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Synopsis

Introduction

Networks provide a simple framework to understand and predict the properties of

complex real-world systems by modeling them in terms of interacting units [28].

This framework is successful in explaining various mechanisms behind the emer-

gence of collective behaviors of systems arising due to the local interaction patterns

of their components. Much of the current effort has given to understand the relation-

ship between structure as well as the dynamics of a complex system. As structure

always affects the functionality of a system. The eigenvector corresponding to the

largest eigenvalue of the adjacency matrix, referred to as the principal eigenvector

(PEV), provides information about both the structural and dynamical behavior of

the underlying systems [9]. For various linear dynamical processes on networks,

for instance, epidemic spreading, population dynamics of Ribonucleic acid (RNA)

neutral networks, rumor spreading, brain network dynamical models the steady-

state vector has been shown to be approximated using the PEV of the adjacency

matrix [9]. Hence, analyzing the behavior of PEV can help us to understand how an

individual entity is infected or how information spreads in a network in the steady-

state. Particularly, the localization behavior of PEV has been helpful in gaining

insight into the propagation or restriction of information in the underlying systems.

For instance, analyzing localization behavior of PEV have been shown to provide

insight into the criticality in brain network dynamics and disease spreading near

epidemic threshold in networks [4, 11]. Localization of PEV refers to a state where

a few components of the vector take very high values while the rest of the compo-

nents take small values independent of the network size. In other words, localization

of PEV in networks says few nodes contribute more to the dynamical process, and

the rest of the others have very less contribution in steady-state. Similarly, PEV is

said to be delocalized when all the entries in PEV receive almost the same weight
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independent of the network size. Therefore, for a delocalized PEV, all the nodes

have the same amount of contribution to a corresponding dynamical system.

The topic of eigenvector localization is worthy of investigation and arise suffi-

cient interest to the researchers working on network theory and statistical physics

[20]. Mainly, emergence or absence of eigenvector localization in networks is of

broad importance ranging from spreading dynamics to the numerical computation

[20]. Discovering and analyzing network properties leading to increase or decrease

the localization of PEV of adjacency matrix can help in understanding the behav-

ior of a linear dynamical process in steady-state and which we have studied in the

current thesis.

There have been several investigations attempting to relate one or more struc-

tural properties of a network with the localization behavior of PEV of adjacency

matrices. Goltsev et al. reported that PEV localization of scale-free networks exists

only for the power-law exponent being greater than a critical value [4]. On the con-

trary, Pastor-Satorras et al. have shown that the PEVs of all the power-law degree

distributed networks are localized to some extent, with the existence of two types

of localization based on the degree of the nodes [23]. Network properties such as

the presence of hubs, the existence of a dense subgraph, and a power-law degree

distribution are a few factors known to make a PEV more localized [24]. However,

in this thesis, we show that the presence of these features in a network does not

guarantee a highly localized PEV of the corresponding adjacency matrix.

In another work, Martin et al. demonstrated that under certain circumstances, PEV

might undergo a localization transition leading to a failure of eigenvector centrality

(EC) measure [24]. The presence of certain structural features, such as the exis-

tence of high degree nodes in a network is recognized to induce the localization

transition of PEV. These studies concentrated on finding constraints for a localized

PEV and its impact on the EC measures based on random graph model having one

high degree node. However, it is not clear the impact of delocalization of PEV state

on the EC measure. Using the developed model, we have shown that along with

the localization transition, presence of delocalization transition in PEV also causes
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problems to the EC measure.

Arruda et al. extended the PEV localization concepts for multilayer networks (MNs)

and identified that PEV localization behaviors for MNs could be different from the

monolayer networks [73]. Specifically, in the monolayer networks, localization

can happen on a few nodes [4] whereas, in MNs, a layer can be localized [73].

These investigations shed light on the properties of the monolayer networks and

their relations with the PEV. However, it remains unclear what specific structural

features the MNs should have so that they make the corresponding PEV localized.

Additionally, how the network structure of an individual layer affects or regulates

the PEV localization of the entire MN? Specifically, the question which we address

here using the optimization technique is that what structural properties an individual

layer should possess so that they correspond to a highly localized PEV of the entire

MN.

We attempt to make the concept clear, more straightforward from different dimen-

sions rather than only from the physical science perspective. We perform a rigorous

numerical simulation to understand the emergence of structural and spectral proper-

ties due to PEV localization in networks as well as perform mathematical analysis

to support our findings as it requires. During the study, we use several fundamental

ideas from physical science, numerical linear algebra, and recent network theory to

present the results in the current thesis.

Objectives

• To understand structural and spectral properties of networks which may help

in spreading or restricting information in networks captured by PEV localiza-

tion.

• To develop a learning framework to make network having localized PEV state

in monolayer and multilayer networks.

• To uncover essential network properties leads to a highly localized PEV.
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• To understand the failure of EC measure in networks

Background

A finite graph or network can be represented as G = (V,E) where V = {v1, v2, . . . , vn}

is the set of nodes and E = {e1, e2, . . . , em} is the set of interactions (edges) among

them. Here, we consider undirected, unweighted, and connected networks. Ad-

ditionally, the present work restricts to simple networks, i.e., the network without

multiple connections and self-loop. Hence, the corresponding adjacency matrix can

be denoted as A ∈ Rn×n and represented easily as

aij =

1 if nodes i and j are connected

0 Otherwise

We denote |V | = n as the number of nodes and |E| = m being the number of

edges of G. We refer Ec = {ec1, ec2, . . . , ec(n(n−1)/2)−m} as the set of edges which

are not present in G. The number of edges to a particular node is referred as its

degree denoted as ki =
∑n

j=1 aij . The average degree of the network is denoted

by 〈k〉 = 1
n

∑n
i=1 ki. We refer the maximum degree node or hub node of G as d =

max1≤i≤n ki.

Here, A is a real symmetric matrix, hence, it has a set of orthonormal eigenvectors

{x1,x2, . . . ,xi, . . . ,xn} where xi = ((xi)1, (xi)2, . . . , (xi)n)T (1)

and corresponding real eigenvalues are denoted as {λ1, λ2, . . . , λi, . . . , λn}. Fur-

ther, A is a non-negative (aij ≥ 0) and irreducible matrix (connected network) and

it follows from the Perron-Frobenius theorem [26] that there exists a positive and

distinct eigenvalue λ1. The eigenvector corresponding to λ1 is a unique positive

eigenvector (x1) referred as the principal eigenvector.

We use the inverse participation ratio (IPR) to measure the extent of the PEV lo-

calization [4, 24]. This measure had been introduced to quantify the participation
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Figure 1: Schematic diagram of an initial (left) and an optimized (right) network
structure.

of atoms in a normal mode of vibration and is similar to the fourth moments in

statistics [60]. We calculate the IPR value (Yxi) of an orthonormal eigenvector cor-

responding to distinct (nondegenerate) eigenvalue of A as follows:

Yxi =
n∑
j=1

(xi)
4
j (2)

where (xi)j is the jth component of xi. A delocalized eigenvector (xi = ( 1√
n
, 1√

n
, . . . , 1√

n
)T )

has Yxi = 1
n

, whereas the most localized eigenvector (xi = (1, 0, . . . , 0)T ) yields an

IPR value equal to Yxi = 1. These are two extreme cases for the eigenvector local-

ization. In general, for a network, eigenvector is said to be localized if Yxi = O(1)

and delocalized if Yxi → 0 as n→∞ [4].

It is known that for any connected regular graph (every node having the same de-

gree), x1 = ( 1√
n
, 1√

n
, . . . , 1√

n
)T (Theorem 6 [26]) and thus, Yx1 = 1

n
. Hence, a

sparse as well as a dense regular network both will have a delocalized PEV. Next, if

we consider a graph where each node is isolated without having any interaction with

any one and having a self-loop, adjacency matrix will be nothing but an identity ma-

trix and for which we can choose x1 = (1, 0, . . . , 0)T leading to Yx1 = 1. However,

to get a unique positive PEV (i.e. (x1)i > 0, ∀i), we consider connected networks

in our study. Hence, IPR value of the PEV should be in the range 1/n ≤ Yx1 < 1

for n ≥ 2. However, to test whether the PEV is localized or not for IPR being in

the range 1/n < Yx1 < 1, we adopt the procedure proposed for the detection of

the Anderson localization [60] and which was recently used to measure the PEV

localization in complex networks [23, 24]. According to this procedure, one should

calculate the IPR value of PEV for different network sizes. If Yx1 tends to have a
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constant value as n→∞, PEV is localized, otherwise it is delocalized [23]. Hence,

finding a network structure having delocalized PEV is easier, and it becomes chal-

lenging to find a network structure having highly localized PEV.

Summary of the work done

Numerical schemes for the construction of PEV localized networks

This chapter addresses challenges that given an input connected graph G with n

nodes, m edges, and a function ζ : Rn → R, we want to compute the maximum

possible value of ζ(x1) over all the simple, connected, undirected, and unweighted

graphs G where ζ = Yx1 =
∑n

i=1(x1)4
i . We formulate the problem through an

optimization technique as follows.

Starting from an initial connected random network having delocalized PEV, we use

an edge rewiring approach based on a Monte Carlo algorithm to obtain the op-

timized network in an iterative manner. For a single edge rewiring process, we

choose an edge ei ∈ E uniformly at random from G and remove it. At the same

time, we introduce an edge in the network from Ec, which preserves the total num-

ber of edges during the network evolution. The new network and the corresponding

adjacency matrix are denoted as G′ and A
′ , respectively. The eigenvalues and eigen-

vectors of A
′ are indicated as {λ′

1, λ
′
2, . . . , λ

′
n} and {x′

1,x
′
2, · · · ,x

′
n}, respectively.

It is important to remark that during the network evolution, there is a possibility that

an edge rewiring makes the network disconnected. We only approve those rewiring

steps which yield a connected graph. We calculate the IPR value of PEV from A

and A
′ . If Yx′

1
> Yx1 , A is replaced with A

′ . Therefore, in each time step, we

get a network which has the PEV more localized than the previous network. We

repeat the above steps until we obtain the maximum IPR value corresponding to the

optimized network and denote as Gopt.

We find that Gopt has a particular structure consisting of two subgraph components

connected via a single node (Fig. 1). We also show that optimized structure is in-

dependent of the initial network structure. We analyze structural as well as spectral
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Figure 2: We iterate the rewiring process for 600, 000 times and store the network
after each 100th steps. Changes of various network properties (a) IPR value of
PEV (b) maximum degree (c) average clustering coefficient (d) degree-degree cor-
relation (e) correlation between degree vector and clustering coefficient vector and
(f) correlation between PEV and clustering coefficient vector during the evolution
(τevolution). Network size is n = 500, and 〈k〉 = 10.

properties during the network evolution and reveals that PEV localization is not a

consequence of a single network property, and preferably requires co-existence of

various distinct structural as well as spectral features (Fig. 2). Furthermore, we

identify a set of edges in Gopt, rewiring any one of them leads to a complete delocal-

ization of PEV (Fig. 3). This sensitivity of PEV at the most localized state turns out

to be related to the behavior of the largest (λ1) and the second-largest (λ2) eigen-

value of the network. Exactly when the network becomes most localized, the λ2 of

the adjacency matrix become very close to λ1. Furthermore, we identify an evolu-

tion regime where networks are as localized as the optimized one, but, are robust

to single edge rewiring. To conclude, our study provides a deeper insight into the

PEV localization on synthetic as well as on empirical networks. Though, the prime

concern of our analysis to have insights into the network structure and PEV local-

ization, using susceptible-infected-susceptible (SIS) epidemic spreading model, we

verify that in the optimal and the intermediate stages spreading of disease is much

slower near the epidemic threshold than the initial random structure.
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IPR value. Rewiring of the first 1, 00, 000 edges is depicted. The marked square
indicates the regime where the networks attain IPR values which are very close to
the optimized network. However, in this regime rewiring an edge does not have a
significant impact on the IPR values.

Analytical construction of PEV localized networks

We demonstrate that single edge rewiring in the optimized network leading to delo-

calization of PEV is accompanied with the eigenvalue crossing phenomenon is an

essence of the sensitivity behavior of PEV localization (Fig. 4). Taking a clue from

this eigenvalue crossing phenomenon, we find a relationship between the largest

eigenvalues (λC1
1 > λC2

1 ) of the individual subgraph (C1 and C2) of the optimized

network structure. Using the eigenvalue relation, we construct a cubic equation

which provides network parameters required for a direct construction of wheel ran-

dom regular PEV localized networks. Analysis of the discriminant of this cubic

equation reveals another important result that for a wheel random regular (WRR)

network, one can achieve a localized PEV in two different ways either by connect-

ing a sparse random regular subgraph with a small wheel subgraph or connecting by

a dense random regular subgraph with a large wheel subgraph structure. Further, we

also validate that the result obtains from the wheel random regular PEV localized

networks are in good agreement with that of the optimized structure. Finally, we

substantiate the eigenvalue crossing phenomenon by using the RNA neutral network

population dynamical model.
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optimized network structure. Here, n = 500 and 〈k〉 = 10.

Impact of PEV localization on eigenvector centrality measure

This chapter explores the problems associated with the eigenvector centrality (EC)

measure. The EC measure has been very popular due to its ability in measuring the

importance of the nodes based on not only the number of interactions they acquire

but also particular structural positions they have in the networks. Despite the consid-

erable success of EC in ranking the nodes of a network [24], using WRR model, we

show that along with the occurrence of localization state, the occurrence of delocal-

ization of PEV can also affect weights assignment to the higher degree nodes based

on EC, thereby creating difficulties in accessing relative importance of the nodes

causing the failure of EC. While it is obvious that random regular networks have

delocalized PEV as all the nodes carry the same information in the network, inves-

tigations of the WRR model reveal that graphs consisting of heterogeneous degrees

can also have delocalized PEVs. Besides, we extend the WRR model network for

star-random regular, friendship-random regular and scalefree-random regular mod-

els and investigate the localization-delocalization transition of PEV and impact on

the EC measure. Our investigation while providing fundamental insight to the rela-

tion between PEV localization and centrality of nodes in networks, suggests that for

the networks having delocalized PEVs, it is better to use degree centrality measure

to rank the nodes.
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Extension to the multilayer networks

The traditional monolayer network framework offers only a limited representation

of a complex system having different layers of interactions. Recent years have wit-

nessed the emergence of the multilayer network (MN) framework, which provides

more accurate insights into the behaviors of complex systems possessing multiple

types of relations among the same units. Previous three chapters were focused on

the investigation of PEV localization on single (mono) layer networks. In this chap-

ter, we explore the impact of the optimized edge rewiring for the PEV localization

in multilayer networks.

Starting with a multilayer network corresponding to a delocalized PEV, we rewire

the network edges using an optimization technique such that PEV of the rewired

multilayer network becomes more localized. The framework allows us to scrutinize

the structural and spectral properties of the networks at various localization points

during the rewiring process. For two layers MN, the optimization process can be

implemented considering two different edge rewiring protocols; (1) by rewiring

edges in both-layers or (2) by rewiring edges in only one layer. Our investigations

reveal that for both the rewiring protocols, the highly localized PEV of the MN for a
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given network size possesses specific structural properties, such as the presence of a

hub node, high clustering coefficient, and low degree-degree correlation. However,

the rewiring protocols lead to a noticeable and essential difference in the spectral

properties of the optimized MN structure. For the both-layers rewiring protocol, the

PEV is sensitive to a single edge rewiring in the optimized MN structure as also

observed in the monolayer networks. However, interestingly, we get rid of this sen-

sitivity of PEV for the single-layer rewiring protocol (Fig. 5). Further, we show that

by rewiring a single-layer, one can tune the contribution of the node weights of the

other layer to the PEV of the entire MN. We present our results for two layers, three

layers, and four layers MNs. Finally, analysis of multilayer networks constructed

using real-world social and biological data show that the localization properties of

these real-world multilayer networks are in good agreement with the simulation re-

sults for the model multilayer network. The study is relevant to applications that

require understanding the propagation of perturbation in multilayer networks.

Conclusion and future scope

This thesis develops an optimized edge rewiring based network evolution frame-

work to find network structure having highly localized PEV. Our approach provides

a comprehensive way to investigate not only the properties of the optimized network

structure but also the structure of the intermediate networks. Analyzing structural

and spectral properties of the optimized network reveals that to achieve highly local-

ized PEV, network structure should have (1) two subgraphs, (2) one of them having

hub node, (3) another has an almost regular structure and (4) a relationship be-

tween the largest eigenvalues of the subgraph components. Based on the observed

network properties, we provide a recipe for direct construction of PEV localized

network by combining wheel and random regular network. Further, we use wheel

random regular network to understand the failure of EC measure due to localiza-

tion and delocalization transition in PEV. Finally, we extend the optimized edge

rewiring process for multilayer networks and reveal that for multilayer networks,

single-layer rewiring is enough to get the structure of a highly localized network.
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It may not always be feasible to rewire a real-world network to such an extent as

to get a desired PEV localization behavior. However, the results and approach here

will be more useful in constructing an artificial network with the desired localiza-

tion behavior. Our study provides a more in-depth insight into PEV localization in

synthetic as well as on empirical networks.

The present thesis focuses on undirected and unweighted networks; the ap-

proach can be extended to obtain a comprehensive picture of PEV localization in

directed networks. Furthermore, this dissertation is restricted to the PEV of adja-

cency matrices; however, it will be interesting to study the consequences of localiza-

tion of other lower-order eigenvectors in emerging network properties. The current

thesis provides a platform to capture the behavior of PEV, which is related to the

steady-state of linear dynamics. It would be a great interest to study the eigenvector

localization of Laplacian, Jacobian and Hessian matrices which are closely associ-

ated with the non-linear dynamics and Anderson localization.

Keywords : Network Science, complex networks, eigenvector localziation, opti-

mization, network evolution, Complex Systems.
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Chapter 1

Introduction

1.1 Overview

Networks are composed of interconnected units that interact with each other form-

ing the infrastructure for different dynamical systems [1]. The exact pattern of

interconnection between these units can take on various forms that dictate the func-

tionality of a system [2]. The relationship between the interconnected architecture

and functionality is essential to understand the questions pertaining to how the virus

spreads nationwide, how information spreads through the social networks or how

neurons interact to perform specific functions over the brain networks [1, 3]. An

important microscopic question concerns whether some units of a system partici-

pate significantly and the rest of the others have a tiny contribution, or all the units

have the same amount of contribution to a dynamical process [4, 5]. For instance,

during the disease spread, it is important to investigate whether a portion of the net-

work is affected more than other parts, whether perturbation remains restricted to

the vicinity of the source unit or reaches to the remote units, which properties of a

network allow different regions to process information over different timescales [4–
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CHAPTER 1. 1.1. OVERVIEW

7]. Spectral (eigenvalues and eigenvectors) properties provide important clues on

the interplay between interconnection architecture and network dynamics [8–10].

A promising paradigm that assists in understanding the above phenomena is the

localization behavior of eigenvectors of matrices associated with the networks [4, 5,

7, 11–20]. Localization of an eigenvector refers to a state when a few components

of the vector take very high values while the rest of the components take small

values independent of the network size. Specifically, the eigenvector corresponding

to the largest eigenvalue referred to as principal eigenvector (PEV) of the adjacency

matrix approximate the steady-state behavior of linear-dynamical process on the

network [9]. On characterizing the network properties that enhance the localization

of PEV, it is found that a few interconnected units participate significantly and the

rest of the units contribute very less in the linear-dynamical process [4, 11, 12].

Understanding the relationship between the interconnection architecture and PEV

localization in a system could improve the efficiency and robustness of the system

performance [11, 21, 22].

Existing research expressed that network properties such as the presence of high

degree unit, the existence of a dense subnetwork, and a power-law degree distribu-

tion are a few factors known to make a PEV localized [4, 23–25], however ba-

sic intuitions about the network properties that enhance localization of PEV have

remained elusive. We formulate an optimized network evolution process and re-

veal some important network properties which enhance the PEV localization in net-

works. Finally, we develop an analytical framework assisting the construction of a

localized network structure and avoiding the optimized evolution process. Although

our primary focus lies in the characterization of network properties which enhance

localization, in order to validate our results, we use linear-dynamical processes.

Our analysis on model networks formalism aids in understanding the steady-state

behavior of a broad range of linear-dynamical processes, from epidemic spreading

to biochemical dynamics, associated with the adjacency matrices. Our results offer

fundamental insights into the network properties with the localization behavior of

PEV in adjacency matrices.
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We devote the next few sections in discussing basic definitions of networks,

the importance of eigenvector localization, the motivation behind this thesis, and

finally, a brief sketch of our works elaborated in the individual chapters.

1.2 Networks and basic definitions

A graph or network can be represented as G = (V,E) where V = {v1, v2, . . . vn}
is the set of units (nodes or vertices) and E = {e1, e2, . . . em} is the set of intercon-

nections (edges or links) among them [26]. We denote |V | = n as the number of

nodes and |E| = m being the number of edges of G. Here, we consider undirected

(if there is an edge between nodes vi to vj , then there must be an edge between vj

to vi), unweighted (edge weights are always one), and connected networks. The

present work restricts to simple networks, i.e., the network without multiple con-

nections and self-loop. In a graph, two or more edges joining the same pair of

vertices are multiple edges. An edge joining a vertex to itself is a self-loop. Hence,

the corresponding adjacency matrix can be denoted as A and represented easily as

aij =




1 if nodes vi and vj are connected

0 Otherwise
(1.1)

Degree: In a graph, the degree of a vertex vi is the number of edges incident with

vi, denoted as kvi =
�n

j=1 aij or simple ki

Degree sequence: The degree sequence ({ki}ni=1) of a graph G is the sequence

obtained by listing the vertex degrees of G in increasing order, with repeats as nec-

essary.

Average degree: The average degree of the network is denoted by �k� = 1
n

�n
i=1 ki.

Maximum degree: We refer the maximum degree node or the hub node of G as

kmax = max1≤i≤n ki.

Degree distribution: Degree distribution of a network is represented as p(k) which

says fraction of vertices having degree k. We can calculate p(k) = Γk

n
, where Γk is

the number of nodes having degree k [27].

Clustering Coefficient: Clustering coefficient [28] of node i is calculated by

Ci =
2Δi

ki(ki − 1)

3
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where ki denotes the degree of node i, and Δi is the number of edges between the

ki neighbors of node i. Ci is the “probability that two neighbors of a node link to

each other” and also called as local clustering coefficient. The average clustering

coefficient is represented as,

�CC� = 1

n

n�

i=1

Ci

and �CC� is the “probability that two neighbors of a randomly selected node link

to each other [28]”.

Degree-degree correlation: The degree-degree correlation is measured by the Pear-

son correlation coefficient and denoted as [29]

rdeg−deg =
[m−1

�m
i=1 jiki]− [m−1

�m
i=1

1
2
(ji + ki)]

2

[m−1
�m

i=1
1
2
(j2i + k2

i )]− [m−1
�m

i=1
1
2
(ji + ki)]2

where m is the total number of edges in the network and ji, ki are the degrees of

nodes with ith edge and rdeg−deg value varies in between −1 to 1. When high de-

gree nodes connected to other high degree nodes in a network, then rdeg−deg values

become positive and referred to as an assortative network. In case of high degree

nodes connected to lower degree nodes, then rdeg−deg becomes negative, and the

network is said to be disassortative.

Node centrality: Centrality of a node measures how important a particular node

is with respect to some properties. There exist different centrality measures based

on the degree of a node or eigenvector entry corresponding to a node, for instance,

degree centrality, eigenvector centrality, Katz centrality, PageRank [27].

1.2.1 Spectral properties

Here, we consider undirected network, thus the adjacency matrix of the network, A

is a real symmetric matrix, and it has a spectral decomposition A = XΛXT. The

X ∈ Rn×n contains orthonormal eigenvectors {x1,x2, · · · ,xn} i.e. ||xi||22 = 1 and

the diagonal matrix Λ ∈ Rn×n contains corresponding eigenvalues {λ1,λ2, . . . ,λn}
and called the spectrum of G. The eigenvalues are real and in the order λ1 ≥ λ2 ≥
. . . ≥ λn and corresponding orthonormal set of eigenvectors are denoted as

xi = ((xi)1, (xi)2, . . . , (xi)n)
T

4
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Figure 1.1: Schematic diagram of (a) cycle (b) star (c) friendship (d) wheel and (e)
regular graphs.

for i = 1, 2, . . . , n. A has n real eigenvalues, and some eigenvalues may be re-

peated (degenerate). The algebraic multiplicity of an eigenvalue λ of A is the

number of times that λ is repeated. If alg multA(λ) = 1, then λ is said to

be a simple (non-degenerate) eigenvalue. The geometric multiplicity of an eigen-

value λ of A is the number of linearly independent eigenvectors that are associated

with A. The set {x ∈ Rn|Ax = λx} corresponding to λ is a subspace of Rn

and is called eigenspace of λ and is denoted as E(λ) [30]. Further, A is a non-

negative (aij ≥ 0) and irreducible (connected network) matrix and it follows from

the Perron-Frobenius theorem [27] that there exists a positive and simple eigen-

value, λ1. The eigenvector corresponding to λ1 is a unique positive eigenvector

(x1) referred as the principal eigenvector (PEV).

1.2.2 Model Networks

In the following, we briefly explain the basic graph models [26] that are used in the

later chapters.

Cycle graph: A cycle graph is a graph consisting of a single cycle of vertices and

edges, represented as C = {VC, EC} where |VC| = n and |EC| = n (Fig. 1.1(a)).

Star graph: In a star graph one node is connected to all other nodes and denoted as

S = {VS, ES} where |VS| = n and |ES| = n− 1 (Fig. 1.1(b)).

Friend-ship network: A friendship graph (F = {VF, EF}) can be constructed by

merging l copies of the cycle graph of length 3 with a common vertex (Fig. 1.1(c)).

For friendship graph |VF| = n = 2l+ 1 is the number of nodes and |EF| = 3l is the

number of edges in F.

5
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Wheel graph: A wheel graph is denoted as W = {VW, EW} and is formed by

connecting one node to all the nodes of a cycle graph of size n − 1 (Fig. 1.1(d)).

Here, |VW| = n is the number of nodes and |EW| = 2(n−1) is the number of edges

in W.

Regular graph: A graph is said to be regular if each node has same degree and

denoted as R = {VR, ER} (Fig. 1.1(e)). Therefore, degree of each node is k which

is equal to the average degree i.e. �k� = k. We denote |VR| = n and |ER| = nk
2

.

Erdös-Rényi random network: For the above models, structure of the graph is

fixed. In the following, we disscuss about the network models which can be gen-

erated randomly. One of the important random graph model is the Erdös-Rényi

(ER) random graph or G(n, p) model [27]. To generate the ER random networks,

we provide two parameters, one is the network size (n) and another is the probalil-

ity (p). For each pair of nodes, we connect an edge with a probability p, where

p = �k�
n

. Hence, the expected number of edges �m� =
�
n
2

�
p and �k� = (n − 1)p.

The degree distribution of ER random network follows binomial distribution p(k) =
�
n−1
k

�
pk(1 − p)n−1−k and for n → ∞ degree distribution can be approximated to

Poission distribution p(k) = e−�k� �k�k
k!

.

Scalefree networks: A scale-free (SF) network is another random graph model

where degree distribution of the network obeys power-law (p(k) ∼ k−γ) [27]. The

SF network is constructed using the Barabasi-Albert preferential attachment model

[27]. Many real-world networks follow power-law degree distribution and one of

the main reason for the popularity of this model network.

Configuration model: The ER random or SF networks have a specific degree dis-

tribution. However, the configuration model [27] plays a significant role to generate

a network randomly while fixing the degree sequence. It is known that the generated

networks through the configuration model having a fixed degree sequence, however,

allow for self-loops and multiple edges. In this dissertation, we have used a sim-

ilar kind of model devised by Genio et al. to generate networks randomly when

avoiding multiple edges and self-loops [31]. For the model, we always provide a

non-increasing degree sequence, and for the details, we refer to Ref. [31].
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E1

E12

E2

Figure 1.2: Schematic diagram of a multilayer network having two layers. Here,
intra-layer edge set are denoted by E1, E2 and inter-layer edge set as E12 respec-
tively.

1.3 Multilayer networks:

The traditional monolayer network framework offers only a limited representation

of complex systems having different layers of interactions. Recent years have wit-

nessed the emergence of the multilayer network (MN) framework, which provides

more accurate insights into the behaviors of complex systems possessing multiple

types of relations among the same units [32–41]. In contrast, all the above model

networks discussed above are referred to as monolayer networks.

We represent a multilayer network (MN), M = (G,C) [34], where G = {Lα; α ∈
{1, 2, . . . , l}} is the family of connected monolayer network Lα = {Vα, Eα}, where

Vα = {vα1 , vα2 , . . . , vαn} is the set of vertices and Eα = {eα1 , eα2 , . . . , eαm(α)} is the set

of edges in the α layer of the MN. In addition, C = {Eαβ ⊆ Vα × Vβ : α, β ∈
{1, 2, . . . , l},α �= β} is the set of edges between Lα and Lβ layers. We refer Eα

as the set of all intra-layer edges and Eαβ = {eαβ1 , eαβ2 , . . . , eαβn } as the set of all

inter-layer edges of M. Here, we consider each node in one layer connected to its

mirror node in the other layers of the MN, and all the layers consist of exactly the

same number of nodes.

We denote the adjacency matrices corresponding to Lα as Aα ∈ Rn×n con-

structed using the above relation (1.1). We represent degree of a node vαi in layer

α as kvαi =
�nα

j=1(a
α)ij and the average degree of α layer as �kα� = 1

nα

�nα

i=1 kvαi .

The average degree of the MN is denoted as �k� = 1 +
�l

α=1�kα�
l

. For instance a

schematic diagram of a two layers MN is portrayed in Fig. 1.2, with L1 = {V1, E1}

7
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and L2 = {V2, E2}, where |V1| = |V2| = n, |E1| = m1, |E2| = m2, and

|E12| = n. Hence, the total number of nodes in M is |V | = 2n = N and edges

|E| = m1 +m2 + n = M . The supra-adjacency matrix [34] of the two layer MN is

a block matrix and can be defined as:

AM =


 A1 I

I A2




where I is an n × n identity matrix. The layer of a multilayer network can be any

above model networks (i.e., regular, star, ER random or SF networks). The analysis

of the multilayer networks needs different measurements than monolayer networks

and for the details readers are refer to some interesting articles [32–41]. In this

dissertation, model multilayer networks are unweighted, and the number of nodes

in each layer is same. In chapter 5, we discuss more on the structural and spectral

properties of multilayer networks.

1.3.1 Eigenvectors in networks

The graph isomorphism has applications in many areas of science, including Feyn-

man diagrams, biometrics, molecular modeling, and cryptography [42–45]. It is

well known that a pair of isomorphic graphs are cospectral (two graphs have the

same spectrum). Two graphs are isomorphic if there exists a one-to-one corre-

spondence between their vertex sets which preserves adjacency [46]. However,

the existence of non-isomorphic cospectral graphs indicates that eigenvalues of the

adjacency matrices are not enough for characterizing the corresponding graphs, ad-

ditional information of the eigenspace (eigenvectors) is necessary to find the iso-

morphism pairs in cospectral graphs [30]. In addition to the graph isomorphism,

there exists other problems in network science which includes ranking of vertices

[47], detection of communities [48, 49], perturbation analysis [7, 22, 50], vibration

confinement [51], identification of important genes [52], detecting anomaly in com-

puter systems [53] where investigations of eigenvectors provide understanding to

the behaviors of the underlying systems. Particularly, PEV of the adjacency matri-

ces plays a crucial role in the characterization of various structural as well as dynam-

ical properties of the underlying graphs [9, 25, 54]. For instance, a connected non-

8
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bipartite graph having the largest eigenvalue λ1 and x1 = ((x1)1, (x1)2, . . . , (x1)n)
T ,

the number of walks of length k between a pair of vertices i and j is asymptotic to

λk
1(x1)i(x1)j as k → ∞ (see Theorem 2.2.5 of Ref. [30]). Further, for various

linear-dynamical processes on networks, for instance, epidemic spreading, popula-

tion dynamics of Ribonucleic acid (RNA) neutral networks, rumor spreading, brain

network dynamical models the steady-state vector has been approximated using the

PEV [9, 11, 12]. To understand how an individual entity is infected or how infor-

mation spreads in a network in the steady-state, it is sometimes enough to analyze

the PEV of the corresponding adjacency matrices.

Existing research on networks has focused on connecting the steady-state vector

of linear-dynamical systems to the PEV with a prime focus to understand the role

of largest eigenvalue [55–57], and little is known about the behavior of PEV of

adjacency matrices [58, 59]. In this dissertation, we focus on understanding the

localization behavior of PEV and its relation with the network properties (structural

and spectral).

1.3.2 Eigenvector localization in networks

Roots of the eigenvector localization trace back to the Anderson localization which

describes the diffusion of electrons in a random, disordered medium [60, 61]. Lo-

calization of an eigenvector refers to a state when a few components of the vector

take very high values while the rest of the components take small values regardless

of the system size. Anderson model was used in various scientific disciplines and

received remarkable success in understanding behaviors of many complex systems

[62–68], driving interest to investigate localization transition in complex networks

[62, 69, 70]. Motivated from the success of the Anderson localization in under-

standing the behavior of complex systems, we focus on exploring eigenvector lo-

calization to gain insight into the behavior of corresponding complex systems of

network’s adjacency matrices. Note that we consider binary irreducible symmet-

ric matrices with zero diagonal elements and investigation of Anderson localization

associated with Hamiltonian matrices having non-zero diagonal elements [61].

9
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Existing research on eigenvector localization in networks unveiled that PEV of

the adjacency matrix is helpful in getting insight into the propagation or localization

of information in the underlying systems [4, 11, 12]. One key factor of our interest

is to understand the properties of networks which may help in spreading or restrict-

ing information in networks [7]. For instance, during a disease outbreak, one will

be interested in knowing if the disease will spread through the underlying network

leading to the pandemic or will be restricted to a smaller section of the network

[4, 71]. Similarly, one may be interested in spreading a piece of particular informa-

tion, for instance, awareness of vaccination at the time of disease outbreak, or may

wish to restrict a rumor propagation [72]. Furthermore, the eigenvector centrality

(EC) measure has been very popular due to its ability in measuring the importance

of the nodes based on not only the number of interactions they acquire but also par-

ticular structural positions they have in the networks. It was found that EC measure

may fail upon the consequence of PEV localization [24]. Note that EC measures

and the PEV localization have two different perspectives. The former is used to

rank the nodes, and the latter stands as a particular phenomenon which predicts dif-

ficulties associated with the EC measure. Moreover, Arruda et al. extended the PEV

localization concepts for multilayer networks (MNs) [73] and identified that PEV

localization behaviors for MNs could be different from the monolayer networks.

Specifically, in the monolayer networks, localization can happen on a few nodes

[4] whereas, in MNs, a layer can be localized [73]. These investigations shed light

on the properties of the multilayer networks and their relations with the PEV. The

PEV localization of network is confirmed if there exists a particular arrangement of

nodes and edges such that few entries of the PEV take very large values with rest of

the entries taking tiny values, and this arrangement should hold good irrespective of

the network size. Network properties which enhance the PEV localization remain

elusive, and we attempt to understand in this dissertation. Note that an eigenvector

or a set of eigenvectors associated with a matrix corresponding to a network might

be localized and simultaneously it might be possible that an eigenvector or a set of

eigenvectors are delocalized.
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1.3.3 Inverse Participation Ratio

We use the inverse participation ratio (IPR) to measure the extent of PEV localiza-

tion [24, 25]. This measure had been introduced to quantify the participation of

atoms in a normal mode of vibration and is similar to the fourth moment in statis-

tics [74, 75]. Later on, IPR had been used as an effective measure to quantify the

localized and the delocalized eigenvectors in complex networks [9, 15, 16, 17, 18,

19, 21, 22, 24]. We calculate the IPR value (Yxi
) of an orthonormal eigenvector

(xi = ((xi)1, (xi)2, . . . , (xi)j, . . . , (xi)n)
T ) corresponding to nondegenerate eigen-

vlaue of A as follows [60]:

Yxi
=

n�

j=1

(xi)
4
j (1.2)

where (xi)j is the jth component of xi. A delocalized eigenvector (xi = ( 1√
n
, 1√

n
,

. . . , 1√
n
)T ) has Yxi

= 1
n

, whereas the most localized eigenvector (xi = (1, 0, . . . , 0)T )

yields an IPR value equal to Yxi
= 1. These are two extreme cases for the eigen-

vector localization and thus IPR lies in the range 1
n
≤ Yxi

≤ 1.

It is known that for any connected regular graph, x1 = ( 1√
n
, 1√

n
, . . . , 1√

n
)T (The-

orem 6 [26]) and thus, Yx1 =
1
n

. Therefore, for a regular network IPR value of PEV

provides the lower bound. Hence, a sparse as well as a dense regular network both

will have a delocalized PEV. For instance, if we consider a graph where each node

is isolated without having any interaction with any one and having a self-loop, ad-

jacency matrix will be nothing but an identity matrix and for which we can choose

x1 = (1, 0, . . . , 0)T leading to Yx1 = 1. Additionally, for any disconnected net-

work, PEV entries might be zeros. For instance,

A =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




has eigenvalues {−1,−1, 1, 1}. Hence, the largest eigenvalue is repeated (degen-

erate) and thus we can choose PEV as a linear combination of basis eigenvectors

c1(1, 1, 0, 0)
T + c2(0, 0, 1, 1)

T or eigenspace of λ1, E(λ1) = 2. We can choose

x1 = (1, 1, 1, 1) as PEV by taking c1 = 1 and c2 = 1 or x1 = (1, 1, 0, 0) by taking

11
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c1 = 1 and c2 = 0. Now, if we calculate the IPR value for these two PEVs, we

get two different IPR values. One can observe that the formar IPR value is lesser

than the later one. Therefore, to get a unique PEV, we consider irreducible and

non-negative matrices in our study. Hence, from the Perron-Frobenius theorem all

the entries of the PEV is positive. Therefore, IPR value of the PEV should be in the

range 1/n ≤ Yx1 < 1 for n ≥ 2. However, to test whether the PEV is localized or

not for IPR being in the range 1/n < Yx1 < 1, we adopt the procedure proposed

for the detection of the Anderson localization [60] and which was recently used to

measure the eigenvector localization in complex networks [23–25]. According to

this procedure, one should calculate the IPR value of PEV for different network

sizes. If Yx1 tends to have a constant value as n → ∞, PEV is localized, otherwise

it is delocalized [25]. In other words, for a network, PEV is said to be localized if

Yx1 = O(1) and delocalized if Yx1 → 0 as n → ∞ [4].

1.4 Motivation behind this thesis

We represent an undirected network by an adjacency matrix which encodes the

interactions or relations among n entities (nodes) of a real-world complex system.

The adjacency matrix is real symmetric, and spectral decomposition exists [93] as

follows.

A = XΛXT (1.3)

Therefore, we have n number of eigenvectors which represent n different solutions

of the system. We can think of as eigenvectors entries acting as a function on nodes.

Hence, by knowing the behavior of the eigenvectors (X), we can provide infor-

mation about the underlying systems represented in terms of the adjacency matrix.

Moreover, each eigenvector has different meaning corresponding to the underlying

system [5]. It is straightforward to find eigenvalues and eigenvectors of a matrix but

challenging to interpret the meaning of the eigenvector entry behavior and its rela-

tion with the network structure. We know that PEV approximate the steady-state of

linear dynamical processes which include information spreading, rumor spreading,

emotional spreading in emergencies, a spread of cultural norms, knowledge & in-

12
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novations, epidemic spreading [3, 9]. The epidemic spreading phenomenon is the

basis for all of the models, and a cornerstone feature of epidemic processes is the

presence of the so-called epidemic threshold [3]. Below the threshold, the disease

does not spreads, and above the threshold, the disease spreads across the population.

It is well known that the threshold is inversely proportional to the largest eigenvalue

of the adjacency matrix [3, 76]. In other words, the largest eigenvalue provides a

threshold for such spreading process, but it can not say about the behavior of the

spreading process in the steady-state, means how do the nodes of a network is af-

fected during the disease spread. Analyzing the localization behavior of PEV plays

a significant role in understanding the behavior of a linear-dynamical process in

the steady-state [4, 11]. For instance, A linear-dynamical system represented by a

network having a localized PEV indicates, a few nodes have significant contribu-

tion and rest of other nodes have a tiny contribution. Similarly, for a delocalized

PEV, all the nodes have the same amount of contribution to a linear-dynamical pro-

cess. Hence, network properties which enhance PEV localization can implicitly

restrict the linear-dynamics in a smaller section of the network in the steady-state.

A fundamental question at the core of the structural-dynamical relation is that of

optimization [22]: How can we optimize the underlying graph structure to affect

the outcome of the dynamical process in the desired way? Optimizing the largest

eigenvalue of the adjacency matrix by edge manipulation to control the threshold

of the spreading process has been analyzed [21, 77]. However, finding network

structure optimizing the localization behavior of PEV remains elusive and an open

challenge. Understanding the network properties of optimized structures helps us

to engineer the system architecture, enhance robustness, as well as can provide in-

sights into the underlying mechanism of their evolution [22]. Therefore, we have

an interest in the network properties and its relations with the PEV localization of

adjacency matrices.

Considering any connected undirected and unweighted regular network struc-

ture, we have a delocalized PEV. We even do not know for which kind of network

structure one can get a delocalized PEV which is different from the regular network
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structure. On the other hand, for a star network xS
1 =

�
1√
2
, 1√

2(n−1)
, . . . , 1√

2(n−1)

�

and hence, YxS
1
= 1

4
+ 1

4(n−1)
. Considering a same size wheel graph, we have

xW
1 =

�
1
β
, α
β
, . . . , α

β

�
where α =

√
n+1
n−1

, β =
�

1 + (
√
n+1)2

n−1
[78] and YxW

1
=

1
4

(n−1)2

(n+
√
n)2

+ (
√
n+1)4

4(n−1)(n+
√
n)2

. Hence, for n → ∞, we get YxS
1
= YxW

1
≈ 0.25, and

PEVs are localized for both of the star and wheel networks. Further, for any model

networks, it is difficult to find a closed functional form of PEV directly and thus

difficult to find the IPR value. It has been reported that for ER random network

each node having the same expected degree, and hence we get delocalized PEV

[79]. In contrast, for SF networks presence of hub nodes and power-law degree dis-

tribution lead some amount of localization in the PEV and IPR value is larger than

ER random networks and much lesser than the star networks [4, 23–25]. Indeed, we

do not know there is any possibility to get different structure than a star, a wheel,

or even an SF network structure which provides a more localized network struc-

ture. By understanding network properties, one can artificially construct network

structure to have control over the linear-dynamical processes on the networks. The

entire thesis revolves around to find the answers to the following questions for PEV

of the adjacency matrix and few places explicitly mention the other eigenvectors.

How can we understand the role of the PEV entry behavior in networks? How do

PEV entries and network structure is related? What are the structural and spectral

properties which lead to most localized PEV? How can we perform an optimization

process to find the network structure?

1.5 Thesis Overview

• In chapter 2, we address the challenges by formulating the problem as for a

given number of nodes and edges; we aim to construct a connected network

structure which has the most localized PEV. We devise an optimized net-

work evolution method and identifies several network properties which lead

to highly localized PEV. Our inspection unveils that PEV localization is not

a consequence of the existence of an individual network property, and prefer-
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ably involves the cumulative impact of changes in various structural features.

We succeed in constructing a blueprint of the network topology correspond-

ing to a highly localized PEV which possesses a distinctive architecture. It

consists of two subgraph components of different sizes which are connected

via a single node. We reveal that for highly localized PEV, the hub node

should be connected to a small set of nodes, not to all the nodes. For the most

localized network, we find a set of edges rewiring any one of them leads to

complete delocalization of the PEV. We observe that this emergence of sen-

sitivity in the PEV and shifting of λ2 close to λ1 happens simultaneously,

suggesting a relation between the special structure of the optimized network

and the second largest eigenvalue of the network.

• In chapter 3, we investigate the origin of the occurrence of the sensitivity

of PEV in highly localized networks and show that the high localization of

PEV is related to the behavior of the largest eigenvalue of the subgraph com-

ponents. Taking a clue from the subgraphs eigenvalue relation, we develop

an analytical framework which assists for construction of highly localized

networks without performing an optimization scheme. To address the chal-

lenges, we introduce wheel random regular (WRR) model network and pro-

pose a scheme for partitioning a given network parameter. To achieve sub-

graph components size, we analytically solving the roots of a cubic equation

built up from the network properties required for localized PEV. Analysis of

the discriminant of the cubic equation reveals another important result that

for a wheel random regular network, one can achieve a localized PEV in two

different ways either by connecting a sparse random regular subgraph with

a small wheel subgraph or connecting by a dense random regular subgraph

with a large wheel subgraph structure.

• Chapter 4 explores the investigation involves the problems associated with

the eigenvector centrality (EC) measure. Despite the considerable success of

EC in ranking the nodes of a network, using the WRR model, we show that
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along with the occurrence of localized PEV state, the existence of delocal-

ization of PEV can also affect weights assignment to the higher degree nodes

based on EC, thereby creating difficulties in accessing relative importance of

the nodes, causing the failure of EC. While it is evident that random regular

networks have delocalized PEV as all the nodes carry the same information in

the network, investigations of the WRR model reveals that graphs consisting

of heterogeneous degrees can also have delocalized PEVs.

• Chapter 5 extends the optimized edge rewiring on monolayer networks to

multilayer networks. Starting with a multilayer network corresponding to

a delocalized PEV, we rewire the network edges using an optimization tech-

nique such that the PEV of the rewired multilayer network becomes localized.

For two layers MN, we implement two different edge rewiring protocols; (1)

by rewiring edges in both-layers or (2) by rewiring edges in only one layer.

We reveal that for both the rewiring protocols, though there is an emergence

of various specific structural features, the different rewiring protocols lead to

a noticeable difference in the spectral properties of the optimized MN. For

the both-layers rewiring protocol, PEV is sensitive to a single edge rewiring

in the optimized MN; however, interestingly, we get rid of this sensitivity of

PEV for the single-layer rewiring protocol. This sensitivity in the localization

behavior of PEV is accompanied by the second largest eigenvalue lying very

close to the largest one. Furthermore, analysis of multilayer networks con-

structed using real-world social and biological data show that the localization

properties of these real-world multilayer networks are in good agreement with

the simulation results for the model multilayer network.

• Finally, Chapter 6 provides the conclusion of the study and discusses open

problems for future research.
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Chapter 2

Numerical schemes for the construc-
tion of PEV localized networks

2.1 Introduction

Networks provide a simple framework to understand and predict the properties of

complex real-world systems by modeling them in terms of interacting units [80].

This framework is successful in explaining various mechanisms behind the emer-

gence of collective behaviors of systems arising due to the local interaction patterns

of their components. Principal eigenvector (PEV) corresponding to the maximum

eigenvalue of the network’s adjacency matrix is helpful in getting insight into the

propagation or localization of information in the underlying systems [4]. One key

factor of our interest is to understand the properties of networks which may help in

spreading or restricting information in networks captured by PEV localization [7].

Localization of PEV refers to a state when a few components of the vector take very

high values while the rest of the components take small values. For instance, dur-

ing a disease outbreak, one will be interested in knowing if the disease will spread

through the underlying network leading to the pandemic or will be restricted to a
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smaller section of the network [4, 71]. Similarly, one may be interested in spreading

a piece of particular information, for instance, awareness of vaccination at the time

of disease outbreak, or may wish to restrict information like rumor propagation [72].

It is known that PEV of an adjacency matrix approximates the steady-state vector

of many linear-dynamical systems [4, 9, 12]. Therefore, a network structure which

maximizes the localization behavior of PEV can have a few nodes contributing more

in a linear-dynamical process and the rest of the nodes having a tiny contribution.

Analyzing structural and spectral properties of such networks can help us to engi-

neer the system architecture, enhance robustness, as well as can provide insights

into the underlying mechanism of their evolution [22].

There have been some investigations attempting to relate one or more structural

properties of a network with PEV of the network’s adjacency matrix. For example,

the eigenvector localization properties have been related to the scaling parameter

of scale-free networks [23]. Goltsev et al. reported that PEV localization of scale-

free networks exists only for the power-law exponent being greater than a critical

value [4]. On the contrary, Pastor-Satorras et al. have shown that PEV of all the

power-law degree distributed networks are localized to some extent, with the exis-

tence of two different types of localization based on the degree of the nodes [23].

Nevertheless, they noted that these two different types of localization are not so ev-

ident in real-world networks [23]. Furthermore, localization has been investigated

for eigenvector centrality defining the score of each node based on its neighborhood

properties and is a standard measure for determining the importance of nodes in

networks. However, it was also found that the eigenvector centrality may fail upon

the consequence of PEV localization [24]. Network properties such as the presence

of hubs, the existence of dense subgraph, and a power-law degree distribution are

few factors known to make a PEV localized [4, 24]. However, we show that the

presence of these features in a network does not guarantee a highly localized PEV

of the corresponding adjacency matrix. In other words, for a given network size

and number of connections, if we construct a network which possesses one or more

of these structural features, the PEV of underlying matrix may be more localized
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than the corresponding random network built using, say, the Erdös-Renyi algorithm,

but may not be the most localized for the given network parameters. Here, we ask

a reverse question: for a given network size and a number of connections if we

construct a network which has the most localized PEV, what particular structural

features the network will possess? We address this issue in this chapter.

We organize the chapter as follows: Section 2.2 describes the notations and

definitions used in the later discussion. In addition, section 2.3 contains a brief

explanation of the optimization procedure used in our work. Section 2.4 illustrates

various numerical results including degree and eigenvector entry distribution of the

initial as well as of the optimized network. Moreover, this section exhibits the

results for the initial network taken as SF and real-world networks. Section 2.5

uses SIS disease spreading model to validate our results. Finally, in section 2.6, we

summarize the current study.

2.2 Background

For the completeness of our discussion, we again provide backgrounds of net-

works, symmetric matrix, and IPR value, respectively. We represent a graph (net-

work), G = {V,E}, where V = {v1, v2, . . . , vn} is the set of vertices and E =

{e1, e2, . . . , em|ep = (vi, vj), p = 1, 2, . . . ,m} ⊆ U is the set of edges. We define

the universal set U = V × V = {(vi, vj)|vi, vj ∈ V and i �= j} which contains

all possible unordered pairs of vertices excluding the self-loops and |U | = n(n−1)
2

denotes the size of the universal set. The complementary set of the edges can be

defined as Ec = U −E = {(vi, vj)|(vi, vj) ∈ U and (vi, vj) /∈ E} i.e., E ∩Ec = ∅

and E ∪ Ec = U . The |V | = n and |E| = m represent the number of nodes and

number of edges in G, respectively, and thus |Ec| = n(n−1)
2

− m. We denote the

adjacency matrix corresponding to G as A ∈ Rn×n which can be defined as

aij =




1 if nodes i and j are connected

0 Otherwise

Here, ki =
�n

j=1 aij denotes the degree of node vi and {ki}ni=1 stands for the degree

sequence of G. The average degree of the network is denoted by �k� = 1
n

�n
i=1 ki.
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We refer the maximum degree node or the hub node of G as kmax = max1≤i≤n ki.

Here, network is undirected, thus A is a real symmetric matrix, and hence all the

eigenvalues are real. The spectrum of G is a set of eigenvalues {λ1,λ2, . . . ,λn} of A

where λ1 ≥ λ2 ≥ · · · ≥ λn, and the corresponding eigenvectors are {x1,x2, · · · ,xn}.

We quantify the localization of ith eigenvector (xi = ((xi)1, (xi)2, . . . , (xi)n)
T ) us-

ing the IPR [4] and is defined as,

Yxi
=

n�

j=1

(xi)
4
j (2.1)

where (xi)j is the jth component of the normalized eigenvector, xi is in the Eu-

clidean norm. For any connected regular graph, x1 = ( 1√
n
, 1√

n
, . . . , 1√

n
)T (Theo-

rem 6 [26]) and thus, Yx1 = 1
n

. Hence, a sparse as well as a dense regular network

both will have a delocalized PEV. Next, if we consider a disconnected graph where

each node is isolated without having any interaction with any one and having a

self-loop, adjacency matrix will be an identity matrix and for which we can choose

x1 = (1, 0, . . . , 0)T leading to Yx1 = 1. However, as A is a nonnegative matrix and

G is always connected, thus from the Perron-Frobenius theorem [27], all the entries

of PEV are positive ((x1)j > 0). Therefore, for a simple, connected, undirected and

unweighted network, x1 never be (1, 0, . . . , 0)T . Hence, for connected networks

PEV is said to be localized when a large number of components take value near to

zero and only a few have large values. In other words, IPR value of the PEV should

be in the range 1/n ≤ Yx1 < 1 for n ≥ 2.

For any connected and regular networks, we can easily get delocalized PEV;

however, it becomes challenging to find connected networks having highly localized

PEV. By maximizing the IPR of PEV as an objective function, we attempt to get

a network structure which has a few nodes contributing significantly to a linear-

dynamical process with the rest of the nodes having a tiny contribution.

2.3 Methods

For a given n and m, we aim to get a connected network which has the most lo-

calized PEV corresponding to the maximum IPR value. For a particular value of
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n and m, if we can enumerate all the possible network configurations, the network

corresponding to the maximum IPR value will be our desired network. The number

of possible network configurations for a given n and m is of the order O(n2m) [46].

Therefore, we formulate this problem through an optimization method as follows.

Given an input graph G with n vertices, m edges and a function ζ : Rn → R,

we want to compute the maximum possible value of ζ(x1) over all the simple, con-

nected, undirected, and unweighted graph G. Thus, we are maximizing the objective

function ζ(x1) = Yx1 =
�n

i=1(x1)
4
i subject to the constraints that

�n
i=1(x1)

2
i = 1,

and 0 < (x1)i < 1. The first constraint simply says that the PEV of A is normalized

to the Euclidean norm. The second constraint implicitly stipulates that the network

must be connected (from Prron-Frobenius theorem) in the optimization process.

Starting from an initial connected random network, we use an edge rewiring ap-

proach [81, 82] based on a Monte Carlo algorithm to obtain the optimized network

iteratively. For a single edge rewiring process, we choose an edge ei ∈ E uniformly

at random from G and remove it. At the same time, we introduce an edge in the

network from Ec, which preserves the total number of edges during the network

evolution. The new network and the corresponding adjacency matrix are denoted

as G� and A
� , respectively. The eigenvalues and eigenvectors of A� are indicated as

{λ�
1,λ

�
2, . . . ,λ

�
n} and {x�

1,x
�
2, · · · ,x

�
n}, respectively. It is important to remark that

during the network evolution, there is a possibility that an edge rewiring makes the

network disconnected. We only approve those rewiring steps which yield a con-

nected graph through the depth-first search algorithm [83]. We calculate the IPR

value of PEV from A and A
� . If Yx

�
1
> Yx1 , A is replaced with A

� . Therefore, in

each time step, we get a network which has the PEV more localized than the pre-

vious network. We repeat the above steps until we obtain the maximum IPR value

corresponding to the optimized network, Gopt. We refer the initial network as Ginit

and the optimized network as Gopt. Additionally, the optimization process helps

us in assessing the impact of structural and spectral properties of networks on IPR

value of PEV as networks evolve from the delocalized to a localized state.
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Figure 2.1: Network size is n = 500, �k� = 10 and we iterate the rewiring process
for 600, 000 times and store the network after each 100th steps. Changes of various
network properties (a) IPR value of PEV (b) maximum degree (c) average cluster-
ing coefficient (d) degree-degree correlation (e) correlation between degree vector
and clustering coefficient vector and (f) correlation between PEV and clustering
coefficient vector during the evolution (τevolution).

2.4 Results

2.4.1 Network evolution

Starting with an initial connected random network generated using Erdös-Rényi

(ER) random graph model [27], the evolution process based on the PEV localiza-

tion forces a change in the initial network structure. The ER random network is

generated with an edge probability �k�/n, where �k� is the average degree of the

network. The choice of an ER random network at the beginning of the evolution

provides a delocalized PEV to start with [79].

Based on the nature of changes in the IPR value, we can divide the evolution

into three different regions; r1, r2, and r3. In the first region, each rewiring yields a

small change in the IPR value, whereas, in the r2 region, changes in the IPR values

are much larger. The r3 region represents the saturation state (Fig. 2.1(a)). This

is also referred to as the critical region, explained later. At the beginning of the

optimization process, the evolution of the IPR with rewiring is slow as there exist

many nodes with degree close to each other (Fig. 2.2(a)). Consequently, for an

optimized rewiring, there exist several options for the edges, rewiring which leads

to an enhancement in the IPR value. Once, a node becomes a clear hub by attaining
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Figure 2.2: ER network as an initial network. Degree distribution of the (a) initial
(b) intermediate and (c) optimized network. PEV entry distribution of the (d) initial
(e) intermediate and (f) optimized network.

considerable larger degree than the rest of the nodes (region r2 and Fig. 2.2(b)), the

PEV entries corresponding to that node keeps on becoming larger (Fig. 2.2(e)) and

those of all other nodes becoming considerably smaller, yielding a fast growth in

the IPR value for each rewiring.

2.4.2 Analyzing network properties during network evolution

We have already described in section 2.3, the total number of edges is fixed through-

out evolution. Therefore, it is rearrangements of the links which affect the local-

ization properties of the network (i.e., network properties which lead to localized

PEV). Moreover, we know that as PEV gets localized, it affects many structural

properties of the corresponding network, such as the largest degree (kmax), aver-

age clustering coefficient (�CC�), degree distribution, etc. [4, 24, 62]. We keep a

record of all these properties during the evolution and observe that kmax starts rising

as IPR value increases (Fig. 2.1(a)) and reaches its maximum value much before

the IPR achieves its maxima (Fig. 2.1(b)). This indicates that these two quantities

affect each other positively but are not strongly related. Nevertheless, to study a

possible relationship between kmax and IPR value of PEV, we use the configura-

tion model [31] to generate a network which has the same degree sequence as of

the Gopt. However, the configuration networks have IPR value much smaller than
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the optimal IPR value even though both the networks have the same kmax and the

degree sequence. This finding indicates that presence of a hub node or a particular

degree sequence is important for making PEV of the network more localized than

the corresponding ER random network, however, may not be the only requirement

for achieving a localized PEV. Therefore, we analyze possible correlations of IPR

with other structural properties which are known to contribute to the localization.

The clustering coefficient is known to play a significant role in localization tran-

sition in complex networks [62]. We investigate �CC� vs. IPR during the evolution

process. We find that the IPR value increases slowly in the r1 region, while the �CC�
remains almost constant (Fig. 2.1(c)). In the r2 region, �CC� increases rapidly with

the evolution and finally gets saturated to a particular value in r3 region. It suggests

that IPR and �CC� have a relation. One possible way to check this relationship

is by constructing a network with the same �CC� as for Gopt and to compare the

IPR values of both the networks. In fact, we also preserve the degree sequence

of the optimized network while creating such a network by an algorithm adopted

from Ref. [84]. Interestingly, these networks, which have a degree sequence and

average clustering exactly the same as those of the optimized network, have IPR

values, considerably higher than that of the corresponding ER random network but

far lower than that of Gopt. This experiment indicates that regulating the �CC� leads

to a localization of PEV but does not bring it as high as Gopt. We continue our

investigations with other structural properties which might contribute to the PEV

localization. One such property is the degree-degree correlation of the networks

which we measure using the Pearson product-moment correlation coefficient [27].

The degree-degree correlation has been reported to affect several dynamical and

spectral features of corresponding systems [85, 86].

During the network evolution process, the degree-degree correlation (rdeg−deg)

exhibits an increment in the beginning when there is a small change in the IPR value

(r1) and decreases rapidly with a further increase in the IPR value (r2). Finally, both

become saturated (Fig. 2.1(d)) and Gopt is a disassortative network. To check the

importance of disassortativity for the localization, we perform an experiment by
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 (a) (b)

Figure 2.3: Schematic diagram representing the (a) initial and the (b) optimized
networks.

constructing a network using Sokolov algorithm [87] which yield the same rdeg−deg

as of the Gopt. However, this construction also fails to produce the IPR value as high

as for Gopt. Furthermore, in the optimized network, the degree and local clustering

coefficient vectors manifest a negative correlation (Fig. 2.1(e)) whereas local clus-

tering coefficient vector and PEV indicates a high positive correlation (Fig. 2.1(f)).

These two measurements do provide us information about the possible structure of

the networks but do not tell what the structure exactly is.

2.4.3 Revealing Optimized network structure

The most intriguing result of our investigation is that we get a special network topol-

ogy corresponding to the optimized IPR value concerning PEV. The optimized net-

work consists of two components of different sizes which are connected via a single

node (Fig. 2.3). In the beginning of the evolution process (starting at r1 region), the

degree distribution of the network follows Poisson law (Fig. 2.2 (a)). The evolu-

tion process forces the network structure to change in a very typical manner. The

degree of one node attains a much higher value than that of the rest of the nodes

in the network at the intermediate stage (Fig. 2.2(b)). In the r3 region, the degree

distribution of the optimal structure, which has the most localized PEV is depicted

in Fig. 2.2(c). One can notice that it consists of two peaks at lower k values, besides

there exists one data point corresponding to the hub node lying very far from these

two peaks. The first smaller peak is contributed by the nodes lying in the smaller

part of the network (Fig. 2.3(b)), and the larger peak comes from, the larger compo-

nent having an optimized network structure. Similarly, the distribution of the PEV

entries during the network evolution takes shape in such a manner that at the r2 and
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Figure 2.4: Change in IPR value as a function of network evolution (τevolution).
(a) SF networks with n = 500 and �k� = 10 (b) C. elegans frontal network with
n = 131 and �k� = 11 (c) C. elegans neural network with n = 297 and �k� = 14.
We consider crude approximations that edges are undirected and unweighted for C.
elegans networks.

r3 regions (in Fig. 2.2(e) and Fig. 2.2(f)) more number of nodes have tiny weights

at corresponding PEV entries, and less number of nodes have an enormous weight

which is an indication of a highly localized PEV (Fig. 2.2(d)). Further, it is visible

in Fig. 2.2(f) that each node belonging to the smaller component (Fig. 2.3(b)) of

the Gopt has large PEV weight whereas those belonging to the larger component has

smaller PEV weights.

2.4.4 Impact of initial network structure and size on evolution

To check the robustness of the emerged localized network structure against changes

in the initial network, we start the evolution process on the scale-free (SF) net-

work considered as the initial structure. The SF network is constructed using the

Barabasi-Albert preferential attachment model [27]. The network gets evolved

through the similar r1, r2 region of slow and fast changes in IPR values, and fi-

nally, leads to the saturation region r3. The final optimal structure remains the same

as depicted by Fig. 2.3. There exist few changes occurring before the network

reaches to the final optimized structure. A prime change is that reaching to the sat-

uration state (r3) is faster when one starts with an SF network structure. The reason

behind this slightly faster convergence is that the PEV of the SF network is already

slightly localized due to the presence of a hub node. Moreover, the optimization

process acts on a network already having a hub node which causes shrinkage in the
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Figure 2.5: (a) Evolution (τevolution) of IPR values for different network size. As
network size increases, it takes more evolution time for a network to reach the op-
timized state. (b) IPR value of the initial ER and the final optimized networks as a
function of n.

slow evolution region (r1). Additionally, we consider a few real-world networks as

our starting initial network structure, and again the final optimal network structure

remains the same as found earlier with the existence of critical region r3. For exam-

ple, we consider C. elegans frontal [88] and C. elegans neural [89] network as the

initial network structure and achieve the similar structure as obtained from the ER

and SF networks through the evolution process (Figs. 2.3(b) and 2.4).

Further, we consider the impact of changes in the network size on the prop-

erties of the optimized network evolution process. As network size increases, the

evolution process remains the same as depicted by Fig. 2.5(a). The final opti-

mized network structure achieves through the intermediate stage and attains the

same structure (Fig. 2.3). However, as n increases, it takes more evolution time for

a network to be optimized (Fig. 2.5(a)). It is not surprising as Goltsev et al. have

provided theoretical bounds on the maximum IPR values for the Bethe lattices and

have shown its dependency on n [4]. Fig. 2.5(b) depicts IPR values of the initial

and the optimized network for various values of n.

2.4.5 Sensitivity of PEV in r3 region

Note that, in between any two increments in the IPR values as evolution progresses,

there exist several edge rewiring which does not lead to an increase in the IPR
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Figure 2.6: IPR as a function of edge-rewiring. The networks with large IPR value
in r3 region consists of few edge-rewiring, which leads to a sudden drop in the
IPR value. Rewiring of the first 1, 00, 000 edges is depicted. The marked square
indicates the regime where the networks attain IPR values which are very close to
the optimized network. However, in this regime rewiring an edge does not have a
significant impact on the IPR values.

value. If we consider rewiring of all the edges, and not only those which lead to

an increase in the IPR value, we get surprising results in the r3 region (Fig. 2.6).

For this region, the IPR value gets almost saturated, and there exists only a subtle

increment in its value with a further evolution of the network. Though the network

in this region has the maximum IPR value, there exist few edges, rewiring them

leads to a sudden drop in the IPR value resulting in the complete delocalization of

PEV from a highly localized state. It reveals that only a single edge rewiring makes

the most localized PEV to the delocalized one, and this phenomenon is observed for

sparse networks in r3 region (Fig. 2.6). We look forward to identifying the set of

special edges and the rewiring locations, perturbing which, lead to delocalization of

PEV. It turns out that in the optimized network if we remove an edge connected to

the hub node inside the smaller component (Fig. 2.3(b)) the IPR value drops down

leading to a complete delocalization of PEV. Interestingly, just before the saturation

(in the r2 region) if we rewire an edge which is connected to the hub, no sudden

drop is observed in the IPR value. This is a region highlighted within a square in

(Fig. 2.6), where IPR value is much larger than the initial ER random network as

well as is robust against the edge rewiring. Whereas in the r3 region, though the
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Figure 2.7: Behavior of λ1 (◦) and λ2 (•) during the network evolution (τevolution).
Initial network as (a) ER random network (b) SF network (c) C. elegans neural
network.

network achieves the maximum IPR value, it becomes very sensitive to the single

edge rewiring. Most importantly, by controlling a few edges, we can control the

PEV localization of the entire network. This sensitivity of PEV in the r3 region

can also be observed if we change the initial network structure to SF network and

consider all the edge rewiring during the network evolution process (Appendix Fig.

6.6).

In the following, we attempt to understand the emergence of the special struc-

ture as a consequence of optimization as well as the sensitivity of PEV in the critical

region. The eigenvalues of a network adjacency matrix lie in a bulk region separated

from extremal eigenvalues at both the side which lies outside the bulk. It is known

that the extremal eigenvalues, particularly the largest one, may follow completely

different statistical properties than those lying in bulk [55, 56]. Furthermore, the

number of eigenvalues lying outside the bulk is known to be equal to the number

of communities in the network [57]. For a random network without any commu-

nity structure, there exists only one eigenvalue which lies outside the bulk region

and all other eigenvalues including the second-largest λ2 are part of the bulk region

[57]. As depicted in Fig. 2.7, the value of λ2 is much smaller than the value of

λ1 in the initial network structure corresponding to ER, SF, and C. elegans neural

networks. During the evolution, λ2 starts shifting towards λ1, i.e., λ2 starts drift-

ing away from the bulk region. This drift in λ2 is not surprising as we know that

the final optimized structure consists of two parts or communities, and hence there
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should be two eigenvalues which lie outside the bulk. However, the interesting ob-

servation is that for the optimized network, λ2 not only drift away from the bulk but

becomes very close to λ1, however, following the Perron-Frobenius theorem λ1 is

simple (non-degenerate). Almost the same values for both the eigenvalues might be

a reason behind the sensitivity of PEV for a single edge rewiring. Markov chain and

its associated transition matrix have been extensively studied in network science. It

has been reported that when the two largest eigenvalues of a transition matrix be-

come very close to each other, PEV which is known as the stationary probability

distribution vector becomes sensitive to a small perturbation in the transition matrix

[90]. Consequently, the associated Markov chain becomes decomposable [91]. The

transition matrices are different from the adjacency matrices considered here; nev-

ertheless, largest two eigenvalues being close to each other and sensitivity of PEV

occurring at the same evolution time is brings forward an insight into the behavior

of PEV localization. When PEV becomes highly localized resulting in λ1 close to

λ2, the network structure becomes very sensitive for rewiring and may lead to a

complete delocalization of PEV even for a single edge rewiring (Fig. 2.6). In the

next section, we use the most localized PEV state to approximate the steady-state

behavior of the susceptible-infected-susceptible (SIS) disease spreading model [4].

2.5 Disease spreading in localized networks

Starting from the ER random or SF networks as an initial network, we can achieve

an optimized network structure which has highly localized PEV. To demonstrate the

efficiency of these artificially constructed network structures for a dynamic process,

we use the standard SIS disease spreading model. We observe the behavior of a

spreading process at different stages of the optimization process. In the SIS model,

each susceptible vertex becomes infected with the infection rate γ, and infected

vertices become susceptible with the unit rate. The probability ρi(t) that vertex i is

infected at time t is described by the evolution equation [4]
dρi(t)

dt
= −ρi(t) + γ[1− ρi(t)]

n�

j=1

aijρj(t) (2.2)
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Figure 2.8: Spreading process of SIS model on the initial ER random network
(λinit

1 ≈ 11.34, Y init
x1

≈ 0.0007), an intermediate network (λimdt
1 ≈ 11.14,

Y imdt
x1

≈ 0.21) and an optimized network (λopt
1 ≈ 10.77, Y opt

x1
≈ 0.22) and the C. el-

egans neural network (λinit
1 ≈ 24.36, Y init

x1
≈ 0.019 and λopt

1 ≈ 17.18, Y opt
x1

≈ 0.1)
have been depicted. ER network has n = 2000 nodes with �k� = 10.

and in the steady state, at t → ∞, ρi ≡ ρi(t). Hence,

ρi =
γ
�n

j=1 aijρj

1 + γ
�n

j=1 aijρj
(2.3)

Therefore, in steady-state with probability ρi, a vertex i infected by its neighbours,

and the prevalence is given by ρ =
�n

i=1 ρi/n. It has been shown that ρi is approx-

imated to PEV entries of adjacency matrix i.e. ρi ≈ c1(x1)i, where c1 ∈ R [4]. We

know that when the infection rate γ cross the epidemic threshold i.e. γ > γc =
1
λ1

[76] the disease will spread over the networks. However, if the PEV of the network’s

adjacency matrix is localized, in the vicinity of the epidemic threshold γc+�, � > 0

the disease infects a small number of vertices and spreading process becomes slow.

As a result, it requires a larger value of γ for spreading the disease over the net-

work. Fig. 2.8 manifests that for the initial network, for a value of γ, which is

slightly larger than γc, the disease infects a large number of vertices. Whereas, for

the networks corresponding to the intermediate and the optimized states, there exist

very few vertices which get infected.

2.6 Conclusion

In this chapter, starting from an initial random network, we achieve a network struc-

ture through a Monte Carlo based network evolution method. The optimized net-
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work possesses a highly localized PEV quantified by the IPR value. We analyze

various structural and spectral properties of the optimized network as well as the

networks at the intermediate state before the optimized structure is reached. We

demonstrate that PEV localization is not a consequence of a single network prop-

erty and rather requires the collective impact of several structural features. The final

optimized network possesses a special structure and which we have shown to be ro-

bust against changes in the initial network structure. We demonstrate the robustness

of the results by considering various popular network models as well as real-world

networks as an initial network structure. Furthermore, we characterize the evolu-

tion regime into different stages. In the intermediate stage, we identify an evolution

regime which corresponds to the PEV localization almost the same as that of the

optimized network, but the localization property is robust against the edge rewiring.

Whereas, PEV is sensitive against single edge rewiring in the critical (saturation)

region. Our analysis identifies a special set of edges which are essential for the

localization of PEV in the optimized network structure. Rewiring any one edge of

this set leads to a complete delocalization of PEV. We observe that this emergence

of sensitivity in the PEV and shifting of λ2 close to λ1 happens simultaneously sug-

gesting a relation between the special structure of the optimized network and the

second largest eigenvalue of the network.

It may not always be feasible to rewire a real-world network to such an extent

to get a desired PEV localization behavior. However, the results and approach used

here will be more useful in constructing an artificial network with the desired local-

ization behavior. Though the prime concern of our analysis to have insights into the

network structure and PEV localization, using disease spread model, we verify that

network structure in the optimal and the intermediate stages spreading of disease is

much slower than the initial random structure. Our study provides a more in-depth

insight into the PEV localization on synthetic as well as on empirical networks.

This chapter mainly concentrates on the numerical investigation to find network

structure and properties leading to high localization of PEV through the network

evolution process. In the next chapter, by analyzing the sub-component eigenval-

32



CHAPTER 2. 2.6. CONCLUSION

ues relation of the optimized network structure, we explore the reason behind the

sensitive behavior of PEV in the optimized network structure. Finally, based on

the behavior of the eigenvalues, we devise an analytical formulation which assists

in constructing PEV localized network structure and avoid the network evolution

process.
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Chapter 3

Analytical construction of PEV local-
ized networks

3.1 Introduction

In Chapter 1, we have presented an optimized edge rewiring algorithm to construct

networks having highly localized PEV’s (Fig. 3.1). The optimized network was

shown to consist of subgraphs connected via a node (Fig. 3.1(b)). Furthermore,

the optimized networks were shown to have the largest two eigenvalues being very

close to each other. Importantly, the optimized network was shown to contain few

special edges, rewiring one of them leads to a delocalization of the PEV from a

highly localized state which was referred to as sensitivity of PEV [92].

Although chapter 1 successfully concluded that PEV localization depends on

several network parameters; however, the following observation was not precise.

Before the single edge rewiring, two largest eigenvalues in the critical region (r3

region) are close as well as after the rewiring they are also close (discussed in Ta-

ble 3.1), which indicates that closeness is necessary but not a sufficient condition

to get sensitivity in highly localized PEV. Besides, there exist real-world networks
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Figure 3.1: Schematic diagram of (a) initial network and (b) the optimized network
structure having two components evolved through the network evolution process
discussed in chapter 2, section 2.3.

for which the largest two eigenvalues are close, and PEV is delocalized (Appendix

Table 6.2). Hence, it is not clear the reason behind the sensitivity in PEV of an op-

timized network structure. Understanding the origin of sensitivity in PEV, one can

construct a highly localized PEV network structure without using any optimization

process.

In this chapter, we focus on identifying the origin of sensitivity behavior of

PEV localization as well as devise a method based on an analytical derivation of

network parameters for direct construction of a highly localized network without

using any evolution scheme. The current investigation can be summarized as fol-

lows: First, we show that the eigenvalue crossing phenomenon which takes place

when an edge is rewired in the localized network structure is an essence of the sen-

sitivity behavior of PEV localization. Second, taking a clue from this eigenvalue

crossing phenomenon, we establish a relationship between the largest eigenvalues

of the individual subgraph of the optimized network structure. Using this relation,

we analytically derive the network parameters required for direct construction of

PEV localized networks. Ergo, our investigation identifies the necessary structural

and spectral properties for highly localized networks. Third, we substantiate the

eigenvalue crossing phenomenon by using the RNA neutral network population dy-

namical model [58].

The chapter is designed as follows: Section 3.2 describes the notations and

definitions of the mathematical terms. Section 3.3.1 illustrates the numerical re-

sults demonstrating the relationships between the PEV localization and the second-

largest eigenvector, which is required for eigenvalue crossing. The analytical treat-
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ment is given in subsection 3.3.2 provides us a method for direct construction of

PEV localized network without performing a network evolution method. Section

3.4 describe the results for the steady-state behavior on a linear-dynamical system.

Finally, section 3.5 summarizes our work.

3.2 Background

In this section, we again briefly discuss the underlying matrix representation and

IPR definition. We represent a network as G = {V,E}, where V and E represent

the set of nodes and edges, where n and m denote the size of V and E, respectively.

We refer Ec = {ec1, ec2, . . . , ec(n(n−1)/2)−m} as the set of edges which are not present

in G. In this dissertation, we restrict to simple networks, i.e. the network without

multiple connections and self-loop. The adjacency matrix (A) corresponding to G

is defined as,

aij =




1 if nodes i and j are connected

0 Otherwise

Here, ki =
�n

j=1 aij denotes the degree of node vi and the average degree of the

network is denoted by �k� = 1
n

�n
i=1 ki. We refer the maximum degree node or the

hub node of G as kmax = max1≤i≤n ki. Here, A is a real symmetric matrix, hence,

it has a set of orthonormal eigenvectors {x1,x2, · · · ,xn} corresponding to the real

eigenvalues {λ1,λ2, . . . ,λn}. Moreover, the edge weights of A are 1, and network

is always connected. Thus, A is a non-negative and irreducible matrix. Hence,

we know from the Perron-Frobenius theorem that all the entries in PEV of A are

positive and λ1 is simple (non-degenerate) [93].

The inverse participation ratio (IPR) quantifies the localization as well as delo-

calization behavior of eigenvectors in complex networks [4, 7, 11, 12, 25, 94]. We

calculate the IPR value (Yxi
) of an orthonormal eigenvector (xi = ((xi)1, (xi)2, . . . ,

(xi)n)
T ) of A as follows:

Yxi
=

n�

j=1

(xi)
4
j (3.1)

where (xi)j is the jth component of xi. A delocalized eigenvector (xi = ( 1√
n
, 1√

n
, . . . ,

1√
n
)T ) has Yxi

= 1
n

, whereas the most localized eigenvector (xi = (1, 0, . . . , 0)T )
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2)
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1 (◦) in the r3 region during the network evolution.

Network parameters are same as in Fig. 3.

yields an IPR value equal to Yxi
= 1. For a connected, undirected and unweighted

network, the IPR values of PEV lies between 1/n ≤ Yx1 < 1, n ≥ 2.

3.3 Results
3.3.1 Analysis of eigenvectors angles: signature of eigenvalue

crossing

To capture the sensitive behavior of PEV in the optimized network structure (G1 ≡
Gopt), we consider random edge rewiring in the optimized network. We choose

an edge ep ∈ E (p = 1, 2, . . . , |E|) uniformly at random from Gi and remove

it and at the same time, we introduce an edge uniformly at random in Gi from

ecq ∈ Ec (q = 1, 2, . . . , |Ec|). The new network and the corresponding adja-

cency matrix are denoted as Gi+1 and Ai+1, respectively. Starting from a opti-

mized network structure (constructed using optimized edge rewiring algorithm dis-

cussed in section 2.3), the random edge rewiring process yields a sequence of net-

works {G1,G2, . . . ,Gi,Gi+1, . . . ,Gτ} and the corresponding adjacency matrices as

{A1,A2, . . . ,Ai,Ai+1, . . . ,Aτ} where τ is the total number of edge rewiring per-

forms. Notably, during an edge rewiring, there is a possibility that the network

becomes disconnected. However, we allow only those edge rewirings which yield

a connected network. Note that the optimized rewiring process described in section

2.3 and the random rewiring process used here is different.
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Figure 3.3: Largest two eigenvectors entries in (a) & (c) optimized network where
the entry corresponding to the hub node is marked with circle, (b) & (d) after a
single edge rewiring of the optimized network which is connected to the hub node.
Network parameters are same as in Fig. 3.2. Due to Perron-Frobenius theorem,
PEV entries are all positive, however second-largest eigenvector entries are both
positive and negative. Hence, to observe the pattern of the eigenvectors entries, we
take square of each entries.

We find that there exists few edges, rewirings them bring PEV from a highly

localized to a delocalized state (Fig. 3.2 (a)) as also discussed in section 2.4.5.

Additionally, there exists abrupt changes in the IPR value of second-largest eigen-

vector (x2). In other words, there exists abrupt changes in the Yx1 and Yx2 values

due to a single edge rewiring of such edges. To elaborate this aspect of the abrupt

changes in the IPR value as a consequence of a single edge rewiring, we focus on

two consecutive networks, say, Ai and Ai+1 such that Ai+1 is achieved after a sin-

gle edge rewiring on Ai. We observe that xi+1
1 reaches to a delocalized state, from

a highly localized state, at (i + 1)th time step (Fig. 3.2 (a)). This abrupt change in

IPR value of xi+1
1 is accompanied with a high localization of xi+1

2 from a delocal-

ized state (xi
2) (Fig. 3.2 (a)). Scrutinizing the entries of the largest and the second

largest eigenvectors in these two consecutive steps, we find that there exist radical

changes in the eigenvector entries (Fig. 3.3). One can observe that, xi
1 is highly

localized with maximum entry value corresponding to the hub node (marked with

a circle in Fig. 3.3(a)). However, after a single edge rewiring on Ai, Ai+1 has the

same structure (except single edge rewired), xi+1
1 becomes delocalized (Fig. 3.2

(a)). The entry corresponding to the hub node for this delocalized xi+1
1 takes a very
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small value (Fig. 3.3(b)). Notably, for xi+1
2 , the entry corresponding to the hub

node takes the same value as that of the xi
1 (Figs. 3.3(a) and (d)). This clear flip in

the entries of the largest two eigenvectors (xi+1
1 and xi+1

2 ) affect the IPR value of

both of them in Ai+1.

Further, an examination of relative positions of the two largest eigenvectors pro-

vide insight into the sensitive behavior of the PEV in the optimized network struc-

ture. To trace the relative position of the largest two eigenvectors in the vector space,

we track the angle by computing the dot product of two vectors, i.e.,

(xi
1)

Txi+1
1 and (xi

2)
Txi+1

1 for i = 1, 2, . . . , τ

during the random edge rewiring process. One can see that presence of the flips

in IPR values (Fig. 3.2(a)) are reflected in the similar abrupt changes in the dot

product values (Fig. 3.2(b)). These abrupt changes in (xi
1)

Txi+1
1 and (xi

2)
Txi+1

1

manifest a signature of the eigenvalue crossing. The rewiring of an edge connected

to the hub node leads to rotation of x1 and x2 by approx. 90o (Fig. 3.2(b)). It has al-

ready been reported that abrupt changes in the eigenvector entries carry information

of the eigenvalue crossing [95–97]. Moreover, it has also been noted that just af-

ter the crossing, the eigenvectors become orthogonal to the eigenvectors before the

crossing. The largest two eigenvectors satisfy these two criteria mentioned above

during the flipping of the IPR values. Further, to confirm the eigenvalue crossing

phenomenon, we perform the following experiments. We separate two graph com-

ponents (Ci
1 and Ci

2) of Gi corresponding to Ai by breaking the existing connection

between them, and record the largest two eigenvalues (Fig. 3.1(b)). We observe

that the largest two eigenvalues of the Gi remain almost the same as of the largest

eigenvalue of the two subgraph components separately (Table 3.1)

λ
Ci
1

1 ≈ λGi
1 , λ

Ci
2

1 ≈ λGi
2

Further, one can also notice that

λ
Ci
1

1 > λ
Ci
2

1 (3.2)

In an another experiment, if we remove an edge from Gi, which is connected to the

hub node in Ci
1, and add it between a randomly selected pair of nodes in Ci

2, there

exists an abrupt change in the localization behavior of PEV. The modified network

40



CHAPTER 3. 3.3. RESULTS

G n kmax m Yx1 Yx2 λ1 λ2 λ3

Gi 500 101 2512 0.19059 0.00253 11.48807 11.47669 6.28379
Ci
1 102 101 236 0.19075 0.02251 11.48764 2.65329 2.63804

Ci
2 397 12 2274 0.00253 0.00657 11.47660 6.28334 6.10097

Gi+1 500 100 2512 0.00253 0.19084 11.48227 11.42444 6.29319
Ci+1
1 102 100 235 0.19075 0.02251 11.42401 2.65315 2.63839

Ci+1
2 397 13 2275 0.00253 0.00643 11.48217 6.29273 6.11759

Table 3.1: Largest three eigenvalues and IPR values of two largest eigenvectors
of the optimized networks (Gi) as well as its two components (Ci

1 and Ci
2). After

rewiring of an edge connected to the hub node in Gi, the new network is denoted as
Gi+1 and its two components are denoted with Ci+1

1 and Ci+1
2 .

is denoted as Gi+1. This reshuffling of an edge makes xi+1
1 to be in a delocalized

and xi+1
2 to be in a highly localized state (Fig. 3.2 (a)). Next, if we separate two

components of Gi+1, we observe (Table 3.1) that

λ
Ci+1
2

1 ≈ λ
Gi+1

1 , λ
Ci+1
1

1 ≈ λ
Gi+1

2

The transition between localized and delocalized state for xi+1
1 and xi+1

2 respec-

tively in Gi+1 is accompanied with a change in the λ
Ci+1
1

1 value leading to

λ
Ci+1
1

1 < λ
Ci+1
2

1 (3.3)

For both the experiments, the largest eigenvalues of Gi and Gi+1 are always greater

than the corresponding second largest eigenvalues i.e.,

λGi
1 > λGi

2 and λ
Gi+1

1 > λ
Gi+1

2

which also satisfy the Perron-Frobenius theorem [93]. However, changes occur in

the largest eigenvalue of the individual components in Gi and Gi+1 (Eqs. (3.2) and

(3.3)) occurs due to the eigenvalue crossing. In other words, for the case of the

highly localized PEV the component containing the hub node has prime contribu-

tion in the largest eigenvalue.

To summarize, we can think of the optimized network evolution process (in

section 2.3) acts as a black box which takes a given network of size n and m as

input and produces an optimized structure (Gi) having two components (Ci
1 and Ci

2)

connected via a node, where Ci
1 contains a hub node, and Ci

2 has almost a regu-

lar structure. Additionally, λGi
1 > λGi

2 and λ
Ci
1

1 > λ
Ci
2

1 . On the otherhand, upon a

single edge rewiring leading to a delocalized PEV in Gi+1 yielding λ
Gi+1

1 > λ
Gi+1

2
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and λ
Ci+1
1

1 < λ
Ci+1
2

1 . Importantly, for both the cases, eigenvalues of the combined

networks are close enough, but they are distinct (non-degenerate) (details is in Ap-

pendix 6.5). In other words, optimization process provides a partition to a given

network of n number of nodes and m number of edges into two components such

that n = n1 + n2 + 1, m = m1 + m2 + 2 and λC1
1 > λC2

1 where |EC1 | = m1 and

|EC2 | = m2. Next, we ask a question that can we use one or all of these pieces

of information to directly construct a network, without performing the optimized

network evolution process. Note that, combining any two components with one of

them containing a hub node and another having a regular structure, does not pro-

duce a localized PEV, thereby making the problem more challenging. For instance,

by combining two components where one of them contains a hub node and another

has a regular structure, one can bring the largest two eigenvalues of G close enough

(e.g., ER random and scalefree (SF) networks). However, this way of the network

construction while yields close enough λG
1 and λG

2 , may not lead to a localized PEV

(Table 3.2 (No. 1,2)) indicating that closeness of largest two eigenvalues is a nec-

essary but not a sufficient condition. It turns out, for a localized PEV a particular

eigenvalue relation (λC1
1 > λC2

1 ) between the individual component should hold true

(Table 3.2 (No. 3,4)). In the following we analytically calculate the subgraph com-

ponent size which satisfy the particular subgraph eigenvalue relation.

No. G n1 n2 λG
1 λG

2 kmax Y G
x1

λC1
1 λC2

1

1. ER-SF 500 500 11.03 10.09 69 0.003 11.03 10.09
2. R-W 500 24 6 5.9 23 0.002 6 5.89
3. ER-SF 500 500 10.27 9.59 68 0.08 9.58 10.24
4. R-W 500 26 6.1 5.99 25 0.17 6 6.09

Table 3.2: We portray various structural and spectral properties of two individual
components (C1 and C2), as well as the combined network achieved by connecting
them through a link. We consider ER random graph, Scalefree (SF), wheel (W),
and random regular (R) networks as an individual component. Satisfying λC1

1 > λC2
1

leads to a localized PEV and for λC1
1 < λC2

1 yields delocalized PEV of the combined
graph.

42



CHAPTER 3. 3.3. RESULTS

3.3.2 Analytical construction of localized network using wheel
and random regular graph

From the numerical simulations, we learn that in the optimized networks, Ci
1 con-

tains a hub node while Ci
2 has almost a regular structure. Hence, we choose struc-

tures which resemble to Ci
1 and Ci

2 components. The closest structures corresponds

to Ci
1 is a star or wheel graph (Fig. 3.1 (b)). For Ci

2 component, we choose a random

regular structure.

It turns out that one can recreate the spectral properties of the optimized network

by replacing C1 with a wheel graph and C2 with a random regular network. A wheel

graph is denoted as W = {VW, EW} where |VW| = n1 is the number of nodes and

|EW| = 2(n1 − 1) is the number of edges in W. Further, the random regular (or

regular) graph is denoted as R = {VR, ER} where |VR| = n2 is the number of

nodes and |ER| = n2κ
2

is the number of edges with each node having degree κ. We

generate the random regular graph using the algorithm in [98]. Further, we know

that for a wheel and random regular graph, the largest eigenvalues are as follows

[78]

λW
1 = 1 +

√
n1 and λR

1 = κ (3.4)

Interestingly, to connect a wheel graph with a random regular network such that

λW
1 > λR

1 (learn from analyzing optimized network structure in subsection 3.3.1),

we need the information about the size of the individual component (n1, n2 and κ)

of the combined network (Gnew). By using the relation λW
1 > λR

1 , we consider,

λW
1 = λR

1 + � where 0 < � < 1 (3.5)

Here, we use � < 1 to observe the single edge rewiring effect; however, we gen-

eralize to � > 0 in the next chapter. Moreover, we provide a proof (in section 4.6)

which says that holding λW
1 > λR

1 , one can have a combined network structure

where wheel subgraph has a prime contribution to the PEV of the combined net-

work structure. From Eqs. (3.4) and (3.5), we obtain the size of the wheel graph

as

n1 = �(κ− 1 + �)2� (3.6)

where (� �) is the ceiling function and Eq. (3.6) tells that for a particular value of κ if
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we take �(κ−1+ �)2� as a number of nodes for the wheel graph, then the combined

graph will satisfy Eq. (3.5). Importantly, in Eq. (3.6) the number of nodes in the

W component of Gnew depends on the average degree of the R component in Gnew.

Therefore, to construct Gnew, we are free to choose any arbitrary number of nodes

and average degree (3 ≤ κ ≤ n2 − 2) for the random regular component such that

κn2 is even. Note that for κ = 2 and � � 1, we get n1 = 2 and which is not a valid

size to construct a W component. The smallest value to construct a W component

is n1 = 4 and to satisfy Eq. (3.5), we consider κ = 3. On the other hand, to observe

delocalization in PEV due to single edge removal from W component and add it to

the R component, we should take κ at most n2 − 2.

From the above investigation, we learn that we can construct a PEV localized

network without having any restriction on κ and n2. In other words, there is no

restriction on the number of nodes and edges for the combined networks. However,

to avoid the optimized rewiring process, the partition of a given set of n and m

should be such that it satisfies Eq. (3.5) as well as holds the following two relations

n = n1 + n2 + 1 (3.7)

and

m = |EW|+ |ER|+ 2 =
4n1 + n2κ

2
(3.8)

simultaneously. From Eqs. (3.6) and (3.7) we know that

n2 = n− �(κ− 1 + �)2� − 1 (3.9)

To find a κ value for any given set of n and m such that they satisfy Eqs. (3.5), (3.7)

and (3.8), we rearrange Eq. (3.8) with the help of Eqs. (3.6) and (3.9), and reach to

a cubic equation of the form

κ3 + bκ2 + cκ+ d = 0 (3.10)

where b = (−4−2(1−�)), c = ((1−�)2+8(1−�)+1−n), and d = (2m−4(1−�)2)

are the coefficient of the cubic equation. Next, roots of the cubic equation can be
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Δ < 0
Δ = 0

Δ > 0

n+1 n(n-1)/2(nσ+p)+((n+3q)√(3(n+3q)))/9

m

{ {

Δ > 0

Figure 3.4: Separation of range of m value based on the behavior of the discriminant
value (Δ) of the cubic equation (in Eq. 3.11) for a particular value of n. For sparse
network Δ < 0 and Δ ≥ 0 as network becomes dense. Here, σ = (1 − �

3
),

p = �3+9�2+36�
27

, q = �2+6�+6
9

and we consider n ≥ 49.

written from the Cardano’s formula [99–101] as follows,

κ1 = Δ1 +Δ2 −
b

3

κ2 = −1

2
(Δ1 +Δ2)−

i
√
3

2
(Δ1 −Δ2)−

b

3

κ3 = −1

2
(Δ1 +Δ2) +

i
√
3

2
(Δ1 −Δ2)−

b

3

(3.11)

such that

Δ1 =
3

�
−β/2 +

√
Δ and Δ2 =

3

�
−β/2−

√
Δ (3.12)

where Δ = β2

4
+ α3

27
, α = 1

3
(3c − b2), β = 1

27
(2b3 − 9bc + 27d) and i2 = −1.

Therefore, given a set of n and m, we obtain three different possible values for κ

to partition n and m between two subgraphs. There is a possibility to get complex

values for κ. The following analysis presents bounds to avoid complex numbers as

well as few other unnecessary situations.

We know that the behavior of the discriminant (Δ) leads to a change in the

nature of the roots. One can notice from Eq. (3.13) that Δ is a function of n and

m. Furthermore, we know that for a given n, value of m can vary between n+ 1 to

n(n − 1)/2. Hence, by varying m, we get Δ as a function of n. It turns out that as

m varies, the nature of the roots changes yielding real or complex values for κi’s.

However, we do not know the exact relation between m and Δ. It is known that (a)

Δ = 0 yields three real roots in which at least two are equal, (b) Δ > 0 gives one

real root and other two complex conjugate roots, (c) Δ < 0 yields three unequal

real roots [99–101]. To know the behavior of the discriminant as m changes for a

particular value of n, we analyze Δ in Eq. (3.12) of the cubic equation as;
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Δ = (m− nσ − p)2 −
�
n

3
+ q

�3

(3.13)

where σ = (1− �
3
), p = �3+9�2+36�

27
, q = �2+6�+6

9
and we consider n ≥ 49 (details is

in Appendix section 3.6). Analyzing the discriminant reveals that for

m = (nσ + p) +
(n+ 3q)

�
3(n+ 3q)

9
(3.14)

we get (a) Δ = 0. Further, from the above equation, we find the lower and upper

bounds of m, for which Δ < 0 and Δ > 0 as follows

n+ 1 ≤ m ≤
�
(nσ + p) +

(n+ 3q)
�

3(n+ 3q)

9

�
− 1

�
(nσ + p) +

(n+ 3q)
�

3(n+ 3q)

9

�
+ 1 ≤ m ≤ n(n− 1)

2
The ranges of m illustrate that as the network becomes dense, Δ becomes greater or

equal to zero (Fig. 3.4). One can notice from Eq. (3.13) that Δ = 0 appears when

m is a real with fractional part (Eq. (3.14)). However, in our case, m represents the

number of edges in Gnew and is a positive integer. Hence, Δ = 0 can never appear.

Further analysis of the discriminant reveals that for (b) Δ > 0, n1 calculated from

κ1 (Eq. (3.6)) is always larger than the given value of n. Hence, we can not use

κ1 to find n1 and n2 in Eqs. (3.6) and (3.9) for the construction of Gnew (details

is in Appendix section 3.6). Finally, we investigate the case (c) which corresponds

to three unequal real roots in Eq. (3.11). We have achieved two different ways to

divide the number of nodes in two different groups such that the entire network has

a localized PEV (see Appendix section 3.6 for details). The first way is that we

consider a sparse regular structure with a smaller size wheel graph, and the second

way is to consider a dense regular structure with a larger size wheel graph. Similar

to the network evolution process, coefficients of the cubic equation take n, m and �

as the input parameter and produce the subgraph parameters for direct construction

of the PEV localized network (Fig. 3.5).

Table 3.3 verifies the theoretical approach of arranging the graph components

into two different ways. For a given value of n and m, we calculate the average

degree of a regular graph (κ1) from Eq. (3.11). Next, from Eqs. (3.6) and (3.9),

we calculate n1 and n2 values, which in turn provide us the size of the wheel and

the random regular graphs while satisfying Eq. (3.5). This combined graph has a
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Figure 3.5: A method to direct construction of PEV localized network through the
solution of a cubic equation. Given the input parameters (number of nodes (n),
connections (m) and � << 1) to the coefficients of the cubic equation provide the
roots (average degree κ), from which we calculate the size of wheel (W) and random
regular (R) networks (Eqs. (3.6) and (3.9)). Finally, connecting W and R yields the
PEV localized network.

localized x1 and a delocalized x2. Similarly, the root κ2 can be calculated by the

same procedure, and we can calculate n1 and n2. The Yx1 value obtained from the

analysis comes out to be the same as the value obtained from the optimized edge

rewiring process (Table 3.3). Similarly, removing an edge connected to the hub

node in W component and add it to the R component leading to a delocalization

of PEV and second-largest eigenvector becomes highly localized as observed in the

optimized network structure in section 3.3.1 (Appendix Table 6.3).

The method simplifies our understanding to the origin of peculiar spectral prop-

erties of the optimized structure, as well as provides us a simple method to achieve a

large size PEV localized network without performing any optimized edge rewiring

process. To conclude, investigation of an optimized network structure obtained

through the network evolution reveals that the high localization of the PEV is ac-

companied with a relation between the eigenvalue of individual components (λC1
1 >

λC2
1 ). The analysis presented in this section is an attempt to solve the problem in a

reverse manner. It shows that by considering two subgraphs where one of them has

a hub node and another has a regular structure and λW
1 > λR

1 , one can produce a

network structure having a highly localized as well as sensitive PEV.

3.4 Localization behavior on linear-dynamical system

In sections 3.3.2, we investigate eigenvalue crossing and its relation with the sensi-

tivity behavior of PEV corresponding to the adjacency matrices without using any
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n m κ1 n1 n2 Yx1 κ2 n1 n2 Yx1

500 2512 18 290 209 0.22 13 145 354 0.21
520 2630 19 325 194 0.22 13 145 374 0.21

2448 14806 46 2027 420 0.23 13 145 2302 0.21
4720 13712 69 4627 92 0.24 6 26 4693 0.17

10498 52490 101 10005 492 0.24 11 101 10396 0.20
20422 163376 138 18775 1646 0.24 17 257 20164 0.22

Table 3.3: Various network parameters and IPR values of PEV for a given n and m.
From the analytical derivations in Eq. (3.11), we decide κ, n1 and n2. Thereupon,
we construct a wheel graph of size n1 and a random regular graph of size n2 and
join them with a node. This method leads to a highly localized PEV. We consider
here � = 0.02.

optimization scheme. Next, we turn our attention to show the impact of eigenvalue

crossing phenomenon, caused by single edge rewiring, on the steady-state behavior

of a linear-dynamical system. We consider RNA neutral network population linear

dynamical model [9, 58, 102–104], which represents a set of genotypes, mapping

to the same phenotype form a neutral network. Nodes in the neutral network cor-

respond to genotypes (sequences), and two nodes are said to be connected if the

corresponding sequences differ by a single point mutation. Each node i holds a

number xi(t) from the sequence at time t. At each time step each sequence repli-

cates at a rate f > 1 and each daughter sequence mutate to one of the 3L nearest

neighbors with a probability µ and does not mutate with a probability 1 − µ. L is

the sequence length and 0 < µ < 1. The equations illustrating the dynamics of the

population on the network can be given by [104]

xi(t+ 1) = f(1− µ)xi(t) +
fµ

3L

n�

i=1

aijxj(t) (3.15)

In the matrix form

x(t+ 1) = f(1− µ)Ix(t) +
fµ

3L
Ax(t)

=

�
f(1− µ)I +

fµ

3L
A

�
x(t)

= Mx(t)

(3.16)

where M = f(1− µ)I + fµ
3L
A, I, and A are the transition, identity, and adjacency

matrix respectively. For the above model, the steady-state vector obtains from the

PEV of the transition matrix [102]. Importantly, all the eigenvectors of A and M
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Figure 3.6: We portray the evolution of steady-state vector of the RNA neutral
network model population dynamical model on WRR model network. Starting from
a uniform state vector, we perform the power iteration method to reach the steady-
state vector. Due to the localized PEV in WRR model, the hub node contributes
more to the dynamical process, and the rest of them have very less contribution.
Here, n = 500, µ = 0.5, f = 2.6, L = 18. For the wheel random regular combined
network λW

1 > λR
1 and Yx1 = 0.22. We perform the power iteration method for

300000 iterations and store the PEV after each 1500 steps.

are the same which can easily be shown from Eq. (3.16) as follows

MxA
i = f(1− µ)IxA

i +
fµ

3L
AxA

i

= f(1− µ)xA
i +

fµ

3L
λA
i x

A
i

= λM
i xA

i

(3.17)

where λM
i = f(1−µ)+ fµ

3l
λA
i , λM

i and λA
i denotes the eigenvalues and xM

i and xA
i

are the eigenvectors of M and A respectively. Further, λM
1 is the asymptotic growth

rate of the population and from Eq. (3.17) one can observe that limit distribution

of population or the steady-state vector of the transition matrix is solely determined

by the PEV of the adjacency matrix [9, 58].

We perform the power iteration method on M with an initial population distri-

bution vector having all the entries same. Considering A as the adjacency matrix

corresponding to the wheel-random structure with λW
1 > λR

1 , maximum contribu-

tion to the dynamical process comes from a few nodes (Fig. 3.6). In other words,

few nodes contribute more to the linear-dynamical process, and the rest of them

have very less contribution.

In the wheel-random network, we rewire an edge connected to the hub node and
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Figure 3.7: We depict the evolution of the steady-state vector of the RNA neutral
network population dynamical model on the WRR model network where we rewire
an edge connected to the hub node. Starting from a uniform state vector, we perform
the power iteration method to reach the steady-state vector. Due to the delocalized
PEV, there exists a drastic change in the steady-state of the dynamical process.
Model parameters are same as in Fig. 3.6 but λW

1 < λR
1 and Yx1 = 0.002.

add it to the random regular structure, and the new transition matrix is denoted by

M
� . We again perform the power iteration method on M

� with the initial population

distribution vector which has all the entries same. One can observe (Figs. 3.6 and

3.7) drastic changes in the steady-state vector of the RNA model arising due to the

eigenvalue crossing phenomenon. The two largest eigenvalues of the combined net-

work remain close to each other, but there exist changes in the subgraph eigenvalue

relation (λW
1 < λR

1 ) leading to change in the behavior of the steady-state. To avoid

this sensitive dependence of the steady-state arising due to a single edge rewiring,

we either increase the largest eigenvalue of the wheel graph component by increas-

ing the size, or we can decrease the average degree of the regular graph component

which we learned from the analytical approach discussed in subsection 3.3.2.

Although the wheel-random structure is quite special, it provides us an under-

standing of the localization behavior observed for the networks evolved through the

optimized evolution process. Note that the dynamical system used here is a simpli-

fied and discrete-time version of the Eigen’s molecular-evolution model [58].
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3.5 Conclusion

Our investigation reveals that eigenvalue crossing along with the presence of a hub

node is the prime reason behind the sensitivity of the PEV in the optimized network.

We found that a single edge rewiring in the optimized network structure leads to an

eigenvalue crossing, which is detected through the dot product of the two largest

eigenvectors. We show that the eigenvalue crossing leads to a change in the eigen-

value relation of the individual components and in turn, governs the sensitivity of

the PEV localization.

From the observation of the eigenvalue crossing phenomenon, we develop an

analytical framework which assists for the construction of a network structure hav-

ing high localization as well as sensitive PEV. Importantly, this structure is obtained

without performing an optimization scheme. In other words, we use the informa-

tion of spectral properties of the optimized network to perform reverse engineering

to construct a network structure having a highly localized PEV. By mapping the

eigenvalue relation of the individual components to a cubic equation and solving it

analytically, we find the component size for the direct construction of PEV localized

networks.

In the next chapter, we use the wheel random regular model network and the

subgraph eigenvalue relation to understand the failure of eigenvector centrality mea-

sure. Finally, we extend the WRR model for other networks and provides a detailed

discussion of choosing the � values on IPR.

3.6 Appendix: Discriminant analysis

The section analyzes the discriminant of Eq. (3.12) and provides the bounds for

the wheel graph size (n1) as a function of n. To achieve, we first find the range

of m values and their relations with the behavior of discriminant (Δ). Then, we

calculate the bounds for the roots and calculate the bounds for n1. We rewrite the

51



CHAPTER 3. 3.6. APPENDIX: DISCRIMINANT ANALYSIS

discriminant in Eq. (3.12)

Δ =
β2

4
+

α3

27

= (m− nσ − p)2 −
�
n

3
+ q

�3 (3.18)

where σ = (1 − �
3
), p = �3+9�2+36�

27
, and q = �2+6�+6

9
. We consider connected

network and choose m in between n+ 1 to n(n− 1)/2 where n ≥ 49.

Case (i) [Δ = 0]: To find out the value of m for which Δ = 0, we solve,

(m− nσ − p)2 −
�
n

3
+ q

�3

= 0 (3.19)

Solving the quadratic equation of m, we get m = (nσ + p) ± (n+3q)
√

3(n+3q)

9
for

which Δ = 0. We know that m should always be a positive quantity, hence we

consider

m = (nσ + p) +
(n+ 3q)

�
3(n+ 3q)

9
(3.20)

Moreover, in our case, m is always be a positive integer but from Eq. (3.20), m is a

real value with fractional part. Hence, Δ = 0 can never appear for our case.

Case (ii) [Δ > 0]: Now, as m should be a positive integer we add 1 to Eq. (3.20)

and get the lower bound for m value as follows

�
(nσ + p) +

(n+ 3q)
�

3(n+ 3q)

9

�
+ 1 ≤ m ≤ n(n− 1)

2
(3.21)

for which Δ > 0. Now, we substitute Eq. (3.18) in Eq. (3.12), and we have

Δ1 =

�
−(m− nσ − p) +

�
(m− nσ − p)2 −

�
n

3
+ q

�3
�1/3

Δ2 =

�
−(m− nσ − p)−

�
(m− nσ − p)2 −

�
n

3
+ q

�3
�1/3

Further, for the range of m values mentioned in Eq. (3.21), (m − nσ − p) >
�

(m− nσ − p)2 − (n
3
+ q)3, thus

√
(m−nσ−p)2−(n

3
+q)3

m−nσ−p
< 1 and hence using biono-

mial approximation we get

Δ1 ≈ −(m− nσ − p)1/3

�
1−
�

(m− nσ − p)2 − (n
3
+ q)3

3(m− nσ − p)

�

Δ2 ≈ −(m− nσ − p)1/3

�
1 +

�
(m− nσ − p)2 − (n

3
+ q)3

3(m− nσ − p)

�
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Therefore, from Eq. (3.11) and using the above two relations we get,

κ1 = −2(m− nσ − p)1/3 +
6− 2�

3
(3.22)

Further, from Eq. (3.22) with the help of inequality in Eq. (3.21), we get lower

bound for κ1 using the bionomial approximation as follows

κ1 > −2

�
n(n− 1)

2
− nσ − p

� 1
3

+
6− 2�

3

= −2

�
n2

2
− n(9− 2�)

6
− p

� 1
3

+
6− 2�

3

for 0 < � � 1

≈ −22/3n2/3

�
1− 1

n

�
+ 2

for n → ∞

≈ −(2n)2/3 + 2

(3.23)

Similarly, we calculate the upper bound for κ1 from Eqs. (3.21) and (3.22) as fol-

lows

κ1 < − 2√
3

√
n+ 2

Hence, combining the above two cases for Δ > 0 we have

−(2n)2/3 + 2 < κ1 < − 2√
3

√
n+ 2

and finally from Eq. (3.6), we get bounds for n1 as follows
4

3
n− 4√

3

√
n < nκ1

1 < (2n)4/3 − 4n2/3

From the above, we conclude that for a given n value as m varies in the range given

in Eq. (3.21), size of the wheel graph varies in the above range. Finally, we show

that 4
3
n − 4√

3

√
n > n for n ≥ 49 and (2n)4/3 − 4n2/3 > n for n ≥ 4. Hence, for

n ≥ 49, size of the wheel graph exceeds the given n. Thus, we can not use κ1 for

the wheel graph size calculation from Eq. (3.6).

Case (iii) [Δ < 0]: Subtracting 1 from Eq. (3.20), we get upper bound for m

n+ 1 ≤ m ≤
�
(nσ + p) +

(n+ 3q)
�

3(n+ 3q)

9

�
− 1 (3.24)

for which Δ < 0. Now, following the inequality in Eq. (3.24), from Eq. (3.12) we

get

Δ1 = z
1/3
1 and Δ2 = z

1/3
2
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where

z1 =

�
−(m− nσ − p) + i

��
n

3
+ q

�3

− (m− nσ − p)2

�

z2 =

�
−(m− nσ − p)− i

��
n

3
+ q

�3

− (m− nσ − p)2
� (3.25)

Hence, Δ1 and Δ2 are the cubic roots of complex numbers z1 and z2 respectively.

Therefore, in the polar form

z1 = rz1 [cos θz1 + i sin θz1 ]

z2 = rz2 [cos θz2 + i sin θz2 ]

and the cubic roots of z1 and z2 can be calculated as

Δs
1 = 3

√
rz1

�
cos

2πs+ θz1
3

+ i sin
2πs+ θz1

3

�
, s = 0, 1, 2

Δs
2 = 3

√
rz2

�
cos

2πs+ θz2
3

+ i sin
2πs+ θz2

3

�
, s = 0, 1, 2

and hence from Eq. (3.11) we get

κ1 = Δs
1 +Δs

2 −
b

3

= 3
√
rz1

�
cos

2πs+ θz1
3

+ i sin
2πs+ θz1

3

�
+

3
√
rz2

�
cos

2πs+ θz2
3

+ i sin
2πs+ θz2

3

�
− b

3

(3.26)

To simplify the above equation, we perform the following steps. From Eq. (3.25),

we calculate

rz1 =

����
(−(m− nσ − p))2 +

���
n

3
+ q

�3

− (m− nσ − p)2
�2

=

�
n

3
+ q

� 3
2

Similarly, from Eq. (3.25) we also get, rz2 =
�

n
3
+ q

� 3
2

. Hence,

rz1 = rz2 =

�
n

3
+ q

� 3
2

(3.27)

Now, one can see that for the range of m value in Eq. (3.24), (m − nσ − p) > 0

and
�

(n
3
+ q)3 − (m− nσ − p)2 > 0 for 0 < � � 1. Hence, z1 and z2 in Eq.

(3.25) belongs to the second and third quadrant of the Argand plane and complex

54



CHAPTER 3. 3.6. APPENDIX: DISCRIMINANT ANALYSIS

-40

-20

0

20

40

r
o
o
ts

1

650

1300

n
1

k
1

k
2

k
3

n
1

n
1

n
1

n
k
1

k
2

k
3

(a) (b)

1001 4000 7100
m

710040001001
m

Figure 3.8: In the cubic equation for the coefficient n = 1000, � = 0.00002 and for
different values of m in the range given by Eq. (3.24). (a) One can observe nature
of three unequal real roots for Δ < 0. (b) Behavior of the wheel graph component
size calculated from Eq. (3.6) and for three different roots denoted as nκ1

1 , nκ2
1 and

nκ3
1 respectively. We can obseve that for sparse network nκ1

1 is larger than n. On
the other hand as network becomes dense, nκ3

1 becomes larger than n. nκ2
1 is always

leser than n.

conjugate to each other. We find the principal value for the argument in the range

of (−π, π] [105]. Hence, the argument becomes

θz2 = −θz1 (3.28)

Now, from Eq. (3.26) by using the relations in Eqs. (3.27) and (3.28) we get

κ1 = 2 3
√
rz1 cos

θz1
3

�
cos

2πs

3
+ i sin

2πs

3

�
− b

3
(3.29)

Further, it is known Δ < 0 provides three unequal real roots, hence, κ1 should be

a real value [99–101]. One can see that we get a real value for s = 0 and complex

number for other s values. Finally, for s = 0, from Eq. (3.29) we get

κ1 = 2

�
n

3
+ q

� 1
2

cos
θz1
3

+
6− 2�

3
(3.30)

and similarly from Eq. (3.11) by using the relation in Eqs. (3.27), (3.28) and for

s = 0, we get

κ2 = 2

�
n

3
+ q

� 1
2

sin

�
θz1
3

− π

6

�
+

6− 2�

3

κ3 = −2

�
n

3
+ q

� 1
2

sin

�
θz1
3

+
π

6

�
+

6− 2�

3

(3.31)

Next, we calculate the lower and upper bounds for the roots in the range of m for a

given n in Eq. (3.24). We know that z1 is in second quadrant, thus, π
2
< θz1 < π,

implies π
6
<

θz1
3

< π
3
, hence, 1

2
< cos

θz1
3

<
√
3
2

and which is positive. Further,

0 <
θz1
3

− π
6
< π

6
implies that 0 < sin(

θz1
3

− π
6
) < 1

2
. Finally, π

3
<

θz1
3

+ π
6
< π

2
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implies that
√
3
2

< sin(
θz1
3

+ π
6
) < 1. Further, we find the lower and upper bound

for the roots from Eqs. (3.30) and (3.31) using the binomial approximation for

0 < � � 1 and n → ∞ as follows
1√
3

√
n+ 2 < κ1 <

√
n+ 2

2 < κ2 <
1√
3

√
n+ 2

− 2√
3

√
n+ 2 < κ3 < −√

n+ 2

Finally, use the lower and upper bounds of κi and calculate the bounds of n1 in Eq.

(3.6) as follows
1

3
n+

2√
3

√
n < nκ1

1 < n+ 2
√
n

1 < nκ2
1 <

1

3
n+

2√
3

√
n

n− 2
√
n < nκ3

1 <
4

3
n− 4√

3

√
n

From the above 1
3
n + 2√

3

√
n > n for n < 3, n + 2

√
n > n for n > 0, and finally

4
3
n − 4√

3

√
n > n, n ≥ 48. Hence, if we choose n ≥ 49, nκ2

1 will always be less

than n.

We numerically vary m in the range in Eq. (3.24) and examine the behavior of

three different roots (Fig. 3.8(a)) and their corresponding n1 values (Fig. 3.8(b)).

One can observe that for a small region, size of nκ1
1 and nκ3

1 exceeds the given

n (depicted by a horizontal dotted line in Fig. 3.8(b)). Importantly, the bounds

obtained from the analysis are in good agreement with the numerical results and

indicate that for sparse networks small portion of the κ1 cannot be used to find wheel

graph size (Fig. 3.8(a) marked with an ellipse). Consequently, for dense networks,

κ3 can not be used for the wheel graph size calculation (Fig. 3.8(a) marked with an

ellipse) and κ2 always works well. Hence, we use κ1 and κ2 to calculate the wheel

and random regular component size to construct Gnew.
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Chapter 4

Impact of PEV localization on Eigen-
vector centrality measure

4.1 Introduction

Complex networks or graphs provide a powerful framework to understand the im-

portance of individuals and their interactions in real-world complex systems [2,

106]. For instance, in a transportation system, cities represent the nodes and the

routes among them represent the links or edges. Social media like Facebook can

also be seen as edges of friendship where people are the nodes. It is often essen-

tial to have the information of “most influential” or “central nodes” in a network.

For example, assuming a population of a city as a social network where we want

to spread news, spreading of information will be faster if we pass the news to the

central person or a group of people having more connections. To understand the

relevance of a node in a network, different types of centrality measures have been

proposed [9, 27]. Particularly, measures based on degree centrality, betweenness

centrality, closeness centrality, and eigenvector centrality (EC), are successful in

assigning centrality weights to the nodes in a network. The degree centrality identi-
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fies a node as a central node based on the number of edges connected to it, whereas,

EC measures devised by Bonacich is based on how important its neighboring nodes

are and is calculated by taking into account the weights of the neighboring nodes as

well [107]. Further, the EC value for each node in a network can easily be calculated

from the PEV entry of the corresponding adjacency matrix [27]. In other words, the

EC vector of a network corresponds to the PEV of the network’s adjacency matrix.

Despite considerable success of EC in ranking the nodes of a network [108–

115], Martin et al. demonstrated that under certain circumstances PEV might un-

dergo a localization transition where most of the weights get concentrated on a few

nodes leading to a failure of EC [24, 116]. Note that PEV is said to be localized

when independent of the network size few entries of the vector take large constant

weights while rest of the entries receive tiny weights. There exists another extreme

case for PEV, i.e., the delocalized state. PEV is said to be delocalized when all

the entries in PEV receive almost the same weight independent of the network size

[23, 24].

Using random matrix theory, Ref. [24] proposed a structural relationship (kmax >

κ(κ+1)) between the average degree (κ) and maximum degree (kmax) of a network

to observe the localization of PEV, thereafter imposing severe problems to the EC

measure. These studies concentrated on finding constraints for a localized PEV and

its impact on the EC measures. However, it is not clear what impact a delocal-

ized PEV state has on the EC measure. Additionally, if there exists a relationship

between the network’s parameters governing its structure, ensuring a delocalized

PEV?

Using wheel-random-regular (WRR) model network introduced in chapter 3,

we show that not only PEV localization can lead to a problem for the EC, but de-

localization in PEV can also create problems to the EC measure. We know that

for a connected regular graph, PEV is delocalized (Theorem 6 [26]), and therefore

the degree centrality and EC provide the same information [107]. It is evident that

for the regular or random regular network have delocalized PEV as all the nodes

carry the same information in the network. However, investigations of the WRR
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model reveal that graphs consisting of heterogeneous degrees can also have delo-

calized PEVs. In this chapter, using the WRR model, we show that along with the

occurrence of localization state, the occurrence of delocalization of PEV can also

affect weights assignment to the higher degree nodes, thereby creating difficulties

in accessing relative importance of the nodes, causing the failure of EC.

We fabricate the chapter as follows: Section 4.2 describes the notations and def-

initions of the mathematical terms. Section 4.3.2 illustrates the results demonstrat-

ing PEV localization-delocalization for wheel-random regular, star-random regular,

friendship-random regular, and scalefree-random regular networks. It also contains

a subsection which discusses the failure of EC measure due to the localization-

delocalization transition of PEV. Finally, section 4.5 summarizes our work.

4.2 Background

In this section, we again briefly provide the basics of adjacency matrices, EC mea-

sure, and IPR. A graph can be represented as G = (V,E) where V is the set of nodes

and E is the set of edges (links) among them. We denote |V | = n as the number of

nodes and |E| = m being the number of edges of G. Here, we consider undirected,

unweighted, connected, and simple networks. Hence, the corresponding adjacency

matrix can be denoted as A and represented easily as

aij =




1 if nodes i and j are connected

0 Otherwise

The number of edges to a particular node is referred as its degree denoted as ki =
�n

j=1 aij . The average degree of the network is denoted by �k� = 1
n

�n
i=1 ki. We

refer the maximum degree node or the hub node of G as kmax = max1≤i≤n ki.

Here, A is a real symmetric matrix and consequently has a set of real eigen-

values {λ1,λ2, . . . ,λn}. The corresponding orthonormal set of eigenvectors are

{x1,x2, . . . ,xn} where

xi = ((xi)1, (xi)2, . . . , (xi)n)
T

for i = 1, 2, . . . , n. Further, A is a non-negative matrix and it follows from the

Perron-Frobenius theorem [27] that there exists a positive and simple eigenvalue λ1.
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The eigenvector corresponding to λ1 is a unique positive eigenvector (x1) referred

as the principal eigenvector.

The EC vector, v = (v1, v2, . . . , vn)
T denotes the centrality of all the nodes and

vi can be calculated as

vi = λ−1
1

n�

j=1

aijvj (4.1)

It is well known that v corresponds to x1 [27].

We use the inverse participation ratio (IPR) to measure the PEV localization

[24, 25]. The IPR of the PEV can be calculated [4, 23–25] as follows:

Yx1 =
�n

j=1
(x1)

4
j (4.2)

where (x1)j is the jth component of x1. A completely localized PEV with com-

ponents x1 = (1, 0, . . . , 0)T yields an IPR value, Yx1 = 1, whereas a completely

delocalized PEV with component x1 = ( 1√
n
, 1√

n
, . . . , 1√

n
)T has Yx1 = 1

n
. In gen-

eral, PEV is said to be localized if Yx1 = O(1) as n → ∞ and referred to as

delocalized if Yx1 → 0 as n → ∞ [4]. It is known that for any connected regular

graph, x1 = ( 1√
n
, 1√

n
, . . . , 1√

n
)T (Theorem 6 [26]) and thus, Yx1 = 1

n
. Next, if

we consider a disconnected graph where each node is isolated without having any

interaction with any one and having a self-loop, adjacency matrix will be an iden-

tity matrix and for which we can choose x1 = (1, 0, . . . , 0)T leading to Yx1 = 1.

However, if we consider a connected network having non-negative entries, all the

entries of the PEV is positive (from Perron-Frobenius theorem). Hence, IPR value

of the PEV should be in the range 1/n ≤ Yx1 < 1 for n ≥ 2. However, to test

whether the PEV is localized or not for IPR being in the range 1/n < Yx1 < 1, we

adopt the procedure proposed for the detection of the Anderson localization [60]

and which was recently used to measure the eigenvector localization in complex

networks [23–25]. According to this procedure, one should calculate the IPR value

of PEV for different network sizes. If Yx1 tends to have a constant value as n → ∞,

PEV is localized, otherwise it is delocalized [25].
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Figure 4.1: Localization transition in the PEV for hub node size being larger than
the square of the average degree of the networks (kmax > κ(κ + 1)) [24]. For
kmax being much larger, IPR value shows a drastical increase leading to a non-zero
constant value. We consider a connected random graph of size n = 100000 and
average degree κ = 10, where nth node acts as a hub node and degree of the nth

node varies from 10 to 300.

4.3 Results and Discussion

We first consider a graph model which has only one hub node [24, 116]. This

model network has localized PEV. The PEV entries experience minor changes with

the change in the network size confirming its localization. Furthermore, using WRR

model networks and its variants, we demonstrate that non-regular networks can have

localized as well as delocalized PEV. Further, with the help of the WRR model

network, we show that the delocalization of PEV can also cause failure to the EC as

it does not assign sufficiently large weights to the higher degree nodes. All the data

and codes used in this paper are available at GitHub repository [117].

4.3.1 Localization transition in Random Graph Model

In the random graph (RG) model [24], a random subgraph (GRG) of size n − 1

is generated with the connection probability between a pair of vertices being p =

κ/(n − 1) for n → ∞. The random subgraph is generated using the algorithm

in [118]. Further, nth node is included in GRG such that it connects to the n − 1

existing nodes of the random subgraph with a probability kmax/(n − 1), where

kmax >> κ. Hence, the expected number of connections to the nth node should

be kmax, thereby nth node will be the hub node. Further, using the random matrix

61



CHAPTER 4. 4.3. RESULTS AND DISCUSSION

1 100 500
10

−6

10
−4

10
−2

10
0

(x
1
) i

1 100 50000
10

−6

10
−4

10
−2

10
0

i

(x
1
) i

1 100 1000
10

−6

10
−4

10
−2

10
0

1 100 10000
10

−6

10
−4

10
−2

10
0

1 100 100000
10

−6

10
−4

10
−2

10
0

i
1 100 150000

10
−6

10
−4

10
−2

10
0

i

n=500

n=50000 n=150000n=100000

n=1000

(a) (b) (c)

(d) (e) (f)

n=10000

Figure 4.2: Sorted localized PEV entries ((x1)i for i = 1, 2, . . . , n) for different
network size. The average degree (κ = 10) and maximum degree (kmax = 130)
remains fixed and which satisfies kmax > κ(κ+1). The PEV entries corresponding
to the hub node (marked with a circle) and its adjacent nodes receive large constant
weights as n → ∞. The PEV entries corresponding to the nodes which are not
connected to the hub node (after dotted vertical lines) gradually show a decrease,
eventually becoming close to zero as n → ∞.

theory, it has been shown in Ref. [24] that if the size of the hub node is larger than

κ(κ + 1), localization transition occurs. Further, the PEV entry corresponding to

the hub node and its immediate neighbors are expected to have constant values, and

which should only depend on κ and kmax. However, rest of the nodes which are not

adjacent to the hub node receive a vanishing weight as n → ∞. Note that κ is the

average degree of the random subgraph containing n− 1 number of nodes.

Fig. 4.1 indicates that for a hub node of size kmax, kmax < κ(κ + 1), IPR

value of PEV is small and in fact it lies close to zero. However, as kmax becomes

greater than κ(κ+ 1), there arises a sudden jump in the IPR value (Fig. 4.1) as also

illustrated in [24]. Though, it is evident from Fig. 4.1, that for fix values of n and

κ, if we form a hub node of size kmax such that it is larger than κ(κ+ 1), IPR value

of PEV is large. However, it is not clear that with an increase in the network size

by fixing κ and kmax, whether IPR value remains fixed to a large value, and how

exactly the PEV entries behave?
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Figure 4.3: Schematic representation of the wheel-random-regular model networks
(GWRR). Here, n1 is the number of nodes in the wheel graph and n2 is the number
of nodes in the random regular network having an average degree of κ. With an
increase in the number of nodes in the random regular network, while fixing κ, the
hub node size of wheel graph remains unchanged.

Figure 4.2 plots sorted PEV entries ((x1)i) for different network sizes by fixing

κ and kmax such that kmax > κ(κ + 1). For each value of n, the PEV entry cor-

responding to the hub node adopts a large value (marked with a circle in Fig. 4.2),

and successive PEV entries become approximately equal to each other forming a

horizontal band (Fig. 4.2). Additionally, we observe that PEV entries in the hori-

zontal band correspond to those nodes which are directly connected to the hub node.

After the horizontal band, the PEV entries show a gradually decrease and become

close to the zero as n → ∞ (Fig. 4.2). Hence, in the limit of large n, the size of

the hub and its neighboring nodes play a vital role in the occurrence of localization

transition of PEV. Note that we choose κ such that the random subgraph is always

connected even for large values of n. In the following, we use a few other simple

models to demonstrate the localization-delocalization transition as a consequence

of single edge rewiring of PEV and relation of this transition with the behavior of

EC measure.

4.3.2 Wheel-Random-Regular Model

In this section, we use WRR model network introduced in chapter 3 to provide a

simple method, instead of the random matrix theory, to derive a condition to form a

model network having the highly localized PEV. Further, the rewiring of a few spe-

cial sets of edges in this model network is shown to lead the delocalization transition

of PEV. This section demonstrates that occurrence of the localization-delocalization
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transition of PEV in WRR model networks as a consequence of single edge rewiring

creates difficulties in weights assignment to the nodes based on EC, thereby leading

to the failure of EC.

As discussed in section 3.3.2, the WRR model consists of a random regular

graph and a wheel graph. Let us denote it as GWRR (Fig. 4.3). This model network

manifests both the localization as well as the delocalization of PEV, occurrence of

which is decided by the largest eigenvalue relation of the individual graph com-

ponents. We denote the wheel graph as W = {VW, EW} where |VW| = n1 is the

number of nodes and |EW| = 2(n1 − 1) is the number of edges in W. Further, the

random regular graph is denoted as R = {VR, ER} where |VR| = n2 is the number

of nodes and |ER| = n2κ
2

is the number of edges with each node having degree κ.

We generate the random regular graph using the algorithm in [98]. Further, it is

known that for a wheel and a random regular graph, the largest eigenvalues are as

follows [78]

λW
1 =

√
n1 + 1 and λR

1 = κ (4.3)

We combine a wheel graph and a random regular graph such that

(a) λW
1 > λR

1 or (b) λW
1 = λR

1 + � where 0 < � < 1 (4.4)

leading to occurrence of highly localized PEV (learned from chapter 3). To con-

struct GWRR by holding the relation in Eq. (4.4) requires the network parameters

(κ, n1 and n2) of W and R. One can observe that substitute Eq. (4.3) in Eq. (4.4),

one can easily find the size of W as follows

(a) n1 > (κ− 1)2 or (b) n1 = �(κ− 1 + �)2� (4.5)

where (��) is the ceiling function. For the random regular graph, we can choose

any arbitrary size and average degree such that κn2 is even. Hence, for a particular

value of κ, Eq. (4.5) implicitly ensures the validity of Eq. (4.4). In GWRR all the

nodes corresponding to R component has degree κ except one node having degree

κ+ 1 which connects to W component. Simultaneously, all the peripheral nodes of

W has degree 3 except one node of degree 4 which connects to R component. From
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Figure 4.4: Value of localized PEV entries of (a) network constructed by combining
a wheel graph (W) with a random regular (R) graph. We choose n1 = 1938, n2 =
470 and κ = 45 satisfying λW

1 = λR
1 + �, � = 0.00002 and yielding a network

(GWRR) with n = 2408 nodes and m = 14806 edges. For GWRR, IPR value of PEV
is equal to 0.2389. Next, by fixing size of W, we increase size of R by keeping κ
constant. This arrangement leads to λW

1 = λR
1 + � and keeps the PEV entries same

for the hub as well as its adjacent nodes as n → ∞. (b) The same network but
by removing an edge connected to the hub node in W and adding it between a pair
of nodes in R. This rewiring yields delocalization transition in PEV. By increasing
the size of GWRR by including nodes to R keeping the κ fixed, and the eigenvalue
relation λW

1 < λR
1 holds true, and PEV entries take very less values for the hub

and its neighboring nodes as n → ∞. (c) IPR values of PEV (Yx1) for the wheel-
random-regular (WRR) graph as a function of combined network size n. For each
value of n, we consider two WRR graphs, first WRR graph is generate by holding
the relation in Eq. (6) and PEV is localized (�). The second WRR graph has an
edge rewired, and PEV becomes delocalized (•). For reference to a delocalization,
we plot 1/n (�) as a function of n.

Eq. (4.5), the maximum degree node of the W component in GWRR has degree

(a) kmax > (κ− 1)2 − 1 or (b) kmax = �(κ− 1 + �)2� − 1, where kmax = n1 − 1

(4.6)

and which is always be greater than κ (3 ≤ κ ≤ n2 − 2). Therefore, Eq. (4.6), es-

tablishes a structural relationship between the size of the hub node of GWRR (kmax)

and average degree (κ) of random regular graph, which can also be holds true for

WRR model networks having the localized PEV. Hence, Eq. (4.6) ensures that the

maximum degree node of GWRR will always come from the wheel graph component

of GWRR.

In the following discussions, we primarily focus on the localization-delocalization

transition as a consequence of single edge rewiring and for which we consider

0 < � < 1. Importantly, upon changing the bound to � > 0, we get part (a) of

65



CHAPTER 4. 4.3. RESULTS AND DISCUSSION

Eqs. (4.4), (4.5) and (4.6). In section 4.6, we analytically show that by holding

λW
1 > λR

1 , PEV entries of the wheel subgraph contribute more to the PEV of GWRR

as compared to that of the regular graph part.

4.3.2.1 Localization transition in WRR model

First, we perform an experiment to show that GWRR contains a localized PEV. We

construct GWRR by combining a wheel graph and a random regular graph by satis-

fying Eq. (4.4) and which gives a large IPR value. Next, to ensure localization of

PEV, we fix the average degree of R and increase the number of nodes in R, result-

ing in an increase in the size of GWRR (Fig. 4.3). In the other words, increasing

n2 leads to an increase in the number of nodes (n) in GWRR, however, the network

keeps satisfying λW
1 = λR

1 + �. We observe that PEV entries remain almost constant

for the hub and its adjacent nodes (Fig. 4.4(a)), as well as IPR remains fixed to a

constant value (Fig. 4.4(c)) indicating localization of PEV.

4.3.2.2 Delocalization transition in WRR model

Next, to witness the delocalized state, we consider the same model as the above and

simply rewire an edge from the W component to the R component of GWRR. We

denote the modified graph as �GWRR, and the imperfect wheel and random regular

component as �W and �R, respectively. In GWRR (Fig. 4.3), just by removing an edge

connected to the hub node of W and adding it between a pair of nodes in R yields

�GWRR with λ
�W
1 = λW

1 − δ = λR
1 + � − δ such that δ > �. Upon performing one

such rewiring, there is a drastic change in the PEV entries (Fig. 4.4(b)) leading to

a small IPR value indicating delocalization. However, to ensure this delocalization

in PEV upon such rewiring, we increase the size of �GWRR by including more num-

ber of nodes to the random regular subgraph without changing the average degree

κ leading to an unchanged of the eigenvalue relation for both of the components

(λ �W
1 = λR

1 + �− δ). The IPR shows a value close to 1/n as n → ∞ which confirms

delocalization of PEV (Fig. 4.4(c)). Interestingly, this network has a hub node of

the significant size (kmax = �(κ− 1 + �)2� − 2), however, due to an occurrence of

the delocalization in PEV, EC is unable to assign high weights to the hub and its
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Figure 4.5: (a) Measure the difference between δ = λW
1 −λ

�W
1 as a function of wheel

graph size (n1) after removing hub edge (•) and peripheral edge (◦). IPR value
of the combined network and the largest eigenvalue of the individual component
as a function of � to demonstrate that a particular value of � is required to witness
sudden change in the IPR value as a consequence of a single edge rewiring. (b) IPR
of localized and delocalized graph and (c) plot λW

1 & λR
1 and (d) plots λ

�W
1 & λ

�R
1 .

The size of the wheel graph is calculated from Eq. (4.5), where parameters of the
random graph is n2 = 500 and κ = 6.

neighboring nodes resulting in a failure of EC measure (Fig. 4.4(b)). Further, one

can say that there exists a single point transition for localization-delocalization of

PEV. Notably, in the delocalized state, the PEV weights flip between �W and �R of

�GWRR, as well as PEV entry weight corresponding to the hub node becomes tiny

(Fig. 4.4(b)). To conclude, we have found at least one network structure where the

delocalization of PEV creates a problem for EC. Note that chapter 3 illustrates, for

such situations, there exists a localized second-largest eigenvector.

4.3.2.3 Impact of � on IPR value

Next let us explain that moving one edge from W to R in GWRR involves two steps

(i) removing an edge from W component and (b) including it in the R component.

We know that removal of an edge from a connected graph always leads to a decrease

in the largest eigenvalue, whereas addition of a new edge in a network leads to an
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increase the largest eigenvalue (Proposition 1.3.10, [119]). To track the amount of

decrement (δ) in λW
1 as a consequence of single edge removal, we perform numer-

ical simulations for different values of n1. It is clear from Fig. 4.5(a) that removal

of an edge connected to the hub node of W leads to a significant decrease in λW
1

whereas removal of an edge connected to the peripheral nodes in W leads to negli-

gible change in λW
1 . Therefore, to capture the sudden change in the PEV localization

upon a single ede rewiring, we focus on those edges of W which are connected to

the hub node. Further, upon addition the edge to the R leads to an increment in λR
1

which is negligible because of regularity of the network and we assume λ
�R
1 = λR

1 .

It indicates that before and after a single edge rewiring, λW
1 is affected substantially.

As we have already mentioned that for the localized PEV, λW
1 = λR

1 + �, 0 < � < 1

whereas for a delocalized PEV, λ �W
1 = λR

1 + � − δ provided δ > � upon a sinlge

edge rewiring. Hence, single edge removal leads to a decrement in λW
1 such that δ is

greater than � leading to delocalization transition. Fig. 4.5(a) convey that δ itself is

a small quantity for large n1. Thus, if we consider � << 1, δ can easily take value

greater than � upon a single edge rewiring leading to the delocalization transition.

However, if we consider � < 1 (Fig. 4.5(b)) or � > 1, we have to either remove

more number of edges (nodes) from the W or increases the average degree of R

to adjust the eigenvalue relation between the individual component (λ �W
1 < λ

�R
1 ) to

witness the delocalization transition. Fig. 4.5(c) and (d) depict the behavior of λW
1

and λR
1 as � value changes. The figures portray that before the rewiring, eigenvalue

relation follows as λW
1 > λR

1 , and after the rewiring eigenvalue relation changes to

λ
�W
1 < λ

�R
1 .

Further, we show that instead of WRR model, one can observe the single localization-

delocalization transition point for the other models as well. The only condition

which holds good should be that one component should have a hub node and another

should be random regular such that they satisfy the eigenvalue relation (λC1
1 > λC2

1 ).

In the following, we perform the investigation by replacing W with a star, friend-

ship and scalefree graph (discussed in chapter 1), and show that regulating the

largest eigenvalues of the subgraph components; one can observe the localization-

68



CHAPTER 4. 4.3. RESULTS AND DISCUSSION

4096 8192 16384
n

1e-05

0.0001

0.001

0.01

0.1

1

Y
x
1

1/n

delocalized

localized

1024 4096
n

1/n

delocalized

localized

4096 8192 16384
n

1/n

delocalized

localized

(a) (b)

2080

(c)

2408 531 10531

Figure 4.6: (a) IPR values of PEV (Yx1) for the star-random-regular (SRR) graph
as a function of combined network size n. For each value of n, we consider two
SRR graphs, first SRR graph is generate by holding λS

1 > λR
1 and PEV is localized

(�). The second SRR graph has delocalized PEV by holding λS
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reference to a delocalization, we plot 1/n (�) as a function of n. (b) Same as (a)
but for the friendship-random-regular (FRR) networks; (c) Same as (a) but for the
scalefree-regular (SFRR) networks.

delocalization transition for the combined network.

4.3.3 Localization transition in other graph models

As demonstrated for the WRR model, we first show that there exists a localized

state of PEV for the star random regular model (GSRR). We consider star graph

S = {VS, ES} having |VS| = n1 number of nodes, |ES| = n1 − 1 number of edges

and λS
1 =

√
n1 − 1. GSRR is constructed by combining a S and a R which satisfies

λS
1 > λR

1 and leads to a large IPR value. Next, to ensure the localization of PEV

in GSRR, we fix the average degree of R and increase the number of nodes in R

resulting in an increase in the size of GSRR. However, the network keeps satisfying

λS
1 > λR

1 . We observe that IPR remains fixed to a constant value as n changes (Fig.

4.6(a)) indicating localization of PEV.

Finally, we replace W in the WRR model with a friendship (F) and a scale-free

network (SF), respectively. We find that again by holding the eigenvalue relation

between the two subgraph component, PEV can be made localized (Fig. 4.6(b) and

(c)). Table 1 summarizes the network parameters to construct WRR, SRR, FRR,

and SFRR model networks having localized PEV.
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4.3.4 Delocalization transition in other graph models

In GSRR, removing an edge connected to the hub node and adding it between a

pair of nodes in R yields λS
1 < λR

1 where λS
1 and λR

1 are eigenvalues of S and R,

respectively. Upon performing one such rewiring, there exists a drastic change in

the PEV entries yielding a small IPR value indicating delocalization of PEV. To

ensure the occurrence of the delocalization transition in PEV, we increase the size

of GSRR by including more number of nodes to R without changing the average

degree κ as in the WRR model. The eigenvalue relation for both of the components

keep holding true (λS
1 < λR

1 ) for n → ∞, and the IPR value comes closer to 1/n

which confirms the PEV delocalization [Fig. 4.6(b)]. Similarly, for the friendship-

random regular and scalefree-random regular models, one can adjust the eigenvalue

relation between individual components to make delocalization of PEV [Fig. 4.6(b)

and (c)].

G WRR SRR FRR SFRR
n1 n1 > (κ − 1)2 n1 > κ2 + 1 n1 > �(κ2 − 1

2
)2 + 3

4
� n1

λ
C1
1 λW

1 = 1 +
√
n1 λS

1 =
√

n1 − 1 λF
1 = 1

2
+ 1

2

√
4n1 − 3 [120] λSF

1 ≈ max{√kmax,
�k2�
�k� } [25]

λ
C2
1 λR

1 = κ, κ ≥ 3 λR
1 = κ, κ ≥ 2 λR

1 = κ, κ ≥ 2 λR
1 = κ, κ ≥ 2

kmax kmax > (κ − 1)2 − 1 kmax > κ2 kmax > �(κ2 − 1
2
)2 + 3

4
� − 1 kmax

Table 4.1: We portray various network parameters of wheel-random regular (WRR),
stat-random regular (SRR), Friendship random regular (FRR) and scale-free ran-
dom regular (SFRR) networks which provides localized PEV state.
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4.4 Failure of EC measure

The model graph structure demonstrating a peculiar behavior of EC is artificially

constructed; however, these investigations, helps in having a better understanding

of the effects of PEV localization and delocalization in complex networks. Impor-

tantly for all the models (WRR, SRR, FRR, SFRR), there can exist the localized as

well as delocalized PEV state is an interesting observation. As EC weights corre-

spond to the PEV entries weights, the localization transition in the PEV is accom-

panied with assigning almost constant weights to the hub and its neighboring nodes,

and very tiny weights to the rest of the nodes in the network. Therefore, it is pre-

determined that in the localized environment, EC will always assign a large weight

to the hub node, followed by comparatively smaller weights to all its neighboring

nodes. Rest of the nodes will receive negligible weights though their degrees can be

higher than those of the neighboring nodes of the hub node (Fig. 4.4(a)). Further,

calculation of the Pearson correlation coefficient between the normalized degree

vector (in Euclidean norm) and PEV which is denoted by rdeg−pev reveals that for

the WRR model network, having a localized PEV, degree vector and PEV are un-

correlated. Importantly, there exists a negative correlation between those degrees

and the PEV entries which correspond to the random regular component of the net-

work, and a positive correlation between the degrees and PEV entries corresponding

to the wheel component. These situations arise as the nodes not connected to the

hub node are unable to receive centrality weights though their degrees are large as

compared to the nodes directly connected to the hub node. Consequently, it leads to

the failure of EC measure for the localized PEV. Note that, to avoid the localization

effect in PEV of the adjacency matrices, the PEV of non-backtracking matrices has

been useful in ranking the nodes in networks [23].

Fig. 4.7(b) reflects that for the case of delocalized PEV, rdeg−pev is high (Fig.

4.7(b)). Further, rdeg−pev = 1 if it is measured by excluding the hub node degree

and the corresponding PEV entry weight. It indicates that both the degree vector

and PEV is highly correlated in the network having delocalized PEV state and hence
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EC is unable to recognize the wheel hub node as an important node. Our study il-

lustrates that for such kind of core-periphery network structures (WRR, SRR, FRR,

SFRR model) having delocalized PEV, it is better to use degree centrality instead of

EC for measuring the centrality of the nodes as also mentioned in Refs. [107, 121].

4.5 Conclusion

The current study has focused on understanding the relationship between EC and

the networks having localized-delocalized PEV in the limit of large n. By using a

WRR model network, we have demonstrated that not only the localization transition

of PEV can cause difficulties for EC in assigning weights to the nodes, but also

the delocalization transition of PEV can also cause a problem to the EC measure.

Based on numerical simulations for large size networks, we demonstrate that for

PEV being localized, the size of the network imparts minor effects to the PEV entry

weights corresponding to the hub and its neighboring nodes.

This work portrays that EC measures and the PEV localization have two differ-

ent perspectives in which the former is used to rank the nodes and later stands as a

particular phenomenon predicting difficulties associated with the EC measure. The

PEV localization of network is confirmed if there exists a particular arrangement of

the nodes and edges such that few entries of the PEV take very large values with

rest of the entries taking tiny values, and this arrangement should hold good inde-

pendent of the network size. By considering the size of the hub node and average

degree fixed, we may not achieve the localized PEV as n → ∞. Nevertheless, by

satisfying a particular relation between the size of the hub node and the average

degree of the network (Eq. (4.6)), we may achieve a network which undergoes to

the localization transition as demonstrated for the model networks discussed in this

chapter.

Though, the WRR model network depicts such a very typical behavior of PEV

in the localized-delocalized state, which may be difficult to observe for real-world

systems. However, we know that many real-world networks follow power-law de-

gree distributions and thus contain several large degree nodes, naturally forming
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imperfect wheel graph (i.e., star, friendship, etc.). Our study offers a platform to

understand PEV localization behaviors of real-world systems, as well as to relate

them with the network’s structural properties by providing fundamental insight to

localization and delocalization behavior of eigenvectors of networks [122, 123].

Finally, in the next chapter, we have extended the optimized network evolution

process discussed in chapter 2 for the multilayer networks and analyze the network

properties.

4.6 Appendix: Wheel-Random-Regular model

Our aim is to interpret PEV and largest eigenvalue of G ≡ GWRR interms of PEV

and largest eigenvalue of W and R component and find a relation between them. We

connect a wheel network (W) with an edge to a random regular network (R) such

that λW
1 > λR

1 holds true. Hence, from Eq. (4.4 a), n1 > (κ − 1)2, which indicates

that for a fixed κ, we can choose a n1 and we have no restriction on n2. Therefore,

we get a combined graph G and the corresponding adjacency matrix (A ∈ Rn×n

such that n = n1 + n2) as follows

Ax1 = λG
1x1

Wn1×n1 Pn1×n2

PT
n2×n1

Rn2×n2




 x1

1n1×1

x2
1n2×1


 = λG

1


 x1

1n1×1

x2
1n2×1




where P matrix contains only single one. Hence, we have

Wx1
1 + Px2

1 = λG
1x

1
1

PTx1
1 + Rx2

1 = λG
1x

2
1

(4.7)

where x1
1 ∈ Rn1 is the upper part and x2

1 ∈ Rn2 is the lower part of PEV (x1 ∈ Rn)

of A. Moreover W ∈ Rn1×n1 and R ∈ Rn2×n2 are real symmetric matrices. Hence,

eigenvectors of W, {vW
1 ,vW

2 , . . . ,vW
n1
} are orthonormal and form a basis for the n1

dimensional real vector space. Similarly, eigenvectors of R, {vR
1 ,v

R
2 , . . . ,v

R
n2
} are

orthonormal and form a basis for the n2 dimensional real vector space. Therefore,

we can represent x1
1 and x2

1 as a linear combinations of the eigenvectors of W and

R as follows,

x1
1 =

n1�

i=1

civ
W
i and x2

1 =

n2�

i=1

div
R
i (4.8)
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where ci ∈ R and di ∈ R are the scalar quantity respectively. In Eq. (4.8), multi-

plying both sides by vWT

1 and vRT

1 we get,

c1 = vWT

1 x1
1 and d1 = vRT

1 x2
1

(4.9)

Now, substitute Eq. (4.8) in Eq. (4.7) and we get

W

n1�

i=1

civ
W
i + Px2

1 = λG
1

n1�

i=1

civ
W
i

[replace WvW
i with λW

i v
W
i and multiply both sides by vWT

1 we get]

λW
1 +

1

c1
vWT

1 Px2
1 = λG

1

[as ||vW
i ||22 = 1 and vW

i ⊥ vW
j , ∀i �= j]

(4.10)
Similarly, from the second equation in (4.7) we get,

λR
1 +

1

d1
vRT

1 PTx1
1 = λG

1 (4.11)

Hence, from Eqs. (4.10) and (4.11) we get,

λW
1 +

1

c1
vWT

1 Px2
1 = λR

1 +
1

d1
vRT

1 PTx1
1

λW
1 − λR

1 =
1

d1
vRT

1 PTx1
1 −

1

c1
vWT

1 Px2
1

(4.12)

Further, we know

λW
1 > λR

1 (4.13)

We substitute Eq. (4.9) in Eq. (4.12) and get,
1

d1
vRT

1 PTx1
1 >

1

c1
vWT

1 Px2
1

c1
d1

>
vWT

1 Px2
1

vRT

1 PTx1
1

vWT

1 x1
1

vRT

1 x2
1

>
vWT

1 Px2
1

vRT

1 PTx1
1

1
β
(x1

1)1 +
α
β

�n1

i=2(x
1
1)i

1√
n2

�n2

i=1(x
2
1)i

>

α
β
(x2

1)1
1√
n2
(x1

1)n1

(n1 − 1)(x1
1)1(x

1
1)n1 + (

√
n1 + 1)(x1

1)n1

�n1

i=2(x
1
1)i

(
√
n1 + 1)(x2

1)1
�n2

i=1(x
2
1)i

> 1 (4.14)

where vW
1 =

�
1
β
, α
β
, . . . , α

β

�
such that α =

√
n1+1

n1−1
, β =

�
1 +

(
√
n1+1)2

n1−1
[78] and

vR
1 = ( 1√

n2
, 1√

n2
, . . . , 1√

n2
), respectively.

From Eq. (4.14), one can say that holding the relation λW
1 > λR

1 , PEV of the

combined network for which maximum contribution comes from the wheel graph
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part. Even if we vary n2 → ∞, the above relation holds true due to the Perron-

Frobenius theorem that all the PEV entries should receive positive quantity.
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Chapter 5

Extension to the multilayer networks

5.1 Introduction

The traditional monolayer network framework offers only a limited representation

of complex systems having different layers of interactions. Recent years have wit-

nessed emergence of the multilayer network (MN) framework, which provides more

accurate insights into the behaviors of complex systems possessing multiple types

of relations among the same units [32–41]. For example, the collective behavior

of a society, which is modeled by individuals interacting through the Facebook and

Twitter social networks, can be better understood by considering a MN consisting

of layers representing the network of people in each social media. The interactions

within a layer (intra-layer connection) encode friendship relationships between the

pairs of two people within each social media. Whereas the interactions between the

layers (inter-layer connection) represent the impact of interactions in one layer on

the other; for example, two people actively interacting by Facebook may lead to an

increase in their Twitter activities as well [33]. Another example of a real-world

system which inherently has multiple types of relations is the brain. In the brain
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MN, one layer corresponds to a physical network, and another to a functional rela-

tionship among neurons [124]. Furthermore, the physical layer can also itself a MN

in the synaptic level. Neurons can be connected by chemical or electric synapses

forming a brain MN [125, 126].

Furthermore, interactions among the constituents of a system provide a back-

bone for the sustenance of the dynamical behavior or functionality of the entire

system. For instance, in the Facebook-Twitter MN, information propagates through

the links in the individual layer and spread of information propagation depends on

the architecture of the underlying network. Neurons in the brain interact to per-

form specific functions. Reconfiguration or rewiring of functional brain networks

is required during the learning phases [127, 128]. Therefore scrutiny of network

architecture is thus important as ‘structure affects function’ and vice-versa [2].

The last 20 years have witnessed the development of methods and techniques

to characterize various structural properties and functional activities of networks

representing complex systems. Particularly, it has been reported that the eigen-

vector corresponding to the largest eigenvalue, the so-called PEV of the network’s

adjacency matrices, provides information about both the structural and dynamical

properties of the underlying systems [4, 5, 9, 25, 92, 129]. For various dynami-

cal processes on networks, for instance, disease-spreading, the steady-state vector

has been approximated using PEV of the adjacency matrix [4, 129]. To understand

how an individual entity is infected or how information spreads in a network in the

steady-state, it is sometimes enough to analyze the PEV of the corresponding adja-

cency matrices. The behavior of the disease spreading in the SIS model has been

investigated with the help of PEV localization revealing its connection with various

structural properties of the underlying monolayer networks [4, 23, 92, 123]. The

localization of an eigenvector refers to a state where few components of the vec-

tor take very high values, and the rest of the components take very small values.

We quantify the localization of an eigenvector using the inverse participation ratio

(IPR) [4] (see also Eq. (5.1)). Moretti et al. used PEV localization of the corre-

sponding adjacency matrix to analyze the brain network dynamics [11]. Recently,
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Arruda et al. extended the PEV localization concepts for MNs [73] and identified

that the PEV localization behaviors for MNs could be different from the monolayer

networks. Specifically, in the monolayer networks, localization can happen on a few

nodes [4] whereas in MNs, a layer can be localized [73]. These investigations shed

light on the properties of the networks and their relations with eigenvectors, partic-

ularly PEV. However, it remains unclear what specific structural properties the MNs

should have so that they make the corresponding PEV localized. Additionally, how

the network structure of an individual layer affects or regulates the PEV localization

of the entire MN? What role other layers of a MN play in restricting the impact on

the regulating layers. Specifically, the question which we address here using the

optimization technique is that what structural properties an individual layer should

possess so that they correspond to a highly localized PEV of the entire MN.

We organize the chapter as follows: Section 5.2 describes the notations and

definitions used in the following discussion. Besides, section 5.3 contains a brief

explanation of the optimization procedure used in multilayer networks. Section

5.4 illustrates different numerical results for single-layer and both-layer rewiring

protocols and exhibits the emergence of network properties during the optimization

process. Additionally, it contains results of the localization behavior of large scale

real-world multilayer networks. Finally, in section 5.5, we summarize the current

study.

5.2 Background

First, we represent a MN, M = (G,C) [34], where G = {Lα; α ∈ {1, 2, . . . , l}} is

the family of connected monolayer network Lα = {Vα, Eα}, where Vα = {vα1 , vα2 , . . . , vαn}
is the set of vertices and Eα = {eα1 , eα2 , . . . , eαr(α) : er(α) = (vαi , v

α
j )} ⊆ Uα is the

set of edges in the α layer of the MN. We define the universal set Uα = Vα × Vα =

{(vαi , vαj ) : vαi , vαj ∈ Vα and i �= j} which contains all possible unordered pairs of

vertices excluding the self-loops and the complementary set can be defined as Ec
α =

Uα − Eα = {(vαi , vαj ) : (vαi , vαj ) ∈ Uα and (vαi , v
α
j ) /∈ Eα} i.e., Eα ∩ Ec

α = ∅ and

Eα∪Ec
α = Uα. In addition, C = {Eαβ ⊆ Vα×Vβ : α, β ∈ {1, 2, . . . , l},α �= β} is
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the set of edges between Lα and Lβ layers. We refer Eα as the set of all intra-layer

edges and Eαβ = {eαβ1 , eαβ2 , . . . , eαβn } as the set of all inter-layer edges of M. Here,

we consider each node in one layer connected to its mirror node in the other layers

of the MN, and all the layers consist of exactly the same number of nodes.

Second, we denote the adjacency matrices corresponding to Lα as Aα ∈ Rn×n

which can be defined as (aα)ij = 1, if vαi ∼ vαj and 0 otherwise. We represent

degree of a node vαi as kvαi =
�nα

j=1(a
α)ij and the average degree of α layer as

�kα� = 1
nα

�nα

i=1 kvαi . The average degree of the MN is denoted as �k� = 1 +
�l

α=1�kα�
l

. For all the model MNs, each layer has the same average degree and the

same number of nodes. However, there is no such restriction on the average degree

and nodes for the real-world multilayer networks. Here, we consider two layers

MN with L1 = {V1, E1} and L2 = {V2, E2}, where |V1| = |V2| = n, |E1| = m1,

|E2| = m2, |Ec
1| = n(n−1)

2
− m1, |Ec

2| = n(n−1)
2

− m2 and |E12| = n. Hence, the

total number of nodes in M is |V | = 2n = N and edges |E| = m1 +m2 + n = M .

The supra-adjacency matrix [34] of the MN is a block matrix and can be defined as:

A =


 A1 I

I A2




where I is an n× n identity matrix. As A1, A2 and A are real symmetric matrices,

each has real eigenvalues. In addition, the networks are connected. Hence, we

know from the Perron-Frobenius theorem [26] that all the entries in the PEV of A

are positive. We calculate the IPR of the MN [4] as follows:

YxM
k
=

N�

i=1

(xk)
4
i (5.1)

where (xk)i is the ith component of the orthonormal eigenvector, xk, with 1 ≤ k ≤
N , of the MN. A delocalized eigenvector with component [1/

√
N, 1/

√
N, . . . , 1/

√
N ]

has the IPR value 1/N , whereas the most localized eigenvector with components

[1, 0, . . . , 0] yields an IPR value equal to 1. For a connected MN, IPR value of the

PEV lies between 1/N ≤ YxM
1
< 1.

In addition, to assess the contribution of an individual layer to the IPR value of

PEV of the MN, we define,

YxM
1
= C

x
L1
1

+ C
x
L2
1

(5.2)
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Figure 5.1: Schematic representation of the evolution of a multilayer network us-
ing the single-layer optimized edge rewiring scheme. A rewiring is accepted if it
increases the IPR value of PEV of the multilayer networks.

YxM
1
= (x11)

4
1 + (x11)

4
2 + · · ·+ (x11)

4
n� �� �

L1

+ (x21)
4
n+1 + (x21)

4
n+2 + · · ·+ (x21)

4
2n� �� �

L2

where (x1
1)i and (x2

1)j are the ith and jth entry in the PEV of MN from the L1

and L2 layers respectively. Note that contribution from the individual layers in the

IPR value of the PEV of the entire MN (represented by C
x
L1
1

& C
x
L2
1

) and the IPR

value of the PEV of layers as monolayer networks (represented by Y
x
L1
1

& Y
x
L2
1

)

are different.

5.3 Methods

Starting from a connected two layers MN with each layer constructed from an

Erdös-Rényi (ER) random network, we rewire the edges uniformly at random with

an optimization-based method. Only those edge rewirings are approved, which lead

to an increase in the IPR value (Fig. 5.1). We are interested in assessing various

properties of the MNs during the network evolution and of those networks which

have highly localized PEV, i.e., the optimized MNs.

We first examine the impact of the optimized rewiring for the two layers MN,

with both-layers and single-layer rewiring protocols, and then apply the rewiring

scheme to the MNs consisting of three and four layers. For a two layers MN, the

optimization process can be implemented considering two different edge rewiring

protocols; (1) by rewiring edges in both-layers or (2) by rewiring edges in only

one (accessible) layer. For the single-layer rewiring protocol, we choose an edge

e1i ∈ E1 uniformly at random from L1 and remove it (Fig. 5.1). At the same time,
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we introduce an edge in the L1 layer from Ec
1, which preserves the total number of

edges during the network evolution in L1 and also in M. Similarly, for the both-

layers rewiring protocol, we choose a layer uniformly at random from M and follow

the same approach as adopted for the single-layer rewiring protocol for the selected

layer. Note that for both the rewiring protocols, we do not rewire any edges in

E12. We remark that during the network evolution there is a possibility that an

edge rewiring disconnects the corresponding layer, i.e., leads to the layer having

isolated nodes which are connected only through inter-layer connections without

having any intra-layer connection. To avoid this situation, we only approve those

rewirings which yield the nodes in a layer connected. Further, evolution takes place

in a manner that keeps the network size fixed.

The optimization problem can be defined as: Given an input MN M with N

vertices, M edges and a function ζ : RN → R, we want to compute the maximum

possible value of an objective function ζ(xM
1 ) over all the simple, connected, and

undirected MN M. Thus, we maximize the objective function, ζ(xM
1 ) = YxM

1
subject

to the constraints that
�N

i=1(x1)
2
i = 1 and 0 < (x1)i < 1. The first constraint simply

says that the PEV of A is normalized to the Euclidean norm. The second constraint

implicitly stipulates that the network must be connected in the optimization method.

In our numerical simulation, we keep the layers, as well as the MN, connected using

Depth-first search method [83]. We perform the optimization process by applying

simulated annealing method [130]. We refer the initial network as Minit and the

optimized network as Mopt.

5.4 Results and Discussion

We begin the investigation by analyzing the impact of changes in the architecture

of the individual layers on the PEV localization of the entire MNs. For the layers

in an MN, we consider various combinations of ER random network, Barabási-

Albert scale-free (SF) network, star network (STAR), and regular lattice (or regular

network) network and denoted as 1D [28]. The ER random network is generated

with an edge probability �kα�/nα, where �kα� is the average degree of the Lα layer.

82



CHAPTER 5. 5.4. RESULTS AND DISCUSSION

E
R
-E
R

1
D
-E
R

1
D
-1
D

S
F
-E
R

S
F
-S
F

1
D
-S
F

S
T
A
R
-S
F

S
T
A
R
-E
R

S
T
A
R
-1
D

S
T
A
R
-S
T
A
R

0

0.05

0.1

0.15

0.2

0.25

Y
x
1

Multilayer

Layer 1

Layer 2

(a)

Figure 5.2: IPR value of monolayer and multilayer model networks for different
combinations. The size of the monolayer networks; n1 = n2 = 200 and �k1� =
�k2� = 10. Thus, size and the average degree of the MN is N = 400 and �k� = 11
respectively.

The SF network is constructed using Barabási-Albert preferential attachment model

[28].

5.4.1 Localization of model multilayer network

After multilayering of two monolayer networks, we conjecture that the IPR value

of the entire MN is smaller than the maximum IPR value of the individual layers

for the same number of nodes.

YxM
1
< max

1≤α≤l
{YxLα

1
} (5.3)

For the few combinations, multilayering may yield a high YxM
1

value and for the few

combinations, the multilayering can lead to a low YxM
1

value (Fig. 5.2) however,

the Eq. (5.3) always holds. For example, the STAR-ER and STAR-1D MNs have

higher IPR values as compared to other multilayer configurations investigated here

(Fig. 5.2). For the regular monolayer network (Theorem 6 [26]), we have

xLα
1 = (

1√
n
,

1√
n
, . . . ,

1√
n
)

Therefore, from Eq. (5.1) we get YxLα
1

= 1
n

which corresponds to the most delocal-

ized PEV for a network size n. Next, for a star monolayer network consisting of n
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nodes with the hub node being labeled as 1, we get the PEV as

xLα
1 =

�
1√
2
,

1�
2(n− 1)

, . . . ,
1�

2(n− 1)

�

which yields,

YxLα
1

=
1

4
+

1

4(n− 1)
For n → ∞, YxLα

1
→ 1

4
≈ 0.25. Upon multilayering two 1D monolayer networks

of size n and node degree �k1� = �k2� = r, the degree of each node of MN gets

increased by one yielding the same degree to each node of the MN as (r+1). Thus,

1D-1D MN network becomes regular network of �k� = r + 1 and 2n number of

nodes. Therefore, PEV of the 1D-1D MN will be

xM
1 = (

1√
2n

,
1√
2n

, . . . ,
1√
2n

) and YxM
1
=

1

2n
(5.4)

resulting in the same contribution of each layer which is calculated from Eq. (5.2)

as C
x
L1
1

= C
x
L2
1

= 1
4n

, and Y
x
L1
1

= Y
x
L2
1

= 1
n

from Eq. (5.1), respectively. There-

fore, both the layers contribute equally to the IPR value of the MN and the IPR

value of the overall MN decreases by a factor of 1/2 for 1D-1D MN configurations.

The ER random network has a delocalized PEV for large n [79], therefore, again

multilayering of two ER random networks brings upon the same contribution from

both the layers in YxM
1

.

Next, if we consider STAR-1D or STAR-ER MN, the contribution C
x
L2
1

be-

comes very small as compared to C
x
L1
1

. In these cases, 99.99% of the contribution

comes from the layer which has the STAR network for n → ∞. For STAR-ER

case, the PEV entry corresponding to the hub node of the STAR network has a

significantly high value. On the contrary, ER random network has a delocalized

PEV. After multilayering, PEV of the STAR-ER MN contains one very large entry

which in combination with other tiny entries lead to a significantly high IPR value.

However, for the case of STAR-STAR MN, the presence of two hub nodes leads

to a decrease in the IPR value of M (Fig. 5.2). Similarly, for SF-ER and SF-SF

networks, the presence of several hub nodes reduces the IPR value of M. Follow-

ing Eqs. (5.3) and (5.4) we get a bound for the IPR value of MNs having the same

number of nodes in all the layer,
1

2n
≤ YxM

1
< max{Y

x
L1
1
, Y

x
L2
1
}
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In general, for l layers MNs, we get
1

nl
≤ YxM

1
< max

1≤α≤l
{YxLα

1
}

It is not surprising that multilayering of a delocalized monolayer network with a

localized monolayer network structure leads to a higher IPR value of the MN as

compared to multilayering with a delocalized monolayer network (YxER−STAR
1

>

YxER−ER
1

). Additionally, it is also possible that multilayering of a localized mono-

layer network with another localized monolayer network (e.g., STAR-STAR) yields

an IPR value which is lower than that of the localized & delocalized (e.g., STAR-

ER) multilayer network combinations (Fig. 5.2). These experiments demonstrate

that PEV localization of a multilayer network can be regulated by changing topo-

logical properties of one or both of its layers.

5.4.2 Layer rewiring based on simulated annealing

From the above experiments, we already have obtained an idea of the structural

properties of an individual layer corresponding to a localized PEV state as well

as how by choosing an appropriate multilayering one can make the PEV of the

entire MN more localized. These investigations have been carried out for a few

specific network structures representing each layer of the MNs. In the following, we

aim to address the issue of the PEV localization for MN, having a general network

architecture representing each layer. Particularly, we investigate that starting with

an initial random MN, how an optimized rewiring of one or more than one layer,

can build a MN having a highly localized PEV. Additionally, we investigate various

structural and spectral properties of the rewired layers and those of the entire MN

during the optimized evolution process at various rewiring stages.

It can be noticed that from an initial ER-ER random MN, the optimized rewiring

for both-layers, as well as for the single-layer significantly increase the IPR value

(Fig. 5.3(a)) of M. The choice of an ER-ER MN at the beginning of the evolu-

tion provides a delocalized PEV to start with [79]. During the network evolution,

there are several changes in the structural and spectral properties of the network

architecture of the rewired layer. For both the optimization protocols as evolution
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Figure 5.3: Optimized evolution of an initial ER-ER multilayer network for 50, 000
edge rewirings for single-layer (�) and both-layers (�). Size of the MN is N = 400,
�k� = 7, and �k1� = �k2�.

progress, IPR value of the PEV shows an increase and finally becomes saturated.

Based on the nature of the increment in the IPR value, we can divide the evolu-

tion into three different regions, the slow (r1), the fast (r2), and the saturation (r3)

regions respectively (Fig. 5.3(a)).

5.4.3 Network properties during network evolution

As evolution progresses, there is a formation of the hub node (Fig. 5.3(b)) and IPR

value of the PEV shows an increase which finally becomes saturated in Mopt. This

evolution process leads to a drastic change in the degree distribution of the final MN

(Fig. 5.4). There exists one node in the MN coming from the smaller part of the

network (Fig. 5.5) which has a very high degree as it is connected with all the nodes

in that part of the network. Rest of the nodes in this part of the network has very

small degrees. The other part of the layer, which does not consist the hub node,

has all the nodes having degree again very small but different than those lying in

the smaller part. This leads to two distinguishable peaks in the degree distribution

of the optimized MN (Fig. 5.4). Note that instead of random initial MN, if we

start with a MN having both the layers having SF topology, the final optimized
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Figure 5.4: Degree distribution of the initial multilayer network of (a) ER-ER (N =
400, �k1� = �k2� = 6) and (b) SF-SF (N = 400, �k1� = �k2� = 6). (c) and (d)
depict the degree distribution of the optimized MN achieved through the both-layers
rewiring protocol.

network will be same as achieved for the initial MN having a random structure. We

have plotted degree distribution of the final optimized MNs as well as those of the

initial networks (Fig. 5.4). It is interesting to note that, despite the scalefree (SF)

networks being more localized than the corresponding ER random networks, if we

evolve a SF-SF MN using the optimization technique, the degree sequence of the

final optimized structure will be the same to that achieved for optimizing the ER-ER

MNs.

Additionally, Mopt has a higher average clustering coefficient (�CC�) value (Fig.

5.3(c)) and low degree-degree correlation (rdeg−deg) value (Fig. 5.3(d)) as compared

to those of Minit [28]. It indicates that localization of the PEV leads to the triangle

formation in the MN structure. Similarly, the existence of a lower degree-degree

correlation suggests that hub nodes are connected with lower degree nodes in in-

dividual layer leading to the MN with highly localized PEV being disassortative.

Furthermore, to check the relation between the degree and local clustering co-
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efficient of each node as PEV gets localized, we calculate the Pearson product-

moment correlation coefficient [28] measure of degree vector and local clustering

coefficient vector (rdeg−cc) during the optimization process. It unveils that as evolu-

tion progresses the rdeg−cc value decreases (Fig. 5.3(e)) which indicates that as the

PEV gets localized, the participation of lower degree nodes is more to the cluster

formation than the higher degree nodes. We measure the Pearson product-moment

correlation coefficient between pairs of various other structural properties to ac-

complish a better understanding of the network structures. It is surprising to see

that rpev−cc value increases (Fig. 5.3(f)) as compared to Minit as PEV gets local-

ized. From the rdeg−cc and rpev−cc values, we can also infer the correlation between

degree vector and PEV (rdeg−pev) which decreases as PEV gets more localized.

From these correlation measures, it is evident that lower degree nodes contribute

more to the triangle formation and also contributing more to the PEV entry of the

Mopt. These correlation measures provide insight for possible architectures of the

Mopt structure corresponding to highly localized PEV. Note that �CC� and all the

correlation measures are evaluated for the entire MN.

5.4.4 Revealing optimized multilayer structure and sensitivity in
PEV

Network visualization software reveals that the optimized layer consists of two com-

ponents which are connected with each other via a single node (Fig. 5.5). One of

the components in this structure contains a hub node. For both-layers rewiring

protocol, we get a network structure in which one layer is similar to that obtained

for the monolayer network rewiring [92]. However, another layer has a network

structure consisting of two components of different sizes devoiding of the hub node

(Fig. 5.5(a)). Various structural properties of Mopt obtained through the single-

layer rewiring protocol (Fig. 5.5(b)) is qualitatively the same as that observed for

the rewiring of the monolayer networks. However, for the both-layers and single-

layer rewiring protocols, there is a striking (Fig. 5.6(a-b)) difference in the spectral

properties in the saturation region, r3. In this region, there exist several edges,

rewiring which do not lead to an increase in the IPR value. If we consider rewiring
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L1

          L2

(a) Both-layer rewiring (b) Single-layer rewiring

Figure 5.5: Cytoscape diagram of optimized MN obtained for (a) both-layers and
(b) single-layer rewirings. For both the protocols, N = 120 and �k� = 3, where
�k1� = �k2�. A smaller size MN is considered here for a clear illustration of the
optimized network structure.

of all the edges during each step of the evolution, we can notice a substantial differ-

ence between both vs. single layer rewiring protocols of the MNs. In the r3 region

(Fig. 5.6), the IPR value gets almost saturated, and there may exist only a subtle in-

crement in the IPR value with a further evolution of the network. Although the MN

in this region has the maximum IPR value, in the Mopt achieved through the both-

layers rewiring protocol there exist only a few edges, for which rewiring leads to a

sudden drop in the IPR value. It leads to a complete delocalization of the PEV from

a highly localized state (Fig. 5.6(b)). Thus, for both-layers rewiring, the PEV in the

r3 region is sensitive to a single edge rewiring as also observed for the monolayer

network rewiring [92]. However, for the Mopt in the r3 region achieved through

the single-layer rewiring protocol, there are no such sudden drops (Fig. 5.6(a)) and

PEV is robust to a single edge rewiring. For the single-layer rewiring, the compo-

nent consisting of the hub node (in the rewired layer) has a major contribution to the

IPR value of the PEV of the MN, followed by the contribution from the fixed layer

and the second component of the rewired layer connected to the hub-component

(Fig. 5.5(b)). Similarly, for the case of both-layers rewiring, the hub-component

contributes the most, followed by the contribution from the other parts of Mopt
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Figure 5.6: Changes in the IPR values (Yx1) with the evolution. (a) Single-layer
rewiring protocol (PI) does not show IPR drops in the saturation region. (b) Both-
layers rewiring protocol (PII) shows drops in the IPR value in the saturation region.
(c) The behavior of the largest two eigenvalues of the single-layer and (d) both-layer
rewiring protocols. Here, N = 400, �k� = 7, and �k1� = �k2�.

(Fig. 5.5(a)). The component containing the hub node has an overwhelming con-

tribution in the corresponding PEV entries accompanied by an equally negligible

contribution from the rest of the nodes leading to a high IPR value in the optimized

structure.

Next, we attempt to understand the sensitivity of the PEV in the critical region

(r3) for the both-layers rewiring protocol and in the absence of the same in the

single-layer protocol. We can witness that for the case of single-layer rewiring, dur-

ing the evolution of λ1 and λ2, both show an increase and remain separated to each

other (Fig. 5.6(c)). However, for the both-layers rewiring protocol, as evolution pro-

gresses, λ2 starts shifting towards λ1, (Fig. 5.6(d)) as a consequence of λ2 drifting

away from the bulk region [55, 56]. This drift in λ2 is not surprising as we know

that the final optimized structure obtained from the both-layers rewiring consists of

two parts in both-layers of Mopt. We can observe from Fig. 5.5(a) that there exist

two communities (surrounded by a dotted ellipse) such that for each community one
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part resides in L1 layer and another part of the community belongs to L2 layer of

the MN. Hence, there should be two eigenvalues which lie outside the bulk. How-

ever, the interesting observation is that for the Mopt obtained from the both-layers

rewiring, λ2 not only drifts away from the bulk but becomes very close to λ1, in

fact, λ1 ∼ λ2. Almost the same value for both the eigenvalues might be a reason

behind the sensitivity of the PEV [92] for the both-layers rewiring. Note that, for

the single-layer rewiring protocol (Fig. 5.5(b)) it is hard to get two communities as

one layer is fixed which prohibits λ2 being separated from the bulk. Hence, there is

no possibility of λ2 being close to λ1, which is always well separated from the bulk

of the sparse networks.

5.4.5 Impact of layer rewiring

For various combinations of the layer forming the MN (Fig. 5.7)(a)), for the single-

layer rewiring protocol, the fixed layer restricts the IPR value of the entire MN. In

Fig. 5.7(b), we depict the values of C
x
L1
1

and C
x
L2
1

of YxM
1

during the network evo-

lution for the initial MN having ER-ER and ER-SF configurations. For the ER-ER

MNs, the layer which undergoes rewiring associates more weight to the PEV entries

on the expense of that of the contributions from the fixed layer (Fig. 5.7(b)). Both

of these factors lead to a high value of YxM
1

. For ER-SF MNs considered as initial

networks, we observe that rewiring of the ER random layer through the optimized

evolution is not sufficient to change the IPR value of PEV which is reflected by al-

most a constant value of C
x
L1
1

and C
x
L2
1

(Fig. 5.7(b)). This constant value of IPR is

a consequence of the existence of the hub nodes in the fixed SF layer which imposes

a restriction on the increase in YxM
1

. However, for the combination of SF-ER MN,

rewiring of the SF layer leads to an enhancement in the YxM
1

value (Fig. 5.7)(a)).

We can see that during the evolution (Fig. 5.7(b)), though one layer is fixed

and rewiring is performed on the other layer, changes happen in both C
x
L1
1

and

C
x
L2
1

leading to an increase in the YxM
1

value. This is a direct consequence of the

multilayering of the layers indicating that by rewiring (‘dynamics of the networks’)

one can change the value of the PEV entries, i.e. ‘dynamics on networks’ [124]. In
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Figure 5.7: (a) Change in the IPR value during the evolution of MNs with vari-
ous combinations of the initial networks for single-layer rewiring protocol (PI) and
both-layer rewiring protocol (PII). (b) Value of C

x
L1
1

and C
x
L2
1

as two layers are
multilayered and evolved. The initial multilayer network takes two different combi-
nations; ER-ER and ER-SF with N = 400, �k� = 7, and �k1� = �k2�. The rewiring
has been done in the first layer (i.e., ER layer). The contribution of the rewired ER
layer is represented by C

x
L1
1

. (•) and (�) represents this contribution for ER-ER,
and ER-SF multiplex networks, respectively. Similarly, the fixed layer contribu-
tion (C

x
L2
1

) for ER-ER and ER-SF multiplex network is depicted by (◦) and (�),
respectively.

other words, our framework is useful in connecting ‘dynamics on’ and ‘dynamics

of’ networks for MNs in terms of the PEV localization.

Furthermore, we present the results for three layers and four layers MNs (Fig.

5.8). Starting with the three and four layers initial random MNs, we evolve them

using the optimization technique as described above. Again, the optimized rewiring

leads to an increase in the IPR value of the MN during the evolution (Fig. 5.8) with

the existence of r1, r2 and r3 regions. For the three layer MNs, we can adopt the

rewiring protocol in various manners, (i) rewiring only one layer by fixing other

layers, (ii) rewire two layers and fix one layer, (iii) rewire all the layers indepen-

dently. All the three ways of the rewiring yield the network properties similar to

those obtained for the two layers MN in the optimized state.

5.4.6 Localization in real-world multilayer networks

Furthermore, we examine the PEV localization of many real-world MNs. We find

that the real-world MNs have the PEV which is much more localized than the corre-

sponding random MNs, however, much less localized than the optimized multilayer
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Figure 5.8: The IPR value (Y M
x1

) of (a) three layers and (b) four layers MN. The
simulation is performed for (a) three and (b) four layers rewiring protocols. Each
layer of M contains 100 nodes and �kα� = 5.

structure. We present results for MN of the Twitter data collected during the oc-

currence of different exceptional events like the discovery of Higgs boson in 2012,

Cannes Film Festival, the 14th IAAF World Championships in Athletics held in

Moscow 2013, Martin Luther King’s famous public speech celebrating 50 years “I

have a dream” in 2013, official visit of US President Barak Obama in Israel in 2013

[132], a large-scale event on global climate change in New York in 2014. The choice

of the Twitter network data provides a good proxy for the large population of the

social behaviors [132]. The individual layers of the Twitter MN follow the power-

law degree distribution and reflect scale-free topology. In addition to these social

networks, we consider biological MNs as well. The multilayer gene-interaction

networks, Drosophila and Homo-genetic [134–136] consist of layers denoting the

physical association, direct interaction, colocalization, and association respectively.

We make crude approximations that all the networks are undirected and unweighted.

Table 5.1 presents PEV localization and structural properties of these MNs. All the

networks have IPR value much larger than the corresponding random networks.

We can estimate the IPR value of a random MN consisting of layers of size N/l

represented by ER random network as YxM
1
≈ 3/N [52]. Other structural properties

of such random MN can be calculated as �CC� ≈ �k�
N

, and rdeg−deg ≈ 0 for large

N [28]. The real-world multilayer networks considered here comprise of structural

properties which differ considerably from the corresponding random MNs. From
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Network l N �k� Y
xM
1

kmax �CC� rdeg−deg λ1 λ2 rpev−deg rpev−cc

Moscow Athl. 3 124423 4.01 0.03 4840 0.11 -0.13 75.22 71.5 0.66 0.05
NYClimate 3 148936 5.39 0.07 9742 0.11 -0.1 118.5 99.2 0.65 0.08
MLKing2013 3 318962 2.51 0.08 8689 0.07 -0.11 93.2 85.5 0.25 0.01
Cannes2013 3 573353 3.98 0.2 8676 0.1 -0.1 94.26 86.9 0.38 0.004
Higgs mux 2 886744 31.09 0.003 51387 0.09 -0.1 653.5 436.7 0.71 -0.15
ObamaIsrael 3 2258678 3.55 0.15 21650 0.1 0.0 151.77 139.9 0.43 0.02
CKM 3 329 5.95 0.02 25 0.16 0.1 7.84 5.75 0.78 -0.17
Drosophila 4 10255 7.62 0.008 175 0.11 0.1 46.96 31.0 0.6 -0.27
Homo 4 34363 10.22 0.09 9570 0.19 -0.05 118.76 67.2 0.7 0.09
Arabidopsis 4 8163 4.45 0.24 1296 0.1 -0.1 36.28 23.03 0.6 -0.02
HumanHIV1 2 1138 2.48 0.24 250 0.01 -0.45 15.87 14.93 0.5 -0.05
Celegans-conn 3 791 9.74 0.025 82 0.18 0.11 21.18 13.53 0.8 0.1
Mus 4 9657 4.22 0.03 368 0.09 -0.16 34.56 24.57 0.46 0.05
Plasmodium 3 1161 4.15 0.03 83 0.03 0.0 13.12 8.75 0.8 0.13
Rattus 4 2906 2.98 0.23 814 0.14 -0.14 29.16 14.14 0.74 -0.17
SacchCere 4 20482 17.37 0.02 3187 0.22 -0.1 110.81 70.51 0.65 0.1
SacchPomb 4 6401 8.62 0.06 1021 0.17 -0.14 47.95 36.62 0.57 0.12

Table 5.1: Various properties of real-world social (first seven) and biological (last
ten) multilayer networks. Inverse participation ratio (Yx1), maximum degree (kmax),
average clustering coefficient (�CC�), degree-degree correlation (rdeg−deg), PEV-
degree correlation (rpev−deg), PEV-cc correlation (rpev−cc), the largest eigenvalue
(λ1), and the second-largest eigenvalue (λ2) of few real-world MNs. Ref. [131]
is used to calculate IPR and eigenvalues of MNs having large network size. The
IPR values of the corresponding random networks are very close to 3/N , which
is predicted by the random matrix theory [52]. First, six networks with l layers are
constructed based on the Twitter data with different exceptional events ranging from
sports, politics to scientific discovery of Higgs boson. The layers represent retweet,
reply, and mention on twitter [132] network. The CKM is a multilayer social net-
work of a sample of physicians in US [133]. The Drosophila and Homo are the
multilayer genetic and protein interaction networks where layers are the physical
association, direct interaction, colocalization, association respectively [134–136].
The rest of the networks are also multilayer genetic and protein interaction net-
works, where we consider only the first four layers when the number of layers is
more. We consider the largest connected component to calculate various properties
and treat all the edges undirected and unweighted. Moreover, we measure the clus-
tering coefficient value for all the nodes of the multiplex network having degree 2
or more, as nodes with degree 1 have zero clustering coefficient.

Table 5.1, it is clear that all the real-world multilayer networks considered here con-

tain a hub node having a very large degree. Additionally, they have higher average

clustering coefficient value (�CC�) and smaller degree-degree correlation than the

corresponding random networks. Additionally, PEV of these MNs is more localized

than the corresponding random MN. From the Table 5.1, it is evident that the less

localized networks possess high rpev−deg value, and for most of the real-world MN

the rpev−cc value is positive. Although these are not very surprising observations,

by combining the comparison of measures of various structural properties and IPR

values of the real MNs with those of the model MNs achieved during the optimized
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evolution process, it is evident that real-world MNs lie well above the r1 region.

Furthermore, Table 5.1 depicts that the largest and the second largest eigenvalue of

the real-world MNs are well separated from each other, indicating that these real-

world MN lie below the r3 region. Note that in the r3 region, the largest and the

second-largest eigenvalues lie very close to each other, leading to the sensitivity of

the IPR value of the PEV to single edge rewiring. Based on these two sets of obser-

vations, we can fairly conclude that the real-world multilayer networks lie in the r2

region of the evolution process of the model multilayer networks.

5.5 Conclusion

In this chapter, we explore the impact of the optimized rewiring for the PEV lo-

calization in MNs. We construct MN structures through an optimization process

that yields highly localized PEV quantified by the IPR value. Our approach pro-

vides a comprehensive way to investigate not only the properties of the optimized

multilayer structure but also the intermediate multilayer networks before the most

optimized structure is found. In other words, we develop a learning framework to

explore the evolution of the eigenvector from a delocalized to a highly localized

state. We analyze several structural and spectral properties during the network evo-

lution process for the single-layer as well as all the layers of the MNs. For both the

protocols, we find that there is an emergence of various structural features as PEV

gets localized. Moreover, for both the protocols, there is a noticeable difference

present in the spectral properties in the saturation region. For both-layers rewiring

protocol, in the saturation region, PEV is sensitive to a single edge rewiring as

also observed for the optimized evolution of the monolayer networks. However,

interestingly, we get rid of the sensitivity in the PEV in the saturation region by im-

plementing a single-layer rewiring of the MN. Additionally, we have investigated

the PEV localization behavior of several large empirical MNs constructed using the

data ranging from social to biological systems. Our analysis reveals that these real-

world MNs are much more localized than the corresponding random MNs, and also

have structural properties close to those obtained in the r2 region of the optimized
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evolution process of the model MNs. Further, we show that by rewiring a single-

layer, one can tune the contribution of the node weights of the other layer to the

PEV of the entire MN. Rearrangement of the node weights used in semi-supervised

based learning and has great practical importance in machine learning [137]. The

study is relevant to confine or facilitate the propagation of perturbation in a network

by an appropriate multilayering with other networks.
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Chapter 6

Conclusion and future scope

6.1 Conclusion

In this dissertation, we focus on understanding the structural as well as spectral

properties of the networks through localizing PEV associated with the adjacency

matrices. We study monolayer and multilayer network properties which enhance

the localization behavior of PEV. In particular, we have developed a novel frame-

work based on optimization techniques to find out PEV localized network structure.

In other words, we develop a learning framework to explore the localization of PEV

through a sampling-based optimization method. We reveal that optimized struc-

ture possesses a distinctive architecture. It consists of two subgraph components

of different sizes. Further, scrutinizing the structural and spectral properties of the

optimized network structure demonstrates that highly localized PEV is closely re-

lated to the closeness of the largest two eigenvalues and the presence of a hub node.

Finally, we develop an analytical formulation based on the eigenvalue relation of

the subgraphs component, which assists in constructing the PEVs localized net-

work and avoid the optimization techniques. In the following, chapter wise, we
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summarize our works.

• Chapter 2 mainly concentrates on the numerical investigation to find network

properties leading to high localization of PEV through the optimized network

evolution process. Starting from an initial random network, we achieve a

network structure through a Monte Carlo based optimization method. The

optimized network possesses a highly localized PEV quantified by the IPR

value. We analyze various structural and spectral properties of the optimized

network as well as the networks at the intermediate state before the optimized

structure is reached. We demonstrate that PEV localization is not a conse-

quence of a single network property and rather requires the collective impact

of several structural features. The final optimized network possesses a spe-

cial structure and which we have shown to be robust against changes in the

initial network structure. We demonstrate the robustness of the results by

considering various popular models as well as real-world networks as an ini-

tial network structure. Our analysis identifies a particular set of edges which

are essential for the localization of PEV in the optimized network structure.

Rewiring any one edge of this set leads to a complete delocalization of PEV

in the optimized network structure, and we referred to as sensitivity in PEV.

We observe that this emergence of sensitivity in the PEV and shifting of λ2

close to λ1 happens simultaneously suggesting a relation between the partic-

ular structure of the optimized network and the second largest eigenvalue.

• Chapter 3, reveals that the eigenvalue crossing along with the presence of a

hub node is the prime reason behind the sensitivity of the PEV in the opti-

mized network. We found that a single edge rewiring in the optimized net-

work structure leads to an eigenvalue crossing, which is detected through the

dot product of the two largest eigenvectors. We show that the eigenvalue

crossing leads to a change in the eigenvalue relation of the individual compo-

nents and which in turn, governs the sensitivity of the PEV localization. From

the observation of the eigenvalue crossing phenomenon, we derive an analyt-
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ical formulation for the direct construction of a PEV localized network struc-

ture through a wheel and random regular network. Importantly, this structure

is obtained without performing an optimization scheme. In other words, we

use the information of spectral properties of the optimized network to per-

form reverse engineering to construct a network structure having a highly

localized PEV. Finally, we observe that the eigenvalue crossing phenomenon

on the RNA neutral network population dynamical model due to a single edge

rewiring on the wheel-random regular (WRR) network structure.

• In chapter 4, by using the wheel-random-regular model network, we have

demonstrated that not only the localization transition of PEV can cause dif-

ficulties for EC in assigning weights to the nodes, but also the delocalization

transition of PEV can also cause a problem to the EC measure. Based on

numerical simulations for large size networks, we demonstrate that for PEV

being localized, the size of the network imparts minor effects to the PEV entry

weights corresponding to the hub and its neighboring nodes. Therefore, for a

localized PEV, it is predetermined that the hub node and its neighboring nodes

will receive significant weights with the rest of the nodes receiving negligible

weights, causing the failure of EC. Similarly, in the delocalized PEV, EC is

unable to assign centrality weight to the higher degree node. As a result, EC

becomes inefficient and uninformative for measuring of the centrality of the

nodes when PEV is delocalized.

• Finally, in chapter 5, we extend the optimized edge rewiring method for the

multilayer networks (MNs). We explore the impact of the optimized rewiring

for the PEV localization in MNs. For two-layer multilayer networks, we pro-

posed two edge rewiring protocols (i) both-layer rewiring and (ii) single-layer

rewiring protocols. For both the protocols, we find that there is an emergence

of various structural features as PEV gets localized. However, for both the

protocols, there is a noticeable difference present in the spectral properties

in the saturation region. For both-layers rewiring protocol, in the saturation
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region, PEV is sensitive to a single edge rewiring as also observed for the

optimized evolution of the monolayer networks. However, interestingly, we

get rid of the sensitivity in the PEV in the saturation region by implement-

ing a single-layer rewiring of the MN. Additionally, we have investigated the

PEV localization behavior of several large empirical MNs constructed us-

ing the data ranging from social to biological systems. Our analysis reveals

that these real-world MNs are much more localized than the corresponding

random MNs. The study is relevant to confine or facilitate the propagation

of perturbation in a network by an appropriate multilayering with other net-

works.

The prime concern of our analysis to have insights into the network structure

and PEV localization, using disease spread model, we verify that network structure

in the optimal and the intermediate stages spreading of disease is much slower than

the initial random structure. It may not always be feasible to rewire a real-world

network to such an extent to get a desired PEV localization behavior. However,

the results and approach used here will be more useful in constructing an artificial

network with the desired localization behavior.

On the other hand, the WRR network structure is quite special and depicts a

very typical behavior of PEV in the localized-delocalized state, and which may

be difficult to observe for real-world systems. However, it provides us an under-

standing of the localization behavior observed for the networks evolved through

the optimized evolution process. Indeed, we know that many real-world networks

follow power-law degree distributions and thus contain several large degree nodes,

naturally forming imperfect wheel graph (i.e., star, friendship networks). Our study

offers a platform to understand PEV localization behaviors of real-world systems,

as well as to relate them with the network’s structural properties by providing fun-

damental insight to localization and delocalization behavior of eigenvectors of net-

works [122, 123].

To conclude, our study provides a more in-depth insight into the PEV localiza-

tion on synthetic as well as on empirical networks. Additionally, earlier work has
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related spectral properties with a change in the matrix elements [77]; here we show

that how a function of PEV relates with the change in the matrix elements.

6.2 Future scope

• The optimized edge rewiring method developed here may be useful for opti-

mizing other structural and spectral properties of the network (e.g., eigenval-

ues, IPR of other eigenvectors). The algorithm can be easily extended to the

different functions and on a broader class of matrices.

The present work mainly focuses on connected, unweighted, and undirected

networks (i.e., irreducible binary symmetric matrices). However, our frame-

work can easily be extended to obtain a comprehensive picture of PEV local-

ization on directed networks (non-negative asymmetric matrices). Further-

more, this thesis is restricted to PEV of adjacency matrices or steady-state

behavior of linear-dynamical processes associated with adjacency matrices.

However, how did the systems attain the steady-state? i.e., the transient be-

havior of the systems can be analyzed through the non-principal eigenvectors

and eigenvalues of the adjacency matrix [58]. Hence, it is also important to

understand the emergence of network properties and their relation with the

localization behavior of other eigenvectors.

Furthermore, as eigenvectors and eigenvalues provide information for energy

controllability and synchronization of complex networks [10, 32], the investi-

gation carried out here for PEV of adjacency matrix can be extended for find-

ing localization of eigenvector for other matrix representations of networks.

For instance, Laplacian [138–140], and Jacobian [141] matrices which are

closely related with coupled nonlinear dynamical evolution on networks. An-

other important matrix which is associated with the dynamical processes is

the Hessian matrix [142, 143]. However, the connection between the Hessian

matrix and the network is not clear [144]. It might be useful to understand the

connection between the adjacency matrix associated with a network and the

Hessian matrix to analyze the localization behavior of the eigenvectors of the
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Hessian matrix from the perspective of networks.

• For directed networks associated with Markov chains, maximal entropy ran-

dom walk or Google matrix the corresponding matrix becomes non-negative

and asymmetric [90, 145, 146]. Hence, the matrix may have left and right

eigenvector as well as eigenvalues becomes complex. The PEV for the above

models are probability vectors (i.e. in l1 norm) and needs some normalization

to the IPR values. We calculate the IPR of the PEV [4, 92] as follows:

Yx1 =

�n
i=1(x1)

4
i��n

i=1(x1)2i

�2 (6.1)

where (xi)j is the jth component of xi and ||x1||1 = 1, with 1 ≤ i ≤ n.

A delocalized PEV with component ( 1
n
, 1
n
, . . . , 1

n
) has Yx1 = 1

n
, whereas the

most localized PEV with components (1, 0, . . . , 0) yields an IPR value equal

to Yx1 = 1. Network should be strongly connected (i.e. there exists a directed

path between every pair of nodes) to get positive PEV entries.

• It will be interesting to analyze motifs and nodal domains in PEV localized

networks [147].

• Searching for an orthonormal basis that is “as localized as possible” is an

important problem in certain physics applications [148–150]. Hence, an im-

portant question can be asked that how can we localize all the eigenvectors of

a network simultaneously and learn the network properties?

• It will be interesting to optimize the structure when tuning the zeros, or neg-

ative entries of eigenvectors instead of localization of PEV. We know that for

a non-negative symmetric matrices PEV entries are all positive but for other

eigenvectors entries may be negative, zeros, positive or mixed of them. Here,

eigenvector behavior has been regulated based on a particular function, which

is IPR. It is good to define other functions which can tune the negative or ze-

ros entries of the eigenvectors or some part of the eigenvector, and based on

that; one can construct network structure. However, we have first to define a

particular measure.
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• We have seen that localizing PEV provides a structure which is far from the

scalefree networks. However, many real-world networks follow a scalefree

nature. In other words, is it possible to generate power-law degree distribution

through localizing eigenvectors? Now, how can we create functions on the

eigenvectors and eigenvalues such that the evolved network should follow

power-law degree distribution? It will provide a new way to look into the

network structure and dynamics.

• We have used edge rewiring process to achieve localized PEV without pro-

viding any restriction on the structural and spectral properties. Now, keeping

degree distribution fixed how can we rewire edges of a network such that we

can achieve PEV localized networks. It will be interesting to apply differ-

ent rewiring protocols like 1-k, 2-k, d-k on the monolayer as well as on the

multilayer networks and explore PEV localization [151].

• This framework can be extended for regulating the eigenspace of a network or

even might be useful to tune the singular vector entries of a matrix [152–154].
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6.3 Basic definitions

Positive vector and non-negative matrix: A vector v ∈ Rn is a positive vector if

vi > 0 for all i. A matrix A is said to be non-negative matrix if aij ≥ 0 for all i and

j [93]. Here, Rn represents n dimensional real vector space.

Norms: A norm is a function ||.|| : Cn → R that assigns a real-valued length to

each vector. The most two important vector norms are 1-norm (l1) and 2-norm (l2)

defined in the following.

||x||1 =
n�

i=1

|xi|

||x||2 =
� n�

i=1

|xi|2
�1/2

(6.2)

The l2 norm is the Euclidean length of a vector and l1 norm is use in case of prob-

ability vector [93]. Here, Cn stands for n dimensional vector space of complex

neumbers and R is the one dimensional real vector space.

6.4 Results related to eigenvalues

We restate the proposition and theorem related to spectral properties from [119] as

follows,

Proposition 1.3.10 If G − uv is the graph obtained from a connected graph G by

deleting the edge uv, then λG−uv
1 < λG

1 .

Theorem: Real symmetric matrix has real eigenvalues and all the eigenvectors are

orthogonal.

Theorem: A graph is connected if and only if its largest eigenvalue is simple with

a positive eigenvector.

Theorem: The number of components of a (labelled) graph G is equal to the maxi-

mal number of linearly independent non-negative eigenvectors of G.

104



CHAPTER 6. 6.5. NON-DEGENERATE TEST OF CLOSE EIGENVLAUES

6.5 Non-degenerate test of close eigenvlaues

Our investigations always consider connected networks, and from the Perron-Frobenius

theorem largest two eigenvalues are distinct. However, to find the gap between the

largest two eigenvalues, we use Sylvester’s law of inertia theorem (chapter 3, sec-

tion 3.3 [155]). For a given adjacency matrix A, we first calculate λ1 and λ2. Now,

for (A − λ1I) and (A − λ2I) perform the triangular factorization (LDLT) using

Gauss elimination method (for single and double precision) without row exchange

where D contains the pivots. We count the negative pivots, and the difference is one

which ensures that λ1 and λ2 has healthy separation (chapter 3, section 3.3 [155]).

Furthermore, we use spectral slicing (bisection method) to find the bound between

the two largest eigenvalues and which is 0.012 in single and double precision arith-

metic which ensures that λ1 and λ2 are distinct (non-degenerate).

Further, to measure the working accuracy, we have found the Rayleigh quotient

after calculating the eigenvector from the numerical software. The eigenvalues ob-

tained from the numerical software and Rayleigh quotient are the same up to 12

digits after the decimal point. Further, after calculating λ1 and λ2 we form the sys-

tem of linear homogeneous equations [(A − λ1I)x1 = 0 and (A − λ2I)x2 = 0]

and find the nullspace (through singular value decomposition) and check that di-

mension of the null space is one and is same as the eigenvectors obtain through the

numerical software. Additionally, we checked the re-orthogonality of two largest

eigenvectors. LAPACK routine in C++, with single (ssyev, ssyevd, ssyevr, ssyevx)

as well as double precision (dsyev, dsyevd, dsyevr, dsyevx) arithmetic is used to

calculate the results. Moreover, we have run the numerical simulation on differ-

ent platforms (C++, Python, and Matlab), and all of them yields exactly the same

results.
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6.6 Details of optimization process

Given an undirected, unweighted connected network G with n vertices, m edges

and a function ζ : Rn → R, we compute the maximum possible value of an objec-

tive function ζ(x1) =
�n

i=1(x1)
4
i over all the simple, connected, unweighted and

undirected network G. The optimization problem can be written as finding an irre-

ducible binary symmetric matrix A, for which
�n

i=1(x1)
4
i will be maximum subject

to the constraint that
�n

i=1(x1)
2
i = 1 and (x1)i > 0 ∀i ∈ {1, 2, . . . , n}. The first

constraint simply says that x1 is in l2 norm. The second constraint implicitly stipu-

lates that the network must be connected (from the Perron-Frobenius theorem). The

following theorem says that the optimization problem belongs to non-convex class.

Lemma 1: ζ(x1) =
�n

i=1(x1)
4
i is a convex function when (x1)i ∈ (0, 1), i ∈

{1, 2, . . . , n}.

Proof: Convexity of the objective function ζ(x1) can be examined by employing

Hessian test [156]. One can construct the Hessian matrix from ζ(x1) and show that

it is positive semidefinite. The partial derivative of ζ(x1) are given by
∂ζ(x1)

∂(x1)i
= 4(x1)

3
i , i = {1, 2, . . . , n} (6.3)

and hence,

∂2ζ(x1)

∂(x1)i∂(x1)j
=




12(x1)

2
i i = j

0 i �= j

(6.4)

Now we can write the Hessian matrix as

∇2ζ(x1) =




12(x1)
2
1 0

.. .

0 12(x1)
2
n




Hessian matrix is positive semidefinite if all the eigenvalues of ∇2ζ(x1) are non-

negative. Here it is clear that eigen values of ∇2ζ(x1) are {12(x1)
2
i : i = 1, 2, · · ·n}

as ∇2ζ(x1) is a diagonal matrix. Since (x1)i ∈ (0, 1), therefore all the eigenvalues

of ∇2ζ(x1) are nonnegative, and hence the Hessian matrix is a positive semidefinite

matrix. Therefore, the objective function
�n

i=1(x1)
4
i is a convex function.

Lemma 2: C = {x1 ∈ (0, 1)n| ||x1||22 = 1} is a non-convex set.

Proof: A set C ⊆ Rn is called convex if for any x, y ∈ C, x �= y and any θ ∈ [0, 1],
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the point θx + (1 − θ)y belongs to C [156]. To validate C as a non-convex set,

any arbitrary point z ∈ Rn has been considered and it can be written as a convex

combinations of x and y i.e., z = θx+ (1− θ)y by choosing an arbitrary value of

θ. Thus, we have

(z1, z2, . . . , zn) = (θx1 + (1− θ)y1,

θx2 + (1− θ)y2, . . . , θxn + (1− θ)yn)
(6.5)

From the above equation, we get,
n�

i=1

z2i = θ2 + (1− θ)2 + 2θ(1− θ)
n�

i=1

xiyi (6.6)

Now, to check the convexity, one has to show that z ∈ C, i.e.,
�n

i=1 z
2
i = 1. Since

x �= y, it gives
�n

i=1 xiyi �= 1. Now, for specific θ = 1/2 ,
�n

i=1 z
2
i �= 1, this

implies that the relation
�n

i=1 z
2
i = 1 does not satisfy for any arbitrary value of θ.

Hence, z /∈ C and therefore, C is a non-convex set.

Theorem: Considering
�n

i=1(x1)
4
i as an objective function, principal eigenvector

localization over undirected unweighted connected network is a non-convex opti-

mization problem.

Proof: It is notable from Lemma 1 that the objective function
�n

i=1(x1)
4
i is a con-

vex function but on the other hand, Lemma 2, says that the constraint, C = {x1 ∈
(0, 1)n| ||x1||22 = 1} is a non-convex set. By definition, a convex optimization prob-

lems consist of minimizing of a convex functions over convex sets, or maximizing a

concave functions over convex sets [156]. Jointly, conflicting characteristic of con-

straint and objective function shows that the principal eigenvector localization over

simple undirected unweighted and connected network is a non-convex optimization

problem.

The above theorem indicates that we can not find a simple undirected and un-

weighted connected network with most localized PEV by using a convex optimiza-

tion method. To get an adjacency matrix corresponds to highly localized PEV, we

have borrowed the evolution of networks with edge rewiring and used optimization

on top of that. We use Monte Carlo (MC) and simulated annealing (SA) based

randomized optimized edge rewiring method.

Before going to discuss about the network evolution method we start with a star
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Figure 6.1: An initial star network structure having Y S
x1

≈ 0.25. However, op-
timized edge rewiring process leads to a network structure having Yx1 ≈ 0.267
and network structure is substantially different than star network structure. Here,
n = 500 nodes and m = 499 edges.

network. If we consider a star network with n nodes labelled as {1, 2, . . . , n} with

the hub node being labelled with 1, then using eigenvalue equation corresponding

to λ1, we get x1 =

�
1√
2
, 1√

2(n−1)
, . . . , 1√

2(n−1)

�
and hence, YxS

1
= 1

4
+ 1

4(n−1)
.

Therefore, when n → ∞, we get YxS
1
→ 1

4
≈ 0.25. By looking the IPR of PEV,

we can think that star network has the most localized PEV. However, we show

that optimized network evolution method provides larger IPR value than the star

networks and architecture is also significantly different (Fig. 6.1). In the following,

we discuss both of the methods used in our thesis.

6.6.1 Monte Carlo based algorithm

The Monte-Carlo (MC) based optimization (in algorithm 1) can be summarized as

follows. We find x1 of an initial ER random graph G and calculate the IPR value

of x1. We rewire one edge uniformly at random in G to obtain another graph G�.

We check whether G� is connected, if not the edge rewiring step is repeated till we

get another G� which is a connected network. We find the PEV of A� matrix and

calculate the IPR value of x�
1. We replace A with A�, if Yx

�
1
> Yx1 . Steps from third

to twelve are repeated until IPR value gets saturated which corresponds to the opti-

mized network. The recorded value of Yx1 variable during the optimization process
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Algorithm 1: MC-based-IPR-Optimization(n, �k�)
1 A ← G(n, p)
2 Yx1 ←

�n
i=1(x1)

4
i

3 while Yx1 not saturated do
4 rewire an edge uniformly at random in G and denotes it as G�

5 if G� is not connected then goto step 4
6 Yx

�
1
←�n

i=1(x
�
1)

4
i

7 if Yx
�
1
> Yx1 then

8 A ← A
�

9 Yx1 ← Yx
�
1

10 end
11 store Yx1 and A

�

12 end

gives an increment in the IPR value which is depicted in Fig. 2.1(a). Instead of ER

random network as initial, one can choose SF network and observe the same results.

However, we observe that for a given star network structure there is a chance of fail-

ure to the MC method. Interestingly, simulated annealing based method overcome

the failure and provide optimized network structure.

6.6.2 Simulated annealing based algorithm

The simulated annealing (SA) is a randomized algorithm widely used in solving

optimization problem motivated from the principles of statistical mechanics [130].

It also provides global optimal value for several optimization problems. The impor-

tant part of the SA-based algorithm is accepting solutions which satisfy the Gibbs-

Botzmann function e−E/δ∗temp. In our problem, we consider the objective function

to be maximize instead of minimize, so we have made the changes accordingly in

the algorithm. We set the initial temparature, temp = 0.9 and after each iteration

decreases it by the cooling schedule tem = tem ∗ 0.98 and also fix the Boltzmann

constant δ to 100. We have seen that these parameters are precise and works well.

The simulated-annealing (SA) based optimization (in algorithm 1) can be sum-

marized as follows. If Yx
�
1
> Yx1 , A is replaced with A

� for the next evolution step.

On the otherhand, if Yx
�
1
< Yx1 , we choose a random number from the uniform
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Algorithm 2: SA-based-IPR-Optimization(n, �k�, temp, δ)
1 A ← G(n, p)
2 Yx1 ←

�n
i=1(x1)

4
i

3 temp = 0.9
4 while Yx1 not saturated do
5 rewire an edge uniformly at random in G and denotes it as G�

6 if G� is not connected then goto step 5
7 Yx

�
1
←�n

i=1(x
�
1)

4
i

8 if Yx
�
1
> Yx1 then

9 A ← A
�

10 Yx1 ← Yx
�
1

11 end
12 else
13 pick a random number r from uniform distribution in (0,1)

14 if r < e

(Y
x
�
1

−Yx1 )

(δ∗temp) then
15 A ← A

�

16 Yx1 ← Yx
�
1

17 end
18 end
19 store Yx1 and A

�

20 temp ← temp ∗ 0.998
21 end

distribution and if it is less than e−E/δ∗temp, we accept the bad solution otherwise we

reject the solution and perform another edge rewiring on A and repeat the perocess.

This step is important to get rid of from the local maxima. The recorded value of

Yx1 variable during the optimization process gives an increment in the IPR value.

One interesting part of the algorithms is in line 19, to store the value Yx
�
1
. It stores

the increment as well as the decrement in the IPR value during the network evo-

lution. Here, we consider a star network as an initial, and the optimized structure

again contains two-component graph structure (Fig. 6.1). In general, both methods

provide an optimized network structure, but the SA method sometimes takes more

edge rewiring steps than the MC based method. From the extensive numerical sim-

ulation, it is precise that to overcome local maxima; it is better to use SA based

methods.
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6.7 Structural properties during network evolution

We summarize the ensemble average results for the initial network taken as an ER

random network (Ginit) and the optimized network (Gopt) in the Table 6.1. To check

the plausible correlation between the degree sequence of the final optimized net-

work and PEV localization, we construct a network which has the same degree

sequence as of the optimized network. For this purpose, we use the configuration

model [31], which we denote as G
conf
opt . We observe that Gconf

opt has an IPR value

which is much lesser than that of the Gopt network (Table 6.1). It concludes that

having a specific degree sequence is important, but is not the only factor for the

PEV localization. Nevertheless, there exist other structural properties which are ac-

quired by the evolved network during the optimization process. In the following,

we discuss the impact of other structural properties on the localization of PEV.

Further, we find the clustering coefficient [28] of a node as,

Ci =
2Δi

ki(ki − 1)
where ki denotes the degree of node i, and Δi is the number of triangles the node

i is participating in. Subsequently, the average clustering coefficient [28] can be

defined as,

�CC� = 1

n

n�

i=1

Ci

During the optimization process, we keep a record of the average clustering coef-

ficient �CC� which indicates an increase in �CC�. To check a correlation between

�CC� and IPR, we use an algorithm given in Ref. [84] which takes a degree se-

quence and average clustering coefficient as an input and creates a random network

having the exactly same degree sequence and �CC� as of Gopt. We denote the net-

work generated using the algorithm in [84] as Gcc
opt. It is interesting to observe that

though Gopt and Gcc
opt have the same degree sequence and �CC�, they are having

different IPR value (Table 6.1). It asserts that by tuning �CC�, we cannot achieve a

network structure corresponding to Gopt network.

Further, we track the degree-degree correlation coefficient (rdeg−deg) during the
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evolution process. The rdeg−deg is measured as follows [29],

rdeg−deg =
[m−1

�m
i=1 jiki]− [m−1

�m
i=1

1
2
(ji + ki)

2]

[m−1
�m

i=1
1
2
(j2i + k2

i )]− [m−1
�m

i=1
1
2
(ji + ki)2]

where m is the total number of edges in the network and ji, ki are the degrees of

nodes with ith connection. As a consequence of the evolution process, the rdeg−deg

of the optimized network becomes negative indicating the presence of disassorta-

tivity in the optimized network. To check how evolution of dissassortativity has

an impact on the enhancement in the IPR value, we use Sokolov algorithm [87] to

construct a network with the same number of n, m and rdeg−deg as in the Gopt net-

work and is denoted by G
rdeg−deg

opt . Again IPR value of the network constructed in

this manner is far from the Gopt network (Table 6.1).

Further, we measure the correlation between the local clustering coefficient vec-

tor and PEV, using Pearson product-moment correlation coefficient [29]. We mea-

sure correlation coefficient between the degree vector and clustering coefficient (cc)

vector denoted as rdeg−cc and the correlation between the PEV entries and the cc

vector denoted as rpev−cc.

r =

�n
i=1(xi − x)(yi − y)��n

i=1(xi − x)2
��n

i=1(yi − y)2

To calculate rdeg−cc and rpev−cc, we normalize the degree vector in the Euclidean

norm as in [157]. These measures provide an insight to the network structure of the

most optimized network.

In chapter 2, we have discussed the results of various network properties during

the evolution process with an initial network being taken as ER random network.

In fact, if we separate the two components of the optimized network, these do not

manifest highly localized PEV individually. However, these two components taken

as Ginit separately, the evolution leads to two optimized networks which have the

same structure as in (Fig. 3(right)). However, to achieve a better localized PEV, the

network should be sparse. For the dense network, the evolution process does not

lead to a significant increase in the IPR value. The IPR value saturates for a dense

network without being appreciably different from the initial network.
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Index Ginit Gopt G
conf
opt Gcc

opt G
rdeg−deg

opt

n 500 500 500 500 500
�k� 10 10 10 10 10
m 2499± 55 2499± 55 2499± 55 2499 2499
kmax 21± 2 90± 7 90± 7 100 100
λ1 11.04± 0.20 11.13± 0.29 12.67± 0.46 11.36 11.60
rdeg−deg −0.002± 0.02 −0.16± 0.005 −0.02± 0.005 -0.17 -0.16
Yx1 0.003± 0.0002 0.18± 0.0095 0.05± 0.006 0.02 0.03
�CC� 0.02± 0.002 0.11± 0.01 0.02± 0.003 0.14 0.01

Table 6.1: Results are shown for the average over 31 realizations with 6,00,000 edge
rewiring steps. Gopt denotes the optimized network achieved through the network
evolution from the initial base network being Ginit network. G

conf
opt refers to the

network constructed from the configuration model having the same degree sequence
as of the Gopt network. Gcc

opt refers to the network constructed with the same �CC�
and degree sequence as in the Gopt network. Finally, Grdeg−deg

opt refers to the network
having the degree-degree correlation as in the Gopt network.

6.8 Behavior of all IPR values

The appendix revolves around explaning the behavior of all the IPR and eigenvaues

during the optimization process. During the evolution, by considering only those

edge rewirings which perform increments in the IPR value of PEV, we observe that

the localization of PEV leads to a complete delocalization of the second largest

eigenvector as well as localization of the lowest eigenvector. Whereas, IPR values

of rest of the eigenvectors fluctuate around almost a constant value without notice-

able changes (Fig. 6.2). Further, one can observe from the eigenvalue behavior, in

the r2 region, the second largest (λ2) and the lowest eigenvalues (λn) start drifting

away from the bulk part of the eigenvalues, whereas rest of the eigenvalues does

not show significant changes (Fig. 6.3). It is known that localization of PEV leads

to a localization of the lowest eigenvector [24]; however, the behavior of the sec-

ond largest eigenvector, and moreover, its relation with the PEV localization have

so far not been explored. Our analysis reveals that the localization behavior of the

second largest eigenvector is related to the sensitive behavior of PEV in the r3 re-

gion. To check the robustness of our results, we have considered power-law degree

distributed networks as the initial networks (Figs. 6.4, and 6.5) and find that the be-
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Figure 6.2: Changes in IPR values of all eigenvectors (Yxj
) of ER as initial network

is rewired using the seheme depicted in section 2.3. Here, only those edge rewirings
in the r3 region are allowed which lead to an increase in Yx1 value. Network size
n = 500 and �k� = 10. The color scheme is generated through the code in Ref.
[158].

havior of the network evolution remains the same irrespective of the type of initial

network chosen.

6.9 Eigenvalues behavior of real-world networks

Next, we turn our attention to understand the localization properties of real-world

networks which provides more insight into the relationship between the PEV lo-

calization and the closeness of the largest two eigenvalues. We analyze various

real-world networks ranging from the social, biological to synthetic systems [134,

159, 160]. Table 6.2 presents various different properties of real-world networks,

and one can see that two largest eigenvalues are close to each other, however, the

PEV of such networks are delocalized (Table 6.2).
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Figure 6.3: Overall behavior of all the eigenvalues during the network evolution
process started from ER network. Network parameters are same as in Fig. (6.2).
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Figure 6.4: Changes in IPR values of all eigenvectors (Yxj
) of SF as initial network

is rewired using the scheme depicted in section 2.3. Network size n = 500 and
�k� = 10.
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Figure 6.5: Overall behavior of all the eigenvalues during the network evolution
process started from SF network. Network parameters are same as in Fig. (6.4).
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Figure 6.6: IPR as a function of edge-rewiring. The networks with large IPR value
in r3 region consists of few edge-rewiring, which leads to a sudden drop in the IPR
value. Rewiring of the first 50, 000 edges is depicted for SF as initial network. Here,
n = 500 and �k� = 10.

No. Networks n kmax �k� Yx1 λ3 λ2 λ1

1. 3elt 4720 9 5.81 0.0033 6.01 6.02 6.03
2. 3elt dual 9000 3 2.95 0.0004 2.992 2.993 2.996
3. G48 3000 4 4.00 0.0003 3.989 3.989 4.000
4. airfoil1 4253 9 5.78 0.0040 5.992 6.006 6.029
5. airfoil1 dual 8034 3 2.94 0.0009 2.989 2.991 2.992
6. delaunay n10 1024 12 5.97 0.0038 6.226 6.256 6.293
7. delaunay n11 2048 13 5.98 0.0088 6.335 6.370 6.412
8. grid1 dual 224 4 3.75 0.0076 3.815 3.832 3.897
9. grid2 dual 3136 4 3.90 0.0012 3.980 3.983 3.988
10. netz4504 dual 615 4 3.81 0.0038 3.916 3.943 3.966
11. ukerbe1 dual 1866 4 3.79 0.0031 3.926 3.942 3.968
12. whitaker3 9800 8 5.92 0.0007 6.013 6.015 6.024
13. grid2 3296 5 3.90 0.0011 3.980 3.984 3.988
14. stufe 1036 4 3.61 0.0031 3.690 3.699 3.713
15. uk 4824 3 2.83 0.0011 2.985 2.988 2.993
16. grid1 252 4 3.78 0.0064 3.838 3.852 3.917
17. diag 2559 4 3.20 0.0006 3.2655 3.2658 3.2659

Table 6.2: Various spectral properties of different synthetic and real-world networks
[134, 159, 160]. We consider symmetric adjacency matrices corresponding to the
connected networks having binary entries. For the networks largest two eigenvalues
are close to each other however having a delocalized PEV.
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n m κ1 n1 n2 Y d
x1

κ2 n1 n2 Y d
x1

500 2512 18 290 209 0.005 13 145 354 0.003
520 2630 19 325 194 0.005 13 145 374 0.003
2448 14806 46 2027 420 0.002 13 145 2302 0.0004
4720 13712 69 4627 92 0.01 6 26 4693 0.0002

10498 52490 101 10005 492 0.002 11 101 10396 0.0001
20422 163376 138 18775 1646 0.0006 17 257 20164 0.00001

Table 6.3: Various network parameters and IPR values of PEV for a given n and m.
From the analytical derivations in Eq. (3.11), we decide κ, n1 and n2. Thereupon,
we construct a wheel graph of size n1 and a random regular graph of size n2, and
join them with a node. We rewire an edge connected to the hub node and connect
in random regular network. This leads to a delocalized PEV denoted as Y d

x1
. We

consider here � = 0.02.
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[32] Genio C. I. del, Gardeñes J. G., Bonamassa I., and Boccaletti S. (2016), Syn-
chronization in networks with multiple interaction layers, Science Advances
2(11), e1601679 (DOI: 10.1126/sciadv.1601679).

121



BIBLIOGRAPHY BIBLIOGRAPHY

[33] Domenico M. D., Granell C., Porter M. A., and Arenas A. (2016), The physics
of spreading processes in multilayer networks, Nat. Phys. 12, 901-906 (DOI:
10.1038/nphys3865).

[34] Boccaletti S., Bianconi G., Criado R., del Genio C. I., Gómez-Gardeñes J.,
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