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Abstract

Machine learning has the ability to solve a problem which is beyond the

processing of a human brain. The learning and the processing of data by a

machine provides different connections present within a database. Artifi-

cial neural network (ANN) is one of the robust machine learning technique

that mimics the learning process of a human brain using the basics of a

perceptron model. In the last few decades, ANN has been used to solve

complex problems in chemistry. The calculation of potential energy surface

(PES) of a nanoparticle (Np) is one such problem which can be solved using

ANN. The ab initio methods can be applied for accurate prediction of PES,

but their high computational cost makes them a poor alternative. ANN

provides a solution to bridge the gap between accuracy of ab initio meth-

ods and low computational costs. ANN interatomic potentials provides a

cheap and accurate alternative to study the structural dynamics of metal-

lic Nps. Metallic Nps have a variety of applications which makes them an

important topic to study theoretically. The study of structural dynamics

of Nps leads to major insights into vacancy defects, surface energy, me-

chanical properties, plasmon-resonance behavior. In this thesis, the ANN

interatomic potentials is constructed for gold Nps and their alloys. As gold

shows a rugged PES due to relativistic effects, the fitting of PES was pos-

sible with high dimensional ANN. For constructing a PES using ANN, one

of the important part is the descriptors of the atomic environment. Higher

order invariants- Power Spectrum and Bispectrum have been applied with

modified atomic environment density for describing the atomic environ-

ments. A transferable approach for fitting PES of an alloy system was not

done prior to the work done in this thesis. For an alloy system, the PES is

fitted using a single ANN by following a strategy of decoupled fitting of en-

ergy and forces. The elements are differentiated between each other using

weightings in the descriptors. The PES fitted for small and medium sized

clusters(∼1.8 nm) is found to be transferable to larger size clusters(<3.3

nm). The computational time for accurate calculation of energy and forces

using power spectrum-ANN for a Au147 cluster was reduced to seconds,



when compared to DFT (∼ hours) (calculation done on parallelized 8 CPU

[GenuineIntel 2600.0 MHz]). Due to an accurate prediction of PES of gold

Nps, a symmetric core evolution with increase in size of gold Nps is studied.

It is observed that an icosahedron core is evolving from Au160 to Au327 to

Au571. It is also observed that magic number clusters- Au147, Au309, Au561

and Au923 prefer amorphous structure over symmetric structures. The un-

usual bonding in gold leads to modification of the structural preference in

magic number clusters. Overall, the proposed descriptors and various new

models have proved to be of great significance in fitting the PES of complex

system like gold.
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Chapter 1

Introduction

1.1 Machine Learning

“Learning” is an integral part of human life. It helps us to grow in all

aspects of life. One of the important branch of learning is utilizing the

learned information in analyzing different situations. For example, based

on the taste acquired for categories- sweet, salty and sour food we can

predict the category for a new food item even before tasting it. There are

many situations where we are unable to process the information and use

it for our benefit. For example, predicting the weather, prices of stocks,

preventing frauds. If we are cheated by a company and next time we want

to invest in a new company, we won’t be able to identify the credibility of

this new company. In such situations, we require a technology by which we

can process the information and obtain a clarity. One more example of such

a situation is filtering of spam mails. The spam mails are filtered based

on the keywords they contain. Sometimes, spam mails do not have those

keywords and in such cases we require a mechanism by which the mails are

filtered by analyzing its content smartly. This kind of learning, processing,

filtering and prediction can be achieved by “Machine learning”(ML). ML

is learning from a bunch of data and making predictions for the unseen

data. The word “Machine” broadly refers to the computer on which such

programs can be constructed. So, it is a computer which will learn and

process the data. Around 60 years ago, the computer used to perform the

task that humans used to code. Now, the computer analyses the data and

interprets the results on its own. The ability of a “machine” to perform
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like humans is called artificial intelligence.

The ML forms an important part of our daily life. It analyses the

data and categorize it according to the pros and cons associated with a

situation. It helps in classification and predictions. A lot of activities like

getting suggestions about our likes and dislikes, recognizing people with

same accuracy as humans, pattern detection in videos, categorizing mails

as spams, predicting the cost of a property, chances of winning, are gov-

erned using ML. ML can be achieved by different algorithms which can be

broadly classified as supervised learning and unsupervised learning. Su-

pervised learning is a learning based on input-output pairs i.e., the data

having the input features leading to an output result is trained by an al-

gorithm. For supervised learning there are many training algorithms like

linear regression, support vector machines, nearest neighbor, neural net-

works (NN), naive Bayes and logistic regression. In unsupervised learning,

the output is not considered. The algorithms extract the patterns from

the data based on the input features. Unsupervised learning is broadly

achieved by a method known as clustering.

ML has given an insight deeper than human perceptions. The hypoth-

esis and solution generated by a human brain is unable to take into account

a lot of hidden features of a problem. ML based data analysis has brought

a revolution in various fields like protein structural analysis[1], genomics[2],

prediction of volcano eruption[3], discovery of new materials[4], among

many others.

For discovery of new materials, ML extracts the patterns of the struc-

tural preference of atoms in a stable structure and thus predicts new struc-

tures accordingly. This can be achieved by supervised as well as unsuper-

vised learning algorithms. In general, among supervised learning, NN have

proven to be robust for extraction of patterns in scientific data analysis. In

this thesis work, NN have been applied to study structural analysis of gold

Nps.
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1.1.1 NN model

As the name suggests, NN is the network of neurons in the nervous sys-

tem of the human body. This network is responsible for various actions

like detection of smell, feeling of pain, learning new things among many

others. In 1943, McCulloch and Pitts[5] deciphered the neural activity in

the human brain by a simple mathematical model. They explained the

working of neurons in transmitting the signal from one part to another

part in the body. This was the first “NN” mathematical model drawn from

electrical circuits. In 1949, Donald Hebb[6] wrote a book “The Organi-

zation of Behavior”, describing the learning process of the human brain.

He gave a theory that the link between two neurons is strengthened as a

signal is transmitted. The theories by McCulloch, Pitts and Hebb laid the

foundation for applying NN model for learning real life problems and doing

accurate predictions. In 1958, Rosenblatt[7] proposed the “perceptron”

model. It is a model by which artificial neurons can learn in a super-

vised learning mode. Supervised learning is learning from a data having

information of all the input-output pairs. In 1959, Arthur Samuel uti-

lized the learning capability of a NN and coded a program for a game -

Checkers[8]. It taught the game to learn on its own and to play it ef-

ficiently. This was the first computer game that could defeat a human

brain. In 1960, Wildrow and Hoff[9] constructed a single layer artificial

NN called ADALINE. They even constructed MADALINE, that consists

of multiple ADALINE units. These were implemented to filter the noise

in phone lines and is still in use. After 40 years of the breakthrough by

McCulloch and Pitts, in 1980s the layers of neurons was increased from

a single to a double layer. This was introduced to induce a slow learning

and a better pattern classification. In 1982, Hopfield[10, 11] introduced

the nonlinear link between the input from all the neurons received by a

neuron and the output sent to the other neurons. The NN emerged as

a fascinating tool with the predictions of secondary structure of protein

in late 1980s[12, 13, 14], protein localization[15], predictions of cleavage

sites[16], spectral data analysis[17, 18], solving Schrödinger wave equation
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(SWE) for harmonic oscillator[19, 20], prediction of polymer properties[21],

prediction of heat of formation[22], fitting the PES[23, 24, 25, 26], Monte

Carlo simulations of polymers[27], among many others[28].

In this thesis work, fitting of PES is achieved using ML. The PES

represents the variation of energy of a system with different atomic coordi-

nates and thus provides an important piece of information for a chemical

system. In 2007, Behler and Parrinello[29] made a breakthrough in fitting

the PES of molecular systems. They addressed and removed the short-

comings of the previously followed approaches for fitting the PES. The

Behler-NN is a two layer feed forward NN having the capability of fitting

and reproducing high quality of ab initio results. It captures all the inter-

actions of the system efficiently and a proper modeling of the interactions

is not required. Their strategy was to map the Cartesian coordinates of

the system into local atomic environment features. These features are then

given as an input to NN, which then gives the atomic energy as the out-

put. This energy approximation is then corrected by supervised learning

from a data obtained from ab initio calculations. This approach moti-

vated other scientists to work on generating PES more efficiently. Since

2007, various techniques using different kinds of fitting strategies have

emerged as a powerful tool to generate PES or preferably called inter-

atomic potentials[30, 31, 32, 33, 34, 35, 36, 36, 37]. Such techniques are

widely known as “ML”. I will be discussing the interatomic potentials

in the next section. The advantage of these ML techniques is that they

are not formulated on a specific model based on the atomic or electronic

interactions. The fundamental idea of ML is to describe the property of

interest in the form of a mathematical expression depending upon large

number of tunable parameters. The parameters are adjusted with respect

to the quantum chemical data fed into the “machine”. The word “machine”

refers to a pattern classification tool that captures and classifies the input

data. It further processes the data into the desired output. The outline of

the construction of a PES using an ML technique is followed by the brief

introduction about interatomic potentials in the next section.
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1.2 Interatomic Potentials

Various chemical processes like surface reactions, catalysis, synthesis can

be explained by a thorough scanning of atomic interactions. The basic

quantity that reflects atomic interaction is energy and atomic forces in a

molecular/atomic system. The correct evaluation of these quantities leads

to an accurate pathway, structural stability and mechanisms of reactions.

The potential energy of a molecular/atomic system is dependent on in-

teratomic interactions and therefore interatomic potentials calculate the

potential energy by using mathematical equations.

The ab initio methods are the most accurate form of interatomic

potentials. They estimate the energy and forces by solving the SWE for

N-electrons of a molecular system. In order to estimate the PES, large

amount of simulations are required which in turn requires calculation of

energy and forces. The computational burden is huge if ab initio meth-

ods are employed for the energy and force calculation. Therefore, a clas-

sical approach is required for accurate estimation of the PES. The elec-

tronic structure calculations can be replaced by atomic level calculations

for the estimations. One of the popular and a basic form of potential for di-

atomic molecules and noble gases was proposed by Lennard-Jones[38] and

Morse[39]. These potentials rely on the additive nature for a multi atomic

system. Since the interactions are not generally additive, the pair potentials

are unable to perform as the number of atoms increases. For multi atomic

systems, many pair potentials were introduced as Gupta potential[40],

Embedded atom method[41, 42], Murrell Mottram potential[43], Finnis-

Sinclair potential[44], force fields[45, 46, 47], reaxFF[48, 49] among many

others. All these empirical potentials have a rigid mathematical modeling

of the atomic interactions which may work for a few systems only. To over-

come the modeling of atomic interactions, ML techniques are employed for

predictions of energy and forces.

As discussed in previous section, ML techniques do not require a

rigid physical connection between the input and output. They learn the
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data and extract the patterns by which the atoms interact in a molecular

system. Overall, there are four elements that comprises an ML technique

for construction of interatomic potential(Fig. 1.1).

• Generate an input dataset consisting of different atomic arrange-

ments.

• Extract the features from the input dataset in terms of local atomic

environments, commonly called as descriptors.

• Feed the descriptors into a pattern recognition/classification “ma-

chine”.

• Train the machine till the parameters are finely tuned with respect

to the atomic system.

Figure 1.1. An overview of ML technique

The input dataset for ML technique should consists of all kinds of atomic

environments that are feasible in actual practice. The structures can be ob-

tained using different simulations like molecular dynamics (MD) and Monte

Carlo using either empirical potential or ab initio potential as the inter-

atomic potential. The following step is to extract the features of the dataset

such that the “machine” is able to recognize minute details about the bond-

ing and interactions in the atomic system. Fundamentally, a descriptor

should be unique for each environment. It should be rotationally, transla-

tionally and permutationally invariant. There are many descriptors which

are listed in the literature and can describe the atomic systems. For exam-

ple, Behler’s symmetric function[29, 50], SOAP kernel[51, 52], coulomb

matrix[53], fingerprints[54], SNAP[55], embeddings[56], encoder[57, 58],

wavelets[59, 60] can efficiently map the atomic environments. After map-

ping the input dataset to descriptors, a fitting technique is chosen. The
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widely used fitting techniques can be broadly classified into NN and kernel

based methods.

The architecture of NN based methods use multiple layers of neurons,

and transfer the information from one layer to another by using weights.

The weights capture the hidden information from the descriptors and fit

them according to the desired output. The interatomic potential using NN

based methods are usually referred to as NN potential. In the last decade,

a lot of NN potentials have been developed using different architecture

and for different molecular systems[30, 33, 61, 62, 63]. The variety of NN

used are feed forward NN[29, 64], deep tensor NN[37], SchNet[65], graph

NN[66], graph convolutional network[67], message passing NN[68] among

many others. Kernel based methods[69, 70] uses a similarity function to

compare any two data points in the input data. There are a lot of kernel

based methods like support vector machines[71, 72], ridge regression, gaus-

sian process ridge regression[51, 52], principal component analysis among

others.

After the data is sent into the “machine”, the learning/tuning of the

parameters is achieved using different optimization algorithms like limited

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)[73], Kalman Fil-

ter (KF)[74, 75, 76], Levenberg Marquardt (LEMA) algorithm[77], back

propagation[78], gradient descent[79], Adam optimizer[80]. The optimiza-

tion algorithm minimises the error between the actual and the predicted

values by modifying the network weights. The optimization is done iter-

ation wise, and the learning is stopped with the decrease in the error of

prediction. The optimized parameters are then applied for predictions for

a wide range of dataset.

1.3 Higher order invariants

For capturing the effect of atomic movements in crystals and liquids,

Steinhardt[81, 82] proposed the use of bond orientational order parame-

ters. The bond order parameters are second order(Q) and third order(W)
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invariants of spherical harmonics. For an atom i in an N atom molecule,

the higher order invariants- Q and W are defined for a particular frequency

l of spherical harmonics as

Qi
l =

(
4π

2l + 1

l∑
m=−l

Qi∗
lmQ

i
lm

) 1
2

(1.1)

W i
l =

l∑
m1,m2,m3=−l

 l l l

m1 m2 m3

Qi
lm1
Qi
lm2
Qi
lm3

(1.2)

where, Qi
lm is calculated using spherical harmonics where rij is length vector

pointing from atom i to atom j.

Qi
lm =

1

N

N∑
i 6=j

Y j
lm(r̂ij) (1.3)

These higher order invariants have been applied in various applications like

phase transitions[83, 84], free energy of clusters[85, 86] and in interatomic

potentials[87]. The property of being rotationally and translationally in-

variant makes them highly efficient for describing atomic environments.

The power spectrum[52] and bispectrum[88] coefficients forms the set, of

which the Q and W are subset. These coefficients are discussed in next

chapter. These coefficients have efficiently been applied to as atomic envi-

ronment descriptors in the past few years. In this work, power spectrum

and bispectrum coefficients have been modified and applied for construct-

ing the PES of metallic Nps.

1.4 Metal Nps

Nps are the particles in the size range of 1 nm to 100 nm. They have unique

properties and are extremely efficient in performing a lot of applications.

Metallic Nps are the Nps of metals like gold, copper, silver, platinum,

rhodium, sodium. In 5th century B.C. when the Lycurgus cup was created

using colloidal gold, the word “nano” was not known[89]. In 16th century,
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glazes composed of silver and copper Nps were reported. The glass makers

in ancient times produced various colored stains using tiny amounts of silver

and gold. In 1676, a drinkable gold solution was used to cure diseases. The

solution contained gold which was not visible to human eyes. In 1685, a

recipe for synthesizing coloring pigments was given by Cassius, known as

Purple of Cassius[90]. In 1794, dying of silk was done with colloidal gold

solution. It was in 1857, when Faraday discovered the Nps of metal in

a solution[91]. This was supported by Mie in 1908[92], who showed the

optical properties of metal Np. Metal nanoclusters are the clusters where

the number of atoms that form a stable structure are in range of 2 to ∼100

atoms, leading to a size below ∼1 nm.

The Nps have evoked considerable attention due to quantum size ef-

fects and surface to volume ratio, that leads to a tremendous amount of

applications in various fields. The properties showed by metal nanoclus-

ters are a function of number of atoms and their structural arrangement.

A slight change in the structural morphology leads to modification in the

property of interest. For clusters having multiple species, the composition

of the atomic species also has an impact on the properties of the nanoclus-

ter.

At the bulk level the atomic properties overlap with each other mak-

ing the energy levels continuous. The valence electrons act like a free

electron gas as the number of electrons are huge. As we go to nanoclusters,

the atoms do not overlap with each other and thus the energy levels be-

comes discrete. The valence electrons do not behave as a free electron gas

as the electrons are countable at such small size and have an impact on the

properties. The clusters thus exhibits a quantum size effect leading to a

gap in HOMO-LUMO. This gap results in tunable optical properties of the

nanoclusters. As the size decreases from bulk to atomic level, the number

of surface atoms increases with comparison to the atoms present in the

core. This increase in the surface to volume ratio increases the reactivity

of the clusters[93]. The magnetic moment increases due to large number

of surface atoms. The low coordination of the surface atoms makes them

9



catalytically active.

All the above said properties motivates to study the metal nanoclus-

ters. In this work, the focus of study is on gold and its alloys nan-

oclusters. Gold nanoclusters exhibits an added effect called relativistic

effects[94, 95, 96, 97, 98]. The electrons in the heavy elements move at a

higher speed causing relativistic effects which leads to alteration of prop-

erties.

1.4.1 Gold nanoclusters

Among metals, gold is known as an inert and a noble metal. This is at-

tributed to its ability to stay anti-corrosive and non-reactive in the bulk

state. One of the reason for inertness is relativistic effects, which stabilizes

the valence electron (6s1) and makes it difficult to react. As we go from bulk

to nanometer level, gold becomes highly reactive and is found to have ap-

plications in catalysis[99, 100, 101, 102, 103, 104, 105], biosciences[106, 107]

and radiosensitizer[108]. The changes occur at the nanometer level due to

surface to volume ratio, more active sites and different electronic structure.

In surface reactions like catalysis, the defects on the surface of the gold

Nps becomes the active sites for reaction to take place. Among Nps, it is

observed that, there is a decrease of catalytic activity with a decrease in

the percentage of surface atoms. Gold nanoclusters are known to exhibit a

wide variety of structures[31, 109, 110, 111, 112, 113] like planar(Au11-

Au13)[114], cages(Au16-Au18)[115], pyramidal(Au20)[116], tubular(Au21-

Au24)[117] and amorphous core-shell(>Au33)[31, 112, 113, 118].

For establishing a proper structure dependent physical and chem-

ical activity, it is important to study the structure evolution and ther-

modynamic stability of these clusters. It has been observed that cat-

alytic activities in gold Nps becomes inactive for sizes greater than 5

nm.[98, 102, 105, 119, 120] It is very important to study the catalytic

activity of gold Nps below 5 nm using electronic structure methods.

Metallic Nps belonging to the magic number series[121, 122] with
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atoms – 13(∼ 0.6 nm), 55(∼ 1.2 nm), 147(∼ 1.8 nm), 309(∼ 2.2 nm), 561(∼

2.7 nm) and 923(∼ 3.3 nm) are expected to have a symmetric structure

(like icosahedron (Ih), decahedron (Dh), octahedron(Oh)). They are called

“magic” because of a compact arrangement of atoms leading to a stable

symmetric structure. They are also known to be more stable and possess

different reactivities[119, 120, 123, 124, 125, 126] than clusters of other

sizes. Although, gold is a metal, many studies have shown that, the magic

numbers for gold Nps may not exhibit symmetric structure as the lowest

energy structure. Among these, Au13 and Au55 have been proved to have

a non-symmetric stable structures in the previous years[98, 111, 127, 128,

129, 130, 131, 132, 133] and recently Au147 has been proved to have an

amorphous structure[134, 135, 136].

Due to large variations in the structures and chemical reactivities,

it is important to study the structural dynamics of these clusters. This is

possible by exploring the PES and getting the low energy stable structures.

1.5 Objectives of the study

In order to study metallic nanoclusters we have to run Monte Carlo or

MD simulations. This requires the calculation of energy and forces by

density functional theory (DFT) for all the structures as the simulation is

processed. For larger systems (>100 atoms), it is almost impossible to carry

out simulations using DFT as this will be highly computationally expensive.

On the other hand, empirical potentials like the Gupta potential, Morse

potential, Murrell–Motram potential, EAM, and MEAM have been time

and again used for the prediction of energy and forces. It has been observed

that for heavy atomic systems, like gold and platinum, relativistic effects

play an important role and therefore the empirical potentials are unable

to make an accurate prediction of the structure and properties of these

systems. So, we have to construct an interatomic potential having an

accuracy of DFT and a speed of empirical potentials using ML. ANN is one

of the robust platform to construct PES of complex molecular systems. To
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get a deeper insight into the structural dynamics of metallic nanoclusters,

especially gold and its nanoalloys, different strategies are proposed in this

thesis work. The computational burden for calculating the properties of

large size Nps from DFT is very high. In this work, ANN is applied to

reduce the computational cost for large size Nps using different atomic

environment descriptors.

1.6 Framework of the Thesis

The thesis is arranged in seven chapters. The current chapter gives a

brief history of ML techniques, metallic clusters, interatomic potentials

and atomic environment descriptors.

Chapter 2: It provides the details of theoretical foundations laid in this

work. The developments done in the existing theoretical models is elabo-

rated. The basic framework of constructing an ANN potential is discussed.

Chapter 3: In this chapter, PES of gold nanoclusters up to a size of ∼

1.8 nm (Au147) is constructed. The radial functions and modified Power

Spectrum coefficients are used to describe the atomic environments. An

elaborated study of structural dynamics of Au147 is performed. A compar-

ative analysis between DFT and ANN results is done.

Chapter 4: This chapter provides the details of construction of PES us-

ing filtered bispectrum coefficients as atomic environment descriptors. The

model is applied to gold nanoclusters and a comparison is done between

Power Spectrum coefficients and Bispectrum coefficients driven results.

Chapter 5: It presents the demonstration of the technique to model the

interatomic potentials of alloys using ANN. The proposed strategy is ap-

plied to fit the PES of (AgAu)55-(AgAu)147 nanoalloys and Au13(SH)6-

Au38(SH)24 nanoclusters. The transferable and computationally cheap

strategy can be applied to any number of chemical species system.

Chapter 6: This chapter contains the structural evolution of gold nan-

oclusters from a few atoms to nanometer size range. A nucleation of a

symmetric core is identified with an evolution up to ∼ 3.3nm. A new set of
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magic numbers is identified for gold and a probabilistic study is performed

to compare experimentally and theoretically obtained results.

Chapter 7: This chapter gives a conclusion and the future scope of the

work done in thesis.
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Chapter 2

Theoretical foundation and

developments

2.1 Electronic structure calculations

The basic foundation of all the entities around us is an atom. An atom

is made of electrons, protons and neutrons. The properties of any chem-

ical system is thus governed by the electronic interactions. An electron

is represented accurately by quantum mechanics. The state of a system

is represented by wave function. Solutions to the SWE are the possible

energies and wavefunctions of a system. From a wavefunction, one may

calculate the properties of a system. The time independent SWE is given

as

Ĥψ(r) = Eψ(r) (2.1)

The wave function ψ is dependent on electronic and nuclei positions in the

space. According to Born-Oppenheimer approximation[137], the electronic

and nuclei time scales are different and thus the wave function can be

separated into ψe and ψn, respectively. The Hamiltonian operator consists

of kinetic energy and potential energy contributions to the total energy.

For a multi-electron system (ne) with nn nuclei, SWE is written as

Heψe = Eeψe (2.2)

(−1

2

ne∑
i=1

∇2
i +

∑
i<j

1

|ri − rj|
−

ne∑
i=1

nn∑
iN=1

ZiN
riN − ri

)ψe = Eψe (2.3)
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The exact solution of SWE is not possible for multi-electron system due

to the inter electronic repulsion term. It is impossible to solve for an op-

timized wave function that will give an accurate ground state energy and

other properties. In order to get an accurate solution, the wave function

has to be dependent on all the electronic coordinates at once, which is

not possible to formulate. Since, electrons are fermions, they should fol-

low anti symmetry rule for exchange. Slater determinant[138] takes anti

symmetry in consideration and is a better way to approximate wave func-

tions. Hartree-Fock(HF) theory provides a solution to this problem by

using Slater determinant orbitals to calculate the ground state properties.

The HF equation for i = 1,2,..,Nelectron modifies to

Fiφi = εiφi (2.4)

where, φ are spatial orbitals and Fi is the Fock operator of ith electron

given by

Fi = −1

2
∇2
i −

Z

ri
+

Nelectron∑
j

(Jj(i)−Kj(i)) (2.5)

Jj is the coulomb operator and Kj is the exchange operator. The HF

theory has spin correlation taken care of by Slater orbitals, but coulomb

correlation is missing. The shortcomings of HF theory is that, it cannot

explain electron correlation. Moreover, using single Slater determinant it is

difficult to explain the bond forming and the bond breaking in molecules.

Hohenberg-Kohn(HK) proposed DFT using electron density as the funda-

mental quantity. Electron density is a simple quantity that depends only

on coordinates- x, y, z rather than a complicated wave function that de-

pends on all the electronic coordinates. The DFT is discussed in brief in

the next section. In this work, all the electronic structure calculations are

performed using DFT.
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2.1.1 DFT

DFT bypasses the calculation of all the ground state wave n-electron func-

tions. It calculates the electronic energy from the ground state electron

density(ρ(r)). According to HK theorem[139], the ground state of a multi-

electron system is a unique functional of the electron density ρ(r). The

electron density is calculated from the wave functions as the integral over

product of all the n electron wave function. On integrating the electron

density, we can get the total number of electrons.

Nelectron =

∫
ρ(r)dr (2.6)

ρ(r) = Nelectron

∫
...

∫
ψ∗(r2, ...rNelectron)ψ(r2, ...rN)dr2...drNelectron (2.7)

The energy functional is defined as[140]

E[ρ(r)] =

∫
Vext(r)ρ(r)dr + F [ρ(r)] (2.8)

Vext(r)dr is the contribution from Coulomb interactions of electrons with

the nuclei. The kinetic energy and inter-electronic interactions are repre-

sented by F [ρ(r)]. Variational method gives the ground state energy, which

corresponds to a ground state density. Due to the constraint of number of

electrons on the electron density, Lagrange multiplier(−ε) is introduced for

minimizing the energy.

d

dρ(r)

[
E[ρ(r)]− ε

∫
ρ(r)dr

]
= 0 (2.9)

Since, HK theorem was proposed for a system of interacting electrons, the

total energy approximation was not that accurate. Kohn-Sham(KS) pro-

posed a solution for accurate approximation of energy of the electrons.

They approximated the functional F [ρ(r)] by taking contributions from

kinetic energy, electron-electron coulomb interaction and exchange corre-

lation. The kinetic energy term is the energy of a fictitious system having

non-interacting electrons having the density of interacting electrons. The
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exchange correlation energy functional EXC [ρ(r)] contains the contribution

due to exchange-correlation and the difference between the real kinetic en-

ergy and the fictitious system kinetic energy. The KS equation for energy

can be written as

E[ρ(r)] =

Nelectron∑
i=1

∫
ψi(r)

(
−∇

2

2

)
ψi(r)dr +

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2+

EXC [ρ(r)]−
Nnucleus∑
v=1

∫
Zv

|ρ(r)−Rv|
ρ(r)dr (2.10)

The non interacting one electron orbitals are squared and summed for cal-

culating the KS density.

ρ(r) =

Nelectron∑
i=1

|ψi(r)|2 (2.11)

The simplified form of KS equation is written as

[
−∇

2
1

2
+ Veffective(r1)

]
ψi(r1) = εiψi(r1) (2.12)

Veffective =

[
−

(
Nnucleus∑
v=1

Zv
r1v

)
+

∫
ρ(r2)

r12
dr2 +

(
dEXC [ρ(r1)]

dρ(r1)

)]
(2.13)

Details of the DFT calculations

In this work, the DFT calculations are performed in Vienna Ab initio

simulation package[141, 142, 143, 144](VASP). The electron orbitals are

represented with a plane wave basis set. The full electron wave func-

tion is reduced by using projector augmented wave method (PAW)[145].

It treats core electrons and nucleus as a single entity and the valence

electrons separately. The valence electrons are given by a set of pseudo

wave functions having fewer nodes. The exchange correlation functional

is approximated by generalized gradient approximation through Perdew-

Burke-Ernzerhof (PBE) functional[146, 147]. The PBE functional gives

accurate approximations for metallic clusters. Many studies have been
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reported that validates the results obtained using PBE functional with

experiments[115, 148, 149, 150, 151, 152]. The atomic systems considered

in this work are non periodic, therefore, a gamma k point mesh of 1×1×1

is used. The cut off energy used for the clusters is 260 eV, and the gradient

convergence is 10−4. For a non periodic system like isolated atomic clusters,

the cluster is kept in centre of a periodic cell. The length of the periodic

cell should be enough for the cluster to not react between each other as

shown in Fig. 2.1. The cubic box length for different size of clusters is kept

by adding ∼ 8 Å to the diameter of the cluster. This allows for a negligible

interaction among molecules in neighboring cells.

Figure 2.1. A periodic cell for a non-periodic isolated cluster

2.2 Empirical Potentials

Empirical potentials are mathematical functions that approximate the po-

tential energy of a N-atom system. These potentials vary from taking two-

body interactions to multi-body expansion terms. The parameters corre-

sponding to different systems are fitted for a dataset, which is then applied

for calculations. These potentials are extremely fast when compared to

electronic structure calculations and therefore, the aim of this study is to

get an empirical potential having an accuracy of DFT, at a much cheaper

computational burden. The empirical potentials used and constructed in

this work are discussed below.
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Table 2.1. Parameters of Gupta potential for Ag and Au

A (eV) p r0 (Å) ζ (eV) q
Ag-Ag 0.1028 10.928 2.892 1.178 3.139
Au-Au 0.2061 10.229 2.884 1.79 4.036

2.2.1 Gupta Potential

Gupta potential[40, 153] is a many body potential for metallic clusters.

Cleri and Rosato (1993) have calculated the parameters of Cu, Au, Pt, Ni,

Ag and Pd using second-moment approximation of tight binding Hamil-

tonian. The potential is expressed as contribution from repulsive (Er(h))

and attractive pair terms (Ea(h)).

E =
1

2

N∑
h=1

Er(h)− Ea(h) (2.14)

Er(h) =
N∑
h6=k

Ahke
−phk

(
rhk
r0
hk

−1
)

(2.15)

Ea(h) =

(
N∑
h6=k

ζ2hke
−2qhk

(
rhk
r0
hk

−1
)) 1

2

(2.16)

where, N is the total number of atoms in the structure and rhk is the bond

between an atom ‘h’ and ‘k’. phk is dependent on the atomic species, r0hk is

the minimum distance with the first neighbor, ζhk is a hopping integral and

qhk reflects the dependence on interatomic distances. All these parameters

(r0hk, phk, Ahk, ζhk and qhk) are fitted according to the experimental data of

lattice parameters, cohesive energies and elastic constants for a reference

crystal structure at 0K. In this work, Gupta potential is used for generating

an initial dataset for the fitting of PES of Ag and Au. The parameters used

are given in Table 2.1[153].

20



2.2.2 NN potential

An interesting approach to get an interatomic potential is by learning the

patterns of bonding, instead of providing the contribution to the energy

exclusively. This is achieved by ML techniques which have a mathematical

form of predicting energy. The energy is formulated to be dependent on

the atomic environments. The machine is trained in such a way that the

patterns in which energy is related to the atomic environments is captured.

The ML techniques have proven to be highly robust for fitting the PES of

many atomic systems in the last decade. One such ML technique is NN,

which is a neuron based model. In NN, the energy is predicted from the

atomic environments using a network of neurons. It is inspired from the

biological model of neurons, where the signals are transmitted from one

point to another, resulting in brain activity as an output. One of the pros

of using NN is that there are lot of parameters on which the energy can be

modeled and thus the amount of complexity in the energy predictions can

be taken care of easily. NN is used for the problems where the relationship

between the entities is not known. By adjusting different parameters of the

network, the relationship is extracted. The input and output is known, but

the link between the two is explored using NN. The number of parameters

on which an output depends can vary from one to many, according to

the complexity of the problem. To develop a basic understanding about

architecture of NN, few examples are discussed below[154].

A single neuron NN An example of a single neuron network is

converting mass from Kilo to Pounds. The relationship between Kilo and

Pounds is linear and that’s why only a single neuron is required. In Fig.

2.2, we have an input of 10 Kg and an output of 22.05 Pounds. In order

to find the relation between the two, a guess weight of 5 is applied. The

output obtained is 50, which gives an error of 27.95. To reduce the error, a

smaller value of 2 is taken. The error obtained is 2.05, which is considerably

lower than the previous weight error. To further reduce the error, a number

2.2 is chosen. Now, the error is negligible, and it can be said that network
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is fitted well to convert the mass in Kg to that in Pounds. The error can

be made zero, if the weight is taken 2.205. This shows that a network is

fitted with a weight of 2.205 for converting Kg to Pounds.

Figure 2.2. Fitting the single neuron network

A double neuron NN There are certain problems which cannot

be solved using one neuron and thus, two neurons are required to make a

relationship between input and output. For example, if we have to relate

a human height and weight with the nutritional status, one neuron won’t

be able to draw a linear relationship. Now, two neurons are required- one

for mapping height to nutritional status and one for mapping weight to

nutritional status. Also, there has to be a link between the impact they

each have on the relationship. As shown in Fig. 2.3, the two inputs-

height and weight are related to the nutritional status by two neurons.

The weights(w’s) of each link carries the required information, leading to

a consolidated output as the nutritional status.

A double layer NN The above problems are solvable by using a

single layer of neurons between input and output. The purpose of using
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Figure 2.3. Fitting the double neuron network

NN is to solve much complex problems. For example, classifying a data

in which the points cannot be classified by a single line as shown in Fig.

2.4. In this type of problem, the first layer of neurons helps to detect the

basic difference between the two types of data points by drawing a line.

The output from the first layer is not enough to make an accurate decision

and thus, a second layer of neurons is applied. This layer captures the

smoothness of the edges by which the data can be differentiated. In the

output, it can be observed that one type of data is easily classified from

the other type of data.

Figure 2.4. The double layer network
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Biological NN The human brain consists of ∼ 80-90 billion neurons

for transmitting the signals throughout the body. The basic structure of

a neuron consists of dendrites, axon and terminals as shown in Fig. 2.5.

A neuron receives the input signals from dendrites, which is then passed

through axon till the terminals. These terminals are further connected to

100’s of neurons, where this signal acts as the input. There are multiple

layers of neurons through which a signal passes till an output is obtained.

The neurons process the input signal and transmits it when a threshold is

crossed. The input signal should have a high strength to trigger a neuron

and pass the signal to another neurons. The need of so many neurons is to

efficiently differentiate between the functions of different parts of human

body along with the different sensations in the body. The artificial NN is

inspired from biological NN to send the signals from input functions to an

output via artificial neurons[5, 155, 156].

Figure 2.5. The structure of a neuron, Image courtesy: Wikipedia

The two characteristics of biological NN which are utilized in artificial

NN are

• Taking multiple layers in the NN with large number of neurons in

each layer.

• Taking a function that shoots up as the input value crosses a threshold

thus acting as an artificial neuron.

An activation function like sigmoid function or hyperbolic tangent serves

the purpose of processing an input to an output by keeping a threshold
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into account[157]. For making the features interact among each other, two

layers of neurons between input and output serves the purpose of solving

complex non-linear problems using NN. Customizing the number of neurons

depends on the classification of the input data.

Why NN to fit the PES of nanoclusters? The energy of a

cluster depends upon the positions of atoms. We can map the individual

atomic positions to the energy using a single layer of neurons. This type of

model will give optimized parameters that can give the total energy. Such

a model fails considerably if a structure is translated or rotated in the space

leading to a change in atomic positions. The atomic positions should be

replaced by a quantity which is rotationally and translationally invariant.

The interatomic distance fits into this quantity and acts as a better input.

As the interatomic distance of all the atoms is given as an input to NN,

a fitting can be done using a single layer of neurons. The drawback of

using interatomic distance is that a relative arrangement of atoms with

respect to each other is not captured. To overcome this, for an atom, all

the interatomic distances around it within a cut off distance is summed to

give a density. This density is weighed with a gaussian function for taking

the effect of interactions with a decrease in the interatomic distance. Since,

the inputs are a summed function, they are separated by a hyperplane by

the first layer of neurons. A second layer of neurons is now added to get the

accurate shape of the atomic density. Therefore, in this work, a two hidden

layer NN proposed by Behler and Parrinello[29] is applied. As shown in

Fig. 2.6, the atomic environments are mapped to the descriptors. The

information carried by them has to be processed in such a way that an

accurate energy is predicted and the network learns the bonding patterns.

For using NN, it is not relevant to know the functional form of the output

dependence on the input functions of a system. The basic task consists of

training a NN, by varying the biases of neurons and weights of connecting

neurons so as to reproduce as accurately as possible the known energies and

forces of a large number of atomic environments. The training should give

a minimum error between the expected output and the predicted output.
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Figure 2.6. The conversion of structural information into the descriptors

As the training proceeds, NN captures the hidden patterns existing from

input functions to yield the output. The NN architecture consists of input

functions, hidden layers, bias weights and output. For a three atom system,

a detailed NN architecture is shown in Fig. 2.7. In Fig. 2.7, for each atom

the NN consists of 59 input functions, 5 neurons in hidden layer 1, 5 neurons

in hidden layer 2 and one output. The outputs of the three atoms are

summed to give the total energy of the molecule. The bias weights are given

to each neuron of each hidden layer, respectively. All the components of the

network are connected with each other through weights. In order to get the

accurate predictions, the network is trained i.e. the weights are optimized

till a convergence is achieved. In this work, the NN is applied to fit the PES

of gold Nps and alloys of gold Nps based on a dataset consisting of DFT

calculations. In 2007, Behler and Parrinello[29] proposed an atomic NN for

fitting the PES of a system by mapping atomic environments to the total

energy. Spherical harmonics based atomic environment descriptors[134] are

used in this study to fit the energy of a cluster. The energy for an atom i

is derived from the input functions P by following equation.

Ei
atom =

30∑
j=1

w23
j1 .fj

(
wbj +

30∑
k=1

w12
kj .fk

(
wbk +

input∑
n=1

w01
nk.Pin

))
(2.17)
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Figure 2.7. Feed forward NN architecture

Here, k and j are hidden layer 1 and 2, respectively. After a lot of trials

with different number of neurons, the hidden layer neurons were kept 30

in each layer. This shows that 30 classifiers are required to separate the

atomic environments. w01
nk, w

12
kj and w23

j1 are the weights connecting neurons

of input functions P to neurons of layer 1, neurons of layer 1 to neurons

of layer 2 and neurons of layer 2 to single neuron of output, respectively.

wbk and wbj are the weights for separately biasing layers k and j. fk and

fj are the sigmoid function applied at the output of hidden layer 1 and 2,

respectively for a non-linear dependence.

fk =
1

1 + e−(wbk+
∑input
n=1 w01

nk.Pin)
(2.18)

fj =
1

1 + e−(wbj+
∑30
k=1 w

12
kj .fk(wbk+

∑input
n=1 w01

nk.Pin))
(2.19)

The output obtained from DFT is the total energy of the system, therefore

the total energy from NN is calculated as

ENN
total =

atoms∑
i=1

Ei
atom (2.20)

In order to explore the PES, accurate atomic forces are required and there-
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fore from ENN
total, the force for an atom i is calculated as

F i
R = −∂E

NN
total

∂Ri

= −
atoms∑
j=1

∂Ej
∂Ri

= −
atoms∑
j=1

input∑
n=1

∂Ej
∂Pj,n

∂Pj,n
∂Ri

(2.21)

where R ∈ {x,y,z} of atom ′i′. The sensitivity in force predictions is high

and therefore, along with energy, the forces are also fitted through the

optimization of weights. The accuracy of fitting is measured by root mean

square (RMS) error in energy and forces averaged over all the clusters in

the testing set.

2.3 Optimization of NN weights and

simultaneous fitting of energy and force

The NN is trained by optimizing the weights with respect to a decrease in

the error between the predicted and the observed output. There are lot of

optimization algorithms like back propagation[78], LEMA algorithm[77],

Quasi Newton(QN) method[158], L-BFGS algorithm[73] and KF[74, 75].

In this work global extended KF is used as the weights optimization tool.

The edge of KF over other algorithms is that KF is a very fast and ro-

bust optimization algorithm. The minimum amount of dataset required

for PES fitting is around 10,000. The algorithms such as LEMA, L-BFGS

computes the error for the entire dataset at once and optimizes it. Such an

optimization takes a lot of time to converge and chances of lying in a local

minimum is higher. On the other hand, KF optimizes the error for each

data point and therefore the optimization is faster. The KF optimization

is dependent on a error covariance matrix(P), hessian matrix(H) and error

vector(δ). A stepwise procedure for weights optimization using KF is given

as follows:

1. Initialize the NN weights as random numbers.

2. Set process noise (Q) and measurement noise covariance (R) and
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initialize error covariance matrix P

Note: In this work, Q = 0.000001, R = 0.2 and Pinit = 50

3. Calculate the energy and forces for a data point.

4. Calculate the error vector δ = [Ecluster
DFT −Ecluster

NN ,FDFT
x −FNN

x ,FDFT
y −

FNN
y ,FDFT

z −FNN
z ] Note: The weights are optimized with respect to

both energy and forces(3N components)

5. The Hessian matrix is calculated as derivative of error vector with

respect to all the NN weights.

6. The KF equations are

λk = λcons ∗ λinit + (1− λ0) (2.22)

• In this work, λcons =0.97 and λinit = 0.999. λinit is updated iteratively

as

λinit = λk (2.23)

Ak = (λ−1k ∗H ∗ P ∗H
T ) +R (2.24)

Kg = λ−1k ∗ (P ∗HT ∗ A−1k ) (2.25)

• The error covariance matrix P is updated as iteration progresses

Pupdate = (λ−1k ∗ (P −Kg ∗H ∗ P )) +Q (2.26)

P = Pupdate (2.27)

• The weights are updated as

wnew = w0 +Kg ∗ δ (2.28)

Simultaneous fitting of energy and forces The forces are the

negative gradient of energy with respect to the Cartesian coordinates. One

of the approximation is to fit the energy using NN and predict forces using

the derivative of energy. This is a traditional way to approximate atomic
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forces. This requires the calculation of derivative of energy with respect to

weights(H matrix in KF). Such an approximation leads to an inaccurate

prediction for systems having a complex bonding pattern like gold. Forces

can be accurately predicted if they are also fitted using NN in an indirect

way. The approach is to initially predict forces using the gradient of the en-

ergy obtained from NN. The error is then calculated between the predicted

forces and the DFT forces. This error is a 3× atoms(3N) dimensional vec-

tor. The error in energy and the 3N dimensional force error is then given to

KF for optimizing the weights[76]. Due to this, an additional calculation

of the H matrix for forces has to be performed. In this way, the energy

and forces are simultaneously fitted using NN with a very high accuracy.

Also, such a combined fitting leads to a lesser requirement of dataset as

the atomic forces take care of a broad set of clusters in a size range.

2.4 Atomic environment descriptors

As the name suggests, the atomic environment descriptors represents the

neighborhood of an atom. These descriptors are usually in terms of ra-

dial distribution function and angular functions. The descriptors should

be rotationally, translationally and permutationally(in same species clus-

ters) invariant. The mapping of the environments through such desciptors

should be unique for different atomic environments. Such functions are

given as an input to the NN for predictions of energy and forces. The

number of descriptors required to map an environment should be enough

to make a complete representation. If the number of descriptors are insuf-

ficient, it may lead to a sparse representation. Whereas, if the number of

descriptors are large, the representation becomes redundant. So, a basic

idea of the atomic system and a lot of trials lead to an efficient selection

of the descriptors. In the NN, the total number of descriptors for all the

atoms should be same in order to maintain proper dimensions throughout

the construction of NN potential. In this work, radial functions and higher

order invariants - Power spectrum[52] and Bispectrum[88] has been used
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for depicting the atomic environments.

2.4.1 Radial distribution functions

Radial distribution functions (Rf ) are two body functions, describing the

variation of atoms with respect to interatomic distance. In this work, Rf

for an atom i is given as sum of Gaussian functions with different falling

rate η(Eq. 2.29) with respect to rij, the interatomic distance between

atom i and j[50]. To probe different radii up to cut-off region, the val-

ues are chosen by plotting the radial function with respect to interatomic

distance. The space till the cut-off region has to be covered properly and

therefore, 9 functions are required corresponding to different falling zones

of the Gaussian function. Each interatomic interaction is made smooth and

slowly falling using η values. It helps in removing any artifacts when an

atom enters or leaves the cut-off region. As shown in Fig. 2.8, a smooth

decrease can be seen at different η values, till the cut off length of 8Å. For

finalizing the number of parameters, a trial and error method is applied.

Using different number of parameters, the NN fitting is performed. The

magnitude of the error obtained for prediction of energy and forces helps

to choose the required number of parameters. The different values of the

falling rate η are given in Table 2.2. The contribution for an atomic energy

is restricted by using a cut-off function fc(rij). As mentioned above, the cut

off radius(rc) of 8 Å is kept in order to take all the contributions possible.

Ri
f =

atoms∑
i 6=j

e−ηr
2
ijfc(rij) (2.29)

fc(rij) =
1

2

[
cos

(
πrij
rc

)
+ 1

]
(2.30)

Radial distribution functions prove to be a good descriptor for getting a ra-

dial mapping of atomic positions. The radial functions do not incorporate

the effects of moving the atoms around the space (with fixed interatomic

distance). To get an angular positioning of one atom with respect to an-

other atoms, other functions are required. The angular functions depending
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Figure 2.8. The variation of radial function Ri
f with inter atomic distance rij

Table 2.2. Values of the parameter η

ζ (Å
−2

) 0.005 0.015 0.0230 0.038 0.060 0.090 0.150 0.260 0.480

on three atoms in a system are generally used to provide the missing in-

formation. The calculation of these three body angular functions become

computationally expensive with increase in the number of atoms in a sys-

tem. In this work, the three body angular functions are replaced by higher

order invariants obtained from modeling the atomic density in terms of

spherical harmonics. The higher order invariants capture the angular po-

sitions much accurately and their calculation depends on two body terms

rather than three body terms.

2.4.2 Modeling of atomic density

The neighboring atomic density (ρ) of an atom i can be described by delta

function summed over all its neighbours j[159].

ρ(r) =
∑
i 6=j

δ(r− rij) (2.31)

The density can be expanded (Eq. 2.33) in terms of spherical harmonics

(Ylm(θ, φ)) which form an orthonormal basis for the L2 functions on the

unit sphere[52].

Ylm(θ, φ) = NlmP
m
l (cos θ)eimφ (2.32)
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where, Pm
l are the associated legendre polynomials and Nlm is the normal-

isation constant given as
√

2l+1
4π

(l−m)!
(l+m)!

.

ρ(r̂) =
∑
i 6=j

δ(r̂− r̂ij) =
∞∑
l=0

l∑
m=−l

clmYlm(r̂) (2.33)

where, ρ(r̂) is the projection of the density in Eq. 2.31 on the unit sphere.

The coefficients clm in Eq. 2.33 are obtained by taking the inner product

with Ylm on both sides as

∑
i 6=j

∫ 2π

0

∫ π

0

δ(r̂− r̂ij)Y
∗
lm(r̂) sin θdθdφ =

∫ 2π

0

∫ π

0

clmYlm(r̂)Y ∗lm(r̂) sin θdθdφ

(2.34)

The spherical coordinates are r, θ and φ which are calculated for a diatomic

bond ij as

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (2.35)

θij = cos−1
zi − zj
rij

(2.36)

φij = tan−1
yi − yj
xi − xj

(2.37)

θij and φij corresponds to calculation of θ and φ for a particular rij. In

spherical coordinates the delta function modifies to

δ(r̂− r̂ij) sin θdθdφ = δ(cos θ − cos θij)δ(φ− φij) sin θdθdφ (2.38)

So, simplifying Eq. 2.34 and using
∫ 2π

0

∫ π
0
Ylm(r̂)Y ∗lm(r̂) sin θdθdφ = 1,

∑
i 6=j

∫ 2π

0

∫ π

0

Nlmδ(cos θ − cos θij)P
m
l (cos θ) sin θdθδ(φ− φij)e−imφdφ = clm

(2.39)

Solving the independent integrals of Eq. 2.39,

∫ 2π

0

δ(φ− φij)e−imφdφ = e−imφij (2.40)
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∫ π

0

δ(cos θ − cos θij)P
m
l (cos θ) sin θdθ = Pm

l (cos θij) (2.41)

Therefore, from Eq. 2.39,

clm =
∑
i 6=j

NlmPlm(cos θij)e
−imφij =

∑
i 6=j

Y ∗lm(r̂ij) (2.42)

It can be seen from Eq. 2.42 that radial information is completely lost from

the density projection i.e., rij is not directly included in the calculation

of atomic density. So, a weighting is introduced in the delta functions

expansion to provide information about the actual positions of atoms. The

modified atomic density function (ADF) is written as

ρ(r) =
∑
i 6=j

e−ξr
2
ijδ(r− rij) (2.43)

where, e−ξr
2
ij is the Gaussian weighting function. Different values of the

factor ξ helps in incorporating the effect of various distances from the

central atom. The values of ξ used in this work are given in Table 2.3.

Table 2.3. Values of the parameter ξ

ξ (Å
−2

) 0.0028 0.0040 0.0110 0.0280 0.059

Since the atomic interactions over a very long range do not have much

impact on energy, the number of neighbors of an atoms are restricted by

using a cut off function in the density distribution.

ρ(r) =
∑
i 6=j

e−ξr
2
ijfc(rij)δ(r− rij) (2.44)

The coefficients clm gets modified according to the modified ADF (Eq.

2.44). They can be calculated as shown below. Along with l and m, now the

coefficients are dependent on number of ξ parameters. These parameters
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will be represented by n and therefore, clm is now modified to cnlm.

∑
i 6=j

e−ξr
2
ijfc(rij)δ(r̂− r̂ij) =

∞∑
l=0

l∑
m=−l

cnlmYlm(r̂) (2.45)

Simplifying as the same way followed above (Eq. 2.34 to Eq. 2.42), modi-

fied cnlm are obtained as

cnlm =
∑
i 6=j

e−ξr
2
ijfc(rij)Y

∗
lm(r̂ij) (2.46)

The entire information of the ADF is contained in the spherical harmonics

coefficients cnlm. They provide the amplitude and phase of the function

at a particular frequency l and degree m. Overall, it is a signal contain-

ing the information of an atomic environment in terms of amplitude and

phase. Since spherical harmonics expansion is an infinite series therefore,

a truncation is needed at a value of l which gives accurate results i.e, a low

error in the NN weights. The maximum value of l is selected by fitting the

dataset and thus, the value of l which corresponds to the minimum error

in energy and force predictions is then finalized.

2.4.3 Power Spectrum

A rotationally and permutationally invariant descriptor can be obtained

from the coefficients cnlm in the form of power spectrum (Pnl) as given

below[52]. Power spectrum is a second order invariant descriptor. The

power spectrum gives the overall amplitude of the signal at a particular

frequency.

Pnl =
l∑

m=−l

c∗nlmcnlm (2.47)
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We introduce a normalization constant in our definition of Pnl and thus

Eq. 2.47 modifies to

Pnl =
4π

2l + 1

l∑
m=−l

c∗nlmcnlm (2.48)

In the current study, the l is varied from 0 to 9 and the total number

of n is 5. So, the total angular coefficients per atom is 50. This formu-

lation of power spectrum using cnlm is applied to single component(SC)

systems. In power spectrum, the coefficients (cnlm) are assumed to be

uncorrelated to each other and the information about the signal at each

frequency is obtained. From earlier studies[52, 134], it is shown that power

spectrum is sufficient to represent an atomic environment but still some

of the information about the function is lost[88] if the Fourier modes are

treated independently[160]. To overcome this discontinuity in represent-

ing the atomic environment by power spectrum, third order invariant-

bispectrum[88] is studied further.

In Eq. 2.21, the gradients of power spectrum for an atom i can be cal-

culated as follows. The gradient is calculated with respect to x coordinate,

which can be derived in a similar way for y and z.

dP i
nl

dxi
=

l∑
m=−l

(
dcinlm
dxi

ci∗nlm + cinlm
dci∗nlm
dxi

)
(2.49)

dcinlm
dxi

=
∑
i 6=j

(
d(e−ηr

2
ij)

dxi
Y m
l (r̂ij)fc(rij) +

dY m
l (r̂ij)

dxi
e−ηr

2
ijfc(rij) +

dfc(rij)

dxi
Y m
l (r̂ij)e

−ηr2
ij

)
(2.50)

Note: If coefficient of an atom i is differentiated with repect to coordinate

of atom j then, sum over all atoms vanish

dcinlm
dxj

=

(
d(e−ηr

2
ij)

dxj
Y m
l (r̂ij)fc(rij) +

dY m
l (r̂ij)

dxj
e−ηr

2
ijfc(rij) +

dfc(rij)

dxj
Y m
l (r̂ij)e

−ηr2
ij

)
(2.51)
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Solving the derivative terms in Eq. 2.50 →

d(e−ηr
2
ij)

dxi
= e−ηr

2
ij(−η2rij)

(
2xij
2rij

)
= −2ηe−ηr

2
ijxij (2.52)

dfc(rij)

dxi
= −0.5

(
πxij
rcrij

)
sin

πrij
rc

(2.53)

dY m
l (r̂ij)

dxi
=

dY m
l

dθ(rij)

dθ(rij)

dxi
+

dY m
l

dφ(rij)

dφ(rij)

dxi
(2.54)

The expression for Y m
l →

Y m
l (θ, φ) =

 NlmP
m
l (cos θ)e−imφ when m < 0,

(−1)mNlmP
m
l (cos θ)eimφ when m ≥ 0.

Note: In the Y m
l (θ, φ), m is always given as |m| for calculations and the

negative m is taken as a condition, Pm
l (cos θ) are associated Legendre poly-

nomials.

Nlm =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

(2.55)

We will write the derivative for m < 0, and it can be followed in a similar

way for m ≥ 0.

dY m
l

dθ(rij)
= Nlme

−imφcosecθ(l cos θPm
l (cos θ)− (l +m)Pm

l−1(cos θ)) (2.56)

Note: Pm
l−1(cos θ) becomes 0 when m > l − 1

So, for m > l − 1 Eq.2.56 reduces to

dY m
l

dθ(rij)
= Nlme

−imφcosecθ(l cos θPm
l (cos θ)) (2.57)

dY m
l

dφ(rij)
= −imNlmP

m
l (cos θ)e−imφ (2.58)
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dθ(rij)

dxi
=

zijxij

r2ij

√
x2ij + y2ij

(2.59)

dθ(rij)

dyi
=

zijyij

r2ij

√
x2ij + y2ij

(2.60)

dθ(rij)

dzi
= −

√
x2ij + y2ij

r2ij
(2.61)

dφ(rij)

dxi
= − yij

x2ij + y2ij
(2.62)

dφ(rij)

dyi
=

xij
x2ij + y2ij

(2.63)

dφ(rij)

dzi
= 0 (2.64)

Solving derivative terms in Eq. 2.51

d(e−ηr
2
ij)

dxj
= −e−ηr2

ij(−η2rij)

(
2xij
2rij

)
= 2ηe−ηr

2
ijxij (2.65)

dfc(rij)

dxj
= 0.5

(
πxij
rcrij

)
sin

πrij
rc

(2.66)

Note:
dYml
dθ(rij)

and
dYml
dφ(rij)

will remain the same.

dθ(rij)

dxj
= − zijxij

r2ij

√
x2ij + y2ij

(2.67)
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dθ(rij)

dyj
= − zijyij

r2ij

√
x2ij + y2ij

(2.68)

dθ(rij)

dzj
=

√
x2ij + y2ij

r2ij
(2.69)

dφ(rij)

dxj
=

yij
x2ij + y2ij

(2.70)

dφ(rij)

dyj
= − xij

x2ij + y2ij
(2.71)

dφ(rij)

dzj
= 0 (2.72)

2.4.4 Bispectrum

Bispectrum is the Fourier transform of triple correlation function and in-

cludes coupling of information from two frequencies (l1 and l2) as shown in

Eq. (2.73).

bll1l2 =
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗lmC
ll1l2
mm1m2

cl1m1cl2m2 (2.73)

where, C ll1l2
mm1m2

are the Clebsch Gordon coefficients and clm's are the har-

monic coefficients at a particular frequency. The signal at two frequencies

exhibits a phase coupling and thus gives new information as compared to

the information obtained from independent frequencies in power spectrum.

The non linear coupling leads to an energy transfer between different fre-

quencies and therefore makes them correlated[160]. The phase information

which is lost in power spectrum is thus taken into account in bispectrum.

The rules that are followed in construction of bispectrum are (a) l

varies from |l1 − l2| to l1 + l2, and (b) (l1 + l2 + l) should be an even
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number, since the bispectrum coefficients are invariant to reflection and

are real numbers. (l1 + l2 + l) should not be odd, since the coefficients

becomes imaginary and are not invariant to reflection[161], c) m1+m2 = m

such that Clebsch Gordon coefficients does not become zero. The value of

bispectrum coefficients changes with permutations in l1, l2 and l[55]. These

are related as

bl1,l2,l√
2l + 1

= (−1)l1
bl1,l,l2√
2l2 + 1

= (−1)l2
bl,l2,l1√
2l1 + 1

(2.74)

As number of l1 and l2 are increased, calculation of bispectrum becomes

computationally expensive due to increase in possible combinations for l1,

l2, l. After many simulations considering different l1 max and l2 max values,

it is observed that the accuracy of energy and force prediction depends on

some of the specific combinations of l1 and l2. For keeping the minimum

coefficients for describing atomic environment, an algorithm is designed

to select the frequencies at which the signals at different frequencies are

needed to be coupled. The coupling of specific frequencies is of utmost

importance as it leads to more information with less computational cal-

culations. A normalized bispectrum i.e. bicoherence[162] is calculated to

assess the frequencies that contains correlated information.

bicoh(l1, l2) =

√
b2ll1l2

Pl1 .Pl2 .Pl
(2.75)

It signifies the fraction of energy present in a signal at frequency l due to

coupling between l1 and l2. The bicoherence values lie in the interval 0−1.

A value towards 1.0 indicates high phase coupling and a value towards 0.0

indicates very weak coupling such that random phases are present between

the frequencies. To remove similar coefficients due to permutation in l1, l2,

and l, the bicoherence formula is modified as

bicoh(l1, l2)
updated =

bicoh(l1, l2)√
2l + 1

(2.76)

The bispectrum and power spectrum values for different frequencies
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are calculated. The bicoherence value for each combination of l1, l2, and l

is then estimated. The top 15 combinations which have bicoherence values

between 0.3 to 1.0 is chosen. It allows us to take the coefficients which are

sufficient to describe the complex atomic environments. Since, spherical

harmonics are used for describing the environments, therefore, each atom

will have different values of bispectrum coefficients. So, the combinations

of l1, l2 and l won’t be same for all the atoms in a cluster. In this way, each

atom has different sets of frequency coupling and calculating bicoherence

gives us the maximum information of the function. In this work, l1 and l2

are varied from 0 to 4 and l varies from |l1 − l2| to (l1 + l2). A total of

35 combinations are possible for different values of l1, l2 and l as shown in

Table 2.4. The overall algorithm is given stepwise as follows.

1. Calculate all the possible combinations of l1, l2 and l.

2. Calculate bispectrum coefficient of a particular combination.

3. Calculate power spectrum coefficients at all the possible frequencies

between |l1 − l2| and (l1 + l2).

4. Calculate bicoherence using Eq. (2.76).

5. If value of bicoherence is ≥ 0.3 then save that frequency combination

else discard it.

6. Arrange the coefficients in order of decreasing bicoherence values.

7. Take the top 15 combinations per atom . Input coefficients are fixed

for NN

2.4.5 Descriptors for Multi Component system

The modeling of atomic density for a multi component (MC) system cannot

be the same as a SC system because each element in the periodic table has

different bonding patterns which is not captured by kernel based methods.

Behler et al[30, 61] proposed to use different set of network weights for all
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Table 2.4. Possible combinations of l1, l2 and l for l1max = 4, l2max = 4

l1 l2 l l1 l2 l l1 l2 l l1 l2 l l1 l2 l
000
011
022
033
044
110
112

121 222 246 345
123 224 330 347
132 231 332 440
134 233 334 442
143 235 336 444
145 242 341 446
220 244 343 448

the elemental species in a system. This scheme is computationally effective

for a system consisting of a few chemical species. On increasing the types

of chemical species, the number of networks increases, thus increasing the

complexity of fitting. One way to overcome this situation is to differen-

tiate the chemical species at the descriptor level and use a single set of

network weights for the entire molecular system. Recently, Gastegger et

al.,[163] Artrith et al.[62] and Unke et al.[56] have proposed the weighting

of descriptor functions according to an element and fitted the energies of a

molecular dataset.

Since atomic forces are of utmost importance to run MD simulations,

a concurrent fitting of energy and forces for MC system using NN through

a single network has to be done. At first, a bond specific weighting of

atomic density and radial functions (given in equation 2.44 and 2.29) is

introduced.

ρhmod(r) =
∑
h6=k

whke
−nr2

hkδ(r− rhk)fc(rhk) (2.77)

dhmod rad =
∑
h6=k

whke
−ξr2

hkfc(rhk) (2.78)

The whk is specific for a bond (bhk) between atom h and k. This is chosen

as exp(µhk
mα

), where µhk is the reduced mass of bhk given as mh×mk
mh+mk

. mh, mk

are the molecular mass of atom h and k, respectively. mα takes the value

of the molecular mass of atom whose local environment is being calculated.

Comparing with the existing approach for SC systems, it can be deduced

as modified exponentially weighted descriptors (MEAD). The energy of the
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clusters is calculated using MEAD in the NN.

To obtain the atomic forces for the MC system, the gradient of energy

obtained from MEAD is calculated. This leads to an unnecessary scaling

of the forces as the individual weighting of bonds makes it difficult for NN

to find a global minimum (GM) in weights. This bottleneck is managed

by modeling the forces in a decoupled manner from the energy obtained

above. The initial step is to set the bond specific weighting in MEAD

to be unity. This makes the MC system to behave as SC system. A

dummy energy from the NN is obtained by using the descriptors whose

bond specific weighting is unity. These descriptors does not contain any

element specific information. To incorporate the nature of the atom in

the local environment, an element specific weighting of the gradients is

introduced. The gradient of the descriptor with respect to the coordinates

of the atoms as shown in Eq. 2.79 is weighted. This element specific

weighting embeds the fluctuations in the descriptor with slight variation in

position with respect to a particular element such that when the data will

be trained via NN, network will recognize the element specific variations

for the forces.

Fweighted
R = −

atoms∑
N=1

input∑
k=1

∂E
′
N

∂dN,k

(
wβ ×

∂dN,k
∂R

)
(2.79)

Here, E
′
N is the dummy energy obtained from descriptors with whk = 1

and dN,k are the MEAD with whk = 1. The E
′
N is termed as a dummy

energy as no element specific information is contained and the energy of

the cluster is not trained using this. wβ is chosen as the ratio of the effective

nuclear charge of the valence electrons of an element(Ze) to that of total

effective nuclear charge of all the chemical species present in the molecular

system. The proposed model is shown in a concise way in Fig. 2.9. It

consists of supplying two sets of descriptors - (i) MEAD for energy, (ii)

MEAD with whk = 1 for forces, into the NN. The first output of the model

is system energy obtained from the weights of the NN and the MEAD

descriptors. The second output is atomic forces which are obtained using
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Figure 2.9. The proposed model for concurrently fitting energy and forces of a
cluster. Q and Q’ are the descriptors for E and F ′, respectively. F ′ = Fweighted

R

and E = Ecluster. The block KF represents the global extended KF.

the same weights of the NN but different descriptors. The total scheme is

summarized as follows.

1. Calculate the MEAD using Eq. (2.77) and (2.78) of all the atoms for

fitting the energy of a cluster.

2. Calculate the descriptors (MEAD with whk = 1) and gradients of

descriptors with respect to atomic positions using
(
wβ × ∂dN,k

∂R

)
for

all the atoms for fitting the atomic forces.

3. Split the entire dataset into a training and testing set for NN.

4. The NN is then trained with different types of clusters and the weights

are validated after each iteration.

5. The training is stopped when a minimum root mean square error is

observed.
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2.5 Construction of data for any atomic

system

All the proposed descriptors- radial function, power spectrum for SC and

MC system and bispectrum are calculated using the interatomic distances.

For a MC system, along with interatomic distances, effective nuclear

charges of the chemical species and the reduced mass corresponding to

a particular bond are calculated. This makes the proposed approach to

be applicable for any atomic system. These descriptors-NN combination

can be applied to construct the PES of any molecular system. The ba-

sic ingredient of construction of PES is the dataset, which is fitted using

descriptor-ANN integrated model.

In order to fit large size clusters, an economic approach named split

technique is designed. According to the split technique, for any cluster, an

atom is chosen. Its neighbouring atoms along with that atom are cut from

the cluster to form small sized clusters. The radius of all these small clusters

is the fixed cut-off distance. Using this way, many small sized clusters

can be generated from a large atom cluster. A similarity check is run

between different small clusters to avoid any repetition of an environment.

The advantage of this approach is that the dataset can be constrained to

clusters with less than 100 atoms, but fit it up to environments of large

sized clusters. The split technique is much efficient and easier to use than

cutting the molecule in two halves. The cutting leads to structure having a

very high energy due to dangling bonds. The splitting of clusters radially

with respect to a cut-off radius reduces the presence of dangling bonds. The

input functions in NN are atomic descriptors and therefore split technique

provides a benefit in fitting the NN. To generate any dataset, following

steps should be followed:

1. Choose an initial potential - Empirical potential, Force fields or ab

initio.

2. Run Monte Carlo simulations, Basin hopping (BH), MD simulations
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using any of the above potentials.

3. Collect around 2000 clusters and optimize them for minimizing the

forces.

4. Calculate the descriptors and its gradients for the clusters and simul-

taneously calculate the energy and forces using DFT.

5. Feed the data obtained in above step to ANN and fit it using KF[74,

75]/Back propagation[78]/Conjugate gradient[79]/LEMA[77]/QN

method[158]/ L-BFGS[73] or any other optimization algorithm to op-

timize the set of NN weights.

6. For an accurate representation of PES, generate more dataset using

MD simulations (potential- NN) at different temperatures.

7. In case of big clusters (>100 atoms), split them in small atomic en-

vironments such that core and surface configurations are included in

the dataset.

8. On refining and optimizing the different clusters obtained, repeat step

4.

9. A final fitting is done using around 11000 clusters and the converged

weights can be utilized further in many applications.

2.6 Exploring the PES

After fitting the interatomic potential with a dataset, the PES of any Np

can be explored using different methods like MD simulations, Monte Carlo

simulations, BH, multicanonical basin hopping (MCBH), genetic algorithm

among others. For very large clusters, a new tool namely “searching amor-

phous structure” (SAS) is designed. This is an effective tool for narrowing

down the exploration of PES by generating structures that are near to GM.

This tool is beneficial for the systems which prefer amorphous geometries

and distorted symmetric structures.
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2.6.1 MD simulations

MD simulations have been an effective tool since 1980s for simulating a

molecular system with time[164, 165]. The equation of motion (F=ma,

a=d2x/dt2) is solved to get the evolution of the atomic system with time.

The acceleration of atoms is dependent on the positions and velocities.

These are estimated using different algorithms like Verlet, leap frog. An

MD simulation begins with an initial set of coordinates and velocity. The

acceleration is then calculated by a = F/m, where F is obtained from the

interatomic potential. In this work, the position and velocity updates with

time is estimated using velocity-verlet integration[166]. The temperature

is kept constant using Andersen thermostat[164]. These are the equations

for the position and velocity update.

~r(t+ δt) = ~r(t) + ~v(t)δt+
1

2
~a(t)δt2 (2.80)

The ~r ∈ {x,y,z}, δt is the small change in time, ~v(t) is the atomic velocity

and ~a is the acceleration. The ~a(t+ δt) is calculated using a = F/m, with

updated ~r(t+ δt). The velocities are updated as

~v(t+ δt) = ~v(t) +
1

2
(~a(t) + ~a(t+ δt))δt (2.81)

The MD runs are performed at various temperatures to explore multiple

zones of PES. The simulation time is kept according to the computational

resources and the molecular system evolution. The trajectories obtained

from MD runs are saved with respect to different temperatures and time

step. After initial 1000 structures, different structures are picked at every

100 step. These structures are then quenched to get a local minimum. This

helps in identifying a lot of local minimum structures on PES and thus an

effective exploration.
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2.6.2 Monte Carlo simulations

Monte Carlo simulations[167] generates a pool of structures based on the

energy differences. At each Monte Carlo step, the structures are modified

by randomly changing the coordinates of either one atom or multiple atoms.

The random movement (∆r) lies in a range from −∆rmax to +∆rmax. The

energy of the new structure (Enew) is calculated and compared with the

energy of the previous structure (Eold).

∆E = Enew − Eold (2.82)

If ∆E is negative, then the move is accepted and the new structure is added

to the pool. If ∆E is positive, the new structure has higher energy than

the previous structure. In such case, an acceptance criterion is applied.

The Boltzmann probability is calculated using

P = e−
∆E
kT (2.83)

A random number(ω) is generated between 0 − 1. If P is greater than ω,

then the move is accepted, else if the ω is greater than P , then the move

is rejected and the simulation is started from the previous structure again.

The approach that Monte Carlo follows is the statistical probability for

accepting or rejecting a structure. On the other hand, MD simulations

solves the Newton equation of motion and gets an ensemble average over a

period of time.

2.6.3 BH

BH[168] is a variant of Monte Carlo method where energy sampling is

done for the optimized structures. An initial structure is constructed. It is

followed by minimization of the energy using a gradient based optimization

technique. In this work, L-BFGS algorithm was used. In the next step, the

atoms are displaced randomly and the structure is minimized. To accept a

move, the Boltzmann probability is calculated using the minimized energies
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of the structure. BH helps to find the low energy regions of PES. Various

atom displacing techniques can be applied to get different regions on the

PES. BH can lead to a local minima trap if the random displacements are

not effective to take the system out of a potential energy well. To overcome

this problem, MCBH is used.

2.6.4 Multi Canonical BH

The probability with which a structure is accepted or rejected is modified in

MCBH[169, 170, 171]. The Boltzmann weight(w) is replaced by the weight

which is dependent on density of states(ρ(E)). The probability distribution

during the sampling is

P (E, T ) ∝ ρ(E)w(E) (2.84)

The weight is dependent on the density of states as w(E) ∝ 1/ρ(E). There-

fore,

P (E, T ) ∝ ρ(E)
1

ρ(E)
= constant (2.85)

This makes the exploration of the entire energy space by random displace-

ments. The density of states are estimated initially, which is then updated

as the sampling progresses. Initially, weight w is taken as e−β
(0)E. The

BH is run and an energy histogram H(1)(E) is generated from the sampled

structures. The energy histogram can be written as

H(1)(E) ∝ ρ(E)w(0)(E) (2.86)

ρ(E) ∝ H(1)(E)

w(0)(E)
(2.87)

Since, w(1)(E) = 1/ρ(E),

w(1)(E) ≈ w(0)(E)

H(1)(E)
(2.88)

These steps are performed till the last iteration(n) to obtain w(n)(E) such

that H(n+1)(E) is obtained. The overall steps of multi canonical BH is
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1. A first BH run is performed.

2. The minimum and maximum energy obtained from the run is noted.

3. The energy interval (Emax − Emin) is divided into b bins with width

(Emax − Emin)/b.

4. For each bin, the statistics are obtained and histogram is filled for all

the states.

5. For the next iteration, the entropy is calculated to give the weight(w)

for the system. This leads to a new hopping for further exploration

of PES.

2.6.5 SAS tool

Using the SAS tool, for structures having multiple layers (core and shell),

spherical structures are constructed with different number of atoms possible

in each spherical layer. Initially, the number of layers a nanocluster/Np can

possess is checked. The diameter of each layer is then fixed accordingly.

To take care of all the atomic combinations possible in a layer, the number

of atoms are varied by ±10 with respect to an expected number of atoms.

After generating different structures, optimization is carried out using NN

as the interatomic potential and L-BFGS as the optimizer. In order to

incorporate the Ih, Dh and Oh symmetry in the core, few clusters were

constructed having spherical layers over the Ih, Dh and Oh symmetric

cores.

To assess the credibility of the proposed scheme, the SAS tool was

applied for the clusters whose lowest energy structures are already identi-

fied - Au34[31, 172, 173, 174], Au42[175], Au55[98, 111, 127, 128, 131, 132],

Au58[31, 118, 176] and Au147[134, 136]. The process began with the con-

struction of 15 structures of each with different atomic arrangements. On

optimization using L-BFGS, all the structures were found to be near to

their possible GM. For Au34, three structures having 2, 3 and 4 atoms in

the core with a caged surface was obtained. For Au42, 3, 5 and a 6 atom
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core structures were obtained with an amorphous surface. For Au55, 7 and

8 atoms in the core were obtained on optimization. There was a 10 atom

core obtained for Au58 and for Au147, a range of structures were observed

with surface atoms varying from 100 to 107. The results obtained for these

clusters led to further apply SAS tool to get an insight into large sized

clusters. The SAS tool is briefly described in following steps.

1. Calculate the expected number of layers in a nanocluster/Np accord-

ing to its size.

2. Specify the diameter of each spherical layer.

3. Take a range of number of atoms in each layer (expected atoms ±

10)

4. Make spherical layers taking number of atoms and diameter into con-

sideration.

5. Merge all the spherical layers in one structure to make a spherical

structure.

6. To take care of possibility of a symmetric core :-

Take Ih, Dh, Oh geometry as core and put a spherical layer of atoms

over it.

7. Optimize the spherical structure and search for more minimas using

any of the methods like BH[168], Genetic Algorithm[177, 178], MD

simulations, MCBH[169, 170, 171] etc.
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Chapter 3

Exploring the PES of Au147

using Power spectrum

descriptors

3.1 Introduction

Gold nanoclusters have always been a subject of interest for research in

various applications like plasmonics,[179] biomedical,[179, 180] non-linear

optics,[179] catalysis[179] among others. The larger symmetry clusters,

known as magic number clusters, for gold[120] have been identified as Au13,

Au55, Au147, Au309, Au561 and Au923. These clusters tend to be more stable

and show different reactivities[119, 123] when compared to non-magic clus-

ters. The assumed geometry of these clusters is Ih which has been recently

published by Li et al..[120] In this chapter, NN potential is constructed

using power spectrum descriptors to analyze the dynamics of Au147. In the

literature, Au13 and Au55 has already been proved to have non-symmetric

structures. So, for this study Au147 is chosen to find the structural vari-

ation and preference for symmetry in these clusters. From an EXAFS

study[181, 182] on bare and supported Au147, it has been recently shown

that Au147 exhibits an Ih geometry. In this study, it is found that although

being magic, Au147 does not exhibit an Ih geometry. Also, according to

DFT, the Ih geometry lies 4 eV higher than the predicted GM structure.

The fluxional property of Au147 has also been studied using various order

parameters.
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3.2 Computational details

Descriptors The atomic environment descriptors consists of 9 radial func-

tions given by Eq. 2.29 and 50 power spectrum coefficients given by Eq.

2.48. The cnlm is given by Eq. 2.46. A maximum value of l = 10 gave the

lowest RMS error for energy and forces.

Generation of dataset Initial data for fitting is generated using

Monte Carlo simulations with Gupta potential and an initial fit is done

with NN. The MC simulations are run for different initial geometries for 1

million steps such that a variety of structures are obtained. After the first

set of weights are obtained, MD simulations are run using those weights

at different temperatures at a time step of 3 fs to obtain more refined

data for Au30 −Au147 range of nanoclusters. To reduce the computational

burden of running DFT based MD simulations for generating more data

for a large system (Au30−Au147), an initial set of NN weights are obtained.

The structures are then quenched using L-BFGS algorithm and then they

are included in the database. To make the calculations computationally

cheap, 1000 clusters of Au147 are split into small clusters. Along with the

environments, 30 Au147 clusters are taken (without splitting) in the dataset.

Overall, 10, 136 clusters are generated which contains all types of clusters

below 100 atoms. The entire dataset of 10, 136 clusters is shuffled and

divided into training set of 9050 clusters, and test set of 1086 clusters.

DFT calculations The DFT calculations are performed using

VASP.[141, 142, 143, 144] The PAW method is used to describe the core

electrons. It takes into account the relativistic effects in gold clusters. The

electron correlation is described by generalized gradient approximation us-

ing the PBE functional.[146, 147] To sample the Brillouin zone, Gamma

k-point (1× 1 × 1 ) mesh is used. The cell size for clusters below 100 atoms

is taken 20 × 20 × 20 Å3, whereas for Au147 it is kept 25 × 25 × 25 Å3.

The threshold energy is set to be 250 eV and the gradient convergence is

set as 10−4.
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Table 3.1. RMS error in energy and forces for different size of training set

Size RMS error energy(meV/atom) RMS forces error (meV/Å/atom)
1086
2172
5068
9050

10.846 143.305
7.78 124.332
5.57 85.255
5.00 84.00

3.3 Results

3.3.1 Fitting of energy and forces by NN

The fitting of radial functions and power spectrum coefficients with NN

shows a very smooth decay in the RMS error of energy and forces with each

iteration. An RMS error of 5 meV/atom for energy and 84 meV/Å/atom

for forces was obtained. The number of iterations in which the error con-

verged is 7, which shows that fitting can be done very fast using these

descriptors-NN combination. The testing and training RMS error of en-

ergy with iterations is plotted in Fig. 3.1. For measuring the sensitivity of

this prediction model with respect to the size of training set, a PES fitting

for different size of the dataset is done. The RMS error in energy and forces

with respect to size of the training set is reported in Table 3.1. With an

increase in size of the dataset, the RMS error decreases and a saturation

in the RMS error is observed after a certain size of dataset is reached.

3.3.2 Comparison of power spectrum coefficients

with other descriptors

Bartók et al.,[52] incorporated the radial information of a system in the

cnlm by taking a product of orthonormal radial functions with the spherical

harmonics in the expansion of the density. This leads to modified basis
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Figure 3.1. Decay in the RMS error of energy for training and testing dataset
with iterations

functions.

ρ(r) =
∑
i 6=j

δ(r− rij) =
∑
n

∞∑
l=0

l∑
m=−l

cnlmgn(r)Ylm(r̂) (3.1)

On solving, cnlm is obtained as

cnlm =
∑
i 6=j

gn(rij)r
2
ijY
∗
lm(r̂ij) (3.2)

Using these coefficients in the power spectrum expression and fitting them

with NN did not give convincing results. Although, the weights obtained

gave RMS error of 12 meV/atom in energy prediction and 92 meV/Å/atom

in forces prediction, they were unable to give an accurate prediction when

atoms are very far and very close to each other. Behler’s symmetric

functions[50] were also calculated for the dataset and trained using NN.

The RMS error in energy and forces for Behler’s functions was 9 meV/atom

and 112 meV/Å/atom respectively. In Table 3.2 below, the comparison

of the accuracy in predicting the energy and forces of power spectrum-

NN method, Behler’s symmetric functions[50] based method, and Bartok’s

descriptor[52] with ANN is mentioned. It can be seen that the proposed

method achieves the smallest RMS error in energy and forces as compared

to both the other methods. Therefore, the approach of providing radial

functions separately and using a weighted delta function for density pro-
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jection, is an effective way to model interatomic potentials for metallic

systems.

Table 3.2. Comparison of RMS error in energy and forces for different models

Size Energy(meV/atom) Forces (meV/Å/atom)
Proposed method
Bartok power spectrum-NN
Behler functions-NN

5.00 84.00
12.00 92.00
9.00 112.00

3.3.3 Validation of the weights

The validation of the obtained weights (RMS error of 5 meV/atom for

energy and 84 meV/Å/atom for force prediction) is done on 190 clusters

quenched from MD simulations (at 400 K) of Au30 − Au147. The energy

per atom for these clusters for both DFT and NN is plotted in Fig. 3.2.

From this plot, it is observed that the NN predicted energies are in an

agreement with the DFT predicted energies. For a clear resolution, the

relative difference between NN and DFT predicted energies is plotted as

shown in Fig. 3.3, in which maximum number of clusters lies in the range of

average RMS error energy i.e., 5 meV/atom, while a few clusters lies above

and below the error range. One of the reason for this may be the presence

of a wide range of dataset which is fitted for the PES. This validation helps

to measure the prediction accuracy of the optimized weights on the clusters

other than the test set.

The NN predicted and DFT predicted energies of Au147 clusters are

compared within an energy range of 6 eV. Randomly, 10 clusters of Au147

are chosen and an optimization is done by DFT and NN potentials. Their

energies are compared as shown in Fig. 3.4(a). Also, the energies of 30

unoptimized clusters of Au147 is compared using DFT and NN as shown in

Fig. 3.4(b). It is inferred that NN potential predicts energy in agreement

with DFT for high as well as low energy clusters.
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3.3.4 Computational time for energy and force

calculation

The time taken for calculation of energy and forces of a Au147 cluster is

3 seconds on a single CPU [GenuineIntel 2600.0 MHz] unlike DFT which

takes around 7 hours on parallelized 16 CPU [GenuineIntel 2600.0 MHz]

for this calculation. Using the Behler’s symmetric functions[50], the time

taken for the same system is around 14 seconds. Therefore, the approach

used in this study is economic and computationally cheap. A parallel code
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Figure 3.4. Comparison of DFT and NN predicted energies of a range of
Au147 clusters a) Optimized clusters b) Unoptimized clusters

is also written for the functions. The time for calculation of energy and

forces of one Au147 reduced to 1.7 seconds on 8 CPU [GenuineIntel 2600.0

MHz] using the parallel code.

3.3.5 Global Optimization of Au147 cluster

The GM search for Au147 using BH method is performed. The initial

structures for BH are selected from the MD simulations performed at 300

K, 400 K, 500 K and 600 K. These structures are quenched first and then

taken as the beginning structure for global optimization runs. The GM

search is started using 10 different initial structures of Au147 and each BH

run is done for 20,000 steps. Au147 is one of the magic number cluster, and

therefore the most stable structure assumed for it is an Ih[120, 181, 182]. A

large number of isomers of Au147 were generated and the structural pattern

they follow is 105 atoms in the outer shell, 35 atoms in the middle shell,

and 7 atoms in the inner shell, unlike an Ih that contains 13 atoms in

the inner shell, 42 atoms in the middle shell and 92 atoms in the outer

shell. According to NN, and verified from DFT, the GM contains a 7 atom

symmetric inner core structure, with the arrangement of the 35 atoms in

the middle layer, also in a symmetric manner. The energy of the Ih is
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almost 4.0 eV higher than the GM structure obtained as shown in Table

4.1. Since the converged energy error is 5 meV/atom, for a 147 atoms

cluster, it becomes 0.7 eV on an average. Therefore, the predicted NN

energy lies in the error range and is not exact in magnitude as DFT. The

structure of Ih geometry and the predicted GM is shown in Fig. 3.5.

Figure 3.5. Geometries of Au147 a) Ih, b) GM

Table 3.3. Energy of GM and Ih structure of Au147

Structure Fig. 2(a) Fig. 2(b)
DFT (eV)
NN (eV)

-422.2959 -426.5174
-422.6557 -426.2996

The inner core of the predicted GM structure is shown in Fig. 3.6. The

atomic arrangement of 7 atoms makes a monocapped octahedron. A lot

of isomers of Au147 that are very close in energy (0.5 eV), but different in

the atomic arrangements were encountered. These isomers consists of 6 -

7 atoms in inner layer, 35 - 36 atoms in middle layer and, 105 atoms in the

third shell is maintained. Due to a high energy difference between the Ih

Figure 3.6. 7 atom inner core of GM

structure and the predicted GM structure, it can be inferred that being a
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magic cluster, Au147 does not exhibit Ih structure as the most stable isomer

and there are a lot of other stable geometries possible for it.

3.3.6 Comparison between Au68 and Au147

Xu et al.[183] identified new structures of thio protected Au68, which con-

tains a 32 atom core. The arrangement of the atoms in the core resembles

the core structure of the GM of Au147 predicted by DFT (42 atoms) as

shown in Fig. 3.7. The core shows a layer pattern, which is also reflected

in core of Au147 GM. Since the number of atoms are not equal, therefore,

a resemblance can be predicted by comparing the layers in both the struc-

tures. In the top two layers (colored red), the number of atoms in Au68 is

10 and in Au147 it is 8, but the coordination number of the capped atom is

5 in both the structures. In the same layers, a hexagonal shaped arrange-

ment of atoms is observed for both the structures. In the orange colored

layer, there are 10 atoms in Au68 and 11 atoms in Au147, which indicates

the binding of atoms in a similar way for both the clusters as atoms are

varying by just one in number. The yellow colored layer contains 14 atoms

in Au147 and 9 atoms in Au68, but the coordination number of the surface

atoms of the core structures is found to be same. The blue colored layer

consists of only 3 atoms in Au68 and 9 atoms in Au147. This layer is not

similar but from the pattern followed in other layers, it can be deduced

that in presence of more atoms, this layer will also exhibit same pattern

as that in Au147. So, it can be concluded that on evolving from Au68 to

Au147, a similar pattern in the core is maintained.

3.3.7 Temperature dependent probability of Au147

isomers

Nps are highly sensitive materials and their stability depends on numerous

parameters. One of the important parameter is temperature. Around 60

isomers of Au147, that are within 0.5 eV of the predicted GM isomer were
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Figure 3.7. a) The layer pattern in the core geometry of Au68 (Xu et al), b)
The layer pattern in the core geometry of predicted GM of Au147

collected. Since GM cannot be stable at all the temperatures, therefore,

to find the most probable structures at different temperatures, the prob-

abilities of all these isomers at 3 temperatures - 300 K, 500 K and 800

K using the method implemented by Li et al.[184] was calculated. This

method gives the probability of a particular isomer at a temperature by

implementing rotational, vibrational and electronic partition functions in

the calculation. The equation for calculating the probability of one struc-

ture is

Pω =
e

(
−∆Eω

KBT

)
qωrotq

ω
vibq

ω
ele∑

ω e

(
−∆Eω

KBT

)
qωrotq

ω
vibq

ω
ele

(3.3)

The ∆Eω represents the relative potential energy of an isomer with respect

to GM. The rotational, vibrational and electronic partition function of an

isomer is represented by qωrot, q
ω
vib and qωele, respectively. The electronic tran-

sitions are of very high energy therefore, the term is omitted as the molecule

preferably stay in the ground state, and the excited states have a negligi-

ble contribution to the partition function.[185] Rigid rotor approximations

and harmonic approximations are adopted for calculating the rotational

and vibrational partition function, respectively. The Eq. (3.3) modifies to

Pm
ω =

e

(
−∆Eω

KBT

)
qωrotq

ω
vib∑

ω e

(
−∆Eω

KBT

)
qωrotq

ω
vib

(3.4)

Pm
ω refers to the modified probability expression. The rotational and vibra-

tional partition functions are calculated using the formulas shown in Eq.
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(3.5) and Eq. (3.6).

qωrot =

(
8π2

βh2

)3/2
√
πIωa I

ω
b I

ω
c

σω
(3.5)

qωvib =
∏
n

e
−hcν̃ωn
2KBT

1− e
−hcν̃ωn
KBT

(3.6)

ν̃ is the wave number of nth normal mode of an isomer and Iωa , Iωb , Iωc are

the three principle moments of inertia of the isomer. It is observed that

the probability of GM is found to be less than the other isomers at all the

temperatures considered. It is also observed that the top 20 isomers after

the GM exhibits similar probability, indicating the presence of a mixture of

isomers at a particular temperature. Considering the maximum peak in the

probability plot (Fig. 3.8), it is inferred that isomer-12 is the most probable

at all the temperatures. The isomer-12 is shown in Fig. 3.9. On comparing

the core structure of GM and the most probable isomer, a difference in the

arrangement of atoms can be clearly observed as shown in Fig. 3.10. The

most probable isomer has a more symmetric core, therefore, its probability

is the greatest at all the temperatures considered. The probability of GM

along with the most probable isomer at different temperatures is given in

Table 3.4. Isomer number 14 and 20 have an equal probability at temper-

Table 3.4. Probability of GM and most probable structure of Au147

T (K) PGM(%) Pmostprobable(%)
300
500
800

7.1 8.50
4.17 7.90
2.8 7.19

ature 800 K, so the properties of a Np cannot be predicted by considering

just one isomer. The most probable or nearly probable isomers have to be

considered for studying the dynamics of a Np at a particular temperature.

The probable isomers show a stark difference in the arrangement of their

core structure, some of which are shown in Fig. 3.11. It can be inferred

that though Au147 does not exhibit Ih geometry, but the GM and the most
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Figure 3.8. Probability plot of all the isomers of Au147

Figure 3.9. Most probable isomer at 300 K, 500 K, 800 K

Figure 3.10. Core structure of Au147 a) Most probable isomer, b) GM

probable isomer have a symmetry in their structures.

3.3.8 Fluxionality in Au147

Gold clusters exhibit an interesting property, fluxionality, by virtue of which

the atoms in a molecule are in a state of motion such that, many low

lying isomers exists at a particular temperature with a minimal energy

difference between them. In a core-shell structure, the fluxionality can be

due to a dynamic surface or a dynamic core. So, to study fluxionality in
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Figure 3.11. 42 atom core of some low lying isomers of Au147

Au147, MD simulations are run at three temperatures - 300 K, 400 K, 700

K. Generally, the chemical reactions are carried out at room temperature,

therefore, the dynamics of the GM is studied at 300 K. For getting a broader

picture of the structural evolution with temperature, 400 K and 700 K

temperature are also considered. The simulations are run at a time step of

3 fs for a time duration of 1 ns . The advantage of studying gold’s fluxional

behaviour is that it plays an important role in surface mediated reactions

like catalysis.[186, 187, 188, 189, 190, 191] The fluxionality in smaller gold

clusters has been investigated earlier[192, 193, 194]. A high fluxionality

in Au147 clusters is observed. It is noticed that the core atoms are highly

mobile at 400 K, and both surface and core atoms are in a constant motion

at 700 K.

To study the movements in the structures as the simulation is pro-

cessed, order parameters can be calculated. The order parameters im-

plemented in the current study are average fluctuations in the bond

length,[184] volume variation in the cluster,[184] root mean square distance

(RMSD)[192] and atomic equivalence index (AEI).[195]
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Figure 3.12. Average bond length fluctuations of Au147 at 400 K

Average bond length fluctuation

The average bond length fluctuations[184] with time is estimated for the

MD trajectory of Au147 at 400 K. The plot of the distance fluctuations with

respect to time elapsed is shown in Fig. 3.12. In the plot, the fluctuations

in core-core atoms, surface-surface atoms, and core-surface atoms is rep-

resented by purple color, green color and red color respectively. From the

plot, it can be inferred that core exhibits large fluctuations as compared

to surface of Au147 with the simulation time. Due to these fluctuations in

core, there is a change in the coordination number between surface and core

atoms, providing an evidence of rotation of the core atoms unit. So, from

average distance fluctuation calculations at 400 K, it can be concluded that

due to rotations and vibrations in core, Au147 shows fluxionality.

Volume variation

As the Nps are non-speherical, their volume is calculated as

V =
4

3
πR1R2R3 (3.7)
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where, the three radii of Np is calculated using moment of inertia (I) and

total mass (M) of the Np.

Ra =

√
5

2

√
Ia
M

(3.8)

a = 1, 2, 3

The volume variation[184] in Au147 clusters is calculated for MD simulation

trajectories at 300 K, 400 K and 700 K. The plot is shown in Fig. 3.13. In

Fig. 3.13, the volume variation for temperature 300 K, 400 K and 700 K is

represented by black color, red color and green color respectively. From the

plots at 300 K and 400 K, it can be inferred that there is not much volume

variation in the structures, such that, no major movements are observed

throughout the MD trajectory at these temperatures i.e., the structures

formed along the simulation does not show large variations with respect to

GM. However, at temperature 700 K, a lot of volume variation is observed.

The structure of the GM is completely disturbed and a large deviation

in structures is observed. The atoms are highly mobile and the structure

changes a lot as can be seen from Fig. 3.13. Highest variation in the volume

is observed in structure a,b,d in Fig. 3.13(b), where the clusters are more

distorted as compared to our GM. Also, structure c and e in Fig. 3.13(b)

have a low variation in volume, and thus are near to GM geometry.

RMSD

The RMSD[192] of the clusters corresponding to the GM structure at tem-

perature 300 K and 700 K. Different peaks in the RMSD plots does not

confirm the presence of entirely different configurations. It is a parameter

to show that the atoms are moving and are not static.

RMSDconformation =

√∑atoms
i=1 (xi − xci)2 + (yi − yci )2 + (zi − zci )2

N
(3.9)

where, xi, yi, zi are the coordinates of the GM and xci , y
c
i , z

c
i are the

coordinates of the conformation obtained from MD trajectory, N is the
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Figure 3.13. (a) Volume variation of Au147 at 300 K, 400 K, and 700 K and
(b) Structural evolution with simulation time at 700 K
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Figure 3.14. RMSD plot of Au147 a) 300 K b) 700 K

number of atoms in the conformation. The relevance of RMSD is that

the atomic positions are numbered such that after every time step they

change the position which can then be compared with the initial structure.

Therefore, we can observe how the structure is evolving as the simulation

is processed. From the RMSD plots shown in Fig. 3.14, it is observed that

the core and surface atoms are continuously moving with the simulation

time. At 300 K, the RMSD of core atoms is low (Fig. 3.14a) as the

structural variation of core is less, so the movements are confined in a

smaller region. On other hand, surface atoms have a large phase space

for movement, therefore, RMSD is higher for surface atoms. At 700 K, the

initial symmetry of the structure is destroyed within 1 ps of the simulation.

Since, volume variation (Fig. 3.13a) is high at 700 K, therefore, the core and

surface atoms are showing a steep increase in RMSD with the simulation

time. So, from RMSD , it is concluded that Au147 atoms are in a state of

motion with the simulation time and therefore, shows fluxionality.
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AEI

AEI is atomic equivalence index that shows the movement of an atom with

respect to other atoms in a cluster. During a simulation, atoms exhibit two

types of movements- within the layer and migrating to other layers. AEI

shows the movement of atoms as the simulation progresses. AEI (%i(t))

is calculated using position vector
−→
R of an atom (i) with respect to other

atoms (j) at time t.

%i(t) =
N∑
j 6=i

|
−→
R i(t)−

−→
R j(t)| (3.10)

The GM structure of Au147 consists of three layers- inner core, middle layer,

surface. So, to visualize the behaviour of atoms with progress in simulation,

few atoms are randomly selected from the surface and few atoms from the

core and their AEI is calculated. The AEI is calculated for Au147 at 300

K and 700 K. At 300 K, the AEI plot (Fig. 3.15(a)) shows three distinct

region in which the bottom region refers to inner core atoms, middle region

refers to middle core and the top region refers to surface atoms. So, it can

be inferred that core atoms remain in the core and surface atoms remain

on the surface. The atoms are not getting exchanged between the layers.

At 700 K, in Fig. 3.15(b), it is observed that now the three layers atoms

are showing an intermixing. One of the core atom, represented by the

blue color curve, moves from core to surface in the beginning of simulation

and again goes back to core after a few time steps. On further increase

in simulation time, it completely goes to surface and then stays there.

Similarly, some of the surface atoms are coming inside the core as seen

from grey and brown colored plot in the Fig. 3.15b. The atom represented

by brown color initially stays on the surface, but after some time, it breaks

into the core and stays there. So, a core to surface and surface to core

atom movement is observed. Therefore, it is concluded that the atoms are

getting exchanged between core and surface throughout the simulation.
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Figure 3.15. AEI plot of Au147 a) 300 K b) 700 K

3.4 Summary

In summary, the PES for gold clusters ranging from Au30 −Au147 with an

RMS error of 5 meV/atom for energy and 84 meV/Å/atom for force calcu-

lations is successfully fitted. The spherical harmonics applied in the form

of power spectrum for describing the atomic environment and using it with

NN provides a highly efficient system for fitting the PES of a nanocluster.

The computational time for accurate calculation of energy and forces of a

single Au147 cluster is reduced to ∼1.7 seconds, which is very fast when

compared to DFT (∼7 hours). An extensive GM search is performed along

with MD simulations for Au147 at different temperatures. It is found that

a large number of isomers are possible that lie within a narrow energy scale

of 0.5 eV from the GM. The Au147 GM consists of a symmetric core and

an unsymmetric surface unlike Ih which is a highly symmetric structure.

It is also confirmed that GM of Au147 is found to be 4 eV lower in energy

than the Ih geometry from the DFT calculations. As found in many other

gold clusters, Au147 also exhibits fluxionality and its observed that it has a

dynamic surface as well as a dynamic core.
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Chapter 4

Exploring the PES of Au147

using Bispectrum descriptors

4.1 Introduction

In chapter 3, the second order invariants - power spectrum was applied

to fit the PES of gold nanoclusters. It was seen that although being a

magic number cluster, Au147 prefers an amorphous geometry as the GM.

For further studying the structural arrangements using NN potentials, the

modeling of atomic density can be improved by considering third order

invariants- bispectrum. Bispectrum has the efficiency of carrying more in-

formation of the density than power spectrum. The bispectrum is a higher

order invariant than the power spectrum, so its spherical harmonics expan-

sion carries more information and gives a more accurate representation of

the atomic environment.

In this chapter, the atomic environments are modelled using bispec-

trum descriptors. For comparison between the efficiency of power spectrum

and bispectrum, the NN potential is fitted up to Au147 in this study. An

algorithm is also proposed for selecting the frequencies that need to be

coupled for extracting the phase information between different frequency

bands. It is found that higher order invariant like bispectrum is highly

efficient in exploring the PES as compared to other invariants.
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4.2 Computational details

The dataset (Au30 −Au147) constructed in the previous chapter is utilized

in this work for training the NN potential (training set: 9050 clusters, test

set: 1086 clusters). The descriptors are calculated for the entire dataset.

The atomic environment descriptors consists of 9 radial functions given by

Eq. 2.29 and 15 bispectrum coefficients given by Eq. 2.73. As discussed in

chapter 2, l1 and l2 varies from 0 to 4 and l varies from |l1 − l2| to l1 + l2.

A total of 35 combinations are possible, out of which 15 coefficients are

selected having a bicoherence value between 0.3 to 1.0. The clm is given by

Eq. 2.42. The number of neurons in both the hidden layers is 30. KF was

used as the weights optimization algorithm.

Weighting of ADF: For power spectrum coefficients, the weight-

ing of ADF is done in order to differentiate between atoms lying very far

and very near to the reference atom. The results generated using weighted

density function in bispectrum did not give a low prediction error as the

number of coefficients increases a lot when compared to non-weighted den-

sity function in bispectrum. So, to reduce the input coefficients and keep-

ing the prediction accuracy, the weighting is not done in calculations of

bispectrum coefficients. For checking the ability of descriptor to detect

small movements, an atom of a Au147 cluster was selected. The atom was

displaced towards one of its neighbour and the bispectrum and power spec-

trum coefficients were calculated. Similarly the atom was displaced away

from that neighbouring atom and the coefficients were calculated. The val-

ues of the coefficients are plotted as shown in Fig. 4.1. It is observed that

the changes in the values of the coefficients is much pronounced in non-

weighted bispectrum coefficients. Comparing Fig. 4.1(a) and 4.1(c), it can

be inferred that the sensitivity in identifying small changes in the structure

is high in bispectrum as compared to power spectrum. Weighting of the

density function in bispectrum only increases the number of coefficients

and also some of them does not capture the change as observed in Fig.

4.1(b). Therefore, a non-weighted density function is used in bispectrum
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as an efficient descriptor.
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Figure 4.1. Descriptor plots a) Bispectrum coefficients without weighting the
ADF, b) Bispectrum coefficients with weighting the ADF, c) Power spectrum
coefficients

4.3 Results

4.3.1 Selection of coefficients

In order to select the number of coefficients, many trials using different

number of input coefficients into the NN was performed. In the first trial, all

the 35 bispectrum coefficients along with 9 radial functions for an atom was

fitted. The RMS error in prediction of energy and forces was 5.5 meV/atom

and 114 meV/Å/atom, respectively. These weights were validated on the

test set. It was observed that these weights are efficient in predicting
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correct energy and forces for Au nanoclusters. In order to decrease the

number of coefficients further, 15 bispectrum coefficients corresponding to

the top 15 values (among the 35 coefficients) of bicoherence along with 9

radial functions were taken. On fitting these coefficients for the same data

set, an RMS error of 5.3 meV/atom and 110 meV/Å/atom in energy and

forces prediction was obtained, respectively. Further, these weights were

validated and it was observed that there is a good agreement between the

NN and DFT predicted energies. Based on these observations, the number

of input coefficients were restricted to 24 (15 + 9) for describing an atomic

environment.

As the number of coefficients in power spectrum were 59, and in

bispectrum it is 24, a comparison in the computational time was done.

The time taken for calculation of energy and forces for a Au147 cluster (147

atoms) is 7 seconds using bispectrum-NN, 3 seconds using power spectrum-

NN and 7 hours using DFT on a single CPU (GenuineIntel 2600.0 MHz).

The computation time is higher for bispectrum as it’s a third order invari-

ant. In choosing between the power spectrum or the bispectrum, there is

a tradeoff between accuracy and computing time.

4.3.2 Validation of NN weights

In order to validate the weights obtained using 24 coefficients per atom in

bispectrum-NN model, RMS error in energy for the testing set clusters is

plotted in Fig. 4.2. From the plot, it can be seen that 40.69% of clusters lie

above the average RMSE and 59.3% of clusters lie below the average RMS

error. The majority of the clusters lie below an RMS error of 10 meV/atom.

Only a few clusters exhibit large errors in energy. So, bispectrum NN can

be trusted in practice for an approximate prediction of energy and forces

for a cluster. The relative efficiency of DFT with power spectrum and

bispectrum is compared for a set of 36 clusters of Au147 selected from MD

trajectories at 300 K and 400 K. From Fig. 4.3, it can be inferred that

bispectrum is more efficient than power spectrum as the predictions from
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bispectrum and DFT are in good agreement with each other.
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Figure 4.2. The validation set RMS error/atom in energy for Au30 − Au147
clusters
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Figure 4.3. Comparison of energy prediction from DFT, bispectrum, weighted
and non-weighted ADF in power spectrum for a set of Au147 clusters

4.3.3 Exploring PES of Au147 nanocluster via global

optimizations

In order to test the PES exploration of bispectrum, global optimization

using the NN weights fitted for bispectrum coefficients is performed. The

initial structures for running the optimizations are taken form the work
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done in chapter 3. BH algorithm[168] was used for finding new minimas.

For energy minimization L-BFGS[73] algorithm was applied. Around 20

different initial structures were taken and the optimization were performed

for 30000 steps for each structure. In order to explore various possible

structures, a lot of structural perturbations were induced via BH during

the optimization. Doing so, many potential wells can be identified. Using

BH, a lot of isomers were obtained in an energy range of 6 eV. A histogram

is plotted in Fig. 4.4 to show the number of isomers obtained in different

energy ranges.
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Figure 4.4. Number of clusters of Au147 belonging to various energy range

A lot of isomers of Au147 consisting of 105 atoms on the surface and

42 atoms in the core were obtained. The core comprises of two layers -

inner core and secondary core. Inner core atoms vary from 6 to 8 and

secondary core atoms vary from 36 to 34 in the various isomers obtained.

In comparison to the series of isomers obtained using power spectrum in

chapter 3, some new inner core geometries are generated from bispectrum.

Structures with 6 inner core atoms and other isomers were not identified

during the optimization done using power spectrum[134].

Geometries of different inner core structures are shown in Fig. 4.5.

The difference is in the atomic arrangement in all the isomers although a
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symmetry is maintained in the structures.

(a) (b)

(c) (d)

(e)

Figure 4.5. Inner core structures for different isomers of Au147 (a) 8
atoms: capped pentagonal bi-pyramidal shape, (b) 7 atoms: capped square
bi-pyramidal shape, (c) 8 atoms: pyramidal shape, (d) 6 atoms: capped trigo-
nal bi-pyramidal shape, (e) 7 atoms: star shape.

Since bispectrum captures the atomic environments in an improved

way, the purpose behind performing the global optimizations on Au147 is to

bring out the difference in the exploring PES capabilities of power spectrum

and bispectrum. The aim is accomplished by discovering a lot of different

structures from bispectrum within a narrow energy range of 0.3 eV.

The GM remains the same as predicted by power spectrum which

contains 7 atoms inner core as shown in Fig. 4.6(b). Other isomers obtained

lie very near in energy to the predicted GM as seen in Table 4.1. According

to DFT as well as ANN, Fig. 4.6(b) represents the GM structure. It

consists of a capped square bi-pyramidal shape inner core. The isomer

shown in Fig. 4.6(c) consists of 8 atoms in the inner core which forms

a stable pyramidal geometry thus lying 0.24 eV (DFT) higher than the

GM. The energies predicted by ANN are not exactly accurate as those

predicted by DFT since the converged weights error for energy prediction is

5.3 meV/atom (∼ 0.78 eV for Au147). Another isomer that lies just 0.25 eV
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(a) (b)

(c) (d)

(e)

Figure 4.6. Core structures (42 atoms) for different isomers of Au147 (a)
Contains 8 atoms in the inner core, (b) Contains 7 atoms in the inner core, (c)
Contains 8 atoms in the inner core, (d) Contains 6 atoms in the inner core, (e)
Contains 7 atoms in the inner core.

(DFT) higher than GM exhibits a capped pentagonal bi-pyramidal shaped

inner core as shown in Fig. 4.6(a). Isomer shown in Fig. 4.6(e) lies 0.3 eV

(DFT) higher than GM and exhibits a star shaped inner core.

Power spectrum is computationally cheaper than bispectrum, but it’s

less efficient in exploring the PES. Therefore, there is a trade off in accuracy

and computational time for using these high order invariants as descriptors.

Table 4.1. Relative energy of GM with respect to other isomers of Au147

Structure Fig. 4.6(a) Fig. 4.6(c) Fig. 4.6(d) Fig. 4.6(e)
∆EDFT (EGM − Eisom) (eV) 0.2513 0.2468 0.9226 0.3048
∆EANN (EGM − Eisom) (eV) 0.0591 0.0019 0.9256 0.2685
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4.4 Summary

In this work, higher order invariants - bispectrum are used to describe an

atomic environment. Along with radial functions, they are given as an

input to ANN to predict the energy and forces of gold nanoclusters. As a

lot of permutations are possible in the bispectrum coefficients, an algorithm

is proposed to selectively choose the frequencies for coupling, in order to

reduce the total number of input coefficients to ANN. The advantage of

using bispectrum over power spectrum is in its ability to search the PES

efficiently. A lot of new structures were obtained from MD simulations

using bispectrum-NN potential. These structure were not identified during

the simulations done using power spectrum-NN potential. As bispectrum is

very sensitive, it can be used as a potential order parameter for calculating

various properties of a nanocluster.
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Chapter 5

Fitting the PES of gold-silver

nanoalloys and thio- protected

gold nanoclusters

5.1 Introduction

In chapter 3 and 4, a single NN was applied to fit the PES of gold nan-

oclusters. In order to fit the PES of a system having atoms of different

elements, a new method is proposed here. The traditional approach for

fitting the PES for a MC system using NN is to consider n networks for

n chemical species in the system. This shoots the computational cost and

makes it difficult to apply to a system containing different kinds of species.

A new strategy of using a single artificial neural network(SANN) to com-

pute the energy and forces of a chemical system is discussed here. Since

atomic forces are significant for geometry optimizations and MD simu-

lations for any chemical system, their accurate prediction is of utmost

importance[196, 197, 198, 199, 200, 201]. To predict the atomic forces,

the traditional way of fitting forces from underlying energy expression is

modified and applied. The atomic force fitting has made it possible to

train smaller size systems and extrapolate the parameters to make accu-

rate predictions for larger systems making the approach transferable. This

proposed strategy has definitely made the mapping and fitting of atomic

forces easier and can be applied to a wide variety of molecular systems.

The key points of the proposed strategy are
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(a) Due to a precise atomic force fitting, the ANN weights fitted for a

small size system can be extrapolated to similar compositions in the larger

size systems,

(b) The overall model is transferable in two ways - (i) It can be used

to fit any Np’s PES as we require just a dataset, from which, the inter-

atomic distances, effective nuclear charges and reduced mass can be utilised

to give an input to ANN, (ii) The weights are transferable for a chemical

system to any size of the clusters of similar composition.

Since the complexity of a descriptor increases with the type of chem-

ical species, therefore, the proposed technique is applied to two different

systems - bimetallic nanoalloys made up of silver and gold atoms (AgAu)55-

(AgAu)147, and thiol protected gold nanoclusters Au13(SH)6-Au38(SH)24.

To study the dynamics of Ag35Au112 and Au68(SH)32, global optimizations

and MD simulations are performed.

5.2 Computational details

5.2.1 Parameters for fitting (AgAu)55 - (AgAu)147

In order to generate training data for (AgAu)55 - (AgAu)147, an initial data

consisting of (AgAu)55 was generated using Gupta potential[40] as the inter

atomic potential in MD simulations. After getting around 2500 clusters,

an initial run of NN training was performed. Using the obtained set of

NN weights, MD simulations was run at 300 K, 400 K, 500 K and 600 K

at a time step of 1fs for (AgAu)55 and (AgAu)147. To avoid high com-

putational costs for generating ab initio data of (AgAu)147, around 1000

clusters of (AgAu)147 are split into different atomic environments. A total

data of 11,000 clusters was accumulated containing different compositions

of (AgAu)55 and various environments of Ag35Au112. The composition of

24 % of silver atoms is chosen for (AgAu)147, as it promises to be catalyti-

cally dynamic.[202] The energy and forces calculations for the dataset was

executed on VASP.[141, 142, 143, 144] Scalar relativistic effects and the
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core electrons are taken care of by PAW method. Generalized gradient ap-

proximation and PBE[146, 147] functional is applied for treating electron

correlations. Gamma k-point (1×1×1) mesh is used to sample the Brillouin

zone. The threshold energy is set as 260 eV and the force convergence is

set as 10−4. A box length of 22×22×22Å3 is applied for the entire dataset

with a vacuum dimension of 11 Å. The dataset was split in a training set

of 9,500 clusters and a testing set of 1,500 clusters. The number of inputs

defining the environment for an atom was 59 which was obtained by taking

l from 0 to 9 in Eq. 2.48. The n in Eq. 2.77 takes on 5 values in order

to make the function fall smoothly with increasing interatomic distance.

The n values are 0.0028, 0.0040, 0.0110, 0.0280 and 0.059. The number of

radial functions in Eq. 2.29 are taken as 9 values corresponding to ξ values-

0.005, 0.015, 0.0230, 0.038, 0.060, 0.090, 0.150, 0.260 and 0.480. The number

of hidden layer neurons were set to be 30. The wβN value for Au and Ag in

Eq. 2.79 is calculated using Clementi - Raimondi[203, 204] effective nuclear

charges.

5.2.2 Parameters for fitting Aum(SH)n

A diverse set of Aum(SH)n clusters are taken in which m varies from 13 to

38 and n varies from 6 to 24 to fit the energy and forces. Since Au13(SH)6,

Au13(SH)8, Au13(SH)9 and Au15(SH)8 are small sized clusters, the initial

data containing these composition clusters were generated by MD simu-

lations coupled with DFT as the interatomic potential. After getting an

initial data, the NN weights are generated. These weights are then inte-

grated with MD simulations for generating more data for the rest of the

compositions in span of Au13(SH)6 to Au38(SH)24. Overall, 11,500 clus-

ters are generated and divided into a training data set of 10,000 clusters

and a testing data set of 1,500 clusters. The number of inputs per atom

was kept to 59 for all the Aum(SH)n clusters. The network for Aum(SH)n

also had 30 neurons in both the hidden layers. The wβN values for Au,

S and H in Eq. 2.79 is calculated using Clementi - Raimondi[203, 204]
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effective nuclear charges.

5.3 Results and discussion

Note: In AgAu figures: Au is represented by yellow and Ag is represented

by red.

In Au(SH) figures: Au is represented by yellow, S is represented by red and

H is represented in white.

5.3.1 Silver-Gold nanoalloys: Study of Ag35Au112

On fitting the energy and forces with the proposed approach, an average

RMS error of 5.9 meV/atom and 74 meV/Å/atom for energy and atomic

forces, respectively, was achieved. In order to verify the prediction capa-

bility of the weights, the DFT and NN energies are calculated for a small

set of 500 clusters. The energy per atom for all the clusters is plotted

in Fig. 5.1(a) and the absolute value of the difference between DFT and

NN energies is plotted in Fig. 5.1(b). The components of forces predicted

from NN and DFT for the training and testing set clusters is compared, as

shown in Fig. 5.2. The correlation observed between the predicted NN and

DFT forces reflects the accurate fitting of atomic forces for a MC system

by the proposed approach. For making the point more relevant, the x com-

ponent of force for three different composition and size clusters- Ag13Au33,

Ag15Au69 and Ag19Au38 is plotted as shown in Fig. 5.4. To validate the

efficiency of the fitted energy and forces for the bimetallic system, geometry

optimizations and MD simulations are performed. An initial structure of

Ag35Au112 consisting of three layers of atoms arranged in Ih geometry with

silver atoms occupying the middle core and rest of the structure containing

the gold atoms as shown in Fig. 5.3 is taken. Such an arrangement is cho-

sen as it is already studied[202, 205] that in Au rich nanoalloys, gold atoms

occupy surface and core atoms. The MD simulations were ran at different

temperatures - 300 K, 400 K, 500 K and 600 K. A time step of 1 fs was
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used and the simulations were ran for a total time of 1 ns. Since (AgAu)147

is a large system, ab initio MD simulations have not been performed yet.

Various studies[205, 206] have been done using empirical potentials but

they lack the QM accuracy. The optical absorption spectra[207] has been

studied using first principles but dynamics has not been explored.
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Figure 5.1. (a) Comparison of DFT and ANN predicted energies for (AgAu)55
- (AgAu)147, (b) Plot showing the absolute value of |EANN − EDFT | for
(AgAu)55 - (AgAu)147
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Figure 5.2. Correlation plot of ANN and DFT predicted atomic force compo-
nents for testing and training set of (AgAu)55 - (AgAu)147 clusters

It has been observed that with time the Ih geometry is completely

destroyed and there is a huge variation in the atomic arrangement. At

300 K, the initial structure is maintained for a time of 13 ps, and then

silver atoms start to move towards surface. The gold atoms are too in a

state of continuous rotational and vibrational motion but the geometry of
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Figure 5.3. Initial structure of Ag35Au112 for MD simulations
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Figure 5.4. Plot of X component of force for (a) Ag13Au33, (b) Ag15Au69,
(c) Ag19Au38

inner core is maintained as such. As the simulation time is progressed,

the geometry of the inner core changes from 13 gold atoms to 10 gold

atoms and the middle core atomic arrangement alters from 42 atoms to

37 atoms comprising of both silver and gold atoms. Overall the surface

atoms increases from 92 to around 100 atoms. This atomic arrangement of

100-37-10 is almost similar to the atomic arrangement in the GM structure
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of Au147 as shown in chapters 3 and 4. It shows that Ih geometry is not

favored in pure gold or gold rich clusters. As simulations are performed at

higher temperatures, it is observed that more silver atoms are moving from

middle core to the surface. One of the interesting observation is that the

silver atoms never entered the inner core. They either occupied the middle

core or lied on the surface. Also, at a temperature of 600 K, almost all the

silver atoms enriched the surface which is in accordance with the results

for 24 % composition of Ag in (AgAu)55 as published by Chiriki et al.[202]

The structure obtained at 600 K is shown in Fig. 5.5 in which the surface

enriched with Ag can be seen.

Figure 5.5. Structure of Ag35Au112 obtained at 600 K

To study the movements in the cluster with simulation time,

RMSD[192] is calculated as the order parameter. It calculates the aver-

age distance an atom has moved from the initial structure. For a structure

at a given time, a sum over all the atomic movements is taken and divided

by the total number of atoms in the structure.

RMSD =

√∑atoms
v=1 (xv − xsv)2 + (yv − ysv)2 + (zv − zsv)2

N
(5.1)

In Eq. 5.1, xv, yv and zv are the Cartesian coordinates of the initial struc-

ture and xsv, y
s
v and zsv are the Cartesian coordinates of the structure at a

given simulation time. The RMSD plots at 300 K, 400 K, 500 K and 600

K is shown in Fig. 5.6. It can be inferred that both the core atoms and

the surface atoms of Ag35Au112 undergo a lot of movements thus making
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it a highly fluxional cluster. With the increase in simulation time, it is

observed in all the temperatures that both surface and the core atoms try

to attain the geometry as of initial structure, but since that structure is

not stable, the geometry changes to a more stable arrangement of atoms.

In order to show the inter mixing of atoms between surface and core at

600 K, AEI[195] is plotted. It is a very sensitive indicator and maps even

the tiny movements throughout the simulations. Since it’s a 147 atom

cluster, it is not possible to plot the AEI for all the atoms. So, 4 atoms

were selected from the structure in which two are the core atoms and other

two are surface atoms. The plot is shown in Fig. 5.7. There is a continuous

movement of the core atom to the surface and back to the core, as seen by

the blue colored curve in Fig. 5.7. The surface atoms are moving but not

entering the core as observed from the red and the black colored curves in

Fig. 5.7.

After running the MD simulations for 1 ns, the local minima struc-

tures are collected from the trajectories obtained at different temperatures.

The geometry optimizations is performed using L-BFGS algorithm[73].

From optimizations, a few symmetric inner core geometries is obtained

as shown in Fig. 5.8. The lowest energy isomer that is quenched from the

MD trajectories is shown in Fig. 5.9(a). It contains 10 atoms in the inner

core, 37 atoms in the middle core and 100 atoms on the surface. From

the initial structure of MD simulations, 5 silver atoms moved to the sur-

face forming the lowest energy isomer. Another isomer with 9 atoms in

the inner core, 36 atoms in the middle core and 102 atoms on the surface

is shown in Fig. 5.9(b). There was a difference of 0.39 eV between the

two isomers, showing a possibility of large number of fluxional isomers for

Ag35Au112. Overall, a cage like structure makes the foundation of gold rich

Ag35Au112 alloy.
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Figure 5.6. RMSD plots for MD simulations of Ag35Au112 at (a) 300 K, (b)

400 K, (c) 500 K, (d) 600 K
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Figure 5.7. The AEI of two core atoms and two surface atoms in Ag35Au112
throughout the MD simulations at 600 K
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(a) (b)

(c) (d)

Figure 5.8. The inner core geometry for Ag35Au112 (a) 10 atom inner core
(side view), (b) 9 atom inner core (side view), (c) 10 atom inner core (top
view), (d) 9 atom inner core (top view)

(a) (b)

Figure 5.9. (a)The lowest energy structure quenched for Ag35Au112, (b) The
structure consisting of 9 atom inner core and lying 0.39 eV higher in energy
than lowest energy structure of Ag35Au112.

5.3.2 Thiol protected gold nanoclusters: Study of

Au68(SH)32

The thiol protected gold nanoclusters are considered for validation of the

proposed method due to the increased complexity in the structure. The

gold, sulphur and hydrogen atoms have different valence electrons and or-

bital configuration which leads to different patterns of bonding between

each other. Therefore, using the descriptors an accurate prediction of the

forces is a challenge. On fitting the dataset consisting of clusters from

Au13(SH)6-Au38(SH)24, an average RMS error of 8.6 meV/atom for en-
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ergy of a cluster and 176 meV/Å/atom for atomic forces was obtained. The

reason for getting a higher RMS error as compared to gold-silver nanoal-

loys is the huge variations in thiol protected gold clusters which makes it

difficult to fit. The weights are validated for a set of 500 clusters consisting

of Aum(SH)n clusters (m : 13 - 38 and n : 6 - 24). Their energies are

compared with the DFT predicted energies as shown in Fig. 5.10(a). The

absolute value of the difference between ANN and DFT predicted energies

for these clusters are plotted in Fig. 5.10(b). The atomic force compo-

nents as predicted from ANN and DFT for the training and testing set

clusters are compared as shown in Fig. 5.11. Similar to AgAu system,

the y component of forces as predicted by ANN and DFT for three differ-

ent compositions- Au13(SH)8, Au15(SH)13 and Au20(SH)12 is plotted as

shown in Fig. 5.13. It can be seen that the predictions are well correlated

and thus the proposed scheme can be utilized for accurate prediction of

atomic forces. The ANN weights are extrapolated to study the geometry

optimization and dynamics of Au68(SH)32. On geometry optimization of

the GM and the local minimas predicted for Au68(SH)32 by Xu et al.,[183]

similar structures are obtained as shown in Fig. 5.12. This reflects that the

atomic forces were fitted very well and have captured necessary bonding

patterns between Au, S and H. Also, the dataset Au13(SH)6-Au38(SH)24

forms a subset for the atomic environments of Au68(SH)32.

Since, geometry optimization was achieved accurately, MD simula-

tions are performed further. The MD simulations are run at temperatures

- 100 K, 150 K, 200 K and 300 K at a time step of 0.1 fs for a total time of

1 ns. Running the dynamics at 300 K gave an important insight into struc-

tural stability of thiol protected gold nanoclusters. It is observed that thiol

group undergoes desorption from the gold surface as shown in Fig. 5.14.

This observation is in accordance with the work done by Büttner et al.[208]

by using X-ray photoelectron spectroscopy for thiol passivated gold parti-

cles. To validate this observation, average bond length fluctuations[184]

are plotted for the S and staple - Au bonds as shown in Fig. 5.15. The

plot highlights that the S and staple- Au are intact at a very low tem-
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perature of 100 K. But as the temperature is increased, the fluctuations

increase in the beginning of the simulation and thus leads to a breakage in

the bond between S and Au. This is clear from the blue colored plot at

300 K shown in Fig. 5.15. Therefore, in order to maintain the protection

of gold nanoclusters, they should be stabilized below 150 K such that thiol

group does not desorb from gold surface. Different local minima structures

are quenched from the MD simulations using L-BFGS algorithm. Some of

the core geometries are shown in Fig. 5.16.
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Figure 5.10. (a) Comparison of DFT and ANN predicted energies for
Aum(SH)n clusters where m varies from 13 to 38 and n varies from 6 to
24, (b) Plot showing the absolute value of |EANN − EDFT | for Aum(SH)n
clusters where m varies from 13 to 38 and n varies from 6 to 24
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Figure 5.11. Correlation plot of ANN and DFT predicted atomic forces for
testing and training set of Aum(SH)n clusters where m varies from 13 to 38
and n varies from 6 to 24
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(a) (b) (c)

(d)

Figure 5.12. Optimized structures of Au68(SH)32 similar to that obtained by
Xu et al. (a)The GM structure, (b),(c) and (d) are the local minimas.
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Figure 5.13. Plot of Y component of force for (a) Au13(SH)8, (b)
Au15(SH)13, (c) Au20(SH)12
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Figure 5.14. Desorption of thiol group from Au in Au68(SH)32 at 300 K
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Figure 5.15. Average bond length fluctuations between S and staple-Au
during MD simulations at 100 K, 150 K, 200 K and 300 K of Au68(SH)32
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Figure 5.16. The core structures for Au68(SH)32
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5.3.3 Application of ANN for global optimizations

of AgAu nanoalloys and thio-protected Au

nanoclusters

After studying the ANN based MD simulations, global optimizations for

gold-silver nanoalloys and thio- protected gold nanoclusters are performed.

Two clusters for gold-silver nanoalloys having 10% (Ag5Au50) and 24%

(Ag13Au42) composition of Ag are selected. For thio- protected gold nan-

oclusters, Au15 cluster protected with three different amounts of thiol units

(8, 10 and 13) is chosen. The global optimizations are performed using

BH[168] and MD simulations. The quenching of the structures is done

with the L-BFGS algorithm.[73]

(i) Ag13Au42

The BH is initialized using 10 different structures. Each run is done for

30000 steps and a bunch of 50 minimum energy structures is quenched

and saved from each run. A GM structure is obtained as shown in Fig.

5.17. The GM structure contains an 8 atom symmetric core and 47 atom

surface. It is in accordance with previous work by Chiriki et al.[202]The 13

Ag atoms are arranged as 5 on the surface and 8 in the core. A total of 435

isomers lying in an energy range of 4 eV from the obtained GM structure

are collected. A histogram is plotted to visualize the number of isomers

obtained in this energy range as shown in Fig. 5.18. One of the common

feature among all the isomers is the presence of 5 Ag atoms on the surface.

Though, some high energy clusters contain more than 5 Ag atoms on the

surface. Due to an accurate fitting of forces, different geometries of the

inner core within close energy difference from the GM is obtained as shown

in Fig. 5.19 and Table. 5.1. It shows the highly fluxional nature of gold-

silver nanoalloys. Other than core geometries, surface atom arrangements

also show a lot of fluctuations as seen in Fig. 5.20.

(ii) Ag5Au50

For exploring the PES of Ag5Au50, the MD simulations were ran at
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(a) (b)

Figure 5.17. (a) The GM structure of Ag13Au42, (b) The core structure of
the GM of Ag13Au42
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Figure 5.18. A histogram showing the number of isomers found in an energy
range of 4 eV from the GM of Ag13Au42

(a) (b)

(c)

Figure 5.19. The core structures for Ag13Au42

300 K and 400 K for a total time of 1 ns at a time step of 2 fs using different

initial structures. The structure were quenched after every 20 ps of the

simulation. The GM isomer having an amorphous surface was obtained as

shown in Fig. 5.21(a). A symmetric core arrangement was observed in the
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Table 5.1. Difference between the energies of GM structure and some low
lying isomers of Ag13Au42

Difference Fig. 5.19(a) Fig. 5.19(b) Fig. 5.19(c)
∆E(EGM − Eiso) (eV) 0.2359 0.3249 0.3743

(a) (b)

(c) (d)

Figure 5.20. Low lying isomers of Ag13Au42 ∆E (EGM −Eiso) (a) 0.483 eV,
(b) 1.733 eV, (c) 1.737 eV, (d) 1.79 eV

GM structure as shown in Fig. 5.21(b). Since, Au atoms are in majority,

the structure is more towards amorphous. A lot of low lying isomers were

obtained having energy difference of 1 eV from the found GM structure.

A different core arrangement was discovered in the low lying isomers as

shown in Fig. 5.22. The difference between the energy of isomers shown in

Fig. 5.22(a) and (b) from the GM is 0.0118 eV and 0.4856 eV, respectively.

Since, the energy difference is less than 0.5 eV, it shows that gold doped

nanoclusters are fluxional in nature. A lot of isomers were identified with

very different arrangement of surface atoms as shown in Fig. 5.23.

(a) (b)

Figure 5.21. (a) The GM structure of Ag5Au50, (b) The core structure of
the GM of Ag5Au50
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(a) (b)

Figure 5.22. The core atom arrangement of Ag5Au50

(a) (b)

(c) (d)

Figure 5.23. Low lying isomers of Ag5Au50 ∆E(EGM −Eiso) (a) 0.1212 eV,
(b) 0.3407 eV, (c) 0.5259 eV and (d) 1.16 eV

(iii) Au15(SH)8, Au15(SH)10 and Au15(SH)13

To study the global optimizations, thio- protected Au15 cluster was chosen

with different concentration of SH group. The MD simulations were ran

at 100 K and 150 K for sampling the PES of thio- protected gold clusters.

Around 212 structures were sampled for Au15(SH)8 and 208 structures for

Au15(SH)10 in an energy interval of 0.5 eV from the tentative GM structure

obtained from the MD simulations. For Au15(SH)13, 220 structures were

sampled in an energy interval of 1.0 eV from the tentative GM structure.

All the simulations were run at time step of 1 fs and the total time of

simulation was 2 ns. The GM structures are shown in Fig. 5.24. It was

observed that as the number of units of SH increased from 8 to 10, a more

symmetric structure is obtained. But, as the units were increased to 13,

there was not much impact on the symmetry of the structure. Isomers

having different geometries were obtained for all the three compositions.
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(a) (b)

(c)

Figure 5.24. GM structures of (a) Au15(SH)8, (b) Au15(SH)10, (c)
Au15(SH)13,

The low lying isomers for Au15(SH)8, Au15(SH)10 and Au15(SH)13 are

shown in Fig. 5.25, 5.26, 5.27, respectively. A conclusion that can be

made from the different isomers obtained for silver-gold nanoalloys and

thio- protected gol nanoclusters is that gold based Nps exhibit a lot of

fluctuations in their structure and thus reactivities can be tuned according

to different geometries obtained.

(a) (b)

(c)

Figure 5.25. Low lying isomers of Au15(SH)8, ∆E (EGM −Eiso) (a) 0.2389
eV, (b) 0.2737 eV, (c) 0.4178 eV
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(a) (b)

(c)

Figure 5.26. Low lying isomers of Au15(SH)10, ∆E (EGM −Eiso) (a) 0.005
eV, (b) 0.095 eV, (c) 0.205 eV

(a) (b)

Figure 5.27. Low lying isomers of Au15(SH)13, ∆E (EGM −Eiso) (a) 0.614
eV, (b) 1.329 eV

5.4 Summary

A transferable ANN model for fitting energy and forces for any Np is pro-

posed. The model is termed “transferable” due to the dependence on

inter-atomic distances, effective nuclear charges of the chemical species

and reduced mass of the bonds involved in a chemical system. By do-

ing a concurrent but decoupled fitting of energy and forces of a MC system

using a SANN, an accurate representation of the atomic environments is

achieved. Using the same network for any chemical species in the system

leads to a tremendous reduction in the computational costs. Since, forces

are highly sensitive for an atomic environment, its fitting was a challenge,

which was discussed in this chapter. The proposed method was applied to

two systems. One consisting of a bimetallic alloy i.e. (AgAu)55-(AgAu)147

and the other a range of thiol protected gold nanoclusters (Au13(SH)6-
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Au38(SH)24), Au68(SH)32. Due to a precise representation of forces, the

weights obtained for the dataset consisting of Au13(SH)6-Au38(SH)24 were

able to optimize the geometry of Au68(SH)32 and run its dynamics. This

proves the transferability of the scheme from a small size to a large size

system.
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Chapter 6

Evolution of gold from

subnanometer to nanometer

level and different levels of

theory

6.1 Introduction

In previous chapters, I fitted the PES of gold nanoclusters up to Au147

using different types of descriptors and ANN. In this chapter, the excep-

tional ability of ANN weights is used to study the structural evolution of

gold nanoclusters till a size of ∼ 3.3 nm. Relativistic effects in gold makes

its behavior different than other metals. Unlike silver and copper, gold

does not prefer symmetrical structures as the stable entities. The ANN

trained on quantum mechanical data comprising of small to medium sized

clusters, gives exceptional results for larger size clusters. It reflects the

exceptional pattern recognizing capability of ANN. The PES for “magic”

number clusters- 309, 561 and 923 is explored in this chapter. It is ob-

served that these clusters do not prefer symmetric structures in gold. The

probability for atoms to move towards surface in gold Nps is very high,

leading to presence of more atoms on the surface to stabilize a compact

core structure. They prefer a distorted symmetric core with amorphous

layers of atoms over it. The amorphous geometries tend to be more stable

in comparison to completely symmetric structures. A trend in the evo-
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lution of a symmetric core is studied as the size of the Np increases. In

the structural evolution, stable symmetric cores (Ih) are found at Au160,

Au327, Au571, which can be recognized as new magic numbers. Au923 is

found to have a stable symmetric core of 147 atoms covered with layers

of atoms that are not completely amorphous. This shows the preference

of symmetric structures as the size of the Np increases(<3.3nm). A finite

temperature probability analysis of Au309 is also discussed.

6.2 Computational details

DFT calculations All the DFT calculations are done using VASP[141,

142, 143, 144]. The relativistic effects and the core electrons in gold nanos-

tructures, were taken care of by PAW method. PBE[146, 147] functional

and generalized gradient approximation is used to describe the electron

correlation. For sampling the Brillouin zone, a Gamma k-point mesh is

used. The gradient convergence and the threshold energy is set at 10−4

and 250 eV, respectively.

MD simulations The simulations were run using in-house developed code

in FORTRAN. Verlet algorithm was used to integrate Newton’s equations.

The thermostat used for maintaining constant temperature was Anderson

thermostat. The MD simulations were run at temperatures- 250 K, 300 K

and 400 K. A time step of 3fs was used and the run time of each simulation

was 1 ns.

MCBH search In order to explore the PES around the obtained local

minimas, MCBH search[169, 170, 171] was employed. In this search, the

number of bins are fixed as 12, with a difference of energy as 1.5 eV be-

tween the minimum and maximum energy levels. The initial temperature

was set as 0.55 for all the search runs. A total of 10 runs were done for

a particular size of clusters and each run were performed for a maximum

steps of 5×104. Top 50 isomers were collected in each run.

All the structure optimizations were done using L-BFGS algorithm[73].

The number of iterations were kept 500 till a gradient convergence of 10−5
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was achieved.

6.2.1 Fitting of energy and forces using ANN

To check the extrapolation ability and transferability of the NN weights, I

applied the weights obtained in chapter 3 (set-I weights) for the prediction

of energy and forces of very large size clusters(>300). The average RMS

error in forces are plotted for a few large size clusters(Au309 and Au561),

as shown in Fig. 6.1(a). The RMS error of all the clusters lie below 84.74

meV/Å/atom and therefore for larger size Nps, the atomic forces patterns

are very well captured by the data set consisting of a maximum size of 100

atoms. On the other hand, for very large size clusters, the energy pattern

were same but the magnitude of the predicted energy differed from the

DFT values. As shown in Fig. 6.1(b), the pattern followed by the energy

for a few Au309 clusters using DFT and set-I weights are similar, but set-

I weights are unable to differentiate between the stability of symmetric

structure with the other low lying amorphous structures.

In order to remove the discrepancy in the magnitudes of the pre-

dicted energies, the energy of the same data set is fitted without fitting

the forces. In the KF, instead of 3N+1 dimensional error vector, only a

single component i.e. energy is fitted. Such a fitting helps in providing

accurate energies for structures varying highly in symmetry, but lying in a

same energy well. The RMS error for energy on a test set of 1300 clusters

was 4.6meV/atom [set-II]. The energy of Au309 clusters using set-II weights

is plotted as shown in Fig. 6.1(b). The predictions were completely inline

with DFT and therefore, accurate energy predictions are achieved for very

large size clusters. As shown in Table 6.1, the relative energy difference

between the lowest minimum(LM) structure of Au309 (and Au561)and the

other isomers of Au309 (and Au561) from DFT and ANN are in good agree-

ment. It is evident from the table that the energies are predicted very well

by ANN, and the weights which are fitted for predictions of energy only

can be applied to any size of clusters. Overall for very large size clusters,
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two sets of weights are used – (1) For energy predictions [set-II] and (2)

For forces predictions [set-I].

Table 6.1. The relative energy difference between LM and other isomers from
DFT and ANN(set-II weights) (in eV) for Au309

Iso-1 Iso-2 Iso-3 Iso-4 Ih
DFT 0.307 5.321 5.357 7.313 8.274
ANN 0.107 4.977 5.543 6.978 7.660
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Figure 6.1. (a) Average RMS error in forces for a data set containing Au309 and
Au561. The RMS error of all the clusters are below the average RMS error for
the testing data set consisting maximum size of 100 atoms; (b) The comparison
between the energy predictions by DFT, energy-force (set-I) weights and energy
only (set-II) weights. It shows the discrepancy in the energy predictions using
energy-force weights.

Table 6.2. The relative energy difference between LM and other isomers from
DFT and ANN(set-II weights) (in eV) for Au561

Iso-1 Iso-2 Ih
DFT 2.005 0.2063 10.455
ANN 2.758 0.0073 11.397
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6.3 Results and discussion

6.3.1 PES exploration using SAS tool

There are various methods by which the PES of a metallic cluster can

be explored. The widely used algorithms are genetic algorithm[177, 178],

BH method[168], Monte Carlo simulations, MD simulations. These algo-

rithms helps in a global search of lowest energy structures efficiently. Since

gold Nps have a wide variety of structures within narrow energy range,

a new technique is developed for an efficient search within a narrow time

range. The main target is to narrow down the search of LM structures

on a very high dimensional PES. The gold Nps prefers amorphous and

cage type structures with few exceptions like Au20, which has a pyramidal

structure[110, 116]. The methodology of SAS tool is discussed in Chapter

2.

6.3.2 Magic number clusters- Au309, Au561 and Au923

Using SAS tool, 10 different initial structures were constructed for Au309.

Few structures with a symmetric core and a spherical shell covering it

were also generated. All the constructed structures along with the pure

Ih structure of Au309 were optimized. The results obtained directs the

indication towards gold’s structural preference i.e. amorphous. The surface

atoms in Ih geometry of Au309(Fig. 6.2(a)) are 162, which, however, is not

energetically preferred by gold. The amorphous structures obtained from

preliminary optimizations contained 180 to 182 atoms on the surface. The

inner core atoms ranged from 84 to 86, 33 to 38, and 5 to 7 in the third

layer, second layer and inner core respectively. Most of these structures

had energy lower than Ih, whereas a few were higher than Ih, giving a

tough competition for mutual existence. The relative energy difference

between amorphous structures and Ih structure are validated from DFT.

DFT results were in agreement with the ANN predicted results. To further

investigate the possible LM structure, MD simulations were performed. A
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lot of LM structures were collected by quenching the MD trajectories. The

LM structures along with randomly designed new structures were used as

initial structures in MCBH search to obtain more minimas. A family of

212 clusters in an energy range of 0.82 eV containing 177 surface atoms, 86

atoms in third layer, 37 atoms in second layer and 9 atoms in the inner core

were obtained. Few of the amorphous isomers of Au309 is shown in Fig.

6.3. The LM obtained has a proper core-shell structure as shown in Fig

6.4(a). The arrangement of core atoms reflects some symmetry but with

a little distortion as shown in Fig 6.4(c). The diameter of the LM is 2.19

nm with bond lengths among surface atoms ranging from 2.64Å to 2.90Å

. The structure of inner core of the LM can be described as a bicapped

pentagonal bipyramidal structure as shown in Fig 6.5(b). A similarity in

the arrangement of core atoms of LM-Au309 is drawn with the core atom

structure of GM of Au147[134, 135] in Fig 6.5. The inner core of Au147 has 7

atoms arranged as capped square bipyramidal whereas, in Au309, two more

atoms i.e. 9 atom forms the core.

(a) (b) (c)

Figure 6.2. The Ih structure of a) Au309, (b) Au561 and, (c) Au923

After successfully applying SAS tool for LM search of Au309, it was

used for exploring the PES of Au561. For initial structure construction for

Au561, a similar approach to Au309 was applied. The Ih structure (Fig.

6.2(b)) of Au561 consists of 252 atoms on the surface having bond lengths

greater than 2.9 Å. On optimizing the structures made from SAS tool, the

surface atoms in Au561 varied from 265 to 277 in different structures. MD

simulation and MCBH search was applied further to collect more popula-

tion.

In the LM structure, the surface atoms increased from 252 to 275
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(a) (b) (c)

(d)

Figure 6.3. Isomers of Au309 (a) Iso-1, (b) Iso-2, (c) Iso-3, (d) Iso-4

(a) (b) (c)

(d)

Figure 6.4. Core-Shell structure of LM obtained for(a) Au309, (b) Au561; The
geometry of core of LM structure of (c) Au309, (d) Au561

(a) (b) (c)

Figure 6.5. The inner core structure of a) Au147, (b) LM-Au309, (c) LM-Au561

and the innermost core atoms decreased from 13 to 8. It clearly reflects

the preference of amorphous structure with more surface atoms for gold
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Nps. The LM structure has a diameter of 2.75 nm with bond lengths

of surface atoms ranging from 2.62Å to 2.95Å . The inner core structure

possess a capped-pentagonal bipyramidal shape (Fig. 6.5(c)) whose pattern

is similar to the arrangement of core atoms of LM of Au147(Fig. 6.5(a))

and Au309(Fig. 6.5(b)).

Au923 is a ∼ 3.3 nm sized particle, so calculating its energy and forces

using DFT is highly computationally expensive. Since, DFT validated the

ANN predictions for Au309 and Au561, the ANN weights were used for ex-

ploring the stability of Ih structure for Au923. The Ih-Au923(Fig. 6.2(c))

consists of 362 surface atoms over a Ih-561 core. To explore the ener-

getic stability of amorphous structures at ∼ 3.3 nm, 8 initial structures

were constructed using SAS tool and further optimized. The search was

biased by constructing 5 different structures having Ih-13, Ih-55, Ih-147,

Ih-309 and Ih-561 as cores respectively, with required number of atoms

and spherical layers over each to complete Au923 structure. On optimiza-

tions, structures having more surface atoms ranging from 370 to 385 were

obtained. The MD simulations were ran using 3 different structures at

300K. On quenching the structures obtained from the simulations, the LM

structure obtained (Fig. 6.6) was found to be ∼10 eV lower in energy than

the Ih-Au923. The interesting fact about the LM obtained is that an Ih-147

atoms core is maintained with varying atoms in the top three layers leading

to a amorphous surface with 388 atoms. This reflects the fact that AuNps

start evolving to a completely symmetric structure at ∼3.3 nm size. From

MCBH search od Au923, a family of structures lying higher in energy than

the LM structure were obtained.

6.3.3 Adsorption energy of CO and O2 on LM

surface

On obtaining the LM structures of 309, 561 and 923, the catalytic activities

of these clusters for CO and O2 adsorption on their surface are probed. Xu

et al[209] have recently designed geometry-adsorption activity descriptors
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Figure 6.6. The LM of Au923 with a distorted surface and a Ih Au147

to study the binding strength of CO and O2 with gold clusters. In this work,

those descriptors are applied to calculate the adsorption energies of Au309-

Ih, Au561-Ih, Au923-Ih, Au309-LM , Au561-LM and Au923-LM using Eqs.

6.1 and 6.2. The CN is the generalized coordination number of an atom

h, CN(h) =
∑atoms

k=1 (CN(k)Nk)/(CN)max. The CN is calculated as sum

over all the neighbors coordination number. The neighbors coordination

number(CN(k)) is weighted with the number of neighbors (Nk). CNmax is

the maximum coordination number of Au in bulk structure i.e. 12.

Ead(CO) = 0.14× CN − 1.38 (6.1)

Ead(O2) = 0.15× CN − 0.93 (6.2)

A plot of number of surface atoms having different adsorption energies for

Ih-Au309 and LM-Au309 is shown in Fig. 6.7. On the X-axis, the adsorption

energies vary from minimum to maximum interval. The total number of

atoms which are activity centers in the cluster are binned with respect

to the binding strength. It is observed that amorphous LM structure has

more atoms with high binding strength for CO and O2 as compared to

the Ih structure. The atoms on LM surface have different binding energies

due to amorphous arrangement. On the other hand, Ih structure has a

symmetrical layout due to which many atoms have similar catalytic activity

and thus similar binding strength. The sites having very low binding energy

and a high binding strength for CO and O2 is color marked in Fig. 6.8(a)
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and 6.8(b). These sites have lower energy than the sites in Ih structure.

The red colored atoms have the highest binding strength (< −0.9 eV for

CO, < −0.5 eV for O2), the blue (−0.8 eV to −0.9 eV for CO, −0.4 eV

to −0.5 eV for O2) and green colored atoms (−0.7 eV to −0.8 eV for CO,

−0.3 eV to −0.4 eV for O2) have slightly lower binding strength. Therefore,

due to presence of more active sites, Au Nps having an amorphous surface

structure have high catalytic activities.
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Figure 6.7. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) O2 on Ih-Au309 and LM-Au309

Similarly, the adsorption energies of surface atoms of LM and Ih struc-

ture of Au561 are calculated. The adsorption energy plots (Fig. 6.10) show

a contrast between the binding strengths and the number of atoms avail-

able for catalytic activities in Ih and LM structure. In the LM structure,

the active sites having a high binding strength as compared to Ih structure

is higher. As seen from Fig. 6.8(c) and 6.8(d), the top and edge sites have

high binding strength as compared to the other sites on the surface. The

adsorption energies plots for Ih and LM structures of Au923 follows a simi-

lar trend as Au309 and Au561, as shown in Fig. 6.11. The binding sites have

increased in the LM structure and therefore AuNps are catalytically active

at ∼3.3 nm size. The active sites having high binding strength for CO

and O2 are highlighted in Fig. 6.8(e) and 6.8(f). This study shows that

the number of surface atoms along with the structural arrangement has

an impact on the catalytic activities of AuNps. A compact arrangement
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(a) (b) (c)

(d) (e) (f)

Figure 6.8. The active centres for CO and O2 adsorption marked for the LM
of (a) Au309-CO, (b) Au309-O2, (c) Au561-CO, (d) Au561-O2, (e) Au923-CO, (f)
Au923-O2; Red colored atoms have lowest binding energy (< −0.9 eV for CO,
< −0.5 eV for O2), blue colored atoms have binding energy (−0.8 eV to −0.9
eV for CO, −0.4 eV to −0.5 eV for O2) and green colored atoms have binding
energy (−0.7 eV to −0.8 eV for CO, −0.3 eV to −0.4 eV for O2)

of atoms in Ih structure has lower binding strength when compared to an

amorphous arrangement of atoms. In order to check the impact of size

of core on the catalytic activities, different structures of Au309 are chosen

and the adsorption energies for CO and O2 are calculated. The adsorption

energies did not have any impact due to the change in size of core. Al-

though, the active sites decreased due to decrease in the number of surface

atoms and increase in number of core atoms in few clusters, as shown in

Fig. 6.9. The comparison is shown for five structures having core sizes of

8, 9 (LM), 10 and 13 atoms. For 13 atom core, an amorphous structure

and the Ih structure was considered. An anomaly is encountered, when

the number of core atoms are 13 for one of the amorphous isomer of Au309.

This can be explained by the absence of symmetry in the core atoms. Due

to increase in the amorphous content in the cluster, the number of surface

atoms increases.
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Figure 6.9. The number of active centers for CO adsorption on different
clusters of Au309 with respect to the core atoms
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Figure 6.10. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) O2 on Ih-Au561 and LM-Au561
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Figure 6.11. The number of surface atoms binned with respect to adsorption
energies of (a) CO and (b) O2 on Ih-Au923 and LM-Au923
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Table 6.3. The relative energy difference between LM and Ih and Dh structures
from DFT and ANN(set-II weights) (in eV) for Au75

∆E Ih Dh
DFT 1.858 1.200
ANN 2.376 0.085

6.3.4 Evolution of a magic core in Au160, Au327, Au571

With the understanding developed till now about the “magic” number clus-

ters, it is confirmed that they tend to differ from having a compact sym-

metric structure. A recent work by Pande et al[130] showed the presence of

Au13(Ih) as a stable core in Au60. This inspired me to look further for the

clusters which can have a stable symmetric core. The approach of taking

a symmetric core and encapsulating it by one spherical layer was followed.

Since, more surface atoms are preferred by gold clusters, the number of sur-

face atoms were selected accordingly. The structures are then optimized to

get a LM structure. On optimization, if the symmetric structure persists

then MD simulations were carried out to observe the thermodynamic sta-

bility of the structure obtained. Further, MD trajectories were quenched

and stable structures were collected. The search was continued if the Ih

symmetry was not disturbed in MD simulations by using MCBH search.

Dh and Oh symmetric cores were not considered, as for gold clusters Ih

has been found the most stable among Ih, Dh and Oh. In order to verify

that ANN potential is not biased towards Ih geometry, a test case of the

Lennard Jones(LJ) Au75 cluster was taken. The ground state of LJ-Au75 is

fcc like (Dh) whereas the second lowest structure is Ih. The MCBH search

of Au75-Ih gave an isomer which is much lower in energy than the Dh and

the Ih structure. The order of stability follows : LM(distorted symmetry)

> Dh > Ih. All the structures are shown in Fig. 6.12. The energy order

was confirmed with DFT and it was in agreement with ANN as shown in

Table 6.3. This shows that ANN potential is not biased towards symmet-

ric structures. The search was began with clusters around 147 atoms.

The numbers chosen were Au150, Au152, Au154, Au155, Au156, Au157, Au158,
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(d)

Figure 6.12. Au75 (a) Ih, (b) Dh, (c) LM obtained (view 1), (d) LM obtained
(view 2)

Au159, Au160, Au166, Au168. The aim is to find the minimum number of

atomic cluster configuration at which 13 atoms can form a stable core. Ini-

tially, alternative numbers are considered in order to get an insight. If 13

atoms are obtained in the core in a particular configuration, then a new

configuration with less than one atom was checked. For example, case I- If

I get 13 atoms in Au155, then I check for the symmetric core in Au154 and

case II- If I do not get 13 atoms inside the core, like in Au152, I drop Au151

for the study. The 55 atom-Ih structure was put inside a sphere with 95,

97, 99, 100, 105, 111 and 113 atoms, respectively. The structures were op-

timized and after a series of simulations, Au160 was obtained with a stable

12 atom (13− 1) symmetric core(Fig. 6.14). The central core atom in the

Mackay Ih of 13 atom metallic cluster moved to the outermost surface of

Au160. The symmetric core search was continued around 309 atoms. The

numbers selected were Au308, Au315, Au318, Au320, Au321, Au326, Au327,

Au330. After the simulations-optimization cycle, Au327 was obtained with

a stable 54 atom (55−1) symmetric core(Fig. 6.14). For search around 561

atoms, Au569, Au570, Au571, Au575, Au579, Au581, Au583 were chosen. The

trend of having a symmetric core without one central atom continued with

Au571, which has a stable 146 atom (147 − 1) symmetric core(Fig. 6.14).

The observations made with this study is that two layers are required to
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stabilize a symmetric core in gold Nps. Also, it was observed that the

structures of Au160, Au327 and Au571 containing the central core atom were

energetically competitive with the structures without the central core atom.

An energy difference of 0.5 eV to 1 eV was obtained between the two types

of structures. It can be concluded that there is probably a symmetric core

evolution starting from Au160 and continuing up to Au327 and Au571. The

surface of gold Nps is highly fluxional and therefore maintaining a compact

symmetric shape is not possible. The numbers 147, 309 and 561 are unable

to have a stable symmetric core because there are not enough atoms on

the surface to protect the symmetry of the core. As soon as the number

of atoms are increased in a structure i.e. in 160, 327 and 571, the inner

core symmetry is maintained. With all the data available for different size

of gold Nps, the surface atoms ratio with respect to the total atoms in a

Np as shown in Fig. 6.13. A logarithmic dependence exists between the

surface atoms ratio and total number of atoms. From Au147 to Au923, the

number of surface atoms decrease from 71% to 42%. Therefore, a decrease

in the catalytic activities are observed with increase in the Np size.
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Figure 6.13. The plot of surface atoms ratio against the total number of
atoms in a cluster. A logarithmic trend line is fitted to the data with R2 and
the equation in the inset of the plot.
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Au160 Au327 Au571

Figure 6.14. The symmetric core evolution in Au160, Au327, Au571

6.4 Variation in structural preference of

gold nanoclusters: Different levels of

theory

In earlier studies, it have been shown that larger size gold nanocluster

prefers Ih, Dh and fcc(Oh) structures. Koga et al[210] studied gold Nps in

the size range of 3-14 nm using high resolution electron microscopy. In their

study, a coexistence of Ih and Dh structures is observed below 5 nm. It is

expected that for Au561 (∼ 2.7nm) and Au923 (∼ 3.3nm), the population

should consists of a considerable amount of Ih and Dh structures. In an-

other study by Foster et al,[211] the energy difference between Dh and fcc of

Au561 supported on silicon nitride was found to be very small. The Dh and

fcc structures were found in abundance in the generated population. Bao et

al[212] performed theoretical study of gold clusters (up to 318 atoms) using

RGL potential. They have also found very small energy difference between

Dh and fcc structures. Wells et al[213] have shown the metastability of the

symmetric structures. They have shown that fcc(Oh) and Dh structures

are the most abundant in the generated population. All these studies show

that symmetric structures- Dh and fcc(Oh) are experimentally preferred

geometries. In my study, structures having an amorphous surface and a

symmetric core has been found. As the size of the nanoclusters increases to

∼3.3 nm, the symmetric core also evolves with a amorphous layer of atoms
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over it. These structures are found to be lower in energy (from ANN and

DFT) when compared to Ih, Dh and Oh structures.

The DFT calculations are performed at 0 K and thus the stability

at a finite temperature is not considered. Since ANN potential mimics

DFT, it also gives the relative energy order similar to DFT. In order to

check the energy difference between the structures obtained in this study

with the symmetric structures, Ih, Dh and Oh structures are constructed

using atomic simulation environment[214, 215] which is a python based

program. By using ANN potential the Ih, Dh and Oh structures were not

found in the population generated by MD simulations and MCBH search.

One of the reason for this can be the huge difference in the energy of the

amorphous structures and the compact symmetric structures as shown in

Table 6.4. The Au309-LM is found to be ∼ 8.274 eV (DFT) and ∼ 7.660

eV (ANN) lower in energy than Ih structure, ∼ 9.498 eV (DFT) and ∼

12.961 eV (ANN) lower in energy than Dh structure and 12.841 eV (DFT)

and ∼ 17.383 eV (ANN) lower in energy than Oh structure. The Au561-

LM is found to be ∼ 10.455 eV (DFT) lower in energy than Ih structure,

∼ 11.950 eV (DFT) lower in energy than Dh structure and ∼ 14.477 eV

(DFT) lower in energy than Oh structure. For Au561, the magnitude of the

ANN predicted energies is far from the DFT predicted energies, but the

relative ordering of the energy is followed by ANN. From DFT and ANN,

the energy ordering between symmetric structures is Ih>Dh>Oh, which is

according to the gold structural preferences.[120, 131] Since, the LM has a

very low energy as compared to Ih, Dh and Oh structures they were not

spotted in the MD trajectories and MCBH search. Also, the constructed

structures of Ih, Dh and Oh geometry may not be the same structures

found in the works of Koga et al,[210] Bao et al[212] and Foster et al.[211]

The energy of a molecule depends upon the type of functional used in

DFT. For small gold clusters, Tao-Perdew-Staroverov-Scuseria (TPSS) has

been shown to give more accurate results.[216, 217] A comparative study

between PBE and TPSS functional calculations for gold nanoclusters was

done by Li et al.[120] They showed that the magnitude of energies predicted
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Table 6.4. The relative energy difference of Ih, Dh and Oh structures with
the LM of Au309 and Au561 from DFT (in eV)

Ih Dh Oh
Au309 8.274 9.498 12.841
Au561 10.455 11.950 14.477

by TPSS functional is higher than PBE functional, but the relative energies

between the structures were same for both the cases.

In order to explain the discrepancy between the experimentally pre-

ferred and theoretically predicted structures, a finite temperature probabil-

ity analysis for Ih, Dh, Oh(fcc) and LM structures of Au309 was performed.

As discussed by Z. H. Li,[218] the LM structure for a system may not be the

most probable and the preferred isomer at a particular temperature. The

stability of a cluster at 0 K depends only on the potential energy (PE).

At finite temperature, it is governed by other factors like translational,

electronic, rotational and vibrational states. The molecular partition func-

tion estimates the partitioning of probabilities among different states. The

translational partition function is dependent on mass and volume of the cu-

bic box. As the box length and the mass is same for all the Au309 isomers,

translational partition function is not considered. The electronic partition

function is considered to be equal for all the isomers and is therefore re-

moved from the calculations. Thus, the probability of different isomers

dependent upon rotational (qrot) and vibrational (qvib) partition functions

at 300K, 500K, 800K and 1100K is calculated. The probabilities are calcu-

lated only for the four isomers of Au309. The probability may vary if more

isomers are taken in the analysis, but the relative values are expected to

be same.

The rotational partition function (qrot) is approximated by rigid rotor

approximation. For an isomer i, in Eq. 6.4, Ia, Ib and Ic are the moment

of inertia in each axis, and σ is the symmetry number of the isomer. The

symmetry number is obtained from the point group of a molecule. It is

obtained by counting the number of elements excluding the identity and
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rotations of the point group.[219] To calculate the point group, I used

Gaussian 09[220]. The point group of Ih is IH, Dh is D5H, Oh is OH and

LM is C1. The σ for IH, OH, D5H and C1 is 60, 24, 10 and 1, respectively.

The vibrational partition function (qvib) is approximated by Harmonic

Oscillator approximations. In Eq. 6.5, νb is the frequency of b vibrational

modes. For large size clusters, a lot of vibrational modes are observed

having small frequencies. The contribution to qvib from such frequencies is

large, which overestimates the qvib as the vibrations become anharmonic.

To decrease the error in calculation of qvib and make a harmonic approxi-

mation, Z. H. Li,[218] raised the small frequencies to a high frequency by

setting a cut-off frequency. All the smaller modes frequency values are

raised to the cutoff frequency value. The maximum and the minimum

frequency observed in Au309 is 160 cm−1 and 3.5 cm−1, respectively. I arbi-

trarily chose 80 cm−1(10 meV) as the cut-off frequency and below 80 cm−1

the frequency are treated as small frequencies and raised to 80 cm−1 in

calculations.

P i
qrov =

qirotq
i
vib∑isomers

i=1 qirotq
i
vib

(6.3)

qirot =

(
8π2kT

h2

) 3
2
√
πI iaI

i
bI
i
c

σi
(6.4)

qivib =
∏
b

e−
hcνb
2kT

1− e−
hcνb
kT

(6.5)

The probability (Pqrov) of an isomer i is calculated from qrot and qvib,

as given by Eq. 6.3. The Pqrov are calculated for the isomers at 300 K, 500

K, 800 K and 1100 K as shown in Table 6.6. The probability Pqrov gives a

deeper insight into the formation of isomers dependent upon the partition

functions. It can be seen from Table 6.6, at 300K, the Pqrov is almost

zero for the LM (1.53× 10−5), whereas, it is maximum for Ih (0.92116).

The probability of Oh (0.06356) and Dh (0.01527) isomers is also high

as compared to the LM structure. As the temperature is increased to

500 K, the Pqrov of Ih decreases to 0.92067. But, the Pqrov of Dh, Oh

and LM increases to 0.01562, 0.06369 and 1.73× 10−5, respectively. This
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trend is continued till the temperature of 1100 K for Ih, Dh and LM. The

probability of Oh decreases as temperature increases from 800 K to 1100

K. Overall, the Ih structure is probable from 300 K up to 1100 K. The

probability of LM structure is very small when compared to Ih, Dh and

Oh structures. The Dh and Oh isomer becomes more probable as the

temperature is increased. At all the temperatures, the LM structure is the

least probable and therefore despite being lower in energy than Ih, Dh and

Oh structure, such structures may be formed in very small percentage in

the experiments. This is in agreement with the study by Foster et al[211]

and Wells et al,[213] where, amorphous geometries have been identified but

in a very small percentage for gold nanoclusters.

Among the four isomers of Au309, it is observed that above cut-off

frequency, the magnitude of the vibrational modes for the LM structure is

higher in comparison to symmetric structures. The Dh, Oh and Ih struc-

tures have fewer modes with high frequency. Therefore, the value of vibra-

tional partition function is comparatively low for LM structure and high

for Ih, Dh and Oh structures. On the other hand, in the rotational parti-

tion function, the symmetry number in the denominator of qrot is 1 for LM

structure and 10, 24, 60 for Dh, Oh and Ih, respectively. It gives relatively

higher value of qrot for LM structure than the Ih, Dh and Oh structures.

But as qrov = qvib × qrot, the vibrational partition function dominates and

gives higher probability for symmetric structures when compared to LM

structure. As the temperature is increased, the magnitude of vibrational

partition function increases and highly dominates over the contribution

from rotational partition function. So, the analysis shows that symmetric

clusters have more chances to form and are stable at high temperatures

due to vibrational part of the partition function. The qrot and qvib values

for the four isomers of Au309 is provided in the Table 6.5. The vibra-

tional modes calculation involves the calculation of force constants. The

interatomic force constant is dependent on the interatomic forces. The

accurate calculation of interatomic forces gives the accurate estimation of

atomic positions and thus the fitting of forces in ANN should be accurate.
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Table 6.5. The rotational (qrot) and vibrational (qvib) partition function of 4
isomers of Au309 at different temperatures

Isomer Type 300K 500K 800K 1100K
Ih qrot 3.68× 1011 7.93× 1011 16.04× 1011 25.86× 1011

qvib 9.75×10−307 2.43×10−100 1.24×1089 4.83×10216

Oh qrot 3.81× 1011 8.19× 1011 16.58× 1011 26.73× 1011

qvib 0.65×10−307 0.162×10−100 0.083×1089 0.324×10216

Dh qrot 3.79× 1011 8.16× 1011 16.52× 1011 26.63× 1011

qvib 0.15×10−307 0.04×10−100 0.02×1089 0.08×10216

LM qrot 3.86× 1011 8.31× 1011 16.82× 1011 27.12× 1011

qvib 1.5×10−311 4.3×10−105 2.3×1084 9.18×10211

The Set-II weights predicts the accurate relative energy, whereas, the Set-

I weights predicts accurate interatomic forces. The interatomic forces in

gold nanoclusters for a dataset consisting of environments for Au30-Au147

are fitted with an error of 84.74 meV/Å/atom using Set-I weights. When

these weights are applied to estimate the forces of a few Au309, an average

error of 14 meV/Å/ atom in the prediction of atomic forces is observed.

Due to such a small error in the prediction of forces, a fair estimation of

force constants is obtained. Due to this small error, MD simulations and

local optimization of the structures are also conducted.

Since the probability is highly governed by qvib, the prediction of

vibrational frequency from DFT and ANN is compared. As the computa-

tional time for calculation of vibrational modes for Au309 is huge, I took

small sized clusters of Au34 and Au58 whose calculations are computa-

tionally feasible. Four different types of clusters of Au34 and Au58 each

was taken and vibrational frequency was estimated using DFT (In VASP,

IBRION=5, POTIM=0.015). The values of vibrational frequency do not

matches exactly with those calculated using ANN (Set-I weights). The

order of the probability(Pqrov) calculated using vibrational frequency from

DFT and ANN are found to be in agreement with each other. The struc-

ture of the isomers is shown in Fig. 6.15 and 6.16. The Pqrov data is

provided in Table 6.7 and 6.8. This shows the capability of ANN potential

to predict the accurate probabilities of isomers at different temperatures.
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Table 6.6. The probability Pqrov of Ih, Dh Oh and LM structure of Au309 at
different temperatures

Isomer 300K 500K 800K 1100K
Ih 0.92116 0.92067 0.92051 0.92046

Oh(fcc) 0.06356 0.06369 0.06377 0.06374
Dh 0.01527 0.01562 0.01574 0.01577
LM 1.53× 10−5 1.73× 10−5 1.80× 10−5 1.83× 10−5

Table 6.7. The probability Pqrov of 4 isomers of Au34 at different temperatures

Isomer Type 300K 500K 800K
1 ANN 0.2486 0.2489 0.2490

DFT 0.2150 0.2166 0.2170
2 ANN 0.1296 0.1312 0.1317

DFT 0.0835 0.0854 0.086
3 ANN 0.3721 0.3696 0.3688

DFT 0.4486 0.4441 0.4425
4 ANN 0.2496 0.2501 0.2504

DFT 0.2522 0.2538 0.2543

Table 6.8. The probability Pqrov of 4 isomers of Au58 at different temperatures

Isomer Type 300K 500K 800K
1 ANN 0.2254 0.2258 0.2261

DFT 0.1859 0.1873 0.1877
2 ANN 0.1578 0.1595 0.1600

DFT 0.1527 0.1548 0.1555
3 ANN 0.2613 0.2612 0.2614

DFT 0.239 0.2406 0.2408
4 ANN 0.3554 0.3534 0.3527

DFT 0.4214 0.4173 0.4158

Thus, a finite temperature probability analysis performed by incorporat-

ing rotational and vibrational partition function has given a quantitative

insight for the experimentally obtained results.
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Figure 6.15. The four isomers of Au34 (a) 1, (b) 2, (c) 3, (d) 4

(a) (b) (c)

(d)

Figure 6.16. The four isomers of Au58 (a) 1, (b) 2, (c) 3, (d) 4

6.5 Summary

In this Chapter, the evolution of gold from cluster to a Np by proposing

new numbers which shows a symmetric core evolution in the growth of gold

Nps is presented. The exceptional pattern recognizing capability of ANN

has made it possible to accurately predict structures up to a size of ∼3.3

nm. The structures till a size of ∼3.3 nm are not completely amorphous

and a symmetric core is identified with amorphous layers of atoms over

it. The “magic” number in metallic Nps (13, 55, 147, 309, 561 and 923),

do not prefer symmetric structures in gold. The probability for atoms to

move towards surface in gold Nps is very high, leading to requirement of

more atoms on the surface to stabilize a compact core structure. There-

fore, a plausible evolution of a symmetric core in gold Nps is shown. The
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nucleation begins with a 12 atom symmetric structure, and two layers of

atoms are deposited over it in Au160. The next number is Au327, where 54

atoms form a symmetric core with two layers of atoms deposited over it

to keep the core stabilized. Further symmetric core arises in Au571, where

146 atoms form a symmetric core, with the deposition of two layers over

the core structure. These numbers reveal that gold Nps have a slow evo-

lution towards bulk structure and therefore they have a high reactivity till

a size of ∼3.3nm. A finite temperature probability analysis of Au309 is

also performed. The isomers lying higher in energy than the most stable

structure are found to be more probable at different temperatures. The

results obtained from the analysis has shown that the PE is not the only

parameter for measuring the abundance of a structure in a population.
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Chapter 7

Conclusion and Future scope

7.1 Conclusion

In last few decades, ML has become one of the major tool to solve a prob-

lem which is beyond the processing of a human brain. The learning and

processing of the information by a machine leads to discoveries of different

trends present in a database. ML techniques capture the intricacies in a

system and find a relationship between different parameters.

ANN is one of the robust ML technique that mimics the learning

process of a human brain using the basics of a perceptron model. The

computational efficiency of ANN has inspired scientists to use it for solving

complex quantum chemical problems. Exploration of PES of a molecule

is one such problem which can be solved using ANN. To explore a PES,

interatomic potential is required that gives the energy of the system. The

most accurate interatomic potentials are obtained from ab initio methods.

These methods consists of electronic structure dependent calculations that

gives accurate properties but at a high computational cost for the experi-

mentally relevant systems. ANN bridges the gap between accuracy of ab

initio methods and low computational costs.

Metallic Nps have a variety of applications which makes them an

important topic to study theoretically. The theoretical study of their prop-

erties is made feasible by efficient interatomic potentials which describe

the atomic and molecular interactions. The study of structural dynamics

of Nps leads to major insights into vacancy defects, surface energy, me-

chanical properties, plasmon-resonance behavior. The structural dynamics
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analysis is thus impossible to conduct at a broader scale for large size sys-

tems using ab initio methods.

The goal of this thesis was to construct ANN interatomic potentials

for studying the structural dynamics of metallic Nps (especially gold Nps

and its alloys) having an accuracy of ab initio but at a much faster com-

putational speed. The major reason to choose ANN is that it captures

the complex bonding patterns in a system and find a relationship between

coordinates and energy. As gold shows a rugged PES due to relativistic

effects, the fitting of PES was possible with ANN.

For constructing a PES using ANN, one of the most important in-

gredient is the descriptors of the atomic environment. Before this thesis

work, ANN was not applied to fit the PES of large size gold Nps. Also, a

transferable approach for fitting energy and force of an alloy system was

not done prior to the work done in this thesis. The proposed descriptors

and various new models have proved to be of great significance in fitting

the PES of complex system like gold. The results obtained shows the effi-

ciency of ML techniques, especially ANN in fitting different properties of

chemical systems. In brief, the major findings of the thesis are listed as:

1. Power spectrum coefficients as input descriptors to ANN leads to

an accurate PES fitting tool for gold nanoclusters. The computa-

tional time for accurate calculation of energy and forces using power

spectrum-ANN for a Au147 cluster is in seconds, which is very fast

when compared to DFT (∼ hours) (calculation done on parallelized

8 CPU [GenuineIntel 2600.0 MHz]).

2. Bispectrum - an order higher than power spectrum, is capable of

capturing the atomic environments more efficiently than power spec-

trum. It resulted in searching more number of structures as compared

to power spectrum driven structure exploration.

3. For an alloy system, the PES can be fitted using a single ANN by

following a strategy of decoupled fitting of energy and forces. The
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elements are differentiated between each other using weightings in

the descriptors. The atomic forces are derived from gradients that

are weighted according to the type of element.

4. The approach proposed for alloy systems is “transferable” as the pa-

rameters are dependent on interatomic distances, effective nuclear

charges of the chemical species and reduced mass of the bonds in-

volved in a chemical system. The ANN weights fitted for an alloy

(Eg. (AgAu)55-(AgAu)147) can be used to predict energy and forces

for an individual system (Eg. pure Ag or pure Au clusters).

5. The PES fitted for small and medium sized clusters(∼1.8 nm) is trans-

ferable to larger size clusters(<3.3 nm).

6. A symmetric core evolution in gold nanoclusters is observed to occur

at Au160, Au327, Au571, which can be recognized as new magic num-

bers. In these clusters, the symmetric core is a Ih without the central

atom.

7. A finite temperature probability analysis of gold clusters shows that

the potential energy is not the only parameter for measuring the

abundance of a structure in a population. The statistical analysis

gives the preference of symmetric structures over amorphous struc-

tures in a sample.

7.2 Future Scope

The work that can be taken forward from this thesis can be summarized

as

• The methodology presented in this thesis is tested on gold Nps and

its alloys. The same scheme can be tested on a variety of nanomate-

rials for efficient mapping of PES from coordinates to energy. Other

than ANN, there are various ML techniques which can be tried and

modified according to the system in consideration.

131



• As thermodynamical quantities play a role in preferring one structure

over another, an ML model can be created with descriptors having

information about local structure environment as well as some data

from thermodynamics. This will give a combine boost to the explo-

ration of PES and thus a more accurate discovery of stable structures

can be carried out.

• The approach to construct the training data set can be altered by

using the DFT data calculated with different functionals. Doing so,

the accuracy of the fitted energy can be improved and thus improving

the PES.

• The complexity of a system increases with the presence of a lot of

stable isomers at a particular temperature. A statistical tool for

identifying such systems and devising a proper ML technique to fit

its properties can be worked upon.

• The overfitting and the underfitting of the ANN weights can be tack-

led by a ”choosing” mechanism, in which the hidden layers and the

neurons are added or subtracted on the fly depending upon the prob-

ability analysis at each neuron.

• The foundation of DFT is 3 dimensional electron density, using which

energy functionals are calculated and properties are estimated. Using

ML, electron density can be modeled and estimated for an atomic ar-

rangement. Once the electron density is obtained, the computational

burden of DFT is reduced and thus it can be applied to a large size

particle.

• Applications such as catalysis using ML approach can be studied.

The reduction of carbon dioxide on gold Nps is one such important

system that can be worked upon. The ML can simplify the iden-

tification of the structure of Np which can efficiently carry out the

reduction.
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• Different types of atomic environment descriptors can be designed to

differentiate between stable and non-stable environments such that

computational load of fitting a dataset is reduced.

• A global optimization strategy can be constructed using ML. The

identification of very high energy isomers as well as the clustering of

similar energy isomers can be done using a trained set of parameters.

The identified structures can be modified by using gradient dependent

approach to explore different minima basins.
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[59] Matthew Hirn, Stéphane Mallat, and Nicolas Poilvert. Wavelet scat-

tering regression of quantum chemical energies. Multiscale Modeling

& Simulation, 15(2):827–863, 2017.

[60] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, and

Stéphane Mallat. Solid harmonic wavelet scattering: Predicting

141



quantum molecular energy from invariant descriptors of 3d electronic

densities. In Advances in Neural Information Processing Systems,

pages 6540–6549, 2017.

[61] Nongnuch Artrith, Tobias Morawietz, and Jörg Behler. High-

dimensional neural-network potentials for multicomponent systems:

Applications to zinc oxide. Physical Review B, 83(15):153101, 2011.

[62] Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. Efficient

and accurate machine-learning interpolation of atomic energies in

compositions with many species. Physical Review B, 96(1):014112,

2017.

[63] Steven Hobday, Roger Smith, and Joe Belbruno. Applications of

neural networks to fitting interatomic potential functions. Modelling

and Simulation in Materials Science and Engineering, 7(3):397, 1999.

[64] Kun Yao, John E Herr, David W Toth, Ryker Mckintyre, and John

Parkhill. The tensormol-0.1 model chemistry: a neural network aug-

mented with long-range physics. Chemical science, 9(8):2261–2269,

2018.
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