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Abstract

Machine learning has the ability to solve a problem which is beyond the
processing of a human brain. The learning and the processing of data by a
machine provides different connections present within a database. Artifi-
cial neural network (ANN) is one of the robust machine learning technique
that mimics the learning process of a human brain using the basics of a
perceptron model. In the last few decades, ANN has been used to solve
complex problems in chemistry. The calculation of potential energy surface
(PES) of a nanoparticle (Np) is one such problem which can be solved using
ANN. The ab initio methods can be applied for accurate prediction of PES,
but their high computational cost makes them a poor alternative. ANN
provides a solution to bridge the gap between accuracy of ab initio meth-
ods and low computational costs. ANN interatomic potentials provides a
cheap and accurate alternative to study the structural dynamics of metal-
lic Nps. Metallic Nps have a variety of applications which makes them an
important topic to study theoretically. The study of structural dynamics
of Nps leads to major insights into vacancy defects, surface energy, me-
chanical properties, plasmon-resonance behavior. In this thesis, the ANN
interatomic potentials is constructed for gold Nps and their alloys. As gold
shows a rugged PES due to relativistic effects, the fitting of PES was pos-
sible with high dimensional ANN. For constructing a PES using ANN, one
of the important part is the descriptors of the atomic environment. Higher
order invariants- Power Spectrum and Bispectrum have been applied with
modified atomic environment density for describing the atomic environ-
ments. A transferable approach for fitting PES of an alloy system was not
done prior to the work done in this thesis. For an alloy system, the PES is
fitted using a single ANN by following a strategy of decoupled fitting of en-
ergy and forces. The elements are differentiated between each other using
weightings in the descriptors. The PES fitted for small and medium sized
clusters(~1.8 nm) is found to be transferable to larger size clusters(<3.3
nm). The computational time for accurate calculation of energy and forces

using power spectrum-ANN for a Auyy; cluster was reduced to seconds,



when compared to DET (~ hours) (calculation done on parallelized 8 CPU
[Genuinelntel 2600.0 MHz]). Due to an accurate prediction of PES of gold
Nps, a symmetric core evolution with increase in size of gold Nps is studied.
It is observed that an icosahedron core is evolving from Auigg to Augoer to
Ausry. It is also observed that magic number clusters- Auyyy, Ausgg, Ause
and Auggg prefer amorphous structure over symmetric structures. The un-
usual bonding in gold leads to modification of the structural preference in
magic number clusters. Overall, the proposed descriptors and various new
models have proved to be of great significance in fitting the PES of complex

system like gold.
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Chapter 1

Introduction

1.1 Machine Learning

“Learning” is an integral part of human life. It helps us to grow in all
aspects of life. One of the important branch of learning is utilizing the
learned information in analyzing different situations. For example, based
on the taste acquired for categories- sweet, salty and sour food we can
predict the category for a new food item even before tasting it. There are
many situations where we are unable to process the information and use
it for our benefit. For example, predicting the weather, prices of stocks,
preventing frauds. If we are cheated by a company and next time we want
to invest in a new company, we won’t be able to identify the credibility of
this new company. In such situations, we require a technology by which we
can process the information and obtain a clarity. One more example of such
a situation is filtering of spam mails. The spam mails are filtered based
on the keywords they contain. Sometimes, spam mails do not have those
keywords and in such cases we require a mechanism by which the mails are
filtered by analyzing its content smartly. This kind of learning, processing,
filtering and prediction can be achieved by “Machine learning” (ML). ML
is learning from a bunch of data and making predictions for the unseen
data. The word “Machine” broadly refers to the computer on which such
programs can be constructed. So, it is a computer which will learn and
process the data. Around 60 years ago, the computer used to perform the
task that humans used to code. Now, the computer analyses the data and

interprets the results on its own. The ability of a “machine” to perform



like humans is called artificial intelligence.

The ML forms an important part of our daily life. It analyses the
data and categorize it according to the pros and cons associated with a
situation. It helps in classification and predictions. A lot of activities like
getting suggestions about our likes and dislikes, recognizing people with
same accuracy as humans, pattern detection in videos, categorizing mails
as spams, predicting the cost of a property, chances of winning, are gov-
erned using ML. ML can be achieved by different algorithms which can be
broadly classified as supervised learning and unsupervised learning. Su-
pervised learning is a learning based on input-output pairs i.e., the data
having the input features leading to an output result is trained by an al-
gorithm. For supervised learning there are many training algorithms like
linear regression, support vector machines, nearest neighbor, neural net-
works (NN), naive Bayes and logistic regression. In unsupervised learning,
the output is not considered. The algorithms extract the patterns from
the data based on the input features. Unsupervised learning is broadly

achieved by a method known as clustering.

ML has given an insight deeper than human perceptions. The hypoth-
esis and solution generated by a human brain is unable to take into account
a lot of hidden features of a problem. ML based data analysis has brought
a revolution in various fields like protein structural analysis[1], genomics[2],
prediction of volcano eruption[3], discovery of new materials[4], among

many others.

For discovery of new materials, ML extracts the patterns of the struc-
tural preference of atoms in a stable structure and thus predicts new struc-
tures accordingly. This can be achieved by supervised as well as unsuper-
vised learning algorithms. In general, among supervised learning, NN have
proven to be robust for extraction of patterns in scientific data analysis. In
this thesis work, NN have been applied to study structural analysis of gold
Nps.



1.1.1 NN model

As the name suggests, NN is the network of neurons in the nervous sys-
tem of the human body. This network is responsible for various actions
like detection of smell, feeling of pain, learning new things among many
others. In 1943, McCulloch and Pitts[5] deciphered the neural activity in
the human brain by a simple mathematical model. They explained the
working of neurons in transmitting the signal from one part to another
part in the body. This was the first “NN” mathematical model drawn from
electrical circuits. In 1949, Donald Hebb[6] wrote a book “The Organi-
zation of Behavior”, describing the learning process of the human brain.
He gave a theory that the link between two neurons is strengthened as a
signal is transmitted. The theories by McCulloch, Pitts and Hebb laid the
foundation for applying NN model for learning real life problems and doing
accurate predictions. In 1958, Rosenblatt[7] proposed the “perceptron”
model. It is a model by which artificial neurons can learn in a super-
vised learning mode. Supervised learning is learning from a data having
information of all the input-output pairs. In 1959, Arthur Samuel uti-
lized the learning capability of a NN and coded a program for a game -
Checkers[8]. It taught the game to learn on its own and to play it ef-
ficiently. This was the first computer game that could defeat a human
brain. In 1960, Wildrow and Hoff[9] constructed a single layer artificial
NN called ADALINE. They even constructed MADALINE, that consists
of multiple ADALINE units. These were implemented to filter the noise
in phone lines and is still in use. After 40 years of the breakthrough by
McCulloch and Pitts, in 1980s the layers of neurons was increased from
a single to a double layer. This was introduced to induce a slow learning
and a better pattern classification. In 1982, Hopfield[10, 11] introduced
the nonlinear link between the input from all the neurons received by a
neuron and the output sent to the other neurons. The NN emerged as
a fascinating tool with the predictions of secondary structure of protein
in late 1980s[12, 13, 14], protein localization[15], predictions of cleavage

sites[16], spectral data analysis[17, 18], solving Schrodinger wave equation
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(SWE) for harmonic oscillator[19, 20], prediction of polymer properties[21],
prediction of heat of formation[22], fitting the PES[23, 24, 25, 26], Monte

Carlo simulations of polymers[27], among many others[28].

In this thesis work, fitting of PES is achieved using ML. The PES
represents the variation of energy of a system with different atomic coordi-
nates and thus provides an important piece of information for a chemical
system. In 2007, Behler and Parrinello[29] made a breakthrough in fitting
the PES of molecular systems. They addressed and removed the short-
comings of the previously followed approaches for fitting the PES. The
Behler-NN is a two layer feed forward NN having the capability of fitting
and reproducing high quality of ab initio results. It captures all the inter-
actions of the system efficiently and a proper modeling of the interactions
is not required. Their strategy was to map the Cartesian coordinates of
the system into local atomic environment features. These features are then
given as an input to NN, which then gives the atomic energy as the out-
put. This energy approximation is then corrected by supervised learning
from a data obtained from ab initio calculations. This approach moti-
vated other scientists to work on generating PES more efficiently. Since
2007, various techniques using different kinds of fitting strategies have
emerged as a powerful tool to generate PES or preferably called inter-
atomic potentials[30, 31, 32, 33, 34, 35, 36, 36, 37]. Such techniques are
widely known as “ML”. 1 will be discussing the interatomic potentials
in the next section. The advantage of these ML techniques is that they
are not formulated on a specific model based on the atomic or electronic
interactions. The fundamental idea of ML is to describe the property of
interest in the form of a mathematical expression depending upon large
number of tunable parameters. The parameters are adjusted with respect
to the quantum chemical data fed into the “machine”. The word “machine”
refers to a pattern classification tool that captures and classifies the input
data. It further processes the data into the desired output. The outline of
the construction of a PES using an ML technique is followed by the brief

introduction about interatomic potentials in the next section.
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1.2 Interatomic Potentials

Various chemical processes like surface reactions, catalysis, synthesis can
be explained by a thorough scanning of atomic interactions. The basic
quantity that reflects atomic interaction is energy and atomic forces in a
molecular/atomic system. The correct evaluation of these quantities leads
to an accurate pathway, structural stability and mechanisms of reactions.
The potential energy of a molecular/atomic system is dependent on in-
teratomic interactions and therefore interatomic potentials calculate the

potential energy by using mathematical equations.

The ab initio methods are the most accurate form of interatomic
potentials. They estimate the energy and forces by solving the SWE for
N-electrons of a molecular system. In order to estimate the PES, large
amount of simulations are required which in turn requires calculation of
energy and forces. The computational burden is huge if ab initio meth-
ods are employed for the energy and force calculation. Therefore, a clas-
sical approach is required for accurate estimation of the PES. The elec-
tronic structure calculations can be replaced by atomic level calculations
for the estimations. One of the popular and a basic form of potential for di-
atomic molecules and noble gases was proposed by Lennard-Jones[38] and
Morse[39]. These potentials rely on the additive nature for a multi atomic
system. Since the interactions are not generally additive, the pair potentials
are unable to perform as the number of atoms increases. For multi atomic
systems, many pair potentials were introduced as Gupta potential]40],
Embedded atom method[41, 42], Murrell Mottram potential[43], Finnis-
Sinclair potential[44], force fields[45, 46, 47], reaxFF[48, 49] among many
others. All these empirical potentials have a rigid mathematical modeling
of the atomic interactions which may work for a few systems only. To over-
come the modeling of atomic interactions, ML techniques are employed for

predictions of energy and forces.

As discussed in previous section, ML techniques do not require a

rigid physical connection between the input and output. They learn the



data and extract the patterns by which the atoms interact in a molecular
system. Overall, there are four elements that comprises an ML technique

for construction of interatomic potential(Fig. 1.1).

e Generate an input dataset consisting of different atomic arrange-

ments.

e Extract the features from the input dataset in terms of local atomic

environments, commonly called as descriptors.

e Feed the descriptors into a pattern recognition/classification “ma-

chine”.

e Train the machine till the parameters are finely tuned with respect

to the atomic system.

nput Convertinto Tfa"""g Desired
data ‘ descrlptors ‘ Output
Figure 1.1. An overview of ML technique

The input dataset for ML technique should consists of all kinds of atomic
environments that are feasible in actual practice. The structures can be ob-
tained using different simulations like molecular dynamics (MD) and Monte
Carlo using either empirical potential or ab initio potential as the inter-
atomic potential. The following step is to extract the features of the dataset
such that the “machine” is able to recognize minute details about the bond-
ing and interactions in the atomic system. Fundamentally, a descriptor
should be unique for each environment. It should be rotationally, transla-
tionally and permutationally invariant. There are many descriptors which
are listed in the literature and can describe the atomic systems. For exam-
ple, Behler’s symmetric function[29, 50|, SOAP kernel[51, 52|, coulomb
matrix[53], fingerprints[54], SNAP[55], embeddings[56], encoder[57, 58],
wavelets[59, 60] can efficiently map the atomic environments. After map-

ping the input dataset to descriptors, a fitting technique is chosen. The



widely used fitting techniques can be broadly classified into NN and kernel
based methods.

The architecture of NN based methods use multiple layers of neurons,
and transfer the information from one layer to another by using weights.
The weights capture the hidden information from the descriptors and fit
them according to the desired output. The interatomic potential using NN
based methods are usually referred to as NN potential. In the last decade,
a lot of NN potentials have been developed using different architecture
and for different molecular systems[30, 33, 61, 62, 63]. The variety of NN
used are feed forward NN|[29, 64], deep tensor NN[37], SchNet[65], graph
NNI[66], graph convolutional network[67], message passing NN[68] among
many others. Kernel based methods[69, 70] uses a similarity function to
compare any two data points in the input data. There are a lot of kernel
based methods like support vector machines[71, 72], ridge regression, gaus-
sian process ridge regression[51, 52|, principal component analysis among

others.

After the data is sent into the “machine”, the learning/tuning of the
parameters is achieved using different optimization algorithms like limited
memory Broyden-Fletcher-Goldfarb—Shanno (L-BFGS)[73], Kalman Fil-
ter (KF)[74, 75, 76], Levenberg Marquardt (LEMA) algorithm[77], back
propagation[78], gradient descent|[79], Adam optimizer[80]. The optimiza-
tion algorithm minimises the error between the actual and the predicted
values by modifying the network weights. The optimization is done iter-
ation wise, and the learning is stopped with the decrease in the error of
prediction. The optimized parameters are then applied for predictions for

a wide range of dataset.

1.3 Higher order invariants

For capturing the effect of atomic movements in crystals and liquids,
Steinhardt[81, 82] proposed the use of bond orientational order parame-

ters. The bond order parameters are second order(Q) and third order(W)
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invariants of spherical harmonics. For an atom ¢ in an N atom molecule,
the higher order invariants- Q and W are defined for a particular frequency

[ of spherical harmonics as

N|=
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where, Q) is calculated using spherical harmonics where r;; is length vector

pointing from atom ¢ to atom j.

N
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These higher order invariants have been applied in various applications like
phase transitions[83, 84|, free energy of clusters[85, 86] and in interatomic
potentials[87]. The property of being rotationally and translationally in-
variant makes them highly efficient for describing atomic environments.
The power spectrum[52] and bispectrum|88] coefficients forms the set, of
which the Q and W are subset. These coefficients are discussed in next
chapter. These coefficients have efficiently been applied to as atomic envi-
ronment descriptors in the past few years. In this work, power spectrum
and bispectrum coefficients have been modified and applied for construct-

ing the PES of metallic Nps.

1.4 Metal Nps

Nps are the particles in the size range of 1 nm to 100 nm. They have unique
properties and are extremely efficient in performing a lot of applications.
Metallic Nps are the Nps of metals like gold, copper, silver, platinum,
rhodium, sodium. In 5" century B.C. when the Lycurgus cup was created

using colloidal gold, the word “nano” was not known[89]. In 16 century,
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glazes composed of silver and copper Nps were reported. The glass makers
in ancient times produced various colored stains using tiny amounts of silver
and gold. In 1676, a drinkable gold solution was used to cure diseases. The
solution contained gold which was not visible to human eyes. In 1685, a
recipe for synthesizing coloring pigments was given by Cassius, known as
Purple of Cassius[90]. In 1794, dying of silk was done with colloidal gold
solution. It was in 1857, when Faraday discovered the Nps of metal in
a solution[91]. This was supported by Mie in 1908[92], who showed the
optical properties of metal Np. Metal nanoclusters are the clusters where
the number of atoms that form a stable structure are in range of 2 to ~100

atoms, leading to a size below ~1 nm.

The Nps have evoked considerable attention due to quantum size ef-
fects and surface to volume ratio, that leads to a tremendous amount of
applications in various fields. The properties showed by metal nanoclus-
ters are a function of number of atoms and their structural arrangement.
A slight change in the structural morphology leads to modification in the
property of interest. For clusters having multiple species, the composition
of the atomic species also has an impact on the properties of the nanoclus-

ter.

At the bulk level the atomic properties overlap with each other mak-
ing the energy levels continuous. The valence electrons act like a free
electron gas as the number of electrons are huge. As we go to nanoclusters,
the atoms do not overlap with each other and thus the energy levels be-
comes discrete. The valence electrons do not behave as a free electron gas
as the electrons are countable at such small size and have an impact on the
properties. The clusters thus exhibits a quantum size effect leading to a
gap in HOMO-LUMO. This gap results in tunable optical properties of the
nanoclusters. As the size decreases from bulk to atomic level, the number
of surface atoms increases with comparison to the atoms present in the
core. This increase in the surface to volume ratio increases the reactivity
of the clusters[93]. The magnetic moment increases due to large number

of surface atoms. The low coordination of the surface atoms makes them



catalytically active.

All the above said properties motivates to study the metal nanoclus-
ters. In this work, the focus of study is on gold and its alloys nan-
oclusters. Gold nanoclusters exhibits an added effect called relativistic
effects[94, 95, 96, 97, 98]. The electrons in the heavy elements move at a
higher speed causing relativistic effects which leads to alteration of prop-

erties.

1.4.1 Gold nanoclusters

Among metals, gold is known as an inert and a noble metal. This is at-
tributed to its ability to stay anti-corrosive and non-reactive in the bulk
state. One of the reason for inertness is relativistic effects, which stabilizes
the valence electron (6s') and makes it difficult to react. As we go from bulk
to nanometer level, gold becomes highly reactive and is found to have ap-
plications in catalysis[99, 100, 101, 102, 103, 104, 105], biosciences[106, 107]
and radiosensitizer[108]. The changes occur at the nanometer level due to
surface to volume ratio, more active sites and different electronic structure.
In surface reactions like catalysis, the defects on the surface of the gold
Nps becomes the active sites for reaction to take place. Among Nps, it is
observed that, there is a decrease of catalytic activity with a decrease in
the percentage of surface atoms. Gold nanoclusters are known to exhibit a
wide variety of structures[31, 109, 110, 111, 112, 113] like planar(Au;;-
Auys)[114], cages(Aujg-Auig)[115], pyramidal(Augg)[116], tubular(Aug;-
Augy)[117] and amorphous core-shell(>Aus3)[31, 112, 113, 118].

For establishing a proper structure dependent physical and chem-
ical activity, it is important to study the structure evolution and ther-
modynamic stability of these clusters. It has been observed that cat-
alytic activities in gold Nps becomes inactive for sizes greater than 5
nm.[98, 102, 105, 119, 120] It is very important to study the catalytic

activity of gold Nps below 5 nm using electronic structure methods.

Metallic Nps belonging to the magic number series[121, 122] with
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atoms — 13(~ 0.6 nm), 55(~ 1.2 nm), 147(~ 1.8 nm), 309(~ 2.2 nm), 561 (~
2.7 nm) and 923(~ 3.3 nm) are expected to have a symmetric structure
(like icosahedron (Ih), decahedron (Dh), octahedron(Oh)). They are called
“magic” because of a compact arrangement of atoms leading to a stable
symmetric structure. They are also known to be more stable and possess
different reactivities[119, 120, 123, 124, 125, 126] than clusters of other
sizes. Although, gold is a metal, many studies have shown that, the magic
numbers for gold Nps may not exhibit symmetric structure as the lowest
energy structure. Among these, Au;3 and Auss have been proved to have
a non-symmetric stable structures in the previous years[98, 111, 127, 128,
129, 130, 131, 132, 133] and recently Auyy; has been proved to have an
amorphous structure[134, 135, 136].

Due to large variations in the structures and chemical reactivities,
it is important to study the structural dynamics of these clusters. This is

possible by exploring the PES and getting the low energy stable structures.

1.5 Objectives of the study

In order to study metallic nanoclusters we have to run Monte Carlo or
MD simulations. This requires the calculation of energy and forces by
density functional theory (DFT) for all the structures as the simulation is
processed. For larger systems (>100 atoms), it is almost impossible to carry
out simulations using DF'T as this will be highly computationally expensive.
On the other hand, empirical potentials like the Gupta potential, Morse
potential, Murrell-Motram potential, EAM, and MEAM have been time
and again used for the prediction of energy and forces. It has been observed
that for heavy atomic systems, like gold and platinum, relativistic effects
play an important role and therefore the empirical potentials are unable
to make an accurate prediction of the structure and properties of these
systems. So, we have to construct an interatomic potential having an
accuracy of DFT and a speed of empirical potentials using ML. ANN is one

of the robust platform to construct PES of complex molecular systems. To
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get a deeper insight into the structural dynamics of metallic nanoclusters,
especially gold and its nanoalloys, different strategies are proposed in this
thesis work. The computational burden for calculating the properties of
large size Nps from DFT is very high. In this work, ANN is applied to
reduce the computational cost for large size Nps using different atomic

environment descriptors.

1.6 Framework of the Thesis

The thesis is arranged in seven chapters. The current chapter gives a
brief history of ML techniques, metallic clusters, interatomic potentials
and atomic environment descriptors.

Chapter 2: It provides the details of theoretical foundations laid in this
work. The developments done in the existing theoretical models is elabo-
rated. The basic framework of constructing an ANN potential is discussed.
Chapter 3: In this chapter, PES of gold nanoclusters up to a size of ~
1.8 nm (Auysr) is constructed. The radial functions and modified Power
Spectrum coefficients are used to describe the atomic environments. An
elaborated study of structural dynamics of Auy47 is performed. A compar-
ative analysis between DFT and ANN results is done.

Chapter 4: This chapter provides the details of construction of PES us-
ing filtered bispectrum coefficients as atomic environment descriptors. The
model is applied to gold nanoclusters and a comparison is done between
Power Spectrum coefficients and Bispectrum coefficients driven results.
Chapter 5: It presents the demonstration of the technique to model the
interatomic potentials of alloys using ANN. The proposed strategy is ap-
plied to fit the PES of (AgAu)ss5-(AgAu)147 nanoalloys and Aui3(SH )g-
Augs(SH )24 nanoclusters. The transferable and computationally cheap
strategy can be applied to any number of chemical species system.
Chapter 6: This chapter contains the structural evolution of gold nan-
oclusters from a few atoms to nanometer size range. A nucleation of a

symmetric core is identified with an evolution up to ~ 3.3nm. A new set of
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magic numbers is identified for gold and a probabilistic study is performed
to compare experimentally and theoretically obtained results.
Chapter 7: This chapter gives a conclusion and the future scope of the

work done in thesis.
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Chapter 2

Theoretical foundation and

developments

2.1 Electronic structure calculations

The basic foundation of all the entities around us is an atom. An atom
is made of electrons, protons and neutrons. The properties of any chem-
ical system is thus governed by the electronic interactions. An electron
is represented accurately by quantum mechanics. The state of a system
is represented by wave function. Solutions to the SWE are the possible
energies and wavefunctions of a system. From a wavefunction, one may
calculate the properties of a system. The time independent SWE is given

as

~

Hip(r) = Eij(r) (2.1)

The wave function v is dependent on electronic and nuclei positions in the
space. According to Born-Oppenheimer approximation[137], the electronic
and nuclei time scales are different and thus the wave function can be
separated into 1, and ), respectively. The Hamiltonian operator consists
of kinetic energy and potential energy contributions to the total energy.

For a multi-electron system (n.) with n, nuclei, SWE is written as

He¢e = Eewe (22)

1 Ne 1 ne T ZZ
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i=1 in=1
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The exact solution of SWE is not possible for multi-electron system due
to the inter electronic repulsion term. It is impossible to solve for an op-
timized wave function that will give an accurate ground state energy and
other properties. In order to get an accurate solution, the wave function
has to be dependent on all the electronic coordinates at once, which is
not possible to formulate. Since, electrons are fermions, they should fol-
low anti symmetry rule for exchange. Slater determinant[138] takes anti
symmetry in consideration and is a better way to approximate wave func-
tions. Hartree-Fock(HF) theory provides a solution to this problem by
using Slater determinant orbitals to calculate the ground state properties.

The HF equation for ¢+ = 1,2,..,Ngectron modifies to
Figi = €9 (2:4)

where, ¢ are spatial orbitals and F; is the Fock operator of i*" electron

given by
Z Netectron

Fi= =32 = 240 Y (h00) - ) 25

Ty

J; is the coulomb operator and K is the exchange operator. The HF
theory has spin correlation taken care of by Slater orbitals, but coulomb
correlation is missing. The shortcomings of HF theory is that, it cannot
explain electron correlation. Moreover, using single Slater determinant it is
difficult to explain the bond forming and the bond breaking in molecules.
Hohenberg-Kohn(HK) proposed DFT using electron density as the funda-
mental quantity. Electron density is a simple quantity that depends only
on coordinates- x, y, z rather than a complicated wave function that de-
pends on all the electronic coordinates. The DFT is discussed in brief in
the next section. In this work, all the electronic structure calculations are

performed using DFT.
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2.1.1 DFT

DF'T bypasses the calculation of all the ground state wave n-electron func-
tions. It calculates the electronic energy from the ground state electron
density(p(r)). According to HK theorem[139], the ground state of a multi-
electron system is a unique functional of the electron density p(r). The
electron density is calculated from the wave functions as the integral over
product of all the n electron wave function. On integrating the electron

density, we can get the total number of electrons.

Netectron = /P(T)dr (26)

p(r) = Nelemon/.../w*(rg,...rNelecmn)@/)(rg,...rN)dTQ...drNelecmn (2.7)

The energy functional is defined as[140)]

Elp(r)] = / Voe(1)p(x)dr + Flp(r)] (2.8)

Vewt(r)dr is the contribution from Coulomb interactions of electrons with
the nuclei. The kinetic energy and inter-electronic interactions are repre-
sented by F'[p(r)]. Variational method gives the ground state energy, which
corresponds to a ground state density. Due to the constraint of number of
electrons on the electron density, Lagrange multiplier(—e¢) is introduced for

minimizing the energy.

%(r) {E[p(r)] - e/p(r)dr} =0 (2.9)

Since, HK theorem was proposed for a system of interacting electrons, the
total energy approximation was not that accurate. Kohn-Sham(KS) pro-
posed a solution for accurate approximation of energy of the electrons.
They approximated the functional F[p(r)] by taking contributions from
kinetic energy, electron-electron coulomb interaction and exchange corre-
lation. The kinetic energy term is the energy of a fictitious system having

non-interacting electrons having the density of interacting electrons. The
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exchange correlation energy functional Exc[p(r)] contains the contribution
due to exchange-correlation and the difference between the real kinetic en-
ergy and the fictitious system kinetic energy. The KS equation for energy

can be written as

1= 8 oo () v [ [ R

nucleus
Exclp(r / e p(r)dr (2.10)

The non interacting one electron orbitals are squared and summed for cal-

culating the KS density.

o= Y o) 2.1)

The simplified form of KS equation is written as

|:_V7 —+ Veffectzve('f’l)} ¢z’(r1) = 61'1/12‘(1'1) (212)

Ves fective = [— (NTZM i) + / pijj)drz + (%&ng)])] (2.13)

1

Details of the DFT calculations

In this work, the DFT calculations are performed in Vienna Ab initio
simulation package[141, 142, 143, 144](VASP). The electron orbitals are
represented with a plane wave basis set. The full electron wave func-
tion is reduced by using projector augmented wave method (PAW)[145].
It treats core electrons and nucleus as a single entity and the valence
electrons separately. The valence electrons are given by a set of pseudo
wave functions having fewer nodes. The exchange correlation functional
is approximated by generalized gradient approximation through Perdew-
Burke-Ernzerhof (PBE) functional[146, 147]. The PBE functional gives

accurate approximations for metallic clusters. Many studies have been
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reported that validates the results obtained using PBE functional with
experiments[115, 148, 149, 150, 151, 152]. The atomic systems considered
in this work are non periodic, therefore, a gamma k point mesh of 1x1x1
is used. The cut off energy used for the clusters is 260 eV, and the gradient
convergence is 10~*. For a non periodic system like isolated atomic clusters,
the cluster is kept in centre of a periodic cell. The length of the periodic
cell should be enough for the cluster to not react between each other as
shown in Fig. 2.1. The cubic box length for different size of clusters is kept
by adding ~ 8 A to the diameter of the cluster. This allows for a negligible

interaction among molecules in neighboring cells.

Figure 2.1. A periodic cell for a non-periodic isolated cluster

2.2 Empirical Potentials

Empirical potentials are mathematical functions that approximate the po-
tential energy of a N-atom system. These potentials vary from taking two-
body interactions to multi-body expansion terms. The parameters corre-
sponding to different systems are fitted for a dataset, which is then applied
for calculations. These potentials are extremely fast when compared to
electronic structure calculations and therefore, the aim of this study is to
get an empirical potential having an accuracy of DFT, at a much cheaper
computational burden. The empirical potentials used and constructed in

this work are discussed below.
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Table 2.1. Parameters of Gupta potential for Ag and Au

AlV)] p [P (A)]C(eV)] g
Ag-Ag|0.1028 [ 10.928 | 2.892 | 1.178 |3.139
Au-Au|0.2061 [10.229] 2.884 | 1.79 |4.036

2.2.1 Gupta Potential

Gupta potential[40, 153] is a many body potential for metallic clusters.
Cleri and Rosato (1993) have calculated the parameters of Cu, Au, Pt, Ni,
Ag and Pd using second-moment approximation of tight binding Hamil-
tonian. The potential is expressed as contribution from repulsive (E,.(h))

and attractive pair terms (E,(h)).

E- % ; Eo(h) — Ea(h) (2.14)
Eh) =Y Ahke‘”’“c‘)ﬁ‘l) (2.15)
hotk

v W
0= (e () 210

hstk
where, N is the total number of atoms in the structure and ry is the bond
between an atom ‘h’ and ‘k’. py is dependent on the atomic species, 19, is
the minimum distance with the first neighbor, (5 is a hopping integral and
qni reflects the dependence on interatomic distances. All these parameters
(t),., Prks Ank, Cur and qpg) are fitted according to the experimental data of
lattice parameters, cohesive energies and elastic constants for a reference
crystal structure at 0K. In this work, Gupta potential is used for generating

an initial dataset for the fitting of PES of Ag and Au. The parameters used
are given in Table 2.1[153].
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2.2.2 NN potential

An interesting approach to get an interatomic potential is by learning the
patterns of bonding, instead of providing the contribution to the energy
exclusively. This is achieved by ML techniques which have a mathematical
form of predicting energy. The energy is formulated to be dependent on
the atomic environments. The machine is trained in such a way that the
patterns in which energy is related to the atomic environments is captured.
The ML techniques have proven to be highly robust for fitting the PES of
many atomic systems in the last decade. One such ML technique is NN,
which is a neuron based model. In NN, the energy is predicted from the
atomic environments using a network of neurons. It is inspired from the
biological model of neurons, where the signals are transmitted from one
point to another, resulting in brain activity as an output. One of the pros
of using NN is that there are lot of parameters on which the energy can be
modeled and thus the amount of complexity in the energy predictions can
be taken care of easily. NN is used for the problems where the relationship
between the entities is not known. By adjusting different parameters of the
network, the relationship is extracted. The input and output is known, but
the link between the two is explored using NN. The number of parameters
on which an output depends can vary from one to many, according to
the complexity of the problem. To develop a basic understanding about

architecture of NN, few examples are discussed below|[154].

A single neuron NN An example of a single neuron network is
converting mass from Kilo to Pounds. The relationship between Kilo and
Pounds is linear and that’s why only a single neuron is required. In Fig.
2.2, we have an input of 10 Kg and an output of 22.05 Pounds. In order
to find the relation between the two, a guess weight of 5 is applied. The
output obtained is 50, which gives an error of 27.95. To reduce the error, a
smaller value of 2 is taken. The error obtained is 2.05, which is considerably
lower than the previous weight error. To further reduce the error, a number

2.2 is chosen. Now, the error is negligible, and it can be said that network
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is fitted well to convert the mass in Kg to that in Pounds. The error can
be made zero, if the weight is taken 2.205. This shows that a network is
fitted with a weight of 2.205 for converting Kg to Pounds.

Ko (MR, R

Output: 50 pound

10K
9 Actual: 22.05 pound
Error: 50-22.05
- =27.95
Ko (MY B G EGTRED
10Kg Output: 20 pound

Actual: 22.05 pound

Error: 20-22.05
= -2.05

Ko e MUY opGlRa
- Output: 22 pound

Actual: 22.05 pound

Error: 22-22.05
= 0.05

kitlo >—— @SS - Pound
Output: 22.05 pound

Actual: 22.05 pound
Error: 22.05-22.05

Figure 2.2. Fitting the single neuron network

A double neuron NN There are certain problems which cannot
be solved using one neuron and thus, two neurons are required to make a
relationship between input and output. For example, if we have to relate
a human height and weight with the nutritional status, one neuron won’t
be able to draw a linear relationship. Now, two neurons are required- one
for mapping height to nutritional status and one for mapping weight to
nutritional status. Also, there has to be a link between the impact they
each have on the relationship. As shown in Fig. 2.3, the two inputs-
height and weight are related to the nutritional status by two neurons.
The weights(w’s) of each link carries the required information, leading to

a consolidated output as the nutritional status.

A double layer NN The above problems are solvable by using a

single layer of neurons between input and output. The purpose of using
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Figure 2.3. Fitting the double neuron network

NN is to solve much complex problems. For example, classifying a data
in which the points cannot be classified by a single line as shown in Fig.
2.4. In this type of problem, the first layer of neurons helps to detect the
basic difference between the two types of data points by drawing a line.
The output from the first layer is not enough to make an accurate decision
and thus, a second layer of neurons is applied. This layer captures the
smoothness of the edges by which the data can be differentiated. In the
output, it can be observed that one type of data is easily classified from

the other type of data.

Input

First layer Second layer

Figure 2.4. The double layer network
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Biological NN The human brain consists of ~ 80-90 billion neurons
for transmitting the signals throughout the body. The basic structure of
a neuron consists of dendrites, axon and terminals as shown in Fig. 2.5.
A neuron receives the input signals from dendrites, which is then passed
through axon till the terminals. These terminals are further connected to
100’s of neurons, where this signal acts as the input. There are multiple
layers of neurons through which a signal passes till an output is obtained.
The neurons process the input signal and transmits it when a threshold is
crossed. The input signal should have a high strength to trigger a neuron
and pass the signal to another neurons. The need of so many neurons is to
efficiently differentiate between the functions of different parts of human
body along with the different sensations in the body. The artificial NN is
inspired from biological NN to send the signals from input functions to an

output via artificial neurons[5, 155, 156].

Dendrites Axon terminals

. Outputs

DN —

Axon '

Figure 2.5. The structure of a neuron, Image courtesy: Wikipedia

The two characteristics of biological NN which are utilized in artificial

NN are

e Taking multiple layers in the NN with large number of neurons in

each layer.

e Taking a function that shoots up as the input value crosses a threshold

thus acting as an artificial neuron.

An activation function like sigmoid function or hyperbolic tangent serves

the purpose of processing an input to an output by keeping a threshold
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into account[157]. For making the features interact among each other, two
layers of neurons between input and output serves the purpose of solving
complex non-linear problems using NN. Customizing the number of neurons

depends on the classification of the input data.

Why NN to fit the PES of nanoclusters? The energy of a
cluster depends upon the positions of atoms. We can map the individual
atomic positions to the energy using a single layer of neurons. This type of
model will give optimized parameters that can give the total energy. Such
a model fails considerably if a structure is translated or rotated in the space
leading to a change in atomic positions. The atomic positions should be
replaced by a quantity which is rotationally and translationally invariant.
The interatomic distance fits into this quantity and acts as a better input.
As the interatomic distance of all the atoms is given as an input to NN,
a fitting can be done using a single layer of neurons. The drawback of
using interatomic distance is that a relative arrangement of atoms with
respect to each other is not captured. To overcome this, for an atom, all
the interatomic distances around it within a cut off distance is summed to
give a density. This density is weighed with a gaussian function for taking
the effect of interactions with a decrease in the interatomic distance. Since,
the inputs are a summed function, they are separated by a hyperplane by
the first layer of neurons. A second layer of neurons is now added to get the
accurate shape of the atomic density. Therefore, in this work, a two hidden
layer NN proposed by Behler and Parrinello[29] is applied. As shown in
Fig. 2.6, the atomic environments are mapped to the descriptors. The
information carried by them has to be processed in such a way that an
accurate energy is predicted and the network learns the bonding patterns.
For using NN, it is not relevant to know the functional form of the output
dependence on the input functions of a system. The basic task consists of
training a NN, by varying the biases of neurons and weights of connecting
neurons so as to reproduce as accurately as possible the known energies and
forces of a large number of atomic environments. The training should give

a minimum error between the expected output and the predicted output.
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Figure 2.6. The conversion of structural information into the descriptors

As the training proceeds, NN captures the hidden patterns existing from
input functions to yield the output. The NN architecture consists of input
functions, hidden layers, bias weights and output. For a three atom system,
a detailed NN architecture is shown in Fig. 2.7. In Fig. 2.7, for each atom
the NN consists of 59 input functions, 5 neurons in hidden layer 1, 5 neurons
in hidden layer 2 and one output. The outputs of the three atoms are
summed to give the total energy of the molecule. The bias weights are given
to each neuron of each hidden layer, respectively. All the components of the
network are connected with each other through weights. In order to get the
accurate predictions, the network is trained i.e. the weights are optimized
till a convergence is achieved. In this work, the NN is applied to fit the PES
of gold Nps and alloys of gold Nps based on a dataset consisting of DFT
calculations. In 2007, Behler and Parrinello[29] proposed an atomic NN for
fitting the PES of a system by mapping atomic environments to the total
energy. Spherical harmonics based atomic environment descriptors[134] are
used in this study to fit the energy of a cluster. The energy for an atom i

is derived from the input functions P by following equation.

30 30 input
E\om = Z w?iq’.fj <w§’ + Z w,i?.fk (w,ﬁ + Z wgi.ﬂn)> (2.17)
j=1 k=1 n=1
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Figure 2.7. Feed forward NN architecture

Here, k and j are hidden layer 1 and 2, respectively. After a lot of trials
with different number of neurons, the hidden layer neurons were kept 30

in each layer. This shows that 30 classifiers are required to separate the

01 12

atomic environments. wy, wy; and w?f are the weights connecting neurons

of input functions P to neurons of layer 1, neurons of layer 1 to neurons

of layer 2 and neurons of layer 2 to single neuron of output, respectively.

b

; are the weights for separately biasing layers k and j. fi and

w? and w
f; are the sigmoid function applied at the output of hidden layer 1 and 2,

respectively for a non-linear dependence.

1
= 4 2.18
T ) (2.18)
1
7 (2.19)

T 1t o (T A S )
The output obtained from DFT is the total energy of the system, therefore

the total energy from NN is calculated as

atoms
Et]gtjt\zfl = Z Eziztom (220)
i=1

In order to explore the PES, accurate atomic forces are required and there-
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fore from ENN the force for an atom i is calculated as

Fi=—

(2.21)

OR;, ~  “~— 0R;, dP;, OR;

Jj= n=

NN atoms atoms input
aEtotal o aEJ _ § E aEJ a‘Pﬂvn
7=1 1

where R € {x,y,z} of atom ’¢’. The sensitivity in force predictions is high
and therefore, along with energy, the forces are also fitted through the
optimization of weights. The accuracy of fitting is measured by root mean
square (RMS) error in energy and forces averaged over all the clusters in

the testing set.

2.3 Optimization of NN weights and

simultaneous fitting of energy and force

The NN is trained by optimizing the weights with respect to a decrease in
the error between the predicted and the observed output. There are lot of
optimization algorithms like back propagation[78], LEMA algorithm[77],
Quasi Newton(QN) method[158], L-BFGS algorithm[73] and KF[74, 75].
In this work global extended KF is used as the weights optimization tool.
The edge of KF over other algorithms is that KF is a very fast and ro-
bust optimization algorithm. The minimum amount of dataset required
for PES fitting is around 10,000. The algorithms such as LEMA, L-BFGS
computes the error for the entire dataset at once and optimizes it. Such an
optimization takes a lot of time to converge and chances of lying in a local
minimum is higher. On the other hand, KF optimizes the error for each
data point and therefore the optimization is faster. The KF optimization
is dependent on a error covariance matrix(P), hessian matrix(H) and error
vector(9). A stepwise procedure for weights optimization using KF is given

as follows:

1. Initialize the NN weights as random numbers.

2. Set process noise (QQ) and measurement noise covariance (R) and

28



initialize error covariance matrix P

Note: In this work, Q = 0.000001, R = 0.2 and P;,;; = 50
3. Calculate the energy and forces for a data point.

— cluster cluster T DFT NN pDFT
4. Calculate the error vector § = [Efgr™ — B F770 — F7 F20 —

ENN FPET — FNN] Note: The weights are optimized with respect to

both energy and forces(3N components)

5. The Hessian matrix is calculated as derivative of error vector with

respect to all the NN weights.

6. The KF equations are
)\k’ = )\cons * )\init + (1 - )\0) (222)

e In this work, A\.,ns =0.97 and \;;; = 0.999. A, is updated iteratively

as

Ninit = Mk (2.23)
Ay=\'*H+«P+H")+R (2.24)
Kg= X" (PxH"x A" (2.25)

e The error covariance matrix P is updated as iteration progresses

Pupdate = A\ % (P — Kg+ H % P)) +Q (2.26)

P = Ppdate (2.27)
e The weights are updated as
Whew = Wo + Kg %0 (2.28)

Simultaneous fitting of energy and forces The forces are the
negative gradient of energy with respect to the Cartesian coordinates. One
of the approximation is to fit the energy using NN and predict forces using

the derivative of energy. This is a traditional way to approximate atomic
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forces. This requires the calculation of derivative of energy with respect to
weights(H matrix in KF). Such an approximation leads to an inaccurate
prediction for systems having a complex bonding pattern like gold. Forces
can be accurately predicted if they are also fitted using NN in an indirect
way. The approach is to initially predict forces using the gradient of the en-
ergy obtained from NN. The error is then calculated between the predicted
forces and the DFT forces. This error is a 3x atoms(3N) dimensional vec-
tor. The error in energy and the 3N dimensional force error is then given to
KF for optimizing the weights[76]. Due to this, an additional calculation
of the H matrix for forces has to be performed. In this way, the energy
and forces are simultaneously fitted using NN with a very high accuracy.
Also, such a combined fitting leads to a lesser requirement of dataset as

the atomic forces take care of a broad set of clusters in a size range.

2.4 Atomic environment descriptors

As the name suggests, the atomic environment descriptors represents the
neighborhood of an atom. These descriptors are usually in terms of ra-
dial distribution function and angular functions. The descriptors should
be rotationally, translationally and permutationally(in same species clus-
ters) invariant. The mapping of the environments through such desciptors
should be unique for different atomic environments. Such functions are
given as an input to the NN for predictions of energy and forces. The
number of descriptors required to map an environment should be enough
to make a complete representation. If the number of descriptors are insuf-
ficient, it may lead to a sparse representation. Whereas, if the number of
descriptors are large, the representation becomes redundant. So, a basic
idea of the atomic system and a lot of trials lead to an efficient selection
of the descriptors. In the NN, the total number of descriptors for all the
atoms should be same in order to maintain proper dimensions throughout
the construction of NN potential. In this work, radial functions and higher

order invariants - Power spectrum[52] and Bispectrum[88] has been used
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for depicting the atomic environments.

2.4.1 Radial distribution functions

Radial distribution functions (Ry) are two body functions, describing the
variation of atoms with respect to interatomic distance. In this work, R
for an atom ¢ is given as sum of Gaussian functions with different falling
rate 7(Eq. 2.29) with respect to r;;, the interatomic distance between
atom i and j[50]. To probe different radii up to cut-off region, the val-
ues are chosen by plotting the radial function with respect to interatomic
distance. The space till the cut-off region has to be covered properly and
therefore, 9 functions are required corresponding to different falling zones
of the Gaussian function. Each interatomic interaction is made smooth and
slowly falling using n values. It helps in removing any artifacts when an
atom enters or leaves the cut-off region. As shown in Fig. 2.8, a smooth
decrease can be seen at different 7 values, till the cut off length of 8A. For
finalizing the number of parameters, a trial and error method is applied.
Using different number of parameters, the NN fitting is performed. The
magnitude of the error obtained for prediction of energy and forces helps
to choose the required number of parameters. The different values of the
falling rate n are given in Table 2.2. The contribution for an atomic energy
is restricted by using a cut-off function f.(r;;). As mentioned above, the cut

off radius(r.) of 8 A is kept in order to take all the contributions possible.

f= D e felry) (2.29)
i#]
fe(rij) = % {cos (W:cij> + 1} (2.30)

Radial distribution functions prove to be a good descriptor for getting a ra-
dial mapping of atomic positions. The radial functions do not incorporate
the effects of moving the atoms around the space (with fixed interatomic
distance). To get an angular positioning of one atom with respect to an-

other atoms, other functions are required. The angular functions depending
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Figure 2.8. The variation of radial function R; with inter atomic distance r;;

Table 2.2. Values of the parameter 7

¢ (A7) ]0.005]0.015]0.0230] 0.038 | 0.060 [ 0.090 | 0.150 | 0.260 | 0.480 |

on three atoms in a system are generally used to provide the missing in-
formation. The calculation of these three body angular functions become
computationally expensive with increase in the number of atoms in a sys-
tem. In this work, the three body angular functions are replaced by higher
order invariants obtained from modeling the atomic density in terms of
spherical harmonics. The higher order invariants capture the angular po-
sitions much accurately and their calculation depends on two body terms

rather than three body terms.

2.4.2 Modeling of atomic density

The neighboring atomic density (p) of an atom i can be described by delta

function summed over all its neighbours j[159].
p(r) = d(r—ry) (2.31)
i#]

The density can be expanded (Eq. 2.33) in terms of spherical harmonics
(Y (6, ¢)) which form an orthonormal basis for the Ly functions on the
unit sphere[52].

Yim (0, ¢) = Ny P (cos 0)e™? (2.32)
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where, P} are the associated legendre polynomials and N, is the normal-

2041 (I-m)!
4r (I+m)!”

isation constant given as

[e'S) l
p(t) = Z(S(f’ —Iy) = Z Z Cim Yim (T) (2.33)
i#j 1=0 m=—1
where, p(t) is the projection of the density in Eq. 2.31 on the unit sphere.

The coefficients ¢, in Eq. 2.33 are obtained by taking the inner product
with Y}, on both sides as

2 ™ 2 ™
> / / 8(& — t4)Y;:, () sin 0dOdp = / / CimYim ()Y}, (£) sin 0dOde
iz 70 70 o Jo
(2.34)

The spherical coordinates are r, # and ¢ which are calculated for a diatomic

bond 75 as
ri = (= )2+ (= )? (2 )2 (2.35)
0;; = cos 15 (2.36)
Tij
1Y% —Yj

0;; and ¢;; corresponds to calculation of 6 and ¢ for a particular r;;. In

spherical coordinates the delta function modifies to
O(t — 1y;) sin0dfdep = §(cos — cos0,;)0(¢ — ¢ij) sin 0dfd¢ (2.38)

So, simplifying Eq. 2.34 and using fOQW foﬂ Yim (£)Y,: (1) sin 6dfde = 1,

27 s
Z/ / Nim6(cos 0 — cos 0;;) P™ (cos ) sin 0dO5 (¢ — ¢i;)e” " de = cipm
iz o Jo
(2.39)

Solving the independent integrals of Eq. 2.39,
2

(¢ — ¢ij)e”MPdp = em Py (2.40)
0
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/ d(cos @ — cos ;)P (cos ) sin 0df = P (cos b;;) (2.41)
0

Therefore, from Eq. 2.39,

Cim =¥ Nig P (c0s 05)e ™5 =Y " Y7 (i) (2.42)

i#j i#]
It can be seen from Eq. 2.42 that radial information is completely lost from
the density projection i.e., r;; is not directly included in the calculation
of atomic density. So, a weighting is introduced in the delta functions
expansion to provide information about the actual positions of atoms. The

modified atomic density function (ADF) is written as

plr) = > e Ho(r —xy) (2.43)

i#]

where, e €% is the Gaussian weighting function. Different values of the
factor ¢ helps in incorporating the effect of various distances from the

central atom. The values of £ used in this work are given in Table 2.3.

Table 2.3. Values of the parameter ¢

)| 0.0028 | 0.0040 | 0.0110 | 0.0280 | 0.059

Since the atomic interactions over a very long range do not have much
impact on energy, the number of neighbors of an atoms are restricted by

using a cut off function in the density distribution.
plr) = D e D fulri)o(r — 1) (2.44)
i#]

The coefficients ¢;,,, gets modified according to the modified ADF (Eq.
2.44). They can be calculated as shown below. Along with [ and m, now the

coefficients are dependent on number of ¢ parameters. These parameters
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will be represented by n and therefore, ¢, is now modified to ¢,,.

Z B ”fC<TZJ —T3j) Z Z CotmYim (E (2.45)

i#£] =0 m=-1

Simplifying as the same way followed above (Eq. 2.34 to Eq. 2.42), modi-

fied c,,,, are obtained as

Cuim = Y €5 [(rig)¥im (i) (2.46)
i#]

The entire information of the ADF is contained in the spherical harmonics
coefficients c¢,;,,. They provide the amplitude and phase of the function
at a particular frequency ! and degree m. Overall, it is a signal contain-
ing the information of an atomic environment in terms of amplitude and
phase. Since spherical harmonics expansion is an infinite series therefore,
a truncation is needed at a value of [ which gives accurate results i.e, a low
error in the NN weights. The maximum value of [ is selected by fitting the
dataset and thus, the value of [ which corresponds to the minimum error

in energy and force predictions is then finalized.

2.4.3 Power Spectrum

A rotationally and permutationally invariant descriptor can be obtained
from the coefficients ¢, in the form of power spectrum (P,) as given
below([52]. Power spectrum is a second order invariant descriptor. The
power spectrum gives the overall amplitude of the signal at a particular

frequency.
l

P =3 ChimCoim (2.47)

m=—I
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We introduce a normalization constant in our definition of P, and thus

Eq. 2.47 modifies to

l

dm .
R”:2L+1§:Cmﬁmn (2.48)

m=-—1

In the current study, the [ is varied from 0 to 9 and the total number
of n is 5. So, the total angular coefficients per atom is 50. This formu-
lation of power spectrum using ¢, is applied to single component(SC)
systems. In power spectrum, the coefficients (c,;,) are assumed to be
uncorrelated to each other and the information about the signal at each
frequency is obtained. From earlier studies[52, 134], it is shown that power
spectrum is sufficient to represent an atomic environment but still some
of the information about the function is lost[88] if the Fourier modes are
treated independently[160]. To overcome this discontinuity in represent-
ing the atomic environment by power spectrum, third order invariant-

bispectrum|88] is studied further.

In Eq. 2.21, the gradients of power spectrum for an atom ¢ can be cal-
culated as follows. The gradient is calculated with respect to x coordinate,

which can be derived in a similar way for y and z.

dr;, acy i, - dey
T — nim _1x 1 nLtm 2‘49
diL‘i miz:l( dilfl Cnl’m + Cnlm d.%'l ) ( )
dcp, 3 d(e™5) dY™(1%) e dfe(ri3) oy o 2
2 <d—Y () felr) + S e £ () + S e

(2.50)

Note: If coefficient of an atom 7 is differentiated with repect to coordinate

of atom j then, sum over all atoms vanish

dy;" (r;)
dacj

dfC(T’L’.) m A~ — 'r.2.
d:z:jj Y™ (rj)e "”)

(2.51)

e fu(rig) +

dc,,  (de5) .
: _< ( )Yz (rij) fe(rig) +

d$j N dxj
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Solving the derivative terms in Eq. 2.50 —

d(e_mgj) -y 2 2
d—xi = i (—7727“U) (27“”]) = —27]6 n i (252)
elry) _ g5 (&> sin 1Y (2.53)
dx; Telij Te

dY™(ri;) _ dY™ dO(ry;) N dY;™ do(ry)

= 2.54

The expression for ¥, —

Ny P (cos 0) e~ ™o when m < 0,

V™0, ¢) = |
(—=1)™ Ny P (cos 0)e™?  when m > 0.

Note: In the Y;™(0, ¢), m is always given as |m/| for calculations and the
negative m is taken as a condition, P/™(cos #) are associated Legendre poly-

nomials.

N \/21 +1(1— |m))! 2.55)

4 (14 |m|)!

We will write the derivative for m < 0, and it can be followed in a similar
way for m > 0.

dy;"

= Nime ™ cosecl(l cos 0P (cos ) — (I +m)P™ (cosh)) (2.56)
dQ(TZ‘j)

Note: P™(cos#) becomes 0 when m >1—1

So, for m > | — 1 Eq.2.56 reduces to

dy;m

00 = Nyme ™ cosech(l cos 0P (cos 0)) (2.57)
aym, ‘ L

= —imN,,,, P™(cos e~ 2.58

dqs(ff'ij) l l ( ) ( )

37



= 2] (2.59)
dx; 2 2 2
rij :Czj + yzg
do(ri;) _  ziyi (2.60)
dy; 2 2 2 '
Y Tiin/ Tij T Yij

2 2
dé(r;;) \/ Tig T Yis (2.61)

dz; Y
d 1% 7,
Oriz) _ _ Wi (2.62)
dx; xi; + i
d 17 7
¢<T]) — 5 x] > (263)
dp(ri)
= 2.64
iz (2.64)
Solving derivative terms in Eq. 2.51
de™s) . 21, 2
T = e ) (50 ) = me ey (265)
dfe (73 TR ij
elriy) _ 5 (mf) sin 4 (2.66)
dx; Telij Te
Note: dcéz;{z) and df%:;) will remain the same.
dc9(7“ij) _ zijxij (267)

dx; 2 2 2
J T/ Ti; T Yij
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do(ri;) _ — ZiYi (2.68)

@Y 7"@'23'\/ o3+ yi
2 2
do(ry;) i TV (2.69)

do(ri;) Yij

pr— 2-70
A0ry) _ (2.71)
dy; T+ Y5
do(ri;)
=0 2.72
1z (2.72)

2.4.4 Bispectrum

Bispectrum is the Fourier transform of triple correlation function and in-
cludes coupling of information from two frequencies (/; and l) as shown in

Eq. (2.73).

l I l2
- * llo
bllllz - E E E ClmCmm1m2 Clymy Clama (273)

m=—1 m1:—l1 mzz—l2

where, Cll1l2  are the Clebsch Gordon coefficients and ¢,,'s are the har-
monic coefficients at a particular frequency. The signal at two frequencies
exhibits a phase coupling and thus gives new information as compared to
the information obtained from independent frequencies in power spectrum.
The non linear coupling leads to an energy transfer between different fre-

quencies and therefore makes them correlated[160]. The phase information

which is lost in power spectrum is thus taken into account in bispectrum.

The rules that are followed in construction of bispectrum are (a) I

varies from |l — l3] to {1 + [, and (b) (I3 + lo + [) should be an even
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number, since the bispectrum coefficients are invariant to reflection and
are real numbers. (l; + I3 + [) should not be odd, since the coefficients
becomes imaginary and are not invariant to reflection[161], ¢) m;+mg = m
such that Clebsch Gordon coefficients does not become zero. The value of
bispectrum coefficients changes with permutations in [y, Iy and [[55]. These

are related as

b1y 12,1 _ (—1) biy 1, — (—1)" bL1s1 (2.74)
V20+1 V2, +1 V2h +1

As number of [; and [, are increased, calculation of bispectrum becomes
computationally expensive due to increase in possible combinations for [y,
I, I. After many simulations considering different /; max and I, max values,
it is observed that the accuracy of energy and force prediction depends on
some of the specific combinations of [; and l. For keeping the minimum
coefficients for describing atomic environment, an algorithm is designed
to select the frequencies at which the signals at different frequencies are
needed to be coupled. The coupling of specific frequencies is of utmost
importance as it leads to more information with less computational cal-
culations. A normalized bispectrum i.e. bicoherence[162] is calculated to

assess the frequencies that contains correlated information.

b2
biCOh(Zl, lg) = % (275)
Iy Ll 4]

It signifies the fraction of energy present in a signal at frequency [ due to
coupling between [; and [5. The bicoherence values lie in the interval 0 — 1.
A value towards 1.0 indicates high phase coupling and a value towards 0.0
indicates very weak coupling such that random phases are present between
the frequencies. To remove similar coefficients due to permutation in [, o,

and [, the bicoherence formula is modified as

biCOh(ll, lg)
V20+1

bicoh(ly, Ip) Pdeted = (2.76)

The bispectrum and power spectrum values for different frequencies
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are calculated. The bicoherence value for each combination of Iy, Iy, and [
is then estimated. The top 15 combinations which have bicoherence values
between 0.3 to 1.0 is chosen. It allows us to take the coefficients which are
sufficient to describe the complex atomic environments. Since, spherical
harmonics are used for describing the environments, therefore, each atom
will have different values of bispectrum coefficients. So, the combinations
of Iy, Iy and [ won’t be same for all the atoms in a cluster. In this way, each
atom has different sets of frequency coupling and calculating bicoherence
gives us the maximum information of the function. In this work, /; and [,
are varied from 0 to 4 and [ varies from |l; — ls| to (I; + I3). A total of
35 combinations are possible for different values of Iy, l5 and [ as shown in

Table 2.4. The overall algorithm is given stepwise as follows.

1. Calculate all the possible combinations of [y, ls and [.
2. Calculate bispectrum coefficient of a particular combination.

3. Calculate power spectrum coefficients at all the possible frequencies

between |1 — 3] and (I; + l2).
4. Calculate bicoherence using Eq. (2.76).

5. If value of bicoherence is > 0.3 then save that frequency combination

else discard it.
6. Arrange the coefficients in order of decreasing bicoherence values.

7. Take the top 15 combinations per atom > Input coefficients are fixed

for NN

2.4.5 Descriptors for Multi Component system

The modeling of atomic density for a multi component (MC) system cannot
be the same as a SC system because each element in the periodic table has
different bonding patterns which is not captured by kernel based methods.
Behler et al[30, 61] proposed to use different set of network weights for all
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Table 2.4. Possible combinations of [y, I, and [ for [{max = 4, [;max = 4

Ll U L UL L D I Dl Il
000 121 | 222 | 246 | 345
011 123 | 224 | 330 | 347
022 132 | 231 | 332 | 440
033 134 | 233 | 334 | 442
044 143 | 235 | 336 | 444
110 145 | 242 | 341 | 446
112 220 | 244 | 343 | 448

the elemental species in a system. This scheme is computationally effective
for a system consisting of a few chemical species. On increasing the types
of chemical species, the number of networks increases, thus increasing the
complexity of fitting. One way to overcome this situation is to differen-
tiate the chemical species at the descriptor level and use a single set of
network weights for the entire molecular system. Recently, Gastegger et
al.,[163] Artrith et al.[62] and Unke et al.[56] have proposed the weighting
of descriptor functions according to an element and fitted the energies of a

molecular dataset.

Since atomic forces are of utmost importance to run MD simulations,
a concurrent fitting of energy and forces for MC system using NN through
a single network has to be done. At first, a bond specific weighting of

atomic density and radial functions (given in equation 2.44 and 2.29) is

introduced.
Proa(t) = Z whke” "G (x = i) folrug) (2.77)
h#k
o rad = Z whe SR fo () (2.78)
hk

The wpy, is specific for a bond (byy) between atom h and k. This is chosen

Mp XM

as exp(%’f), where py,;, is the reduced mass of by given as Eren

Mmp, My,
are the molecular mass of atom h and k, respectively. m,, takes the value
of the molecular mass of atom whose local environment is being calculated.
Comparing with the existing approach for SC systems, it can be deduced

as modified exponentially weighted descriptors (MEAD). The energy of the
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clusters is calculated using MEAD in the NN.

To obtain the atomic forces for the MC system, the gradient of energy
obtained from MEAD is calculated. This leads to an unnecessary scaling
of the forces as the individual weighting of bonds makes it difficult for NN
to find a global minimum (GM) in weights. This bottleneck is managed
by modeling the forces in a decoupled manner from the energy obtained
above. The initial step is to set the bond specific weighting in MEAD
to be unity. This makes the MC system to behave as SC system. A
dummy energy from the NN is obtained by using the descriptors whose
bond specific weighting is unity. These descriptors does not contain any
element specific information. To incorporate the nature of the atom in
the local environment, an element specific weighting of the gradients is
introduced. The gradient of the descriptor with respect to the coordinates
of the atoms as shown in Eq. 2.79 is weighted. This element specific
weighting embeds the fluctuations in the descriptor with slight variation in
position with respect to a particular element such that when the data will
be trained via NN, network will recognize the element specific variations

for the forces.

. d atoms mput 8dN 3
we1 te )

N=1 k=1

Here, E}V is the dummy energy obtained from descriptors with wy, = 1
and dyy, are the MEAD with wy, = 1. The E}V is termed as a dummy
energy as no element specific information is contained and the energy of
the cluster is not trained using this. wg is chosen as the ratio of the effective
nuclear charge of the valence electrons of an element(Z.) to that of total
effective nuclear charge of all the chemical species present in the molecular
system. The proposed model is shown in a concise way in Fig. 2.9. It
consists of supplying two sets of descriptors - (i) MEAD for energy, (ii)
MEAD with wy, = 1 for forces, into the NN. The first output of the model
is system energy obtained from the weights of the NN and the MEAD

descriptors. The second output is atomic forces which are obtained using
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Figure 2.9. The proposed model for concurrently fitting energy and forces of a

cluster. Q and Q' are the descriptors for E and F”, respectively. F’ = Fl‘geighted

and E' = E yuster. The block KF represents the global extended KF.

the same weights of the NN but different descriptors. The total scheme is

summarized as follows.

1. Calculate the MEAD using Eq. (2.77) and (2.78) of all the atoms for
fitting the energy of a cluster.

2. Calculate the descriptors (MEAD with wp, = 1) and gradients of

descriptors with respect to atomic positions using (wg X 8?;’“) for

all the atoms for fitting the atomic forces.
3. Split the entire dataset into a training and testing set for NN.

4. The NN is then trained with different types of clusters and the weights

are validated after each iteration.

5. The training is stopped when a minimum root mean square error is

observed.
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2.5 Construction of data for any atomic

system

All the proposed descriptors- radial function, power spectrum for SC and
MC system and bispectrum are calculated using the interatomic distances.
For a MC system, along with interatomic distances, effective nuclear
charges of the chemical species and the reduced mass corresponding to
a particular bond are calculated. This makes the proposed approach to
be applicable for any atomic system. These descriptors-NN combination
can be applied to construct the PES of any molecular system. The ba-
sic ingredient of construction of PES is the dataset, which is fitted using

descriptor-ANN integrated model.

In order to fit large size clusters, an economic approach named split
technique is designed. According to the split technique, for any cluster, an
atom is chosen. Its neighbouring atoms along with that atom are cut from
the cluster to form small sized clusters. The radius of all these small clusters
is the fixed cut-off distance. Using this way, many small sized clusters
can be generated from a large atom cluster. A similarity check is run
between different small clusters to avoid any repetition of an environment.
The advantage of this approach is that the dataset can be constrained to
clusters with less than 100 atoms, but fit it up to environments of large
sized clusters. The split technique is much efficient and easier to use than
cutting the molecule in two halves. The cutting leads to structure having a
very high energy due to dangling bonds. The splitting of clusters radially
with respect to a cut-off radius reduces the presence of dangling bonds. The
input functions in NN are atomic descriptors and therefore split technique
provides a benefit in fitting the NN. To generate any dataset, following
steps should be followed:

1. Choose an initial potential - Empirical potential, Force fields or ab
1itio.
2. Run Monte Carlo simulations, Basin hopping (BH), MD simulations

45



using any of the above potentials.

. Collect around 2000 clusters and optimize them for minimizing the

forces.

. Calculate the descriptors and its gradients for the clusters and simul-

taneously calculate the energy and forces using DFT.

. Feed the data obtained in above step to ANN and fit it using KF[74,
75]/Back propagation[78]/Conjugate gradient|[79]/LEMA[77]/QN
method[158]/ L-BFGS|73] or any other optimization algorithm to op-
timize the set of NN weights.

. For an accurate representation of PES, generate more dataset using

MD simulations (potential- NN) at different temperatures.

. In case of big clusters (>100 atoms), split them in small atomic en-
vironments such that core and surface configurations are included in

the dataset.

. On refining and optimizing the different clusters obtained, repeat step

4.

. A final fitting is done using around 11000 clusters and the converged

weights can be utilized further in many applications.

2.6 Exploring the PES

After fitting the interatomic potential with a dataset, the PES of any Np

can be explored using different methods like MD simulations, Monte Carlo

simulations, BH, multicanonical basin hopping (MCBH), genetic algorithm

among others. For very large clusters, a new tool namely “searching amor-

phous structure” (SAS) is designed. This is an effective tool for narrowing

down the exploration of PES by generating structures that are near to GM.

This tool is beneficial for the systems which prefer amorphous geometries

and distorted symmetric structures.
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2.6.1 MD simulations

MD simulations have been an effective tool since 1980s for simulating a
molecular system with time[164, 165]. The equation of motion (F=ma,
a=d?z/dt?) is solved to get the evolution of the atomic system with time.
The acceleration of atoms is dependent on the positions and velocities.
These are estimated using different algorithms like Verlet, leap frog. An
MD simulation begins with an initial set of coordinates and velocity. The
acceleration is then calculated by a = F'//m, where F' is obtained from the
interatomic potential. In this work, the position and velocity updates with
time is estimated using velocity-verlet integration[166]. The temperature
is kept constant using Andersen thermostat[164]. These are the equations

for the position and velocity update.
1
Pt + 6t) = 7(t) + 0(t)ot + 5a(t)aﬂ (2.80)

The 77 € {x,y,z}, 6t is the small change in time, ¥(t) is the atomic velocity
and @ is the acceleration. The @(t + 0t) is calculated using a = F'/m, with

updated 7(t + 6t). The velocities are updated as
1
U(t + ot) = v(t) + 5(&’(1&) +a(t + ot))ot (2.81)

The MD runs are performed at various temperatures to explore multiple
zones of PES. The simulation time is kept according to the computational
resources and the molecular system evolution. The trajectories obtained
from MD runs are saved with respect to different temperatures and time
step. After initial 1000 structures, different structures are picked at every
100 step. These structures are then quenched to get a local minimum. This
helps in identifying a lot of local minimum structures on PES and thus an

effective exploration.
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2.6.2 Monte Carlo simulations

Monte Carlo simulations[167] generates a pool of structures based on the
energy differences. At each Monte Carlo step, the structures are modified
by randomly changing the coordinates of either one atom or multiple atoms.
The random movement (Ar) lies in a range from —Ar,,4, t0 +A7r4,. The
energy of the new structure (F,.,) is calculated and compared with the

energy of the previous structure (Eyy).

AFE = Epew — Eoa (2.82)

If AFE is negative, then the move is accepted and the new structure is added
to the pool. If AFE is positive, the new structure has higher energy than
the previous structure. In such case, an acceptance criterion is applied.

The Boltzmann probability is calculated using

P=c 5T (2.83)

A random number(w) is generated between 0 — 1. If P is greater than w,
then the move is accepted, else if the w is greater than P, then the move
is rejected and the simulation is started from the previous structure again.
The approach that Monte Carlo follows is the statistical probability for
accepting or rejecting a structure. On the other hand, MD simulations
solves the Newton equation of motion and gets an ensemble average over a

period of time.

2.6.3 BH

BHJ[168] is a variant of Monte Carlo method where energy sampling is
done for the optimized structures. An initial structure is constructed. It is
followed by minimization of the energy using a gradient based optimization
technique. In this work, L-BFGS algorithm was used. In the next step, the
atoms are displaced randomly and the structure is minimized. To accept a

move, the Boltzmann probability is calculated using the minimized energies

48



of the structure. BH helps to find the low energy regions of PES. Various
atom displacing techniques can be applied to get different regions on the
PES. BH can lead to a local minima trap if the random displacements are
not effective to take the system out of a potential energy well. To overcome

this problem, MCBH is used.

2.6.4 Multi Canonical BH

The probability with which a structure is accepted or rejected is modified in
MCBH]I169, 170, 171]. The Boltzmann weight(w) is replaced by the weight
which is dependent on density of states(p(£)). The probability distribution

during the sampling is
P(E,T) x p(E)w(E) (2.84)

The weight is dependent on the density of states as w(E) o 1/p(E). There-
fore,

P(E,T) x p(E)@ = constant (2.85)

This makes the exploration of the entire energy space by random displace-
ments. The density of states are estimated initially, which is then updated
as the sampling progresses. Initially, weight w is taken as e#“E_ The
BH is run and an energy histogram H()(E) is generated from the sampled

structures. The energy histogram can be written as

HY(E) x p(E)w(E) (2.86)
(1)
p(E) x Z(O)((g)) (2.87)
Since, w)(E) = 1/p(E),
w©®
w(E) ~ H<1)((?) (2.88)

These steps are performed till the last iteration(n) to obtain w™ (E) such
that H"*1(E) is obtained. The overall steps of multi canonical BH is
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1. A first BH run is performed.
2. The minimum and maximum energy obtained from the run is noted.

3. The energy interval (E,qp — Finin) is divided into b bins with width
(Emaac - Emzn)/b

4. For each bin, the statistics are obtained and histogram is filled for all

the states.

5. For the next iteration, the entropy is calculated to give the weight(w)
for the system. This leads to a new hopping for further exploration

of PES.

2.6.5 SAS tool

Using the SAS tool, for structures having multiple layers (core and shell),
spherical structures are constructed with different number of atoms possible
in each spherical layer. Initially, the number of layers a nanocluster/Np can
possess is checked. The diameter of each layer is then fixed accordingly.
To take care of all the atomic combinations possible in a layer, the number
of atoms are varied by +10 with respect to an expected number of atoms.
After generating different structures, optimization is carried out using NN
as the interatomic potential and L-BFGS as the optimizer. In order to
incorporate the Ih, Dh and Oh symmetry in the core, few clusters were
constructed having spherical layers over the Th, Dh and Oh symmetric

cores.

To assess the credibility of the proposed scheme, the SAS tool was
applied for the clusters whose lowest energy structures are already identi-
fied - Ausy[31, 172, 173, 174], Aug[175], Auss[98, 111, 127, 128, 131, 132],
Ausg[31, 118, 176] and Auysr[134, 136]. The process began with the con-
struction of 15 structures of each with different atomic arrangements. On
optimization using L-BFGS, all the structures were found to be near to
their possible GM. For Augy, three structures having 2, 3 and 4 atoms in

the core with a caged surface was obtained. For Auys, 3, 5 and a 6 atom
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core structures were obtained with an amorphous surface. For Auss, 7 and
8 atoms in the core were obtained on optimization. There was a 10 atom
core obtained for Ausg and for Auyyr, a range of structures were observed
with surface atoms varying from 100 to 107. The results obtained for these
clusters led to further apply SAS tool to get an insight into large sized
clusters. The SAS tool is briefly described in following steps.

1. Calculate the expected number of layers in a nanocluster/Np accord-
ing to its size.

2. Specify the diameter of each spherical layer.

3. Take a range of number of atoms in each layer (expected atoms +

10)

4. Make spherical layers taking number of atoms and diameter into con-

sideration.

5. Merge all the spherical layers in one structure to make a spherical
structure.

6. To take care of possibility of a symmetric core :-
Take Th, Dh, Oh geometry as core and put a spherical layer of atoms

over it.

7. Optimize the spherical structure and search for more minimas using
any of the methods like BH[168], Genetic Algorithm[177, 178], MD
simulations, MCBH[169, 170, 171] etc.
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Chapter 3

Exploring the PES of Auys;
using Power spectrum

descriptors

3.1 Introduction

Gold nanoclusters have always been a subject of interest for research in
various applications like plasmonics,[179] biomedical,[179, 180] non-linear
optics,[179] catalysis[179] among others. The larger symmetry clusters,
known as magic number clusters, for gold[120] have been identified as Aug,
Auss, Auqa7, Augog, Auser and Augez. These clusters tend to be more stable
and show different reactivities[119, 123] when compared to non-magic clus-
ters. The assumed geometry of these clusters is Th which has been recently
published by Li et al..[120] In this chapter, NN potential is constructed
using power spectrum descriptors to analyze the dynamics of Auy47. In the
literature, Au;3 and Auss has already been proved to have non-symmetric
structures. So, for this study Awui47 is chosen to find the structural vari-
ation and preference for symmetry in these clusters. From an EXAFS
study[181, 182] on bare and supported Auyyz, it has been recently shown
that Auyy; exhibits an Th geometry. In this study, it is found that although
being magic, Auy47; does not exhibit an Th geometry. Also, according to
DFT, the Th geometry lies 4 eV higher than the predicted GM structure.
The fluxional property of Auq47 has also been studied using various order

parameters.
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3.2 Computational details

Descriptors The atomic environment descriptors consists of 9 radial func-
tions given by Eq. 2.29 and 50 power spectrum coefficients given by Eq.
2.48. The ¢y, is given by Eq. 2.46. A maximum value of [ = 10 gave the

lowest RMS error for energy and forces.

Generation of dataset Initial data for fitting is generated using
Monte Carlo simulations with Gupta potential and an initial fit is done
with NN. The MC simulations are run for different initial geometries for 1
million steps such that a variety of structures are obtained. After the first
set of weights are obtained, MD simulations are run using those weights
at different temperatures at a time step of 3 fs to obtain more refined
data for Ausg — Auq47 range of nanoclusters. To reduce the computational
burden of running DFT based MD simulations for generating more data
for a large system (Augg— Auyy7), an initial set of NN weights are obtained.
The structures are then quenched using L-BFGS algorithm and then they
are included in the database. To make the calculations computationally
cheap, 1000 clusters of Aui47 are split into small clusters. Along with the
environments, 30 Auy47 clusters are taken (without splitting) in the dataset.
Overall, 10,136 clusters are generated which contains all types of clusters
below 100 atoms. The entire dataset of 10,136 clusters is shuffled and

divided into training set of 9050 clusters, and test set of 1086 clusters.

DFT calculations The DFT calculations are performed using
VASP.[141, 142, 143, 144] The PAW method is used to describe the core
electrons. It takes into account the relativistic effects in gold clusters. The
electron correlation is described by generalized gradient approximation us-
ing the PBE functional.[146, 147] To sample the Brillouin zone, Gamma
k-point (1x 1 x 1) mesh is used. The cell size for clusters below 100 atoms
is taken 20 x 20 x 20 ;13, whereas for Auqyr it is kept 25 x 25 x 25 A3,
The threshold energy is set to be 250 eV and the gradient convergence is

set as 1074,
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Table 3.1. RMS error in energy and forces for different size of training set

Size RMS error energy(meV /atom) | RMS forces error (meV /A /atom)
1086 10.846 143.305
2172 7.78 124.332
5068 2.57 85.255
9050 5.00 84.00

3.3 Results

3.3.1 Fitting of energy and forces by NN

The fitting of radial functions and power spectrum coefficients with NN
shows a very smooth decay in the RMS error of energy and forces with each
iteration. An RMS error of 5 meV /atom for energy and 84 meV /A /atom
for forces was obtained. The number of iterations in which the error con-
verged is 7, which shows that fitting can be done very fast using these
descriptors-NN combination. The testing and training RMS error of en-
ergy with iterations is plotted in Fig. 3.1. For measuring the sensitivity of
this prediction model with respect to the size of training set, a PES fitting
for different size of the dataset is done. The RMS error in energy and forces
with respect to size of the training set is reported in Table 3.1. With an
increase in size of the dataset, the RMS error decreases and a saturation

in the RMS error is observed after a certain size of dataset is reached.

3.3.2 Comparison of power spectrum coefficients

with other descriptors

Bartdék et al.,[52] incorporated the radial information of a system in the
Cum by taking a product of orthonormal radial functions with the spherical

harmonics in the expansion of the density. This leads to modified basis
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Using these coefficients in the power spectrum expression and fitting them
with NN did not give convincing results. Although, the weights obtained
gave RMS error of 12 meV /atom in energy prediction and 92 meV /A /atom
in forces prediction, they were unable to give an accurate prediction when
atoms are very far and very close to each other. Behler’'s symmetric
functions[50] were also calculated for the dataset and trained using NN.
The RMS error in energy and forces for Behler’s functions was 9 meV /atom
and 112 meV/A /atom respectively. In Table 3.2 below, the comparison
of the accuracy in predicting the energy and forces of power spectrum-
NN method, Behler’s symmetric functions[50] based method, and Bartok’s
descriptor[52] with ANN is mentioned. It can be seen that the proposed
method achieves the smallest RMS error in energy and forces as compared
to both the other methods. Therefore, the approach of providing radial

functions separately and using a weighted delta function for density pro-
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jection, is an effective way to model interatomic potentials for metallic

systems.

Table 3.2. Comparison of RMS error in energy and forces for different models

Size Energy(meV /atom) | Forces (meV /A /atom)
Proposed method 5.00 84.00
Bartok power spectrum-NN 12.00 92.00
Behler functions-NN 9.00 112.00

3.3.3 Validation of the weights

The validation of the obtained weights (RMS error of 5 meV/atom for
energy and 84 meV /A /atom for force prediction) is done on 190 clusters
quenched from MD simulations (at 400 K) of Augy — Auysr. The energy
per atom for these clusters for both DFT and NN is plotted in Fig. 3.2.
From this plot, it is observed that the NN predicted energies are in an
agreement with the DFT predicted energies. For a clear resolution, the
relative difference between NN and DFT predicted energies is plotted as
shown in Fig. 3.3, in which maximum number of clusters lies in the range of
average RMS error energy i.e., 5 meV/atom, while a few clusters lies above
and below the error range. One of the reason for this may be the presence
of a wide range of dataset which is fitted for the PES. This validation helps
to measure the prediction accuracy of the optimized weights on the clusters

other than the test set.

The NN predicted and DFT predicted energies of Auy4; clusters are
compared within an energy range of 6 eV. Randomly, 10 clusters of Auy47
are chosen and an optimization is done by DFT and NN potentials. Their
energies are compared as shown in Fig. 3.4(a). Also, the energies of 30
unoptimized clusters of Auy47 is compared using DFT and NN as shown in
Fig. 3.4(b). It is inferred that NN potential predicts energy in agreement
with DF'T for high as well as low energy clusters.
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3.3.4 Computational time for energy and force

calculation

The time taken for calculation of energy and forces of a Auyy; cluster is
3 seconds on a single CPU [Genuinelntel 2600.0 MHz| unlike DFT which
takes around 7 hours on parallelized 16 CPU [Genuinelntel 2600.0 MHz]
for this calculation. Using the Behler’s symmetric functions[50], the time
taken for the same system is around 14 seconds. Therefore, the approach

used in this study is economic and computationally cheap. A parallel code
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is also written for the functions. The time for calculation of energy and
forces of one Auy47 reduced to 1.7 seconds on 8 CPU [Genuinelntel 2600.0

MHz] using the parallel code.

3.3.5 Global Optimization of Auyy; cluster

The GM search for Auqyr using BH method is performed. The initial
structures for BH are selected from the MD simulations performed at 300
K, 400 K, 500 K and 600 K. These structures are quenched first and then
taken as the beginning structure for global optimization runs. The GM
search is started using 10 different initial structures of Auy4; and each BH
run is done for 20,000 steps. Auyyy is one of the magic number cluster, and
therefore the most stable structure assumed for it is an Th[120, 181, 182]. A
large number of isomers of Au47; were generated and the structural pattern
they follow is 105 atoms in the outer shell, 35 atoms in the middle shell,
and 7 atoms in the inner shell, unlike an Ih that contains 13 atoms in
the inner shell, 42 atoms in the middle shell and 92 atoms in the outer
shell. According to NN, and verified from DFT, the GM contains a 7 atom
symmetric inner core structure, with the arrangement of the 35 atoms in

the middle layer, also in a symmetric manner. The energy of the Ih is
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almost 4.0 eV higher than the GM structure obtained as shown in Table
4.1. Since the converged energy error is 5 meV/atom, for a 147 atoms
cluster, it becomes 0.7 eV on an average. Therefore, the predicted NN
energy lies in the error range and is not exact in magnitude as DFT. The

structure of Ih geometry and the predicted GM is shown in Fig. 3.5.

Figure 3.5. Geometries of Auyy7 a) Ih, b) GM

Table 3.3. Energy of GM and Ih structure of Awuy4;

Structure | Fig. 2(a) | Fig. 2(b)
DFT (eV) -422.2959 | -426.5174
NN (eV) 1422.6557 | -426.2996

The inner core of the predicted GM structure is shown in Fig. 3.6. The
atomic arrangement of 7 atoms makes a monocapped octahedron. A lot
of isomers of Auyy; that are very close in energy (0.5 eV), but different in
the atomic arrangements were encountered. These isomers consists of 6 -
7 atoms in inner layer, 35 - 36 atoms in middle layer and, 105 atoms in the

third shell is maintained. Due to a high energy difference between the Th

Figure 3.6. 7 atom inner core of GM

structure and the predicted GM structure, it can be inferred that being a
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magic cluster, Auy47 does not exhibit Th structure as the most stable isomer

and there are a lot of other stable geometries possible for it.

3.3.6 Comparison between Aug and Auyy;

Xu et al.[183] identified new structures of thio protected Augs, which con-
tains a 32 atom core. The arrangement of the atoms in the core resembles
the core structure of the GM of Auys; predicted by DFT (42 atoms) as
shown in Fig. 3.7. The core shows a layer pattern, which is also reflected
in core of Auyy; GM. Since the number of atoms are not equal, therefore,
a resemblance can be predicted by comparing the layers in both the struc-
tures. In the top two layers (colored red), the number of atoms in Augg is
10 and in Auyy7 it is 8, but the coordination number of the capped atom is
5 in both the structures. In the same layers, a hexagonal shaped arrange-
ment of atoms is observed for both the structures. In the orange colored
layer, there are 10 atoms in Augg and 11 atoms in Awuy47, which indicates
the binding of atoms in a similar way for both the clusters as atoms are
varying by just one in number. The yellow colored layer contains 14 atoms
in Auqyy and 9 atoms in Augg, but the coordination number of the surface
atoms of the core structures is found to be same. The blue colored layer
consists of only 3 atoms in Augg and 9 atoms in Auyyy. This layer is not
similar but from the pattern followed in other layers, it can be deduced
that in presence of more atoms, this layer will also exhibit same pattern
as that in Auis7. So, it can be concluded that on evolving from Augg to

Auqg7, a similar pattern in the core is maintained.

3.3.7 Temperature dependent probability of Au4;

isomers

Nps are highly sensitive materials and their stability depends on numerous
parameters. One of the important parameter is temperature. Around 60

isomers of Auy47, that are within 0.5 eV of the predicted GM isomer were
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Figure 3.7. a) The layer pattern in the core geometry of Augs (Xu et al), b)
The layer pattern in the core geometry of predicted GM of Awuq47

collected. Since GM cannot be stable at all the temperatures, therefore,
to find the most probable structures at different temperatures, the prob-
abilities of all these isomers at 3 temperatures - 300 K, 500 K and 800
K using the method implemented by Li et al.[184] was calculated. This
method gives the probability of a particular isomer at a temperature by
implementing rotational, vibrational and electronic partition functions in

the calculation. The equation for calculating the probability of one struc-

( ) qrotqubqele (3 3)

) g

W W
qrotqwbqele

ture is

P, =

The AE* represents the relative potential energy of an isomer with respect
to GM. The rotational, vibrational and electronic partition function of an
isomer is represented by ¢.,, ¢, and ¢&,, respectively. The electronic tran-
sitions are of very high energy therefore, the term is omitted as the molecule
preferably stay in the ground state, and the excited states have a negligi-
ble contribution to the partition function.[185] Rigid rotor approximations
and harmonic approximations are adopted for calculating the rotational

and vibrational partition function, respectively. The Eq. (3.3) modifies to

e( _KABE; ) q‘“ qw.
P:Jn — <7AEW 7>”0t vib (34)
e\ BT g diy

P refers to the modified probability expression. The rotational and vibra-

tional partition functions are calculated using the formulas shown in Eq.

62



(3.5) and Eq. (3.6).

8 2\ 3/2 / Jw @ w
w ( ™ ) ™ a’*b“c (35)
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o =——= (3.6)

n 1—e XBT

v is the wave number of n'* normal mode of an isomer and I, I, I* are
the three principle moments of inertia of the isomer. It is observed that
the probability of GM is found to be less than the other isomers at all the
temperatures considered. It is also observed that the top 20 isomers after
the GM exhibits similar probability, indicating the presence of a mixture of
isomers at a particular temperature. Considering the maximum peak in the
probability plot (Fig. 3.8), it is inferred that isomer-12 is the most probable
at all the temperatures. The isomer-12 is shown in Fig. 3.9. On comparing
the core structure of GM and the most probable isomer, a difference in the
arrangement of atoms can be clearly observed as shown in Fig. 3.10. The
most probable isomer has a more symmetric core, therefore, its probability
is the greatest at all the temperatures considered. The probability of GM
along with the most probable isomer at different temperatures is given in

Table 3.4. Isomer number 14 and 20 have an equal probability at temper-

Table 3.4. Probability of GM and most probable structure of Auyy;

T (K) PG’M (%) Pmostprobable (%)
300 7.1 8.50
500 4.17 7.90
800 2.8 7.19

ature 800 K, so the properties of a Np cannot be predicted by considering
just one isomer. The most probable or nearly probable isomers have to be
considered for studying the dynamics of a Np at a particular temperature.
The probable isomers show a stark difference in the arrangement of their
core structure, some of which are shown in Fig. 3.11. It can be inferred

that though Awuy47 does not exhibit ITh geometry, but the GM and the most
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Figure 3.8. Probability plot of all the isomers of Awuy47

Figure 3.9. Most probable isomer at 300 K, 500 K, 800 K

a) b)

Figure 3.10. Core structure of Auyy; a) Most probable isomer, b) GM

probable isomer have a symmetry in their structures.

3.3.8 Fluxionality in Au4;

Gold clusters exhibit an interesting property, flurionality, by virtue of which
the atoms in a molecule are in a state of motion such that, many low
lying isomers exists at a particular temperature with a minimal energy
difference between them. In a core-shell structure, the fluxionality can be

due to a dynamic surface or a dynamic core. So, to study fluxionality in
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Isom 14 Isom 20

Figure 3.11. 42 atom core of some low lying isomers of Awuy47

Auqg7, MD simulations are run at three temperatures - 300 K, 400 K, 700
K. Generally, the chemical reactions are carried out at room temperature,
therefore, the dynamics of the GM is studied at 300 K. For getting a broader
picture of the structural evolution with temperature, 400 K and 700 K
temperature are also considered. The simulations are run at a time step of
3 fs for a time duration of 1 ns . The advantage of studying gold’s fluxional
behaviour is that it plays an important role in surface mediated reactions
like catalysis.[186, 187, 188, 189, 190, 191] The fluxionality in smaller gold
clusters has been investigated earlier[192, 193, 194]. A high fluxionality
in Auy47 clusters is observed. It is noticed that the core atoms are highly
mobile at 400 K, and both surface and core atoms are in a constant motion

at 700 K.

To study the movements in the structures as the simulation is pro-
cessed, order parameters can be calculated. The order parameters im-
plemented in the current study are average fluctuations in the bond
length,[184] volume variation in the cluster,[184] root mean square distance

(RMSD)[192] and atomic equivalence index (AEI).[195]
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Figure 3.12. Average bond length fluctuations of Auy4; at 400 K

Average bond length fluctuation

The average bond length fluctuations[184] with time is estimated for the
MD trajectory of Auysr at 400 K. The plot of the distance fluctuations with
respect to time elapsed is shown in Fig. 3.12. In the plot, the fluctuations
in core-core atoms, surface-surface atoms, and core-surface atoms is rep-
resented by purple color, green color and red color respectively. From the
plot, it can be inferred that core exhibits large fluctuations as compared
to surface of Auys; with the simulation time. Due to these fluctuations in
core, there is a change in the coordination number between surface and core
atoms, providing an evidence of rotation of the core atoms unit. So, from
average distance fluctuation calculations at 400 K, it can be concluded that

due to rotations and vibrations in core, Auy4; shows fluxionality.

Volume variation

As the Nps are non-speherical, their volume is calculated as

4
V= §7TR1R2R3 (37)
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where, the three radii of Np is calculated using moment of inertia (I) and

total mass (M) of the Np.

5 |1,
R, = A B; (3.8)
a=1,2,3

The volume variation[184] in Auy47 clusters is calculated for MD simulation
trajectories at 300 K, 400 K and 700 K. The plot is shown in Fig. 3.13. In
Fig. 3.13, the volume variation for temperature 300 K, 400 K and 700 K is
represented by black color, red color and green color respectively. From the
plots at 300 K and 400 K, it can be inferred that there is not much volume
variation in the structures, such that, no major movements are observed
throughout the MD trajectory at these temperatures i.e., the structures
formed along the simulation does not show large variations with respect to
GM. However, at temperature 700 K, a lot of volume variation is observed.
The structure of the GM is completely disturbed and a large deviation
in structures is observed. The atoms are highly mobile and the structure
changes a lot as can be seen from Fig. 3.13. Highest variation in the volume
is observed in structure a,b,d in Fig. 3.13(b), where the clusters are more
distorted as compared to our GM. Also, structure ¢ and e in Fig. 3.13(b)

have a low variation in volume, and thus are near to GM geometry.

RMSD

The RMSD[192] of the clusters corresponding to the GM structure at tem-
perature 300 K and 700 K. Different peaks in the RMSD plots does not
confirm the presence of entirely different configurations. It is a parameter

to show that the atoms are moving and are not static.

atoms c

. prC)2 . 9/€)2 . ~C)2
RMSDconfm"mation = \/ZZI (xl xZ) T ggz yl) * <ZZ ZZ) (39)

where, x;, y;, z; are the coordinates of the GM and zf, yf, z{ are the

coordinates of the conformation obtained from MD trajectory, N is the
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Figure 3.13. (a) Volume variation of Auy47 at 300 K, 400 K, and 700 K and
(b) Structural evolution with simulation time at 700 K
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Figure 3.14. RMSD plot of Auys7 a) 300 K b) 700 K

number of atoms in the conformation. The relevance of RMSD is that
the atomic positions are numbered such that after every time step they
change the position which can then be compared with the initial structure.
Therefore, we can observe how the structure is evolving as the simulation
is processed. From the RMSD plots shown in Fig. 3.14, it is observed that
the core and surface atoms are continuously moving with the simulation
time. At 300 K, the RMSD of core atoms is low (Fig. 3.14a) as the
structural variation of core is less, so the movements are confined in a
smaller region. On other hand, surface atoms have a large phase space
for movement, therefore, RMSD is higher for surface atoms. At 700 K, the
initial symmetry of the structure is destroyed within 1 ps of the simulation.
Since, volume variation (Fig. 3.13a) is high at 700 K, therefore, the core and
surface atoms are showing a steep increase in RMSD with the simulation
time. So, from RMSD |, it is concluded that Au,4; atoms are in a state of

motion with the simulation time and therefore, shows fluxionality.
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AEIl

AEI is atomic equivalence index that shows the movement of an atom with
respect to other atoms in a cluster. During a simulation, atoms exhibit two
types of movements- within the layer and migrating to other layers. AEI
shows the movement of atoms as the simulation progresses. AEI (g;(t))
is calculated using position vector ﬁ of an atom (i) with respect to other

atoms (j) at time ¢.

N

olt) = Y [Hilt) — ;)] (3.10)

J#

The GM structure of Auq47 consists of three layers- inner core, middle layer,
surface. So, to visualize the behaviour of atoms with progress in simulation,
few atoms are randomly selected from the surface and few atoms from the
core and their AEI is calculated. The AEI is calculated for Auy47 at 300
K and 700 K. At 300 K, the AEI plot (Fig. 3.15(a)) shows three distinct
region in which the bottom region refers to inner core atoms, middle region
refers to middle core and the top region refers to surface atoms. So, it can
be inferred that core atoms remain in the core and surface atoms remain
on the surface. The atoms are not getting exchanged between the layers.
At 700 K, in Fig. 3.15(b), it is observed that now the three layers atoms
are showing an intermixing. Omne of the core atom, represented by the
blue color curve, moves from core to surface in the beginning of simulation
and again goes back to core after a few time steps. On further increase
in simulation time, it completely goes to surface and then stays there.
Similarly, some of the surface atoms are coming inside the core as seen
from grey and brown colored plot in the Fig. 3.15b. The atom represented
by brown color initially stays on the surface, but after some time, it breaks
into the core and stays there. So, a core to surface and surface to core
atom movement is observed. Therefore, it is concluded that the atoms are

getting exchanged between core and surface throughout the simulation.
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Figure 3.15. AEI plot of Auy4; a) 300 K b) 700 K

3.4 Summary

In summary, the PES for gold clusters ranging from Augy — Auy4; with an
RMS error of 5 meV /atom for energy and 84 meV/A /atom for force calcu-
lations is successfully fitted. The spherical harmonics applied in the form
of power spectrum for describing the atomic environment and using it with
NN provides a highly efficient system for fitting the PES of a nanocluster.
The computational time for accurate calculation of energy and forces of a
single Auy4; cluster is reduced to ~1.7 seconds, which is very fast when
compared to DFT (~7 hours). An extensive GM search is performed along
with MD simulations for Auy4; at different temperatures. It is found that
a large number of isomers are possible that lie within a narrow energy scale
of 0.5 eV from the GM. The Auyy; GM consists of a symmetric core and
an unsymmetric surface unlike Ih which is a highly symmetric structure.
It is also confirmed that GM of Awuq47 is found to be 4 eV lower in energy
than the Ih geometry from the DFT calculations. As found in many other
gold clusters, Auq47 also exhibits fluxionality and its observed that it has a

dynamic surface as well as a dynamic core.
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Chapter 4

Exploring the PES of Auyy7;

using Bispectrum descriptors

4.1 Introduction

In chapter 3, the second order invariants - power spectrum was applied
to fit the PES of gold nanoclusters. It was seen that although being a
magic number cluster, Auyy; prefers an amorphous geometry as the GM.
For further studying the structural arrangements using NN potentials, the
modeling of atomic density can be improved by considering third order
invariants- bispectrum. Bispectrum has the efficiency of carrying more in-
formation of the density than power spectrum. The bispectrum is a higher
order invariant than the power spectrum, so its spherical harmonics expan-
sion carries more information and gives a more accurate representation of

the atomic environment.

In this chapter, the atomic environments are modelled using bispec-
trum descriptors. For comparison between the efficiency of power spectrum
and bispectrum, the NN potential is fitted up to Auyy; in this study. An
algorithm is also proposed for selecting the frequencies that need to be
coupled for extracting the phase information between different frequency
bands. It is found that higher order invariant like bispectrum is highly

efficient in exploring the PES as compared to other invariants.
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4.2 Computational details

The dataset (Ausg — Auqy7) constructed in the previous chapter is utilized
in this work for training the NN potential (training set: 9050 clusters, test
set: 1086 clusters). The descriptors are calculated for the entire dataset.
The atomic environment descriptors consists of 9 radial functions given by
Eq. 2.29 and 15 bispectrum coefficients given by Eq. 2.73. As discussed in
chapter 2, [; and [y varies from 0 to 4 and [ varies from |l; — ] to i1 + ls.
A total of 35 combinations are possible, out of which 15 coefficients are
selected having a bicoherence value between 0.3 to 1.0. The ¢, is given by
Eq. 2.42. The number of neurons in both the hidden layers is 30. KF was

used as the weights optimization algorithm.

Weighting of ADF: For power spectrum coefficients, the weight-
ing of ADF is done in order to differentiate between atoms lying very far
and very near to the reference atom. The results generated using weighted
density function in bispectrum did not give a low prediction error as the
number of coefficients increases a lot when compared to non-weighted den-
sity function in bispectrum. So, to reduce the input coefficients and keep-
ing the prediction accuracy, the weighting is not done in calculations of
bispectrum coefficients. For checking the ability of descriptor to detect
small movements, an atom of a Au4; cluster was selected. The atom was
displaced towards one of its neighbour and the bispectrum and power spec-
trum coefficients were calculated. Similarly the atom was displaced away
from that neighbouring atom and the coefficients were calculated. The val-
ues of the coefficients are plotted as shown in Fig. 4.1. It is observed that
the changes in the values of the coefficients is much pronounced in non-
weighted bispectrum coefficients. Comparing Fig. 4.1(a) and 4.1(c), it can
be inferred that the sensitivity in identifying small changes in the structure
is high in bispectrum as compared to power spectrum. Weighting of the
density function in bispectrum only increases the number of coefficients
and also some of them does not capture the change as observed in Fig.

4.1(b). Therefore, a non-weighted density function is used in bispectrum
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as an efficient descriptor.
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Figure 4.1. Descriptor plots a) Bispectrum coefficients without weighting the
ADF, b) Bispectrum coefficients with weighting the ADF, c) Power spectrum
coefficients

4.3 Results

4.3.1 Selection of coefficients

In order to select the number of coefficients, many trials using different
number of input coefficients into the NN was performed. In the first trial, all
the 35 bispectrum coefficients along with 9 radial functions for an atom was
fitted. The RMS error in prediction of energy and forces was 5.5 meV /atom
and 114 meV /A /atom, respectively. These weights were validated on the

test set. It was observed that these weights are efficient in predicting
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correct energy and forces for Au nanoclusters. In order to decrease the
number of coefficients further, 15 bispectrum coefficients corresponding to
the top 15 values (among the 35 coefficients) of bicoherence along with 9
radial functions were taken. On fitting these coefficients for the same data
set, an RMS error of 5.3 meV /atom and 110 meV /A /atom in energy and
forces prediction was obtained, respectively. Further, these weights were
validated and it was observed that there is a good agreement between the
NN and DFT predicted energies. Based on these observations, the number
of input coefficients were restricted to 24 (15 + 9) for describing an atomic

environment.

As the number of coefficients in power spectrum were 59, and in
bispectrum it is 24, a comparison in the computational time was done.
The time taken for calculation of energy and forces for a Aui47 cluster (147
atoms) is 7 seconds using bispectrum-NN, 3 seconds using power spectrum-
NN and 7 hours using DFT on a single CPU (Genuinelntel 2600.0 MHz).
The computation time is higher for bispectrum as it’s a third order invari-
ant. In choosing between the power spectrum or the bispectrum, there is

a tradeoff between accuracy and computing time.

4.3.2 Validation of NN weights

In order to validate the weights obtained using 24 coefficients per atom in
bispectrum-NN model, RMS error in energy for the testing set clusters is
plotted in Fig. 4.2. From the plot, it can be seen that 40.69% of clusters lie
above the average RMSE and 59.3% of clusters lie below the average RMS
error. The majority of the clusters lie below an RMS error of 10 meV /atom.
Only a few clusters exhibit large errors in energy. So, bispectrum NN can
be trusted in practice for an approximate prediction of energy and forces
for a cluster. The relative efficiency of DFT with power spectrum and
bispectrum is compared for a set of 36 clusters of Auy47 selected from MD
trajectories at 300 K and 400 K. From Fig. 4.3, it can be inferred that

bispectrum is more efficient than power spectrum as the predictions from
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bispectrum and DFT are in good agreement with each other.
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Figure 4.3. Comparison of energy prediction from DFT, bispectrum, weighted
and non-weighted ADF in power spectrum for a set of Auq4; clusters

4.3.3 Exploring PES of Au4; nanocluster via global

optimizations

In order to test the PES exploration of bispectrum, global optimization
using the NN weights fitted for bispectrum coefficients is performed. The

initial structures for running the optimizations are taken form the work
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done in chapter 3. BH algorithm[168] was used for finding new minimas.
For energy minimization L-BFGS|73] algorithm was applied. Around 20
different initial structures were taken and the optimization were performed
for 30000 steps for each structure. In order to explore various possible
structures, a lot of structural perturbations were induced via BH during
the optimization. Doing so, many potential wells can be identified. Using
BH, a lot of isomers were obtained in an energy range of 6 eV. A histogram
is plotted in Fig. 4.4 to show the number of isomers obtained in different

energy ranges.
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Figure 4.4. Number of clusters of Auy4; belonging to various energy range

A lot of isomers of Auy47 consisting of 105 atoms on the surface and
42 atoms in the core were obtained. The core comprises of two layers -
inner core and secondary core. Inner core atoms vary from 6 to 8 and
secondary core atoms vary from 36 to 34 in the various isomers obtained.
In comparison to the series of isomers obtained using power spectrum in
chapter 3, some new inner core geometries are generated from bispectrum.
Structures with 6 inner core atoms and other isomers were not identified

during the optimization done using power spectrum[134].

Geometries of different inner core structures are shown in Fig. 4.5.

The difference is in the atomic arrangement in all the isomers although a
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symmetry is maintained in the structures.

Figure 4.5. Inner core structures for different isomers of Auiy; (a) 8
atoms: capped pentagonal bi-pyramidal shape, (b) 7 atoms: capped square
bi-pyramidal shape, (c) 8 atoms: pyramidal shape, (d) 6 atoms: capped trigo-
nal bi-pyramidal shape, (e) 7 atoms: star shape.

Since bispectrum captures the atomic environments in an improved
way, the purpose behind performing the global optimizations on Awuy47 is to
bring out the difference in the exploring PES capabilities of power spectrum
and bispectrum. The aim is accomplished by discovering a lot of different

structures from bispectrum within a narrow energy range of 0.3 eV.

The GM remains the same as predicted by power spectrum which
contains 7 atoms inner core as shown in Fig. 4.6(b). Other isomers obtained
lie very near in energy to the predicted GM as seen in Table 4.1. According
to DFT as well as ANN, Fig. 4.6(b) represents the GM structure. It
consists of a capped square bi-pyramidal shape inner core. The isomer
shown in Fig. 4.6(c) consists of 8 atoms in the inner core which forms
a stable pyramidal geometry thus lying 0.24 eV (DFT) higher than the
GM. The energies predicted by ANN are not exactly accurate as those
predicted by DFT since the converged weights error for energy prediction is

5.3 meV/atom (~ 0.78 eV for Auy47). Another isomer that lies just 0.25 eV
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Figure 4.6. Core structures (42 atoms) for different isomers of Auysr (a)
Contains 8 atoms in the inner core, (b) Contains 7 atoms in the inner core, (c)
Contains 8 atoms in the inner core, (d) Contains 6 atoms in the inner core, (e)
Contains 7 atoms in the inner core.

(DFT) higher than GM exhibits a capped pentagonal bi-pyramidal shaped

inner core as shown in Fig. 4.6(a). Isomer shown in Fig. 4.6(e) lies 0.3 eV

(DFT) higher than GM and exhibits a star shaped inner core.

Power spectrum is computationally cheaper than bispectrum, but it’s

less efficient in exploring the PES. Therefore, there is a trade off in accuracy

and computational time for using these high order invariants as descriptors.

Table 4.1. Relative energy of GM with respect to other isomers of Auyy47

Structure Fig. 4.6(a) | Fig. 4.6(c) | Fig. 4.6(d) | Fig. 4.6(e)
AEprr (Egat — Erom) (€V) | 0.2513 | 0.2468 | 0.9226 | 0.3048
AEany (Eca — Egom) (€V) | 0.0591 | 0.0019 | 0.9256 | 0.2685
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4.4 Summary

In this work, higher order invariants - bispectrum are used to describe an
atomic environment. Along with radial functions, they are given as an
input to ANN to predict the energy and forces of gold nanoclusters. As a
lot of permutations are possible in the bispectrum coefficients, an algorithm
is proposed to selectively choose the frequencies for coupling, in order to
reduce the total number of input coefficients to ANN. The advantage of
using bispectrum over power spectrum is in its ability to search the PES
efficiently. A lot of new structures were obtained from MD simulations
using bispectrum-NN potential. These structure were not identified during
the simulations done using power spectrum-NN potential. As bispectrum is
very sensitive, it can be used as a potential order parameter for calculating

various properties of a nanocluster.
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Chapter 5

Fitting the PES of gold-silver
nanoalloys and thio- protected

gold nanoclusters

5.1 Introduction

In chapter 3 and 4, a single NN was applied to fit the PES of gold nan-
oclusters. In order to fit the PES of a system having atoms of different
elements, a new method is proposed here. The traditional approach for
fitting the PES for a MC system using NN is to consider n networks for
n chemical species in the system. This shoots the computational cost and
makes it difficult to apply to a system containing different kinds of species.
A new strategy of using a single artificial neural network(SANN) to com-
pute the energy and forces of a chemical system is discussed here. Since
atomic forces are significant for geometry optimizations and MD simu-
lations for any chemical system, their accurate prediction is of utmost
importance[196, 197, 198, 199, 200, 201]. To predict the atomic forces,
the traditional way of fitting forces from underlying energy expression is
modified and applied. The atomic force fitting has made it possible to
train smaller size systems and extrapolate the parameters to make accu-
rate predictions for larger systems making the approach transferable. This
proposed strategy has definitely made the mapping and fitting of atomic

forces easier and can be applied to a wide variety of molecular systems.

The key points of the proposed strategy are
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(a) Due to a precise atomic force fitting, the ANN weights fitted for a
small size system can be extrapolated to similar compositions in the larger

size systems,

(b) The overall model is transferable in two ways - (i) It can be used
to fit any Np’s PES as we require just a dataset, from which, the inter-
atomic distances, effective nuclear charges and reduced mass can be utilised
to give an input to ANN, (ii) The weights are transferable for a chemical

system to any size of the clusters of similar composition.

Since the complexity of a descriptor increases with the type of chem-
ical species, therefore, the proposed technique is applied to two different
systems - bimetallic nanoalloys made up of silver and gold atoms (AgAu)ss-
(AgAu)147, and thiol protected gold nanoclusters Auy3(SH )g-Auss(SH )as.
To study the dynamics of AgssAuqi2 and Augs(SH )3z, global optimizations

and MD simulations are performed.

5.2 Computational details

5.2.1 Parameters for fitting (AgAu)s; - (AgAu)i47

In order to generate training data for (AgAu)ss - (AgAu)147, an initial data
consisting of (AgAu)ss was generated using Gupta potential[40] as the inter
atomic potential in MD simulations. After getting around 2500 clusters,
an initial run of NN training was performed. Using the obtained set of
NN weights, MD simulations was run at 300 K, 400 K, 500 K and 600 K
at a time step of 1fs for (AgAu)ss and (AgAu)ia7. To avoid high com-
putational costs for generating ab initio data of (AgAu)i47, around 1000
clusters of (AgAu)y47 are split into different atomic environments. A total
data of 11,000 clusters was accumulated containing different compositions
of (AgAu)ss and various environments of AgssAuq12. The composition of
24 % of silver atoms is chosen for (AgAu)i47, as it promises to be catalyti-
cally dynamic.[202] The energy and forces calculations for the dataset was

executed on VASP.[141, 142, 143, 144] Scalar relativistic effects and the
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core electrons are taken care of by PAW method. Generalized gradient ap-
proximation and PBE[146, 147] functional is applied for treating electron
correlations. Gamma k-point (1x1x1) mesh is used to sample the Brillouin
zone. The threshold energy is set as 260 eV and the force convergence is
set as 1074 A box length of 22 x 22 x 2242 is applied for the entire dataset
with a vacuum dimension of 11 A. The dataset was split in a training set
of 9,500 clusters and a testing set of 1,500 clusters. The number of inputs
defining the environment for an atom was 59 which was obtained by taking
[ from 0 to 9 in Eq. 2.48. The n in Eq. 2.77 takes on 5 values in order
to make the function fall smoothly with increasing interatomic distance.
The n values are 0.0028,0.0040,0.0110, 0.0280 and 0.059. The number of
radial functions in Eq. 2.29 are taken as 9 values corresponding to & values-
0.005,0.015,0.0230, 0.038, 0.060, 0.090, 0.150, 0.260 and 0.480. The number
of hidden layer neurons were set to be 30. The wgy value for Au and Ag in
Eq. 2.79 is calculated using Clementi - Raimondi[203, 204] effective nuclear

charges.

5.2.2 Parameters for fitting Au,,(SH),

A diverse set of Au,,(SH), clusters are taken in which m varies from 13 to
38 and n varies from 6 to 24 to fit the energy and forces. Since Auy3(SH)g,
Auq3(SH)s, Auiz(SH)g and Auys(SH)s are small sized clusters, the initial
data containing these composition clusters were generated by MD simu-
lations coupled with DFT as the interatomic potential. After getting an
initial data, the NN weights are generated. These weights are then inte-
grated with MD simulations for generating more data for the rest of the
compositions in span of Auj3(SH)g to Augs(SH ). Overall, 11,500 clus-
ters are generated and divided into a training data set of 10,000 clusters
and a testing data set of 1,500 clusters. The number of inputs per atom
was kept to 59 for all the Au,,(SH), clusters. The network for Au,,(SH),
also had 30 neurons in both the hidden layers. The wgyn values for Au,

S and H in Eq. 2.79 is calculated using Clementi - Raimondi[203, 204]
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effective nuclear charges.

5.3 Results and discussion

Note: In AgAu figures: Au is represented by yellow and Ag is represented
by red.
In Au(SH) figures: Au is represented by yellow, S is represented by red and

H is represented in white.

5.3.1 Silver-Gold nanoalloys: Study of Ags;Auqiio

On fitting the energy and forces with the proposed approach, an average
RMS error of 5.9 meV /atom and 74 meV /A /atom for energy and atomic
forces, respectively, was achieved. In order to verify the prediction capa-
bility of the weights, the DFT and NN energies are calculated for a small
set of 500 clusters. The energy per atom for all the clusters is plotted
in Fig. 5.1(a) and the absolute value of the difference between DFT and
NN energies is plotted in Fig. 5.1(b). The components of forces predicted
from NN and DFT for the training and testing set clusters is compared, as
shown in Fig. 5.2. The correlation observed between the predicted NN and
DFT forces reflects the accurate fitting of atomic forces for a MC system
by the proposed approach. For making the point more relevant, the z com-
ponent of force for three different composition and size clusters- Agi3Auss,
AgisAugy and AgigAusg is plotted as shown in Fig. 5.4. To validate the
efficiency of the fitted energy and forces for the bimetallic system, geometry
optimizations and MD simulations are performed. An initial structure of
Agss Auqe consisting of three layers of atoms arranged in Th geometry with
silver atoms occupying the middle core and rest of the structure containing
the gold atoms as shown in Fig. 5.3 is taken. Such an arrangement is cho-
sen as it is already studied[202, 205] that in Au rich nanoalloys, gold atoms
occupy surface and core atoms. The MD simulations were ran at different

temperatures - 300 K, 400 K, 500 K and 600 K. A time step of 1 fs was
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used and the simulations were ran for a total time of 1 ns. Since (AgAu)147
is a large system, ab initio MD simulations have not been performed yet.
Various studies[205, 206] have been done using empirical potentials but
they lack the QM accuracy. The optical absorption spectra[207] has been

studied using first principles but dynamics has not been explored.
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Figure 5.1. (a) Comparison of DFT and ANN predicted energies for (AgAu)s;
- (AgAu)y147, (b) Plot showing the absolute value of |Eayny — Eppr| for
(AgAu)ss - (AgAu)iar

Testing set
Training set B

Force, (eV/}O\)
o
I

1 _
2 —
3 I | I | I | I | I | I
-3 -2 -1 0 1 2 3
ForceDFT (eV/A)

Figure 5.2. Correlation plot of ANN and DFT predicted atomic force compo-
nents for testing and training set of (AgAu)ss - (AgAu)y47 clusters

It has been observed that with time the Ih geometry is completely
destroyed and there is a huge variation in the atomic arrangement. At
300 K, the initial structure is maintained for a time of 13 ps, and then
silver atoms start to move towards surface. The gold atoms are too in a

state of continuous rotational and vibrational motion but the geometry of
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Figure 5.4. Plot of X component of force for (a) Agi3Auss, (b) AgisAugo,
(c) AgroAusg

inner core is maintained as such. As the simulation time is progressed,
the geometry of the inner core changes from 13 gold atoms to 10 gold
atoms and the middle core atomic arrangement alters from 42 atoms to
37 atoms comprising of both silver and gold atoms. Overall the surface
atoms increases from 92 to around 100 atoms. This atomic arrangement of

100-37-10 is almost similar to the atomic arrangement in the GM structure
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of Auys7 as shown in chapters 3 and 4. It shows that Th geometry is not
favored in pure gold or gold rich clusters. As simulations are performed at
higher temperatures, it is observed that more silver atoms are moving from
middle core to the surface. One of the interesting observation is that the
silver atoms never entered the inner core. They either occupied the middle
core or lied on the surface. Also, at a temperature of 600 K, almost all the
silver atoms enriched the surface which is in accordance with the results
for 24 % composition of Ag in (AgAu)ss as published by Chiriki et al.[202]
The structure obtained at 600 K is shown in Fig. 5.5 in which the surface

enriched with Ag can be seen.

Figure 5.5. Structure of Ags;Auqi2 obtained at 600 K

To study the movements in the cluster with simulation time,
RMSD[192] is calculated as the order parameter. It calculates the aver-
age distance an atom has moved from the initial structure. For a structure
at a given time, a sum over all the atomic movements is taken and divided

by the total number of atoms in the structure.

atoms _ 28)2 _ 28)2 _ 58)2
— \/z“ O A U e IS R

N
In Eq. 5.1, z,, y, and z, are the Cartesian coordinates of the initial struc-
ture and z7, ¥, and 2 are the Cartesian coordinates of the structure at a
given simulation time. The RMSD plots at 300 K, 400 K, 500 K and 600
K is shown in Fig. 5.6. It can be inferred that both the core atoms and

the surface atoms of AgssAu;ii2 undergo a lot of movements thus making
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it a highly fluxional cluster. With the increase in simulation time, it is
observed in all the temperatures that both surface and the core atoms try
to attain the geometry as of initial structure, but since that structure is

not stable, the geometry changes to a more stable arrangement of atoms.

In order to show the inter mixing of atoms between surface and core at
600 K, AEI[195] is plotted. It is a very sensitive indicator and maps even
the tiny movements throughout the simulations. Since it’s a 147 atom
cluster, it is not possible to plot the AEI for all the atoms. So, 4 atoms
were selected from the structure in which two are the core atoms and other
two are surface atoms. The plot is shown in Fig. 5.7. There is a continuous
movement of the core atom to the surface and back to the core, as seen by
the blue colored curve in Fig. 5.7. The surface atoms are moving but not
entering the core as observed from the red and the black colored curves in

Fig. 5.7.

After running the MD simulations for 1 ns, the local minima struc-
tures are collected from the trajectories obtained at different temperatures.
The geometry optimizations is performed using L-BFGS algorithm|[73].
From optimizations, a few symmetric inner core geometries is obtained
as shown in Fig. 5.8. The lowest energy isomer that is quenched from the
MD trajectories is shown in Fig. 5.9(a). It contains 10 atoms in the inner
core, 37 atoms in the middle core and 100 atoms on the surface. From
the initial structure of MD simulations, 5 silver atoms moved to the sur-
face forming the lowest energy isomer. Another isomer with 9 atoms in
the inner core, 36 atoms in the middle core and 102 atoms on the surface
is shown in Fig. 5.9(b). There was a difference of 0.39 eV between the
two isomers, showing a possibility of large number of fluxional isomers for
Agss Auqia. Overall, a cage like structure makes the foundation of gold rich

Agg5 Au1 12 alloy.
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Figure 5.8. The inner core geometry for AgssAuii2 (a) 10 atom inner core
(side view), (b) 9 atom inner core (side view), (c) 10 atom inner core (top
view), (d) 9 atom inner core (top view)

Figure 5.9. (a)The lowest energy structure quenched for AgssAuq12, (b) The
structure consisting of 9 atom inner core and lying 0.39 eV higher in energy
than lowest energy structure of AgssAuqis.

5.3.2 Thiol protected gold nanoclusters: Study of
Au6g(SH)32

The thiol protected gold nanoclusters are considered for validation of the
proposed method due to the increased complexity in the structure. The
gold, sulphur and hydrogen atoms have different valence electrons and or-
bital configuration which leads to different patterns of bonding between
each other. Therefore, using the descriptors an accurate prediction of the
forces is a challenge. On fitting the dataset consisting of clusters from

Auy3(SH )g-Ausg(SH )4, an average RMS error of 8.6 meV /atom for en-
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ergy of a cluster and 176 meV /A /atom for atomic forces was obtained. The
reason for getting a higher RMS error as compared to gold-silver nanoal-
loys is the huge variations in thiol protected gold clusters which makes it
difficult to fit. The weights are validated for a set of 500 clusters consisting
of Au,,(SH), clusters (m : 13 - 38 and n : 6 - 24). Their energies are
compared with the DFT predicted energies as shown in Fig. 5.10(a). The
absolute value of the difference between ANN and DFT predicted energies
for these clusters are plotted in Fig. 5.10(b). The atomic force compo-
nents as predicted from ANN and DFT for the training and testing set
clusters are compared as shown in Fig. 5.11. Similar to AgAu system,
the y component of forces as predicted by ANN and DFT for three differ-
ent compositions- Aui3(SH)s, Auis(SH)13 and Augg(SH)qo is plotted as
shown in Fig. 5.13. It can be seen that the predictions are well correlated
and thus the proposed scheme can be utilized for accurate prediction of
atomic forces. The ANN weights are extrapolated to study the geometry
optimization and dynamics of Augs(SH )32 On geometry optimization of
the GM and the local minimas predicted for Augs(SH )32 by Xu et al.,[183]
similar structures are obtained as shown in Fig. 5.12. This reflects that the
atomic forces were fitted very well and have captured necessary bonding
patterns between Au, S and H. Also, the dataset Auy3(SH)g-Augs(SH )24

forms a subset for the atomic environments of Augs(SH)3s.

Since, geometry optimization was achieved accurately, MD simula-
tions are performed further. The MD simulations are run at temperatures
- 100 K, 150 K, 200 K and 300 K at a time step of 0.1 fs for a total time of
1 ns. Running the dynamics at 300 K gave an important insight into struc-
tural stability of thiol protected gold nanoclusters. It is observed that thiol
group undergoes desorption from the gold surface as shown in Fig. 5.14.
This observation is in accordance with the work done by Biittner et al.[208]
by using X-ray photoelectron spectroscopy for thiol passivated gold parti-
cles. To validate this observation, average bond length fluctuations[184]
are plotted for the S and staple - Au bonds as shown in Fig. 5.15. The

plot highlights that the S and staple- Au are intact at a very low tem-
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perature of 100 K. But as the temperature is increased, the fluctuations
increase in the beginning of the simulation and thus leads to a breakage in
the bond between S and Au. This is clear from the blue colored plot at
300 K shown in Fig. 5.15. Therefore, in order to maintain the protection
of gold nanoclusters, they should be stabilized below 150 K such that thiol
group does not desorb from gold surface. Different local minima structures
are quenched from the MD simulations using L-BFGS algorithm. Some of

the core geometries are shown in Fig. 5.16.
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Figure 5.10. (a) Comparison of DFT and ANN predicted energies for
Au,,(SH), clusters where m varies from 13 to 38 and n varies from 6 to
24, (b) Plot showing the absolute value of |Exny — Eppr| for Au,,(SH),
clusters where m varies from 13 to 38 and n varies from 6 to 24
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Figure 5.11. Correlation plot of ANN and DFT predicted atomic forces for
testing and training set of Au,,(SH), clusters where m varies from 13 to 38
and n varies from 6 to 24
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Figure 5.12. Optimized structures of Augs(SH )32 similar to that obtained by
Xu et al. (a)The GM structure, (b),(c) and (d) are the local minimas.
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Figure 5.14. Desorption of thiol group from Au in Augs(SH )32 at 300 K
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5.3.3 Application of ANN for global optimizations
of AgAu nanoalloys and thio-protected Au

nanoclusters

After studying the ANN based MD simulations, global optimizations for
gold-silver nanoalloys and thio- protected gold nanoclusters are performed.
Two clusters for gold-silver nanoalloys having 10% (AgsAusg) and 24%
(Ag13Auys) composition of Ag are selected. For thio- protected gold nan-
oclusters, Auys cluster protected with three different amounts of thiol units
(8, 10 and 13) is chosen. The global optimizations are performed using
BH[168] and MD simulations. The quenching of the structures is done
with the L-BFGS algorithm.[73]

(i) AgizAugs
The BH is initialized using 10 different structures. Each run is done for
30000 steps and a bunch of 50 minimum energy structures is quenched
and saved from each run. A GM structure is obtained as shown in Fig.
5.17. The GM structure contains an 8 atom symmetric core and 47 atom
surface. It is in accordance with previous work by Chiriki et al.[202]The 13
Ag atoms are arranged as 5 on the surface and 8 in the core. A total of 435
isomers lying in an energy range of 4 eV from the obtained GM structure
are collected. A histogram is plotted to visualize the number of isomers
obtained in this energy range as shown in Fig. 5.18. One of the common
feature among all the isomers is the presence of 5 Ag atoms on the surface.
Though, some high energy clusters contain more than 5 Ag atoms on the
surface. Due to an accurate fitting of forces, different geometries of the
inner core within close energy difference from the GM is obtained as shown
in Fig. 5.19 and Table. 5.1. It shows the highly fluxional nature of gold-
silver nanoalloys. Other than core geometries, surface atom arrangements

also show a lot of fluctuations as seen in Fig. 5.20.

(11) Ag5AU50
For exploring the PES of AgsAusy, the MD simulations were ran at
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Figure 5.17. (a) The GM structure of Ag;3Auss, (b) The
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Figure 5.19. The core structures for Agi;3Auys

300 K and 400 K for a total time of 1 ns at a time step of 2 fs using different

initial structures. The structure were quenched after every 20 ps of the

simulation. The GM isomer having an amorphous surface was obtained as

shown in Fig. 5.21(a). A symmetric core arrangement was observed in the
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Table 5.1. Difference between the energies of GM structure and some low
lying isomers of Agi3Auys

Difference Fig. 5.19(a) | Fig. 5.19(b) | Fig. 5.19(c)
AE(Egy — Eing) (eV) | 0.2359 0.3249 0.3743

Figure 5.20. Low lying isomers of Ag3Auss AE (Ega — Eiso) () 0.483 eV,
(b) 1.733 eV, (c) 1.737 €V, (d) 1.79 eV

GM structure as shown in Fig. 5.21(b). Since, Au atoms are in majority,
the structure is more towards amorphous. A lot of low lying isomers were
obtained having energy difference of 1 eV from the found GM structure.
A different core arrangement was discovered in the low lying isomers as
shown in Fig. 5.22. The difference between the energy of isomers shown in
Fig. 5.22(a) and (b) from the GM is 0.0118 eV and 0.4856 eV, respectively.
Since, the energy difference is less than 0.5 eV, it shows that gold doped
nanoclusters are fluxional in nature. A lot of isomers were identified with

very different arrangement of surface atoms as shown in Fig. 5.23.

—

YO/
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K

Figure 5.21. (a) The GM structure of AgsAusy, (b) The core structure of
the GM of Ag5A'LL50
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Figure 5.22. The core atom arrangement of AgsAus
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Figure 5.23. Low lying isomers of AgsAusg AE(Egy — Eiso) (a) 0.1212 eV,
(b) 0.3407 eV, (c) 0.5259 eV and (d) 1.16 eV

(iii) Auis(SH)s, Auis(SH)1p and Auys(SH )3
To study the global optimizations, thio- protected Auqs cluster was chosen
with different concentration of SH group. The MD simulations were ran
at 100 K and 150 K for sampling the PES of thio- protected gold clusters.
Around 212 structures were sampled for Auys5(SH)s and 208 structures for
Auys(SH)yp in an energy interval of 0.5 ¢V from the tentative GM structure
obtained from the MD simulations. For Auys5(SH )3, 220 structures were
sampled in an energy interval of 1.0 eV from the tentative GM structure.
All the simulations were run at time step of 1 fs and the total time of
simulation was 2 ns. The GM structures are shown in Fig. 5.24. It was
observed that as the number of units of SH increased from 8 to 10, a more
symmetric structure is obtained. But, as the units were increased to 13,
there was not much impact on the symmetry of the structure. Isomers

having different geometries were obtained for all the three compositions.
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Figure 5.24. GM structures of (a) Aui5(SH)s, (b) Auis(SH)w, (c)
Auys(SH )3,

The low lying isomers for Aui5(SH)s, Auis(SH)19 and Auys(SH)3 are
shown in Fig. 5.25, 5.26, 5.27, respectively. A conclusion that can be
made from the different isomers obtained for silver-gold nanoalloys and
thio- protected gol nanoclusters is that gold based Nps exhibit a lot of
fluctuations in their structure and thus reactivities can be tuned according

to different geometries obtained.

Figure 5.25. Low lying isomers of Auy5(SH)s, AE (Egy — Eiso) (a) 0.2389
eV, (b) 0.2737 eV, (c) 0.4178 eV
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Figure 5.26. Low lying isomers of Auy5(SH )19, AE (Eca — Eiso) (a) 0.005
eV, (b) 0.095 eV, (c) 0.205 eV

Figure 5.27. Low lying isomers of Auy5(SH )13, AE (Ean — Eiso) (2) 0.614
eV, (b) 1.329 eV

5.4 Summary

A transferable ANN model for fitting energy and forces for any Np is pro-
posed. The model is termed “transferable” due to the dependence on
inter-atomic distances, effective nuclear charges of the chemical species
and reduced mass of the bonds involved in a chemical system. By do-
ing a concurrent but decoupled fitting of energy and forces of a MC system
using a SANN, an accurate representation of the atomic environments is
achieved. Using the same network for any chemical species in the system
leads to a tremendous reduction in the computational costs. Since, forces
are highly sensitive for an atomic environment, its fitting was a challenge,
which was discussed in this chapter. The proposed method was applied to
two systems. One consisting of a bimetallic alloy i.e. (AgAu)ss5-(AgAu)i47
and the other a range of thiol protected gold nanoclusters (Au3(SH )g-
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Ausg(SH)a4), Augs(SH)s2. Due to a precise representation of forces, the
weights obtained for the dataset consisting of Auq3(SH )g-Auss(SH )2y were
able to optimize the geometry of Augg(SH )32 and run its dynamics. This
proves the transferability of the scheme from a small size to a large size

system.
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Chapter 6

Evolution of gold from
subnanometer to nanometer
level and different levels of

theory

6.1 Introduction

In previous chapters, I fitted the PES of gold nanoclusters up to Auyyr
using different types of descriptors and ANN. In this chapter, the excep-
tional ability of ANN weights is used to study the structural evolution of
gold nanoclusters till a size of ~ 3.3 nm. Relativistic effects in gold makes
its behavior different than other metals. Unlike silver and copper, gold
does not prefer symmetrical structures as the stable entities. The ANN
trained on quantum mechanical data comprising of small to medium sized
clusters, gives exceptional results for larger size clusters. It reflects the
exceptional pattern recognizing capability of ANN. The PES for “magic”
number clusters- 309, 561 and 923 is explored in this chapter. It is ob-
served that these clusters do not prefer symmetric structures in gold. The
probability for atoms to move towards surface in gold Nps is very high,
leading to presence of more atoms on the surface to stabilize a compact
core structure. They prefer a distorted symmetric core with amorphous
layers of atoms over it. The amorphous geometries tend to be more stable

in comparison to completely symmetric structures. A trend in the evo-
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lution of a symmetric core is studied as the size of the Np increases. In
the structural evolution, stable symmetric cores (Ih) are found at Auyg,
Aussz, Ausyy, which can be recognized as new magic numbers. Augsg is
found to have a stable symmetric core of 147 atoms covered with layers
of atoms that are not completely amorphous. This shows the preference
of symmetric structures as the size of the Np increases(<3.3nm). A finite

temperature probability analysis of Auggg is also discussed.

6.2 Computational details

DFT calculations All the DFT calculations are done using VASP[141,
142, 143, 144]. The relativistic effects and the core electrons in gold nanos-
tructures, were taken care of by PAW method. PBE[146, 147] functional
and generalized gradient approximation is used to describe the electron
correlation. For sampling the Brillouin zone, a Gamma k-point mesh is
used. The gradient convergence and the threshold energy is set at 1074
and 250 eV, respectively.

MD simulations The simulations were run using in-house developed code
in FORTRAN. Verlet algorithm was used to integrate Newton’s equations.
The thermostat used for maintaining constant temperature was Anderson
thermostat. The MD simulations were run at temperatures- 250 K, 300 K
and 400 K. A time step of 3 fs was used and the run time of each simulation
was 1 ns.

MCBH search In order to explore the PES around the obtained local
minimas, MCBH search[169, 170, 171] was employed. In this search, the
number of bins are fixed as 12, with a difference of energy as 1.5 eV be-
tween the minimum and maximum energy levels. The initial temperature
was set as 0.55 for all the search runs. A total of 10 runs were done for
a particular size of clusters and each run were performed for a maximum
steps of 5x10%. Top 50 isomers were collected in each run.

All the structure optimizations were done using L-BFGS algorithm[73].

The number of iterations were kept 500 till a gradient convergence of 107°
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was achieved.

6.2.1 Fitting of energy and forces using ANN

To check the extrapolation ability and transferability of the NN weights, I
applied the weights obtained in chapter 3 (set-I weights) for the prediction
of energy and forces of very large size clusters(>300). The average RMS
error in forces are plotted for a few large size clusters(Ausgg and Ausg),
as shown in Fig. 6.1(a). The RMS error of all the clusters lie below 84.74
meV/ A /atom and therefore for larger size Nps, the atomic forces patterns
are very well captured by the data set consisting of a maximum size of 100
atoms. On the other hand, for very large size clusters, the energy pattern
were same but the magnitude of the predicted energy differed from the
DFT values. As shown in Fig. 6.1(b), the pattern followed by the energy
for a few Ausgg clusters using DFT and set-I weights are similar, but set-
I weights are unable to differentiate between the stability of symmetric

structure with the other low lying amorphous structures.

In order to remove the discrepancy in the magnitudes of the pre-
dicted energies, the energy of the same data set is fitted without fitting
the forces. In the KF, instead of 3N+1 dimensional error vector, only a
single component i.e. energy is fitted. Such a fitting helps in providing
accurate energies for structures varying highly in symmetry, but lying in a
same energy well. The RMS error for energy on a test set of 1300 clusters
was 4.6meV /atom [set-1I]. The energy of Auggg clusters using set-I1I weights
is plotted as shown in Fig. 6.1(b). The predictions were completely inline
with DFT and therefore, accurate energy predictions are achieved for very
large size clusters. As shown in Table 6.1, the relative energy difference
between the lowest minimum(LM) structure of Auggg (and Ausg;)and the
other isomers of Auggg (and Ausg;) from DFT and ANN are in good agree-
ment. It is evident from the table that the energies are predicted very well
by ANN, and the weights which are fitted for predictions of energy only

can be applied to any size of clusters. Overall for very large size clusters,
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two sets of weights are used — (1) For energy predictions [set-1T] and (2)

For forces predictions [set-I].

Table 6.1. The relative energy difference between LM and other isomers from
DFT and ANN(set-ll weights) (in eV) for Auzgg

Iso-1 | Iso-2 | Iso-3 | Iso-4 | Th
DFT |0.307|5.321 |5.357 | 7.313 | 8.274
ANN | 0.107|4.977 | 5.543 | 6.978 | 7.660
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Figure 6.1. (a) Average RMS error in forces for a data set containing Auggg and
Ausg. The RMS error of all the clusters are below the average RMS error for
the testing data set consisting maximum size of 100 atoms; (b) The comparison
between the energy predictions by DFT, energy-force (set-1) weights and energy
only (set-1l) weights. It shows the discrepancy in the energy predictions using
energy-force weights.

Table 6.2. The relative energy difference between LM and other isomers from
DFT and ANN(set-1l weights) (in eV) for Ausg

Iso-1 | Iso-2 Th
DFT | 2.005|0.2063 | 10.455
ANN [2.758 | 0.0073 | 11.397
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6.3 Results and discussion

6.3.1 PES exploration using SAS tool

There are various methods by which the PES of a metallic cluster can
be explored. The widely used algorithms are genetic algorithm[177, 178§],
BH method[168], Monte Carlo simulations, MD simulations. These algo-
rithms helps in a global search of lowest energy structures efficiently. Since
gold Nps have a wide variety of structures within narrow energy range,
a new technique is developed for an efficient search within a narrow time
range. The main target is to narrow down the search of LM structures
on a very high dimensional PES. The gold Nps prefers amorphous and
cage type structures with few exceptions like Ausg, which has a pyramidal
structure[110, 116]. The methodology of SAS tool is discussed in Chapter
2.

6.3.2 Magic number clusters- Ausy, Auss; and Augos

Using SAS tool, 10 different initial structures were constructed for Auggg.
Few structures with a symmetric core and a spherical shell covering it
were also generated. All the constructed structures along with the pure
Ih structure of Ausg were optimized. The results obtained directs the
indication towards gold’s structural preference i.e. amorphous. The surface
atoms in Th geometry of Auggy(Fig. 6.2(a)) are 162, which, however, is not
energetically preferred by gold. The amorphous structures obtained from
preliminary optimizations contained 180 to 182 atoms on the surface. The
inner core atoms ranged from 84 to 86, 33 to 38, and 5 to 7 in the third
layer, second layer and inner core respectively. Most of these structures
had energy lower than Ih, whereas a few were higher than Th, giving a
tough competition for mutual existence. The relative energy difference
between amorphous structures and Ih structure are validated from DFT.
DFT results were in agreement with the ANN predicted results. To further

investigate the possible LM structure, MD simulations were performed. A
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lot of LM structures were collected by quenching the MD trajectories. The
LM structures along with randomly designed new structures were used as
initial structures in MCBH search to obtain more minimas. A family of
212 clusters in an energy range of 0.82 eV containing 177 surface atoms, 86
atoms in third layer, 37 atoms in second layer and 9 atoms in the inner core
were obtained. Few of the amorphous isomers of Augy is shown in Fig.
6.3. The LM obtained has a proper core-shell structure as shown in Fig
6.4(a). The arrangement of core atoms reflects some symmetry but with
a little distortion as shown in Fig 6.4(c). The diameter of the LM is 2.19
nm with bond lengths among surface atoms ranging from 2.64A to 2.90A
. The structure of inner core of the LM can be described as a bicapped
pentagonal bipyramidal structure as shown in Fig 6.5(b). A similarity in
the arrangement of core atoms of LM-Augyg is drawn with the core atom
structure of GM of Auyy7[134, 135] in Fig 6.5. The inner core of Auyy7 has 7
atoms arranged as capped square bipyramidal whereas, in Ausgg, two more

atoms 1.e. 9 atom forms the core.

Figure 6.2. The |h structure of a) Ausgg, (b) Ause; and, (c) Augas

After successfully applying SAS tool for LM search of Auggg, it was
used for exploring the PES of Ausg;. For initial structure construction for
Ausg, a similar approach to Ausg was applied. The Ih structure (Fig.
6.2(b)) of Ause consists of 252 atoms on the surface having bond lengths
greater than 2.9 A. On optimizing the structures made from SAS tool, the
surface atoms in Ausg; varied from 265 to 277 in different structures. MD
simulation and MCBH search was applied further to collect more popula-

tion.

In the LM structure, the surface atoms increased from 252 to 275
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Figure 6.3.

Figure 6.4. Core-Shell structure of LM obtained for(a) Ausgg, (b) Ausei; The
geometry of core of LM structure of (c) Ausg, (d) Ause;

Figure 6.5. The inner core structure of a) Auyyr, (b) LM-Ausgg, (c) LM-Ausg

and the innermost core atoms decreased from 13 to 8. It clearly reflects

the preference of amorphous structure with more surface atoms for gold
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Nps. The LM structure has a diameter of 2.75 nm with bond lengths
of surface atoms ranging from 2.62A4 to 2.954 . The inner core structure
possess a capped-pentagonal bipyramidal shape (Fig. 6.5(c)) whose pattern
is similar to the arrangement of core atoms of LM of Auysr(Fig. 6.5(a))

and AUgQg(Fig. 65(b))

Augos is a ~ 3.3 nm sized particle, so calculating its energy and forces
using DFT is highly computationally expensive. Since, DFT validated the
ANN predictions for Ausgy and Ausg;, the ANN weights were used for ex-
ploring the stability of Ih structure for Auges. The Ih-Auges(Fig. 6.2(c))
consists of 362 surface atoms over a Ih-561 core. To explore the ener-
getic stability of amorphous structures at ~ 3.3 nm, 8 initial structures
were constructed using SAS tool and further optimized. The search was
biased by constructing 5 different structures having Ih-13, Ih-55, Th-147,
[h-309 and Th-561 as cores respectively, with required number of atoms
and spherical layers over each to complete Augys structure. On optimiza-
tions, structures having more surface atoms ranging from 370 to 385 were
obtained. The MD simulations were ran using 3 different structures at
300K. On quenching the structures obtained from the simulations, the LM
structure obtained (Fig. 6.6) was found to be ~10 eV lower in energy than
the Th-Augsz. The interesting fact about the LM obtained is that an Th-147
atoms core is maintained with varying atoms in the top three layers leading
to a amorphous surface with 388 atoms. This reflects the fact that AuNps
start evolving to a completely symmetric structure at ~3.3 nm size. From
MCBH search od Augss, a family of structures lying higher in energy than

the LM structure were obtained.

6.3.3 Adsorption energy of CO and Oy on LM

surface

On obtaining the LM structures of 309, 561 and 923, the catalytic activities
of these clusters for CO and O, adsorption on their surface are probed. Xu

et al[209] have recently designed geometry-adsorption activity descriptors
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Figure 6.6. The LM of Augys with a distorted surface and a |h Auyyr

to study the binding strength of CO and Os with gold clusters. In this work,
those descriptors are applied to calculate the adsorption energies of Auggg-
Ih, Ausgi-Th, Auges-Th, Ausgg-LM , Ause-LM and Augos-LM using Egs.
6.1 and 6.2. The C'N is the generalized coordination number of an atom
h, CN(h) = 0" (CON(k)Ni.)/(CN)pas- The CN is calculated as sum
over all the neighbors coordination number. The neighbors coordination
number(CN (k)) is weighted with the number of neighbors (NVi). CNyuge is

the maximum coordination number of Aw in bulk structure i.e. 12.
E,a(CO) =0.14 x CN — 1.38 (6.1)

F,qa(03) = 0.15 x CN —0.93 (6.2)

A plot of number of surface atoms having different adsorption energies for
Ih-Auggg and LM-Auggg is shown in Fig. 6.7. On the X-axis, the adsorption
energies vary from minimum to maximum interval. The total number of
atoms which are activity centers in the cluster are binned with respect
to the binding strength. It is observed that amorphous LM structure has
more atoms with high binding strength for CO and Oy as compared to
the Ih structure. The atoms on LM surface have different binding energies
due to amorphous arrangement. On the other hand, Ih structure has a
symmetrical layout due to which many atoms have similar catalytic activity
and thus similar binding strength. The sites having very low binding energy

and a high binding strength for CO and O is color marked in Fig. 6.8(a)
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and 6.8(b). These sites have lower energy than the sites in Ih structure.
The red colored atoms have the highest binding strength (< —0.9 eV for
CO, < —0.5 eV for Oy), the blue (—0.8 eV to —0.9 eV for CO, —0.4 eV
to —0.5 eV for Oy) and green colored atoms (—0.7 eV to —0.8 eV for CO,
—0.3 eV to —0.4 eV for Oy) have slightly lower binding strength. Therefore,
due to presence of more active sites, Au Nps having an amorphous surface

structure have high catalytic activities.
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Figure 6.7. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) Os on Ih-Ausgg and LM-Auszgg

Similarly, the adsorption energies of surface atoms of LM and Th struc-
ture of Ausg; are calculated. The adsorption energy plots (Fig. 6.10) show
a contrast between the binding strengths and the number of atoms avail-
able for catalytic activities in ITh and LM structure. In the LM structure,
the active sites having a high binding strength as compared to Ih structure
is higher. As seen from Fig. 6.8(c) and 6.8(d), the top and edge sites have
high binding strength as compared to the other sites on the surface. The
adsorption energies plots for Th and LM structures of Augos follows a simi-
lar trend as Auggg and Ausg;, as shown in Fig. 6.11. The binding sites have
increased in the LM structure and therefore AuNps are catalytically active
at ~3.3 nm size. The active sites having high binding strength for CO
and Og are highlighted in Fig. 6.8(e) and 6.8(f). This study shows that
the number of surface atoms along with the structural arrangement has

an impact on the catalytic activities of AuNps. A compact arrangement
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Figure 6.8. The active centres for CO and O, adsorption marked for the LM
of (a) AU309—CO, (b) AU309-02, (C) AU561—CO, (d) AU561—02, (e) AU923—CO, (f)
Augs3-O2; Red colored atoms have lowest binding energy (< —0.9 eV for CO,
< —0.5 eV for Oy), blue colored atoms have binding energy (—0.8 eV to —0.9
eV for CO, —0.4 eV to —0.5 eV for O3) and green colored atoms have binding
energy (—0.7 eV to —0.8 eV for CO, —0.3 eV to —0.4 eV for O,)

of atoms in Ih structure has lower binding strength when compared to an
amorphous arrangement of atoms. In order to check the impact of size
of core on the catalytic activities, different structures of Auggy are chosen
and the adsorption energies for CO and O, are calculated. The adsorption
energies did not have any impact due to the change in size of core. Al-
though, the active sites decreased due to decrease in the number of surface
atoms and increase in number of core atoms in few clusters, as shown in
Fig. 6.9. The comparison is shown for five structures having core sizes of
8, 9 (LM), 10 and 13 atoms. For 13 atom core, an amorphous structure
and the Ih structure was considered. An anomaly is encountered, when
the number of core atoms are 13 for one of the amorphous isomer of Auggg.
This can be explained by the absence of symmetry in the core atoms. Due
to increase in the amorphous content in the cluster, the number of surface

atoms increases.
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Figure 6.10. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) Os on Ih-Ausg; and LM-Ausg;
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Figure 6.11. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) O, on Ih-Augys and LM-Augos
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Table 6.3. The relative energy difference between LM and |h and Dh structures
from DFT and ANN(set-1l weights) (in eV) for Auy;

AFE | Th Dh
DFT | 1.858 | 1.200
ANN | 2.376 | 0.085

6.3.4 Evolution of a magic core in Au;gy, Augsr, Ausy

With the understanding developed till now about the “magic” number clus-
ters, it is confirmed that they tend to differ from having a compact sym-
metric structure. A recent work by Pande et al[130] showed the presence of
Auy3(Ih) as a stable core in Augg. This inspired me to look further for the
clusters which can have a stable symmetric core. The approach of taking
a symmetric core and encapsulating it by one spherical layer was followed.
Since, more surface atoms are preferred by gold clusters, the number of sur-
face atoms were selected accordingly. The structures are then optimized to
get a LM structure. On optimization, if the symmetric structure persists
then MD simulations were carried out to observe the thermodynamic sta-
bility of the structure obtained. Further, MD trajectories were quenched
and stable structures were collected. The search was continued if the Ih
symmetry was not disturbed in MD simulations by using MCBH search.
Dh and Oh symmetric cores were not considered, as for gold clusters Th
has been found the most stable among Ih, Dh and Oh. In order to verify
that ANN potential is not biased towards Th geometry, a test case of the
Lennard Jones(LJ) Auzs cluster was taken. The ground state of LJ-Auys is
fcc like (Dh) whereas the second lowest structure is Ih. The MCBH search
of Aurs-Th gave an isomer which is much lower in energy than the Dh and
the Th structure. The order of stability follows : LM(distorted symmetry)
> Dh > Ih. All the structures are shown in Fig. 6.12. The energy order
was confirmed with DFT and it was in agreement with ANN as shown in
Table 6.3. This shows that ANN potential is not biased towards symmet-
ric structures.  The search was began with clusters around 147 atoms.

The numbers chosen were Auysg, Auise, Auiss, Augss, Augsg, Aursy, Augsg,
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Figure 6.12. Auz; (a) Ih, (b) Dh, (c) LM obtained (view 1), (d) LM obtained
(view 2)

Augsg, Auigg, Auigs, Aujgs. The aim is to find the minimum number of
atomic cluster configuration at which 13 atoms can form a stable core. Ini-
tially, alternative numbers are considered in order to get an insight. If 13
atoms are obtained in the core in a particular configuration, then a new
configuration with less than one atom was checked. For example, case I- If
I get 13 atoms in Auyss, then I check for the symmetric core in Auys, and
case II- If I do not get 13 atoms inside the core, like in Auysy, I drop Auys;
for the study. The 55 atom-Ih structure was put inside a sphere with 95,
97, 99, 100, 105, 111 and 113 atoms, respectively. The structures were op-
timized and after a series of simulations, Au;gy was obtained with a stable
12 atom (13 — 1) symmetric core(Fig. 6.14). The central core atom in the
Mackay Th of 13 atom metallic cluster moved to the outermost surface of
Auigo. The symmetric core search was continued around 309 atoms. The
numbers selected were Augps, Auszis, Augig, Auszsg, Ausosy, Augsg, Aussr,
Auszg. After the simulations-optimization cycle, Augs; was obtained with
a stable 54 atom (55— 1) symmetric core(Fig. 6.14). For search around 561
atoms, Ausgg, Ausrg, Ausry, Ausrs, Ausrg, Ausgy, Ausss were chosen. The
trend of having a symmetric core without one central atom continued with
Augry, which has a stable 146 atom (147 — 1) symmetric core(Fig. 6.14).

The observations made with this study is that two layers are required to
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stabilize a symmetric core in gold Nps. Also, it was observed that the
structures of Auygg, Augey and Ausy; containing the central core atom were
energetically competitive with the structures without the central core atom.
An energy difference of 0.5 eV to 1 eV was obtained between the two types
of structures. It can be concluded that there is probably a symmetric core
evolution starting from Auygp and continuing up to Augs; and Ausrz;. The
surface of gold Nps is highly fluxional and therefore maintaining a compact
symmetric shape is not possible. The numbers 147, 309 and 561 are unable
to have a stable symmetric core because there are not enough atoms on
the surface to protect the symmetry of the core. As soon as the number
of atoms are increased in a structure i.e. in 160, 327 and 571, the inner
core symmetry is maintained. With all the data available for different size
of gold Nps, the surface atoms ratio with respect to the total atoms in a
Np as shown in Fig. 6.13. A logarithmic dependence exists between the
surface atoms ratio and total number of atoms. From Aujs; to Auges, the
number of surface atoms decrease from 71% to 42%. Therefore, a decrease

in the catalytic activities are observed with increase in the Np size.
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Figure 6.13. The plot of surface atoms ratio against the total number of
atoms in a cluster. A logarithmic trend line is fitted to the data with R? and
the equation in the inset of the plot.
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Figure 6.14. The symmetric core evolution in Auygg, Aussr, Ausry

6.4 Variation in structural preference of
gold nanoclusters: Different levels of

theory

In earlier studies, it have been shown that larger size gold nanocluster
prefers Th, Dh and fcc(Oh) structures. Koga et al[210] studied gold Nps in
the size range of 3-14 nm using high resolution electron microscopy. In their
study, a coexistence of Th and Dh structures is observed below 5 nm. It is
expected that for Ausg (~ 2.7nm) and Auges (~ 3.3nm), the population
should consists of a considerable amount of Ih and Dh structures. In an-
other study by Foster et al,[211] the energy difference between Dh and fcc of
Ausg; supported on silicon nitride was found to be very small. The Dh and
fce structures were found in abundance in the generated population. Bao et
al[212] performed theoretical study of gold clusters (up to 318 atoms) using
RGL potential. They have also found very small energy difference between
Dh and fcc structures. Wells et al[213] have shown the metastability of the
symmetric structures. They have shown that fcc(Oh) and Dh structures
are the most abundant in the generated population. All these studies show
that symmetric structures- Dh and fec(Oh) are experimentally preferred
geometries. In my study, structures having an amorphous surface and a
symmetric core has been found. As the size of the nanoclusters increases to

~3.3 nm, the symmetric core also evolves with a amorphous layer of atoms
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over it. These structures are found to be lower in energy (from ANN and

DFT) when compared to Ih, Dh and Oh structures.

The DFT calculations are performed at 0 K and thus the stability
at a finite temperature is not considered. Since ANN potential mimics
DFT, it also gives the relative energy order similar to DFT. In order to
check the energy difference between the structures obtained in this study
with the symmetric structures, Th, Dh and Oh structures are constructed
using atomic simulation environment[214, 215] which is a python based
program. By using ANN potential the Th, Dh and Oh structures were not
found in the population generated by MD simulations and MCBH search.
One of the reason for this can be the huge difference in the energy of the
amorphous structures and the compact symmetric structures as shown in
Table 6.4. The Augge-LM is found to be ~ 8.274 ¢V (DFT) and ~ 7.660
eV (ANN) lower in energy than Ih structure, ~ 9.498 eV (DFT) and ~
12.961 eV (ANN) lower in energy than Dh structure and 12.841 ¢V (DFT)
and ~ 17.383 eV (ANN) lower in energy than Oh structure. The Ausgi-
LM is found to be ~ 10.455 eV (DFT) lower in energy than Ih structure,
~ 11.950 eV (DFT) lower in energy than Dh structure and ~ 14.477 eV
(DFT) lower in energy than Oh structure. For Ausg;, the magnitude of the
ANN predicted energies is far from the DFT predicted energies, but the
relative ordering of the energy is followed by ANN. From DFT and ANN,
the energy ordering between symmetric structures is [h>Dh>Oh, which is
according to the gold structural preferences.[120, 131] Since, the LM has a
very low energy as compared to Ih, Dh and Oh structures they were not
spotted in the MD trajectories and MCBH search. Also, the constructed
structures of Th, Dh and Oh geometry may not be the same structures

found in the works of Koga et al,[210] Bao et al[212] and Foster et al.[211]

The energy of a molecule depends upon the type of functional used in
DFT. For small gold clusters, Tao-Perdew-Staroverov-Scuseria (TPSS) has
been shown to give more accurate results.[216, 217] A comparative study
between PBE and TPSS functional calculations for gold nanoclusters was

done by Li et al.[120] They showed that the magnitude of energies predicted
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Table 6.4. The relative energy difference of Ih, Dh and Oh structures with
the LM of AU309 and AU561 from DFT (In EV)

Ih Dh Oh
Auggg | 8.274 | 9.498 | 12.841
Ausgy [ 10.455 [ 11.950 | 14.477

by TPSS functional is higher than PBE functional, but the relative energies

between the structures were same for both the cases.

In order to explain the discrepancy between the experimentally pre-
ferred and theoretically predicted structures, a finite temperature probabil-
ity analysis for Th, Dh, Oh(fcc) and LM structures of Augg was performed.
As discussed by Z. H. Li,[218] the LM structure for a system may not be the
most probable and the preferred isomer at a particular temperature. The
stability of a cluster at 0 K depends only on the potential energy (PE).
At finite temperature, it is governed by other factors like translational,
electronic, rotational and vibrational states. The molecular partition func-
tion estimates the partitioning of probabilities among different states. The
translational partition function is dependent on mass and volume of the cu-
bic box. As the box length and the mass is same for all the Ausgg isomers,
translational partition function is not considered. The electronic partition
function is considered to be equal for all the isomers and is therefore re-
moved from the calculations. Thus, the probability of different isomers
dependent upon rotational (¢..) and vibrational (g,;) partition functions
at 300K, 500K, 800K and 1100K is calculated. The probabilities are calcu-
lated only for the four isomers of Auzgg. The probability may vary if more
isomers are taken in the analysis, but the relative values are expected to

be same.

The rotational partition function (g, ) is approximated by rigid rotor
approximation. For an isomer i, in Eq. 6.4, I,, I, and I. are the moment
of inertia in each axis, and ¢ is the symmetry number of the isomer. The
symmetry number is obtained from the point group of a molecule. It is

obtained by counting the number of elements excluding the identity and
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rotations of the point group.[219] To calculate the point group, I used
Gaussian 09[220]. The point group of Ih is IH, Dh is D5H, Oh is OH and
LM is C1. The o for IH, OH, D5H and C1 is 60, 24, 10 and 1, respectively.

The vibrational partition function (g, ) is approximated by Harmonic
Oscillator approximations. In Eq. 6.5, v, is the frequency of b vibrational
modes. For large size clusters, a lot of vibrational modes are observed
having small frequencies. The contribution to g,; from such frequencies is
large, which overestimates the q,; as the vibrations become anharmonic.
To decrease the error in calculation of ¢,;, and make a harmonic approxi-
mation, Z. H. Li,[218] raised the small frequencies to a high frequency by
setting a cut-off frequency. All the smaller modes frequency values are
raised to the cutoff frequency value. The maximum and the minimum

1

frequency observed in Ausgg is 160 cm ™! and 3.5 em ™!, respectively. I arbi-

trarily chose 80 em™1(10 meV) as the cut-off frequency and below 80 cm™?

the frequency are treated as small frequencies and raised to 80 em™! in

calculations.
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The probability (P,..,) of an isomer i is calculated from g, and gy,
as given by Eq. 6.3. The P,,,, are calculated for the isomers at 300 K, 500
K, 800 K and 1100 K as shown in Table 6.6. The probability Fy,., gives a
deeper insight into the formation of isomers dependent upon the partition
functions. It can be seen from Table 6.6, at 300K, the P,,, is almost
zero for the LM (1.53x 107°), whereas, it is maximum for Th (0.92116).
The probability of Oh (0.06356) and Dh (0.01527) isomers is also high
as compared to the LM structure. As the temperature is increased to
500 K, the P, of Ih decreases to 0.92067. But, the P, of Dh, Oh
and LM increases to 0.01562, 0.06369 and 1.73x 1072, respectively. This
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trend is continued till the temperature of 1100 K for Th, Dh and LM. The
probability of Oh decreases as temperature increases from 800 K to 1100
K. Overall, the Ih structure is probable from 300 K up to 1100 K. The
probability of LM structure is very small when compared to Ih, Dh and
Oh structures. The Dh and Oh isomer becomes more probable as the
temperature is increased. At all the temperatures, the LM structure is the
least probable and therefore despite being lower in energy than Ih, Dh and
Oh structure, such structures may be formed in very small percentage in
the experiments. This is in agreement with the study by Foster et al[211]
and Wells et al,[213] where, amorphous geometries have been identified but

in a very small percentage for gold nanoclusters.

Among the four isomers of Auggg, it is observed that above cut-off
frequency, the magnitude of the vibrational modes for the LM structure is
higher in comparison to symmetric structures. The Dh, Oh and Ih struc-
tures have fewer modes with high frequency. Therefore, the value of vibra-
tional partition function is comparatively low for LM structure and high
for Th, Dh and Oh structures. On the other hand, in the rotational parti-
tion function, the symmetry number in the denominator of ¢, is 1 for LM
structure and 10, 24, 60 for Dh, Oh and Ih, respectively. It gives relatively
higher value of ¢.,; for LM structure than the Ih, Dh and Oh structures.
But as ¢,o0 = Guib X @rot, the vibrational partition function dominates and
gives higher probability for symmetric structures when compared to LM
structure. As the temperature is increased, the magnitude of vibrational
partition function increases and highly dominates over the contribution
from rotational partition function. So, the analysis shows that symmetric
clusters have more chances to form and are stable at high temperatures
due to vibrational part of the partition function. The ¢.,; and g,;; values
for the four isomers of Ausgg is provided in the Table 6.5. The vibra-
tional modes calculation involves the calculation of force constants. The
interatomic force constant is dependent on the interatomic forces. The
accurate calculation of interatomic forces gives the accurate estimation of

atomic positions and thus the fitting of forces in ANN should be accurate.
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Table 6.5. The rotational (¢,.) and vibrational (g,;) partition function of 4

isomers of Auggg at different temperatures

Isomer | Type 300K 500K 800K 1100K
Th ot | 3.68x 10 | 7.93x 10" [16.04x 10" [25.86x 10
Quiv | 9.75x107307 | 2.43x107100 | 1.24x10%° | 4.83x10%'6
Oh | g | 3.81x 10™ | 8.19x 10 |16.58x 10 [26.73x 10™
Quiv | 0.65x107307 1 0.162x 10719 | 0.083x10%° | 0.324x 10216
Dh | g | 3.79x 10" | 8.16x 10" |16.52x 10 [26.63x 10
Quiv | 0.15x107307 | 0.04x10719° | 0.02x10% | 0.08x 10?6
LM | g | 3.86x 10 | 831x 10 [16.82x 10! [27.12x 10!
Quiv | 1.5x107311 | 4.3x1071% | 2.3x10% | 9.18x10%!!

The Set-1I weights predicts the accurate relative energy, whereas, the Set-
I weights predicts accurate interatomic forces. The interatomic forces in
gold nanoclusters for a dataset consisting of environments for Ausg-Auyyr
are fitted with an error of 84.74 meV/A /atom using Set-I weights. When
these weights are applied to estimate the forces of a few Auggg, an average
error of 14 meV/A/ atom in the prediction of atomic forces is observed.
Due to such a small error in the prediction of forces, a fair estimation of
force constants is obtained. Due to this small error, MD simulations and

local optimization of the structures are also conducted.

Since the probability is highly governed by q,;, the prediction of
vibrational frequency from DFT and ANN is compared. As the computa-
tional time for calculation of vibrational modes for Ausgg is huge, I took
small sized clusters of Auss and Ausg whose calculations are computa-
tionally feasible. Four different types of clusters of Ausy and Ausg each
was taken and vibrational frequency was estimated using DFT (In VASP,
IBRION=5, POTIM=0.015). The values of vibrational frequency do not
matches exactly with those calculated using ANN (Set-I weights). The
order of the probability(F,,,) calculated using vibrational frequency from
DFT and ANN are found to be in agreement with each other. The struc-
ture of the isomers is shown in Fig. 6.15 and 6.16. The P,,, data is
provided in Table 6.7 and 6.8. This shows the capability of ANN potential

to predict the accurate probabilities of isomers at different temperatures.
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Table 6.6. The probability F,,,, of Ih, Dh Oh and LM structure of Ausyg at
different temperatures

Isomer 300K 500K 800K 1100K
Ih 0.92116 0.92067 0.92051 0.92046

Oh(fce) | 0.06356 0.06369 0.06377 0.06374
Dh 0.01527 0.01562 0.01574 0.01577
LM [1.53x 107°[1.73x 107°[1.80x 107°|1.83x 107°

Table 6.7. The probability P, of 4 isomers of Aus, at different temperatures

Isomer

Type

300K

500K

800K

1

ANN
DFT

0.2486
0.2150

0.2489
0.2166

0.2490
0.2170

ANN
DFT

0.1296
0.0835

0.1312
0.0854

0.1317
0.086

ANN
DFT

0.3721
0.4486

0.3696
0.4441

0.3688
0.4425

ANN
DFT

0.2496
0.2522

0.2501
0.2538

0.2504
0.2543

Isomer

Type

300K

500K

800K

1

ANN
DFT

0.2254
0.1859

0.2258
0.1873

0.2261
0.1877

ANN
DFT

0.1578
0.1527

0.1595
0.1548

0.1600
0.1555

ANN
DFT

0.2613
0.239

0.2612
0.2406

0.2614
0.2408

ANN
DFT

0.3554
0.4214

0.3534
0.4173

0.3527
0.4158

Table 6.8. The probability P, of 4 isomers of Ausg at different temperatures

Thus, a finite temperature probability analysis performed by incorporat-
ing rotational and vibrational partition function has given a quantitative

insight for the experimentally obtained results.
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Figure 6.16. The four isomers of Auss (a) 1, (b) 2, (c) 3, (d) 4

6.5 Summary

In this Chapter, the evolution of gold from cluster to a Np by proposing
new numbers which shows a symmetric core evolution in the growth of gold
Nps is presented. The exceptional pattern recognizing capability of ANN
has made it possible to accurately predict structures up to a size of ~3.3
nm. The structures till a size of ~3.3 nm are not completely amorphous
and a symmetric core is identified with amorphous layers of atoms over
it. The “magic” number in metallic Nps (13, 55, 147, 309, 561 and 923),
do not prefer symmetric structures in gold. The probability for atoms to
move towards surface in gold Nps is very high, leading to requirement of
more atoms on the surface to stabilize a compact core structure. There-

fore, a plausible evolution of a symmetric core in gold Nps is shown. The
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nucleation begins with a 12 atom symmetric structure, and two layers of
atoms are deposited over it in Aujgg. The next number is Ausor, where 54
atoms form a symmetric core with two layers of atoms deposited over it
to keep the core stabilized. Further symmetric core arises in Ausy;, where
146 atoms form a symmetric core, with the deposition of two layers over
the core structure. These numbers reveal that gold Nps have a slow evo-
lution towards bulk structure and therefore they have a high reactivity till
a size of ~3.3nm. A finite temperature probability analysis of Auggyg is
also performed. The isomers lying higher in energy than the most stable
structure are found to be more probable at different temperatures. The
results obtained from the analysis has shown that the PE is not the only

parameter for measuring the abundance of a structure in a population.
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Chapter 7

Conclusion and Future scope

7.1 Conclusion

In last few decades, ML has become one of the major tool to solve a prob-
lem which is beyond the processing of a human brain. The learning and
processing of the information by a machine leads to discoveries of different
trends present in a database. ML techniques capture the intricacies in a

system and find a relationship between different parameters.

ANN is one of the robust ML technique that mimics the learning
process of a human brain using the basics of a perceptron model. The
computational efficiency of ANN has inspired scientists to use it for solving
complex quantum chemical problems. Exploration of PES of a molecule
is one such problem which can be solved using ANN. To explore a PES,
interatomic potential is required that gives the energy of the system. The
most accurate interatomic potentials are obtained from ab initio methods.
These methods consists of electronic structure dependent calculations that
gives accurate properties but at a high computational cost for the experi-
mentally relevant systems. ANN bridges the gap between accuracy of ab

initio methods and low computational costs.

Metallic Nps have a variety of applications which makes them an
important topic to study theoretically. The theoretical study of their prop-
erties is made feasible by efficient interatomic potentials which describe
the atomic and molecular interactions. The study of structural dynamics
of Nps leads to major insights into vacancy defects, surface energy, me-

chanical properties, plasmon-resonance behavior. The structural dynamics
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analysis is thus impossible to conduct at a broader scale for large size sys-

tems using ab initio methods.

The goal of this thesis was to construct ANN interatomic potentials
for studying the structural dynamics of metallic Nps (especially gold Nps
and its alloys) having an accuracy of ab initio but at a much faster com-
putational speed. The major reason to choose ANN is that it captures
the complex bonding patterns in a system and find a relationship between
coordinates and energy. As gold shows a rugged PES due to relativistic

effects, the fitting of PES was possible with ANN.

For constructing a PES using ANN, one of the most important in-
gredient is the descriptors of the atomic environment. Before this thesis
work, ANN was not applied to fit the PES of large size gold Nps. Also, a
transferable approach for fitting energy and force of an alloy system was
not done prior to the work done in this thesis. The proposed descriptors
and various new models have proved to be of great significance in fitting
the PES of complex system like gold. The results obtained shows the effi-
ciency of ML techniques, especially ANN in fitting different properties of

chemical systems. In brief, the major findings of the thesis are listed as:

1. Power spectrum coefficients as input descriptors to ANN leads to
an accurate PES fitting tool for gold nanoclusters. The computa-
tional time for accurate calculation of energy and forces using power
spectrum-ANN for a Auyyy cluster is in seconds, which is very fast
when compared to DFT (~ hours) (calculation done on parallelized

8 CPU [Genuinelntel 2600.0 MHz]).

2. Bispectrum - an order higher than power spectrum, is capable of
capturing the atomic environments more efficiently than power spec-
trum. It resulted in searching more number of structures as compared

to power spectrum driven structure exploration.

3. For an alloy system, the PES can be fitted using a single ANN by
following a strategy of decoupled fitting of energy and forces. The
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elements are differentiated between each other using weightings in
the descriptors. The atomic forces are derived from gradients that

are weighted according to the type of element.

4. The approach proposed for alloy systems is “transferable” as the pa-
rameters are dependent on interatomic distances, effective nuclear
charges of the chemical species and reduced mass of the bonds in-
volved in a chemical system. The ANN weights fitted for an alloy
(Eg. (AgAu)ss-(AgAu)i47) can be used to predict energy and forces

for an individual system (Eg. pure Ag or pure Au clusters).

5. The PES fitted for small and medium sized clusters(~1.8 nm) is trans-

ferable to larger size clusters(<3.3 nm).

6. A symmetric core evolution in gold nanoclusters is observed to occur
at Auygp, Auser, Ausry, which can be recognized as new magic num-
bers. In these clusters, the symmetric core is a Th without the central

atom.

7. A finite temperature probability analysis of gold clusters shows that
the potential energy is not the only parameter for measuring the
abundance of a structure in a population. The statistical analysis
gives the preference of symmetric structures over amorphous struc-

tures in a sample.

7.2 Future Scope

The work that can be taken forward from this thesis can be summarized

as

e The methodology presented in this thesis is tested on gold Nps and
its alloys. The same scheme can be tested on a variety of nanomate-
rials for efficient mapping of PES from coordinates to energy. Other
than ANN, there are various ML techniques which can be tried and

modified according to the system in consideration.
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As thermodynamical quantities play a role in preferring one structure
over another, an ML model can be created with descriptors having
information about local structure environment as well as some data
from thermodynamics. This will give a combine boost to the explo-
ration of PES and thus a more accurate discovery of stable structures

can be carried out.

The approach to construct the training data set can be altered by
using the DFT data calculated with different functionals. Doing so,
the accuracy of the fitted energy can be improved and thus improving

the PES.

The complexity of a system increases with the presence of a lot of
stable isomers at a particular temperature. A statistical tool for
identifying such systems and devising a proper ML technique to fit

its properties can be worked upon.

The overfitting and the underfitting of the ANN weights can be tack-
led by a ”choosing” mechanism, in which the hidden layers and the
neurons are added or subtracted on the fly depending upon the prob-

ability analysis at each neuron.

The foundation of DFT is 3 dimensional electron density, using which
energy functionals are calculated and properties are estimated. Using
ML, electron density can be modeled and estimated for an atomic ar-
rangement. Once the electron density is obtained, the computational
burden of DFT is reduced and thus it can be applied to a large size

particle.

Applications such as catalysis using ML approach can be studied.
The reduction of carbon dioxide on gold Nps is one such important
system that can be worked upon. The ML can simplify the iden-
tification of the structure of Np which can efficiently carry out the

reduction.
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e Different types of atomic environment descriptors can be designed to
differentiate between stable and non-stable environments such that

computational load of fitting a dataset is reduced.

e A global optimization strategy can be constructed using ML. The
identification of very high energy isomers as well as the clustering of
similar energy isomers can be done using a trained set of parameters.
The identified structures can be modified by using gradient dependent

approach to explore different minima basins.
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