
 CLIMATE EXTREMES AND THEIR 

IMPLICATIONS FOR RISK AND RESILIENCE 

IN INDIA 

 

Ph.D. Thesis 
 

 

 

 

By 

SRINIDHI JHA 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

DISCIPLINE OF CIVIL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
AUGUST 2020



CLIMATE EXTREMES AND THEIR 

IMPLICATIONS FOR RISK AND RESILIENCE 

IN INDIA 

 
 

A THESIS 

 

Submitted in partial fulfillment of the  

requirements for the award of the degree 

of 

DOCTOR OF PHILOSOPHY 
 

 

 

by 

SRINIDHI JHA 
 

 

 

 

 

 

 
 

 

 

DISCIPLINE OF CIVIL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
AUGUST 2020 

  



 



ACKNOWLEDGEMENTS 

I would like to place on record my deep sense of gratitude and sincere thanks to my thesis supervisor Dr. 

Manish Kumar Goyal, Associate Professor, Discipline of Civil Engineering, Indian Institute of Technology 

Indore for his invaluable guidance and full hand cooperation throughout all aspects of this research work. I 

also admire his patient explanation of the concepts and basic principles.  

I am grateful to Dr. Lalit Borana, Dr. Abhishek Rajput and Dr. Sumanta Samal for their valuable suggestions 

and kind support during the completion of the research work. Their technical inputs and valuable suggestions 

have greatly helped me in shaping this thesis. 

My sincere acknowledgement and respect to Prof. Neelesh Kumar Jain, Director, Indian Institute of 

Technology Indore for providing me the opportunity to explore my research capabilities at Indian Institute of 

Technology Indore. Also, I express my gratitude to Dr. Sandeep Chaudhary and Dr. Neelima Satyam for their 

valuable time and support at the institute for the administrative purposes. 

I am thankful to my parents Shri Jitendra Kumar and Smt. Sushma Jha, and sister Wricha Jha for their blessings 

and unconditional support for bringing me to such level. Without their faith in me, I would not have been able 

to carry out this study.  

Special thanks to Dr. Jew Das, Dr. Shivam, Dr. Uttam Puri Goswami, Dr. Ashutosh Sharma, Bhargava and 

Dr. Gilbert Hinge for providing crucial inputs during my research work. I am thankful to my lab-mates Vikas, 

Saket, Nikhil and Shivam Singh for their cooperation and support. I am grateful to the entire scientific staff of 

the Discipline of Civil Engineering who have always been helpful to me.  

Finally, I am thankful to all who directly or indirectly contributed, helped and supported me. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents. 

 



i 
 

ABSTRACT 

Novel approaches to assess the occurrence, distribution and dependence of 

climate extremes are required to understand their implications for risk and 

resilience. The complexity of climate systems, intricate ecosystem-climatic 

interactions, inter-dependence of the climate extremes and prevailing 

nonstationarity make the risk and resilience assessment a challenging task. 

Moreover, the risk due to extreme climatic events does not only depend on 

the magnitude of extremes themselves but also different components of risk, 

such as exposure and vulnerability. The risk reduction and adaptation to 

climate change are significantly dependent upon the accurate estimation of 

hazardous physical event and its interaction with exposure and vulnerability 

parameters such as population, infrastructure, environmental services and 

economic assets. Therefore, in context of climate change, a better 

understanding of the climate extremes in terms of their occurrence, 

dependence on different factors, dynamics and predictability is necessary to 

evaluate the implications for risk and resilience further. This thesis presents 

the study carried out to deliver a comprehensive assessment of extreme 

climatic conditions over India and their implications for risk and resilience. 

The initial part of the thesis is devoted to explain the evolution of 

nonlinearity and determinism in the precipitation and temperature profiles 

in India during the past century. The investigation is carried out using Delay 

Vector Variance (DVV) approach, which allows the quantification of the 

nonlinear component in a time series based on the comparison of variance 

measures. The results show that both precipitation and temperature exhibit 

a high degree of nonlinearity and decreasing predictability, particularly in 

the extreme climate zones of the country. 

In the second part, the evolution of climate extremes under the influence of 

global scales modes is analysed. To account for external forcings, the 

influence of El Nino Southern Oscillation (ENSO), Indian Ocean Dipole 

(IOD) and North Atlantic Oscillation (NAO) on extreme precipitation over 
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24 major river basins of India is estimated using the nonstationary extreme 

value analysis in Bayesian setting. It is found that extreme precipitation 

events in the country are dominated by these oscillations, most significantly 

in central India. Further, the stationary return levels are not reliable for the 

purpose of risk analysis as compared to their nonstationary counterparts.  

The assessment of the occurrence of climate extremes is approached from a 

joint dependence perspective in the next part. A Copula based bivariate 

probabilistic study of the impacts of extreme climatic conditions on 

terrestrial ecosystem functioning is carried out.  It is observed that the 

Croplands are most likely to be affected by drought-like conditions, which 

is of paramount concern for the country’s food security. Further, possible 

lowering in soil moisture content could significantly alter the terrestrial 

ecosystem functioning in most parts of the country. 

The final portion of the study is aimed at discussing a comprehensive 

framework for estimating the risk and resilience to extreme climatic 

conditions. Nonstationary return levels of annual maximum one-day rainfall 

and extremely long wet spells are estimated. These return levels, along with 

their uncertainty, are used to derive the hazard measures. These measures 

are combined with the exposure and capacity indicators to calculate the 

district-wise risk due to extreme rainfall. It is observed that one-third of 

India’s districts are under high risk due to extreme rainfall. Further, the 

resilience of terrestrial ecosystems to withstand precipitation deficit is also 

estimated. It is observed that at least one-third area of 18 out of 24 major 

river basins are non-resilient to such extreme conditions. 
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GLOSSARY 
Climate Average weather conditions over a certain period, 30 

years in general.  

Climate change According to the Intergovernmental Panel on Climate 

Change (IPCC), climate change can be defined as the 

alteration in the mean and/ or the variability in its 

properties for a long period of time, generally 

considered in decades. 

Climate 

extremes 

The occurrence of a value of weather or climate variable 

above or below a threshold value near the upper or 

lower ends of the range of observed values of the 

variable.  

Climate risk The likelihood of severe alteration in the normal 

functioning of a community or society due to hazardous 

climate events and their interaction with vulnerable 

socio-economic, environmental or material conditions.  

Climate 

variability  

Refers to the variation in the mean state and other 

statistics such as standard deviations, extremes of the 

climate at all spatial and temporal scale. 

Determinism  Refers to a condition where evolution from one state to 

another is based on some set of know laws, equation or 

formulations.  

Drought a prolonged period of abnormally low rainfall, leading 

to a shortage of water. 

El Niño-

Southern 

Oscillation 

The El Niño-Southern Oscillation is a recurring climate 

pattern involving changes in the temperature of waters 

in the central and eastern tropical Pacific Ocean which 

directly affects rainfall distribution in the tropics. 
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Exposure The presence of people, livelihood, infrastructure, or 

economic, social or cultural assets in places that could 

be adversely affected by a climate hazard. 

Hazard The potential occurrence of a natural or human induced 

extreme climatic event that may cause loss of life, 

property, infrastructure and environmental resources.  

Heat Wave A period of abnormally high surface temperatures 

relative to those normally expected.  

Indian Ocean 

Dipole 

It is the difference in sea surface temperature between 

two poles- a western pole in the Arabia Sea and an 

eastern pole in the eastern Indian Ocean which 

contibutes significantly to rainfall variability in the 

region in between. 

Net Primary 

Productivity  

Is the rate at which energy is transferred as biomass by 

autotrophs to the consumers in the terrestrial 

ecosystems . Alternatively, it can be defined as the rate 

of accumulation of biomass or energy.  

Nonlinearity  A process is called nonlinear when there is no simple 

proportional relation between cause and effect.  

Nontationarity A time series is known to follow the principle of 

nonstationarity if the statistical characteristics of the 

distribution change with time.   

North Atlantic 

Oscillation 

It is a weather phenonom in the North Atlantic Ocean 

of fluctuations in the difference of atmospheric pressure 

at sea level between the Icelandic Low and Azores 

High.  
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Predictability   The extent to which the future states of a system may be 

predicted based on knowledge of current and past states 

of the system. 

Resilience The capacity of a system to anticipate, adjust, 

accommodate and recover from the impacts  of a 

hazardous event  

Return level The return level is defined as a value that is expected to 

be equaled or exceeded on average once every interval 

of time.  

Return period An estimate of the average time interval between 

occurrences of an event of a given size or intensity. 

Uncertainty  The degree to which a value or a relationship is 

unknown in form of quantifiable data errors, 

ambiguously defined concepts or terminology or 

uncertain projection of human influences.  

Vulnerability  It refers to the degree to which people or things they are 

susceptible to damage or are unable to cope with, the 

adverse impacts of climate change.  

Weather State of atmosphere at a particular place or time with 

respect to wind, temperature, cloudiness s, moisture, 

pressure etc.  
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Chapter 1 

Introduction 

1.1 Climate change and variability 

The climate is usually defined as average weather conditions in terms of 

some statistical properties of variables such as precipitation, temperature or 

wind over a certain period of time. This particular period of time could 

range from months to hundreds, thousands, and millions of years. In 

general, a period of 30 years is considered for various statistical 

interpretations of the climate variables. The climate, in a broad sense, is the 

statistical accounting of the climate system. The climate system is 

composed of five main components – the atmosphere, hydrosphere, 

cryosphere, land and biosphere. This climate system is dynamic and is 

continuously changing due to several factors, such as internal and external 

forcings. The variations in the average state of different climatic variables 

at various temporal or spatial scale are called climate variability. These 

variations are basically anomalies or deviations from the average over a 

given scale of time (month, season or year). Whereas, climate change is a 

statistically significant deviation from the average state over a more 

extended period, preferably decades.  

The human and natural climatic forcings induce internal variations in 

various components of the climate system of the Earth. The feedbacks 

which are generated by these are responsible, either for the intensifying or 

impairing the forcing. However, different components of the climate system 

respond differently to these forcings. This response time for the components 

such as land, atmosphere, ocean surface, vegetation and ice can range from 

hours to years. Similarly, the response time for the deep ocean, ice sheets, 

glaciers to exhibit the changes due to forcings can be 100 to 1000 years. 

Therefore, the Earth’s climate system can take hours to centuries to respond 

to the external forcings.  



2 
 

The major reason, as suggested by the Fifth assessment report (AR5) 

affecting the climate system, has been the increasing concentration of the 

greenhouse gases causing global warming (IPCC 2014). The impacts of 

global warming can already be observed in the natural and human systems, 

which are of high interest. According to the Intergovernmental Panel on 

Climate Change (IPCC), climate change can be defined as the alteration in 

the mean and/ or the variability in its properties for a long period of time, 

generally considered in decades. The primary change is mainly due to a 

number of natural and anthropogenic factors. The natural factors may 

comprise of volcanic eruptions, ocean current changes, change in Earth’s 

orbit, solar radiation variations and multiple internal variabilities. The major 

anthropogenic activity which defines the course of climate change has been 

burning of fossil fuels leading to an increase in greenhouse gas emissions. 

In this context, the IPCC’s AR5 stated that 1983 to 2012, was most likely, 

the warmest 30 years’ period in over the last 1400 years, particularly in the 

Northern Hemisphere. On average, the study of global temperature data set 

reveals that Earth in 2012 is 0.85 ℃ warmer as compared to 1880 (IPCC 

2014). 

1.2 Climate extremes and their impacts  

Climate change has attracted much attention in the research community as 

the extreme behaviour of climate is more significant to human well-being 

than their average values. The changing climate conditions have led to 

changes in the intensity, duration, frequency and timing of unprecedented 

weather events. Primarily, extremes are defined in terms of changes in the 

location or the shape of probability distributions representing a climatic 

variable. However, some extreme events such as drought might not be 

directly represented by any extreme event, but, an accumulation of climatic 

events which are not extreme. Most of the extreme climatic events are 

considered as the result of natural climate variability along with the strong 

influence of increasing greenhouse gas emissions.  
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Extreme climatic events are rare, which means that the assessment of 

climate extreme is to be done by analysis limited quantity of data. In this 

sense, the rarer the event, the more difficult it is to identify its distribution 

and occurrence. However, more confident conclusions can be drawn by 

analyzing the changes in climatic extremes represented by those data which 

are available for a longer period of time. Based on such observations, it can 

be concluded that the number of cold days and nights have overall decreased 

and the number of warm days at a global scale has increased (Field et al. 

2012). Medium confidence has been observed in the temperature extremes 

in the Asian continent. Further significant changes in the occurrence of 

heavy precipitation events have been witnessed in some parts of the world. 

Most of these changes have been in terms of an increase in the number of 

extreme precipitation events along with strong regional variations. Further, 

there are also evidences that climate factors have caused changes in the 

magnitude and frequency of floods and cyclones at the local scale (IPCC 

2014). 

With the occurrence of more extreme climatic events, the related disasters 

have also increased in terms of losses. These disasters have become more 

variable and significant in nature, leading to poor risk estimations. In 

general, the developed countries are likely to suffer more economic losses 

due to such events whereas, the risk to population in terms of fatalities and 

economic losses as compared to the proportion of gross domestic product 

(GDP) is higher in developing countries (Russo et al. 2015). According to 

the IPCC’s special report on managing climate extremes, 95% of the 

fatalities from climate-induced disasters have occurred in the developing 

nations (Field et al. 2012). The exposure and vulnerability components of 

climate-induced disasters are the governing factors of the losses. Countries 

with an increasing trend in vulnerability and exposure elements tend to be 

at higher risk of damage. Proper risk estimation and assessment of extreme 

climatic events are necessary for deciding risk reduction strategies.  
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1.2.1 Climate extremes and their impacts in India 

India’s mean temperature has increased approximately by 0.7 ℃ in the past 

century (Hingane et al. 1985).  The mean temperature over the country is 

projected to increase roughly around 4.4 ℃  as compared to 1976-2005 

mean temperature (Krishnan et al. 2020).  The increase in temperature over 

the past years can be observed in the projected frequencies of future warm 

days, warm nights and heatwaves. It is expected that summer heatwaves 

over India will increase by at least 3 times by the end of this century as 

compared to the 1976-2005 period (Krishnan et al. 2020). A similar trend 

is expected in the duration of summer heatwaves, however with more 

uncertainty in the estimates. Corresponding to the changes in temperature, 

the monsoon precipitation pattern has also changed particularly over the 

past 50 years (Guhathakurta and Rajeevan 2008). The frequency of dry 

spells has increased, and wet spells have become more intense (Singh and 

Ranade 2010). Moreover, the frequency of high rainfall intensities has 

increased by three-fourth during 1950-2015 (Roxy et al. 2017). Similarly, 

an overall decrease in the rainfall events has led to an increase in the 

propensity for frequent drought events in India. The later half of the 20th 

century has witnessed the increase in both duration and severity of the 

drought events (Samra 2004). In conclusion, the country has witnessed an 

increase in the mean temperature, decline in the monsoon rainfall and an 

increase in the extreme precipitation and rainfall events along with 

droughts. Most of this rise in the extreme climatic events have been 

attributed to the anthropogenic influence on climate systems. Since this 

anthropogenic influence is expected to become more significant in future; 

therefore, proper extreme climatic risk reduction strategies are required.  

1.3 Assessment of extreme climate risk and resilience 

As discussed, the extreme climate-related risks posing potential loss of 

property and lives have increased over the past. Researchers and 

policymakers around the globe agree that current adaptation and mitigation 
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policies might not be sufficient to deal with the implications of extreme 

climate. Therefore, a comprehensive climate risk assessment and 

management framework is required for minimizing the possible damage. 

This comprehensive risk assessment framework must be context-specific 

and should be able to produce region-based outputs. The risk due to extreme 

climatic events is governed by the driver hazard, exposure and vulnerability 

measure. The climate risk assessment involves the identification of the key 

components causing a high and low level of hazard. Moreover, the 

knowledge about a climatic hazard, variability and uncertainty in 

projections need to be taken into consideration. It is advisable to take the 

likelihood of severe disturbance in the normal functioning of the concerned 

subject as the measure of hazard. This hazard, when faced by a population 

with vulnerable socio-economic conditions, leads to high risk and 

subsequent loss of lives, property, economic and environmental impacts. By 

definition, a hazard is defined as the possible occurrence of a naturally 

occurring or human-influenced physical event which may cause the 

damages mentioned above. Whereas, the exposure denotes the presence of 

population, livelihood, ecosystem services, natural resources, infrastructure 

and property or social and economic assets, which could be possibly 

damaged due to the hazard. Under the exposed scenarios, the severity and 

level of the adverse impacts due to extreme climatic events depend on the 

socially governed circumstances known as vulnerability. In general, 

vulnerability is defined as the tendency to be severely impacted. This 

tendency, of course, is a characteristic of the exposed element. Particularly, 

in the extreme climate disaster risk estimation concept, the vulnerability is 

related to the properties of the concerned population and their ability to 

cope, resist and recover from the impact. More precisely, the vulnerability 

can be defined as the varied historical, economic, social, environmental, 

ecosystem services, governmental and institutional conditioning of the 

population which is under the influence of the possible extreme events.  
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Resilience is defined as the ability of a system to absorb, resist and recover 

from the perturbation caused by any disturbing event. In the context of 

climatic extremes, the resilience can be referred to as the ability of a system 

to absorb or recover from the shock of events such as floods, droughts, fires, 

cyclones and rising sea levels. Over the years, it has been observed that the 

economic losses due to natural calamities have been increasing. This also 

points out the fact that extreme climatic events are more severely hitting the 

poorest and those with high vulnerability. One of the major tools to 

minimise such losses is to increase the resilience of a highly vulnerable 

population. This requires a proper assessment of risk and innovative and 

effective response measures for adaptation. In recent contexts, the 

increasing risk of extreme climatic events has made us realize that existing 

vulnerability reduction and adaptation strategies are not up to the mark. 

Improving the resilience requires ensuring renovation and development of 

existing and new assessment techniques, infrastructural upgrading, 

institutional and policy interventions, and efforts at the individual levels.  

1.4 Limitations and gaps in approaches for risk and resilience 

assessment  

An ideal comprehensive extreme climate risk management approach should 

focus on instantaneous as well as the long term extreme climatic events. 

Therefore, the risk reduction strategy requires long term as well as short 

term goals. A top-down approach based on expert-to-individual based 

mechanism could play an important role in such cases. In this context, 

accurate extreme climate risk assessment is necessary. The likelihood of 

extreme events, generally, is denoted by the return period, which is the 

expected duration between two events of concern. These time intervals or 

return periods are inversely related to the annual exceedance probability, 

which is the likelihood of the event exceeding given magnitude in a 

particular year. The frequency of events which actually show a longer return 

period might not be reliable. Other climate data sources such as 

paleoclimate data denote that existing climate variables data might not 
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completely incorporate all aspects of natural variability (Zorita et al. 2003). 

Further, the stationary assumptions in existing practices might not be 

sufficient as the statistical characteristics of the climatic variables are not 

constant over the period of time. Therefore, improving qualitative methods 

for estimating the extreme climatic hazard requires acquiring suitable 

observational data, proper idea about the system’s interconnections, 

incorporation of the natural and human factors, and estimation of 

uncertainties in the projected probabilities. Once this is achieved, inclusive 

estimates of the vulnerability and exposure elements combined with the 

hazard measure can be utilized for estimating proper risk and resilience. The 

complexity of climate systems, ecosystem-climatic interactions, inter-

dependence of the extremes make the risk estimation and assessment 

process intricate. Further, the risk due to extreme climatic events does not 

only depend on the magnitude of extremes themselves but also different 

components of risk, such as exposure and vulnerability. The risk reduction 

and adaptation to climate change are significantly dependent upon the 

accurate estimation of hazardous physical events and their interaction with 

exposure and vulnerability parameters. Therefore, in context of climate 

change, a better understanding of the climate extremes in terms of their 

occurrence, dependence on different factors, dynamics and predictability is 

necessary to further evaluate the implications for risk and resilience in India.  

1.5 Objectives of the study  

The objectives of the study are as follows: 

1. Assessment of the predictability of precipitation and temperature 

profiles in India in the past century.  

2. Understanding the role of nonstationary global scale modes and its 

influence on extreme climate in India.  

3. Probabilistic analysis of the dependence of ecosystem functioning 

on extreme climate. 
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4. Risk and resilience to extreme climate conditions: towards a 

comprehensive framework 

1.6 Organization of the thesis 

Literature relevant to various aspects of climate change, nonlinearity and 

predictability, the nonstationary influence of natural factors, the impact of 

extremes on terrestrial ecosystem functioning and existing practices in risk 

and resilience estimation are concisely reviewed in Chapter 2.  

Chapter 3 discusses the detailed theory, methodology, results and 

discussion obtained from the first objective, i.e. assessment of nonlinearity 

and determinism in temperature and precipitation profiles in the past 

century in India. The study has been done by analyzing the district-wise 

profiles of climate data, and the degree of predictability was identified.  

In Chapter 4, the influence of global scale modes on climate extremes in the 

country is investigated. The return levels of extreme precipitation indices in 

the stationary and nonstationary setting are estimated and characterised on 

the river basin scale. Further, the uncertainty in return levels is also 

estimated by using the Bayesian framework.  

Chapter 5 discusses the joint dependence of extreme climatic variables and 

the ecosystem functioning parameters. The implication in terms of droughts 

are evaluated, and the impacts of extreme climatic condition on vegetation 

condition and ecosystem functioning have been recorded.  

Chapter 6 provides a detailed analysis of the risk and resilience to extreme 

climatic conditions and discusses a possible framework for risk 

management and reduction. The risk due to extreme precipitation and 

droughts is discussed, and resilience of terrestrial ecosystems in recovering 

from hydroclimatic disturbances is estimated.  

Chapter 7 presents the summary and conclusions of the work described in 

the thesis. 
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Chapter 2 

Literature review 

2.1 Introduction 

Climate extremes are expected to have serious implications for risk and 

resilience. The subsequent sections in the chapter explain the physical 

understanding of climate extremes, past and future changes in extremes, 

probabilistic and multivariate approaches of understanding the extreme 

climate-induced hazards, the importance of nonstationarity and concept of 

risk and resilience. The chapter concludes with an outlook that explains the 

outputs of literature review in the context of the thesis objectives.  

2.2 The predictability of Indian climate 

Indian climate is extremely diverse and is influenced by a large number of 

factors (Rajeevan et al. 2012; Niranjan Kumar et al. 2013). Rainfall on 

Indian landmass is primarily contributed by the southwest monsoon, which 

is enormously vital for millions of people living in the Indian subcontinent 

(Kumar et al. 2005). Although the inter-annual variations in monsoon 

rainfall over the country are only about 10% of the long-term average, the 

nature of extremes in rainfall results in floods and droughts and can cause 

large scale economic and human losses (Shukla and Mooley 1987). It is well 

documented that variability of seasonal rainfall over India is associated with 

sea surface anomalies in the tropical Pacific Ocean, such as those related to 

El Niño and Southern Oscillation (ENSO), in the Indian Ocean, such as the 

Indian Ocean Dipole (IOD) and the Arabian sea (Rajeevan et al. 2012; Azad 

and Rajeevan 2016). These agents, in combination or independently affect 

the moisture transport dynamics, which in turn induces variability in 

precipitation patterns. For instance, Izumo (2008) discussed that a fall in 

Somalia-Oman upwelling supports the monsoon rainfall along the western 

coastal plains of India by intensifying the SST and hence, improving 

moisture transport towards the country. Shukla and Huang (2016) found 
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that pre-monsoon conditions in the Arabian sea may have significant 

implications for monsoon rainfall. The limitations and problems associated 

with existing modelling approach have been discussed in several studies 

which call for exploring alternative approaches for achieving better 

predictability of Indian monsoon rainfall (Kang et al. 2002; Rajeevan and 

Nanjundiah 2009). 

Similarly, temperature over India is also highly variable due to natural as 

well as human influences (Gadgil and Dhorde 2005; Kothawale and Rupa 

Kumar 2005). Kothawale et al. (2010) found that ENSO has a significant 

influence on the temperature profiles over India. The change in diurnal 

temperature in north-east India was attributed to a decrease in sunshine 

duration in the region (Jhajharia and Singh 2011). (Arora et al. 2005) 

studied the trends of temperature in India and found that the change is 

temporally as well as spatially variable. The nonlinearity of precipitation 

and temperature over the country lead to poor risk assessment. In the context 

of climate change, better predictability of precipitation and temperature is 

necessary for accurate forecasting of extreme events and related risks 

2.3 Climate extremes: past and future  

The Fifth Assessment Report of the IPCC differentiates between the 

extreme weather and climatic event by describing a weather event as a rare 

event occurring at a particular time and place (Field et al. 2012). However, 

an extreme climatic weather event has been explained as the pattern of such 

events persisting for some time or season. There are many approaches 

available to investigate extreme climatic events. For instance, considering 

the record-breaking events (Coumou et al. 2013; Beniston 2015), deriving 

extremes from the percentile-based approaches (Russo et al. 2015; Schär et 

al. 2016), or utilising the extreme value theory to estimate the return levels 

of particular events. For understanding specifically, the extreme behaviour 

of temperature and precipitation, the Expert Team on Climate Change 

Detection and Indices (ETCCDI) came up with a set of extreme climate 
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indices which have been comprehensively utilised in a variety of studies 

around the world (Sillmann et al. 2013; Zhang and Zwiers 2013; Tebaldi 

and Wehner 2018). Many of the indices described by ETCCDI are 

comparatively moderate; however, further analysis, such as calculating the 

return levels on the block maxima data can be used to derive more extreme 

indices. Conventionally, the return level approach has been utilised to infer 

extreme climate data for temperature and precipitation extremes (Zhang et 

al. 2011; Ali et al. 2019; Ben Alaya et al. 2020).  

The outputs from the studies based on observational data suggest, in high 

confidence, that high-temperature extremes have increased and low-

temperature extremes have decreased after the 1950s globally (Field et al. 

2012).  At the continental level, the results show that such changes have 

occurred in most of the regions in North America, Europe, Asia and 

Australia (Portmann et al. 2009). However, the confidence in such 

inferences is lower in the case of the African and the South American 

continents. This low confidence or higher variability in these regions is 

primarily due to the low availability of accurate climate data. The study 

indicates that most of the land surface areas in the world depict rising 

occurrences of warm nights and declining cold nights. Similarly, the same 

areas show a rising occurrence of warm days and declining cold days apart 

from a few regions in the North and South America. Further, several studies 

suggest that this rise and fall in the extremes is mostly due to climate change 

rather than the influence of internal variability (Portmann et al. 2009; 

Fischer et al. 2014; Kim et al. 2016).   

Apart from the observed data, the historical climate model simulations also 

confirm the extreme warming and cooling trends in the past (Sillmann et al. 

2013). The model generated data, as opposed to the observed data sets, are 

more homogenous in nature. However, simulated data may lead to some 

inconsistencies in the climate estimates. For instance, most climate model 

data denote a rising occurrence of more severe hot extremes over the eastern 

part of the United States which is not valid for extremes derived from the 
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observed data (Dittus et al. 2018). Further, the Coupled Model 

Intercomparison Projects Phase 5 (CMIP5) data also reveal different 

behaviour of cold extremes as compared to the observational estimates 

(Field et al. 2012). The study also suggests that the alterations in the 

precipitation extremes are usually more spatially varied relative to the 

temperature extremes. The results obtained from the climate model 

simulations of the historical extremes also suggest rising rainfall extremes 

due to growing greenhouse gas emissions (Min et al. 2011). The 

observational data and the climate simulations represent a similar trend of 

rainfall extremes; however, the pattern represented over the land areas may 

vary. This is not surprising, as the regional trends, in general, are more 

significantly governed by the internal variability (King et al. 2015). As the 

increase in temperature trend has been recorded, it is expected that the heat 

stress might also increase. Moreover, regional heat stress is more affected 

by local humidity characteristics. Willett and Sherwood (2012) showed that 

even if the humidity is less in some regions, more intense heat stress can be 

still be observed. Moreover, Knutson and Ploshay (2016) suggested 

significant evidence of the role of global climate change in summer heat 

stress. The changing extreme climatic conditions have also impacted the 

occurrence of droughts. The drought events derived from the famous 

indices like Standard Precipitation Index (SPI) and Palmer Drought Severity 

Index (PDSI) reveal that the droughts events have been increasing globally 

(Sheffield et al. 2012). However, these indices often involve simplification 

of the physical processes, for instance, the evapotranspiration, which may 

lead to inaccuracies in the results. In the context of dry periods, the 

investigation of consecutive dry days (CDD) from the observation-based 

data reveals that there has been no significant trend. However, the results 

from the gridded data set indicate an increase in the dry durations in Africa 

and both North and South America after the 1950s (Donat et al. 2013).  

The previously mentioned studies discussed the trend of past climate 

extremes. Moreover, understanding the future patterns of climate extremes 
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is equally important for proper risk estimation. The general circulation 

models (GCMs) are one of such sources which can be used to understand 

the future propagation of extremes. The mean projected warming in 

different Representative Construction Pathways (RCPs), by the end of 2099 

as compared to 1986-2005, are given as 0.3°C -1.7°C (RCP 2.6), 1.1 °C -

2.6 °C (RCP 4.5), 2.6 °C - 4.8 °C (RCP 8.5) (Field et al. 2012). The results 

from CMIP5 simulations, in general, indicate a local rise in the intensity of 

temperature extremes with global warming (Seneviratne et al. 2016). 

Moreover, the trend in intensity appears to be stronger in the land areas than 

the oceans and vary significantly over different geographical areas. The 

cold temperature extremes, for instance, annual daily minimum temperature 

has increased over the northern part of the world. Whereas, the hot extreme, 

for instance, the daily maximum temperature has risen in most continents 

of the world (Dwyer and Cummer 2013). Analysis of temperature extremes 

derived from the percentile or heatwaves, in particular, suggest that warm 

days and warm nights may significantly increase in the tropics and 

subtropics (Russo et al. 2015). Precipitation extremes, as presented by the 

annual maximum 1-day precipitation (RX1day), are predicted to strengthen 

with the increasing average temperature in most parts of the world, 

excluding some subtropical regions (Min et al. 2011).  Most of the regions 

indicate a rise in extreme rainfall; however, the results obtained from 

different models do not conclude the same (Pfahl et al. 2017).  Further, the 

extremes in rainfall, as represented by the ETCDDI indices are mainly 

capable of daily, monthly or annual extremes are not suitable for 

representing the sub-daily extremes which are often a result of local 

processes as such as storms. The future projections of such extremes 

indicate that sub-daily extremes are expected to increase with rising average 

warming conditions (Martel et al. 2020).  
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2.3.1 Rainfall extremes in India and its association with 

oscillations 

India’s economy is mainly dependent upon the performance of summer 

monsoon, which accounts for nearly three-fourth of the annual rainfall 

(Kumar et al. 2010; Yadav 2013). The analysis of historical data suggests 

that the rainfall has remained stable over the past century. However, with 

the rise in global average temperature, the extreme events have also been 

rising (Goswami et al. 2006). Moreover, any significant long-term trend in 

the rainfall has not been recorded, but there exists inter-decadal variability 

in the monsoon rainfall (Goyal 2014). India, in the past, has witnessed 

several heavy rainfall events due to the underlying variability in southwest 

summer monsoon rains. For instance, in August 2019, a series of floods hit 

nine states in India, causing massive loss of lives and property. Over 40 

million people were affected by widespread flooding in the Indian 

subcontinent during 2017, as suggested by the United Nations Office for the 

Coordination of Humanitarian Affairs (UN-OCHA) report (UN 2017). It 

was found that floods attributed to heavy rainfall events have caused a loss 

of $3 billion in 2015 (Benfield 2017). The International Disaster Data Base 

(http://www.emdat.be) suggests that 268 major flooding events occurred in 

India during 1950-2015 costing 69,000 lives, making 17 million people 

homeless and affecting 825 million people. Roxy et al. (2017) found that 

there has been a threefold increase in the extreme rain events over India 

during 1950-2015. This indicates that extreme rainfall events have 

increased over time, and there is an urgent need to investigate the dynamics 

of their occurrence and their role in augmenting risks. There is a consensus 

among researchers that global climate change is altering extreme rainfall in 

India and which has given rise to environmental, economic and social risks 

(Singh and Ranade 2010; Krishnan et al. 2020). Therefore, a comprehensive 

analysis of the past rainfall extremes can aid to formulate strategies 

supporting mitigation, adaptation and preparedness measures in the context 

of both present and future climate-induced disasters. In the context of India, 

http://www.emdat.be/
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there is enormous variability in the flood risk factors and studying the 

changes in heavy rainfall events is crucial from the perspective of extreme 

rainfall-induced disaster risk reduction.  Heavy rainfall extremes could be a 

result of external forcings which include both human-induced and natural 

activities or/and internal forcings such as internal mechanisms within the 

climate system (IPCC 2014). However, there exists substantial debate in the 

recent literature about spatio-temporal distribution of extreme rainfall 

events over India and their relationship with various aspects of global 

climate change. For instance, Kulkarni (2012) suggested that there is a 

rising trend in rainfall extremes co-occurring along with decreasing 

moderate rainfall causing insignificant overall trend. However, percentile-

based frequency and intensity analysis of extreme rainfall events showed no 

visible spatially uniform trends over India (Ghosh et al. 2012). These 

conflicting conclusions about extreme rainfall events in current research 

point out the necessity of a comprehensive evaluation of rainfall extremes. 

Many studies have established that there is a significant association between 

the large-scale oscillations and regional or local precipitation extremes 

(Bracken et al. 2018; Das et al. 2019). The qualitative and quantitative 

assessment of the association between the climatic oscillations and heavy 

rainfall, in particular, could deliver an essential understanding of flood 

hazard prevention, mitigation and enhance the flood management strategy 

(Ward et al. 2014). Several oscillation indices have been extensively 

investigated to understand the variability of hydrological extremes. El Nino 

Southern Oscillation (ENSO) index is known to dominate the interannual 

variability of rainfall over Indian landmass (Gadgil et al. 2004; Azad and 

Rajeevan 2016). Yadav et al. (2009) suggested that there is an increasing 

influence of ENSO on winter precipitation in north-west India. Further, it 

has been found that the association between ENSO and north-east monsoon 

has become stronger over time (Kumar et al. 2007). However, the regional 

association between ENSO and Indian rainfall is strengthening as some 

studies show that global warming might have weakened the same (Kripalani 
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et al. 2003; Sooraj et al. 2015). Ashrit et al. (2001) recommended that the 

interannual correlation between ENSO and Indian summer monsoon 

rainfall might lead to reduced rainfall. Another critical sea surface 

temperature (SSTs) pattern, which affects the regional monsoon pattern in 

India is the Indian Ocean Dipole (IOD). Also, the IOD, often treated as a 

counterpart of ENSO, is a measure of the difference between SSTs between 

two ‘oceanic poles’ (the Arabian Sea and Eastern Indian ocean). Mishra et 

al. (2012) suggested that IOD variability during monsoon month induces 

significant changeability in the rainfall pattern over India. It has been found 

that positive IOD has enhanced precipitation in northern India (Behera et al. 

2013). Such oscillations not only act independently to affect the regional 

precipitation patterns but also in combination to complicate the prediction 

process. For instance, it has been noted from the investigation of various 

SST anomalies that strong IOD events in the past might have resulted in the 

weakening of ENSO-monsoon relationship (Guan et al. 2003; Ashok et al. 

2004). A critical phenomenon incorporating the teleconnection patterns in 

the pressure at sea level and the surface temperature is known as North 

Atlantic Oscillation (NAO) which also affects the monsoon activity over 

India.  It has been observed that the NAO index measures in April are 

inversely related to the monsoon rainfall (Dugam and Kakade 1999; Kakade 

and Dugam 2000). Kar and Rana (2014) suggested that moisture transfer 

from the Arabian sea during active NAO phase and the presence of cyclonic 

anomaly causes heavy rainfall over north-west India. Similarly, NAO 

during winter months was found to be one of the primary reasons for 

variation in precipitation in the north-west Himalaya (Bhutiyani et al. 2010). 

Roy (2011) observed that the NAO had a major role in governing the 

regional precipitation during the peak rainy seasons and concluded that 

NAO had pronounce effect over most of the regions in the peninsular India. 

In light of the above discussion, it is worth considering that ENSO, IOD and 

NAO are amongst the important large-scale climatic factors governing 

rainfall pattern over India.  In context of risks due to heavy precipitation 
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events, a comprehensive evaluation of the influence of ENSO, IOD and 

NAO over historical precipitation extreme events is necessary.  

2.3.2 Cliimate extremes and their influence on terrestrial 

ecosystems 

Climate change is one of the main factors which disturbs terrestrial 

ecosystem functioning (Hinzman et al. 2005; Grimm et al. 2013).  Global 

warming may result in the intensified hydrological cycle, which can further 

give rise to more extreme events (Huntington 2006; Dai 2011). Dai (2013), 

from the analysis of soil-moisture, drought indices and precipitation-

evaporation patterns, suggested that the chances of drought have increased 

in this century. Drought, which arises because of the long-term deficit in 

water availability, is an integral part of terrestrial ecosystem-climate 

interaction. A prolonged drought period influences the feedback processes 

between soil and atmosphere, resulting in a decline of soil moisture content. 

Plants depend solely on soil moisture to fetch required water for 

photosynthesis, which further controls the stem-water dynamics, stomatal 

regulation and transpiration losses (Bréda and Granier 1996). Moreover, the 

investigation of climate impact on terrestrial ecosystems needs the 

understanding of soil moisture conditions and variability associated with it 

(Brunner et al. 2009). Long term precipitation deficit and high-temperature 

cause an increase in atmospheric water demand which results in the 

depletion of moisture content in the root zone depth.  This has the potential 

of severely impacting the terrestrial ecosystem functioning, especially 

because climate warming may result in more variable precipitation and 

evapotranspiration (Huntington 2006). A critical study by Allen et al. 

(2010) identified the increased risks of vegetation mortality due to soil 

moisture droughts and rising temperature.  Several other studies can be 

referred, which underline the detrimental impact of drought on terrestrial 

ecosystem functioning in terms of vegetation distribution and growth 

(Peters et al. 2002; Wan et al. 2010; Vicente-Serrano et al. 2013). There are 

significant problems related to the assessment of the impact of extreme 
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climatic conditions and their impact on vegetation. Quantification of 

drought characteristics is difficult as we primarily identify droughts by its 

impact on different systems. Moreover, it is intricate to identify the starting 

and terminating point of a drought span (Nagarajan 2009). The complex 

nature of climate extremes introduces various elements of uncertainties in 

the response of different terrestrial ecosystem types (Vicente-Serrano et al. 

2012). For instance, Zhang et al. (2017) in their work, suggested that it is 

essential to incorporate the duration, distribution, trends and severity as well 

as their complex interactions. Further, the assessment is constrained as the 

terrestrial ecosystem response to drought disturbances is a function of both 

vegetation type and climate conditions (Wu and Chen 2013). Sharma and 

Goyal (2017), in a comprehensive study of the impact of hydroclimatic 

disturbance on ecosystem resilience, found that every vegetation type, 

climate zone and river basin has a unique response to the extreme climate 

conditions which should be considered while studying the ecosystem-

climate interactions.  

Normalised difference vegetation index (NDVI) is one of the most 

frequently used vegetation index to assess the terrestrial ecosystem 

functioning. Li et al. (2010) suggested that a significant correlation exists 

between NDVI and different eco-climatic parameters for different 

vegetation types. Assessment of NDVI and climate variables may provide 

useful insights into the key factors which control changes in terrestrial 

ecosystems (Okin and Dong 2018). However, the mechanism of terrestrial 

ecosystem response to extreme climate disturbances is still unclear. 

Moreover, most of the studies about terrestrial ecosystem functioning and 

extreme climate are focused around analysing the characteristic of 

individual variables or indices. In relation to the studies involving the 

impact of extreme climatic conditions on terrestrial ecosystems, NDVI at 

times has been directly compared to precipitation or the drought indices 

(Mohler et al. 1986; Tucker and Choudhury 1987; Tucker 1989). Later, 

Vegetation Condition Index (VCI), Standardised Vegetation Index (SVI) 
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and Vegetation Drought Response Index (VegDRI) were derived to 

understand the vegetation drought dynamics (Peters et al. 2002; Brown et 

al. 2008; Sahoo et al. 2015).  However, like any other indices, vegetation 

indices are also sensitive to environmental conditions which can result in 

misinterpretation of terrestrial ecosystem response to extreme climatic 

conditions. They provide a robust description of vegetation condition, but 

might not be sufficient in understanding the mechanism of extreme climate-

related stresses on terrestrial ecosystem functioning (Brown et al. 2008). 

Similarly, Net primary productivity (NPP), a key indicator of ecosystem 

functioning, is the rate at which energy is transferred as biomass by 

autotrophs to the consumers in the terrestrial ecosystems. Change in 

climatic conditions directly influence the NPP occurrence and distribution 

(Liang et al. 2015). Analysing the response of NPP to change in the extreme 

climatic conditions provides an insight into the risk and resiliency of the 

terrestrial ecosystem (Yin et al. 2018b). For instance, Grimm et al. (2013) 

found that change in climatic conditions results in biome shifts, forest 

growth and mortality, and ecosystem state changes which in turn contribute 

to the alteration in NPP. Pan et al. (2015) demonstrated that variation in the 

NPP in different regions of the world is attributed to variability in 

precipitation, temperature and several climatic factors. In a recent study, it 

was found that quantification of spatio-temporal variability in NPP is 

essential in determining how the ecosystem may respond to future changes 

in climate and land use (Gu et al. 2017). Conventional analysis of the 

climate-controlling factors on terrestrial ecosystem productivity involves 

the investigations based on the long-term variability in mean temperature 

and precipitation and their relationship with NPP. In relation to climate-

ecosystem interactions, ecosystem functioning indicators such NPP and 

CO2 fluxes at times have been directly compared to climate indices (Tucker 

and Choudhury 1987; Ji and Peters 2003; Wu et al. 2015) However, these 

studies, although, provide a robust description of ecosystem state, are often 

insufficient in understanding the mechanism of risks generated due to 
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climatic condition (Brown et al. 2008). Also, the interaction of climate-soil-

plant systems for energy and material exchange is complex and involves 

many hydrological and biogeochemical processes (Zhao et al. 2018a). The 

dependence of NPP and mean annual precipitation has been widely studied 

in the past (La Pierre et al. 2011; Reichmann et al. 2013). A study by 

Hoeppner and Dukes (2012) indicates that the NPP is significantly related 

to the global temperature anomalies and there is substantial evidence of the 

linkage between NPP variability and temperature changes across different 

ecosystems in multiple climate zones (Gillman et al. 2015; Chu et al. 2016). 

Miranda et al. (2009) advocated that lower water availability significantly 

alters the vegetation cover and its productivity. A recent study by Zhao et 

al. (2019) indicates that that water-carbon cycle is closely coupled and water 

availability plays a crucial role in determining the distribution of NPP in a 

region. Sinha et al. (2019) pointed out that the water balance of a catchment 

is influenced by changes in vegetation and remains intricately coupled with 

several other regional characteristics.  Water availability, especially for the 

rainfed agroecosystems need to be properly understood and managed to 

meet food security and climate change problems (Qiu et al. 2018).  

2.4 Probabilistic and multivariate assessment of extremes 

The last section of the chapter discussed the past and future of climate 

extremes using different indices, observational sources and model data sets. 

In this section, probabilistic as well as the multivariate assessment of 

extremes has been discussed. There are many methods which allow us to 

estimate the probabilistic characteristics of the extreme events, including 

parametric, non-parametric, stochastic methods and the Extreme Value 

Theory (EVT). The concept of the parametric method involves fitting 

specific distributions to given returns. This approach is also known as the 

percentile-based approach or the return period method (Hobaek et al. 2015). 

The main disadvantage of this method is that the estimated returns are 

incapable of incorporating the tail behaviour, often asymptoticm, and 

cannot be used to produce estimates beyond the sample range. Further, the 
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stochastic approaches produce recurrent conditions which yield return 

periods based on the random traction from probabilistic projections 

(Goldstein et al. 2003). Also, these methods consider the Gaussian case; 

therefore, they do not accommodate the tail complexities. The EVT 

methods have been formulated particularly to incorporate the tail behaviour 

of the data (Naveau et al. 2005).  

There are many studies which demonstrate the usability of EVT models in 

analysing the extremes. Towler et al. (2010) modelled the hydrologic and 

water quality extremes in changing climatic conditions using the EVT. 

Zamani et al. (2016) analysed the influence of precipitation deficit on 

atmospheric droughts in Belgium and established that EVT allowed 

inferring the dependence for even those points where data was scarce. In 

another important study, Gross et al. (2018) confirmed that daily 

temperature variability and their extreme values are sensitive to the data 

choices. Therefore, assessment of the alterations in temperature extremes 

should be performed with proper verification of the data choice.  Further, 

EVT was utilized to find the trend and uncertainty in future extreme 

precipitation indices in a river basin under different warming scenarios 

(Thasneem et al. 2019).  Similar to the above studies; there are several other 

works which show the applicability of the univariate probabilistic EVT 

approach in analysing extreme indices. These include, but are not limited to 

Lazoglou et al. (2019), Ragno et al. (2019), Ban et al. (2020), O’Sullivan et 

al. (2020), Whan et al. (2020). 

The extremes have been discussed in the context of single variable extreme 

events, however, the joint occurrence of extremes can have a more 

devastating impact on the natural and human systems. For instance, the joint 

occurrence of high wind speed and high rainfall could lead to more 

catastrophic damage as compared to their individual occurrences (Yang and 

Qian 2019). Analysing the multivariate nature of climate extremes is a very 

intriguing field of research. The investigations of multivariate extremes first 

need the detection of the most important variables and then the assessment 
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of the correlation between these drivers. The estimation of the likelihood of 

joint extremes is highly sensitive to the dependence structure between the 

associated variables (Masina et al. 2015). A most significant problem, in 

this context, is the availability of adequately long data (Davison and Huser 

2015). Generally, estimating the dependence of different spatiotemporal 

varying extreme variables require prior experience or knowledge about the 

process (Zscheischler et al. 2014; Sippel et al. 2018). For example, the 

compound drought and heatwave occurrences might be exclusively 

dependent on the seasonal properties of the existing weather conditions 

(Zscheischler et al. 2014). Further, the nonlinear interdependence and 

complexity of natural systems may lead to poor estimation of the association 

between the associated variables. The nature of dependence between two 

variables makes the return period sensitive, and this might lead to uncertain 

risk estimates. In addition, most of the conventional statistical and empirical 

approaches are formulated based on the assumption of stationarity, scale 

invariance which is not suitable in climate change studies (Khaliq et al. 

2006; Sivakumar 2017).  

The Copula is a useful tool to model multivariate distribution among 

random variables and is independent of individual probabilistic 

specifications (Sklar 1959). Copulas are capable of, up to a very good 

extent, capturing the nonlinear dependence between the selected variables 

(Hobaek et al. 2015; Nguyen-Huy et al. 2019). Copulas have been widely 

utilized in a variety of fields such as finance (Chiou and Tsay 2008; Ning 

2010), hydrology (Zhang et al. 2012; Chen et al. 2016), signal processing 

(Iyengar et al. 2009; Lasmar and Berthoumieu 2014), medical (Winkelmann 

2012; Emura and Chen 2018), climate studies (Jhong and Tung 2018; Yin 

et al. 2018a). Studies support the idea that Copulas provide a robust 

methodology for studying hydro-climatic events (Kao and Govindaraju 

2010; Zhang et al. 2013). Copula was utilized in studying the concurrence 

of climate extremes during the California droughts (AghaKouchak et al. 

2014). The study discussed a possible replicable methodology for risk 
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assessment for  associated climate extremes such as floods and storms, 

droughts and extreme temperature. Li et al. (2015) explored the 

applicability of Copula in crop meteorological drought risk and found that 

the joint probabilistic approach offers greater versatility in the estimation of 

risk and associated uncertainties. Recently the joint behaviour of 

temperature and precipitation extremes was modelled using multivariate 

Copula approach, and it was concluded that the method is suitable for 

quantifying the dependence between extremes (Lazoglou et al. 2019; 

Mesbahzadeh et al. 2019; Mirakbari et al. 2020).  

2.5 Nonstationary analysis of extremes 

Most of the univariate and multivariate techniques associated with the 

analysis of extreme climatic conditions are based on the assumptions of 

stationarity. However, due to the significant impact from the anthropogenic 

and natural activities, the stationary assumption in extreme climate risk 

management and planning is not suitable (Milly et al. 2015). Therefore, in 

the prevailing adverse consequences of climate change, implementation of 

non-stationarity to model the extreme events of the climatic variables has 

gained popularity with the advancement of the computational facilities. 

Hence, recent studies aim at the inclusion of nonstationary approach in 

climate change analysis. For example, Katz et al. (2002) discussed the 

application of statistics for physically meaningful and improved analysis of 

the extreme climatic applications. These developments primarily relate to 

the maximum likelihood (ML) estimation of the parameters in the presence 

of physical covariates. Authors also illustrated the application with 

examples which include maximum precipitation and streamflow 

considering the trends and dependence structure with atmosphere-ocean 

circulation (El Niño phenomenon). Sugahara et al. (2009) modelled the 

historical (1933-2005) extreme precipitation over Sao Paulo, Brazil, under 

the nonstationary approach. The extracted extreme precipitation series 

using the peak over threshold (POT) method were fitted to the General 

Pareto distribution (GPD). The parameters of the GPD were computed 
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using the ML method. Keeping the shape parameter constant they used the 

annual cycle, and linear trend as time-varying covariates to examine the 

non-stationarity in extreme precipitation by constructing four different GPD 

models. Authors used the rescaled Akaike Information Criterion (AIC) with 

second-order bias correction as evaluation criteria to identify the best model 

among the four models. Based on the criteria, a model with a linear trend in 

scale parameter was considered as the best model. The result showed a 

significant increase in magnitude and frequency of high quantiles of daily 

rainfall (e.g. 40 mm increase between 1933 and 2005) in the city. Sillmann 

et al. (2011) examined the non-stationarity in monthly minima of European 

winter fitting the 6-hourly minimum temperature with General Extreme 

Value (GEV) distribution and considering North Atlantic atmospheric 

blocking as a covariate. The covariate was applied to the location and scale 

parameters of GEV distribution, and the model was able to improve the 

fitting of extreme minimum temperature in large regions of Europe. Based 

on the analysis, high quantiles of minimum temperature showed a 

decreasing trend. However, the cooling effect of the atmospheric blocking 

in future climate scenarios is weakened due to the enhanced greenhouse 

gases, and thus decreases the probability of occurrence of very cold winter 

in north-eastern parts of Europe. Westra et al. (2013) inspected the presence 

of trends in annual maximum daily precipitation between 1900 and 2009 

from a global dataset 8326 high-quality land-based stations. Initially, a non-

parametric Mann-Kendall trend test (M-K test) was used to evaluate the 

presence of any monotonic trends. Secondly, a nonstationary test was 

executed to determine the strength of association between the precipitation 

extremes and globally averaged near-surface temperature. Authors used 

GEV distribution having globally averaged temperature as a covariate in 

location parameter only. Precisely, the obtained results indicated a 

significant increasing trend of annual maximum precipitation over two-

thirds of stations and the changing proportion of intensity of rainfall with 

respect to the changes in the global mean temperature varies at a rate of 
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between 5.9% and 7.7% K-1.Cheng and Aghakouchak (2014) modelled the 

nonstationary IDF curves for sustainable infrastructure design considering 

the maximum extreme rainfall series of five stations at the USA. Authors 

fitted a nonstationary model to annual maximum rainfall series using GEV 

distribution with time as a covariate at location parameter. Trend analysis 

using M-K test was performed to confirm the existence of the nonstationary 

component in term of a trend at 95% confidence level. Authors reported that 

extreme precipitation could be underestimated by 60% under the stationary 

assumption, which increases the flood risk and failure risk in infrastructure 

systems. Furthermore, they also implemented the Bayesian approach for 

uncertainty modelling of the nonstationary return levels and observed 

higher uncertainty in lower return level while modelling the nonstationary 

IDF curves. Mondal and Mujumdar (2015) detected the change in the 

extreme precipitation through nonstationary modelling over India using 

high resolution daily gridded dataset. In particular, authors extracted the 

extreme precipitation using POT method and modelled the non-stationarity 

by linking the parameter of the distribution with three physical covariates 

(i.e. global warming, local temperature changes, and El Niño-Southern 

Oscillation). Further, the authors modelled the intensity, duration, and 

frequency of extreme rainfall with GPD, Poisson, and Geometric 

distribution, respectively. They observed stationary condition in the 

duration of extreme precipitation at most of the locations, whereas intensity 

and frequency of extreme precipitation are primarily linked with local 

temperature changes at a large number of grids. The superiority of 

stationary and nonstationary models was examined by Yilmaz et al. (2017) 

over Victoria (Australia). GEV with stationary and nonstationary climate 

conditions was investigated using high-quality extreme rainfall data from 

23 stations in Victoria. While developing the nonstationary GEV model, 

time and different indices of climate oscillations affecting the rainfall 

variability in Australia were used as covariates. From the results, they found 

that stationary model was superior to the nonstationary model and therefore 
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this model was used to determine the spatial variability of rainfall IDF 

relationships in Victoria. Recently, Cancelliere (2017) reviewed the 

framework, concepts, and available tools to model the nonstationary series. 

An extension of such methodology to model the drought length assuming 

non-stationarity either in hydrological variables or in-demand levels was 

also presented. The application to the new methodology was carried out to 

characterise drought length using four different annual precipitation series 

in Sicily with varying degree of a trend in the mean. Author suggested that 

the methodology can be extended for other drought characteristics such as 

severity, intensity and also to incorporate the inevitable uncertainty 

associated with the assessment of non-stationarity in hydrological series. 

Recently, many studies have approached the development of non-stationary 

models to understand the influence of natural variability in extremes 

(Bracken et al. 2018; Galiatsatou et al. 2018). Yin et al. (2019) examined 

the spatiotemporal changes and frequency of extreme precipitation in the 

Huai river basin during 1960 to 2014 and found that stationary assumptions 

lead to underestimation of future return levels. Song et al. (2020) developed 

a nonstationary Standardised Precipitation Index using nonlinear 

dependence model for Yangtze River Basin, China and suggested that 

extreme climatic conditions are better explained by nonstationary indices as 

compared to their stationary counterparts. 

2.6 Extreme climate risk and resilience  

Properly identifying and analysing the risk due to extreme climatic 

conditions is essential for formulating effective response measures. It is 

evident from the studies mentioned earlier that the investigation of climate 

extremes requires proper incorporation of variabilities and uncertainties. 

These uncertainties and variabilities put forth important challenges to risk 

and resilience estimation (Eiser et al. 2012). Research shows that more 

innovative tools and methods are needed for extreme climate risk 

assessment. Further, the understanding of risk inducing process and 

selecting a proper methodology is essential for deciding extreme climate-
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induced disaster’s response and mitigation plans. McEntire et al. (2010) 

introduced an integrated disaster response model based on the concepts of 

different social and scientific disciplines and suggested that a 

comprehensive approach is required for risk assessment. The IPCC AR5 

framework has given an overall concept to estimate risk by combining the 

hazard, exposure and vulnerability estimates (Field et al. 2012). Over the 

years, this approach has been able to produce reliable estimates of extreme 

climate risk as it allows the integration of intrinsic vulnerability of the 

subjects rather than just observing at the impacts (Cavan and Kingston 

2012). The risk due to extremes does not only depends on the severity of 

hazard and the vulnerability but also the other factors such as capacity, 

sensitivity and exposure to the hazard (Field et al. 2012). Therefore, the 

investigation of risk due to extreme climatic events considering all critical 

drivers of risk is crucial.  

Several studies have approached the risk and resilience estimation based on 

the previously mentioned frameworks. For instance, Nicholls et al. (2008) 

ranked top cities of the world in terms of the net worth exposed to extreme 

climate disasters and found that USA, Japan and the Netherlands contain 

more than 50 percent of the net exposure. The impact of changing climatic 

conditions on flood risk and extreme rainfall in India events was 

investigated, and it was found that the risk has become more significant in 

the country (Guhathakurta et al. 2011). Harvey et al. (2014) detected the 

vulnerability of agriculture-dependent population in Madagascar to extreme 

weather events as well as the pest and disease outbreaks. A study focusing 

on the impact of global warming on freshwater availability and food 

security revealed that most developing countries might face many critical 

issues due to climate change (Betts et al. 2018). In another significant study, 

the impact of extreme climatic condition in the major wheat-producing 

regions in the world was estimated (Toreti et al. 2019). It was concluded 

that accurate assessment of exposure and vulnerability and its integration 

with the hazard measures is crucial in assessing the risk in these regions. 
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Chen et al. (2019) studied the compound hot temperature and drought 

events in terms of exceedance probabilities and characterised the results 

based on different vegetation and ecosystems. Moreover, the study of co-

occurring hazards in context of global warming revealed that the risk due to 

such hazards may remain higher in future due to increased exposure and 

vulnerability of human population (AghaKouchak et al. 2020). The 

investigation suggested that proper understanding of hazards associated 

with individual extreme events as well as the joint extremes is necessary for 

proper risk estimation.  

The concept of resilience becomes crucial when the understanding of the 

capacity of a system to absorb, rearrange and recover from the impact of 

some disturbance is required. Moreover, in the view of climate extremes, 

the understanding of the capacity of exposed population or infrastructure to 

cope up with the extremes risks and recover to an equilibrium state is 

important in framing extreme climate management policies. It has been 

observed that climate extremes have drastically affected the response and 

resilience of ecosystems in different parts of the world (Pérez et al. 2010). 

Therefore, it is essential that the decision-making bodies should work 

towards understanding and integrating the reliable estimates of the capacity 

of ecosystems to changing climatic conditions. Hoover et al. (2014) 

suggested that the response and recovery of the exposed subject are varied 

in terrestrial ecosystems and may depend on, for example, the species of 

grassland ecosystems. Different components in the existing system play an 

essential role in deciding the resilience characteristics. For example, Isbell 

et al. (2015) explained that biodiversity, without much human interfere, 

stabilizes the terrestrial ecosystems making them more resilient to the 

extreme conditions. Further, it was observed that extreme climatic events 

govern the terrestrial ecosystem functioning and chances of higher mortality 

and poor resilience are evident with increasing extreme events (Hutchison 

et al. 2018). Moreover, Rammig et al. (2020) pointed out the importance of 

considering the interlink between the ecosystems and society while 
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quantifying the resilience and suggested that an integrated approach 

including the ecological resilience and societal evolution is more suitable. 

In recent years, the resilience concept has been utilized to understand the 

response and recovery capacity of human society to a variety of extreme 

climatic events, some of which are floods (Bertilsson et al. 2019; Wang et 

al. 2019), cyclones (Islam et al. 2020; Uddin et al. 2020), droughts and 

heatwaves (Howe et al. 2019; Kamara et al. 2019; Mihunov and Lam 2020).  

2.7 Conclusions 

An overview of past and future climate extremes, probabilistic and 

multivariate approaches to investigate extremes, the importance and 

application of nonstationary analysis and the concept of risk and resilience 

has been presented in this chapter.  The discussions about past and future 

extremes suggest that high-temperature extremes have increased over the 

past and low-temperature extremes have decreased. The changes in 

precipitation extremes have been more variable in nature due to the strong 

influence of regional factors. The future scenarios suggest that continuation 

and amplification of past trends could lead to more severe droughts and 

instantaneous rainfall events. The literature review discussed the 

advantages of EVT and Copula in analysing the extremes. The studies 

suggest that EVT and Copula based methods are one of the most reliable 

tools to examine the risk due to extremes. However, most of the previous 

studies have been performed under nonstationary assumptions. It was found 

from the past works that nonstationary approaches are more useful while 

modelling the extremes. Several works, after comparison of the 

nonstationary models to their stationary counterparts, suggested that 

nonstationary probabilistic models are more efficient in understanding and 

estimating the consequences of climate extremes. Further, the concept of 

risk and resilience in the context of climate extremes was discussed in the 

last section. The literature review indicates that proper assimilation of the 

hazard, vulnerability and exposure elements is necessary for estimating the 
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risk. Moreover, the selection of suitable methodology and integration of 

uncertainty in the estimates is also very crucial for the decision making 

process. Further, the resilience of different human and natural systems is a 

function of several factors. Therefore, the thesis, addressing the gaps 

pointed out in the literature review, aims to assess the climate extremes 

using san advanced nonstationary multivariate probabilistic approach and 

provide more reliable estimates of the risk and resilience for India.  
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Chapter 3 

Predictability of temperature and 

precipitation in the past century 

3.1 Introduction 

Several studies show that climate change has caused alterations in 

precipitation and temperature profiles all across the globe (Li et al. 2011; 

Gobiet et al. 2014). This change is expected to continue in future and cause 

large-scale damage to property and lives (IPCC 2014).  Classical 

approaches to assess climate predictability revolve around understanding 

the variability in climate components. However, the climate over a region 

is governed by many factors and the interconnections between them. 

Several processes in the climate system are nonlinear due to a chaotic or 

random component in the cause-effect relationship, which is difficult to 

detect and incorporate into current modelling practices. Therefore, more 

sensible techniques are required to understand the hidden mechanism in 

different climate processes and overcome the limitations of current 

approaches.  

In this study, the investigation of the predictability of temperature and 

precipitation data from the perspective of a nonlinear dynamic system is 

performed by analysing 102 years’ (1901-2002) mean monthly temperature 

and precipitation data at the district level using the delay vector variance 

(DVV) method (Gautama et al. 2004). This approach can be utilised to 

understand nonlinearity from both deterministic and stochastic 

perspectives. The method of DVV does not require prior knowledge about 

the time series, and it efficiently manages the essential aspects of 

nonlinearity such as time delay, embedding dimensions, behaviour in phase 

space and predictability (Jaksic et al. 2015). They suggested that this 

method is also robust to the presence of noise and produces results which 

are easier to interpret. Earlier, the concept of DVV has been utilised to study 
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biomedical signals, heart rate variability, tremor detection, 

electroencephalogram, functional magnetic resonance imaging, structural 

and mechanical vibrations, and financial time series (Gautama et al. 2003, 

2004, Jaksic et al. 2015, 2016). Although the utilisation of DVV approach 

in climate data analysis has been rare, its applicability in a wide range of 

fields is encouraging. This study provides the district wise understanding of 

the temporal and spatial evolution of Indian climate predictability and 

provides essential inputs for achieving better climate predictions in future. 

3.2 Data and methodology 

As discussed, this study aims to investigate the nonlinear and deterministic 

characteristics of precipitation and temperature profile in India over the past 

century. Briefly, methodology involves understanding the nonlinear 

behavior of the data using the DVV approach. The DVV method is based 

on the comparison of the target variances of the original data and their 

linearized surrogate versions. This difference, which is quantified in terms 

of RMSE is a measure of nonlinearity and minimum target variance of the 

original data indicates the deterministic characteristics. Once the degree of 

nonlinearity was quantified, the memory persistency, and the statistical 

scale dependence was checked with the help of different Hurst exponent 

measures. The methods have been discussed in detail in the sections given 

below.  The overall methodology has been discussed in Figure 3.1. The code 

utilized for this work was developed using the DVV toolbox developed by 

Mandic et al. (2008) in MATLAB. 

3.2.1 Precipitation and temperature data 

This study is performed over 566 stations in India, where each station 

represents a district-an administrative division of the country. 102 years’ 

(1901-2002) mean monthly precipitation and temperature data is acquired 

from the ‘India water portal’ website 

(http://www.indiawaterportal.org/metdata). These stations are well spread over 

India and can be treated as representing the average weather conditions  in  

http://www.indiawaterportal.org/metdata
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Figure 3.1 Flowchart of the methodology 
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their respective districts. For the demonstration of results, one district from 

six climatologically different regions of the country, namely north-west, 

north-east, interior peninsula, north-central, east-coast and west-coast, is 

chosen. Figure 3.2 can be referred to visualise the location of demonstrating 

stations and the boundaries of districts used in this study. Data of some 

districts are not available, for which, interpolation of the results from 

surrounding stations was performed to provide full-scale analysis of India. 

For properly analysing the evolution of determinism and nonlinearity over 

time, the meteorological data is subdivided into three 34 years (1901-1934, 

1935-1968, and 1969-2002) subsets over which the investigation is 

performed. 

 

3.2.2 Scaling properties and memory persistence 

Here, the methodology adopted to study the scaling properties and memory 

carrying capacity of the temperature and precipitation profiles has been 

discussed. The method of Hurst exponent which have been widely utilised 

 

Figure 3.2 Location and details of demonstrating stations (blue triangles) and 

the coverage of districts used in this study (green dots). The boundaries of six 

different climatic zones have been given in red 
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in such studies is employed to check the scale dependence and memory 

persistency  (Morales et al. 2012; Ray et al. 2016a). Hurst exponent 𝐻(𝑞) =

0 indicates that the time series is composed of pure white noise and the 

autocorrelation function (ACF) lapses drastically with time. For a short-

range dependent (SRD) behaviour, 0 < 𝐻(𝑞) < 0.5 and the ACF decreases 

exponentially, smoother than the previous case. Here, the time series adopts 

behaviour almost similar to Brownian motion (fBm). However, for a perfect 

Brownian motion time series, the value of 𝐻(𝑞) is equal to zero. For 

𝐻(𝑞) > 0.5, it can be assumed that the time series loses its SRD property 

and acquires long-range dependence (LRD) characteristics.  

There are many methods available for calculations of Hurst exponent, and 

each of these methods has its own set of advantages and limitations. Since 

this study deals with the analysis of climate data, one method might not be 

sufficient to explain the variability. Therefore, three methods, namely, 

generalised Hurst method, detrended fluctuation analysis (DFA) and 

rescaled range (R/S) analysis were employed separately on all data sets to 

confirm the reliability of the results.  

3.2.2.1 Generalised Hurst method 

This method analyses the statistical properties of a time series 𝑋(𝑡) 

( with 𝑡 = 𝑣, 2𝑣,… 𝑘…𝑇) for time resolution (𝑣) and time period (𝑇). This 

scaling is explained by estimation of an exponent (𝐻) which is related to 

the long term dependence of a time series. The formula for q-order moments 

of the distribution of the increments is given by Di Matteo et al. (2003) 

𝐾𝑞(𝜏) =
〈|𝑋(𝑡 + 𝜏) − 𝑋(𝑡)|𝑞〉

〈𝑋(𝑡) |𝑞〉 
                                       (3.1) 

This formula very well describes the progression of time series 𝑋(𝑡) 

regarding stochastic variation. The Hurst exponent 𝐻(𝑞) incorporating the  

scaling properties is estimated by the following relation  

𝐾𝑞(𝜏) ~ (
τ

ϑ
)
𝑞𝐻(𝑞)

                                                              (3.2) 
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The above equation gives rise to two cases, the case I,  in which 𝐻(𝑞) = 𝐻 

and case II where 𝐻(𝑞) depends upon the order 𝑞. The case I describes the 

uni-scaling process and case II is meant for multi-scaling. When a data set 

exhibits different statistics in different time scales, it is said to be 

demonstrating multi-scaling properties. In this study, the generalised Hurst 

exponent values with 𝑞=1,2,3,4 and 5 are estimated. When the values of 

Hurst exponents did not change with the order of moment 𝑞, it was assumed 

that time series is uni-scaling. However, when the exponent values change 

nonlinearly with the order of moment 𝑞, the time series is considered as 

showing multi-scaling properties.  

3.2.2.2 Detrended fluctuation analysis 

Detrended Fluctuation Analysis (DFA) is one of the widely used approaches 

for studying the scaling properties and is useful in examining the self-

similarity in time series. The methodology includes the construction of a 

cumulative time series (𝑋𝑡) from the original series (𝑥𝑡) transforming the 

underlying noise into respective random walks. 

𝑋𝑡 =
1

𝑁
∑(𝑥𝑖 − 〈𝑥〉)

𝑡

𝑖=1

                                                        (3.3) 

This series is further subdivided into a number of ‘boxes’ containing 𝑛 

observations on which least square fitting is employed to detect the presence 

of a local trend if any. The procedure is followed for each box, and lastly, 

an average fluctuation function 𝐹(𝑛) is calculated which is based on the 

minimization of root mean squared error over the whole cumulative series 

(Peng et al. 1994; Kantelhardt et al. 2001): 

𝐹(𝑛) = [
1

𝑁
∑(𝑋𝑡 − 𝑌𝑡)

2 

𝑁

𝑡=1

]

1
2

                                                       (3.4) 
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Here, 𝑌𝑡 is estimated as the local trend for a given box. The fluctuating 

function 𝐹(𝑛) finds proportionality with the scale 𝑛 of the box which is 

further defined by an empirical power law equation as: 

𝐹(𝑛) ∝ 𝑛𝛽                                                                     (3.5) 

Here, the exponent 𝛽 is similar to the Hurst exponent. For a signal to be 

fractional Brownian motion (fBm), exponent 0 < 𝛽 < 1. If the value is 

greater than 1, the signal is considered to be a non-stationary time series, 

and then the Hurst exponent can be inferred from the relation 𝐻 = 𝛽 − 1.  

3.2.2.3 Rescaled Range analysis 

This method examines the standard deviation with changing ‘range’ of the 

time series. It gives an idea about the variability of the signal with respect 

to different scales. This variability is termed as ‘rescaled range (R/S)’ and 

which is the ratio of ‘range’ of signal to its standard deviation. For 

calculating the rescaled range, the values of range (𝑅𝑛) and standard 

deviation (𝑆𝑛) are calculated, which is later averaged over their respective 

lengths. These averaged rescaled ranges values, and scales are plotted on 

log-log axes, and the slope of this line gives Hurst exponent 

(Bassingthwaighte and Raymond 1994): 

(
𝑅𝑛

𝑆𝑛
)
𝑎𝑣

= (
𝑛

2
)
𝐻

                                                   (3.6)  

Here, 𝑅𝑛 is the range denoting the difference between the minimum and 

maximum values of 𝑥𝑛, while 𝑆𝑛 is given by the sum of  𝑥𝑖 − 𝑥𝑛̅̅ ̅ over 

different lags till the scale is limited to a particular smaller value. Here 𝑛 is 

the length of time series and 𝑥𝑛̅̅ ̅  is the average value. This method is 

considered to be robust with respect to the length of time series and proves 

to be efficient in analysing both large and small scale signals (Chamoli et 

al. 2007). 
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3.2.3 Analysis of nonlinearity and determinism 

3.2.3.1 Delay Vector Variance method 

For a standard time series 𝑥(𝑖) = {𝑥1, 𝑥2, 𝑥3… . 𝑥𝑛}, a set of delay vectors 

(DVs) [𝑥(𝑘) = {𝑥𝑘−𝑚𝜏, … . , 𝑥𝑘−𝜏}], where 𝑘 = 1,2,3,4…𝑁 and 𝜏 ad 𝑚 are 

the time lag and embedding dimension, respectively, is generated by the 

simple process of delay coordinate embedding. Mean 𝜇𝑑 and standard 

deviation 𝜎𝑑 is calculated for all pairwise Euclidean distance between delay 

vectors. 𝜑𝑘(𝑟𝑑) is defined by selecting a set of DVs from the generated DVs 

such  that they lie within a specific Euclidean distance (𝑟𝑑) to the delay 

vectors. For these sets of DVs, the variance of respective targets 𝜎𝑘
2(𝑟𝑑) is 

calculated and normalised by the variance of the whole data set 𝜎𝑥
2.The 

target variance 𝜎∗2(𝑟𝑑) which is a measure of unpredictability can be given 

as (Gautama et al. 2004): 

𝜎∗2(𝑟𝑑) =

1
𝑁
∑ 𝜎𝑘

2(𝑟𝑑) 
𝑁
𝑘=1

𝜎𝑥2
                                       (3.7) 

It is suggested that a sufficient number of DVs should be considered to 

calculate the target variance (Mandic et al. 2008). In this study, only those 

sets of data which have at least 30 reference DVs were selected. To 

standardise the distance axis for further analysis with reference to target 

variance, the Euclidean distance (𝑟𝑑) is replaced by (𝑟𝑑 − 𝜇𝑑)/𝜎𝑑 where, 

𝜇𝑑 and 𝜎𝑑 are mean and standard deviation of all pairwise distance between 

delay vectors. The distribution of minimum target variance with 

standardized distance is utilized to interpret the presence of deterministic 

dynamics in a system. A strong deterministic component results in lower 

minimum target variance value hence, which can be considered as a sign of 

better predictability (Gautama et al. 2004; Ray et al. 2016b).  

Comparison of original time series variance with its surrogate data sets 

enables us to examine the validity of the null hypothesis, i.e. the time series 

is a result of a linear stochastic process. For the generation of surrogate data 
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sets, inverse iterated amplitude adjusted Fourier transform (iAAFT) method 

is employed, which produces a linearised version of the original time series 

with similar amplitude spectrum (Theiler et al. 1992). The difference 

between test statistics of the surrogate and the original time series can be 

used to characterise the time series based on nonlinearity.  In this study, the 

target variance of original time series is compared with the averaged 

variance of 99 surrogate data sets. For visualisation, both the target 

variances are plotted in ‘DVV plots’, and it is expected that the variance 

curve of a linear time series should overlap with the variance curve of 

surrogate series. For exact quantification of the nonlinear deviation, the 

difference between target variance of original time series and linearised 

surrogate sets is quantified in terms of root mean squared error (Hu and Yin 

2009):  

𝑅𝑀𝑆𝐸 =  √𝑚𝑒𝑎𝑛 {σ∗2(rd) −
∑ σ∗𝑠,𝑖

2 (rd)
𝑁𝑠

𝑖=1

𝑁𝑠
}

2

                         (3.8) 

where, σ∗𝑠,𝑘
2 (rd) is the target variance at distance 𝑟𝑑 for 𝑖𝑡ℎ number of 

surrogates later averaged over full span incorporating only the acceptable 

values. The RMSE values are then plotted with respect to a bisector line in 

‘DVV scatter plots’ which can be referred to visualise the degree of 

nonlinearity.  

3.2.3.2 Selection of embedding parameters 

It is important to note that proper representation of time series in phase 

space is necessary to investigate the nonlinear dynamics which depends 

upon the selection of optimum embedding dimension 𝑚 and time lag 𝜏 

(Kyoung et al. 2011). The values of 𝑚 and 𝜏 should not be selected 

arbitrarily. A larger value of 𝑚 not only causes more complex calculations 

but also increases the effect of noise in data (Zhang et al. 2014). At the same 

time, a large value of 𝜏 can significantly reduce the interdependence of two 

adjacently reconstructed state variables. Similarly, selecting considerably 
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smaller 𝑚  and 𝜏 can lead to an incomplete representation of time series in 

phase space. (Gautama et al. 2004) pointed out that the DVV method is 

robust to the selection of parameters which is an added advantage for this 

study. However, considering the spatial and temporal coverage and variable 

nature of the data sets, a wide range of time lag and embedding dimensions 

has been tested. Since the main focus of the study is estimating the 

predictability of involved data sets; that particular combination of time lag 

and embedding dimension which produced maximum predictability is 

selected (Gautama et al. 2004). A similar method is used by (Jaksic et al. 

2015) in the study of the dynamic behaviour of offshore wind floating 

substructures. For precipitation, a total of 280 combinations (𝑚 = 2: 8 ×

 𝜏 = 1: 40), and for temperature, 180 combinations (𝑚 = 2: 7 ×  𝜏 =

1: 30) of embedding dimensions and time lags are examined. 

3.3 Results 

3.3.1 Optimum embedding dimensions and time lag 

Figure 3.3 shows the distribution of optimum embedding dimension and 

time lag obtained for precipitation and temperature profile in different 

periods, respectively. The embedding dimension 𝑚, which is the number of 

previous time samples utilised for investigating predictability is generally 

larger for temperature as compared to precipitation. In the spatial plots, most 

of the regions except the north-west and extreme northern part of the 

country indicate that larger value of 𝑚 is required for proper phase 

reconstruction of temperature data (Figure 3.4a). For the periods of 1901-

1934, 1935-1968 and 1969-2002, the optimum value of 𝑚 > 5 is obtained 

in 291, 261 and 316 out of 566 districts respectively. Although the 

maximum allowable value of 𝑚 is 8 for precipitation data, most favourable 

range of 𝑚 is 2-5 for 244, 257 and 288 districts in the three given periods 

(Table 3.1). Also, the most commonly preferred value of embedding 

dimensions is 2 irrespective of the time periods (Figure 3.3b). Surprisingly, 

this minimum value of 𝑚 is observed in the regions of little precipitation.
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Figure 3.3a Distribution of optimal time lag and embedding dimensions for precipitation in different time periods  
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Figure 3.3b Distribution of optimal time lag and embedding dimensions for temperature in different time periods 
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Figure 3.4ab District-wise spatial distribution of (a) embedding dimension and  (b) time lag for temperature 
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Figure 3.4cd District-wise spatial distribution of (c) normalised RMSE and (d) normalised minimum 

target variance for temperature 
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As compared to the embedding dimensions, optimum time lag (tau) values 

for precipitation are fairly distributed over the domain of 1 to 40. As the 

histogram plots indicate, this distribution of embedding parameters remains 

unchanged for both the variables in different time periods. Although, for 

precipitation, it is observed that lower 𝜏  is more preferred with the progress 

of time (Table 3.1). Optimal 𝜏 range is 1-6 across 139 districts in the initial 

34 years; however, by the end of 1969-2002, this range becomes favourable 

for precipitation reconstruction across 218 districts. An opposite trend is 

observed in temperature as higher time lag (𝜏 > 12) values are more 

preferred with each passing time duration. During 1901-1934, the optimal 

time lag range for temperature is 1-6 for 181 districts, whereas, during 1969- 

2002, 𝜏=12-24 is most preferred range covering a span of 199 districts. For 

precipitation, although, any particular trend in spatial variation preferred 

time lag values could not be specified, a good number of stations in the 

Table 3.1 Number of districts in different ranges of m and 𝜏 

 Temperature Precipitation 

𝒎 1901-

1934 

1935-

1968 

1969-

2002 

1901-

1934 

1935-

1968 

1969-

2002 

2 22 30 14 139 132 142 

3-5 253 275 236 244 257 288 

5-8 291 261 316 183 177 136 

 

𝝉 Temperature Precipitation 

1 −6 181 211 180 139 177 218 

7-12 178 168 122 134 133 122 

13-24 170 148 199 166 148 143 

24

− 40 37 39 65 127 108 83 

Here, 𝑚 is the optimum embedding dimensions and 𝜏 stands for 

optimum time lag 
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central and northern are found to be turning towards lower  𝜏 values during 

1969-2002 (Figure 3.5b). Moreover, districts in the low rainfall regions 

such as northwestern districts and the Himalayan regions require least time 

lag values. The analysis further shows that temperature profiles in regions 

of high precipitation, such as the north-east and west-coast required high 

time lag values for their proper representation in phase space (Figure 3.4a).  

3.3.2. Assessment of nonlinearity  

The evidence of nonlinearity can be fairly observed in the DVV scatter 

plots.  The deviation of curves from the bisector line is a sign of the 

difference in target variances of the original time series and the averaged 

variance values of its surrogate data. This deviation is quantified in terms 

of RMSE, which represents the nonlinearity associated with the original  

data. DVV scatter plots for Satara (west-coast), Ganganagar (north-west), 

Imphal (north-east), Cuttack (east-coast), Solapur (interior peninsula) and 

Lucknow (north-central) are shown in Figure 3.6 to demonstrate the 

nonlinear behaviour of temperature and precipitation data in different 

regions and periods. It should be noted that one station might not represent 

the nonlinearity profiles of a whole region due to large temporal and spatial 

variability. The error bars in these plots are the difference in test statistics 

for original and its surrogate time series. It can be observed from the DVV 

scatter plots for temperature that significant deviation from bisector line is 

observed for Ganganagar district during 1901-1934, whereas, least 

deviation is observed for Satara district during 1969-2002 (Figure 3.6b). 

However, for precipitation, the deviation in DVV scatter plots are more 

random and a unique curve is obtained for each of the selected districts 

(Figure 3.6a). This deviation, i.e. RMSE, is calculated for all 566 districts 

using Equation 3.8 in all three different periods.  For properly analysing the 

results, RMSE values are normalised on a scale of 0 to 1 and then 

categorised into moderately nonlinear (0-0.1), significantly nonlinear (0.1-

0.25), highly nonlinear (0.25-0.5) and extremely nonlinear (0.5-1) classes.
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Figure 3.5ab  District-wise spatial distribution of (a) embedding dimension, (b) for precipitation 
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Figure 3.5cd  District-wise spatial distribution of (c) normalised RMSE and (d) normalised minimum target variance for 

precipitation 
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Figure 3.6a  DVV scatter plots for six districts in different time periods for precipitation 
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Figure 3.6b  DVV scatter plots for six districts in different time periods for temperature 
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The results show that a large number of districts exhibit significant to 

extreme nonlinearity in its temperature and precipitation profiles 

irrespective of the period (Figure 3.7 and Table 3.2). It is also observed that 

the magnitude of nonlinearity in precipitation has intensified over time. For 

example, during 1969-2002, a total of 472 districts show signs of significant 

to extreme nonlinearity as compared to 449 and 458 districts during the 

years 1901-1934 and 1935-1968 respectively. In Figure 3.5c, the spatial 

variation of nonlinearity at all India scale is shown, which indicates that 

initially low precipitation districts of the country have the most significant 

nonlinear characteristics. However, significant changes in the nonlinearity 

profile of precipitation in the country in next time periods are observed.  The 

north-east region which receives the heaviest rainfall in the country, 

initially, has least nonlinear districts. However, by the end of 2002, most of 

the districts in this region have become heavily nonlinear. For temperature, 

the RMSE values are much more clustered in nature, and not much of the 

spatial variation is observed in different periods (Figure 3.3c). Also, as 

compared to 341 significant to extremely nonlinear districts in the initial 34 

years, only 223 and 279 districts have fallen in this category during 1935-

1968 and 1969-2002 respectively (Table 3.2). The number of stations 

showing only moderate signs of nonlinearity is found to increase up to 225, 

343 and 287 during respective periods of 1901-1934, 1935-1968 and 1969-

2002. Strongest nonlinearity is observed in the north-west region for which 

Ganganagar was used as a representative district (Figure 3.5c). Unlike 

precipitation, a greater degree of nonlinearity is observed in the north-east 

region’s temperature profile in initial 34 years, which is found to be 

weakening with the course of time and eventually becoming similar to the 

rest of regions. In addition to this, slight variations in the nonlinearity profile 

are also observed in a few districts in the western regions in the initial and 

last 34 years. It is also found that nonlinearity level in precipitation across 

309 districts either increased or remained the same during the transition 

from 1901-1934 to 1935-1968.  Again, in the next transition, i.e. 1935-1968  
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Figure 3.7a  Distribution of normalised RMSE and normalised minimum variance values for  precipitation in different time 

periods 
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Figure 3.7b  Distribution of normalised RMSE and normalised minimum variance values for  temperature  in different time periods 
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to 1969-2002, a similar trend is observed in 314 districts. Similarly, in the 

case of temperature, increasing or the same level of nonlinearity is observed 

in 305 districts during 1901-1934 and 1935-1968. However, when the 

RMSE values of 1935-1968 and 1969-2002 are considered, 329 out of 566 

districts showed either equalled or increased degree of nonlinearity. In 

addition to this, the percentage change (with respect to 1) in nonlinearity by 

plotting the difference between the RMSE values of 1901-1934 and 1935-

1968 on x-axis and 1935-1968 and 1969-2002 on y-axis (Figure 3.8) is also 

compared. Hence, the first quadrant (+,+) denotes increasing trend of 

nonlinearity throughout the century, second quadrant (-,+) denotes a 

decrease in the difference in RMSE values of 1935-1968 and 1901-1934,  

while an increase in RMSE during 1969-2002 and 1935-1968 and so on for 

the other quadrants. It is observed that nonlinearity in precipitation has 

continuously increased throughout the century in 120 districts and initially 

Table 3.2 Number of districts in different ranges of RMSE and 

minimum target variance  

 Temperature Precipitation 

RMSE 1901-

1934 

1935-

1968 

1969-

2002 

1901-

1934 

1935-

1968 

1969-2002 

0.00-0.1 225 343 287 117 108 94 

0.1-0.25 229 178 218 263 236 211 

0.25-0.5 105 44 59 160 183 199 

0.5-1.00 7 1 2 26 39 62 

 

 Temperature Precipitation 

min.var. 1901-

1934 

1935-

1968 

1969-

2002 

1901-

1934 

1935-

1968 

1969-2002 

0.00-0.1 455 380 334 193 221 162 

0.1-0.25 80 132 166 124 114 116 

0.25-0.5 26 46 47 136 134 167 

0.5-1.00 5 8 19 113 97 121 
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decreased and then increased in 194 districts. Similarly, nonlinearity in 

temperature has continuously increased in 167 districts and lastly increased 

after initial decrement in 162 districts. More importantly, a constant 

decrease in nonlinearity in precipitation and temperature is observed only 

in 63 and 99 districts, respectively. It is also very clear from the plots that 

absolute percentage change in nonlinearity in precipitation is more 

significant and random than the temperature in which more drastic change 

is observed only in first transition periods as large number of values are 

clustered around x-axis (Figure 3.8a-d).  

  

 

Figure 3.8 Absolute percentage change in nonlinearity and determinism 

for (a,c) precipitation and (b,d) temperature. RMSE_3/2 - RMSE_2/1 

represents the difference in normalised RMSE values of 2002-1969/1968-

1935 - 1968-1935/1934-1901, respectively. Similarly, MV3/2-MV2/1 

represents the difference in normalised minimum variance values of 2002-

1969/1968-1935 - 1968-1935/1934-1901, respectively 

 



56 
 

3.3.3 Scale dependence and nonlinearity 

Before analysing the deterministic behaviour of temperature and 

precipitation data, the memory persistency and scaling properties have been 

briefly discussed. It can be inferred from Hurst exponents values that both 

precipitation and temperature exhibit the properties of fractional Brownian 

motion irrespective of the time durations (Figure 3.9a,b). This behaviour 

can be validated by the Hurst exponent measures obtained from the three 

different methods. The Hurst exponent values from all three methods lie 

below 0.5, and it can be added to the conclusion that both the variables 

exhibit fractional Brownian motion with short-range dependence 

characteristics. The presence of SRD notion in Indian climate is not only 

confirmed but also indicates the existence of some feedback mechanism 

which keeps the values of temperature and precipitation relatively stable 

across the country. The anti-persistency in the climate data also stresses that 

there may be hidden periodicities in both the variables which need to be 

examined. Since the study is more concerned about the changes in scaling 

properties with respect to its dependence on nonlinearity, hence, instead of 

investigating more specifically about the scale dependence, the relationship 

between nonlinearity and scale dependence is analysed. For a more precise 

understanding, the 𝐻(𝑞) vs (𝑞) plots for the previously selected different 

districts have been shown in Figure 3.9c,d which represent the generalised 

Hurst exponent 𝐻(𝑞) values plotted against increasing order of 

moment (𝑞). It can be clearly observed that most of the plots show 

nonlinearly varying values of 𝐻(𝑞) with changing order of moment (𝑞). 

Further, it can also be noticed that there is a significant correlation between 

the degree of nonlinearity and the 𝐻(𝑞) values. In most cases, higher the 

nonlinearity higher was the nonlinear relation of 𝐻 (𝑞) and (𝑞) (Figure 

3.9c,d). For example, it is known from the DVV analysis, that temperature 

profile of Ganganagar is one of the most nonlinear out of six selected 

districts (Table 3.3,3.4). Here, the 𝐻(𝑞) vs (𝑞) plots for north west’s 

Ganganagar district’s temperature time series appear to stand out from the
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Figure 3.9ab Hurst exponents values for (a) precipitation and (b) temperature using generalised Hurst, rescaled range and 

detrended fluctuation analysis methods 
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Figure 3.9cd (c) and (d) represent the change in Hurst exponent (H(q)) with changing orders of moment (q) for precipitation 

and temperature, respectively 
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Table 3.3 Optimal embedding dimension, time lag, RMSE, minimum target 

variance and Hurst exponent measures of sample stations in different time 

periods for temperature data 

Station  m tau RMSE min.var. Hurst Exponent 

     Gen. DFA R/S 

(1901-1934) 

Ganganagar  7 1 0.083 0.023 0.292 0.119 0.301 

Lucknow  3 20 0.019 0.061 0.250 0.113 0.237 

Imphal 7 10 0.053 0.052 0.228 0.206 0.283 

Cuttack  3 8 0.021 0.065 0.249 0.191 0.266 

Solapur  7 4 0.038 0.078 0.225 0.144 0.290 

Satara  5 24 0.039 0.050 0.178 0.239 0.336 

(1935-1968) 

Ganganagar  3 1 0.094 0.015 0.297 0.114 0.293 

Lucknow  4 12 0.013 0.017 0.230 0.138 0.244 

Imphal 3 24 0.032 0.076 0.201 0.245 0.283 

Cuttack  5 5 0.041 0.101 0.248 0.165 0.290 

Solapur  6 14 0.049 0.092 0.227 0.150 0.368 

Satara  2 30 0.033 0.170 0.164 0.269 0.452 

(1969-2002) 

Ganganagar  5 1 0.074 0.015 0.303 0.112 0.320 

Lucknow  5 3 0.023 0.041 0.231 0.146 0.247 

Imphal 6 19 0.071 0.234 0.214 0.299 0.324 

Cuttack  5 12 0.057 0.044 0.248 0.310 0.348 

Solapur  6 24 0.024 0.054 0.219 0.174 0.345 

Satara  4 3 0.027 0.169 0.170 0.235 0.404 

Here, ‘Gen’, ‘DFA’ and ‘R/S’ are abbreviations used for generalised Hurst 

method, detrended fluctuation analysis and rescaled range analysis 

respectively. min.var. denotes minimum target variance. 
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Table 3.4 Optimal embedding dimension, time lag, RMSE, minimum target 

variance and Hurst exponent measures of sample stations in different time 

periods for precipitation data 

Station m Tau RMSE min. var. Hurst Exponent* 

     Gen. DFA R/S 

(1901-1934) 

Ganganagar 8 24 0.113 0.020 0.148 0.386 0.427 

Lucknow 8 2 0.071 0.410 0.208 0.179 0.313 

Imphal 5 24 0.081 0.015 0.236 0.14 0.283 

Cuttack  7 12 0.072 0.052 0.225 0.172 0.315 

Solapur 6 2 0.026 0.434 0.186 0.325 0.387 

Satara 4 24 0.093 0.003 0.221 0.293 0.321 

(1935-1968) 

Ganganagar 4 12 0.093 0.075 0.125 0.467 0.348 

Lucknow  5 30 0.087 0.019 0.226 0.308 0.2 

Imphal  5 12 0.052 0.011 0.256 0.327 0.206 

Cuttack 8 12 0.041 0.030 0.231 0.329 0.182 

Solapur 8 12 0.048 0.002 0.199 0.361 0.233 

Satara 5 24 0.067 0.000 0.209 0.268 0.199 

(1969-2002) 

Ganganagar 5 12 0.088 0.022 0.138 0.417 0.455 

Lucknow 5 5 0.081 0.179 0.235 0.224 0.335 

Imphal 7 12 0.083 0.018 0.26 0.203 0.366 

Cuttack 8 24 0.050 0.038 0.227 0.112 0.303 

Solapur 4 12 0.048 0.013 0.224 0.207 0.335 

Satara 4 9 0.040 0.056 0.239 0.205 0.285 

*Here, ‘Gen’, ‘DFA’ and ‘R/S’ are abbreviations used for generalised Hurst 

method, detrended fluctuation analysis and rescaled range analysis respectively. 

min.var. denotes minimum target variance.  



61 
 

rest following the most nonlinear trend. Moreover, 𝐻(𝑞) vs (𝑞) plots of 

Lucknow and Cuttack districts whose RMSE values are comparable (0.019 

and 0.021 respectively) in 1901-1934, have overlapping curves in Figure 

3.9d. In addition to this, least nonlinearity is observed for Lucknow 

district’s temperature profile during three subsequent periods, for which, the 

𝐻(𝑞) vs (𝑞) plots are almost linear with a little or no change. Moreover, 

𝐻(𝑞) values for precipitation were changing more nonlinearly with 

increasing (𝑞). It should be noted that precipitation, in general, had larger 

RMSE values due to the presence of higher nonlinear components (Table 

3.4).  As suggested by Jaksic et al. (2016), a nonlinear change in 𝐻(𝑞) 

values with increasing order of moment (𝑞) suggest that time-series carries 

multi-scaling behaviour. Hence, it can be firmly concluded that 

precipitation, being more nonlinear, is also carrying a stronger multi-scaling 

characteristics 

3.3.4 Assessment of determinism  

In the previous section, DVV scatter plots are utilised to visualise the 

presence of nonlinearity in a time series by observing the difference 

between original and surrogate data sets. Here, ‘DVV plots’ can be used to 

visualise the nonlinearity as well as the presence of deterministic 

component, which is estimated as the value of minimum target variance of 

the original time series. Figure 3.10 represents the DVV plots of six stations 

for temperature and precipitation. Original minimum target variance curves 

for precipitation are more disorderly as compared to its linearised surrogate 

versions, indicating significant nonlinearity. The minimum values of 

variance in the variance curve of original data can be utilised to understand 

the presence of deterministic component. In almost every plot, the presence 

of a strong deterministic component can be noticed. Also, to understand the 

variation over the three time periods, the DVV plots plots of some stations 

have also been shown (Figure 3.11ab). It can be noticed that the difference 

between thetarget variance of the  surrogate and original data se of 
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Figure 3.10a DVV plots for six districts in different time periods for temperature. Red and black lines denote target 

variance values for original and surrogate data sets 
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Figure 3.10b DVV plots for six districts in different time periods for  precipitation. Red and black lines denote target variance 

values for original and surrogate data sets 
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Figure 3.11a DVV plots for two representative stations during (1901-1934), (1935-1968) and (1969-2002) for temperature. Red 

and black lines denote target variance values for original and surrogate data sets 
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Figure 3.11b DVV plots for two representative stations during (1901-1934), (1935-1968) and (1969-2002) for precipitation. 

Red and black lines denote target variance values for original and surrogate data sets 
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Ganganagar keeps varying overtime which is an indicatorof significant 

nonlinearity. Further, the less nonlinear stations, e.g. Satara,  have not 

shown much deviation ove rtime. To understand the determinism, minimum 

target variance values for all 566 stations are computed and normalised over 

a scale of 0 to 1 for proper comparison. Normalised minimum target 

variance values are classified as highly deterministic (0-0.1), significantly 

deterministic (0.1-0.25), moderately deterministic (0.25-0.5) and non-

deterministic (0.5-1).  For precipitation, it is observed that initially, 193 out 

of 566 districts are highly deterministic, which later gets reduced to 162 

districts by the end of 2002 (Table 3.2). Further, the number of significantly 

deterministic stations is 124 during 1901-1934, which are limited to 114, 

and 116 during 1935-1968 and 1969-2002 respectively. At the same time, 

the increase in the number of moderately deterministic stations is also 

observed. The distribution of absolute percent change in the deterministic 

behaviour of districts during the last century can be observed in  Figure 

3.7c,d. Only, 88 and 135 out of 566 districts witnessed a continuous rise in 

determinism in their precipitation and temperature profiles throughout the 

century. However, a total of 210 and 247 districts exhibit a trend of rising 

and then fall in determinism in their precipitation and temperature profiles. 

Individually, during the transition from 1901-1934 to 1935-1968 time 

period, determinism is observed to decrease in temperature profiles across 

186 districts in the country. Whereas, during 1935-1968 to 1969-2002, 

determinism in temperature has decreased in 336 districts across the 

country. Similarly, determinism in precipitation has also decreased in 268 

(1901-1934 to 1935-1968) and 317 (1935-1968 to 1969-2002) districts.  

The spatial distribution of normalised minimum variance suggests that both 

precipitation and temperature, in general, carry strong deterministic 

components ( Figure 3.4d, 3.5d).  For initial 34 years, all districts except a 

few in the north-west, north-east and west-coast region exhibit strong 

deterministic properties in their respective temperature profiles. However, 

with time, districts in the west-coast region have become less deterministic. 



67 
 

Moreover, precipitation data, which is found to be more nonlinear than the 

temperature, is also significantly deterministic in most parts of the country 

except the low precipitation zones. The districts in the north-west, extreme 

north and southern part of the country are found to be consistently non-

deterministic throughout the century. It should be noted that the presence of 

nonlinearity should not always be related to unpredictability. If the 

underlying nonlinearity is accompanied by strong determinism, the chances 

of better predictability prevail. 

3.4 Discussions  

The main aim of this study is to detect the presence of underlying 

nonlinearity and determinism in the Indian climate from a predictability 

point of view. For this purpose, the temperature and precipitation profiles 

of 566 districts of the country are analysed using the DVV approach which 

is supposed to be robust to the presence of noise, length of data and choice 

of embedding parameters. The analysis shows that both temperature and 

precipitation are highly nonlinear. For precipitation, the normalised RMSE 

values are found to be significantly increased in subsequent periods which 

indicate that precipitation in India is becoming increasingly nonlinear. 

Quantitatively, precipitation profiles in about 80% out of 566 districts are 

found to be significant to extremely nonlinear throughout the century. At 

the same time, the number of non-deterministic to moderately deterministic 

districts have increased (66% in 1901-1934 to 71% in 1969-2002) over the 

century, and the number of significantly deterministic districts have 

decreased (34% in 1901-1934 to 28% in 1969-2002). If this trend continues, 

the chances of better predictability of precipitation are supposed to be grim 

in future. Similarly, temperature profiles in about 60% (341) out of 566 

districts are found to be significant to extremely nonlinear in the initial 34 

years which counts up to 279 (50%) districts in 1969-2002. Although, there 

was a decrease in the number of significant to extremely nonlinear districts, 

however, the decrease in the number of highly deterministic stations is also 

observed to decrease with time (455 in 1901-1934, 380 in 1935-1968 and 
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334 in 1969-2002). This is not encouraging as loss of determinism is 

evidence of decreasing predictability. Moreover, considerable spatial 

changes in the nonlinearity profile are observed in different periods.  

It is further concluded that the nonlinearity associated with rainfall is both 

time and scale-dependent. This finding of scale and time dependence of 

Indian rainfall is in agreement with other such studies (Subash et al. 2011; 

Subash and Sikka 2014). A nonlinear precipitation input in hydrological 

cycle further increases the chances of uncertainty in remaining components. 

Hence, knowledge about the nonlinearity in rainfall pattern can provide 

crucial inputs in deciding policies and plans for efficient water resource 

management practices in this region which has witnessed several droughts 

and floods in the past years. Unlike the precipitation data where large 

variation in the temporal and spatial distribution of nonlinearity is observed, 

large RMSE values for temperature profiles are found to be clustered in the 

north-west region. This part of the country experiences one of the most 

significant variations in daily maximum and minimum temperature and 

receives scanty rainfall. Detection of long term nonlinearity in these 

circumstances further increases the chances of poor predictability hence, 

increased risks. Initially, a few stations in north-east India are found to be 

nonlinear, also, in the last 34 years, some districts in the western coastal 

region are found to be turning nonlinear. Considering all the time periods 

and spatial distribution of rainfall, it is likely that precipitation extremes are 

closely related to the distribution of nonlinearity in temperature profiles 

which further needs to be explored. In addition to this, for precipitation, 

nonlinearity is higher, and determinism is lower than of temperature. For 

both, regions of extreme precipitation and temperature (either higher or 

lower) are significantly non-deterministic in all time periods. As most of the 

districts in extreme climate zones are also found to be nonlinear as well as 

non-deterministic, the prediction of extreme climate events in these regions 

might remain least predictable in future. Moreover, a shift in the nonlinear 

dynamics is not only observed with time but also with scale. Hurst exponent 
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values obtained from three methods discussed earlier disclosed that both the 

variables show properties of anti-persistent process with short-range 

dependence. For precipitation, exponent values are observed to be changing 

more nonlinearly with the order of the moment, leading to the conclusion 

that precipitation is more significantly multi-scaling than temperature. 

Further, the presence of nonlinearity, as well as strong determinism in the 

climate, is a strong indication of hidden chaotic dynamics which may be 

explored in future studies. Since this study provides a characterization of 

nonlinearity and determinism in different spatial and temporal scale, 

possible interconnections between both is also a significant issue to be 

examined.  

3.5. Conclusions 

This study presents the analysis of the predictability of the Indian climate 

of the past century (1901-2002) by investigating the nonlinear and 

deterministic dynamics of the precipitation and temperature data of India at 

the district level. The evidence of nonlinearity or randomness and 

associated determinism are utilised as the measure of predictability. It is 

found that districts in the extreme rainfall or temperature zone are least 

deterministic and highly nonlinear. Precipitation profiles in the majority of 

districts are significant to extremely nonlinear, especially in the north-west 

and arid zones of the country. In addition to this, the predictability of 

precipitation in the majority of districts has decreased due to the 

deterioration in deterministic characteristics. Although, nonlinearity in 

temperature is found to be somewhat lesser as compared to precipitation, 

the trend of determinism suggests that temperature profiles also remains 

increasingly unpredictable. It is observed that precipitation, being more 

nonlinear is more sensitive to changes in spatial and temporal variations. 

Moreover, the analysis of scaling properties suggests that all the variables 

show characteristics of fractional Brownian motion (fBm), anti-persistent, 

short-range dependent time series. The extent of nonlinearity is observed to 

be strongly related to multi-scaling properties. The analysis on a few sample 
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stations revealed that a significantly nonlinear precipitation profile is also 

significantly multi-scaling in nature. It is found that districts in the extreme 

climate zones are highly nonlinear and least deterministic which induces a 

poor state of climate predictability in these regions. The trend of 

nonlinearity and determinism indicates that chances of better climate 

predictability in these sensitive zones might be more significantly affected 

in future.  
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Chapter 4 

Low-frequency global-scale modes and their 

influence on rainfall extremes  

4.1 Introduction 

As discussed in the literature review section, the inclusion of physical 

processes as covariates under the changing climate is crucial. Subsequently, 

it is also vital to have reliable estimates of the return levels for optimal 

design purposes. Ignoring the uncertainty associated with the distribution’s 

parameters may lead to under/overestimation of designs that subsequently 

can cause catastrophic damages (Coles et al. 2003). Specifically, the 

classical approach uses the point estimate of the parameters obtained using 

different methods such as L-moments (Saf 2009; Haddad et al. 2011), 

method of moments( Lück and Wolf 2016), and maximum likelihood 

estimation (MLE) (Das and Umamahesh 2017). Moreover, Coles et al. 

(2003) reaffirmed that the classical approach does not encompass the model 

uncertainty comprehensively and is confined to produce an overly positive 

assessment of extremes. The Bayesian method is one of such methods to 

overcome this issue. With this approach, it is possible to obtain the posterior 

distribution of the parameters by integrating it over the parameter space. 

Moreover, the introduction of Markov Chain Monte Carlo (MCMC) 

methodology allows the approximation of the integrals by employing a 

Markov chain with the posterior distribution (Chandra et al. 2015).  

In this study, the risks due to heavy precipitation in India is investigated by 

employing nonstationary EVT in the Bayesian framework. The major 

objective of the work can be given as identifying the linkage of large-scale 

climate oscillation to historical (1951-2013) extreme precipitation and 

examining the uncertainty related to the parameters by employing the 

Bayesian approach. Specifically, the parameters of the probability 

distribution are analysed to ascertain the associated uncertainty 
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incorporating the prior distribution and likelihood function. The MCMC 

algorithm is employed to obtain the parameter samples from the posterior 

distribution using the Bayes rule. Further, high-resolution spatial maps and 

underlying uncertainties in return level and parameters over India have been 

prepared, and the results have been characterised on the river basin scale. 

The findings have critical applications on the understanding of how ENSO, 

IOD and NAO influence extreme precipitation in different parts of the 

country and would enable a more rigorous theoretical foundation for 

assessment of risks due to heavy rainfall.  

4.2 Data and methodology 

4.2.1 Study area and data 

Many major rivers basins across the globe have witnessed changes in their 

natural ability to absorb the impacts of climate change. In this context, river 

basins have a distinctive geographical, geological, hydrological 

characteristic. Therefore, analysis on a river basin scale could give a proper 

framework for managing water resources in the context of the risks due to 

extreme rainfall. This study is performed over 24 major river basins of the 

country for appropriate characterisation of the regions of high risks. Figure 

4.1 can be referred for the location of river basins and their corresponding 

IDs. 

In this study, gridded daily precipitation data for 1951-2013 is extracted 

from a high spatial resolution (0.5° × 0.5°) IMD (India Meteorological 

Department) data set which has been prepared using daily rainfall from a 

network of 6955 rain-gauge stations in the country (Pai et al. 2014). The 

IMD states that these data had been prepared by assuring quality control of 

rain gauge stations and verified using existing data sets. This data is known 

to capture the variability in the Indian monsoon rainfall most efficiently 

among those obtained from similar sources (Mishra et al. 2014).  
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Figure 4.1 River basins and their IDs used in the study. The details of 

basin IDs are :  1-Indus,2-Ganga,3 Brahmaputra,4-Barak, 5-

Godavari,6-Krishna,7-Cauvery,8-Subernrekha,9-Brahmani and 

Baitarani, 10 Mahanadi, 11-Pennar,12-Mahi, 13-Sabarmati, 14-

Narmada, 15-Tapi, 16-East flowing rivers between Mahanadi and 

Godavari basins (EFRMGB), 17- East flowing rivers between 

Godavari and Krishna basins (EFRGKB),18- East flowing rivers 

between Krishna and Pennar basins (EFRKPB) ,19- East flowing rivers 

between Pennar and Cauvery basins (EFRPCB),20-East flowing rivers 

between Subernrekha and Cauvery basins (EFRSCB), 21-Luni ,22-

Minor rivers flowing into Bangladesh (MRFB) ,23-Minor rivers 

flowing into Myanmar (MRFM) ,24- Western Ghats (WG) 
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Four precipitation indices, namely, monthly maximum one-day 

precipitation (Rx1 day), annual count of days when precipitation is more 

than or equal to 10mm (R10), maximum number of consecutive wet days 

(CWD) and simple daily precipitation intensity index (SDII) which is total 

annual rainfall divided by the number of wet days are calculated based on 

the recommendations of Expert Team on Climate Change Detection and 

Indices (ETCCDI) (Zhang and Zwiers 2013). The indices were developed 

using the Climdex package in R (Bronaugh 2014). These indices have been 

extensively utilized, and their investigation has produced significant results 

in the analysis of extreme rainfall over India and the world (Revadekar and 

Preethi 2012; Rao et al. 2014; Pfahl et al. 2017). It is to be noted that the 

annual maximum values of the extremes are considered during the analysis.  

As discussed, ENSO, IOD and NAO are used as covariates for analysing 

the nonstationary impact on extreme rainfall. Several studies have utilised 

the SSTs to understand the variability in monsoon rainfall in India 

(Gershunov et al. 2001; Revadekar and Kulkarni 2008). The monthly mean 

anomaly of SST with respect to 1981-2010, averaged over the NINO3.4 

(17oE-120oW, 5oS-5oN), is calculated. Since annual precipitation indices are 

taken into account, therefore, the SST anomalies during their dominant 

period (November to March) have been considered. The monthly SST 

anomalies are obtained from the National Oceanic and Atmospheric 

Administration (NOAA) Centre for Weather and Climate Prediction 

(https://www.cpc.ncep.noaa.gov/data/indices/) website. IOD is measured as 

Dipole Mode Index (DMI) encompassing the dipole mode in the tropical 

the Indian Ocean. The DMI is described as the difference between SST 

anomaly between tropical western Indian Ocean and the tropical south-

eastern Indian Ocean. The DMI data is downloaded from the  Japan Agency 

for Marine-Earth Science and Technology (JAMSTEC) website 

(http://www.jamstec.go.jp/frcgc/research/d1/iod/ ). The NAO index is given as 

the difference between sea pressure between the sub-tropical high and sub-

polar low. NAO has been recognised as one of the major modes of rainfall 

https://www.cpc.ncep.noaa.gov/data/indices/
http://www.jamstec.go.jp/frcgc/research/d1/iod/
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variability in India specifically in the winter season in the northern 

hemisphere. The NAO data is obtained from the Climate Research Unit 

(CRU) website (https://crudata.uea.ac.uk/cru/data/nao/). 

4.2.2 Methods 

The overall methodology employed in this study has been represented with 

the help of a flowchart in Figure 4.2.  In the very first step, the extreme 

precipitation indices (Rx1 day, SDII, R10 and CWD) from historical (1951-

2013) precipitation data are computed and analysed for their spatio-

temporal distribution, variability and trends. Eventually, the stationary and 

nonstationary modelling of extreme indices are performed, and the best fit 

model is obtained. The results obtained in this step is used as the initial 

setting for Bayesian analysis to obtain the posterior distribution parameters. 

Subsequently, parameters and return levels in different return periods are 

estimated along with their uncertainties. The extreme value analysis was 

done using the extRemes 2.0 package in R (Gilleland and Katz 2016).  

4.2.2.1 Trend analysis of the extreme precipitation indices 

World Meteorological Organization (WMO) guidelines recommend many 

methods for trend detection in hydro-climatic variables (Kundzewicz and 

Robson 2000; Hannaford and Marsh 2006). In this study, Mann- Kendall 

(MK) test is used to detect the existence of a linear trend in the extreme 

precipitation indices. The MK test is a nonparametric test for the detection 

of trends in a time series. MK test is simple, robust and has the advantage 

of dealing with data inconsistency such as missing values in a time series. 

Hence, in this study, the nonparametric MK test is used to analyse the 

temporal behaviour of Rx1 day, SDII, R10 and CWD over India. For the 

sake of brevity, the MK test has not been discussed in detail here, and there 

are several works available (Cao et al. 2015; Gao et al. 2016) which can be 

followed to understand the test in detail. 

 

https://crudata.uea.ac.uk/cru/data/nao/
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Figure 4.2 Methodological flowchart 

 

Precipitation data (1951-2013)

Extremes Indices 
(RX 1 Day, SDII, R10, CWD) 

Stationary GEV Model (S-GEV)

Return Levels 

Uncertainty in Parameters

56 linear combinations for
location and shape parameter 

Initial parameters S-GEV and NS-GEV

Bayesian Framework and MCMC sampling

Likelihood Ratio Test

Stationary or Non-stationary? Which is best covariate combination?

Maximum Likelihood Estimates of parameter

8,00,000 iterationsConvergence

Heidelberger And Welch's Convergence Diagnostic

Posterior Parameter for S-GEV and NS-GEV

Uncertainty in Return Levels 

ENSO, IOD, NAO data

Nonstationary GEV Model (NS-GEV)

Characterization of results on river basin scale
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4.2.2.2 Nonstationary modelling of extreme precipitation indices 

Two of the majorly used probability distributions to study the extreme 

climate variables are the Generalized Extreme Value (GEV) distribution 

and Generalized Pareto (GP) distribution (Cooley 2009).  The probability 

distribution of extreme precipitation indices is considered as GEV. It should 

be noted that all four extreme precipitation indices have been modelled 

using the GEV distribution, assuming that all are continuous random 

variables. The cumulative probability distribution function for GEV 

distribution can be given by Equation 4.1.  
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where, 𝑥 corresponds to the annual extreme precipitation indices and 𝜃 =

[𝜇, 𝜎, 𝜉] represents the location, scale and scale parameters. The GEV 

distribution parameters mentioned in Equation 4.1 correspond to the 

stationary assumption. Further, nonstationarity in the GEV distribution is 

introduced by the expressing these parameters as linear functions of the 

large-scale oscillation indices which are ENSO (to be read as C1), IOD (C2) 

and NAO (C3). Considering the shape parameter as a function of time is 

often not advised (Coles 2001; Yilmaz and Perera 2014). Hence, for the 

sake of simplicity, the shape parameter 𝜉 is assumed to be constant and only 

location and scale parameters are varied. Further, Gilleland and Katz (2016) 

suggested that varying the scale parameter without changing the location 

parameter might not be appropriate in modelling the influence of covariates. 

Therefore, in view of these criteria, 56 (M1, M2, M3…) linear combinations 

considering the linear dependence of location and shape parameters on 

climate indices for the nonstationary modelling are considered. Please see 

Table 4.1 for details about the covariate combination equations. The ID for 

stationary model is given by M0 in which the values of covariates is zero 
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representing constant parameters. The coefficients 𝜇1 𝜇2,𝜇3 and 𝜎1, 𝜎2, 𝜎3  

in the nonstationary models denote the trend in location and shape 

parameters depicting the influence of physical covariates C1, C2  and C3 

respectively. Based on the comparison of nonstationary models with its 

stationary counterpart, the impact of related large-scale oscillations on the 

extreme precipitation can be assessed.  

For parameter estimation, maximum likelihood (ML) approach is adopted, 

which is known to incorporate the nonstationary characteristics of 

parameter distribution (Towler et al. 2010). The ML estimates are the values 

of 𝜃 = [𝜇, 𝜎, 𝜉] on which the likelihood function attains maximum value. 

Lets, define 𝑋 = 𝑥1, 𝑥2, 𝑥3, …… . . , 𝑥(𝑛 − 1), 𝑥(𝑛) be the series of any 

selected extreme indices with 𝑛 number of observations. The log-likelihood 

can be defined as:  
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(4.2) 

where 𝐿(𝜃) is the likelihood function of the parameter vector 𝜃. Precisely, 

the likelihood function is the measure of how likely the datasets are as a 

function of the unknown parameters of GEV distribution, and the MLE 

evaluates the values of parameters those maximize the likelihood function 

(Katz 2013). The MLE estimation in the context of this study can be defined 

by, e.g. for M1 where the location parameter is linked with covariate C1 

(ENSO), function 𝐿(µ(𝐶1), 𝜎, 𝜉|𝑋) based on four parameters 

µ0, µ1, 𝜎, 𝑎𝑛𝑑 𝜉. Optimization is performed to obtain these four parameters 

so that the likelihood function is maximized.  
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Table 4.1 Description of the models used in the present study 

Model ID Description 

M0 ~ [ , , ]X GEV     

M1 0 1 1~ [( ), , ]X GEV C     

M2 0 2 2~ [( ), , ]X GEV C     

M3 0 3 3~ [( ), , ]X GEV C     

M4 0 1 1 2 2~ [( ), , ]X GEV C C       

M5 0 2 2 3 3~ [( ), , ]X GEV C C       

M6 0 3 3 1 1~ [( ), , ]X GEV C C       

M7 0 1 1 2 2 3 3~ [( ), , ]X GEV C C C         

M8 0 1 1 0 1 1~ [( ),( ), ]X GEV C C       

M9 0 1 1 0 2 2~ [( ),( ), ]X GEV C C       

M10 0 1 1 0 3 3~ [( ),( ), ]X GEV C C       

M11 0 2 2 0 1 1~ [( ),( ), ]X GEV C C       

M12 0 2 2 0 2 2~ [( ),( ), ]X GEV C C       

M13 0 2 2 0 3 3~ [( ),( ), ]X GEV C C       

M14 0 3 3 0 1 1~ [( ),( ), ]X GEV C C       

M15 0 3 3 0 2 2~ [( ),( ), ]X GEV C C       

M16 0 3 3 0 3 3~ [( ),( ), ]X GEV C C       

M17 0 1 1 2 2 0 1 1~ [( ),( ), ]X GEV C C C         

M18 0 2 2 3 3 0 1 1~ [( ),( ), ]X GEV C C C         

M19 0 3 3 1 1 0 1 1~ [( ),( ), ]X GEV C C C         

M20 0 1 1 2 2 0 2 2~ [( ),( ), ]X GEV C C C         

M21 0 2 2 3 3 0 2 2~ [( ),( ), ]X GEV C C C         

M22 0 3 3 1 1 0 2 2~ [( ),( ), ]X GEV C C C         
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M23 0 1 1 2 2 0 3 3~ [( ),( ), ]X GEV C C C         

M24 0 2 2 3 3 0 3 3~ [( ),( ), ]X GEV C C C         

M25 0 3 3 1 1 0 3 3~ [( ),( ), ]X GEV C C C         

M26 0 1 1 2 2 3 3 0 1 1~ [( ),( ), ]X GEV C C C C           

M27 0 1 1 2 2 3 3 0 2 2~ [( ),( ), ]X GEV C C C C           

M28 0 1 1 2 2 3 3 0 3 3~ [( ),( ), ]X GEV C C C C           

M29 0 1 1 0 1 1 2 2~ [( ),( ), ]X GEV C C C         

M30 0 1 1 0 2 2 3 3~ [( ),( ), ]X GEV C C C         

M31 0 1 1 0 3 3 1 1~ [( ),( ), ]X GEV C C C         

M32 0 2 2 0 1 1 2 2~ [( ),( ), ]X GEV C C C         

M33 0 2 2 0 2 2 3 3~ [( ),( ), ]X GEV C C C         

M34 0 2 2 0 3 3 1 1~ [( ),( ), ]X GEV C C C         

M35 0 3 3 0 1 1 2 2~ [( ),( ), ]X GEV C C C         

M36 0 3 3 0 2 2 3 3~ [( ),( ), ]X GEV C C C         

M37 0 3 3 0 3 3 1 1~ [( ),( ), ]X GEV C C C         

M38 0 1 1 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C           

M39 0 2 2 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C           

M40 0 3 3 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C           

M41 0 1 1 2 2 0 1 1 2 2~ [( ),( ), ]X GEV C C C C           

M42 0 1 1 2 2 0 2 2 3 3~ [( ),( ), ]X GEV C C C C           

M43 0 1 1 2 2 0 3 3 1 1~ [( ),( ), ]X GEV C C C C           

M44 0 2 2 3 3 0 1 1 2 2~ [( ),( ), ]X GEV C C C C           

M45 0 2 2 3 3 0 2 2 3 3~ [( ),( ), ]X GEV C C C C           

M46 0 2 2 3 3 0 3 3 1 1~ [( ),( ), ]X GEV C C C C           

M47 0 3 3 1 1 0 1 1 2 2~ [( ),( ), ]X GEV C C C C           

M48 0 3 3 1 1 0 2 2 3 3~ [( ),( ), ]X GEV C C C C           
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M49 0 3 3 1 1 0 3 3 1 1~ [( ),( ), ]X GEV C C C C           

M50 0 1 1 2 2 3 3 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C C C               

M51 0 1 1 2 2 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C C             

M52 0 2 2 3 3 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C C             

M53 0 3 3 1 1 0 1 1 2 2 3 3~ [( ),( ), ]X GEV C C C C C             

M54 0 1 1 2 2 3 3 0 1 1 2 2~ [( ),( ), ]X GEV C C C C C             

M55 0 1 1 2 2 3 3 0 2 2 3 3~ [( ),( ), ]X GEV C C C C C             

M56 0 1 1 2 2 3 3 0 3 3 1 1~ [( ),( ), ]X GEV C C C C C             

The MLE estimation is performed both for the stationary as well as 

nonstationary models. To compare the significance between stationary and 

nonstationary models, the likelihood ratio test (LR test) is used (Coles 

2001). In the present study, the nonstationary model (NS-GEV) with a linear 

trend in the parameters and the stationary model (S-GEV) with no trend in 

the parameters are tested for the validity. In this test, a stationary model is 

considered as the null hypothesis and nonstationary model as the alternate 

one. The hypothesis testing is carried out using the minimised negative 

likelihood function (𝑛𝑙𝑙ℎ) of the S-GEV model with NS-GEV model at any 

particular significance level 𝛼. Twice the difference between 𝑛𝑙𝑙ℎ𝑆−𝐺𝐸𝑉 and 

𝑛𝑙𝑙ℎ𝑁𝑆−𝐺𝐸𝑉 is computed which is supposed to have an approximate Chi-

squared distribution for large sample size (Katz 2013) (Equation 4.3). 

Mathematically,  

2[𝑛𝑙𝑙ℎ(𝑆−𝐺𝐸𝑉) − 𝑛𝑙𝑙ℎ(𝑁𝑆−𝐺𝐸𝑉)] > 𝑐𝛼                       (4.3) 

Where, cα is the (1 − 𝛼) quantile of the Chi-squared distribution. In this 

investigation, a 5% significance level (i.e. 95% confidence level) is utilised. 

It should be noted that after selecting the nonstationary and stationary 

distribution using the LR test, the best fit nonstationary model if obtained, 

is selected using the least p-value.  In the present study, the LR test is 
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performed for all the 56 nonstationary combinations and compared with the 

stationary model.  

4.2.2.3 Bayesian framework for parameter uncertainty 

As discussed in the previous section, the parameters of the stationary and 

nonstationary methods are obtained through the MLE. However, MLE 

provides only the point estimate of the parameters and does accommodate 

the uncertainty associated with them. To solve this issue and quantify the 

uncertainty, Bayesian analysis proves to be an efficient framework (Coles 

et al. 2003; Huard et al. 2010). Moreover, analysis of extreme events 

requires a large sample of data which is one of the main limitations in 

hydrology (Das and Umamahesh 2017). Furthermore, with the availability 

of limited dataset, parameter estimation using the classical approach is 

questionable (Coles and Tawn 1996). In the context of engineering design, 

the return levels under higher return periods are of paramount importance. 

If the parameter uncertainty is overlooked, then the designed return levels 

may provide erroneous inputs to the design criteria. Moreover, Lins and 

Cohn (2011) stated that the nonstationarity characteristics in hydrology are 

extremely uncertain, which cannot be computed using the deterministic 

approach. In view of the above, the Bayesian analysis is used to model the 

parameter uncertainty.  

The central principle of Bayesian approach lies in upgrading the uncertainty 

associated with the parameter which is expressed in terms of prior 

distribution using the Bayes rule. The ability of the Bayesian analysis to 

incorporate the additional information in the form of prior makes it more 

popular (Eli et al. 2012). While discussing the usefulness of the Bayesian 

approach, Coles and Tawn (1996) stated that the period of data used for any 

extreme data analysis might not represent the complete behaviour and 

Bayesian framework is a solution to this limitation. The Bayes theorem 

combines inputs from the prior distribution and likelihood function of the 
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data into the posterior distribution. The posterior distribution can be found 

by multiplying the likelihood function and prior distribution of parameters  

𝑝(𝜃|𝑥) ∝ 𝑝(𝜃|𝑥)𝑝(𝜃)                                                        (4.4) 

where, 𝑝(𝜃|𝑥) presents the posterior distribution of the parameter vector 

𝜃 = (𝜇, 𝜎, 𝜉), 𝑝(𝜃) is the prior distribution, 𝑝(𝑥|𝜃) defines the likelihood 

function equal to ∏ 𝑝𝐺𝐸𝑉
𝑛
𝑖=1 (𝑥𝑖|𝜇, 𝜎, 𝜉), 𝑛 is the number of observation, and  

𝑝𝐺𝐸𝑉(𝑥𝑖|𝜇, 𝜎, 𝜉) is the probability distribution function of the GEV 

distribution evaluated at 𝑥𝑖.  

Selection of the prior distribution is the matter of extensive debate in the 

research fraternity (Clark 2005; Gelman 2008) and the approaches those are 

frequently used in the hydrological analysis include (i) the prior distribution 

which is defined based on the expert’s knowledge. Example: the 

“geophysical prior” for the shape parameter of the GEV distribution based 

on the experience of the hydrological studies (Martins and Stedinger 2000); 

(ii) based on the similarities among the different sites and using the regional 

information, the prior distribution from one location can be used for the 

other location (Ribatet et al. 2007); (iii) due to the lack of knowledge the 

non-informative prior (e.g., normal distribution with large variance) can be 

used (Jeffreys 1946). It is impossible to solve Equation 4.4 analytically; 

hence, the numerical method, namely Markov Chain Monte Carlo (MCMC) 

sampler, is adopted to create a large number of realisations from the 

posterior distribution (Martins and Stedinger 2000). For instance, utilising 

the prior distribution and likelihood of parameter, the MCMC algorithm 

draws a large sample of parameter vector (e.g., 𝜃1, 𝜃2, …… . , 𝜃𝑚)and using 

each set of parameter vector return levels for a given probability of 

occurrence (𝑝) which can be obtained using Equation 4.5 

𝑍𝑝(�̂�, �̂�, 𝜉) =  �̂� −
�̂�

𝜉
{1 − [−𝑙𝑜𝑔(1 − 𝑝)]−�̂�}        for 𝜉 ≠ 0                 (4.5) 

  𝑍𝑝(�̂�, �̂�) =  �̂� − �̂�𝑙𝑜𝑔 [ 𝑙𝑜𝑔(1 − 𝑝)]         for 𝜉 = 0                                         
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The sampling of the parameter vector with the specified prior and likelihood 

function is accomplished using the Metropolis-Hastings algorithm 

(Metropolis et al. 1953; Hastings 1970). Each parameter from the parameter 

vector is updated through the random walk Metropolis algorithm. However, 

the convergence of the MCMC chain towards the posterior distribution 

should be monitored. Precisely, a poor choice of the initial parameter vector 

may lead to drawing realisations those are not from the equilibrium 

distribution during the initial runs. Therefore to determine the length of each 

simulation, in the present study, Heidelberger and Welch’s convergence 

diagnostic (Heidelberger and Welch 1981, 1983) is used. Details of MCMC 

and Metropolis-Hastings algorithms can be obtained from (Renard et al. 

2013; Chandra et al. 2015). 

4.3 Results 

4.3.1 Temporal variability of extreme precipitation 

Figure 4.3a represents the spatial variation of the mean maximum one-day 

precipitation (Rx1 day), annual count of days when precipitation is more 

than or equal to 10mm (R10), maximum number of consecutive wet days 

(CWD) and simple daily precipitation intensity index (SDII) extreme 

precipitation for the period 1951-2013. The maximum and minimum value 

of Rx1day  and SDII were around 13mm to 133mm, and 0.31mm/day to 

38.75 mm/day respectively. Similarly, the range of R10 and CWD were 

0.93 days and 100.22 day, and 0.17 to 77.40 days respectively. It is evident 

that extreme rainfall events are most dominantly observed over the river 

basins in the west coast, north-east and followed by central India. Compared 

to the SDII and CWD, the high values of Rx1day and R10 are somewhat 

more noticeable in the Indo-Gangetic plain as well as river basins such as 

the Godavari, Brahmani and Baitarani.  Figure 4.3b shows the temporal 

variation in the extreme precipitation indices over the past 63 years. Most 

significant variability in Rx1 day is observed in river basins such as Luni, 

Mahi and Brahmaputra where the standard deviation is above 10 mm.  
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Figure 4.3a The spatial map of annual mean of extreme precipitation indices over 

1951-2013 
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Figure 4.3b The spatial map of standard deviation of extreme precipitation 

indices over 1951-2013 
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Whereas, the extreme rainfall in arid river basins such as Pennar and Indus 

are found to be inssignificantly variable. However, the variability in 

precipitation intensity wasranging from 1.30 mm/day to 15.17 mm/day.  

Similarly, in the northwest region, the standard deviation was below 5 days 

for both R10 and CWD. To visualize the evolution of extreme precipitation 

during 1951-2013, trend analysis is performed using nonparametric Mann 

Kendall (MK) test at 5% significance level. The outputs of the analysis are 

categorised into four different classes based on the value of 𝑍 statistics 

which are: significantly increasing (𝑍 > 1.96), significantly decreasing 

(𝑍 < −1.96), increasing (0 < 𝑍 < 1.96) and decreasing (−1.96 > 𝑍 >

0). The Rx1 day and SDII indices are found to be increasing whereas, the 

R10, as well as CWD indices, are mostly increasing in most of the river 

basins (Figure 4.3c). 

4.3.2 Parameters and their uncertainty  

As discussed, the parameters of the best-fit model for different indices are 

calculated using the MLE approach. After processing the models through 

the Markov chain based on the convergence criteria for S-GEV and NS-

GEV models, a set of parameters from the posterior distribution are 

obtained. Thereafter, the return levels at different return periods for 

stationary as well as nonstationary models using the sample of parameters 

are calculated. Figure 4.4 represents the spatial distribution of the mean and 

standard deviation of the samples from the posterior distribution, 

respectively. It should be noted that the location parameter, scale parameter 

and the shape parameter is represented by P1, P2 and P3, respectively. It 

can be observed from the figure that high values of mean in cases of location 

parameter for SDII, R10 and CWD are obtained mostly in the river basins 

which receive high rainfall. The maximum value (220.98mm) of mean 

location parameter  for Rx1day was obtained for the western ghats river 

basin, whereas minimum  
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Figure 4.3c The spatial map of trend significance (Z statistics) of extreme precipitation 

indices over 1951-2013 

 



89 
 

value (17.84mm) was obtained for the northwest region (Figure 44a-i). The 

trend of variation in the scale parameter was also very similar to the  

location parameter and the range of mean scale parameter was 10.50-

92.6mm. The mean of location parameter for Rx1 day, in general, is higher 

in most parts of the country except the arid regions like in the north-west. 

Similarly, the mean of the scale parameter could also be characterised on 

the basis of high and low rainfall zones of the country.Similar inferences 

can be fraw for R10 and CWD (Figure 4.4a-ii). However, unlike the results 

obtained for mean parameters, the standard deviation of the parameter 

samples is not characterisable on the basis of rainfall zones. The variability 

of location, scale and shape parameters is more randomly distributed over 

the country (Figure 4.4b-i,ii). 

 

4.3.3 Return levels, magnitude and variability of extreme 

precipitation 

The return levels at different return periods are estimated from parameter 

samples of the posterior distribution obtained from the Bayesian analysis. 

Under the stationary assumption, i.e. for S-GEV models, the return levels 

throughout the temporal duration of the time series remain the same. 

However, the return levels obtained from NSE-GEV models are time-

varying, since, they were assumed to be time-dependent on ENSO, IOD and 

NAO. Figure 4.5 shows the spatial distribution of return levels both for the 

nonstationary and stationary cases at 10, 20, 50, and 100 year return periods.  

It should be noted that for the nonstationary case, the temporal mean of the 

return levels has been shown. It is evident from the spatial patterns of the 

return levels that with the increase in the return periods, the return level 

intensifies and the area under extreme rainfall also increases. The 

quantification of return levels and their temporal variability is related to the  
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Figure 4.4a-i Spatial distribution of the mean parameter samples from the posterior distribution for Rx1day and SDII. Here, 

P1, P2 and P3 represent the location, scale and shape parameters respectively 
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Figure 4.4a-ii Spatial distribution of the mean parameter samples from the posterior distribution for R10 and CWD. Here, 

P1, P2 and P3 represent the location, scale and shape parameters respectively 
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Figure 4.4b-i Spatial distribution of the standard deviation of parameter samples from the posterior distribution for 

Rx1day and SDII. Here, P1, P2 and P3 represent the location, scale and shape parameters, respectively 
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Figure 4.4b-ii Spatial distribution of the standard deviation of parameter samples from the posterior distribution for 

Rx1day and SDII. Here, P1, P2 and P3 represent the location, scale and shape parameters, respectively 
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river basins. Please refer to Figure 4.6a-d for the river basin-wise return 

level estimates for stationary and nonstationary cases. River basins in 

theeast-coast, western ghats and the north-east exhibit highest return levels. 

The river basins in the less precipitation zones such as Luni and Mahi show 

high return levels at 100 years return period. The river basins with least 

return levels are MRFM, EFRSCB, Indus, Krishna and Pennar river basin. 

The nonstationary return levels are greater as compared to the stationary 

return levels. This difference is most significantly observed in high rainfall 

river basins such as Brahmaputra and MRFB as well as low rainfall river 

basins such as Mahi and Luni. 

A little overestimation of return levels by the stationary models is observed 

in the Barak and MRFB river basins. Similarly, the return levels mapping 

of SDII shows similar spatial characteristics as Rx1day. However, the 

regions of extremely low-intensity rainfall are more clearly defined. High-

intensity return levels are observed in the western ghats, Barak and 

Brahmaputra river basins, as well as Luni, Mahi and Sabarmati river basins. 

Least intensity is observed in the river basins of the east-coast and the 

interior peninsula (Figure 4.6). In general, the nonstationary return levels 

are found to be higher in magnitude than the stationary return levels. The 

most significant disparity is observed in the EFRMGB, Luni, MRFB, 

Brahmaputra river basins and the western ghats. For R10, high and low 

return levels region are more clearly characterisable. The increase in return 

levels over different return periods is comparatively smaller as compared to 

other indices. Brahmaputra, Barak, MRFB, MRFM river basins and the 

western ghats are the regions where higher return levels are observed in both 

stationary and nonstationary cases. Although the spatial pattern of return 

levels is similar in both cases, stationary models are found to be 

underestimating the return levels. It can be noted that the influence of large-

scale oscillations as captured by nonstationary models is poorly represented. 

by the stationary models in Barak, WG and MRFM basins. The spatial 

pattern of mean return levels for CWD reveals that stationary models have 
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overestimated the return levels, especially when higher return period, such 

as 50 and 100 are considered (Figure 4.5). It can be observed that the area 

under CWD>20 has significantly increased in the north-central part of the 

country with higher return periods. Similar  to other indices, highest return 

levels are observed in the Brahmaputra, western ghats and Barak river 

basins in both the cases (Figure 4.6). The nonstationary stationary mean 

return levels are higher than the stationary return levels, in Barak, MRFM 

and MRFB basins. The difference  between mean nonstaionary and 

stationary return level of five river basins (Brahmaputra, Mahi, EFRGKB, 

EFRPKB and MRFB) have is greater than 100 mm at 100 year return period 

and only two river basins (Barak and MRFM) have relatively lesser return 

levels in the nonstationary cases. Similarly, the precipitation intensity return 

levels was geater in nonstationary case only in two river basins (Barak and 

MRFB). The R10 nonstationary return levels at 100 year return period were 

differing with a magnitude above 10 days for river basins like Barak, 

Subernrekha, MRFM and WG. Whereas, the overestimated nonstationary 

return levels were observed for Barak, MRFB and MRFM of around 5 days 

for CWD.  

Figure 4.7 represents the return period-wise variability of the return levels 

of different extreme indices. Overall, the figure denotes that the temporal 

variability due to the influence of climatic oscillations in the return levels 

in all indices is significant. This variability is most significant in Rx1 day 

followed by CWD, R10 and SDII, particularly at higher return periods. For 

Rx1 day, average variability is highest in EFRGKB and EFRPKB, and 

lowest in MRFM, Krishna and Barak river basins.  The river basins which 

receives the least rainfall, e.g. Luni, Subernrekha and Mahi are found to be 

experiencing high variability in the rainfall intensity. Only western ghats, 

out of high rainfall river basins, is found to be experiencing variability of 

such magnitude.  Further, variability in R10 return levels is highest in the 

Subernrekha and EFRSCB river basins. Interestingly variability in CWD 

return levels is lowest in Subernrekha and EFRSCB river basins. 
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Figure 4.5a-i Spatial distribution of return levels both for the nonstationary and stationary cases for  R10 at different 

return periods 
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Figure 4.5a-ii Spatial distribution of return levels both for the nonstationary and stationary cases for CWD at different 

return periods 
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Figure 4.5b-i Spatial distribution of return levels both for the nonstationary and stationary cases for Rx1day at different return 

periods 
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Figure 4.5b-ii Spatial distribution of return levels both for the nonstationary and stationary cases for SDII at different return 

periods 
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Figure 4.6a The nonstationary and stationary return levels of Rx1 Day for different return periods 
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Figure 4.6b The nonstationary and stationary return levels of SDII for different return periods 
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Figure 4.6c The nonstationary and stationary return levels of R10 for different return periods 
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Figure 4.6d The nonstationary and stationary return levels of CWD for different return periods 
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Figure 4.7a Spatial variability in the return levels for Rx1day and SDII. The variability is defined in terms of 

standard deviation over 1951-2013 
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Figure 4.7b Spatial variability in the return levels for R10 and CWD. The variability is defined in terms of standard 

deviation over 1951-2013 
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4.4 Discussion 

The present study is focused on estimating the return levels and the 

variability of extreme precipitation indices under the changing relationship 

with three large scale climatic oscillations ENSO, IOD and NAO. The 

behaviour of four historical extreme precipitation indices which are Rx 1 

day, SDII, R10 and CWD during the period of 1951-2013 are analysed. The 

historical trend in the extreme precipitation indices over India is found to  

have distinct spatial patterns. The trend analysis of these indices suggests 

that maximum one-day precipitation intensity, as well as the rainfall 

intensity, have increased in the past Whereas, the number of consecutive 

wet days and number of days having at least 10 mm rainfall has decreased 

over the period of time. This indicates that the extreme precipitation over 

India has become more intense as well as heavy downpours events have 

increased. These results are generally consistent with those found in past 

research (Endo et al. 2009; Kumar et al. 2010). The increasing trend of Rx1 

day and SDII is observed in all major parts of the country except the north-

east and some parts of northern India. Significant decrease in R10 and CWD 

is noticed mainly in the north-central part of the country.  

As discussed in the previous studies, the extreme precipitation indices over 

India have exhibited significant variability in the past (Rajeevan et al. 2008; 

Vittal et al. 2013; Ganguli and Reddy 2014). The possible governing factors 

include internal natural variability and external and anthropogenic climate 

forcings (Zhang et al. 2007; Marvel et al. 2017; Dai and Bloecker 2019). It 

is well established that the large scale climatic oscillations are fundamental 

influences over precipitation variability (Gao et al. 2017; Xiao et al. 2017). 

In this study, extreme value analysis in a nonstationary setting along with 

the Bayesian framework is employed to assess the influence of large-scale 

oscillations on precipitation indices over India. Based on the best stationary 

and nonstationary models obtained by the likelihood ratio test, it is found 

that all four indices exhibit significant nonstationary behaviour. It is noticed 
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from the analysis that nonstationary models, which vary linearly with both 

location and scale parameters, are found to perform better in most of the 

cases. Therefore, it can be argued that the changeability in the extreme 

precipitation indices is highly influenced by the climate oscillations over 

India. It should be noted that the regional characteristics of the basin may 

influence the change; however, these investigations are not carried out in 

the present analysis. It is also observed that uncertainty in return levels is 

higher in case of the higher return period; this suggests that special attention 

should be given while selecting the design return levels in extreme rainfall 

areas. The spatial mapping of uncertainty in parameters and return levels 

over different river basins is intended to enable the policymakers to frame 

decisions for different regions more precisely.  The quantification of 

uncertainty in return levels, especially in the climatologically sensitive river 

basins is crucial in understanding the influence of large-scale factors in 

augmenting extreme risks. Studies suggest that arid regions are more 

vulnerable to climate change (Interests et al. 2016; Sinha et al. 2019). In this 

study, it is observed that variability in return levels is high not only in the 

regions where rainfall is abundant but also in the drought-prone areas.  It is 

likely that these regions may experience short spells of heavy downpours in 

the form of high-intensity rainfall.  This may lead to the simultaneous 

occurrence of flash floods and droughts in the regions. Previous studies 

suggest that there have been occurrences of such compound events in 

western India, leading to a huge loss of property and lives (Jayan 2012; 

Ganguli and Reddy 2013). In this context, the study aids the decision-

makers in framing productive extreme rainfall induced disaster response 

measures.  

4.5 Conclusions 

This study facilitates the understanding of the nonstationary influence of 

ENSO, IOD and NAO on high precipitation in the region. It is found that 

extreme precipitation events in the country are dominated by these 

oscillations, especially in central India. Moreover, the return levels of high 
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rainfall are found to be intensifying with increasing return period. Also, it 

is observed that uncertainty in return levels is significant in almost every 

river basin. Despite the association, there remains a significant amount of 

uncertainty in the relationships between extreme precipitation indices and 

ENSO, IOD and NAO. One possible reason behind this uncertainty can be 

our assumption of linearly varying covariation combination for 

nonstationary models. Moreover, we have studied the dependence of 

extreme precipitation only on three large-scale oscillations. Nonlinear 

combination of other global factors can be pursued for future studies. 

However, the analysis provides in-depth identification and characterization 

of the magnitude and variability in return levels and delivers crucial inputs 

for understanding the time-varying risks of high precipitation. The study put 

forward the all-India assessment of the regional impact of global climatic 

factors to understand the complex behaviour of high precipitation over the 

country.  
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Chapter 5 

Dependence of terrestrial ecosystem 

functioning on extreme climatic conditions  

5.1 Introduction 

Conventionally, studying the response of terrestrial ecosystem productivity 

to the extreme climatic conditions involved the experimental investigation 

of ecosystem variables (such as plant diversity, vegetation cover, nutrient 

concentration) as well as statistical or empirical-based analysis (Saseendran 

et al. 2000; Li et al. 2014; Sakschewski et al. 2015; Gang et al. 2017). The 

existing experimental approaches have limited applicability as it is 

challenging to incorporate the wide spatio-temporal variability in ecosystem 

functioning. The knowledge about specific impacts of climate extremes 

such as severe drought, prolonged precipitation deficit and extreme 

temperature on the terrestrial ecosystems has become critical to society and 

science. Modelling the behaviour of ecosystems during and after climate 

extremes at larger spatial scales and over longer periods requires more in‐

depth knowledge on possible response mechanisms. Therefore, more 

efficient techniques are required to understand the association between the 

dynamics of the ecosystem’s response to extreme climatic conditions and 

its implication to the society.  

Since the significant nonlinear correlation between climate variables and 

ecosystem functioning indicators might not be captured during univariate 

analysis, many researchers have recommended the use of joint distribution 

to describe the characteristics of such events (Kao and Govindaraju 2010; 

Chen et al. 2012; Huang et al. 2014).. In this regard, Copula is a useful tool 

to model multivariate distribution among random variables (Sklar 1959). 

There are several studies which support the idea that Copulas provide a 

robust methodology for studying hydro-climatic (Kao and Govindaraju 

2010; Zhang et al. 2013; Bracken et al. 2018).  
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Here, a study, integrating climate data (precipitation, temperature and soil 

moisture content) and remote sensing observations (NDVI/NPP) using 

bivariate Copula-based approach to quantify the impact of extreme climatic 

conditions over terrestrial ecosystem functioning has been performed. This 

study estimates the extent of terrestrial ecosystems likely to be affected by 

extreme climatic conditions at vegetation type and river basin scales. 

Further, it identifies the most influencing extreme climatic factor capable of 

inducing severe damage to terrestrial ecosystem functioning.  

5.2 Data and methodology 

5.2.1 River basins of India and land cover types 

The changes in climate conditions lead to alterations in the water balance of 

a river basin driving changes in rainfall-runoff relationships. The 

hydrological variables, which depend on the physical and geological 

characteristics of a river basin, govern the response of terrestrial ecosystems 

to climate disturbances. To understand the impact of extreme climatic 

conditions on terrestrial ecosystem functioning, 24 river basins across India 

as classified by India-WRIS (2014) are selected. Figure 5.1 describes the 

river basin ID, location and nomenclature. Vegetation distribution is also 

one of the primary factors which govern the terrestrial ecosystem 

functioning.  Moreover, India’s vegetation significantly changes at different 

temporal and spatial scales.  To investigate the ecosystem dynamics in the 

context of vegetation types, 10 major land covers types from the of 5.1 

MCD12Q1 data of Land Cover Institute  (LCI, 

https://landcover.usgs.gov/global_climatology.php) are utilised (Broxton et al. 

2014). Among the significant land cover classes, Croplands (CL) is one of  

https://landcover.usgs.gov/global_climatology.php
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the most dominant vegetation types covering more than 50% of the total 

area of the country (Yue et al. 2014). Major forest cover types are 

Deciduous Broadleaf and Deciduous Needleleaf Forests (DBF and DNF) 

which are known to follow seasonal pattern of leaf-on and leaf-off periods. 

These forest types are found irregularly in all parts of the country except 

Rajasthan and Himalayan region (Reddy et al. 2015). The 

EvergreenNeedleleaf Forests and Evergreen Broadleaf forests (ENF and 

EBF), found mainly in the coastal plains with limited spread over lower 

 

Figure 5.1. River basins IDs and details of Land Cover types considered for 

analysis. The details of basin IDs are :  1-Indus, 2-Ganga, 3 Brahmaputra, 4-

Barak, 5-Godavari,6-Krishna,7-Cauvery,8-Subernrekha,9-Brahmani and 

Baitarani, 10 Mahanadi, 11-Pennar,12-Mahi, 13-Sabarmati, 14-Narmada, 15-

Tapi, 16-East flowing rivers between Mahanadi and Godavari basins 

(EFRMGB), 17- East flowing rivers between Godavari and Krishna basins 

(EFRGKB),18- East flowing rivers between Krishna and Pennar basins 

(EFRKPB) ,19- East flowing rivers between Pennar and Cauvery basins 

(EFRPCB),20-East flowing rivers between Subernrekha and Cauvery basins 

(EFRSCB), 21-Luni ,22-Minor rivers flowing into Bangladesh (MRFB) ,23-

Minor rivers flowing into Myanmar (MRFM) ,24- Western Ghats (WG)  
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slopes of north-east, Aravalli and the Western Ghats are known to remain 

green most of the times in the year (Joshi et al. 2011). 

5.2.2 Climate data  

Gridded data of mean monthly temperature, precipitation and soil moisture 

content for the period of 1982-2010 are analysed. The precipitation data has 

been extracted at a spatial resolution (0.25° ×  0.25°)  from the India 

Meteorological Department 4 (IMD-4) data set (Pai et al. 2014). 

Temperature data for the period of 1982-2010 is also obtained from IMD, 

which is developed using Shepard’s angular distance method from 395 

observational stations in the country (Srivastava et al. 2009). The soil 

moisture data is extracted from the Climate Prediction Centre (CPC) soil 

moisture product developed by the Earth System Research Laboratory of 

National Oceanic Atmospheric Administration (ESRL-NOAA) 

(http://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html). The data 

validation and its application in various sectors suggest that both interannual 

and annual variability of soil moisture is well captured and produce 

excellent results in soil-climate interaction studies (Fan and van den Dool 

2004; Prasad et al. 2006; Koster et al. 2016).   

5.2.3 NDVI and NPP data  

NDVI data is extracted from the Global Inventory Modelling and Mapping 

Studies (GIMMS) (http://ecocast.arc.nasa.gov/data/pub/gimms/3g/) source 

with a spatial and temporal scale of 8 × 8 km and 15 days, respectively. 

This data set is considered ideal for monitoring the changes in vegetation 

productivity and has been widely used to analyse the relationship between 

climate and terrestrial ecosystem interaction (Tan and Gan 2016). The 

GIMMS data set from the Advanced Very High-Resolution Radiometer 

(NOAA-AVHHR) sensor has been corrected for orbital drift errors and 

vegetation change (Liu et al. 2016).  

Similarly, the NPP data is obtained from the NASA-Earth Observation 

System (EOS) program’s MOD17A2 dataset. The Moderate Resolution 

http://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
http://ecocast.arc.nasa.gov/data/pub/gimms/3g/
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Imaging Spectroradiometer (MODIS) net primary productivity data is 

available from the year 2000 at 8-day, monthly and annual time steps. The 

data has been prepared by after performing a number of quality assurance, 

calibration and validation activities. Several works using MODIS data has 

been performed, which validates its suitability. For instance, Nayak and 

Dadhwal (2010) in a significant study, checked the consistency of NPP 

estimates from the CASA model (Carnegie–Ames–Stanford Approach), 

field-based observations, and MODIS data. It was found that the CASA-

based annual NPP, NPP from MODIS data and ground-based NPP were in 

good agreements with each-other. 

The NDVI, soil moisture, temperature and soil moisture data are regridded 

at a resolution of  (0.25° × 0.25°) using the Inverse Distance Weightage 

(IDW) algorithm. Further, the NPP data is available for a relatively lesser 

temporal duration (2000-2010). Therefore, for the sake of computational 

simplicity, the analysis using NPP is performed at a resolution of  (0.50° ×

0.50°). The investigation is performed on monsoon, nonmonsoon and 

annual scale considering seasonal variations as one of the key factors in 

ecosystem climate interaction. 

5.2.4 Copula based bivariate probabilistic model 

Figure 5.2 gives the overview of the methodology adopted in this study. The 

Copula is a flexible approach to represent multivariate joint distribution 

(Nelson 2006). Although Copula theory was tabled in the mid of 20th 

century by Sklar (1959), the wide applicability of Copula in different fields 

has come into picture only in recent years. Conventional bivariate 

approaches suffer from many limitations and have limited efficiency 

because of various limitations (Zhang 2005). Most approaches do not 

incorporate essential aspects such as stationarity and scaling properties in 

current bivariate models. However, Copula based approach offers an 

alternative to overcome these limitations. The complexity of dependence 

can be modelled with the help of many existing Copula families and their 
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associated parameters. Briefly, according to Sklar’s theorem (Sklar 1959), 

a multivariate distribution 𝐹(𝑥1, 𝑥2…𝑥𝑛) can be expressed by a Copula as 

𝐹(𝑥1, 𝑥2, … . 𝑥𝑛) = 𝐶[𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2)…𝐹𝑋𝑛(𝑥𝑛)] = 𝐶(𝑢1, 𝑢2…𝑢𝑛)     (5.1)   

Where,𝐹𝑋𝑖
(𝑥𝑖), denoted by 𝑢𝑖 in the Copula definition denotes the CDF of 

𝑖𝑡ℎ variable, and 𝐶 is the cumulative Copula distribution function. Of the 

many existing Copula families, Copulas from the Elliptical family 

(Gaussian and t) carry several properties of the multivariate Gaussian 

distributions (Favre et al. 2004). Archimedean Copulas (Gumbel, Clayton 

and Frank) are another widely used Copula class as they offer greater 

 

Figure 5.2 The Copula based methodology utilized in the analysis.  

 

NPP/NDVI P/S/T
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Best marginal distribution

Best marginal CDF

Copula parameter estimation

Maximum Likelihood Approach

AICBIC Frank, Plackett, Gaussian 

Joint CDF

Conditional probability of 

NPP/NDVI 30𝑡ℎ percentile in 

extreme climatic condition

Best Copula function
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versatility modelling data with inconsistent dependencies (Chiou and Tsay 

2008). In this study, Frank Copula from the Archimedean Copula families 

has been chosen. Additionally, Plackett Copula types are also used to 

accommodate more flexibility in modelling joint behaviour of the data. 

There are many advantages to selecting the mentioned Copula types. Firstly, 

the density of Frank and Placket Copula types offer great versatility to 

incorporate a variety of marginal processes (Chiou and Tsay 2008). 

Secondly, the parameter for these Copulas is single in number; hence, the 

methodology involved to model the dependence structure of variables is 

relatively more straightforward and flexible (Ganguli and Reddy 2014). 

Moreover, the Copulas chosen in this study are capable of modelling a wide 

range of dependence including positively and negatively correlated 

variables, which may be the case considering the type of datasets used in 

this study (Zhang and Singh 2007).  

It is necessary to find the most suitable marginal probability distribution for 

each random variable before modelling their joint structure. For this 

purpose, five different probability distributions (Gaussian, Gamma, 

Lognormal, Weibull and Generalised Extreme Value distributions) are 

compared based on their goodness-of-fit (Kolmogorov-Smirnov) statistics 

(Wilcox 2005). After finding the best fit marginal distribution function for 

all the four variables on a seasonal and annual scale, best-fit Copula function 

out of Plackett, Gaussian and Frank is decided by log-likelihood approach 

(Gomez et al. 2017). Best Copula and Copula parameters for all the cases 

are found using Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) which estimate the relative performance of 

considered models (Cong and Brady 2012; Lasmar and Berthoumieu 2014). 

Once the best Copula function and parameter is decided, the joint  

 distribution is formulated. Further, the response of terrestrial ecosystem 

productivity to extremes is estimated by analysing the conditional 

probability of ecosystem functioning indicators (NDVI/NPP) with respect 

to stressed climatic condition (precipitation, temperature and soil moisture 
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content). Calculation of the conditional probability distribution, in such 

case, for the set of variables  NDVI- Precipitation (NDVI-P), NDVI-Soil 

Moisture content (NDVI-S) and NDVI-Temperature (NDVI-T) as 𝑁1 ≤ 𝑛1 

and 𝑁2 ≤ 𝑛2 can be given as 

𝐹𝑁1≤𝑛1| 𝑁2≤𝑛2
(𝑛1, 𝑛2) =

𝐶 (𝐹𝑛1(𝑁1), 𝐹𝑛2(𝑁2))

𝐹𝑛2(𝑁2)
=
𝐶(𝑢1, 𝑢2)

𝑢2
         (5.2) 

To fulfil the criteria of extreme climatic conditions, the conditional 

probability distribution of NDVI/NPP in stressed scenarios of temperature, 

precipitation and soil moisture content is computed. These stressed 

scenarios represent the non-exceedance of the 20𝑡ℎ  (𝑛 ≤ 20𝑡ℎ) percentile 

of the climate variables. To quantify the stress induced, a threshold 

NDVI/NPP value corresponding to less than 30𝑡ℎ  percentile (𝑛𝑁𝐷𝑉𝐼 ≤

30𝑡ℎ) is identified. The conditional probabilities are calculated for each 

season and annual scale for all the grid points across the country. The 

selection of threshold is necessary to investigate and demarcate the temporal 

and spatial risk to ecosystem functioning. By considering the lower 

thresholds of climate variable, the likelihood of extreme changes in 

ecosystem functioning triggered by extreme climate conditions can be 

observed.  The Copula based analysis was done by developing code in 

MATLAB and the plots were prepared using ArcGIS 10.6 

5.3 Results 

5.3.1 Selection of suitable thresholds 

The threshold is selected such that the sensitivity of terrestrial ecosystem 

functioning to extreme climatic conditions could be captured. A 

demonstrative case illustrates the threshold selection process. For instance, 

the thresholds of 10 to 50 percentiles for soil moisture, precipitation and 

temperature are tried against the NPP thresholds. It is found that if climatic 

constraints are eased, i.e., by selecting higher percentiles of climate data, 

the conditional probabilities are reduced, depicting lower likelihood of a 
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drastic reduction in NPP (Figure 5.3-5.6). Similarly, to evaluate the 

likelihood of extreme damage to NPP, first, a threshold as low as 10th 

percentile is selected. The results show that likelihood of NPP≤ 10𝑡ℎ  

percentile is very low, and most parts of the country are safe under stressed 

climate. The likelihood estimates suggested that even if the climatic 

condition is highly constrained, the bivariate models showed very minimum 

chances of NPP≤ 10𝑡ℎ percentile (Figure 5.3, 5.5). This means that NPP≤

10𝑡ℎ percentile is way too unrealistic even for the highly stressed climatic 

condition; hence, it cannot be selected as a suitable threshold for the 

analysis. Similar results are observed for NPP≤ 20𝑡ℎ  percentile threshold, 

which gives almost moderate or safe likelihood values for all thresholds of 

precipitation, temperature and soil moisture (Figure 5.4, 5.6). Therefore, it 

can be concluded that neither an eased climatic condition nor too stressed 

NPP is suitable for analysing the sensitivity of terrestrial ecosystem 

functioning to extreme climatic conditions. Therefore, a threshold of 

NPP30𝑡ℎ percentile (not too stressed) and soil moisture, precipitation and 

temperature ≤ 20𝑡ℎ percentile (not too eased) is selected.  

5.3.2 Risk to terrestrial ecosystem functioning  

5.3.2.1 Impact on vegetation condition  

As discussed, the joint distribution of NDVI-temperature, NDVI-

precipitation and NDVI-soil moisture content is estimated on both seasonal 

and annual scales. Once, the joint probabilities are obtained, the conditional 

probability of NDVI value with the suitable threshold (𝑛𝑁𝐷𝑉𝐼 ≤

30𝑡ℎ) percentile, which represents risk condition is evaluated using 

Equation 5.2 at each grid point in different stressed scenarios of climate 

variable (𝑛 ≤ 20𝑡ℎ) percentile. The results for the first scenario (𝑛𝑁𝐷𝑉𝐼 ≤

30𝑡ℎ) percentile is shown in Figure 5.7. The conditional probability values  
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Figure 5.3 Conditional likelihood of 𝑛𝑁𝑃𝑃  ≤  10𝑡ℎ percentile in different scenarios of S/P/T in nonmonsoon season to 

understand the best possible threshold of NPP and  climatic data 
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Figure 5.4 Conditional likelihood of 𝑛𝑁𝑃𝑃  ≤  20𝑡ℎ percentile in different scenarios of S/P/T in nonmonsoon season to understand 

the best possible threshold of NPP and climatic data 
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Figure 5.5 Conditional likelihood of 𝑛𝑁𝑃𝑃  ≤  20𝑡ℎ percentile in different scenarios of S/P/T in monsoon season to understand the best 

possible threshold of NPP and climatic data 
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Figure 5.6 Conditional likelihood of 𝑛𝑁𝑃𝑃  ≤  20𝑡ℎ percentile in different scenarios of S/P/T in monsoon season to understand 

the best possible threshold of NPP and climatic data 
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Figure 5.7 Conditional probabilities of 𝑛𝑁𝐷𝑉𝐼 ≤ 30𝑡ℎ percentile at (a) annual (b) nonmonsoon and (c) monsoon season scale 
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are classified to define the risks as extreme (0.75-1), high (0.50-0.75), 

moderate (0.25-0.50) and low (0.25-0.00). On an annual scale, most of the 

basins in the country except some in the north-east region (e.g. Barak) are 

susceptible to moderate or high risk. High likelihood of risk is observed 

from the NDVI-soil moisture content analysis, which indicates that soil 

moisture deficit is the biggest threat to existing vegetation cover (Figure 

5.7c). Significant areas of river basins like Pennar, Krishna, Mahi, 

Sabarmati and Luni showed the high or extreme likelihood of risk when 

lower precipitation scenario (𝑛 ≤ 20𝑡ℎ) percentile is considered. However, 

lower soil moisture conditions (𝑛 ≤ 20𝑡ℎ) percentile worsens the situation 

and the extent of areas under high drought likelihood further increases 

(Table 5.1). This indicates that these river basins are unable to hold the 

incident precipitation for a longer duration to ensure enough soil moisture 

for their vegetation. Although a significant percentage of the above-

mentioned river basins are facing high risks, it is important to note that even 

smaller percentage (7.03%) in large river basins like Ganga accounts for a 

huge area of 56,089.53 km2 which also needs to be addressed. On a seasonal 

scale, higher risks are observed in nonmonsoon season than the monsoon 

season, which is shown in Figure 5.8. The river basins in the north-east 

region are least susceptible to risk in lowered precipitation and soil moisture 

conditions. However, lower temperature scenarios do induce some risks in 

these areas. This may have caused due to the lack of necessary warmth or 

sunshine for plant growth in cold regions (Figure 5.7). Hence, the increase 

in temperature in these regions may lower the risks to terrestrial ecosystems. 

Moreover, low-temperature scenarios do not have any significant impact on 

most of the other river basins. Detailed results at seasonal scales for all river 

basins have been given in Table 5.1-5.3. 
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Table 5.1 Area under high risk at annual scale in stressed climate at 

river basin level 

  NDVI-S NDVI-P NDVI-T 

  Area (1000 𝒌𝒎𝟐)  

Sl 

No. 

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 37.51 171.90 24.04 110.17 14.02 64.26 

2 Ganga 23.32 186.08 7.03 56.09 14.90 118.93 

3 Brahmaputra 3.13 5.92 0.35 0.66 21.54 40.79 

4 Barak 0.00 0.00 0.00 0.00 1.55 2.93 

5 Godavari 42.08 119.26 18.50 52.43 5.09 14.44 

6 Krishna 57.42 134.99 40.82 95.96 1.74 4.10 

7 Cauveri 82.72 64.64 16.08 12.57 0.00 0.00 

8 Subarnarekha 29.75 7.09 2.19 0.52 0.00 0.00 

9 BB 33.91 17.07 0.00 0.00 3.38 1.70 

10 Mahanadi 3.42 4.32 1.30 1.64 31.82 40.25 

11 Pennar 96.72 44.84 46.11 21.37 0.00 0.00 

12 Mahi 90.74 34.25 37.51 14.16 0.00 0.00 

13 Sabarmati 86.32 24.58 45.56 12.97 0.00 0.00 

14 Narmada 33.99 29.49 13.51 11.72 27.25 23.64 

15 Tapi 82.76 52.07 18.87 11.87 5.09 3.20 

16 EFRMGB 62.57 29.42 16.20 7.62 4.02 1.89 

17 EFRGKB 73.20 6.30 15.38 1.32 61.54 5.30 

18 EFRKPB 98.37 23.45 44.45 10.60 0.00 0.00 

19 EFRPCB 85.64 45.94 9.60 5.15 0.00 0.00 

20 EFRSCB 14.45 4.31 6.67 1.99 0.00 0.00 

21 Luni 91.75 169.53 81.56 150.69 0.00 0.00 

22 MRBB 3.44 0.50 0.00 0.00 0.00 0.00 

23 MRMB 0.00 0.00 0.00 0.00 33.82 4.93 

24 WG 29.74 30.53 5.43 5.57 0.65 0.66 
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Figure 5.8 Percent areas of land cover types showing high likelihood risk 

for (a) NDVI-Soil Moisture Content, (b) NDVI-Temperature and (c) 

NDVI-Precipitation 
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Table 5.2 Vegetation area under high risk in nonmonsoon season in 

stressed climate at river basin level 

  NDVI-S NDVI-P NDVI-T 

  Area (1000 𝒌𝒎𝟐) 

Sl 

No. 

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 36.42 166.92 1.68 7.69 6.25 28.63 

2 Ganga 26.49 211.36 0.96 7.63 10.91 87.09 

3 Brahmaputra 27.23 51.58 4.84 9.17 34.82 65.94 

4 Barak 0.00 0.00 3.18 6.00 0.50 0.95 

5 Godavari 61.84 175.27 9.41 26.67 2.77 7.86 

6 Krishna 62.33 146.53 19.44 45.70 1.08 2.54 

7 Cauveri 71.51 55.88 9.32 7.28 0.00 0.00 

8 Subarnarekha 83.79 19.97 0.00 0.00 0.00 0.00 

9 BB 85.33 42.95 0.00 0.00 0.00 0.00 

10 Mahanadi 49.91 63.12 1.05 1.32 24.36 30.82 

11 Pennar 93.87 43.51 14.07 6.52 0.00 0.00 

12 Mahi 93.28 35.21 0.00 0.00 0.00 0.00 

13 Sabarmati 86.32 24.58 2.33 0.66 0.00 0.00 

14 Narmada 43.12 37.40 0.76 0.66 13.35 11.58 

15 Tapi 92.70 58.32 10.04 6.32 5.15 3.24 

16 EFRMGB 63.04 29.64 9.82 4.62 1.41 0.66 

17 EFRGKB 50.12 4.31 7.69 0.66 23.08 1.99 

18 EFRKPB 70.78 16.87 0.00 0.00 5.56 1.32 

19 EFRPCB 50.15 26.90 1.23 0.66 0.00 0.00 

20 EFRSCB 39.93 11.90 6.67 1.99 0.00 0.00 

21 Luni 92.40 170.73 24.46 45.20 1.43 2.65 

22 MRBB 7.12 1.04 0.00 0.00 0.00 0.00 

23 MRMB 0.00 0.00 0.00 0.00 18.18 2.65 

24 WG 36.03 36.99 23.30 23.92 0.22 0.23 
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Table 5.3 Vegetation area under high risk in monsoon season in 

stressed climate at river basin level. 

  NDVI-S NDVI-P NDVI-T 

  Area (1000 𝒌𝒎𝟐) 

Sl  

No. 

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 38.12 174.67 31.26 143.23 5.63 25.82 

2 Ganga 17.91 142.88 7.78 62.11 6.48 51.74 

3 Brahmaputra 0.00 0.00 0.00 0.00 9.31 17.63 

4 Barak 0.00 0.00 0.00 0.00 3.39 6.40 

5 Godavari 11.92 33.77 12.14 34.41 26.58 75.33 

6 Krishna 37.75 88.75 33.33 78.35 12.00 28.20 

7 Cauveri 65.13 50.90 15.25 11.92 0.85 0.66 

8 Subarnarekha 0.00 0.00 2.41 0.57 0.00 0.00 

9 BB 0.00 0.00 0.00 0.00 0.00 0.00 

10 Mahanadi 0.00 0.00 1.43 1.81 36.19 45.78 

11 Pennar 88.15 40.86 62.44 28.94 0.00 0.00 

12 Mahi 66.25 25.01 28.96 10.93 0.00 0.00 

13 Sabarmati 84.17 23.97 43.73 12.45 0.00 0.00 

14 Narmada 19.04 16.52 9.37 8.13 4.76 4.13 

15 Tapi 41.79 26.29 17.80 11.20 2.01 1.27 

16 EFRMGB 29.69 13.96 0.00 0.00 11.16 5.25 

17 EFRGKB 0.00 0.00 0.00 0.00 23.08 1.99 

18 EFRKPB 68.57 16.35 41.01 9.78 0.00 0.00 

19 EFRPCB 40.59 21.77 9.61 5.15 0.00 0.00 

20 EFRSCB 11.09 3.30 19.21 5.73 0.00 0.00 

21 Luni 94.09 173.84 85.27 157.55 0.00 0.00 

22 MRBB 0.00 0.00 0.00 0.00 0.00 0.00 

23 MRMB 0.00 0.00 0.00 0.00 8.50 1.24 

24 WG 1.28 1.31 0.64 0.65 14.45 14.83 
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Most dominant land cover type in the country is Croplands, which majorly 

contributes to agricultural production. Soil moisture content remains the 

most significant factor affecting the Croplands (Figure 5.8). Further, 

lowered precipitation scenario augments the chances of vegetation drought 

more severely than lowered temperature scenario. While lowered 

precipitation has negligible impact on evergreen forests and deciduous 

forests types, the role of temperature is significant in these forest types and 

lowering the temperature profile increases the chances of high risk (Figure 

5.8). On seasonal scales, as obtained in the study at river basins level, 

extreme or high risks are more evident in the nonmonsoon season. More 

than 50% of the Croplands fall under high or extreme drought risks in 

nonmonsoon season in low soil moisture scenario. Evergreen forest is 

almost undisturbed in the monsoon season and remains safe from the risks 

probably because of improved water availability in the monsoon months. 

However, about 33% and 39% of Cropland and Cropland/natural vegetation 

mosaic respectively fall under high or extreme risks in the same season, 

raising serious concerns about India’s food security.  

5.3.2.2 Impact on net primary productivity  

In the context of net primary productivity, the investigation at annual time 

scale reveals that terrestrial ecosystems in a majority of the river basins 

come under high-risk category when subjected to very low soil moisture 

values (Figure 5.9). Lowering the temperature is least disturbing to the 

ecosystem productivity except in high-altitude cold regions. The high risks 

due to stressed temperature at annual scale are observed only in 4 out of 24 

river basins which collectively add up to less than 10% of the country’s area 

(Table 5.4). However, reducing the precipitation induces moderate risks of 

severe damage to productivity in most of the river basins. Small areas of the 

Western Ghats, river basins in the eastern coast such as FRMGP, EFRGKB 

and EFRPCB and north-east region namely, Barak and Brahmaputra are  
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Figure 5.9 Conditional probabilities of 𝑛𝑁𝑃𝑃 ≤ 30𝑡ℎ  percentile at (a) annual 

(b) nonmonsoon and (c) monsoon season scale 
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Table 5.4 NPP area under high risk at annual scale in stressed climate at river basin 

level 

  NPP-S NPP-P NPP-T 

  Area (1000 𝒌𝒎𝟐) 

Sl 

No.  

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 2.89 13.24 5.92 27.15 44.80 205.29 

2 Ganga 29.46 235.09 4.23 33.77 5.98 47.68 

3 Brahmaputra 13.29 25.16 6.64 12.58 21.33 40.40 

4 Barak 0.00 0.00 0.00 0.00 0.00 0.00 

5 Godavari 85.28 241.71 0.70 1.99 0.00 0.00 

6 Krishna 80.56 189.40 2.25 5.30 0.00 0.00 

7 Cauveri 20.34 15.89 0.00 0.00 0.00 0.00 

8 Subarnarekha 25.00 5.96 0.00 0.00 0.00 0.00 

9 BB 28.95 14.57 0.00 0.00 0.00 0.00 

10 Mahanadi 76.44 96.68 0.00 0.00 0.00 0.00 

11 Pennar 44.29 20.53 0.00 0.00 0.00 0.00 

12 Mahi 100.00 37.75 21.05 7.95 0.00 0.00 

13 Sabarmati 100.00 28.48 2.33 0.66 0.00 0.00 

14 Narmada 97.71 84.76 13.74 11.92 0.00 0.00 

15 Tapi 100.00 62.91 22.11 13.91 0.00 0.00 

16 EFRMGB 1.41 0.66 0.00 0.00 0.00 0.00 

17 EFRGKB 0.00 0.00 0.00 0.00 0.00 0.00 

18 EFRKPB 0.00 0.00 0.00 0.00 0.00 0.00 

19 EFRPCB 0.00 0.00 0.00 0.00 0.00 0.00 

20 EFRSCB 0.00 0.00 0.00 0.00 0.00 0.00 

21 Luni 46.59 86.09 2.15 3.97 0.00 0.00 

22 MRBB 0.00 0.00 0.00 0.00 0.00 0.00 

23 MRMB 0.00 0.00 0.00 0.00 0.00 0.00 

24 WG 37.42 38.41 2.58 2.65 0.00 0.00 
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prone to high risks. Productivity in the river basins such as Mahi and Tapi 

is most likely to be hit by extreme changes in the annual precipitation as 

22.11% and 21.05% of their area exhibit high risks, respectively. More 

importantly, the analysis of annual NPP and soil moisture levels reveals that 

100% area of three river basins (Mahi, Sabarmati and Tapi) are prone to 

high risks. However, the river basins in the east-coast and the north-east 

region are relatively safer. Similar to results at the annual scale, stressed 

temperature scenario is not a major threat in monsoon season, and only 

about 6.5% of country’s area is at high risk (Table 5.5 and Figure 5..9). 

However, it is observed that extreme reduction in soil moisture even in the 

monsoon season might cause severe damage to the ecosystem productivity 

of about 38% area of the country. More than 50% area of 8 out of 24 river 

basins is prone to severe damage due to lower soil moisture levels. In 

addition, reducing the precipitation, soil moisture and temperature to the 

same level more significantly damages the productivity in the nonmonsoon 

season. The temperature in nonmonsoon months may bring more substantial 

risks to the ecosystem productivity in high-altitude basins as compared to 

the annual scale and monsoon season (Table 5.6). It can be observed that 

about 61.54% area of the Brahmaputra basin is under high risk followed by 

the Indus river basin’s 28.18%. Further, ecosystem productivity in about 

24% area of the country is at high risks in lowered precipitation scenario in 

the nonmonsoon season as compared to 1% in the monsoon season. 

Productivity in the Krishna river basin is found to be most vulnerable as 

68.17% of its area is at high risks in the nonmonsoon season. 

Table  5.7 shows the areas under the high-risk class at different vegetation 

type levels in the monsoon, nonmonsoon season and annual scale. Stressed 

temperature scenario induces such high risks in 57.14% of ENF at the 

annual scale. Further, ecosystem productivity of 45.30% of the Croplands 

is at high risks in lower temperature scenario. It is found that the ENF is 

most sensitive to the extreme climate conditions as 28.57% and 35.71% of 

their areas are likely to touch the 30th percentile threshold in stressed soil  
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Table 5.5 NPP area under high risk in monsoon season in stressed climate 

at river basin level 

  NPP-S NPP-P NPP-T 

  Area (1000 𝒌𝒎𝟐) 

Sl 

No. 

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 14.02 64.24 0.00 0.00 29.77 136.42 

2 Ganga 33.20 264.89 0.00 0.00 5.56 44.37 

3 Brahmaputra 3.50 6.62 0.35 0.66 1.75 3.31 

4 Barak 9.86 4.64 5.63 2.65 0.00 0.00 

5 Godavari 76.87 217.87 0.00 0.00 0.00 0.00 

6 Krishna 82.54 194.03 0.00 0.00 0.00 0.00 

7 Cauveri 16.95 13.24 0.00 0.00 0.00 0.00 

8 Subarnarekha 19.44 4.64 0.00 0.00 8.33 1.99 

9 BB 21.05 10.60 0.00 0.00 5.26 2.65 

10 Mahanadi 63.35 80.13 0.00 0.00 0.00 0.00 

11 Pennar 25.71 11.92 0.00 0.00 0.00 0.00 

12 Mahi 100.00 37.75 0.00 0.00 0.00 0.00 

13 Sabarmati 100.00 28.48 0.00 0.00 0.00 0.00 

14 Narmada 78.63 68.21 0.00 0.00 0.00 0.00 

15 Tapi 98.95 62.25 0.00 0.00 0.00 0.00 

16 EFRMGB 4.23 1.99 0.00 0.00 0.00 0.00 

17 EFRGKB 0.00 0.00 0.00 0.00 0.00 0.00 

18 EFRKPB 0.00 0.00 0.00 0.00 0.00 0.00 

19 EFRPCB 0.00 0.00 0.00 0.00 0.00 0.00 

20 EFRSCB 44.44 13.24 0.00 0.00 17.78 5.30 

21 Luni 69.18 127.81 0.00 0.00 1.08 1.99 

22 MRBB 0.00 0.00 0.00 0.00 0.00 0.00 

23 MRMB 36.36 5.30 0.00 0.00 0.00 0.00 

24 WG 
0.00 0.00 0.00 0.00 60.00 0.00 
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Table 5.6 NPP area under high risk in nonmonsoon season in stressed 

climate at river basin level 

  NPP-S NPP-P NPP-T 

  Area (1000 𝒌𝒎𝟐) 

Sl  

No. 

Basin (%) Sq. km. (%) Sq. km. (%) Sq. km. 

1 Indus 4.05 18.54 14.45 66.22 28.18 129.13 

2 Ganga 18.67 149.00 27.14 216.55 10.04 80.13 

3 Brahmaputra 25.17 47.68 17.83 33.77 61.54 116.55 

4 Barak 5.63 2.65 0.00 0.00 0.00 0.00 

5 Godavari 96.96 274.82 33.64 95.36 1.40 3.97 

6 Krishna 92.39 217.21 68.17 160.26 1.13 2.65 

7 Cauveri 44.07 34.44 21.19 16.56 0.00 0.00 

8 Subarnarekha 88.89 21.19 44.44 10.60 8.33 1.99 

9 BB 78.95 39.73 23.68 11.92 5.26 2.65 

10 Mahanadi 89.01 112.58 16.23 20.53 0.52 0.66 

11 Pennar 81.43 37.75 42.86 19.87 0.00 0.00 

12 Mahi 92.98 35.10 43.86 16.56 0.00 0.00 

13 Sabarmati 48.84 13.91 2.33 0.66 0.00 0.00 

14 Narmada 80.92 70.20 31.30 27.15 0.00 0.00 

15 Tapi 97.89 61.59 48.42 30.46 0.00 0.00 

16 EFRMGB 70.42 33.11 22.54 10.60 0.00 0.00 

17 EFRGKB 0.00 0.00 0.00 0.00 0.00 0.00 

18 EFRKPB 58.33 13.91 8.33 1.99 0.00 0.00 

19 EFRPCB 22.22 11.92 0.00 0.00 0.00 0.00 

20 EFRSCB 0.00 0.00 0.00 0.00 0.00 0.00 

21 Luni 16.85 31.12 8.60 15.89 0.00 0.00 

22 MRBB 0.00 0.00 4.54 0.65 4.55 0.66 

23 MRMB 0.00 0.00 0.00 0.00 0.00 0.00 

24 WG 30.97 31.79 26.45 27.15 7.10 7.28 
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Table 5.7 NPP area under high risk in different seasons and annual scale 

in stressed climate at LULC level 

   NPP-S NPP-P NPP-T 

  Area (1000 𝒌𝒎𝟐) 

Sl No. LULC (%) Sq. km. (%) Sq. km. (%) Sq. km. 

 Annual 

1 

 
ENF 28.57 2.65 35.71 3.31 57.14 5.30 

2 EBF 3.27 3.31 0.65 0.66 4.58 4.64 

3 DNF 15.63 3.31 6.25 1.32 28.13 5.96 

4 DFB 35.19 12.58 3.70 1.32 16.67 5.96 

5 MF 26.24 24.50 10.64 9.93 42.55 39.73 

6 WS 43.15 110.59 1.03 2.65 4.39 11.26 

7 SAV 37.08 21.85 10.11 5.96 13.48 7.95 

8 GL 32.60 39.07 13.81 16.56 45.30 54.30 

9 CL 49.61 760.89 2.89 44.37 1.42 21.85 

10 CNV 24.92 54.96 3.60 7.95 4.50 9.93 

 Monsoon 

1 ENF 0.00 0.00 0.00 0.00 36.02 3.34 

2 EBF 6.54 6.62 0.00 0.00 0.64 0.66 

3 DNF 15.63 3.31 3.12 0.66 9.38 1.99 

4 DFB 14.81 5.30 3.52 1.26 5.56 1.98 

5 MF 10.64 9.93 0.70 0.65 4.26 3.97 

6 WS 35.14 90.06 0.00 0.00 2.07 5.30 

7 SAV 38.20 22.52 0.00 0.00 6.74 3.97 

8 GL 28.73 34.44 0.00 0.00 27.07 32.45 

9 CL 54.58 837.05 0.09 1.32 2.55 39.07 

10 CNV 27.33 60.26 0.00 0.00 5.41 11.92 

 Nonmonsoon 

1 ENF 28.57 2.65 28.57 2.65 85.71 7.95 

2 EBF 5.23 5.30 3.27 3.31 18.30 18.54 

3 DNF 21.88 4.64 6.25 1.32 43.75 9.27 

4 DFB 48.15 17.22 7.41 2.65 31.48 11.26 

5 MF 29.08 27.15 8.51 7.95 56.03 52.32 

6 WS 65.89 168.87 18.60 47.68 6.72 17.22 

7 SAV 38.20 22.52 19.10 11.26 20.22 11.92 

8 GL 35.36 42.38 16.57 19.87 46.96 56.29 

9 CL 43.83 672.15 36.83 564.87 5.01 76.82 

10 CNV 42.94 94.70 16.52 36.42 10.21 22.52 
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moisture and precipitation condition, respectively. Possible reduction in 

annual soil moisture levels is highly threatening to the productivity of about 

half (49.61%) of the Croplands. This threat to the Croplands is more 

intensified in the monsoon season, and 54.58% of its area comes under high-

risk zones. However, extremely stressed precipitation could cause high risks 

only in a small portion of DNF (3.12%) and DBF (3.52%). However, the 

lower temperature remains a threat to Evergreen Needleleaf Forest even in 

monsoon season. The nonmonsoon season, as discussed, is found to be the 

most unfavourable period for the smooth functioning of terrestrial 

ecosystems in the country. An enormous 85.71% of the ENF is found to be 

at high risk in lower temperature scenario. Furthermore, lower soil moisture 

content causes the maximum amount of risks in the WS (65.89%), followed 

by DBF (48.15%), Croplands (43.83%), Croplands/Natural Vegetation 

Mosaic (42.94%), Savannas (38.20%), Grasslands (35.36%), Mixed Forests 

(29.08%), DNF (21.88%) and EBF (5.23%). Stressed precipitation in the 

nonmonsoon season is found to be affecting Croplands the most (36.83%). 

5.4  Discussions 

This study is aimed at investigating the possible changes in terrestrial 

ecosystem functioning under the influence of extreme climatic conditions. 

Modelling this dependence is complex and requires an efficient framework 

for estimating the risk to terrestrial ecosystems (Twine and Kucharik 2009; 

Chu et al. 2016). The likelihood of  NPP dropping down to the 30𝑡ℎ 

percentile threshold in stressed scenarios of precipitation, soil moisture 

content and temperature using a multivariate probabilistic approach in 

different seasons and annual scale is performed. The results agree with 

previous studies that variations in the terrestrial ecosystem is strongly 

governed by changing climatic conditions (Tian et al. 2010; Kyoung et al. 

2011; Singh et al. 2011). It is found that stressed soil moisture levels are the 

most crucial in governing the ecosystem productivity in many regions. This 

conclusion is in accordance with the previous findings indicating that soil 

moisture strongly dominates the functioning of terrestrial ecosystems 
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(Norby et al. 2004; Falloon et al. 2011; Xu et al. 2012). Terrestrial 

ecosystems in the nonmonsoon season are most susceptible to damage 

under extreme conditions. This is logical, as the nonmonsoon season is also 

the drought-prone duration in the country where inadequate water 

availability limits the productivity of plants (Bhuiyan 2004). In stressed soil 

moisture conditions, the river basins in the peninsular as well as the north-

western regions are highly vulnerable. The high risk in Luni, Mahi and 

Pennar river basins is due to the fact that these are one of the most drought-

prone basins of the country (Gosain et al. 2006; Prabhakar and Shaw 2008). 

The threat to productivity in these regions directs towards the risks to 

vegetation growth and activity. The nonmonsoon season also comprises of 

months in which temperature is at its lowest value which makes the season 

most unfavourable for ecosystems in high-altitude zones. Kusre and 

Lalringliana (2014) have shown that winter droughts in the Himalayan 

region of India are a major cause of concern calling for urgent management 

measures in the region. It is observed that lowering the temperature has the 

least impact on the NPP and NDVI in other areas. This result asserts that 

NPP and NDVI have the least coherence with temperature in India (Nayak 

et al. 2013). The rate of biomass yield is a product of the growth duration 

and mass accumulation which is primarily influenced by the amount of 

sunlight intercepted by plants over an optimum range of temperature 

(Ritchie and Nesmith 1991). It is well known from very early studies that 

low light conditions may severely affect primary productivity (Davey 1989; 

Davison 1991). Therefore, extreme or high risks in these regions during 

lower temperature are reasonable. The effect of highly stressed precipitation 

is less severe as compared to stressed soil moisture content. Research shows 

that the Godavari river basin experience very high rainfall and temperature 

variability; hence, it is susceptible due to changing climatic conditions 

(Jhajharia et al. 2014; Das and Umamahesh 2015). The tendency of soil 

moisture being more dominant factor than precipitation in causing extreme 

damage to the ecosystem productivity is observed in 18 out of 24 river 
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basins. This indicates that most of the river basins in India lack the 

mechanism to hold incident precipitation.  

5.5  Conclusions 

The study facilitates the understanding of the impacts of extreme climatic 

conditions on terrestrial ecosystem functioning across India. The analysis is 

performed to identify the sensitive regions and time during the year in which 

the maximum threat to ecosystem functioning may occur. The study on river 

basins and land cover scales provides in-depth identification and 

characterisation of the risk factors and delivers crucial inputs for terrestrial 

ecosystem management and sustainable policymaking. The study puts 

forward all-India assessment of the regional impact of global climate 

change over ecosystem functioning across different river basins and land 

cover types. It can be concluded that there is a significant threat to the 

terrestrial ecosystem functioning due to extreme climatic conditions, 

especially in the western and southernmost parts. Large areas in most of the 

river basins are susceptible to high chances of risk due to possible deficit in 

required soil moisture levels. The investigation also covers the seasonal 

aspects of the vegetation response and finds that monsoon season is 

relatively more favourable for terrestrial ecosystem growth and 

productivity. Despite the relatively limited availability of data, the proposed 

approach performs reasonably well.  
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Chapter 6 

Risk and resilience to climate extremes: 

inferences from the analysis 

6.1 Introduction 

Changing climate extremes have attracted much attention in the research 

community as the extreme behaviour of climate is more significant to the 

human well being than their average values. Recent years have witnessed 

several extreme weather events causing large scale loss of life and property. 

For instance, the economic loss due to extreme weather such as extreme 

cold, heat and hurricanes in the United States in 2018 was estimated at $155 

billion (Fritz 2018). Further, Japan’s summer heatwaves in 2018 resulted in 

the hospitalisation of 22,000 people due to heat strokes (Mania et al. 2018).   

California, Greece and Australia experienced some of the most devastating 

wildfires of their histories in the same year (Levin and Tirpak 2018). It is 

noteworthy that over 40 million people were affected by widespread 

flooding in the Indian subcontinent during 2017 (UN 2017). Similar events 

were recorded in 2015, 2016 and 2018 and 2019 in many states of India, 

resulting in substantial loss of human lives and property (Doshi 2016; Dash 

and Punia 2019; Rai 2019; Sudheer et al. 2019). Moreover, there have been 

22 major drought events in India from 1871 to 2002, and five of them were 

severe (Samra 2004). A prolonged drought event poses a significant 

implication to the country’s water and food security. Further, the 

Intergovernmental Panel on Climate Change (IPCC) Special Report on 

climate extremes stressed that continued warming of Earth would lead to 

further variability in the spatial and temporal pattern of extremes (Field et 

al. 2012).  

In the context of India, climate change, the persistent extreme weather 

events namely, droughts, floods, heatwaves have a significant role in 

shaping the natural ecosystems and impose challenges to the human society 
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(Easterling et al. 2000; Trenberth et al. 2014; Mann et al. 2017; Sisco et al. 

2017). In the present scenario, the climate change is imposing huge 

challenges to food security and water resources of 1.2 billion population in 

India and the expected waiting time of the extreme events has been reduced 

significantly in the recent decades (Goyal and Surampalli 2018). The 

adverse consequences of extremes events may alter the spatio-temporal 

characteristics (e.g., frequency, intensity, and duration) and the water 

availability (Li et al. 2015a; Singh et al. 2018) causing threats to an agrarian 

country like India (Chattopadhyay 2010). In this view, it is of paramount 

importance to investigate the risk and resilience in the context of extreme 

weather events for suitable adaptation strategies and disaster mitigation 

policies. 

Multifaceted effort should be conducted to understand the occurrence of 

extreme events and to figure out the implications for risk and resilience. 

However, understanding the mechanism of changes in extremes and their 

impacts due to the complex interdependence of various climate components 

essentially requires the utilisation of more advanced and inclusive 

framework. Previous studies primarily focused their attention on the long-

term temporal trends of extremes and climate change; however, the 

nonstationarity in extremes related to climate change and associated 

uncertainty has not been extensively addressed (Vittal et al. 2013). 

Moreover, Coles et al. (2003) reiterated that the classical approaches do not 

include the model uncertainty comprehensively and is limited to produce an 

overly optimistic assessment of climate extreme. Further, the vulnerability 

and exposure to extreme climatic events are a function of factors such as 

social status, infrastructure in the region and economic capacity. These 

factors, in combination with the highly complex occurrence and distribution 

of extreme events, call for an integrated approach which would provide an 

estimation of risk and resilience  

The studies shown in Chapter 3, 4 and 5 demonstrate the nonlinear evolution 

of climate and different aspects of its extreme behaviour. This chapter 
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presents a study investigating the risk and resilience to extreme climatic 

conditions. The results of this chapter have the conceptual foundation based 

on studies carried out in Chapter 4 and 5. Here, the risk due to extreme 

precipitation (based on Chapter 4) and resilience of terrestrial ecosystems 

to extreme climatic conditions (based on Chapter 5) have been discussed.  

6.2 Data and Methodology  

6.2.2  Methodology for extreme rainfall risk estimation 

Using the steps discussed in the Chapter 4, the nonstationary and stationary 

return levels of the extreme rainfall indices are calculated. For calculating 

the risk, the 100-year return levels of Rx1 day and CWD are computed using 

the mean posterior parameters obtained during the Bayesian operation. The 

nonstationary return levels computed using the mean posterior parameters 

and the stationary return levels using MLE parameters are compared to 

observe the influence of selected oscillations (NAO, ENSO and IOD) on 

the extreme precipitation. The IMD’s classification of rainfall intensity 

describes a one-day rainfall equal to or greater than 244.5 mm as an 

extremely heavy rain event (Guhathakurta et al. 2011). In this study, the 

return level of Rx1 day greater than 244.5 mm is considered as hazardous. 

Similarly, CWD duration of 20.2 days is a threshold for an extremely long 

wet spell, as suggested by Singh and Ranade (2010). The chance of 

hazardous Rx1 day and CWD return level in a district is computed as the 

percentage of grid points receiving rainfall return levels above these 

thresholds. This computation is performed for both the stationary and 

nonstationary processes at the district level. Once the degree of hazard, i.e., 

the percentage of each district’s exhibiting return levels greater than the 

threshold values is estimated, two other elements of risks - exposure and 

vulnerability, are computed.  

The measure of exposure is considered as the percentage of district area 

with population densities of children or the elderly greater than the national 

average. The national average of 109 for children population and 33 for old 
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population density (per square kilometre) is considered based on Census 

2011 data. The percentage area of a district that shows the child and elderly 

population to be greater than 109 and 33, respectively, is estimated.  

For the vulnerability part, the night-time lights and road availability 

indicators as two major infrastructure parameters are selected. The 

percentage of grid points with significant economic activity as represented 

by NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night 

Bands (DNB) data is calculated. This dataset delivers the estimates of 

surface upward radiance from the artificial nighttime light sources. Zhao et 

al., (2018b)  in the study of the applicability of VIIRS/DNB data set in 

disaster risk assessment suggested that night time light data sets are useful 

in estimating the social-economic status. Stokes and Seto, (2019) utilized 

the data in understanding the urban infrastructural transitions in Asia, Latin 

America and Sub-Saharan Africa. In this study, we use the VIIRS/DNB 

radiances at 3 km resolution as a proxy to economic activities, urban land 

pattern, human activities and infrastructure at a very fine resolution. We 

filter the data based on the recommendation of Elvidge et al., (2017) so that 

only artificial lights from human settlement and electric lightings are 

considered.  

The quality and location of transportation systems, particularly road 

network, plays a vital role in amplifying or reducing the risk of an extreme 

climatic event Cutter et al., (2000). The productivity of post hazard 

measures, especially during the response and mitigation processes depends 

upon the quality and density of transportation systems. Roads are one of the 

crucial elements that can be representative of the physical infrastructure 

indicator  (Adger et al. 2005) In this study, we use the Global Roads 

Inventory Project-Version 4 (GRIP v4) data, which is a harmonized global 

dataset of about 222 countries comprising 21 million Km of roads (Meijer 

et al. 2018). Meijer et al., (2018) suggest that the error in spatial positional 

accuracy is a maximum of 500 metres based on the validations based on 
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VMAP data, digital and paper atlases, official topographic maps and remote 

sensing images from Google Maps, ESRI base maps and other available 

sources(2018). The suitability of these data can be surmised from a 

substantial body of literature (Kleinschroth et al. 2019; Koks et al. 2019; 

Schipper et al. 2019; Sloan et al. 2019; Stewart et al. 2019). 

The overall methodology has been shown in Figure 6.1. Based on the 

hazard, exposure and vulnerability measures, the risk of extreme rainfall 

hazard based on the recommendations of IPCC (𝑖. 𝑒. 𝑅𝑖𝑠𝑘 =  𝐻𝑎𝑧𝑎𝑟𝑑 ×

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) is calculated for each district separately to 

assess the risk due to heavy downpour as well as extremely long rainfall 

duration (Oppenheimer et al. 2015). Mathematically,   

𝑅𝑖𝑠𝑘𝐷 = 𝑃𝐷𝑇𝑅  × (𝑃𝐷𝐶𝑁 + 𝑃𝐷𝑂𝑁) ×
1

(𝑃𝐷𝑅𝐴 + 𝑃𝐷𝐸𝐴)
              (6.1) 

Here,  

𝑅𝑖𝑠𝑘𝐷: District-wise Risk index value.  

𝑃𝐷𝑇𝑅: The hazard measure i.e., percentage of district pixels where Rx1 day 

or CWD is above threshold return levels of 244.5 mm and 20.2 days 

respectively. 

𝑃𝐷𝐶𝑁: The exposure measure i.e., percentage of district pixels where 

children population density is above the national average of 109. 

𝑃𝐷𝑂𝑁: The exposure measure i.e., percentage of district pixels where the 

elderly population density is above the national average of 33. 

𝑃𝐷𝑅𝐴: The vulnerability measure i.e., percentage of district pixels on which 

road density is detected. 

𝑃𝐷𝐸𝐴: The vulnerability measure, i.e., the percentage of district pixels where 

economic activity/infrastructure is detected.  

6.2.3  Methodology for terrestrial ecosystem resilience estimation 

The basic idea behind estimating the resilience is to understand the ability 

of an ecosystem to absorb alterations in its state and recover from it (Holling 
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1973). In the context of this study, resilience has been viewed as the strength 

of terrestrial ecosystems of the country to return to an equilibrium position 

after a hydroclimatic disturbance. As discussed, droughts severely alter the 

hydrological equations and leading to alterations in water balance 

equations. The water balance equation between land and atmosphere govern  

 

 

the variation of forest biomass (Stegen et al. 2011). In Chapter 5, the impact 

of extreme climatic conditions on terrestrial ecosystem functioning has been 

discussed. Here, the resilience of terrestrial ecosystem functioning has been 

estimated by assessing the response of NDVI to dry conditions. The analysis 

is performed at both the river basin scale and the land cover type scale. The 

details about nomenclature and basin boundaries have been given in 

Chapter 5. The conclusions derived from Chapter 5 suggest that possible 

soil moisture deficit could lead to severe damage to the terrestrial ecosystem 

functioning. This possible condition has been identified as a drought event. 

One of the most widely used tools for identifying and monitoring droughts 

 

Figure 6.1 Overall methodology for estimating the risk due to extreme 

precipitation 
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all over the world has been Standardised Precipitation Index (SPI) which 

incorporates the information about drought history at a particular point 

(Radzka 2015). To estimate the impact of droughts on vegetation 

ecosystems from resilience point of view, the driest year during the period 

of 1982-2010 based on long term climate data is detected by deriving the 

SPI (Mckee et al. 1993; Vicente-Serrano et al. 2010). It has been assumed 

that a resilient ecosystem will recover quickly against a dry condition and 

maintain its vegetation vigour. The vegetation distribution at a particular 

point, which showed relatively undisturbed NDVI value in the driest year 

(𝑁𝐷𝑉𝐼𝑑) is considered as resilient. Most of the resilience studies suggest 

that for a fully resilient ecosystem the ratio of disturbed to a given baseline 

state approaches to 1, indicating complete recovery (Ingrisch and Bahn 

2018). Here, an index, 𝑅𝑖 is defined to measure resilience as a ratio of NDVI 

in the driest year to its temporal mean (𝑁𝐷𝑉𝐼𝑚) value calculated over the 

period of 1982-2010 as give by  

 

𝑅𝑖 =
𝑁𝐷𝑉𝐼𝑑

𝑁𝐷𝑉𝐼𝑚
                                                         (6.2)   

6.3 Results 

6.3.1 Risk due to heavy downpour and extremely long wet spells  

The nonstationary return levels computed using the mean posterior 

parameters and the stationary return levels using MLE parameters are 

compared to observe the influence of selected oscillations on extreme 

precipitation. This computation is performed for both the stationary and 

nonstationary processes. Under the nonstationary condition, it is found that 

456 (~72%) and 571 (~90%) out of 637 districts have more than 50% of 

their grid points witnessing rainfall return levels above the previously 

mentioned hazardous thresholds of Rx1 day and CWD respectively. 

However, under the stationary condition, rainfall in only 312 (~49%) and 

524 (~82%) districts are detected which are experiencing such return levels. 

This points out the incapability of stationary GEV models to capture the 
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influence of oscillations in the return levels. Earlier, the results of LR test 

(see methods of Chapter 4) suggest that NS-GEV models are best-fit in 711 

(~68%) and 764 (~74%) out of 1038 grids for Rx1 day and CWD 

respectively. The nonstationarity in GEV distribution is introduced by using 

56 different linear combinations of physical covariates which are ENSO, 

IOD and NAO (See Table 4.1 in Chapter 4). It can be inferred from Figure 

6.2 that ENSO is the most dominating covariate governing the location 

parameter in more than 400 (~38%) grid points for both the indices. 

However, the scale parameter is most significantly represented by the linear 

combination of all three covariates.  It should be noted that first 7 out of the  

 

56 models  represent the variation in the location parameter only. Figure 6.2 

b,d shows the variation in the scale parameter. It can be concluded that the 

variability of extreme climate, i.e., scale parameter of both Rx1day and 

CWD is majorly governed by the combined action of ENSO, NAO and IOD 

 

Figure 6.2 Distribution of optimal covariate combination for location 

and scale parameters of NS-GEV models for (a,b) Rx1 day and  (c,d) 

CWD indices. The x-axis labels represent the linear combination of 

individual, double and all three covariates 
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phenomenon. After the assessment of the existing nonstationarity and 

obtaining the best covariate combination, the GEV distribution parameters 

for both nonstationary and stationary models are obtained using the 

maximum likelihood approach. Using these parameters as the initial setting 

for Bayesian analysis and employing the Markov Chain Monte Carlo 

(MCMC) algorithm sampler, the posterior parameter distribution is 

obtained for each grid point. The district-wise values of parameters are 

computed by extracting and averaging the mean posterior parameter 

distributions. Once the best combination and parameters are obtained, the 

return levels are estimated for hazard measure. Combining the hazard, 

exposure and vulnerability estimates, the risk is finally calculated. The 

index (𝑅𝑖𝑠𝑘𝐷) estimated using Equation 6.1 is divided into five different 

classes of safe (0-0.25), low (0.25-0.50), moderate (0.50-0.75), high (0.75-

1) and extreme (>1) risks. Figure 6..3 represents the distribution of districts  

 

under different classes of risk in stationary and nonstationary conditions. 

198 (~31%) out of 637 districts are identified to be experiencing extreme 

risks of severe one-day rainfall when nonstationarity is considered whereas, 

 

Figure 6.3 Distribution of districts under different classes of risk due 

under (a,b) nonstationary and (a,b) stationary scenarios 
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only 132 (~21%) of the districts is extremely risked under the assumption 

of stationary. Similarly, extreme risk of long consecutive wet days is evident 

only in 219 (~34%) districts under stationarity, whereas, 244 (~39%) 

districts are identified as extreme using nonstationary models. Moreover, 

Figure 6.4 depicts the spatial distribution of risk classes for both Rx1 day 

and CWD.  

 

 

 

 

Figure 6.4 District-wise distribution of risk in (a,b) nonstationary 

and (c,d) stationary scenarios of extreme downpour (Rx1 day) and 

extremely long wet days (CWD) 
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The results are related to states considered in the study, and it is found that 

at least fifty percent districts in 8 out of 29 states are at high risk (Figure 

6.5). 

 

6.3.2 Resilience of terrestrial ecosystems to dry conditions 

Figure 6.6 represents the resilience values obtained by Equation 6.2 across 

India. The maximum and minimum value of 𝑅𝑖 are 1.41 and 0.29 

respectively. River basins in the arid zones of India such as Mahi, 

Sabarmati, Luni and EFRKPB are detected to be severely non-resilient 

(Figure 6.7a). Not only the arid zones, the river basins which are known to 

be the lifelines of Indian agricultural systems are also found to be highly 

vulnerable in dry conditions. Area-wise, Ganga and Indus river basins are 

observed to be most non-resilient ones. Both of these river basins have a 

significant fraction of land under agricultural use, and a large population is 

dependent on them. The results clearly indicate that crop production in these  

 

Figure 6.5 Percentage of districts in different states at high risk due to 

heavy downpour and extremely long wet spells 
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river basins may not be able to sustain the extreme conditions. Large river 

basins of southern India also face similar risks. Krishna and Godavari are 

the found to be two of the most fragile river basins in the southern part of 

the country. Both the river basins are highly stressed in terms of water 

availability, and non-resilient vegetation distribution increases the chances 

of high risk to the terrestrial ecosystems. Investigation of the resilience on 

different vegetation scale indicates that more than half of all vegetation 

types are non-resilient to vegetation droughts. India has the highest net 

Cropland area in the whole world, which makes up more than 50% of the 

country (Figure 6.7). The huge extent of non-resilient Cropland aggravates 

the challenges to Indian agriculture. Furthermore, about 74% of MF (Mixed 

forests) and 72% of SAV (Savanna) type vegetation cover is non-resilient. 

Mixed forest ecosystems which comprise of both coniferous and deciduous 

forest types are also observed to be highly insecure against drought  

 

Figure 6.6 Spatial distribution of resilience (Ri) values 
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conditions. These forests are found in regions with a distinctly cool and 

warm season which sums up to a relatively moderate annual temperature. 

In India, these are majorly distributed in the Himalayan range along with 

other forest types, and it is alarming to see that even forest covers of these 

ecologically favourable zones are not safe from dry conditions. Deciduous 

forests are the most widespread forests of India and are heavily dependent 

on monsoons. The distribution of these forests is based on dry and moist 

conditions. It is found that a possible dry condition is capable of altering 

more than 65% of deciduous vegetation of the country. It is surprising that 

irrespective of its type, more than half of every vegetation cover is non-

resilient. Hence, a possible vegetation drought scenario is expected to 

impact all vegetation types, which is a clear indicator of the threatened 

status of Indian vegetation ecosystem. The evergreen forests, which are 

found in high precipitation zones in the country such as north-east and west-

coast, are expected to be least affected by such disturbances. Unlike the 

 

Figure 6.7 Non-resilient area at (a) river basins and (b) vegetation 

types scales 
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deciduous forests, they do not shed their leaves all together during any part 

of a year. But, it was observed that both Evergreen Needleleaf and 

Evergreen Broadleaf Forests are unable to recover from the driest 

conditions and 50-60% of the total area of these forests show non-resilient 

behaviour in their respective driest years. The non-resilience of such forest 

ecosystems means that even the greenest forest cover in the country is not 

stable against drought disturbances. 

6.4 Discussions 

This chapter illustrates one example each of the risk and resilience 

estimation based on studies shown in previous chapters. In Chapter 3, the 

importance of incorporating nonstationarity and uncertainty has been 

discussed. The risk due to extreme precipitation is calculated. It is well 

known that the risk is not only determined by the characteristic of a hazard 

but also by the exposure and vulnerability components. Therefore, the 

degree of hazard caused by extreme precipitation is combined with the 

exposure and vulnerability components to get the measure of district-wise 

risk. Significant research in the past has shown that considering multivariate 

dimensions such as social, economic, infrastructural aspects can improve 

our strategies to minimise climate risk (Cardona et al. 2012; Field et al. 

2012). The northern plains, which is one of the highly-dense regions of the 

country, is found to be most exposed because of the high density of children 

and the elderly population. The states of Bihar, Uttar Pradesh and West 

Bengal, which are most significantly exposed are also one of the most 

impoverished states of India (India 2016). These regions in the past have 

experienced several climatic disasters and have been found to be vulnerable 

to extreme climatic conditions. The vulnerability of an area which is 

exposed to some hazard can be reduced if the capacity to manage the 

disaster is present. In this sense, the infrastructure and economy of a region 

play a crucial role in determining the adaptive capacity. The availability of 

infrastructure is least in the north-east region as well as the north-west 
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region. It should be noted that districts in these regions are also one of the 

least populated and least developed. The risk estimates from the 

nonstationary models indicate that more than one-third of India’s districts 

are experiencing either high or extreme risk from possible heavy rainfall 

downpour. Similarly, about 44% of the districts are at either high or extreme 

risk of the possible occurrence of extremely long consecutive wet spells. In 

general, the extreme risk is most significantly observed in the relatively 

poorer districts where the population density is high and economic activity 

indicator or infrastructure indicator is low. Further, the majority of districts 

in the east-coast reveal extreme risk of high chances of rainfall hazard, poor 

economic state and high exposure in terms of population. The north-east 

region, which receives the highest amount of rainfall in the world is not 

entirely at high risk despite being backwards in terms of economy and 

infrastructure. The results are related to states considered in the study, and 

it is found that at least fifty percent districts in 8 out of 29 states are at high 

risk. All districts of West Bengal depicted high risk of heavy downpour as 

well as extremely long spells under both stationary and nonstationary 

conditions.  

Further, resilience is estimated in terms of the ability of terrestrial 

ecosystems to maintain their NDVI (vegetation vigour) in the driest year as 

compared to the mean NDVI during the time period 1982-2010. This study 

shows that none of the river basins is resilient to vegetation droughts and at 

least one-third area of 18 out of 24 river basins is fragile against such 

disturbances. Moreover, at least three-fourth areas of river basins situated 

in the arid zones in the country such as Mahi, Luni, and Sabarmati are found 

to be non-resilient. More importantly, some of the river basins which 

receive a high amount of rainfall are also found to be poorly capable of 

maintaining their productivity as more than 40% area of Barak and western 

ghats are non-resilient These river basins already have scarce vegetation 

distribution and are highly prone to vegetation droughts. The non-resilience 

of such river basins essentially points towards their inability to achieve the 
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essential moisture condition for vegetation regrowth after a dry period. 

Barak river basin, which lies in India’s one of the most ecologically rich 

regions is most efficient in supporting its vegetation cover in a dry year. 

Further, the ecosystem resilience based on the land cover scale is also 

checked to understand the capability of different vegetation types to recover 

from a drought condition. Area-wise, Evergreen Needleleaf and Evergreen 

Broadleaf Forests are the most resilient vegetation types. However, the 

analysis showed that more than half of every single vegetation type in the 

country is incapable of fighting dry conditions.  

6.5 Conclusions 

Studies demonstrated in the previous chapters deal with understanding the 

evolution of climate, the role of large scale oscillations in causing 

uncertainty in the extreme precipitation return levels, the joint dependence 

of climate extremes and the terrestrial ecosystem functioning. However, this 

study demonstrates the risk and resilience analysis to conclude the last 

objective of the overall research goal through two studies. This study 

enables the understanding of the influence of low-frequency global scale 

modes on the risk of extreme rainfall at the smallest administrative division 

leve. The results reveal that these factors have a strong association with the 

extreme rainfall, and due to this connection, significant variability in return 

level exists. The characterisation of district-wise risks on the basis of return 

levels combined with exposure and vulnerability data are intended to aid the 

decision-makers in deciding effective disaster risk reduction plans and 

policies. Further, the resilience analysis, which is performed to understand 

the ability of terrestrial ecosystems of India in recovering from a dry 

condition shows that extreme climate conditions might have serious 

implications. The non-resilient state of Cropland raises a serious question 

to India’s food security. The analysis points out that even if there is ample 

rainfall in a region, there might not be adequate soil moisture to ensure 

smooth terrestrial ecosystem functioning.  
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Chapter 7 

Conclusions and scope for future work 

7.1 Summary  

The present study has been performed to deliver a comprehensive 

assessment of extreme climatic conditions over India and their implications 

for risk and resilience. Indian climate is extremely diverse and influenced 

by a large number of factors. The underlying nonlinearity in climate profiles 

is one of the major factors which contribute to poor predictability in the 

extreme climate zones. The complexity of climate systems, intricate 

ecosystem-climatic interactions, inter-dependence of the climate extremes 

and prevailing nonstationarity make the risk and resilience assessment a 

challenging task. Besides, the risk due to extreme climatic events does not 

only depend on the magnitude of extreme hazards but also different 

components of risk, such as exposure and vulnerability. The risk reduction 

and adaptation to climate change are significantly dependent upon the 

accurate estimation of these hazardous events and their interaction with 

exposure and vulnerability parameters. The following paragraphs give a 

summary and conclusions of the study presented in the thesis. 

The climate over a region is governed by many factors. The underlying 

nonlinearity and complexity in climatic components limit the accuracy of 

climate predictions. The presence of strong determinism in a time series is 

an indication that a finite set of equations drive the process and a set of fixed 

laws explains its dynamic evolution from one state to another. The 

predictability of the Indian climate during the past century (1901-2002) is 

analysed using the DVV method. The results show that both precipitation 

and temperature exhibit a high degree of nonlinearity, multi-scaling, non-

stationary and anti-persistent fractional Brownian motion (fBm) behaviour 

with short-range dependence (SRD) characteristics. Out of 566 selected 

districts, precipitation time series in  449 (80%), 458 (81%), and 472 (84%) 
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districts are found to be in the category of significant to extremely nonlinear 

during 1901-1934, 1935-1968, and 1969-2002, respectively. Whereas, the 

temperature profiles of 341 (60%), 223 (40%)  and 279 (50%) districts are 

categorised into significant to extremely nonlinear during the same periods. 

The outcomes from the investigation suggested that the predictability of 

both temperature and precipitation has decreased over the period. 

Moreover, the decrease in the determinism is accompanied by increasing 

nonlinearity in most of the districts. This study allows the understanding of 

the nonlinear dynamics of the Indian climate and provides crucial inputs for 

examining the changes in spatial and temporal predictability in the country. 

The low-frequency global-scale modes are widely considered as the 

significant drivers of inter-annual variability of the Indian rainfall pattern 

and extreme rainfall events. The qualitative and quantifiable assessment of 

the association between the climatic oscillations and heavy rainfall, in 

particular, could deliver an essential understanding of flood hazard 

prevention, mitigation and enhance the flood management strategy. The 

influence of ENSO, IOD and NAO on extreme precipitation during 1951-

2013 over 24 major river basins of India using the non-stationary extreme 

value analysis is investigated. In addition, the uncertainty in the parameters 

of the fitted non-stationary extreme value distribution is assessed using 

Bayesian inference. It is found that extreme precipitation events in the 

country are dominated by these oscillations, especially in central India. 

Moreover, the return levels of high rainfall are found to be intensifying with 

increasing return period. In this study, it is observed that variability in return 

levels is high not only in the regions where rainfall is abundant but also in 

the drought-prone areas.  It is likely that these regions may experience short 

spells of heavy downpours in the form of high-intensity rainfall.  This may 

lead to the simultaneous occurrence of flash floods and droughts in these 

areas. The results presented here contribute to a better understanding of the 

large-scale climate variability and its impact on high rainfall pattern, which 
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would provide essential inputs for deciding rainfall-induced hazard 

prevention measures.  

The above paragraphs represent the outputs of the investigations based on 

univariate analysis of climate data. As discussed in Chapter 5, the 

dependence of extreme climate with terrestrial ecosystems might not be 

suitably determined using the existing univariate approaches.  Currently, 

modelling the response of the ecosystem to climate change is mostly based 

on assessing the impact of climatic trends such as changes in precipitating, 

temperature warming and increase in Carbon concentration or other 

parameters. Further, ecosystem-climatic interaction is complex; therefore, 

modelling the possible influence of extreme climate on ecosystem 

productivity from joint likelihood point of view is more suitable. In view of 

this, a study integrating climate data (precipitation, temperature and soil 

moisture content) and remote sensing observations (NDVI/NPP) using 

bivariate Copula-based approach is performed to quantify the impact of 

extreme climatic conditions over terrestrial ecosystem functioning. It is 

observed that at least half the area of 16 out of 24 major river basins is facing 

high risk due to possible lowered soil moisture levels. It can be concluded 

that there is a significant threat to the terrestrial ecosystem functioning due 

to extreme climatic conditions, especially in the western and southernmost 

parts. Large areas of most river basins are susceptible to high chances of 

risk due to soil moisture levels in the nonmonsoon season. The outputs of 

the analysis serve to the mapping of climatic factors influencing the 

ecosystem functioning at a multi-spatial and temporal scale. 

The last chapter of the thesis presents an investigation involving the 

quantification of the risk due to extreme precipitation (based on Chapter 4) 

and resilience of terrestrial ecosystems to extreme climatic conditions 

(based on Chapter 5). The nonstationary extreme value theory, along with 

Bayesian uncertainty analysis, is employed to investigate the influence of 

ENSO, IOD and NAO in augmenting high rainfall risks in all districts across 
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29 states of India. The location and scale parameters of the Generalised 

Extreme Value (GEV) distribution are modelled through linear functions of 

the large-scale oscillations. The risks from high rainfall and extremely long 

wet spells are calculated by incorporating the socio-economic 

characteristics of districts such as population density of children and the 

elderly, economic activity and infrastructure. It is found that at least 50% of 

the districts in 8 out of 29 states are at high risk. Extreme risk is observed 

in 198 (~31%) and 249 (~39%) districts caused by heavy downpour and 

extremely long wet spells respectively. Moreover, it is also observed that 

the risk is underestimated using conventional stationary models. The 

resilience of terrestrial ecosystems to a dry condition is also investigated. 

The examination suggests that at least one-third area of 18 river basins is 

non-resilient to dry conditions. Moreover, more than fifty percent of each 

vegetation type is non-resilient, which points out the fragility of the 

country’s terrestrial ecosystems. These findings provide useful insights for 

the policymakers to develop effective strategies for effective extreme 

climate risk mitigation and management strategies.  

7.2 Future scope of work  

As discussed earlier, the present research is devoted to understanding climate 

extremes and their implications for risk and resilience. However, there are 

many challenges that still exist in the field of climate extremes risk and 

resilience assessment. Hence, the following would be possible future works.  

 The study provides the quantification of the degree of predictability in 

the Indian climate. Detection and attribution study to investigate the 

causes of lower predictability could be performed, which would be 

crucial in understanding the underlying mechanism behind the existing 

nonlinearity.   

 The nonstationary analysis of rainfall extremes is done to identify the 

influence of global climatic oscillations. The study can be extended to 

different extremes incorporating the investigation of the role of the 

global as well as local factors.  
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 The extreme value analysis on rainfall extremes is performed by 

considering continuous GEV distributions. A more comprehensive 

analysis may be carried out using discrete distributions and then 

combining them with exposure and vulnerability parameters to 

estimate the risk.  

 The dependence structure of climate variables and terrestrial 

ecosystem functioning is estimated using bivariate Copula models. 

Instead of using bivariate, other multivariate Copulas may be 

utilised in future studies to model the joint dependence of more than 

two variables.  

 The risk due to extreme precipitation is investigated by combining 

the hazard measures with the population’s exposure and 

vulnerability. The study can be extended to analyse the risk by 

integrating more socio-economic, perception-based and behavioural 

indicators. 
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