACM-

SIAM Symposium on Discrete Algorithms, San Francisco, California

ACM/SIAM, pp. 658‒667.

[71] Agarwal P. K., Proeopiuc C. M. (2000), Approximation algorithms for

projective clustering, In: Shmoys D B ed. Proceeding of 11th ACM-

SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA,

pp. 538‒547.

[72] Bădoiu M., Har-Peled S., Indyk P. (2002), Approximate clustering via

core-sets. In: Reif J H ed. Proceeding of 34th Annual ACM Symposium,

Theory of Computing, Montréal, Québec, Canada. ACM, pp. 250–257.

[73] Khuller S., Moss A., Naor J. (1999), The budgeted maximum coverage

problem. Information Processing Letters, 70, 39-45.

92

[74] Jain K., Vazirani V. (2001), Approximation algorithms for metric

facility location and k-median problems using the primal–dual scheme

and Lagrangian relaxation, Journal of the ACM 2001, 48, 274–296.

[75] Charikar M., Guha S. (1999), Improved combinatorial algorithms for

the facility location and k-median problems, In: Proceedings of the 40th

Annual Symposium on Foundations of Computer Science, New York,

pp. 378–388.

[76] Hochbaum D. S., Maas W., (1985), Approximation schemes for

covering and packing problems in image processing and VLSI, Journal

of the ACM, 32, pp. 130–136.

[77] Glasser C., Reith S., Vollmer H. (2005), The complexity of base station

positioning in cellular networks, Discrete Applied Mathematics,

148(1), 1–12.

[78] Erlebach T., Jansen K., Seidel E. (2001), Polynomial-time

approximation schemes for geometric graphs, In: Kosaraju S R ed.

Proceeding of the 12th Annual Symposium on Discrete Algorithms,

Washington, DC, USA, ACM, pp. 671-679.

[79] Bilo V., Caragiannis I., Kaklamanis C et al. (2005), Geometric

clustering to minimize the sum of cluster sizes, In: Montanari U, Rolim

J D P, Welzl E eds. Proceedings of the European Symposium on

Algorithms, LNCS, 3669, pp. 460–471.

[80] Gibson M., Kanade G., Krohn E. et al. (2008), On clustering to

minimize the sum of radii, In: Teng S ed. Proceeding of the 19th Annual

Symposium on Discrete Algorithms San Francisco, California, USA,

SIAM, pp. 819–825.

[81] Arora S. (1996), Polynomial-time approximation schemes for

Euclidean TSP and other geometric problems, In: Proceedings of the

IEEE Symposium on Foundations of Computer Science, Burlington,

Vermont, USA, IEEE Computer Society, 1996. pp. 2–12.

[82] Mitchell J. S. B. (1999), Guillotine subdivisions approximate polygonal

subdivisions: a simple polynomial-time approximation scheme for

geometric TSP, k-MST, and related problems, SIAM Journal of

Computing, 1999, 28, 1298–1309.

[83] Bartal Y. (1996), Probabilistic approximations of metric spaces and its

93

algorithmic applications, In: Proceedings of the IEEE Symposium on

the Foundations of Computer Science, Burlington, Vermont, USA,

IEEE Computer Society, 1996, pp. 184–193.

[84] Fakcharoenphol J., Rao S., Talwar K. (2003), A tight bound on

approximating arbitrary metrics by tree metrics, In: Larmore L L,

Goemans M X ed. Proceedings of the ACM Symposium on the Theory

of Computing, San Diego, CA, USA. ACM, pp. 448–455.

[85] Alt H., Arkin E., Bronnimann H et al. (2006), Mininum-cost coverage

of points by disks, In: Amenta N, Cheong O ed. Proceedings of the

Annual Symposium on Computational Geometry, Sedona, Arizona,

USA, ACM, pp. 449–458.

[86] Li W. L., Zhang P., Zhu D. M. (2008), On Constrained facility location

problems, Journal of Computer Science and Technology, 23(5), 740–

748.

[87] Qian J., Wang C. A. (2006), How much precision is needed to compare

two sums of square roots of integers?, Information Processing Letters,

100, 194–198.

[88] Demaine E. D., Mitchell J. S. B., O’Rourke J , The open problems

project, Problem 33: Sum of square roots,

http://maven.smith.edu/~orourke/TOPP/P33.html.

[89] Gibson M., Kanade G., Krohn G. et al. (2010), On metric clustering to

minimize the sum of radii, Algorithmica, 57, 484–498.

[90] Gibson, M., Kanade, G., Krohn, et al. (2012), On clustering to

minimize the sum of radii, SIAM Journal on Computing, 41(1), 47–60.

[91] Proietti G., Widmayer P. (2005), Partitioning the nodes of a graph to

minimize the sum of subgraph radii, In: Deng X, Du D ed. Proceedings

of the International Symposium on Algorithms and Computation

(ISAAC), Sanya, Hainan, China, Springer, pp. 578–587.

[92] Behsaz B., Salavatipour M. R. (2012), On Minimum Sum of Radii and

Diameters Clustering, In: Fomin F V, Kaski P ed. Proceeding of 13th

Scandinavian Symposium and Workshops, Helsinki, Finland,

Algorithm Theory – SWAT 2012, Lecture Notes in Computer Science,

Springer, 7357, pp. 71–82.

[93] Jain R., Chaudhari N. S. (2012), A new 3-clustering algorithm for

94

minimum sum of diameter using bit representation. In: Proceeding of

7th IEEE Conference International Conference Industrial Electronics

and Applications (ICIEA) Singapore, pp. 2004–2009.

[94] Ding C., Xiaofeng H., Hongyuan Z., Ming G., Simon H. (2001), A

Min-Max Cut Algorithm for Graph Partitioning and Data Clustering,

In: Proceedings of IEEE International Conference Data Mining, pp.

107–114.

[95] Y. G. Saab (2004), An Effective Multilevel Algorithm for Bisecting

Graphs and Hypergraphs, IEEE Transaction, 641–652.

[96] Graham R.L., Knuth D.E., Patashnik O. (1988), Concrete Mathematics-

A Foundation for Computer Science, 2nd Edition, Pearson Education.

[97] Van-Lint J.H., Wilson R.M. (2001), A course in Combinatorics, 2nd

Edition, Cambridge University Press, pp. 119–128.

[98] Dagan I, Lee L., Pereira F. C. N. (1999), Similarity Based Model Of

Word Co-Occurrence Probabilities, Machine Learning -Special issue

on natural language learning archive, Kluwer Academic Publishers

Hingham, MA, USA, 34, pp. 43–69.

[99] D. Bollegala, Y. Matsuo, M. Ishizuka (2011), A Web Search Engine-

Based Approach to Measure Semantic Similarity between Words, IEEE

Transactions On Knowledge And Data Engineering, 23(7), pp. 977-

990.

[100] Rijsbergen C. J. V. (1979), Information Retrieval, Butterworth-

Heinemann; 2nd edition.

[101] Y. Karov, S. Edelman (1996), Learning similarity-based word sense

disambiguation from sparse data, In: Proceedings of the Fourth

Workshop on Very Large Corpora, pp. 1–18.

[102] P. F. Brown, V. J. DellaPietra, P. V. deSouza, J. C. Lai, R. L. Mercer

(1992), Class-based n-gram models of natural language, Computational

Linguistics, 18(4), pp. 467-479.

[103] F. C. N. Pereira, N. Tishby, L. Lee, (1993), Distributional clustering of

English words, In 31st Annual Meeting of the Association for

Computational Linguistics, Somerset, New Jersey, pp. 183-190.

[104] G. Maltese, F. Mancini (1992), An Automatic Technique to Include

Grammatical and Morphological Information in a Trigram- Based

95

Statistical Language Model, In: Proc. ICASSP, San Francisco, CA, pp.

157-160.

[105] Dagan S., Marcus S., Markovitch S. (1993), Contextual word similarity

and estimation from sparse data, In 31st Annual Meeting of the ACL,

Somerset, New Jersey, pp. 164–171.

[106] Dagan I., Marcus S., Markovitch S. (1995), Contextual word similarity

and estimation from sparse data, Computer Speech and Language, 9,

123–152.

[107] Jardino M., Adda G. (1993), Automatic Word Classification, Using

Simulated Annealing, In: Proc.1993 ICASSP, Minneapolis, MN,1993,

pp. 41–44.

[108] Tamoto M., Kawabata T. (1995), Clustering Word Category Based on

Binomial Posteriori Co-Occurrence Distribution, In: Proc. 1995

ICASSP, Detroit, MI, pp. 165–168.

[109] Magnus S., Cöster R. (2004), Using bag-of-concepts to improve the

performance of support vector machines in text categorization, In:

Proceedings of the 20th International conference on Computational

Linguistics. Association for Computational Linguistics.

[110] Y. Liu, X. Wang, B. Liu, (2004), A Feature Selection Algorithm for

Document Clustering based On Word Co-Occurrence Frequency, In:

Proceedings of the Third International Conference on Machine

Learning and Cybernetics, Shanghai, pp. 2963–2968.

[111] Zhou W., Du Y., Wang H., Lv X. (2011), Automatic identification of

hierarchical relationship between words based on clustering, In

International Conference on Transportation, Mechanical, and Electrical

Engineering (TMEE), 2011, pp. 1585–1588.

[112] Marvit D., Jain J., Stergiou S., Gilman A., Adler B.T. (2009),

Identifying Clusters of Words According to Word Affinities, Google

Patents, EP2045736A1.

