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Abstract

The adoption of Connected and Automated Vehicles (CAV) on public roads along with of-

fering freedom to humans, offers immense possibilities for devising intelligent strategies for

traffic management that can optimally utilize their precise control over movement, ability

to communicate and cooperate, consistency, etc. By utilizing these qualities of CAVs en-

hancements in traffic management can be achieved with respect to efficiency, safety, and

economy. This dissertation documents our efforts to utilize the capabilities of CAVs for their

efficient management while performing collective (or individual) lane changing operations

and at intersections.

This dissertation presents contributions to the field of Intelligent Transportation Systems

(ITS) by proposing novel algorithms for multiple ITS scenarios. First, we introduce a new

ITS procedure called Lane Sorting, which refers to the rearrangement of vehicles such that

every vehicle gets into its desired lane. We then propose the Cooperative Lane Sorting (CLS)

algorithm, which is a cooperative algorithm generalized in terms of the number of lanes and

traffic density. CLS process vehicles in independent batches called frames, and processing

each frame involves solving a non-linear optimization problem reducible to a mixed-integer

linear programming problem (MILP). After obtaining a solution to the MILP, vehicles adjust

their position and perform the lane change operation. Being a generalized algorithm, CLS

can be used for performing lane change operation of any number of vehicles wanting to do

so in a given group of vehicles.

Next, we propose the Heuristic Autonomous Intersection Management (HAIM) algo-

rithm for intersection management of autonomous vehicles. HAIM makes use of four levels

of heuristics to schedule vehicles such that no two vehicles are present at the same space at

the same time and the delay caused in this scheduling is minimum. The HAIM algorithm is

proposed for a scenario that is equipped with a central controller along with roadside infras-

tructure for wireless communication. The central controller called Intersection Manager (IM)

communicates with all incoming vehicles to gather information regarding their route, vehicle

parameters, and motion parameters. The IM, which implements the HAIM algorithm, will

then return each vehicle the velocity with which it has to travel. Vehicles, as soon as they

enter the scenario, are required to transit to the given velocity and then maintain it throughout

the rest of the scenario. The HAIM algorithm works on traffic that already contains vehicles

i



on lanes corresponding to their destination direction at the intersection. Added with the fixed

trajectory of vehicles at the intersection, the problem of intersection management reduces to

the scheduling of vehicles at some fixed number of conflict points thus reducing the com-

plexity of the overall problem. A comparative study of the HAIM algorithm with two other

autonomous intersection management algorithms and also with traffic light control is later

performed. Results obtained show that of all considered intersection management schemes,

the HAIM algorithm introduces the minimum delay in vehicle trips caused by scheduling.

The next major contribution of this dissertation is to the field of formal verification of

ITS algorithms. We perform verification of the design and operation of the HAIM algorithm

and through this, we document an innovative approach to the verification of ITS algorithms

that can be performed using available tools and techniques. For verification of HAIM, for-

mal modeling of the algorithm, traffic injection, vehicle behavior, and collision detection is

performed and the models so obtained are scrutinized using a combination of techniques.

Along with verifying the safety properties, sanity of the modeling, and verification of the

expected behaviors of each of the four layers of HAIM are also performed. Techniques such

as statistical model checking, simulation testing, internal verification, and artificial error in-

jection are used for this purpose. The approach used to verify the safety property of HAIM

and sanity of modeling is unique in terms of the combination of techniques used.

Email: phd1501201006@iiti.ac.in



List of Publications

A. Published

[1] Aaditya Prakash Chouhan and Gourinath Banda, “Autonomous Intersection Man-

agement: A Heuristic Approach”, IEEE-Access, Vol. 6, pp. 53287–53295, 2018, DOI

= "https://doi.org/10.1109/ACCESS.2018.2871337", (SCI, IF:4.098)

[2] Aaditya Prakash Chouhan, Gourinath Banda and Kanishkar Jothibasu, “A Coopera-

tive Algorithm for Lane Sorting of Autonomous Vehicles”, IEEE-Access, Vol. 8, pp.

88759 - 88768, 2020, DOI = "https://doi.org/10.1109/ACCESS.2020.2993200", (SCI,

IF: 4.098)

[3] Aaditya Prakash Chouhan, Gourinath Banda, “Formal Verification of Heuristic Au-

tonomous Intersection Management Using Statistical Model Checking”, Sensors, Vol.

20, 2020, DOI = "https://doi.org/10.3390/s20164506", (SCI, IF: 3.031)

iii



Contents

ABSTRACT i

LIST OF PUBLICATIONS iii

TABLE OF CONTENTS iv

LIST OF FIGURES ix

LIST OF TABLES x

LIST OF ABBREVIATIONS & ACRONYMS xi

LIST OF FIGURES xi

LIST OF TABLES xi

1 Introduction 1

1.1 The Call for Automated Traffic . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Intelligent Transportation System . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Problems Considered and Motivations . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Lane Sorting: Cooperative rearrangement of vehicles in lanes . . . 10

1.5.2 Autonomous Intersection Control . . . . . . . . . . . . . . . . . . 11

1.5.3 Formal Verification of ITS Algorithms . . . . . . . . . . . . . . . . 12

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Cooperative Lane Sorting . . . . . . . . . . . . . . . . . . . . . . 12

iv



CONTENTS

1.6.2 Heuristic Autonomous Intersection Management . . . . . . . . . . 13

1.6.3 Formal Verification of the HAIM algorithm . . . . . . . . . . . . . 13

1.7 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Introduction to Autonomous Vehicles and Formal Verification 16

2.1 Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Autonomous Vehicle Classification . . . . . . . . . . . . . . . . . 18

2.1.3 AV Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 AV Software Architecture . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Computational Tree Logic . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Model checking CTL . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Stochastic Timed Automata . . . . . . . . . . . . . . . . . . . . . 43

2.2.5 Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . 45

2.2.6 Probabilistic Computational Tree Logic . . . . . . . . . . . . . . . 46

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Intelligent Transportation Systems Survey 49

3.1 Lane Sorting Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Lane Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Platooning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.3 Cooperative Lane Change . . . . . . . . . . . . . . . . . . . . . . 53

3.2 AIM Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Centralized Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Decentralized Schemes . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Hybrid Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Cooperative Lane Sorting 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



CONTENTS

4.1.1 Lane Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 CLS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Frame Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Transforming to Linear Programming . . . . . . . . . . . . . . . . 81

4.3.4 Choosing Supporting Vehicles . . . . . . . . . . . . . . . . . . . . 84

4.3.5 Frame Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.6 Rearrange Vehicles in Frame . . . . . . . . . . . . . . . . . . . . . 90

4.3.7 Shifting Vehicles Inside Frame . . . . . . . . . . . . . . . . . . . . 91

4.3.8 Adjusting Vcommon and Frame Length . . . . . . . . . . . . . . . . 92

4.3.9 Complexity Analysis of CLS . . . . . . . . . . . . . . . . . . . . . 93

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Heuristic Autonomous Intersection Management 102

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Physical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Communication Architecture . . . . . . . . . . . . . . . . . . . . . 103

5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Vehicle Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Intersection Manager Behavior . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Motivations for the HAIM algorithm . . . . . . . . . . . . . . . . . . . . . 109

5.6 The HAIM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.1 Lane Conflict Prevention Heuristic . . . . . . . . . . . . . . . . . . 112

5.6.2 FEFS Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6.3 Window Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.4 Reservation Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.5 Decision Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



CONTENTS

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Formal Verification Literature Survey 128

6.1 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1.1 Formal Verification of Autonomous Systems . . . . . . . . . . . . 129

6.1.2 Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Formal Verification of HAIM 135

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.1 Associated Challenges . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.2 The Choice of Verification Technique and Formalism Used . . . . . 136

7.1.3 Uppaal Model Checker . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Modeling HAIM in Uppaal SMC . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.1 Model with Lane Velocity As the Final Velocity . . . . . . . . . . . 149

7.3.2 Model with FEFS Velocity As the Final Velocity . . . . . . . . . . 150

7.3.3 Model with FEFS Velocity and Window Velocity . . . . . . . . . . 151

7.3.4 Complete Model with FEFS, Window and Reservation Velocities . 151

7.4 Implementation Verification . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.1 Invariant Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.2 Artificial Error Injection Testing . . . . . . . . . . . . . . . . . . . 154

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Conclusion and Future Research Directions 159

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 161

vii



List of Figures

2.1 Timed automata example . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Timed automata example . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Timed automata example . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 A TA and its corresponding transition system . . . . . . . . . . . . . . . . 33

2.5 Regions on the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 A TA and its corresponding Region automata . . . . . . . . . . . . . . . . 35

2.7 Examples for CTL formulas . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Examples for CTL formulas . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Example automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Lane Sorting Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 VTS and LSA in the Scenario . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 A possible distribution of frames . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Frame creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Frame creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 This figure shows a frame along with notations used in equations . . . . . . 79

4.7 A case where frame merge is required. . . . . . . . . . . . . . . . . . . . . 83

4.8 Example scenario to find number and order of vehicles shifted into Support-

ingVehicles set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 The figure shows a case where the rearrangement of vehicles will be required

to prevent a collision. The red vehicle is associated with Frame 1 but pro-

trudes into Frame 2 as it is not moved by the lane sorting LP formulation . . 90

4.10 Average sort time vs. traffic density for different values of Vcommon . . . . . 97

viii



LIST OF FIGURES

4.11 Variation of average sorting distance with respect to varying frame length for

traffic density = 3000 Veh/hr . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Architecture constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 A possible velocity profile of vehicle . . . . . . . . . . . . . . . . . . . . . 108

5.3 A four-way intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 The Record data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Conflict point indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Decision flow of the HAIM algorithm . . . . . . . . . . . . . . . . . . . . 122

5.7 A simulation screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 Traffic automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Master automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Decision flow of the HAIM algorithm . . . . . . . . . . . . . . . . . . . . 145

7.4 Lane collision detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Intersection collision detection logic and occupancy extension to model ve-

hicle width and angle of intersection . . . . . . . . . . . . . . . . . . . . . 148

7.6 Difference of other velocities from Vlane. . . . . . . . . . . . . . . . . . . . 154

7.7 Number of active templates at any given time and templates getting terminated.155

ix



List of Tables

2.1 SAE Level-0 autonomous vehicle . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Two possible task distributions for SAE Level-1 autonomous vehicle . . . . 20

2.3 SAE Level-2 autonomous vehicle . . . . . . . . . . . . . . . . . . . . . . 21

2.4 SAE Level-3 autonomous vehicle . . . . . . . . . . . . . . . . . . . . . . 21

2.5 SAE Level-4 autonomous vehicle . . . . . . . . . . . . . . . . . . . . . . 22

2.6 SAE Level-5 autonomous vehicle . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Occupancy requirements from lanes in Figure 4.8 . . . . . . . . . . . . . . 85

5.1 Information available with the IM . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1 Properties in Uppaal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Functions used in Uppaal model. . . . . . . . . . . . . . . . . . . . . . . . 146

7.3 Verification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Verification timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Properties checked for invariant satisfiability . . . . . . . . . . . . . . . . . 153

x



List of Abbreviations & Acronyms

ABS Anti-locking Braking System

ADAS Advanced Driving Assistance Systems

ADS Automated Driving Systems

AIM Autonomous Intersection Management

AHS Automated Highway System

AV Autonomous Vehicle

CAV Connected and Autonomous Vehicle

CLC Cooperative Lane Change

CLS Cooperative Lane Sorting

CTL Computational Tree Logic

DARPA Defense Advanced Research Projects Agency

DSRC Dedicated Short Range Communication

FCFS First Come First Serve

GSM Global System for Mobile Communication

HAIM Heuristic Autonomous Intersection Management

IEEE Institute of Electrical and Electronics Engineers

IM Intersection Manager

INR Indian Rupee

ITS Intelligent Transportation Systems

LSA Lane Sorting Area

MILP Mixed Integer Linear Programming

PATH Partners for Advanced Transit and Highways

RSU Road Side Unit

SAE Society of Automotive Engineers

xi



LIST OF TABLES

SC Scenario Controller

SDC Self Driving Car

SMC Statistical Model Checking

STA Stochastic Timed Automata

TA Timed Automata

USDoT United States Department of Transportation

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VSSA Voluntary Safety Self-Assessment

VTS Velocity Transition Section

V&V Verification and Validation

WAVE Wireless Access in Vehicular Environments

xii



Chapter 1

Introduction

Automobiles have come a long way since their invention. The history of automobiles starts

in 1769 when the first steam-powered automobile capable of human transportation was de-

veloped by Nicolas-Joseph Cugnot. However, the year 1866 is regarded as the year of birth

of the modern automobile as it marks the year Karl Benz developed a gasoline-powered

four-stroke single-cylinder automobile [1]. This is also considered to be the first produc-

tion vehicle as several similar copies were made by Benz. The early history of automobile

development is associated with the exploration of different means of propulsion such as

steam-powered, four-stroke petrol internal combustion, electric battery, etc. While the later

history of automobile development is defined by the trends in exterior styling, size, and util-

ity preferences. The mass production of automobiles had begun in the early 1900s in France

and the United States. Early 20th century saw the rise of a large number of automobile com-

panies. Various famous automobile manufacturers of the present day such as Audi, BMW,

Volkswagen, Porsche, Bentley, Jaguar, etc. were established in the first half of the 20th

century.

With the growing use of automobiles by common people, manufacturers kept on evolv-

ing automobiles in terms of safety, efficiency, design, features, and environmental consider-

ations. For instance, the three-point seat belt that is mostly used today was invented by Nils

Bohlin in 1959 while working at Volvo. Volvo later made the patent of the same open in

the interest of safety and made it available to other car manufacturers for free. Aerodynamic

design, Anti-lock Braking System (ABS), Electronic Traction Control, Automatic Transmis-

sion, etc. are some more examples of additions made to the automobiles as they evolved.
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Most of the vehicles that are now manufactured contain most of these features. These fea-

tures are now so common that any vehicle that has some or all of these features can be called

a conventional vehicle. These conventional vehicles are used throughout the world and have

become the most important mode of transportation. They have made humans more mobile,

increased their productivity, created new opportunities, increased their social and economic

interactions, etc. As a result, cars have become an integral part of the lifestyle of a large

portion of the world’s population. Automobiles have also become a source of income for

those who are in a transportation service business such as logistics, taxi operators, drivers;

be it bus or truck or cargo vehicles. This tells us that automobiles now play an indispensable

role in the social and economic life of people throughout the world.

1.1 The Call for Automated Traffic

A safe and efficient operation of automobiles relies on the availability of various infras-

tructural resources that contain and manage them. The infrastructural requirement for the

operation of automobiles in the most basic form is a road on which they are driven. When

we have a network of roads, infrastructures such as intersection, road merge/diverge, fly-

overs, etc. come into the picture. Generally, these infrastructures have a limit on the traffic

(a group of automobiles that are using a common infrastructure) density they can handle at

any given time. When the traffic grows larger than the capacity of the infrastructure, it gives

rise to Congestion. In such a scenario, the infrastructure does not have the capacity to handle

the incoming traffic in an efficient way, and the resulting performance of the traffic control

scenario will be sub-optimal. As a result, vehicles move at slower speeds, take longer trip

times and there is an increased queuing of vehicles.

Traffic congestion has become a serious problem throughout the world. There are a

number of negative effects of traffic congestion which includes:

• It increases the trip time which results in wasted human hours and hence less produc-

tivity.

• It results in decreased economy of the vehicle. As a result, increasing the cost of

operation of the vehicle by burning more fuel, maintenance cost, etc.
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• Wasted fuel also results in more emissions from the vehicle, thus increasing the envi-

ronmental damage.

• It may result in a feeling of stress and frustration in the driver that may cause him/her

to behave irrationally thus increasing the chances of road rage and collisions.

A report [2] says that in the United States alone, drivers have lost more than $88 Billion

in the year 2019 due to congestion. A similar study in India shows that traffic congestion has

resulted in a total loss of INR 144 thousand crores (1.44 trillion) in just four cities of Mumbai,

Delhi, Bangalore, and Kolkata in the year 2017 [3]. Along with economic loss, congestion

also hits the environment very hard. Another study says that an average passenger vehicle in

the United States emits 4.6 metric tons of carbon dioxide in a year [4]. Urban populations

living in developed and developing nations are most affected by these adverse effects of

congestion.

Often times, to deal with congestion, the infrastructure is extended or rebuilt to accom-

modate the traffic requirements. Measures taken by the city or the highway authority include

developing alternate routes if there is heavy traffic on one route, building flyovers to keep dif-

ferent traffic streams uninterrupted, widening of roads to add one or more lanes, etc. Though

these measures are effective, they can’t be used everywhere because of the following reasons:

• Infrastructural development requires large capital investment. In developing countries

where the government may be under a tight budget or is having other public services

at a higher priority, it shall not be willing to invest such huge amounts.

• Even if the budget is not a problem, there may be a situation where there are space re-

strictions. Such a problem occurs when the congestion hit area is in a densely occupied

urban area where there is no space to widen the road or to build alternate routes.

• Most of the time, building infrastructure is a reactive strategy i.e. it is employed as a

result of urgency. Such solutions are not always permanent and the traffic scenario can

again become congestion hit due to the increase in population.

This tells us that dealing with congestion needs a smarter approach than building infrastruc-

tures. Another approach is to manage the present infrastructure using smart traffic manage-

ment techniques. The review article given in [5] presents a review of such techniques. These
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techniques can alleviate the situation to some extent, however, the unexpected rise in the

population will eventually result in persistent congestion.

Along with inconvenience and losses caused by congestion, there is another major factor

calling for the need of improving the current traffic situation and that is the injuries and

deaths caused by traffic accidents. A World Health Organization report [6] says that there

were 1.4 million deaths globally in traffic accidents in the year 2016 alone and globally, on

an average, there is one fatality in a traffic accident every 20 seconds!

It will not be an exaggeration if we say that the current transportation system is associated

with drawbacks such as: high fatality rate, congestion, environmental degradation, economic

loss, etc. There have been consistent efforts to cope up with these issues however, these is-

sues are still present and are growing in the intensity.

All these drawbacks and problems faced by the current traffic management even after

consistent attempts to curb them, suggest that there is a need for a concrete solution. Also,

for this solution to have long-lasting applicability, it should target the root cause of all these

problems. Obtaining such a solution may involve some out of the box approach or an ap-

proach that hasn’t been tried before. One such approach involves transforming the current

composition of traffic by replacing the conventional vehicles with vehicles that are techno-

logically advanced and can have autonomous control over their movement in at least some

of the situations.

The objective of this transformation is to reduce dependence on humans for performing

dynamic driving tasks. It may sound strange but humans are indeed the most unpredictable

part of the current transportation systems as they are prone to getting fatigued, drunk driving,

impulsive behavior, slower reflex action, divided attention, etc. Humans are accountable for

about 94 to 96% of road accidents [7]. Even if a human driver remains composed, attentive,

is not in rush, follows all traffic rules, is not fatigues or drunk, etc., he/she is only capable

of making local decisions i.e. the decisions which are in his/her best interest and not in the

interest of the overall network.

In other words, the scheme for transforming the current transportation system is to trans-

form the vehicles, which are the smallest entity in it. Transforming the traffic to mainly

consisting of such advanced vehicles known as Autonomous Vehicles (AV) or Self-Driving

Vehicles (SDC) will give a foundation to a much efficient and effective traffic management
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algorithms. We will next discuss in detail what autonomous vehicles are and why they are

deemed as the next revolution in the transportation systems domain.

1.2 Autonomous Vehicles

Autonomous Vehicles have autonomous control over their movement in at least some of

the driving modes and driving conditions. They are the next class of evolution after the

previously defined conventional vehicles. AVs have gained a lot of popularity in recent times

as they are expected to transform the traffic we see today into very well organized streams

of cooperative, coordinated, and obedient vehicles. The AV technology opens up a large

number of possibilities, for instance, passengers of an AV could utilize the time of commute

as per their will instead of driving; AVs could enable elderly, children and disabled people to

commute independently; they could park themselves! and many more. All these advantages

are indeed crucial, but they don’t include the most significant advantage of autonomous

vehicles. The true potential of AVs is unleashed when they are enabled by communication

capability. This is because when AVs are enabled with communication capability, then called

Connected Autonomous Vehicles (CAV), can collectively behave as a team in any traffic

scenario to behave in the most efficient way possible. The behavior of CAVs in a traffic

scenario can be dictated by a Scenario Controller (SC) which performs all the necessary

mathematical processing to come up with the optimum driving strategy for each vehicle or

vehicles can even come up with a strategy among themselves without any intervention of any

controller. This level of coordination and control is not practically possible with manually

driven vehicles. Also, every CAV can be individually controlled by the SC enabling micro-

control over traffic in any scenario.

It is not necessary for an AV to have complete autonomy i.e. it need not be a vehicle without

steering, throttle, and brakes to be called an AV. An AV can have different levels of autonomy

depending on the functions performed by the autonomous driving system of the vehicle. The

Society of Automotive Engineers (SAE) defines six levels of autonomy (level 0 to 6) for

AVs. We will have a detailed discussion on these levels in Section 2.1 of this dissertation.

Similarly it is not required to have AV with complete autonomy to exploit their capabil-

ities for effective traffic management. We can design algorithms for AVs with intermediate
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levels of autonomy as well and leverage their capabilities. This fact has been one of the

prime motivations for the works presented in this thesis as these works may find applications

in the very near future due to the availability of vehicles on which these algorithms can be

applied (level-2 or more autonomous vehicles).

1.3 Intelligent Transportation System

Intelligent Transportation Systems or ITS, refers to traffic management systems that for traf-

fic management, exploit the advancements in technologies such as sensing, wireless commu-

nication, computation, vehicle automation, etc. ITS applications aim to provide traffic man-

agement services by leveraging real-time information and coordinated vehicle movement in

dedicated algorithms for more safe and efficient management of transport networks. Any

ITS can be thought of as comprising of four players, namely: i) Sensors, ii) Decision mak-

ing agents, iii) Vehicle agents and iv) Communication infrastructure. The decision-making

agent can be a central controller which is common for all the vehicles in a particular scenario

or it can well be a controller station common to vehicles in a region or city, it can also be

one of the vehicles in the scenario that has been elected by some algorithm to make local

decisions. Vehicle agents in an ITS scenario are required to have functionalities that enable

them to communicate with the decision-making agent and can also have autonomous control

features.

In an ITS, wireless communication is usually performed between Vehicle and Infrastruc-

ture known as Vehicle to Infrastructure (V2I) communication and between different vehicles

known as Vehicle to Vehicle (V2V) communication. Various technologies have been pro-

posed to perform V2V and V2I wireless communications. For short-range communication

of up to 350 meters, IEEE 802.11p standard can be used which is a standard to add Wireless

Access in Vehicular Environments (WAVE). This standard is backed by the United States

Department of Transportation (USDoT) and also is the basis of the Dynamic Short Range

Communication project (DSRC) run by it. For long-range communication, the available

technologies are IEEE 802.16 (WiMAX) protocol, Global System for Mobile Communica-

tion (GSM), 3G, 4G, etc.

We have talked about the extent of possibilities that are opened up by CAVs in terms of
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traffic control strategies. This is the reason, ITS has become a hot topic among researchers

from industries and academies in the last decade. There have been various government initi-

ated programs as well to bring together researchers from across the globe and showcase their

technology. These attempts have been directed towards both autonomous vehicle develop-

ments as well as towards their application in ITS scenarios. For instance, the Automated

Highway System (AHS) was developed at the University of California in association with

California state department of transportation and the Federal Highway Administration under

the PATH (Partners for Advanced Transportation Technology) program [8]. Similarly, in

the early 2000s, the U.S. defense organization, DARPA, conducted multiple challenges [9]

to accelerate the autonomous technology for military requirements. This turned out to be a

path-breaking program as it gave momentum to the research on autonomous driving technol-

ogy. In addition to this, lots of large automobile companies and various startups have heavily

invested in CAVs and are working towards their autonomous vehicles and/or vehicles with

Advanced Driving Assistance Systems (ADAS).

The number of CAV with respect to the total number of vehicles, also known as the pene-

tration rate (PR) is a measure of the density of the CAVs in a city or a region. The extent of

benefits experienced in the traffic conditions by adopting CAVs depends on the penetration

rate. As the number of CAVs increases relative to the number of conventional vehicles, or

in other words, as the penetration rate of CAVs increases, most of the problems occurring

in the current traffic situation will be diluted and the efficiency of transportation systems

would improve. As the advantages of using CAVs are huge, it is very important to develop

traffic management algorithms that take advantage of the connectivity and autonomous con-

trol. Although many efforts have been directed in this direction, still the development of safe

and efficient traffic management algorithms for CAVs has not matured. As a result, devising

efficient algorithms for various traffic scenarios remains an open research problem. Few ex-

amples of such traffic scenarios are Intersections, Lane merges, Highway ramps, Toll gates,

Roundabouts, etc. Among these and various other scenarios whose traffic control strategies

are crucial, in this dissertation, we are particularly interested in the autonomous intersection

control and Lane Sorting of CAVs.

In addition to proposing ITS algorithms, we are also interested in procedures to generate cor-

rectness proof for the design and behavior of such algorithms against the required properties.
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Because of the safety critical nature of these algorithms, it is crucial to obtain such proof.

We make use of formal verification for this purpose, which is a mathematically backed tech-

nique. We will next discuss about the need of correctness verification (which influences the

overall safety of the product/technology) and some industry practices for the same.

1.4 Formal Verification

The role that technology plays in human life has grown over the years. Out of all the tech-

nologies that surround humans, some of them can have direct consequences on the safety of

the human user, for instance, elevators, driver assistance features, auto-pilot systems in an

airplane, etc. For such technologies, it is required to have strict Verification and Validation

(V&V) procedures to ensure safety of users post deployment. Along with the impact on the

safety of the users, V&V procedures are also critical in preventing economical losses. In

practice, it is well known that the earlier the errors are found in the product development

cycle, the lower is the cost of correcting such errors.

In Validation and Verification (V&V) procedures, validation is targeted towards guaran-

teeing that the correct product is developed, whereas, the verification techniques are targeted

towards guaranteeing that the product is developed in the right way. Common V&V tech-

niques are formal verification, testing, simulation, etc. Simulation, as applied for the purpose

of V&V is a technique that performs executions of the model of the system under develop-

ment for some finite number of test cases. Testing, on the other hand, is applied after a

system is past its development stage. Even though simulation and testing are indispens-

able in V&V procedures, they have their limitations. Simulations can only have coverage

of the state-space corresponding to the test-cases considered and testing can only detect the

presence of errors and not the absence of them [10]. Formal verification is a mathemat-

ical approach for guaranteeing that the system model satisfies the specified requirements.

Broadly, such system requirements (also called as system properties) belong to two classes:

(a) safety properties and (b) liveness properties. Safety properties are of the form "Some-

thing bad will never happen", whereas liveness properties are of the form "Something good

will eventually happen". These two types of properties can be combined to specify other

requirements [11]. Formal verification techniques makes use of state exploration procedures
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and has the capability to comment decisively on the correctness of the given system with

respect to specifications.

Formal verification is a well-known technique and has been in use in hardware as well

as software verification for a long time now. It is used in most of the hardware companies

as errors in the hardware production cycle has much significant commercial influence as

compared to that of software. For instance, the car manufacturing company Toyota had to

recall 2.4 million cars to fix the issue of loss of power in rare cases due to a fault in the

inverter system in the cars manufactured in the year 2008 to 2014 [12]. Similarly, Intel had

to recall all the defective processors because of a hardware bug infamously known as Pentium

FDIV bug [13].

Owing to the capabilities of formal verification techniques, its usefulness in the devel-

opment of autonomous vehicles and associated algorithms is irreplaceable. It is going to

play a crucial role at each stage in the development cycle of such systems. In fact, var-

ious autonomous vehicles standards and guidelines recommend formal verification based

correctness generation. For instance, ISO26262, which is an international standard for func-

tional safety of electrical and electronic systems of autonomous vehicles uses a system of

steps to regulate the development at the system, hardware, and software level. It defines

the automotive safety life cycle ( management, development, production, operation, service,

decommissioning), provides a risk-based analysis for determining risk classes, and provides

the requirement of validation measures to ensure the reduction of risk factors to acceptable

levels.

The United States Department of Transportation (U.S. DoT) has acknowledged the con-

cerns of the general public regarding the safety of autonomous vehicles and issued guidelines

for AV developers, manufacturers, and researchers to help address the issue and make this

technology safe for wide acceptance by the public. They published their latest guidelines

for developing a safe autonomous vehicle technology named Preparing for the future of

transportation 3.0 [14]. The guideline is aimed towards mitigating risks introduced by the

automation of vehicles and thus be able to exploit the full potential of the technology. The

guidelines issued in this latest document extends the previous guideline named A vision for

safety 2.0 [15] that emphasized on the safety aspect of Automated Driving System (ADS) and

kept testing, verification/validation central to the U.S. DoT’s approach. ADS manufacturers
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are also encouraged to make their safety assessment report that includes the description of the

approach used for verification/validation named Voluntary Safety Self-Assessment (VSSA)

public in order to increase transparency and confidence in their technology.

Because of the safety critical nature of algorithms that control vehicles in ITS scenarios,

it is crucial to obtain their correctness proofs to ensure safety of lives. Generating such

proofs, besides improving in algorithm’s correctness confidence will also be useful in terms

of certification and gaining trust of general public. This motivates us to propose a verification

technique for the proposed intersection management algorithm. The key property of the

algorithm which we consider is collision freedom.

1.5 Problems Considered and Motivations

The works presented in this thesis make contributions to the ITS domain and formal veri-

fication domain. We first propose one algorithm each for: (i) cooperative and coordinated

lane changes of a group of AVs and (ii) autonomous intersection management. Thereafter,

we present a systematic approach for verifying the collision freedom property of the pro-

posed autonomous intersection management algorithm. The research carried out has been

primarily motivated by the following observations.

1.5.1 Lane Sorting: Cooperative rearrangement of vehicles in lanes

Lane change is one of the most common maneuvers involved in vehicular driving. It is per-

formed while overtaking, at highway entry or exits, merges, etc. In the literature there are

several works dedicated to planning safe and efficient lane change maneuvers for individual

vehicles [16]. Also, there exist works that make use of lane changing operations to organize

vehicles into arrangements that result in an efficient flow of the traffic. Platooning is one such

technique [17]. Despite the role that lane change operations play in traffic management, we

have observed that there is no dedicated work in the literature that aims to plan cooperative

lane change operations for a group of vehicles. Vehicles are assigned their most favorable

lane by lane assignment techniques [18] but to the best of our knowledge, planning how vehi-

cles can physically coordinate their lane change operations such that all vehicles reach their

destination lanes within minimum distance and without any conflict is one area that hasn’t
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been approached as a research topic so far. Though there are few works on cooperative lane

changing problem [19–21], none of them offers a generalized solution that can be applied in

a scenario with any number of lanes or vehicles. This motivates us to introduce the above

problem as a new line of research and propose a generalized algorithm for the same.

Lane Sorting is a term that we have coined for the collective process of rearranging a

group of vehicles traveling initially on random source lanes such that each vehicle reaches

its destination lane. The choice of destination lanes for a vehicle may depend on its velocity,

destination group, size, tariff at a toll gate, priority, etc. Lane Sorting is a new concept

in the ITS domain and it finds application in algorithms that manage vehicles in scenarios

such as platoon formation, intersection management, toll-point execution, lane changes on

highways, etc.

1.5.2 Autonomous Intersection Control

Intersection is a very crucial part of any traffic network. As they are the shared resource

for all the incoming roads, intersection congestion can result in congestion in all of them.

This is the reason, intersections are also known as the "Bottlenecks of traffic". Along with

that, 40% of all traffic accidents and 20% of traffic-related fatalities in the U.S. involve

intersections [22]. The economic loss caused by traffic congestion has been estimated to

be over $ 88 billion in the U.S. in the year 2019 alone [2]. This suggests that the existing

intersection management technique such as traffic lights, stop-signs, manual control, etc. are

not up to the mark with the increasing levels of congestion and there is a need for a new

approach for the same.

With the developments in the field of autonomous vehicles, a new paradigm of intersec-

tion management has been introduced. We observed that it is not required to have level-5

autonomous vehicles before we could take advantage of self-driving features in traffic man-

agement. For instance, level-2 vehicles can have autonomous control over their lateral as

well as longitudinal movement; this qualifies them to be used in ITS applications requiring

only these controls.

Motivated by our observations, we attempt the problem of intersection management of

autonomous vehicles with a fixed velocity based heuristic approach. A fixed velocity-based

approach results in no queuing before the intersection and it results in maximum economy,
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minimum emissions, and maximum efficiency as it does not involve frequent acceleration

and deceleration of vehicles. A heuristic algorithm does not involve heavy computational

procedures thus making the algorithm suitable for real-time applications.

1.5.3 Formal Verification of ITS Algorithms

Owing to the safety-critical behavior of ITS scenarios, it is of critical importance to have a

mechanism to obtain the correctness proof of an associated algorithm with respect to certain

properties. Obtaining such a proof would involve modeling the scenario, vehicle behavior,

modeling the concerned algorithm, and finally modeling the safety-critical requirements such

as the no collision property. Besides, it is also crucial to reflect the real-world distributions

in the model used for verification such as the spawning of vehicles. Finally, to check the

sanity of the model itself, there should be internal verification routines to gain confidence in

the verification results obtained.

1.6 Contributions

Here we present the significant contributions of the research work carried out for efficient

management of autonomous vehicles at (i) scenarios that involve cooperative lane change

maneuvers using the Cooperative Lane Sorting (CLS) algorithm and (ii) intersections using

the Heuristic Autonomous Intersection Management (HAIM) algorithm. Before this, we

coin the term Lane Sorting which refers to a line of research that has been overlooked so

far. Thereafter, we propose a systematic procedure for the formal verification of the HAIM

algorithm. A brief description of these contributions are described in the following:

1.6.1 Cooperative Lane Sorting

In this work, we introduce the concept of Lane Sorting. Thereafter, we propose the Coop-

erative Lane Sorting algorithm that performs the lane sorting operation on vehicle batches

called frames. To perform lane sorting operation on a frame, an optimization formulation is

performed which is then reduced to mixed-integer linear programming (MILP) formulation.

The constraints designed in the MILP formulation make sure that all the frames are kept
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independent from each other. This makes the CLS algorithm suitable for parallelization as

each frame can be processed independently. The CLS algorithm is a cooperative algorithm

in the sense that vehicles that are not currently attempting to change lanes will cooperate

with lane changing vehicles and will make space for them. The CLS algorithm considers

all possibilities regarding the existence of the solution to the MILP problem and ensures

that the incoming traffic is eventually sorted. Additionally, CLS is a generalized algorithm

in terms of number of lanes and vehicles wanting to change lanes, making it applicable for

cooperative lane change operation of a group of vehicles as well as individual vehicles.

1.6.2 Heuristic Autonomous Intersection Management

In this work, a heuristic algorithm for intersection management of autonomous vehicle traf-

fic is proposed named Heuristic Autonomous Intersection Management (HAIM) algorithm.

The HAIM algorithm realizes a velocity-based algorithm in which vehicles incoming to the

intersection first attain the assigned velocity and then maintain it throughout the rest of the

traversal in the scenario. The HAIM algorithm consists of 4 levels of heuristics that succes-

sively resolve conflicts in the lane as well as intersection traversal of every vehicle incoming

to the scenario. Being a heuristic algorithm, HAIM requires no computationally intensive

procedure and has the complexity of the order of O(n), where n is the number of vehi-

cles incoming to the intersection as every vehicle has to be considered once to calculate its

velocity.

1.6.3 Formal Verification of the HAIM algorithm

In this work is presented a formal verification approach to prove that the HAIM algorithm

resolves all conflicts and results in collision-free scheduling of vehicles. The presented

methodology is unique in the sense that it makes use of a systematic technique for (i) formal

verification of the HAIM algorithm (ii) verification of the HAIM model using internal

verification, and artificial error injection technique. Later we perform simulation-based

verification for ensuring faithful modeling of the HAIM algorithm.

Following are the publications corresponding to the contributions mentioned above.
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• Aaditya Prakash Chouhan and Gourinath Banda, “Autonomous Intersection Manage-

ment: A Heuristic Approach”, IEEE-Access, Vol. 6, pp. 53287–53295, 2018, DOI =

"https://doi.org/10.1109/ACCESS.2018.2871337"

• Aaditya Prakash Chouhan, Gourinath Banda and Kanishkar Jothibasu, “A Cooperative

Algorithm for Lane Sorting of Autonomous Vehicles”, IEEE-Access, Vol. 8, pp. 88759

- 88768, 2020,

DOI = "https://doi.org/10.1109/ACCESS.2020.2993200"

• Aaditya Prakash Chouhan, Gourinath Banda, “Formal Verification of Heuristic Au-

tonomous Intersection Management Using Statistical Model Checking”, Sensors, Vol.

20, 2020,

DOI = "https://doi.org/10.3390/s20164506"

1.7 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives an introduction to autonomous

vehicles and the underlying techniques for model-based formal verification which are Timed

Automata (TA), Computational Tree Logic (CTL) and their probabilistic extension, and Sta-

tistical Model Checking (SMC). Chapter 3 describes the existing ITS algorithms related to

autonomous intersection management and lane sorting. In Chapter 4, we first introduce the

concept of lane sorting and then propose the CLS algorithm for the same. We then present

simulation details and corresponding results. In Chapter 5 we propose the HAIM algorithm.

Later in the chapter, we present the result of the comparative analysis with three other in-

tersection management techniques with respect to average trip delay. Chapter 6 presents

the existing work related to the formal verification of autonomous systems and associated

algorithms. In Chapter 7, we present the formal verification of the HAIM algorithm using

statistical model checking. The HAIM algorithm and the model of HAIM are both sub-

jected to verification in this chapter. The verification results are presented later. Chapter 8

concludes our study in the domain of intelligent transportation system algorithms and their
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formal verification. Finally, the potential future research directions in these areas are dis-

cussed.
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Chapter 2

Introduction to Autonomous Vehicles and

Formal Verification

This chapter provides an introduction to autonomous vehicles and underlying techniques in

the applied formal verification methodology. We will discuss the evolution of autonomous

vehicles, their classification, and their hardware and software architecture. Later we will

discuss certain topics related to model-based formal verification such as timed automata,

model checking, property specification, and their probabilistic extension. This chapter helps

creating familiarity of readers with autonomous vehicles and model based formal verification

and helps in creating a context of the works presented in this dissertation.

2.1 Autonomous Vehicles

2.1.1 A Brief History

The next revolution in transportation led by autonomous driving technology is just around

the corner and in the very near future, we will be able to see widespread deployment of

self-driven vehicles on public roads. The technology that drives this revolution is going to

transform the way vehicles are operated. This transformation from manually driven to au-

tonomously driven is currently the sole purpose of this revolution.

On average, humans are great drivers. It’s surprising how easily and efficiently humans can

perform driving tasks that includes performing environment perception, path planning, ve-
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hicle control, etc. simultaneously. Also, some of the very complex dynamic driving tasks

come naturally to humans especially when it involves perception, reasoning, and sensing.

Indeed, the technology available today is not a match to some of these capabilities of hu-

mans. However, despite this, the data shows that humans are responsible for more than 90

percent of traffic-related accidents. The reason for such a poor turn out in numbers is that the

performance of humans is not consistent. Humans are vulnerable to distractions, dizziness,

emotional spurt, etc. Autonomous driving on the other hand is very consistent.

Though autonomous vehicles have attracted a lot of attention and development in the

past decade, its idea has been there for a very long time. General Motors in Futurama

exhibit at the 1939 New York World’s fair predicted what the world would look like in 20

years and that prediction included an automated highway system with self-driven vehicles.

In 1986, Ernst Dickmanns, a German scientist led a team to develop a self-driving car that

could drive up to 60kmph. Later in the early 1990s, they worked on the Prometheus project

under which an autonomous Daimler Benz drove from Munich to Copenhagen with traffic

for a distance over 1600 kilometers having human intervention every 9 kilometers. In 1995,

Carnegie Melon University’s Navlab project completed the cross-country journey called

"No Hands Across America" with more than 5000 kilometers of driving. The vehicle drove

itself for 98.2% of this journey and for the rest of the journey, human intervention was

required. In the year 2004, DARPA conducted its first Grand Challenge for autonomous

vehicle developers throughout the world to participate and showcase their technology. This

competition has played a pivotal role in the evolution of autonomous vehicles. Though

none of the participating teams could finish the competition in the first version of this

competition, it resulted in attracting serious and planned efforts in the development of

autonomous vehicle technology. As a result, in the second version of the DARPA’s grand

challenge (2005), 5 teams out of 23 completed the race, and Stanley, the winning vehicle

from Stanford University completed the race in minimum time. DARPA conducted its first

competition in the urban setup in the year 2007 and called it the DARPA Urban Challenge.

In the year 2012, Nevada became the first US state to allow the testing of autonomous

vehicles on public roads. In 2016, nuTonomy taxis became operational in Singapore. By

October 2018, Google autonomous car division now known as Waymo has driven a total of

10 million miles of autonomous driving.
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2.1.2 Autonomous Vehicle Classification

Before continuing to the classification of autonomous vehicles, let us first discuss some of

the key components of autonomous vehicles and some of the terms associated with their

operation.

• Driving task: The driving task is a broad term and includes most of the operations that

an autonomous vehicle performs to drive itself. It consists of three sub-tasks which are:

– Environment Perception: In this sub-task, the vehicle is required to study its

environment using various sensors and find out the static and dynamic obstacles

that can include road curbs, other vehicles, cyclists, pedestrians, potholes, etc.

– Motion planning: In this sub-task, the vehicle is required to plan its journey

to travel from point A to point B. The motion planning sub-task can be further

divided into long term motion planning and short term motion planning. Long

term motion planning problems are generally of the form "Which route should be

chosen to go from my current location to the central park?". On the other hand,

short term motion planning problems are of the form "Is it safe to make the lane

change to the right?"

– Controlling the vehicle: In this sub-task, the main objective is to control the

movement of the vehicle. This deals with the control of the actuators such as

steering, brake, throttle such that the motion planning instructions are followed

reliably. All control tasks can be classified into two categories which are lateral

control, and longitudinal control. Lateral control is established using the steering

of the vehicle and the longitudinal control is established by using throttle and

brake.

• Object and Event Detection and Response (OEDR): It refers to the ability of an au-

tonomous vehicle to detect an object or an event in the environment that needs imme-
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diate response and then reacting to it appropriately.

• Operation Design Domain (ODD): This defines the operating conditions under which

the autonomous vehicle is designed to function. This will include the weather condi-

tions, time of day, type of roadway, and other characteristics of the scenario of opera-

tion of the vehicle. Defining the ODD of the vehicle is crucial for ensuring the safety

of operation of the vehicle.

As the allied technologies improve, autonomous vehicles’ capabilities are also

monotonously increasing. However, they do have a certain level of autonomy with respect

to conventional manual vehicles. This level of autonomy that a vehicle poses is based on

the tasks that are performed by the autonomous driving system. The Society of Automotive

Engineers (SAE) has given the classification of vehicles into 6 different levels of autonomy.

Let us next discuss the SAE standard in detail and see how the level of autonomy for any

vehicle is decided.

2.1.2.1 SAE Autonomy levels

The factors that define the level of autonomy of any autonomous vehicle are the following:

• Automated lateral control: Can the vehicle have autonomous control over its lateral

movement in any or all of its driving modes?

• Automated longitudinal control: Can the vehicle have autonomous control over its

longitudinal movement in any or all of its driving modes?

• OEDR: Can the vehicle perform all the object and event detection and can appropri-

ately respond autonomously to them? Also, can the vehicle autonomously attain a safe

state in an emergency situation?

• ODD: Does the operation of the vehicle is restricted to an ODD?

The following classification given by SAE, based on the factors defined above classifies

autonomous vehicles into 6 different autonomy levels. We will be using the term Automated

Driving System (ADS) as the actor whenever the given task is performed by the vehicle

autonomously.
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• Level 0: No automation

Level 0 autonomous vehicles are not autonomous vehicles rather they are manually

driven vehicles without any advanced driver assist systems. All dynamic driving tasks

such as perception or driving environment monitoring, steering, brake, throttle are

done by the human driver. The task distribution for this level of autonomous vehicle is

given in Table 2.1.

Table 2.1: SAE Level-0 autonomous vehicle

Tasks Done by
Lateral control Human

Longitudinal control Human
OEDR Human

Fallback Human

Level 0 vehicles can only receive warnings from supervisory features such as lane

departure monitoring but the control is at all times in the hand of the human driver.

• Level 1: Driver assistance

Driving assistance features that can control either latitudinal or longitudinal movement

of the vehicle in one or more driving modes are present. The task distributions for this

level of autonomous vehicle is given in Table 2.2.

Table 2.2: Two possible task distributions for SAE Level-1 autonomous vehicle

Tasks Done by
Lateral control ADC

Longitudinal control Human
OEDR Human

Fallback Human
ODD Restricted

Example feature Lane centering

Tasks Done by
Lateral control Human

Longitudinal control ADC
OEDR Human

Fallback Human
ODD Restricted

Example feature Cruise control

• Level 2: Partial automation

Advanced driving assistance feature is present that controls both latitudinal and longi-

tudinal movement of the vehicle in one or more driving modes. The task distribution

for this level of autonomous vehicle is given in Table 2.3.
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Table 2.3: SAE Level-2 autonomous vehicle

Tasks Done by
Lateral control ADC

Longitudinal control ADC
OEDR Human

Fallback Human
ODD Restricted

Example features
GM super cruise,

Nissan pro-pilot assist

• Level 3: Conditional automation

All dynamic driving tasks are performed by the autonomous system of the vehicle

in a supported environment. From this level, the autonomous operation of vehicles

is not driving mode specific as the vehicle is responsible for evaluating the driving

environment and performing all dynamic driving tasks. However, the human driver

must take control in case of an emergency. The task distribution for this level of

autonomous vehicle is given in Table 2.4.

Table 2.4: SAE Level-3 autonomous vehicle

Tasks Done by
Lateral control ADC

Longitudinal control ADC
OEDR ADC

Fallback Human
ODD Restricted

Example car Audi A8 Sedan

• Level 4: High automation

All dynamic driving tasks are performed by the autonomous system of car in a sup-

ported environment. Human driver is present but need not respond in case of an emer-

gency; the autonomous system has fail safe strategies. The task distribution for this

level of autonomous vehicle is given in Table 2.5.

• Level 5: Full automation

All dynamic driving tasks are performed by the autonomous system of car in all envi-

ronments. There is no steering, and no levers for brake and throttle. The task distribu-
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Table 2.5: SAE Level-4 autonomous vehicle

Tasks Done by
Lateral control ADC

Longitudinal control ADC
OEDR ADC

Fallback ADC
ODD Restricted

Example car Waymo

tion for this level of autonomous vehicle is given in Table 2.6.

Table 2.6: SAE Level-5 autonomous vehicle

Tasks Done by
Lateral control ADC

Longitudinal control ADC
OEDR ADC

Fallback ADC
ODD Unrestricted

2.1.3 AV Hardware Architecture

We have seen the classification of autonomous vehicles depending on the functions per-

formed by the autonomous driving system. Let us now see what are the hardware compo-

nents that an autonomous vehicle uses to perform various tasks.

2.1.3.1 Perception hardware

Environment perception is done to get the knowledge of the environment and every object

in it. It will include sensing static as well as dynamic objects. Through perception the

autonomous vehicles will be able to make sense of the environment and itself and will be

able to plan ahead its motion in the presence of all the obstacles. Typical static objects

detected by perception module of an autonomous vehicle are:

• Road and lane markings

• Traffic lights

• Traffic signs
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• Curbs

• Construction signs, obstructions, etc.

And some of the common dynamic objects are:

• Four-wheel vehicles

• Two-wheel vehicles such as Motorcycles, bikes, etc.

• Pedestrians

• Animals (Dogs, cats, ducks, etc.)

There are two classes of perception hardware components in an autonomous vehicle. The

first is Exteroceptive and the other is Proprioceptive. The Exteroceptive perception devices

are those devices which sense the presence of any object outside the vehicle for example,

Camera, Lidar, Radar, etc. Whereas the proprioceptive perception devices sense the infor-

mation of the vehicle itself, for example, Global Navigation Satellite System (GNSS), Iner-

tial Measurement Unit (IMU) for sensing acceleration and heading, wheel odometry sensors,

etc. This class of sensors are required for ego localization i.e. finding the position, velocity,

orientation, and angular motion of the vehicle.

The environment perception is performed by the Exteroceptive sensors. The following

are the list of such sensors commonly used on an autonomous vehicle.

• Camera: Camera is the most fundamental sensor that is required for environment per-

ception. A camera is a passive device i.e. it requires an external source of light to

capture images. The comparison metrics for a camera are its resolution, its field of

view and its dynamic range. Resolution defines the quality of the image in terms of

the number of pixels present in the image. Field of view as the name suggests is the

span of the environment in terms of angle that the camera can capture. Dynamic range

is the difference in the darkest and brightest tone that the camera can capture. A high

dynamic range is critical for application in autonomous vehicle application to capture

images in varying lighting conditions.

• LIDAR: Lidar stands for LIght Detection And Ranging, and is an active sensor i.e. it

does not require an external source of light for its working. Lidar consists of several
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light beams that reflect off the object and comes back to the detector. The time de-

lay and difference in intensity of the reflected rays will determine the position of the

reflecting object. Lidar gives a 3D scene geometry in the form of a point cloud. Me-

chanical lidar consists of a rotating element that has a stack of light beams which can

be 8, 16, 32, or 64 in numbers. Higher the number of beams, higher is the resolution

of the obtained point cloud. Since lidar has its own source of light, it is not affected

by the external lighting conditions and can work equally well in dark as well as bright

conditions.

• RADAR: Radar stands for RAdio Detection And Ranging and its make use of radio

waves to detect any large object in the surrounding of the vehicle. Radars are very

robust as they are least affected by precipitation and thus can work in adverse weather

conditions. Comparison matrix of radar are detection range, field of view and position

and speed accuracy. Radars typically come in two categories which are long-range

with a short field of view and short-range with a wide field of view. Both these cate-

gories find applications in autonomous vehicles.

• SONAR: Sonar stands for SOund Navigation And Ranging and are used for short-

range object detection. Sonar are quite inexpensive and are perfect for use in parking

applications. Same as radar, sonar is also unaffected by the weather conditions such as

fog and precipitation.

The proprioceptive or ego sensors that are commonly used in an autonomous vehicle are

GNSS, IMU, and Wheel odometry sensors. GNSS are used to get the global position of

vehicle along with its velocity and some times heading using satellite communication. IMU

gives the acceleration, angular rotation, and orientation of the vehicle. Wheel odometry sen-

sors gives the rotation rate and angle of the wheels of the vehicle. This information can be

used to obtain velocity, heading, position, and orientation of vehicle.

Other than the sensor hardware, an autonomous vehicle will also rely on hardware com-

ponents that are required for computational purposes. For that purpose, we need to have

Graphical Processing Units (GPU), Field Programmable Gate Arrays (FPGA), and Applica-

tion Specific Integrated Circuits (ASIC). Computing in an autonomous vehicle is a serious

task and we need to have some high end processors to manage and process all the data that
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are received from numerous external and ego sensors.

2.1.4 AV Software Architecture

The hardware components discussed above pass on a raw data in the form of numbers. For

instance, an image returned from a camera is actually a two-dimensional array of pixel values

and each pixel value is an array of three values corresponding to the intensities of the three

channels present in a colored image. This raw data from the sensors has to be processed to

make sense of it and to do that we need a software setup.

A possible software architecture of an autonomous vehicle has the following decomposition

into five parts.

• Environment perception

• Environment mapping

• Motion planning

• Vehicle controller

• System supervisor

Environment perception is responsible for locating the ego vehicle in the space and detect

and classify various surrounding objects from the raw sensor data. These objects can be

static objects such as road markings, traffic signs, etc. or they can be dynamic objects such

as other vehicles or pedestrians. Another classification that has to be made is what objects

are on-road objects and what objects are off-road objects. This classification is crucial in the

motion planning stage. Another way in which classification guides the motion planning is

by deciding the amount of tolerance required for different classes of objects, for instance, a

dynamic object classified as a pedestrian will have a more random nature as compared to an

object classified as a car.

The environment mapping makes use of the objects detected in the environment perception

stage to create maps for the motion planning stage. There are three kinds of maps that are

created at the mapping stage. These maps are i) Occupancy grid map, ii) Localization map

and iii) Detailed road map.
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The motion planning stage is responsible for long-term and short-term motion planning of

the autonomous vehicle. In long-term planning, trip planning and route planning is gener-

ally performed whereas, in the short-term planning, responses to the environment perception

such as collision avoidance are planned.

The controller software is responsible for faithfully realizing the planned vehicle maneuver

by controlling the actuators such as throttle, brake, and steering. Finally, the system supervi-

sor supervises the complete software stack as well as the hardware components to make sure

that everything is working as intended.

The technological developments and research efforts in developing autonomous vehicle

technology has made the concept of autonomous driving very close to reality. At current

time we have vehicles that can qualify to be level-4 autonomous vehicles. Though large

scale adoption of autonomous vehicles by general public is not a reality right now, it is not

far away in the future. We have seen how autonomous vehicles are dependent on robust and

dependable technologies working together to make driving safer and more efficient. With

the precision and accuracy of the autonomous driving technology, autonomous vehicles have

a lot to offer to their owners as well as to the traffic management systems. As we have

mentioned earlier, it is not necessary to have level-5 autonomous vehicles before we could

exploit the advantages they have to offer. This suggests that the next wave of evolution

of traffic control strategies is soon expected. We will present the proposed ITS algorithms

in next two chapters but before that we will present the underlying techniques of formal

verification in this chapter.
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2.2 Formal Verification

Formal Verification (FV) is a systematic approach that uses mathematical reasoning to verify

that the implementation (i.e. system model) satisfies the requirement/s (i.e. properties) [23].

The process of formal verification starts with the representation of the system using a formal-

ism. This process of representing the system in a suitable formalism is known as Modeling.

The outcome of modeling is a Model, which is a representation of the system or a part of

the system under consideration. The choice of formalism to model the system depends most

importantly on the type of the system to be modeled and the expressiveness required to

model the key dynamics. Different types of systems that are possible are discrete systems,

continuous-time systems, systems containing concurrent processes, hybrid systems, timed

systems, probabilistic systems, etc. A reactive system with finite states without a notion of

time can be modeled using Finite State Automata (FSA) [24] whereas, a time-critical system

cannot be modeled using the same FSA. They will need a formalism that can either model

time or temporal ordering among the states of the system.

Though there are various formalisms available for modeling and verifying real-time systems

such as Promela [25], CSP [26], TLA+ [27], etc. Timed Automata (TA) is the most widely

used formalism because it uses the most intuitive representation of states, transitions, clocks,

and clock constraints associated with the system. Due to the wide acceptance of TA as the

go-to formalism for real-time systems, it also has rich extensions in formalism for incorpo-

rating probabilistic/stochastic behaviors. Because of these advantages, we have chosen TA

(actually Probabilistic TA, as we will see later) for modeling and verifying the HAIM algo-

rithm.

Coming back to formal verification, there are broadly two classes of formal verification meth-

ods which are: i) Property-oriented verification and ii) Model-oriented verification [23]. In

property oriented approach, the system is modeled using a set of properties that a system

satisfies; that is, the system is represented using a set of mathematical equations. The re-

quired property from this system, which is also a mathematical equation should be a logical

consequence of the equations that the system satisfies. Proving this logical consequence

is the basis of verifying a system in property oriented approach. This procedure involves

heavy use of natural deduction and proof methods using propositional and predicate logic.
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Due to this reason, the property-oriented approach requires expert human guidance to obtain

proof. The model-oriented approach on the other hand abstracts mathematical equations and

uses the concept of states. The system is represented as a transition system, which is a tu-

ple containing the possible set of states, transitions between them, and the set of properties

each state satisfies. Verification in a model-oriented approach involves exploring the given

transition system model for checking the satisfiability of the required properties on states.

Algorithms available for doing this are automatic and do not need human intervention or

guidance to obtain results. Added with the benefit of more intuitive development of sys-

tem model using graphical editor, tools present for model-oriented verification offer a better

choice for systems that can be represented using their underlying formal language. Due to

these differences, model-oriented and property-oriented methods have different domains of

applicability. The property-oriented method is more appropriate when we do not know what

the system looks like and the best way to describe them is by the means of axioms. On

the other hand, the model-oriented method is more appropriate when we do know what the

model looks like and we can describe them rather precisely [28].

We will be performing formal verification of the HAIM algorithm, of which we are com-

pletely aware. We are also aware of the governing equations of motion of vehicles, the

trajectories followed by these vehicles, and environmental details. Furthermore, we are not

working with a system that is defined in terms of general properties and mathematical ax-

ioms. For these reasons, the model-oriented formal verification is more appropriate to for-

mally verify the HAIM algorithm.

After the system has been modeled, we are next required to encode requirements in a re-

quirement/property specification language. Examples of property specification languages

for reactive systems are Liner-time Temporal Logic (LTL) [29], Computation Tree Logic

(CTL) [30], regular expressions [31], etc. Usually, the choice of the property specification

languages depends on the type of properties to be verified. For instance, to verify real-time

properties over the system executions, a real-time temporal logic should be the right choice.

We have used CTL as the property specification language as it allows us to write state as well

as path formulas.

The choice of the modeling formalism and specification language coincides with that of the

Uppaal model checker. Uppaal also requires the system model in the form of TA and the
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requirements in the form of CTL formulas. Besides, Uppal allows the model checking of

Probabilistic/Stochastic systems using the probabilistic extensions of TA and CTL in the

variant Uppaal-SMC. During the verification of the HAIM algorithm, we make use of the

Statistical Model Checking offered by the Uppaal-SMC model checker.

In the remainder of this chapter, we will present underlying techniques to build an under-

standing of the model checking procedure and its probabilistic extension. The topics that we

discuss next are: i) Timed Automata, ii) Computation Tree Logic, iii) Model checking CTL

iv) Statistical model checking, and v) Probabilistic CTL.

2.2.1 Timed Automata

We define here the notion of Timed Automata (TA) as defined by Alur and Dill in [32]. Let

us consider X = {x1, x2, ..., xn} be a set of a finite number of real-valued clock variables.

Valuation of these clock variables is defined over X by the map ν : X → R+ (non negative

reals). The value of clock xi can be represented using clock valuation as νi. Moving ahead,

if t ∈ R+, ν + t will represent valuations given by (ν1 + t, ν2 + t, ..., νn + t). [Y ← 0]ν

defines the valuation that assigns 0 to each clock x ∈ Y , where Y is an element in the

powerset of X . Next, we define the set of clock constraints over X , Ψ(X), where each

constraint is of the form xi ≺ c where xi ∈ X, c ∈ N and ≺ ∈ {<,≤,=, >,≥}. If a clock

valuation ν satisfies a clock constraint g ∈ Ψ(x), we represent it as ν |= g. This means that

ν satisfies a clock constraint of the form xi ≺ c whenever νi ≺ c. We next define the notion

of time automata.

Definition: A Timed Automaton, A, is a tuple (L,X,Act, E, Label, guard, inv), where

(i) L is a finite set (non-empty) of locations with l0 ∈ L being the initial location,

(ii) X is a finite set of clocks,

(iii) Act is a finite set of actions,

(iv) E ⊆ L× Act×Ψ(X)× 2X × L is a finite set of edges,
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(v) Label : L → 2AP is a function that assigns to each location l ∈ L, a set of of

atomic propositions valid in that location given by Label(l).Here AP is the set of all atomic

propositions,

(vi) guard : E → Ψ(X) is a function that labels each edge e ∈ E with the en-

abling condition given by guard(e) over X , and

(vii) inv : L → Ψ(X) is the invariant function that assigns to each location, its cor-

responding invariant condition.

Before we take some examples of TA, let us first define the conventions used to draw

a TA.

We will represent locations using circles and transitions between locations are represented

using directed arrows. Invariants, unless true are specified within location circle. Edges

representing transitions between locations are equipped with the enabling clock constraint

by guard(e) and the actions Act(e). The labeling function will give the set of atomic

propositions valid in a given location. These atomic propositions are specified over location

circles. However, we will not be incorporating the labeling function in these examples

because they are only required when we are concerned about model checking the given

timed automata. Also, the initial location l0 is represented using an incoming arrow.

Let us consider examples to understand the evolution of clocks and the meaning of various

terms in timed automata.

(a) (b) evolution of x with time

Figure 2.1: Timed automata example
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Timed automata shown in Figures 2.1, 2.2, and 2.3 show single state automata to demon-

strate the evolution of clock according to the guards, invariant and actions present. In Figure

2.1(a), the edge is enabled whenever x ≥ 2 and every time the edge is traversed, x is reset

to 0. As there is no invariant on the location, there is no time limit on the duration for which

the TA can stay in the location l.

In Figure 2.2(a), there is an invariant at the location l thus restricting the time spent in the

location. Since the edge is enabled only after x ≥ 2, TA will be in location l for a duration

of 2 to 3 time units each time.

Lastly, in Figure 2.3(a), there is no invariant at the location and the guard on the edge restricts

passing through it only when 1 ≤ x ≤ 2 and if this window is missed, this edge becomes

disabled permanently.

(a) (b) evolution of x with time

Figure 2.2: Timed automata example

(a) (b) evolution of x with time

Figure 2.3: Timed automata example

2.2.1.1 Semantics of Timed Automata

A TA is interpreted in terms of an infinite transition system (S,→) where S is the set of

states (pair of a location and clock valuation) and→ is called transition relation that defines
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how the transition system evolves from one state to the another. The transition system ,

M(A), associated with the time automata A is defined as (S, s0,→) where,

(i) S = {(l, ν) ∈ L × RX
+ | ν |= inv(l)}. Here RX

+ is the set of all clock valuations

over X ,

(ii) s0 = (l0, ν0), is the initial state of the transition system with ν0 = 0 for all

x ∈ X , and

(iii) → is the transition relation given by →⊆ S × Γ × S where Γ is an alphabet of

actions.

The transition system of a TA is called finite if S and Γ are finite. In the above defi-

nition S is the set of states of the timed automata A and every state consists of a pair (l, ν)

where l ∈ L and ν ∈ RX
+ .

There are two types of transitions in a timed automata which are: time-transitions and

switch-transitions. In a time-transition some positive amount of time is elapsed while

staying in a location. This is allowed only when the invariant at that location is satisfied for

the time of stay at that location. The time transition is defined as:

(l, ν)→ (l, ν + d) for d ∈ R+ and ∀d′ ≤ d, ν + d′ |= inv(l)

The second type of transition, the switch-transition involves two states s = (l, ν)

and s′ = (l′, ν ′) of A such that there exists g ∈ guard and Y = 2X such that

e = (l, g, Y, l′) ∈ E, ν |= g and ν ′ = [Y ← 0]ν. The switch transition is defined as

(l, ν)→ (l′, ν ′) if:

(i) e = (l, g, Y, l′) ∈ E,

(ii) ν |= g = guard(e) and

(iii) ν ′ = [Y ← 0]ν where Y ∈ 2X

32



CHAPTER 2. INTRODUCTION TO AUTONOMOUS VEHICLES AND FORMAL VERIFICATION

Next, a path is defined as an infinite sequence of states (si, i ∈ N) such that for all

i ∈ N , the transition si → si+1 can be performed either by a single time-transition or a

single switch-transition or a pair of one time-transition and one switch-transition. The set of

all the paths originating from the state s is denoted by Pm(s). This set is ranged over by the

path variable, σ and σ[i] will denote the (i+ 1)th state in that path.

2.2.1.2 Region graph

The verification of timed automata amounts to check whetherM(A), (s0, ν0) |= φ; where φ

is the specification required out of the system. However, the problem faced in checking this

condition is that the state space ofM(A) is infinite. See Figure 2.4 which shows a TA with

two locations that will result into an infinite transition system.

....
(a) TA with 2 locations

....

(b) Transition system of the TA

Figure 2.4: A TA and its corresponding transition system

To tackle this problem, the key idea by Alur and Dill [32] is to introduce an equivalence

relation on clock valuations such that the same specification formulae are satisfied by

equivalent clock valuations and there is a finite number of equivalence classes under this

relation. We next define this equivalence relation between clock valuations and extend this

relation to the states of A.

Let ν, ν ′ ∈ RX
+ and MA be the maximum constant in guards of A then ν, ν ′ are said to be

region equivalent, represented as ν ≈ ν ′ when the following conditions hold:

(i) ∀x ∈ X, bν(x)c = bν ′(x)c or ν(x), ν ′(x) > MA
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(ii) ∀x ∈ X if ν(x) ≤MA, {ν(x)} = 0 if and only if {ν ′(x)} = 0, and

(iii) ∀x, y ∈ X , if ν(x), ν(y) ≤MA, {ν(x) ≤ {ν(y)} if and only if {ν ′(x) ≤ ν ′(y)}.

Here symbols b c and {} denote the floor and ceiling functions respectively.

This equivalence relation is now extended to determine equivalent states. Two states

s = (l, ν) and s′ = (l′, ν ′) are equivalent if and only if l = l′ and ν ≈ ν ′.

Let us see how the state space of clocks of a TA is divided into finite number of region.

Let us consider there are two clocks in a TA, x1 and x2. Also consider that this TA has the

maximum constant in its guards as 1. The region automata will then consist of a total of 11

regions. Out of these 11 regions, 4 regions correspond to points, 5 to lines and two open

areas corresponding to x1 > 1 and x2 > 1. These regions are shown in Figure 2.5.

(a) (b) Separate regions

Figure 2.5: Regions on the graph

All the regions in Figure 2.5(b) are as shown below.

p1 : x1 = 0 and x2 = 0

p2 : x1 = 1 and x2 = 0

p3 : x1 = 0 and x2 = 1

p4 : x1 = 1 and x2 = 1

l1 : 0 < x1 < 1 and x2 = 0
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l2 : x1 = 0 and 0 < x2 < 1

l3 : 0 < x1 < 1 and x2 = 1

l4 : x1 = 1 and 0 < x2 < 1

l1 : 0 < x1 < 1 and 0 < x2 < 1

r1 : x1 > 1

r2 : x2 > 1

In Figure 2.6, we can see how a timed automata can be approximated using a region automa-

ton.

We have seen until now the notion of timed automata and we have also seen that an infinite

....

(a)

....

(b) Region Automata

Figure 2.6: A TA and its corresponding Region automata

transition system may be generated from this time automata which is not suitable for per-

forming exhaustive verification or model checking. We then described the concept of region

equivalence in a timed automaton and discussed how it can be used to approximate a time

automata with a region automata. Representing a system using timed automata and then

converting the TA into region automata are the first two steps towards model checking the

given system. For the next steps, we proceed with the property specification and then model

checking the given properties. Next, we will discuss the CTL which is a branching-time

logic for property specification.

2.2.2 Computational Tree Logic

Temporal logic is used to represent the ordering of events in time without explicitly intro-

ducing time. Temporal logic had been introduced for analyzing how time is used in natural
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language arguments. Temporal logic is classified based on the notion of time used. In Linear

Time Logic (LTL), a linear notion of time is used. Whereas in Computational Tree Logic

(CTL), we have a branching notion of time.

LTL was introduced for specification and verification of systems by Pnueli in 1977 [29]

and it has a linear evolution of the system with respect to time and at each time state (s),

there is only one successor state and thus only one future (given by R(s)). This means

that the evolution of the system with time can be represented with an infinite sequence:

s, R(s), R(R(s)), ....

The computational tree logic was introduced by Clarke and Emerson in 1980 [30]. In CTL,

states can have several different successor states and thus can have different possible futures.

The underlying semantics thus have a notion of tree of states. In this tree, the sub tree rooted

at a state s represents all possible transitions that start at s. The two notions of temporal

logic discussed above have resulted in two streams of model checking procedures. We then

discuss the syntax and semantics of CTL which is the basis of the formalism used in the

UPPAAL model checker for the specification of properties.

2.2.2.1 Syntax of CTL

To define the syntax of CTL, we first define the set of atomic propositions. Propositions

that can’t be refined further in simpler propositions are called atomic propositions. Exam-

ples of some atomic propositions are: x is greater than 0, y is greater than 10, the cake is

ready, etc. Let us call the set of atomic propositions AP, then the syntax of CTL is as follows:

(i) ∀p ∈ AP, p is a CTL formula.

(ii) If φ is a CTL formula, then so is ¬φ.

(iii) If φ and ψ are CTL formulas, then so are φ ∨ ψ and φ ∧ ψ

(iv) If φ and ψ are CTL formulas, then so are AXφ, EXφ, AFφ, EFφ, AGφ, EGφ,

A[φUψ], E[φUψ].
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Here A and E are path operators and X, F, G, and U are state operators. The

above syntax in Backus-Naur form is given below:

φ ::= p | ¬φ | φ∨ψ | φ∧ψ | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ | A[φUψ] | E[φUψ]

The names and meaning of the used path and state operators are as follows:

• Path operators:

– A : Along all paths

– E : There exists at least one path

• State operators:

– X : Next

– F : Finally

– G : Globally

– U : Until

Let us take a few examples to understand CTL formulas better.

(i) The temporal formula EGφ will mean that starting from the current state, there exists

at least one path in which φ is valid at every state. In short, EGφ can be pronounced as

Potentially always.

(ii) AXφ will mean that for all paths, starting from the current state, the next state satisfies

φ.

(iii) AFφ: For all paths, φ is eventually satisfied at any state. (Eventually always).

(iv) E[φUψ]: There exists a path in which φ is valid until ψ is valid.

2.2.2.2 Semantics of CTL

Since in CTL each state can have more than one successor states, we need to use the notion

of tree to define the semantics of CTL. The CTL model is given by a triple:

M = (S,R, Label), where,
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(i) S is a set of states

(ii) R ⊆ S × S is a relation on S that gives successor state at each state s ∈ S

(iii)Label : S → 2AP labels each state with atomic propositions (p ∈ AP ) that are valid in S.

The CTL modelM is also known as Kripke Structure. This is somewhat similar to the

transition system defined in timed automata.

Now we give the semantics of CTL in terms of satisfaction relation (|=) between the Kripke

structure, M, its states s, and the formula φ. We write M, s |= φ; read as "The Kripke

structure,M, at state s satisfies the property given by φ" if and only if φ is valid in the state

s. Let p ∈ AP is an atomic proposition andM = (S,R, Label) be a Kripke structure and

φ and ψ be two well-formed formulas and let PM(s) denote the set of paths starting in the

state s of the modelM. Then the satisfaction relation is defined as follows:

s |= >

s 2 ⊥

s |= p iff p ∈ Label(s)

s |= ¬φ iff ¬(s |= φ)

s |= φ ∨ ψ iff s |= φ ∨ s |= ψ

s |= φ ∧ ψ iff s |= φ ∧ s |= ψ

s |= (φ⇒ ψ) iff s |= ¬φ ∨ s |= ψ

s |= AXφ iff ∀σ ∈ PM(s)σ[1] |= φ

s |= EXφ iff ∃σ ∈ PM(s)σ[1] |= φ

s |= AGφ iff ∀σ ∈ PM(s)∀i ≥ 0, σ[i] |= φ

s |= EGφ iff ∃σ ∈ PM(s)∀i ≥ 0, σ[i] |= φ

s |= AFφ iff ∀σ ∈ PM(s)∃i ≥ 0, σ[i] |= φ

s |= EFφ iff ∃σ ∈ PM(s)∃i ≥ 0, σ[i] |= φ

s |= A[φUψ] iff ∀σ ∈ PM(s)(∃j ≥ 0σ[j] |= ψ) ∧ (∀0 ≤ i < jσ[i] |= φ)

s |= E[φUψ] iff ∃σ ∈ PM(s)(∃j ≥ 0σ[j] |= ψ) ∧ (∀0 ≤ i < jσ[i] |= φ)

Figures 2.7 and 2.8 show various examples depicting cases where each of the CTL

temporal connective is valid. States filled with red color satisfy the condition φ and the ones

with green color satisfy the condition ψ.
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(a) (b)

(c) (d)

Figure 2.7: Examples for CTL formulas

2.2.2.3 Specifying properties in CTL

We will now see how properties are specified in CTL using an example scenario of process

scheduling by an operating system. We will first write the specification in the language of

discourse, then we will give its CTL translation.

Let there be two processes P1 and P2 that need to have a mutual exclusive access to a

shared resource such as memory. Let us call this shared resource as Critical Section. The

status of a request to operating system by a process p is represented by RequestCS(p), the

status of critical section occupancy by the process p is given by inCS(p) and the idle state of

process p is given by idle(p):

(1) Only one process can be in the critical section at any given time.
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(a) (b)

(c) (d)

Figure 2.8: Examples for CTL formulas

AG¬(CS[P1] ∧ CS[P2])

(2) a process will eventually enter the critical section whenever it wishes to do so.

AG(EnterCS[P ] ⇒ AF CS[P ]

(3) A process can always request to enter its critical section.

AG(Idle[P ] ⇒ EX EnterCS[P ]
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2.2.2.4 Equivalence between CTL formulas

Two CTL formulas (say φ and ψ), are said to be semantically equivalent if for all states

of a model at which φ is satisfied, ψ is also satisfied and vice versa. This equivalence is

represented as

φ ≡ ψ

Some of the equivalency relations between CTL formulas are given below.

¬AFφ ≡ EG¬φ

¬EFφ ≡ AG¬φ

¬AXφ ≡ EX¬φ

AFφ ≡ A[>Uφ]

EFφ ≡ E[>Uφ

Owing to these equivalences between CTL formulas, we can observe a redundancy

among CTL temporal connectives i.e. one connective can be written in terms of some other

connective. This fact enables us to choose an adequate set of connectives using which any

CTL formula can be expressed. Using this adequate set of temporal connectives will result

in a compact and simplified model checking procedure. In CTL, the adequate set of tem-

poral connectives will be a set that contains at least one from {AX,EX}, at least one from

{EG,AF,AU}, and EU .

2.2.3 Model checking CTL

Let us consider that the set {EX,EU,AF} is taken as the adequate set of temporal connec-

tives and >,¬ and ∧ be the adequate set of propositional connectives. We are going to see

the labeling approach towards model checking CTL. In this approach, the algorithm returns

all the states of the given input Kripke structure that satisfies the CTL formula φ.

In this approach, the given CTL formula φ is first rewritten in terms of the adequate con-

nectives using previously discussed equivalences in the pre-processing step and then starting

with the satisfiability sets of the sub-formulas of φ, the satisfiability set of φ is built using the

algorithm shown in the Algorithm 1. This pseudo-code shown in the Algorithm 1 uses the

function SAT that takes as input the CTL formula φ and the modelM and returns the set of
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states where the formula φ is valid. In this pseudo-code equivalence between CTL formulas

is used to reduce all formulas in terms of three sub-functions corresponding to SAT functions

of the formulas EX,EU , and AF . The respective pseudo-codes for these SAT functions are

given in Algorithms 2, 3, and 4, respectively.

Algorithm 1: function SAT (φ)

Input:M = (S,→, Label), φ
Output: set of states inM satisfying φ

1 begin
2 case
3 φ = > : return S
4 φ =⊥ : return
5 φ = p ∈ AP : return {s ∈ S | φ ∈ Label(s)}
6 φ = ¬φ1 : return S − SAT (φ1)
7 φ = φ1 ∨ φ2 : return SAT (φ1) ∪ SAT (φ2)
8 φ = φ1 ∧ φ2 : return SAT (φ1) ∩ SAT (φ2)
9 φ = φ1 ⇒ φ2 : return SAT (¬φ1 ∨ φ2)

10 φ = AXφ1 : return SAT (¬EX¬φ1)
11 φ = EXφ1 : return SATEX(φ1)
12 φ = AGφ1 : return SAT (¬EF¬φ1)
13 φ = EGφ1 : return SAT (¬AF¬φ1)
14 φ = AFφ1 : return SATAF (φ1)
15 φ = EFφ1 : return SAT (E[> ∪ φ1])
16 φ = A[φ1 ∪ φ2] : return SAT (¬(E[¬φ2 ∪ (¬φ1 ∧ ¬φ2)] ∨ EG¬φ2))
17 φ = E[φ1 ∪ φ2] : return SATEU(φ1, φ2)
18 end case
19 end function

Algorithm 2: function SATEX(φ)

Input:M = (S,→, Label), φ
Output: set of states inM satisfying EXφ

1 local var X,Y
2 begin
3 X := SAT (φ);
4 Y := pre∃(X);
5 return Y
6 end

The pre denotes traveling backwards along the transition relation such that pre∃(Y ) re-

turns a set of states that can make transition into Y . Whereas pre∀(Y ) returns a set of states

that can only make transitions into Y [33].
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Algorithm 3: function SATAF (φ)

Input:M = (S,→, Label), φ
Output: set of states inM satisfying AFφ

1 local var X, Y
2 begin
3 X := S;
4 Y := SAT (φ);
5 repeat until X = Y
6 X := Y ;
7 Y := Y U pre∀(Y );
8 end
9 return Y

10 end

Algorithm 4: function SATEU(φ, ψ)

Input:M = (S,→, Label), φ, ψ
Output: set of states inM satisfying EU(φ, ψ)

1 local var W, X, Y
2 begin
3 W := SAT (φ)
4 X := S;
5 Y := SAT (ψ);
6 repeat until X = Y
7 X := Y ;
8 Y := Y U (W ∩ pre∃(Y ));
9 end

10 return Y
11 end

The region automaton developed in Section 2.5(a) can now be model checked using the above

CTL model checking algorithm. So far, we have discussed the notion of Timed Automata,

Region automata, the CTL property specification language, and how the region automata can

be model checked against the properties specified in CTL.

2.2.4 Stochastic Timed Automata

Timed Automata is widely used for verifying real-time systems. In fact, it is one of the

most studied models for this purpose. Due to its popularity, it has attracted attempts towards

extending this formalism to model a broader class of behaviors. One such extension is

Stochastic Timed Automata or STA in short. STA targets modeling both real-time and
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randomized aspects of a system. Keeping in mind the stochastic nature of various real-world

processes, we can say that STA results in a more faithful system in comparison to the models

generated earlier by approximating the behavior according to formalism.

The semantics of STA is based on TA but with introduced stochastic nature in the delay at

any location and discrete choices at any location. In other words, we get an STA when we

associate each location of TA with distributions over delay and choice of transitions from

that location. The notion of STA is defined as shown below.

Definition: A Stochastic Timed Automaton, ST A, is a tuple

(L, l0, X,Act, E, Label, guard, inv, (µq, pq)q∈L×RX
+

)

where

- (L, l0, X,Act, E, Label, guard, inv) is a Timed Automata.

- µs: Defined in terms of s, a state in the transition system of TA, given by s = (l, ν)

where l is a location in TA and ν is the clock valuation, µq is a probability distribution

over R+ and it governs delay in location s.

- ps: similar to µs, ps is defined in terms of s and is a probability distribution over the

set of edges that are enabled in s.

Let us give an intuitive introduction to how STA are build over a TA. Consider the TA

shown in Figure 2.9. Let us call the edges going from l0 to l0 as e1 and the one going from

l0 to l1 as e2. Also, let ν1 and ν2 are the clock valuations corresponding to the clocks x1 and

x2 respectively. Now, let us first consider the state given by (l, (ν1, ν2)) = (l0, (0, 0)) which

is the initial state. At this initial state, both e1 and e2 are disabled so probabilities ps assigns

0 to both these edges.

Now, e1 will be enabled when 0 < x1 ≤ 1 and e2 will be enabled only when x2 ≥ 2. The

set of time intervals for which there is an output edge from l0 is ]0, 1] ∪ {2}. A distribution

possible for these two transition is the combination of uniform distribution over the interval

]0, 1], given by (U(]0, 1])) and the transition at {2} given by δ(2). In other words, there

are half chances that there will be a transition on e1 and the instant of this transition has a
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Figure 2.9: Example automata

uniform distribution and there is half chance that there will be a transition at edge e2. Now

let the state of the above TA is s2 = (l0, (1.5, 3.5)). In this state, e1 is disabled and e2 is

enabled and also, the invariant of l0 will be violated after 0.5 time units. This means e2 has

to be traversed by the time x2 = 4. In this state the instant of transition for e2 edge is given

by the distribution U([0, 0.5]).

Now consider the state (l0, (0.5, 3)). At this state, edges e1 and e2 are both enabled. Edge e1

will be disabled after x1 = 1 and the invariant at l0 will be violated after x2 = 4. Therefore

e1 has a period of 0.5 time units. Thus the probability distribution for the instant of transition

from location l0 is given for e1 and e2 as: (0.5× U([0, 0.5]), 0.5× U([0, 1])).

2.2.5 Statistical Model Checking

The statistical extension of timed automata that we discussed previously enables faithful

modeling of real-world systems having inherent stochastic behavior. To perform verification

of a stochastic system, one could approximate them with the nearest non-stochastic system

and proceed with the methodology discussed so far. However, such verification will not be

faithful.

Alternatively, the verification technique can be extended to work with the models consisting

of stochastic behavior. The development of such verification algorithms is a non-trivial task

as it requires capturing both the real-time as well as probabilistic verification.

To model-check stochastic system, one could make use of numerical techniques that iter-

atively compute the exact measure of paths satisfying given specification. The choice of

technique to be used for obtaining the measure of paths depends on the stochastic system

as well as logic used for specifying requirements. Though numerical techniques have made

good strides, there remains various challenges. Numerical techniques require a lot of time
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and space making them unsuitable for scaling to large systems. Besides, numerical tech-

niques require the system to satisfy structural conditions specific to the numerical technique

to be applied [34].

An alternative method to approach the verification of such stochastic systems is a simulation-

based approach. The key idea in this approach is to determine the number of executions and

then observe these many executions by a monitoring procedure. This monitoring procedure

will infer using hypothesis testing, whether there is statistical evidence of the compliance of

the given specification. Though the results provided by the simulation-based approach are

not as accurate as of the numerical based approach, but the error in the result can be bounded

to the desired accuracy by making a trade-off with the number of sample executions. The

most significant advantage of the simulation-based approach is that it requires only a sim-

ulatable model of the system, thus increasing the class of systems it can be applied to. In

addition to that, it can scale better to larger and more complex systems and it has far less

memory and space requirements in comparison to numerical techniques.

2.2.6 Probabilistic Computational Tree Logic

We have seen the statistical extension to modeling (in STA) and verification (SMC) for sys-

tems having inherent stochastic nature. Along with these we also need to discuss the exten-

sion of the specification language to capture the stochastic behavior.

While dealing with a stochastic system we are not always concerned with qualitative prop-

erties only rather we may need to evaluate quantitative properties as well. This gives rise

to two approaches towards model checking: Qualitative model checking and Quantitative

model checking. Let us first discuss what is the difference between the two.

Qualitative model checking generally asks the question (M, s |= φ)? i.e. whether the sys-

tem (M) at state s satisfies the condition φ. The answer to such queries is either true or

false. The model checking of real-time systems represented using timed automata that we

discussed earlier falls under this category.

On the other hand, in quantitative model checking, the query is of the form Prob(M, s |= φ)

which means, what is the probability that the modelM at state s will satisfy the condition φ.

The result returned against this query will be an estimate of the probability of the compliance

of the asked specification.

46



CHAPTER 2. INTRODUCTION TO AUTONOMOUS VEHICLES AND FORMAL VERIFICATION

There are various systems and applications that require a quantitative answer in response to

some query that encodes requirements on some important parameters for example cost and

performance measures. Furthermore, there are systems for which the conventional quali-

tative model checking can’t be used at their full potential as most of the various relevant

properties are simply not valid in the model. This is commonly the case in systems involving

probabilistic or stochastic behavior and one is forced to apply extensions of the conventional

qualitative methods. We now discuss the syntax of the Probabilistic Computational Tree

Logic (pCTL) and see how such quantitative requirements are encoded into specifications.

The grammar of pCTL in Backus-Naur form is given below

φ ::= p | ¬φ | φ ∨ ψ | φ ∧ ψ | φUψ | φU≤kψ | Pr≺q{φ}

Here all the terms have their usual meaning as discussed in CTL syntax. Only except

the probability operator Pr and the modified Until operator called bounded until. They are

defined below.

- Pr≺q{φ} returns True if the probability that φ is True satisfies the relation given by ≺

where ≺∈ {≤,≥, <,>}

- The bounded until, φU≤kψ returns true if ψ becomes true before k states and until that

state, φ is true at every state.

Following are some example queries in pCTL

(1) Probability of not turning ON in the next step is at least 5%.

Pr≥0.95{¬ON}

(2) Probability of turning ON within 5 steps is at most 1%.

Pr≤0.01{>U≤5ON}
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2.3 Summary

In this chapter, we provided a gentle introduction to the underlying topics of this dissertation.

In the first part of this chapter, we discussed the technologies that make a conventional vehi-

cles an autonomous vehicle. Later, we discussed the classification of AVs. The attempt has

been to create a familiarity with the autonomous vehicles for the readers. In the second part,

we presented underlying techniques of model based formal verification and statistical model

checking that helps in establishing an understanding of the technique applied in Chapter 7.

In the next chapter, we give a survey on the literature associated to the two ITS scenarios

considered in this dissertation.
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Chapter 3

Intelligent Transportation Systems

Survey

3.1 Lane Sorting Survey

The Lane Sorting scenario introduced in this dissertation involves the coordinated movement

of vehicles to get each vehicle into its desired lane. In this scenario, vehicles are already

aware of their destination lane based on which, they are classified as being part of different

destination groups. This means the motive of lane change of vehicles in lane sorting scenario

comes from the destination group they belong to and not from individual preference, which

is common in lane-change maneuvers. Also, unlike lane-change planning which involves

only those vehicles that wish to change lanes along with their surrounding vehicles, lane

sorting scenario involves participation from all the vehicles in the scenario to accomplish

the task. Furthermore, the lane sorting procedure is introduced with respect to some appli-

cations that may involve some deadline on the length of the road available to complete the

task for example at tool-gates, intersections, etc. Despite the above-mentioned differences

that distinguish lane sorting from available procedures involving lane changes of vehicles,

there is some resemblance with the Cooperative Lane Change (CLC) procedure. This makes

studying the literature associated with CLC crucial before presenting the proposed lane sort-

ing algorithm. Along with the literature on CLC, we will also discuss some of the existing

works on lane assignment and platooning of vehicles. Discussion on lane assignment tech-
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niques is presented to investigate how vehicles are assigned destination groups to improve

traffic efficiency. The discussion on platooning is also crucial due to the impact it can have

on the efficiency, safety, and economy of traffic management and also because platooning

attracts a direct application of the lane sorting procedure presented in this dissertation.

3.1.1 Lane Assignment

Lane assignment deals with the problem of assigning the most appropriate lane to any vehicle

or a platoon. The objective of lane assignment is to improve the road capacity by minimizing

the traffic disturbance activities such as lane change, overtaking, platoon splits, etc. In lane

assignment the objective is generally to group vehicles with similar interests together in a

lane. This grouping can be based on destination, size, average velocities, etc. of vehicles.

The most common strategy is to group vehicles based on their destinations.

Lane assignment can be seen as a strategy that finds application prior to the platooning of

vehicles. In platooning, vehicles arrange themselves into tightly spaced strings and the Lane

Assignment will give the lane in which the platoon should be formed. Or we can also say

that vehicles are assigned lanes by the lane assignment protocol and after vehicles arrive into

their assigned lanes, they can later adjust their inter-spacing to form tightly spaced platoon.

It is required to have platoons that remain intact for a longer period of time and also the

platoons should have a large number of vehicles (roughly more than 5) to have major advan-

tages.

In [18], authors propose strategies to organize vehicles into lanes at highway entrances such

that the distance for which the platoon is kept intact is as large as possible. To give an idea

of the need of lane assignment, they discuss that for an example scenario with 20 miles of

average trip length and a platoon size of 5 vehicles, there is only 59% chances that platoon

will stay intact between one exit and the other when a random grouping of vehicles is done.

In [18], authors perform grouping by destination which turns out to be better than dynamic

grouping. In [35], authors propose a distributed control strategy to assign the most appropri-

ate lane to platoon of vehicles using inter-vehicle communication. This work is an extension

to their previous work [36] in which they propose a lane assignment scheme for individual

vehicles. In [35], authors formulate the platoon assignment for vehicles and lane assignment

for platoons as linear programming problems with the objective of maximizing the traffic

50



CHAPTER 3. INTELLIGENT TRANSPORTATION SYSTEMS SURVEY

throughput in the considered road segment.

Lane assignment and platooning both are crucial strategies for improving the throughput for

any highway system. Lane assignment on one hand aims to decide the most appropriate

lane for any given vehicle or a platoon such that there will be minimum number of traffic

disruption events such as lane change, overtaking or lane reassignments. On the other hand,

platooning will improve the capacity of road as vehicles will be tightly packed which will

result in decreased fuel consumption due to reduced aerodynamic drag, and will result in

more safe and comfortable journey for passengers. However to get the advantages of lane

assignment and platooning, vehicles are required to come to the assigned lane from the lane

it is currently traveling on. For a single vehicle, this will be a lane change operation however,

the problem will change when there is a group of vehicles and every vehicle in that group

has a destination lane which may or may not be same as its current lane. Suppose such a

group of vehicle is entering at a highway entrance and a controller, as defined in [18] assigns

destination lane to every vehicle. All these vehicles are required to come to their assigned

lane and that too simultaneously. A lane change planning is itself considered a complex op-

eration and here we are talking about collective lane changes of multiple vehicles. We call

this problem as Lane Sorting.

Other than the scenario described above, we can find other scenarios where vehicles are

required to be herded into lanes; for instance, at highway tolls where there are specified

lanes for different types of vehicles, or at highways where vehicles are segregated in lanes

according to their velocity.

3.1.2 Platooning

Platooning is a method that makes tightly spaced platoons of a group of autonomous ve-

hicles that have common interests. Vehicles in a platoon follow the preceding vehicle and

maintains a nearly constant distance with it. A platoon can be thought of as a train made

of vehicles in place of compartments and these vehicles are connected to each other using

wireless communication. Vehicles in a platoon can travel at high speeds with very small inter

spacing resulting in an improved capacity of the roads. When vehicles travel in a platoon,

there is a reduction in the aerodynamic drag which will result in better fuel economy and less

exhaustion of gases. Platoon-based driving facilitates cooperative behavior of vehicles mak-
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ing communication and control of a group of vehicles easier because instead of dealing with

each vehicle in the platoon, only the platoon leader is to be dealt with. In a platoon based

approach, using the advanced technology, driving can be made more safe and comfortable.

The primary objective of platooning is to improve the capacity of roads and reduce traffic

congestion. Various programs have been organized taking into the consideration the poten-

tial benefits that can be realized by the application of platooning. The Automated Highway

System (AHS) was developed at the University of California in association with California

state department of transportation and the Federal Highway Administration under the PATH

(Partners for Advanced Transportation Technology) program [8]. The main aim of the PATH

program was to improve highway throughput by deploying platoons. The Grand Cooperative

Driving Challenge [37], is an another program that aims to utilize the benefits of platooning

on highways. Organized by the Netherlands Organization for Applied Scientific Research in

2011, the GCDC competition targeted cooperative driving on highways for a heterogeneous

traffic. In heterogeneous traffic, vehicles having different size, technology, controlling algo-

rithms, etc. are present and the participants were required to come up with strategies that

does not require knowledge about other vehicles and were able to perform as good as pos-

sible. Another project called SARTRE [38], was a 3 year E.U. sponsored project started in

2009. The vision of this project was to develop and integrate strategies that enable vehicles

to form platoons to reduce fuel consumption and reduce safety risks.

Other than the traffic optimization and reducing safety risks, applications of platooning in-

clude reduction of fuel consumption and gas emissions. The Energy ITS, [39], aimed at

reduction of CO2 emissions from vehicles as an application of communication technology.

In an another work, [40], authors introduce the H∞ method to increase highway capacity

and decrease fuel consumption and emissions using well-organized platooning. The pro-

posed control method is a multi-criteria control problems that considers fuel consumption,

road inclination, emissions and traveling time of vehicles. Similarly in [41], authors propose

a longitudinal control method for heavy trucks on highways to reduce fuel consumption.

Platoon based organization of the traffic is a complex task. It requires tight integration of

the communication and control aspects. We will next see the literature associated with the

management of vehicle platoons that involves three major tasks which are platoon formation,

platoon split and keeping platoon stable.
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In [42], authors give a scheme for platoon formation and split using a state transition dia-

gram. The scheme is called V-PADA and makes use of the stochastic time series analysis

to detect platoon formation, splitting and anomaly detection. In [43], authors propose a pla-

toon formation scheme that allocates dynamic platoon-Id to vehicles using Filter Multi cast

scheme. In [44], authors present the state machine of an application level protocol for the

joint maneuver of a new vehicle not only at the last position but also at every position in

the platoon. The stability of a platoon is defined in terms of the error in the inter-spacing of

vehicles. This error is defined as the difference between the actual and the desired spacing

between vehicles and it should always be bounded in time domain as well as frequency do-

main to ensure the string stability of the platoon. Stability of a platoon depends on factors

such as parasitic lags and delays in the actuators of the vehicle, spacing policy in between

vehicles, communication architecture, and control laws used. In [45] authors investigate the

platoon stability of homogeneous and heterogeneous platoons with of adaptive cruise con-

trol enabled vehicles having constant time headway by considering parasitic time delays and

time lags in sensors and actuators. They propose a sliding mode controller for the string sta-

bility of the platoon. In [46] authors perform a study of the influence of three time constants

that affect the stability of platoons. These three time constraints are: reaction time of driver

agent, velocity adaption time, and the numerical update time. They study the interplay of

these time constants and how they affect the longitudinal dynamics stability of platoons of

vehicles. In [47], authors propose a Safety Spacing Policy (SSP) as a superior strategy over

the constant time gap policy for spacing of vehicles in platoon. SSP makes use of the current

state of vehicle as well as the stopping capacity of vehicle to decide the spacing. In [48],

authors propose a switching strategy that decides when to perform switching between the

speed control mode and the headway control mode to satisfy constraints corresponding to

passenger comfort, and collision avoidance with preceding vehicle.

3.1.3 Cooperative Lane Change

Sorting vehicles in lanes is a multi-vehicle lane change cooperation task. This will include

motion planning of multiple vehicles which is inherently a difficult task due to the expo-

nential scaling of computational complexity with the number of vehicles [19]. The work

in [19] targets the collision free cooperative lane change of vehicles in a three lane scenario.
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They consider eight vehicles because eight vehicles can cover all possible cases. They use a

Minimum Safety Spacing (MSS) policy in which vehicles are required to have a safe spac-

ing at the start of the lane change maneuver to guarantee no collision. This spacing policy

along with other factors such as passenger comfort and efficiency of lane change are used to

formulate the constraints for lane change trajectory calculation. This trajectory is calculated

using optimization problem and the trajectory tracking is performed using Model Predic-

tive Control strategy. In [20], authors propose an algorithm for solving online optimization

problem for motion planning of vehicles during lane changes. They propose a Progressive

Constrained Dynamic Optimization (PCDO) algorithm in which constraints of the motion

control optimization problem are added progressively and the solution of the earlier stage

is used as the initial point of the next stage. They also use a collision matrix that keeps

track of colliding vehicles and the algorithm stops only when this collision matrix is null.

The PCDO method facilitates forming lookup table for online application. In [21], authors

have presented an algorithm to minimize the disruption of traffic flow and thus maximizing

the number of lane changes. They used time slack calculation and the concept of vehicle

grouping and used a distributed algorithm to solve the problem. [49] proposes lane change

scheduling for vehicles on a two lane scenario. They consider a critical position earlier to

which lane change operations should be completed. They first discuss lane change schedul-

ing for a single vehicle and then extend this procedure for multiple vehicles so that all lane

change operations are completed earlier to the critical position. They implement a rule based

scheme that breaks down the problem space into seven cases and appropriate control scheme

is given for each of these cases. In this work, for multiple vehicle lane changes, the single

vehicle lane change procedure is repeated sequentially. Similarly in [50], one of the four

predefined scenarios has to be attained to allow the lane change of vehicles.

In [51], authors propose a step wise computation framework to facilitate numerical solving

process of the centralized multi vehicle motion planning optimization problem. They make

use of an iterative process that excludes collision avoidance constraints at first and then

sequentially adds these constraints until the original problem takes shape in the end. The ob-

jective function used targets to minimize the average time and the steering energy used by the

group of vehicles. Directly applying the interior point method over the formed optimization

problem would not result in a converging solution, as a result, the problem is divided into
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multiple parts which are solved separately. In [52], authors present an analytical study per-

formed on the traffics with different penetration rates of CAVs with an objective of studying

how lane configurations and cooperative lane changing can affect the road way performance.

They make use of the Intelligent Driver Model (IDM) to model vehicle behaviors. They also

propose two algorithms for cooperative lane change operations corresponding to traffic with

low penetration rates and traffic with high penetration rates. They perform a entropy based

evaluation method to evaluate the performance of lane change algorithms. The work given

in [53] proposes a decentralized decision making algorithm for cooperative lane changing

of connected autonomous vehicles. The algorithm which consists of three modules, makes

use of existing car-following models to predict vehicle’s future states. An incentive based

decision generation method is used in the candidate decision generation module. Then an

algorithm is proposed to avoid candidate decisions that may result in conflict or traffic de-

terioration. In [54], authors propose a strategy to devise a politeness index that is used in

making the lane assignment and lane change decisions by making a compromise between

safety and efficiency. In [55], authors attempt to investigate optimal lane change behavior

of CAVs by considering three lane change models. These three lane change models are (i)

Minimizing Overall Braking Induced by Lane Changes (MOBIL) model [56] (ii) SUMO

lane change model [57] and (iii) The one proposed in this work. The objective is to find how

to optimize the cooperative lane change of CAVs and reduce the travels times, emissions and

still letting vehicles to travel with their preferred speeds. In [58], authors propose a decen-

tralized cooperative lane change framework for CAVs. The proposed algorithm makes use of

a two-staged procedure in which the first stage corresponds to the arrangement of vehicles in

longitudinal direction. The resulting arrangement is called as sparse formation. The second

stage is where actual lane changes (lateral movement) are performed.

There are some works that are dedicated to lane change of individual vehicles with co-

operative approach from other vehicles in the scenario. Some of such are reviewed next.

In [59] and [60], authors defined the lane change trajectories as parameterized polynomials.

While [59] using quintic polynomial for the purpose, and then applies nonlinear program-

ming to solve for optimum safety, comfort and travel efficiency, [60] applied differential

evolution algorithm. In [21] as well, sequential execution of lane change operation is per-

formed for vehicles that are classified as belonging to different destination groups depending
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on their destination lanes. In [61], the concept of lane change envelope is used which isolates

the lane changing vehicle and as soon as this lane change envelope is not interfered by other

vehicles, lane change can be performed.
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3.2 AIM Survey

Efficient intersection management is the key to curb congestion. With the advent of con-

nected and autonomous vehicles (CAVs), there comes way more possibilities to approach

the intersection management problem. Wireless communication, revamped infrastructure,

autonomous control of vehicles, in-vehicle sensors and processors, and applied intelligence

drive the revolution in traffic management. These resources can be combined to establish

traffic management in any scenario. In the literature related to the autonomous intersection

control, as we will see, these resources have been used by researchers in numerous creative

ways to achieve desired objectives. We will now be presenting a survey of literature associ-

ated with the autonomous intersection management. Although this literature is quite diverse

in terms of adopted architecture, technique used, objective considered, approach used, etc.,

the most important classification comes from the used architecture of communication which

can either be centralized or decentralized. There are very few articles that uses a mix of both,

but we will talk about them separately.

The literature survey is presented below as consisting of two classes belonging to the two

architectures of communication. First we will talk about the centralized scheme, in which all

vehicle entities communicate with a central controller via wireless communication to send

(ex. trip information, vehicle specifications, etc.) and receive (ex. reservation details, target

velocity, etc.) information. In this class of solution, Vehicle to Infrastructure (V2I) wireless

communication plays a crucial role. On the other hand, in decentralized communication,

vehicle entities communicate within themselves to coordinate their access of the intersec-

tion area. The chief mode of wireless communication in this class of solution is Vehicle to

Vehicle (V2V). Other than the classification based on the communication architecture, the

literature can also be classified based on the objective, technique used, approach etc. We will

be discussing these subcategories inside the main classifications.

3.2.1 Centralized Schemes

A majority of literature associated with the autonomous intersection control problem imple-

ments a centralized control policy in which a central controller entity makes control decisions
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and communicate them to the vehicle entities. The central controller receive information

from all the vehicles in the scenario and make the control policy in accordance with this

information to ensure safety and efficiency in intersection operation.

3.2.1.1 Multi-agent based approach

A multi-agent system generally consists of various interconnected agents that are intelligent

and/or autonomous. This approach is used in a large number of works to attempt the inter-

section management problem. We next review articles that use a multi-agent approach for

solving the intersection management problem.

Authors in [62] present a centralized multi-agent scheme that uses reservation based schedul-

ing of vehicles. They model the intersection as a grid of rectangular tiles. Vehicle agents

communicate their trip details with the control agent called Intersection Manager (IM). In

return, IM will reserve tiles, if available using First Come First Serve (FCFS) scheme for the

vehicle agent. In case the reservation could not be made, the IM will send a denial message.

The vehicle agent will need to resend the reservation request later. This scheme known as

Autonomous Intersection Management (AIM) from the University of Texas at Austin can be

regarded as the first significant research work targeting the control of intersection consisting

of only autonomous vehicles. AIM later attracted various modifications and updates to its

scheme. For instance, in [63], authors included driver agents that will have to make a turn

at the intersection, included mixed traffic i.e. traffic with both autonomous and manually

driven vehicles running simultaneously, emergency vehicles, varying granularity of rectan-

gular grids and traffic density. They managed the mixed traffic using the modified reservation

scheme which is called as FCFS-Light. In FCFS-light, manually driven vehicles can only

pass through the intersection during green light whereas autonomous vehicles don’t have this

restriction and can pass through the intersection as dictated by the IM. Then in [64], authors

proposed a motion controller that can plan the traversal of vehicle in the intersection region

to increase its throughput. Taking inspiration from the Little’s law in queuing theory [65],

they proved using experimentation how optimized planning of arrival time and velocity of

vehicles can result in increased throughput of the intersection. In [66], authors aim to en-

force liveness into the intersection management. Liveness means that every vehicles who is

waiting for a reservation at the intersection should eventually get one. This is not guaranteed
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in [62] and could result in large inequalities in granting reservations for instance at the junc-

tion of a main street and an alley. Authors use batch processing of vehicles using added cost

of waiting time of vehicles. In [67], authors propose an auction based autonomous intersec-

tion management scheme in which autonomous vehicles bid on behalf of their passenger for

reservation at the intersection. Priority given in the reservation will depend on the bid made

by the vehicle. For vehicles that have low budget, equality is established using the concept

of system bids where the reservation manager bids on behalf of the vehicle. Experimentation

results show that this scheme gives better results than the FCFS scheme. Then in [68], au-

thors propose a Hybrid-AIM or H-AIM, that can schedule a mixed traffic at an intersection.

The H-AIM strategy aims towards improved performance of the intersection scheduling even

at 1% penetration rate.

Articles discussed so far have been derived or inspired from the actual AIM strategy given

in [62]. The approach that most of these articles have is multi-agent based. Next we review

some more articles that are modification of the AIM scheme and the ones that makes use of

multi-agent approach to tackle the intersection management problem.

In [69], authors propose an interesting strategy inspired by economic approaches on compu-

tational markets to approach the intersection management problem. Here, vehicles, which

are driver agents, have to trade with the intersection manager which acts as the trader and

controls the allotment of the intersection space (resource). This trading is dependent on sup-

ply, demand and the pricing of the resource and follows the Walrasian auction [70]. Though

this work is presented for any general traffic network, its applicability on an autonomous in-

tersection management scenario is quite evident. Authors further explore the application of

this strategy in their another article [71], where they present their market inspired approach

as an alternative reservation policy to FCFS.

In [72], authors use the Game theoretic approach on a Multi Agent System (MAS) -based

intersection system model. They use a heuristic optimization for finding the solutions. The

basic approach in this work is that all vehicles in the scenario which are called Reactive

Agents interact with the centralized Manager Agent in a game. Such action of each of

the agent is chosen such that it results in minimum delay and safe evacuation of all vehi-

cles through the intersection. In [73], authors propose a multi agent based approach that

uses space-time slots in the intersections for making reservations. The Intersection Manager
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Agent (IMA) incorporates the priority, order of vehicles in lane, and their order of arrival us-

ing three different reservation policies namely Priority-based, With-Lane-based, and FCFS

policy. Their goals include increasing throughput, reduction in energy consumption and pol-

lutant emissions. In [74], authors introduce an incremental data synchronization policy as an

alternate communication protocol to the one followed in [62]. The main argument is that in

AIM, when a driver agent’s request for reservation gets rejected by the intersection manager,

the driver agent will have to send new reservation requests later. These request packets will

contain redundant data that are not time sensitive and does not change during a long period

of time. They name the introduced policy as ksync and the results show that the average

compression by each vehicle can be improved by over 80% when this policy is integrated

into the knowledge base of the driver agents. In [75], authors propose a modification of the

reservation policy used in AIM by introducing batch processing. In this work, authors use a

mixed approach using both the FCFS policy as well as traffic light control. Noting that traffic

light control works well for uncontrolled traffic, its advantages are used along with all the

advantages of current ITS technology to develop an efficient algorithm in uncontrolled traffic

situation as well. The work in [76] implements a multi agent representation of vehicles and

intersection manager as Driver agents and Intersection Control System agent, respectively.

Their objective is to utilize the intersection space in the best way along with resolving pre-

dicted conflicts by modifying trajectory of vehicles. For evaluating control action, a Fuzzy

logic controller is used. The parameters of the output membership function of this fuzzy

logic controller are optimized and tuned using the Genetic Algorithm. Simulation results

show an improvement of 90.7%, 61.6%, and 72.4% in throughput, average delay time and

maximum delay time, respectively.

3.2.1.2 Reservation based approach

In reservation based approach, the space and time are considered as resources which are

shared by the incoming vehicles. To resolve conflicts, reservations of these space-time re-

sources are made. We next review articles that implement this policy for intersection man-

agement of autonomous vehicles.

In [77], authors present a state-based approach to intersection management where a vehi-

cle’s intersection execution is modeled as a sequence of states. For these passing vehicles
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reservations are made for critical section in accordance with their priority. They propose

a state-controlled priority scheme called PriorFIFO. This scheme resulted in smaller delay

for vehicles with higher priority as compared to FIFO scheme. Authors extend their work

in [78], where they divide the intersection into continuous static critical sections which are

reserved for vehicles. They propose a scheduling algorithm called csPriorFIFO that con-

siders the required QoS in deciding the priority. In [79], authors present an application

of reservation based autonomous intersection management during emergency evacuation of

cities or region.

3.2.1.3 Passing sequence based approach

In this approach, the sequence of vehicles is given the main consideration and the problem of

efficient control of the intersection is performed by finding the optimum sequence of access-

ing intersection area by vehicles. We next review those articles that follow this approach.

In [80], authors propose a centralized dynamic programming algorithm to find the optimal

passing sequence of vehicles that will evacuate all the vehicles into minimum time. Vehi-

cles are first divided into Vehicle classes. Vehicles in one vehicle class can traverse through

the intersection simultaneously if they are not in same lane. Vehicles in same lane have

to follow the FIFO policy as overtaking in lane is not allowed. In [81], authors propose

a meta-heuristic algorithm for finding the optimal passing sequence of vehicles at an in-

tersection. First authors formulate the autonomous intersection management problem as a

dynamic programming problem and find the complexity of finding the solution. They find

that though the solution to the formulated problem using optimization is feasible but the real

time performance for scenario with large number of vehicles and number of lanes will not

be practical due to the exponential scaling of the solution space. They therefore applied

the meta heuristic named Ant Colony system for the purpose. In [82], authors introduce an

intersection management policy for autonomous vehicles called as Transparent Intersection

Management (TIM). Authors consider the latency in communication and computation for

their role in the real-time performance and attempt to keep the policy simple and efficient.

They use the Intelligent Driver Model and rely on the fact that vehicles will obey the order

given for its passage in the sequence decided by the server (Central controller). Policies used

for deciding the sequence of vehicles at the intersection are First Come First Serve (FCFS)
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and Distributed Clearing Policy (DCP). The DCP for autonomous vehicles makes use of the

fact that vehicles in same lane have smaller headway time than those on conflicting lanes

hence allowing maximum non-conflicting vehicles at the same time. In [83], authors don’t

specifically target autonomous vehicle traffic, rather is a general work that proposes a sup-

port system for vehicles at a signalized intersection. Often drivers are not sure what to do

when they come across a transiting traffic light, wrong choice of action can result in either

running the red light or a collision or unnecessary waiting time or a rear end collision. They

devised a probabilistic sequential decision making process for such indecision zones prior

to intersection. This decision making process makes use of decision rule which are either

extracted from the existing parametric models of the indecision zones or created on the basis

of data received from vehicle, intersection and traffic light. Though this work only requires

connected vehicles instead of CAV, this can well be used in an ITS scenario consisting of

CAV as well.

3.2.1.4 Optimization based approach

Optimization formulation always consists of writing two kinds of equation. The first one is

the objective function which specifies the quantity that we have to maximize or minimize.

And the other kind of equation that we write in any optimization formulation is constraints.

Constraints formulate the limitations, restrictions on the state space of variables in the prob-

lem that should always be satisfied. In the context of autonomous intersection management,

we generally come across optimization formulations that try to minimize the average delay

in vehicle trip or try to maximize the intersection throughput as these are the most basic

requirement from any intersection management protocol. There are some articles that also

target minimizing jerks and velocity transitions to ensure passenger comfort or maximizing

the Quality of Service or Quality of Experience of the passenger. On the other hand, con-

straints govern the state space of the variables of the optimization problem. In the context of

the autonomous intersection management, constraints generally model physical limitations

of vehicles such as limit on velocity, acceleration, jerk, and steering. They also formulate

safety constraints such as "No two vehicles should be on same space at the same time".

Now we will review those articles that make use of some or the other optimization routine in

a centralized fashion to find control actions.
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In [84], authors propose a novel idea of adjusting the trajectories of vehicles to prevent colli-

sions in the intersection. To implement this, they model the intersection management prob-

lem as a nonlinear constrained optimization problem in which the objective is to minimize

the length of overlapping trajectories and constraints implement the limits on acceleration,

velocity, and the minimum headway. For inevitable trajectory overlaps, infeasible solutions

and system failure cases, a separate algorithm is given that ensures there are no collision in

any case. They chose mobility measures (total travel time, total stop delay and maximum

throughput) and sustainability measures (Carbon dioxide emission, Fuel consumption) as the

measure of effectiveness of their proposed algorithm. They used the combination of VISSIM

and MATLAB for simulation purpose. Their results show an improvement of 99%, 33% and

8% in the stop delay time, total travel time and throughput respectively. In [85], a model

predictive control scheme is proposed. The objective of the scheme is to minimize the risk

function where the risk function quantifies the risk of projected collision in terms of distance

between the centers of vehicles crossing at the common conflict point. Authors performed the

numerical simulation of this scheme and compared with the traditional traffic lights. Results

show better traffic flow with the proposed scheme as compared with the traffic light. In [86],

the author led a foundational theory for algorithm design that will guarantee the safety and

liveness property in the coordination of ground traffic. They propose Model Predictive Con-

trol based formulations for lane follow, lane change and intersection control of vehicles.

Protocols for inter-vehicle coordination are proposed to ensure safety and liveness in the au-

tonomous ground traffic, examples for this are: Lane Change Protocol, Yield Protocol, and

Intersection Control Protocol. In [87], authors propose a discretized model of intersection

that consists of various nodes which are reserved for vehicles incoming to the intersection.

The intersection is controlled by an Intersection manager which is communicated with the

vehicles using the wireless communication (V2I). Vehicle is required to send its details to

the intersection manager which in turn checks for availability of nodes in the trajectory of the

vehicle. To calculate the trajectory of vehicles, Intersection manager uses dynamic program-

ming. Results show that the given algorithm controls the intersection without any collision

and with a decreased waiting time as compared to the traditional traffic light control. In [88],

authors approach the collision avoidance in an autonomous intersection control algorithm

using optimal control sub-problems for all permutations of crossing sequences of vehicles.
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They formulate the problem as a convex program using space sampling rather than time

sampling for finding optimal control sequence and implement the no-collision property as

a constraint. Simulation results are shown for a case study of three vehicles to demonstrate

the working of the algorithm. In [89], authors target a traffic of semi-autonomous vehicles

that has communication capabilities. In this work, a supervisory routine is proposed that

overrides controls when necessary to ensure safety. They formulate the supervisory control

problem using mixed-integer programming approach. The advantages of this formulation is

that it can handle complex intersections and due to reduced computation burden the scheme

presents a better real-time applicability. In [90], authors divide the task of intersection man-

agement of autonomous vehicles into three sub-tasks. The first one is to find the limits of

arrival times of each vehicle at the intersection, second is to solve for optimal schedules of

these vehicles according to the limit provided by using the mixed integer linear programming

(MILP). The third task is to find the feasible speed profile using which the vehicle can follow

the given schedule without fail. Similarly, in [91], the intersection management problem is

reduced to and solved using MILP. The proposed algorithm indirectly encourages vehicles

to make platoon to further improve the throughput of the intersection. In [92] as well, au-

thors propose the application of platoon to intersection management. Platoon based approach

will result in reduced communication overhead and wait time at intersection. The technique

used for scheduling of platoons at the intersection is a simple greedy algorithm. Authors

in their other platoon based intersection control in [93], assign desired speed to vehicles

when traveling towards the intersection and assign the acceleration and deceleration rates to

vehicles that have conflicting trajectory. The model for vehicle movement restrictions and

collision avoidance along with the objective to minimize the variance of velocity, results into

a challenging nonlinear problem. The formulation is linearized into an MILP. The proposed

algorithm succeeds in finding near optimal trajectories for vehicles without any collisions.

In [94], authors propose a supervisory control routine using a model predictive controller for

optimal sequencing of vehicles at the intersection. The intersection is modeled as a queuing

system having a hybrid nature with integer queue length and continuous arrival/departure

times. Results show that there is a better transient response when traffic changes and lower

average delay in the trip times. In [95], authors propose an optimization based technique

called Mixed integer programming based Intersection Coordination Algorithm (MICA) to
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find the trajectory that vehicles have to follow while crossing the intersection. A vehicle in

this scheme is either a following vehicle or heading vehicle. The intersection manager only

deals with head vehicles to reduce its computation load. In [96], authors propose the Colli-

sion Aware Resource Allocation (CARA) strategy. In this work, to limit the communication

channel congestion, only those vehicles are assigned the channel that are in a risk of fu-

ture collision. The strategy implies a collision aware proactive strategy based on a Collision

Probability Indicator (CPI) that calculates the probability of vehicle to end up in a collision.

The traffic controller makes use of a Model Predictive Controller for optimal scheduling of

vehicles at the intersection. By varying the threshold for CPI, control performance can be

traded with the communication load. In [97], authors propose a game theoretic approach for

intersection management that has game-in-game framework. The intersection management

task is broken into two games. In the first game, vehicles participate in a platoon formation

game and in the second game, collisions at the intersection are avoided. To maximize the

intersection throughput, the problem is formulated using a linear optimization problem.

3.2.1.5 Miscellaneous

In [98], authors, with an aim to reduce delay, emissions and fuel consumption, present a

cooperative system that performs traffic signal and vehicle maneuver optimization. For this

purpose, authors use an architecture in which vehicles, that are all autonomous, transmit

their local sensor information to a traffic signal controller using V2I communication. Using

the information received from vehicles, this controller extract the tailback information and

the overall traffic density information that it uses to generate optimized traffic signal plan.

Along with the signal optimization, vehicle driving strategy is also optimized for both longi-

tudinal as well as latitudinal control. This optimization devises the driving strategy that will

result in minimum stop and lane change operations. To keep the computation time of the

optimization procedure within real-time boundations, the Max-Min Ant System (MMAS)

meta-heuristic is used. Simulation results shows that the presented system can reduce the

number of required stops by 25%.
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3.2.2 Decentralized Schemes

Decentralized control is another architecture that involves no central controller rather, the

decisions are taken collectively/individually by the vehicles. Vehicles perform wireless

Vehicle-to-Vehicle (V2V) communication to share information required to make control ac-

tions. In this section, we are going to review articles that make use of such architecture in

their intersection management algorithm.

In [99], authors propose a novel technique for coordination of autonomous vehicles at the

intersection. They introduce decentralized navigation function for vehicles with fixed paths.

Navigation functions are the functions of position, velocity, acceleration or time which is

used to define the trajectory of a robot such that the required condition such as collision free,

or minimum time or minimum energy, etc. is met. They define the navigation function as a

function of path, taking the vehicle inertia into account and also allows to define priority for

some vehicles to save energy; for instance, large vehicles that have large associated inertia. It

is shown that collision freedom is also guaranteed with the choice of the navigation function

elected. Results show that the proposed method show better performance in terms of energy

consumption in comparison to the traditional traffic lights and previously defined navigation

function methods. In [100], authors discuss how decentralized approach brings robustness

in the overall system and makes the technology more appropriate for applications such as

search and rescue, hazardous site investigation and establishment of ad hoc communication.

In this work, authors propose to have a decentralized approach for finding the solution to the

AIM problem of [62] such that vehicles can within themselves find safe reservations without

any centralized controller. In [101], authors present a scheme that is different from all the

previous approaches. In this work, the shortcomings or disadvantages of centralized control

are highlighted and then a distributed agent based framework is introduced that implements

a self-organizing and cooperative control of CAVs. They point out the fact that FEFS scheme

and competition between the driver agents may result in sub-optimal performance. The pro-

posed scheme has three cooperation layers which are: Network, Route, and Intersection.

At the network and route layer, information such as high level network information, route

information for forming platoons, etc. are decided. However, this work specifically targets

to determine the right-of-way for vehicles at the intersection. Each vehicle in the scenario
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is given a priority level derived from the priority queuing principles using the information

such as vehicle occupancy, vehicle type, vehicle’s dynamics, etc. Each vehicle can calculate

its own and receive other vehicle’s priority level and thus determine the right of way at the

intersection. Simulation was performed using the VISSIM simulator. Results showed de-

creased delay for all users. In [102], authors propose a rule set that can be used to define the

right of way and thus find the sequence of vehicles to pass through the intersection. This rule

set is designed based on the law of road traffic safety. For vehicles that need to decelerate

in order to yield, an algorithm is also given to find the proper deceleration value. In [103],

which is further extended in [104], authors propose a two-level system which enables au-

tonomous vehicles to cross the intersection without stopping. The two levels in this work

has objective of improving the efficiency of individual intersections and the overall network

respectively. This work talks about "Green waves", which is a phenomenon in which most

of the vehicles pass through the network without stopping. Synchronized traffic lights is a

common approach to realize this. Along with forming green waves, this work focuses on

two objectives which are minimizing travel times and minimizing the total energy consump-

tion. In [105], authors propose an Intersection Control technique that can perform collision

free scheduling of vehicles even in the presence of an unknown number of communication

failures. A decentralized control is established which is later verified for safety and live-

ness properties. In [106], authors propose an improved Eco-Approach and Departure (EAD)

algorithm in which instead of vehicle-centric approach, a cluster based approach is used.

Vehicles are first assigned to clusters and then rearranged inside clusters. For each cluster,

a leader is chosen and then passage through the intersection is decided using the EAD ap-

proach. The cluster based approach instead of vehicle based will result in 50% improvement

in the throughput, 11% reduction in energy consumption and 20% reduction in emissions.

In [107], authors propose a distributed algorithm for intersection management of vehicles in

absence of any central controller. Vehicles share their expected schedule of accessing the

critical areas of the intersection with all the neighboring vehicles. This information-sharing

will aggregate the expectations and adjustments of vehicles in neighborhood. The aggrega-

tion of these information will lead to a conflict free schedule of all vehicles. The decision

maker sub-module finds this schedule which is used by the motion planner sub-module.

Since the schedules are decided based on the neighboring vehicles, the solution reached is
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not a globally optimum solution.

3.2.3 Hybrid Schemes

In this section we will discuss those articles that propose solutions integrating both the

centralized and decentralized control. In [108], authors propose both centralized as well

as decentralized approach for controlling an intersection with two conflicting lanes. The

intersection is modeled using timed Petri-Net and the objective of both these approaches is

to vacate the vehicles in the intersection in minimum time by finding the best intersection

access order of vehicles. In [109], authors approach the vehicle sequencing problem for

four adjacent intersections.. They first divide the traffic on every intersection into different

Compatible Stream Groups (CSG) which are groups of lanes that don’t overlap in the

intersection. Vehicles in each CSG are then classified into Passing Groups (PGs) and

Fundamental mini Groups (FGs). The passing sequence of the FGs are then optimized using

the Genetic Algorithm with an objective to minimize the Overall Evacuation Time. [110]

presents a reservation based cooperative traffic scheduling mechanism for both centralized

and decentralized architectures. All vehicle cooperative behaviors are modeled using

event-triggered automata using which the cooperation mechanisms are defined that realize

Reserve Advance Act Later (RAAL) procedure. Traffic manager agent uses special policies

namely First-Arrive-First-Pass (FAFP), High-QoS-In-Prior (HQIP), and Longest-Queue-

In-Prior (LQIP). This work is specifically not for intersection management rather for

various scenarios such as lane change and overtaking. They use static critical section in

case of intersection management whereas dynamic critical section in case of overtaking or

lane change. [111] presents a vehicle routing approach that uses arrival on time and total

travel time as objectives simultaneously. A semi-decentralized multi-agent architecture

in which infrastructure agents perform the route assignment problem. To maximize the

probability of reaching the destination before the deadline, probability tail model is used.

This model has been used for various deadline sensitive emergency applications. To

reduce the computational overhead the route assignment problem is formulated as an

MILP problem. The influence of each vehicles on other vehicles is taken into account by

collecting intention of all vehicles by the infrastructure agent. Route guidance procedure

makes use of these intentions to perform route assignment. In [112], authors approach
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the management of a group of intersections by having two scopes which are i) Grid

management, and ii) Vehicle routing. For grid management they used the Advanced

Cooperative Vehicle-Actuator System (ACVAS) which is an improvement over the CVAS

defined in [113]. ACVAS does not optimize any particular intersection as it can result in

congestion rather attempts to keep the grid deadlock free. For vehicle routing they use

three weighting policies namely Distance, Reservation, and Congestion. These weighting

policies weights the arcs in the network graph. In [114], authors propose a hybrid scheme

of intersection control. A job scheduler acts as the centralized planner and assigns crossing

schedules to vehicles. Whereas a distributed controller ensures that vehicles meet their

schedule along with guaranteeing the no collision. In [115], authors attempt to solve the

intersection management problem while considering the whole network instead of just

an isolated intersection. They took a hybrid approach in which an isolated intersection

is approached with centralized approach and the network in a decentralized approach.

Different intersections communicate within themselves thus introducing Infrastructure to

Infrastructure (I2I) communication. The network is represented using graph and inter-

sections as nodes in the graph. The technique used is called the discrete consensus algorithm.

3.3 Summary

In the first part of this chapter, we discussed the existing literature related to the lane sorting

procedure and algorithm. The works discussed here involve lane changes of vehicles using

different cooperative algorithms. Most of these works are dedicated to lane change prob-

lems for individual vehicles and some permit lane changing of multiple vehicles but with

sequential executions of individual lane change operations. Due to this limitation, there is

sub optimal exploitation of the available resources. Furthermore, a majority of the works pre-

sented above keep the lane changing task only confined to the vehicles that are attempting to

change lanes or are neighbors to those vehicles. The true cooperative lane change planning

will be the one that involves all the vehicles in the scenario. Most importantly, the works

discussed above are dedicated to the lane change operations that are primarily motivated by

personal preferences such as high traveling velocity. In this way most of considered works
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don’t target lane change operation with an objective of arranging the vehicles in a more favor-

able organization of vehicles for efficient management of any traffic scenario. For instance,

we know how platoons can make traffic management at various scenarios very efficient and

economic but there is no algorithm to the best of our knowledge that attempts to coopera-

tively rearrange vehicles such that every vehicle reach its destination lane from it initial lane.

Along with the application to platooning, the availability of such an algorithm will also be

useful in arranging vehicles at scenarios that can be benefited by favorable arrangement of

vehicles in lanes for example toll-gates, highway entrance and exits, intersections etc.

In the second part of this chapter, we presented existing work that address the au-

tonomous intersection management problem. We observed, there are several significant

features associated with each of these solutions such as safety, efficiency in terms of de-

lay, throughput, emissions etc. with a hard condition on safety. A majority of works on

autonomous intersection management adopts a centralized approach and various techniques

used for the purpose are optimization, control-theory, market-inspired, naturally inspired,

etc. Out of all the schemes, the fixed-velocity based scheme works on various objective at

the same time. It results in no queuing at the intersection, minimum fuel usage and exhausts

due to minimized acceleration and deceleration, and maximum comfort. If such a scheme

could be developed with procedure involving low computational needs resulting in safe in-

tersection traversal, then it would turn out to be a very efficient intersection management

strategy.

Based on the above mentioned observations, we will first present the proposed algorithm

for lane sorting in Chapter 4 and the Heuristic Autonomous Intersection Management algo-

rithm in Chapter 5.
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Chapter 4

Cooperative Lane Sorting

4.1 Introduction

Lane change is one of the most common maneuvers in driving. It is performed while overtak-

ing, merging, diverging, pull-overs, etc. Having sound algorithms for planning lane change

maneuvers is thus critical in terms of safety as well as efficiency in various scenarios. The

objective of any lane change maneuver is to get the vehicle from its current lane to the des-

tination lane safely and efficiently. Due to their importance in various driving scenarios,

there are numerous works in literature dedicated to planning safe and efficient lane change

maneuvers for a vehicle wanting to change lanes. Lane change planning such as lane change

scheduling, maneuver planning, etc. for individual vehicle lane change operations has be-

come an established research problem with various related algorithms.

There are various scenarios where a group of vehicles rather than an individual vehicle

have to collectively plan their lane change operations for instance at toll gates where all

incoming vehicles are required to be sorted in lanes corresponding to vehicle size and type,

at freeways, there are dedicated lanes for faster moving vehicles which define a distribution

of vehicles on lanes based on their velocity. Such scenarios require coordinated lane change

operations of multiple vehicles sometimes added with some additional constraints such as a

limit on the available road length to complete all lane change operations. The work presented

in this chapter caters to the same situation where lane change planning for a group of vehicles

is to be performed. Keeping such scenarios in mind, we next present a new ITS procedure

known as Lane Sorting.
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Lane Sorting

Figure 4.1: Lane Sorting Process

4.1.1 Lane Sorting

Consider a group of vehicles (V1, V2, ..., Vm) travelling on a long stretch of straight road with

n number of lanes (l1, l2, ..., ln).

Let us define the relationCL(Vi) that gives the lane in which vehicle Vi is currently travelling

and the relation DL(Vi), that gives the destination lane or the lane in which the concerned

vehicle wishes to move to eventually. Let us assume that the every vehicle is already aware

of its destination lane.

Let us consider that case in which some of the vehicles in the set (V1, V2, ..., Vm), are not

travelling in there destination lane. For such a traffic setting, we could write:

∃Vi ∈ (V1, V2, ...Vm) s.t. CL(Vi) 6= DL(Vi) (4.1)

Then the lane sorting operation is defined as the procedure that converts, in a finite

amount of time, the traffic setting given in equation 4.1 into a setting given by:

∀Vi ∈ (V1, V2, ...Vm) CL(Vi) = DL(Vi) (4.2)

In other words, the objective of the lane sorting opertion is to physically rearrange vehi-

cles to bring them all in their destination lane. The lane sorting operation is in contrast to

the lane assignment technique as lane sorting manages the physical movement of vehicles in

between lanes. On the other hand, the objective of lane assignment, as discussed in Section

3.1.1 is only to assign the destination lane to a given vehicle.

The diagram shown in Figure 4.1 gives a graphical representation of the lane sorting

procedure.
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Please note that it is not necessary to have as many lanes as there are destination groups

of vehicles i.e. there can be a case where the number of lanes can be greater than or smaller

than the number of destination groups. In case the number of destination groups is greater

than the number of available lanes, some of the lanes are shared for multiple destination

groups, and in case the number of destination groups is smaller, some of the destination

groups can have multiple corresponding lanes. For instance, a two-lane road approaching

a 4-way intersection can have one lane corresponding to vehicles destined to turn left on

the intersection and the other lane corresponding to both right-turning and straight going

vehicles.

Lane change problem can be derived from the lane sorting problem by considering the case

where only one vehicle out of the group is attempting to change lanes and other vehicles are

already in their destination lanes. Thus solutions to lane sorting problem can also be used

for the purpose of lane changing of individual vehicles.

We next present the Cooperative Lane Sorting (CLS) algorithm for lane sorting of au-

tonomous vehicles. First, we discuss the architecture used for this purpose.

4.2 Scenario Description

Consider a long stretch of straight, multi-lane road. Each lane in this road is drivable and is

of the same width (not necessary). Long here means that we are not considering the distance

deadline for now rather, we are considering that we have a road with some fixed number

of lanes for infinite (sufficiently long) distance. The length of the road required for any

particular traffic setting can then be determined from the results obtained. The road does

have a start line. Incoming vehicles enter this road from the start line with some random

velocity bounded by a speed limit of Vmax. All vehicles are required to have SAE (Society

of Automotive Engineers) level-2 autonomy [116] or more (as the vehicle will need to per-

form autonomous longitudinal and latitudinal movements to change lanes) and are capable

of communicating with the Scenario Controller (SC) using wireless communication either

directly or via Road Side Units (RSU). Scenario Controller is the central controller which

contains the presented algorithm and is responsible for performing all associated tasks such

as communication and computation.
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As shown in Figure 4.2, the start line is followed by a road section called Velocity Transition

Section (VTS). Incoming vehicles adjust their velocity in this section to achieve the common

velocity (Vcommon). The length of VTS can be determined using Newton’s equations of mo-

tion and the limits over velocity and acceleration of vehicles in the scenario. For example,

for a maximum velocity of 60kmph and minimum acceleration (or deceleration) of 3m/s2,

the required length of VTS will be 46.3 meters.

Vcommon is one of the two parameters that can be varied to suit the incoming traffic density

and available road length. The other one is frame length (discussed later). Their values are

taken from a lookup table that has previously been generated using the experiments shown

in this chapter. In case when a sufficiently long stretch of road is available, Vcommon can be

set to the Vmax. Otherwise, Vcommon shall be decreased with a decrease in the length of the

available road because reduced velocity will give more time to vehicles for adjusting their

position.

By considering such a scenario, we demonstrate a possible architecture that can be realized

before any scenario that is benefited by sorted traffic, for example, a Tollgate or an intersec-

tion, etc. In the experimentation, for demonstration purpose, we have performed simulations

for Vcommon equals to 5m/s, 10m/s and 15m/s. These velocities in kilometers per hour corre-

spond to 18, 36, and 54 kmph, which are very common for any urban traffic scenario.

All incoming vehicles perform wireless communication with SC and pass their information

such as their length, width, velocity, route, current (incoming) lane (lc), etc. For simplicity,

we have assumed the length of every vehicle to be the same. SC in return passes Vcommon and

the lane in which vehicle has to shift (destination lane, ld). The destination lane of a vehicle

may or may not be the same as its initial lane. Deciding the destination lane of incoming

vehicles is a research topic in itself known in the research community by the name Lane As-

signment. Lane assignment can have different approaches such as grouping by destination,

dynamic grouping, grouping by size [18] etc. Since in this work, the grouping of vehicles

is done based on the destination direction of each vehicle at the intersection, we can say

that SC is using the grouping by destination strategy of lane assignment in the background.

Although the considered scenario is an example of grouping by destination, the presented

algorithm may well be used along with any other lane assignment technique. Vehicles start

transiting to Vcommon as soon as they enter VTS. Lane sorting starts after vehicles have left
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Figure 4.2: VTS and LSA in the Scenario

VTS and are now in the Lane Sorting Area (LSA).

Although the presented work is generalized in sense of the number of lanes i.e. there can

be any number of lanes on the road, we have used for explanation purposes, a scenario with a

road that has three lanes wherever appropriate. We have abstracted away from the imperfec-

tions in communication to keep the objective of this work clear and that is to propose a lane

sorting algorithm hence the communication is assumed to be flawless. The other assumption

of the presented work is that all vehicles in the scenario are capable of having autonomous

control over their lateral as well as longitudinal movement i.e. the all the vehicles in the

scenario have the autonomy of SAE level-2 or more. Also, for the sake of simplicity, we

have kept the dimensions of all the vehicles to be the same (length = 3 meters and width = 2

meters).

4.3 CLS Algorithm

The sorting area and vehicles inside it are divided into various sections known as Frames.

All frames are of the same size when created and move with a velocity the same as that of

the vehicles contained in it i.e. Vcommon. As a result, the frame-vehicle association is always

preserved unless the frame is to be merged with some other frame. Frames are created at

the start of the sorting area. A frame after being created can merge with another frame if

required and frames are destroyed when all their contained vehicles get past the lane sort

area. In between their creation and destruction, they move with Vcommon velocity. All these

frames are non overlapping and every vehicle in the scenario should be associated with a

frame. Frames can have a gap in between them i.e. they are not necessarily required to be

back-to-back as shown in Figure 4.3.
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Figure 4.3: A possible distribution of frames

The geometrical center of the vehicle is taken as the position of a vehicle. As stated earlier,

all vehicles and frames move with the same longitudinal velocity, when seen from a perspec-

tive of the moving frame i.e. when we see a frame from a reference moving along with the

frame, then it will look stationary with fixed relative positioning of vehicles inside it. From

this perspective, a lane change maneuver will look like the vehicle is moving horizontally in

between the lanes given that the vehicle maintains this longitudinal velocity while changing

the lane as well.

In continuation of the above observation, we can say that a vehicle can perform a safe lane

change maneuver if it can obtain a horizontal space that is non overlapping with other vehi-

cles. We call this horizontal space as Channel.

This reduces our task at hand at this stage to get independent channels for vehicles wanting

to change lanes to their destination lanes. We make use of Linear Programming over the

positioning of vehicles in the frame to achieve this task. But first, we discuss how frames are

created in the scenario.

4.3.1 Frame Creation

To explain how frames are created, let us consider that initially there are no vehicles in the

scenario. As vehicles start coming in the scenario, they are first added to a temporary list.

A check is made at every step to get the position of the first vehicle in this temporary list.

As long as this position is less than the frame length, all incoming vehicles are added to

the temporary list as shown in Figure 4.4. The moment at which the first vehicle in the

temporary list crosses the frame length distance, a frame is created and all vehicles present

in the temporary list are assigned to the newly created frame. The temporary list is now

cleared (Figure 4.5). This procedure is repeated when the next vehicle enters the scenario.

Once a frame is created, it starts moving with the Vcommon velocity. As a result, the relative

76



CHAPTER 4. COOPERATIVE LANE SORTING

Start
Line

Frame Length

A

B

tempList = {A, B}

Start
Line

Frame Length

A

B

tempList = {A, B, C}

C

Figure 4.4: Frame creation

Start
Line

Frame Length

A

B

tempList = {D}

CD

Figure 4.5: Frame creation

positioning of vehicles inside the frame shall be fixed unless vehicles are in a maneuver to

change lane or getting into the assigned position in the frame. After vehicles complete the

maneuver, they will again attain the Vcommon velocity.

As vehicles don’t cross their frame and frames don’t overlap, we can say that through

frames, the complete scenario has been divided into various independent sections that can

be processed in parallel. Processing each frame involves formulating a Linear Programming

(LP) problem that will return vehicle positions as a result. In case the solution of the linear

programming formulation is not feasible, the frame is merged with another frame. We will

next discuss the LP formulation.

4.3.2 Problem Formulation

As discussed earlier, we breakdown the task of sorting vehicles on the entire road into sort-

ing vehicles in smaller road sections called frames. We will now discuss the formulation

of the linear programming problem which gives channel positions as its solution. We first

define some sets of vehicles present in the frame under consideration. The first set is named

Vehicles, which is the set of all the vehicles inside the frame. There are three subsets of the

Vehicles set. These subsets are SortedVehicles set, UnsortedVehicles set and SupportingVe-
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hicles set.

Let us first give the formal definition of the above sets and subsets.

Let the Vehicles set be defined as the set of all the vehicles inside the frame. If there are m

vehicles inside the frame then,

V ehicles = (V1, V2, ..., Vm) (4.3)

Next, the SortedVehicles set is defined as:

SortedV ehicles ⊆ V ehicles s.t. ∀Vi ∈ SortedV ehicles, CL(Vi) = DL(Vi) (4.4)

Next, UnsortedVehicles and SupportingVehicles are defined as:

UnsortedV ehicles ⊆ V ehicles s.t. ∀Vi ∈ UnsortedV ehicles,

CL(Vi) 6= DL(Vi) and coop(Vi) = 0
(4.5)

SupportingV ehicles ⊆ V ehicles s.t. ∀Vi ∈ SupportingV ehicles,

CL(Vi) 6= DL(Vi) and coop(Vi) = 1
(4.6)

Here the coop relation gives the truth value for cooperation from the vehicle. If it is 0, vehicle

will demand for a channel and if it is 1, vehicle will cooperate by not demanding a channel.

As their names suggest, SortedVehicles set contains those vehicles that are already in

their destination lane, UnsortedVehicles set contains vehicles that are not in their destina-

tion lane and will demand a channel for lane-change maneuver, and SupportingVehicle set

contains those vehicles which are not yet in their destination lane but are behaving as sorted

vehicles temporarily. Unsorted vehicles always demand a channel whereas sorted and sup-

porting vehicles always clear the space for creating channels. We will discuss later in this

section how and when an unsorted vehicle is made supportive.

A Channel, as discussed earlier is the unoccupied space reserved for a vehicle Vi ∈
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Figure 4.6: This figure shows a frame along with notations used in equations

UnsortedV ehicle, spanning from CL(Vi) to DL(Vi). It is formally defined using the posi-

tion inside the frame i.e.

Channel(Vi) = y (4.7)

Where y is the position of the channel with respect to the frame start line, fstart.

Let us consider the frame shown in Figure 4.6. The frame starts at fstart and end at fend.

Let the vehicle i with initial position (xi, yi) be assigned a channel centered at yCi. Vehicle

i will need to shift by a distance of ∆yi = (yi − yCi) to get into its corresponding channel.

To keep this shift minimum, we would want that the channel should be as close as possible

to the vehicles’ initial position. Along with this, we would also like to minimize the shift

required in the position of the sorted and unsorted vehicles as well. This requirement gives

us the following objective to our linear programming problem.

Objective : Min. Σ|∆yi| ∀i ∈ V ehicles (4.8)

We will now discuss associated constraints:

1. Vehicles are always separated longitudinally by at least a safe distance. We call

this safe distance as Safety Gap (SG). This means channels, sorted vehicles and sup-

porting vehicles should always be positioned such that vehicles will always have a
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longitudinal physical separation of at least SG in between them. We have considered

the value of SG to be 2 meters. The associated constraint will look like follows.

|(yi + ∆yi)− (yj + ∆yj)| ≥ v_len+ SG

∀i, j ∈ Vehicles, i 6= j

|lcj ∈ (lci, ..., ldi) or ldj ∈ (lci, ..., ldi)

(4.9)

Here lc and ld represent the current lane and the destination lane respectively. The

condition lcj ∈ (lci, ..., ldi) or ldj ∈ (lci, ..., ldi) select vehicles that can have conflict

while changing lanes. For vehicles that can not possibly conflict with each other while

changing lanes, this constraint is not applicable. v_len represents length of the vehicle.

2. Vehicles associated with a frame should lie completely inside the frame. This

constraint makes all the frames independent because no vehicle is allowed to cross the

frame boundary. The associated constraints will look like.

yi + ∆yi ≥ fstart +
v_len

2
+
SG

2
(4.10)

yi + ∆yi ≤ fend −
v_len

2
− SG

2
(4.11)

SG
2

is added in both constraints to prevent double safety spacing between vehicles

near the boundary of two frames.

3. Actual order of vehicles in lanes should be preserved. This constraint keeps vehicles

in the same lane in their actual ordering. Since the linear programming solution will
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contain a change in position in the geometrical center of the vehicle, this constraint

will put limits on the values of ∆y such that actual order of vehicles is maintained.

(yi + ∆yi)− (yj + ∆yj) >= v_len+ SG

∀i, j ∈ V ehicles | i 6= j, xi = xj, yi > yj

(4.12)

(yj + ∆yj)− (yi + ∆yi) >= v_len+ SG

∀i, j ∈ V ehicles | i 6= j, xi = xj, yj > yi

(4.13)

As we can see the objective and constraints given in equations 4.8 and 4.9 respectively are

not in a form appropriate for linear programming formulation because they contain absolute

value functions. To resolve this we can either use a quadratic programming solver or we

could transform these equations into a form acceptable by linear programming solvers. We

choose the second option as using a quadratic programming solver is more resource-intensive

than a linear one.

4.3.3 Transforming to Linear Programming

To transform these expressions into linear programming solver acceptable form, we need to

add additional variables and expressions. We do this one by one starting with the objective

itself. To transform the objective, we add an extra variable named Obj and a variable array

∆y in which all the elements have a lower bound of zero, along with following additional

constraints.

∆yi >= ∆yi ∀i ∈ Vehicles (4.14)

∆yi >= −∆yi ∀i ∈ Vehicles (4.15)
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Σ∆yi <= Obj ∀i ∈ UnsortedVehicles (4.16)

Σ−∆yi <= Obj ∀i ∈ UnsortedVehicles (4.17)

And our new objective will become

Min. Obj (4.18)

To transform the constraint given in equation 4.9 into an appropriate form, we need to

add one binary variable (b) for each combination of i and j and a variable with a constant

value (M ) large enough to satisfy constraints. Every instance of equation 4.9 will be replaced

by following two constraints.

(yi + ∆yi)− (yj + ∆yj) +M ∗ bij ≥ v_len+ SG (4.19)

(yj + ∆yj)− (yi + ∆yi) +M ∗ (1− bij) ≥ v_len+ SG (4.20)

The value of M should be large enough to satisfy the above equations. We take it to be

double the frame length, any larger value will also work fine. Now, this linear programming

is solved for a solution. In the first iteration, all the unsorted vehicles inside the frame de-

mand for a channel. If it is feasible for every unsorted vehicle to get a channel in the first

iteration itself, the solution is obtained. However, if it is not possible for every vehicle to

get a channel, the LP solver will report no feasible solution. This is where we are required

to shift vehicles from the UnsortedVehicles list to the SupportingVehicles list. This could be

82



CHAPTER 4. COOPERATIVE LANE SORTING

G

B

B

B

Y

G

G

G

Y

Figure 4.7: A case where frame merge is required.

done iteratively by shifting one vehicle to the SupportingVehicles list at each iteration either

until all vehicles from the UnsortedVehicles set are made supportive or untill a solution is

obtained.

If a solution is obtained, vehicles are required to move into their assigned positions. Unsorted

vehicles are required to move into their assigned channels; whereas, sorted and supporting

vehicles to the positions obtained by solving LP. Every LP solution is followed by a move-

ment step in which all vehicles shift to assigned positions and then lane change maneuvers

are performed. After the movement step is over, the next sorting step is started. This se-

quence of sorting and moving is repeated until all vehicles in the frame are sorted. When

traffic is high or in the case when the number of vehicles destined to one lane is more than

the lane capacity, it is not possible to get all vehicles in the frame into their respective lanes.

In such a case, the frame is merged with the frame upstream. We can see an example in

Figure 4.7. In this figure, the vehicles are shown as the smallest rectangle that will fit the

vehicle when seen from above. Color of the rectangle means following:

• Blue: Vehicles destined to go to the left-most lane;

• Cyan: Vehicles destined to go to the middle lane;

• Green: Vehicles destined to go to the rightmost lane;

• Yellow: Vehicles already in their destined lane.

Figure 4.7 shows an intermediate stage while sorting a frame. At the stage shown,

the three blue vehicles and three out of four green vehicles have reached their destination

lane. As can be seen, the rightmost lane is now completely occupied and does not have
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space to accomodate the remaining green vehicle. The solution of LP formulation done at

this stage will thus be infeasible and as per the procedure presented above, the last green

vehicle, which is also the only unsorted vehicle at this stage would be made supportive. The

observation to be made from this example is that, whenever there is such a case where the

number of unsorted vehicles is zero and the number of supporting vehicles is greater than

zero, that would mean there is no feasible solution for the LP formulation and the frame has

to be merged with other frame to proceed with sorting.

Thus to detect this case, we check for the number of elements in UnsortedVehicles set and

SupportingVehicles set. If the number of elements in UnsortedVehicles set is zero and the

number of elements in SupportingVehicles set is greater than zero, it would mean that the

number of vehicles destined for a particular lane in the frame is greater that the lane capacity

and thus the frame has to be merged with the adjacent frame. Since the frame upstream is

more probable to be sorted, we merge any such frame with its upstream frame.

4.3.4 Choosing Supporting Vehicles

As mentioned earlier, when there is no feasible solution to the formulated LP problem, vehi-

cles are shifted from UnsortedVehicles set to SupportingVehicles set. This shifting, however,

is not done arbitrarily rather, we need to decide first what number of vehicles are to be shifted

and in what order. If the number of vehicles to be shifted is not known beforehand, one ve-

hicle would be shifted in every run followed by formulation and solving of the entire LP

problem. And this will be repeated multiple times until the required number of vehicles is

not shifted. Thus not knowing the required number of vehicles to be shifted would result in

an unnecessary delay in computation. To prevent this, we first find out the required number

of vehicles to be shifted into the SupportingVehicles set.

We now explain analytically the process of finding the required number of vehicles to be

shifted into the SupportingVehicles set. Let the maximum number of vehicles that can be

accommodated in one lane is lane_max and there is n number of lanes in the scenario. Now

for each lane, we need to find the number of vehicles each lane has to provide occupancy for

to perform lane change of vehicles. Each lane will have to provide occupancy for vehicles

of three classes which are:
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Table 4.1: Occupancy requirements from lanes in Figure 4.8

Class 1
(Already present)

Class 2
(Destined)

Class 3
(Passing) Total

Left lane 3 0 0 3
Middle lane 4 2 0 6
Right lane 1 1 0 2

1. Vehicles already present in that lane,

2. Vehicles in other lane and destined to that lane and

3. Vehicles in another lane that has to cross that lane to reach its’ destination lane.

For each lane in the scenario, we then add the number of vehicle occupancies that have

to be provided corresponding to these three classes; let this sum be called num_occupancy.

The number of vehicles that have to be shifted to the SupportingVehicles list (N ) is then

obtained by adding the number of vehicle occupancy each lane has to provide in excess to

lane_max i.e.

N = Σ(num_occupancyi − lane_max)

for i = 1 . . . n ; num_occupancyi > lane_max
(4.21)

N is the number of vehicles that have to be made supportive to obtain a solution. In case

this number is equal to the number of unsorted vehicles, at any stage, then there will be no

further feasible solution and the frame will have to be merged to proceed with lane sorting.

Table 4.1 gives the occupancy requirements from lanes in the example scenario shown in Fig-

ure 4.8. The number of vehicles to be shifted is the addition of difference with the maximum

occupancy (which is 5 for the example case; with the length of each vehicle = 3 meters, SG =

2 meters, and frame length of 25 meters) for lanes having occupancy greater than maximum

occupancy. Hence, we need to shift 1 vehicle to the SupportingVehicles set.

To get the number of vehicles to be shifted into the SupportingVehicles set, an efficient

method will be to iterate through all the vehicles and increment the lane counter for each

lane in between the current lane and the destination lane of that vehicle. Where lane counter
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is an integer array with an equal number of elements as there are the number of lanes and

initialized with zero in all the elements. This procedure is shown in Algorithm 5. This algo-

rithm takes as input the array of vehicle objects of all the vehicles in the frame (vehicle_list),

number of lanes in the scenario (num_lanes) and maximum occupancy of each lane in the

frame (max_occupancy).

Algorithm 5: Algorithm to calculate N
Input: Vehicle Object array (vehicle_list), num_lanes, max_occupancy
Output: N

1 N = 0;
2 lane_counter[num_lanes] = {0};
3 i = 0;
4 while (i < len(vehicle_list)) do
5 l_s = vehicle_list[i].current_lane;
6 l_d = vehicle_list[i].destination_lane;
7 if (l_s < l_d) then
8 j = l_s;
9 while (j <= l_d) do

10 lane_counter[j] += 1;
11 j += 1;
12 end
13 else if (l_s > l_d) then
14 j = l_d;
15 while (j <= l_s) do
16 lane_counter[j] += 1;
17 j += 1;
18 end
19 else
20 lane_counter[l_s] += 1;
21 end
22 i = i + 1;
23 end
24 i = 0;
25 while (i < num_lanes) do
26 if (lane_counter[i] > max_occupancy) then
27 N += (lane_counter[i] - max_occupancy)
28 end
29 i += 1;
30 end
31 return N

Even after getting the number of vehicles that have to be made supportive, the decision
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of choosing which vehicle to be shifted to the supporting vehicles list is also important.

Choosing the wrong vehicles can result in a greater number of runs for sorting vehicles or it

can also result in no solution at all. For instance, consider the frame shown in Figure 4.8. As

we can see in this figure, all three unsorted vehicles (one green and two cyan) can not move

into their respective lanes simultaneously because the middle lane has space to accommodate

only one more vehicle. Hence one vehicle has to be made supportive. Suppose that green

vehicle is made supportive. Now, since the green vehicle is required to behave as a sorted

vehicle temporarily, it will not shift lane but will make space for one of the cyan vehicles and

that cyan vehicle will then move into the middle lane. Now, in the next sorting step, the green

vehicle will again be eligible for attempting to change the lane along with the leftover cyan

vehicle. Now suppose the green vehicle is again made supportive, then, in that case, there

will be no space left in the center lane to accommodate the leftover cyan vehicle. This will

end up being a no solution case. On the other hand, if the leftover cyan vehicle is chosen as a

supportive vehicle instead of green, the green vehicle would have got a channel to shift to the

right lane, and then finally in the next sort step, the remaining cyan vehicle will get chance

to change lane. This example shows that the selection of vehicles to be made supportive is

also crucial.

To find which vehicles are appropriate to be made supportive we extend the method used

to calculate the number of vehicles to be made supportive. We discussed that there are

three classes of occupancy that a lane has to provide to allow lane changes to take place.

Vehicles of the first class are already present in the lane and if any of those vehicles are made

supportive then it will not reduce space requirements from the lane. On the other hand, if

any of the vehicles from the second or third class are made supportive then that vehicle will

not demand channel and hence will reduce space requirements from that lane. This is the

principle behind selecting supporting vehicles.

For each lane, a list of candidate vehicles is generated by combining vehicles of second and

third class as discussed above. Then from this list of candidate vehicles, as many numbers of

vehicles are made supportive as there is the requirement of space in excess of the maximum

occupancy limit from that lane. Let us take the example given in Figure 4.8. Since only the

middle lane has an occupancy requirement in excess of maximum lane occupancy of 5, we

create a candidate vehicle list for only that lane. This candidate list will contain the two cyan
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Figure 4.8: Example scenario to find number and order of vehicles shifted into
SupportingVehicles set

vehicles out of which anyone can be chosen as the supportive vehicle.

Although the choice of supportive vehicles from the candidate vehicles can be arbitrary, an

attempt should be made to select that vehicle first which is present in multiple candidate lists.

Such vehicles will reduce the number of vehicles to be made supportive as they reduce the

occupancy requirement of multiple lanes.

When all the discussed steps are followed, we will know beforehand whether the solution

of the MILP formulation will be feasible or not. This will prevent unnecessary runs of the

solver and thus will save time. When a solution does exist and is returned by the solver, then

vehicles are required to move to the assigned positions. Supporting and Sorted vehicles will

move to clear channels and Unsorted vehicles will move into their respective channel and

later perform the lane change maneuver.

These steps are repeated iteratively until all the vehicles are sorted in the frame. At the

start of each iteration, Vehicles set is divided into the three sub-sets, this means, supporting

vehicles in one iteration will take part as unsorted vehicles in the next iteration initially and

later the division will be done based on the requirements. Algorithm 6 depicts the complete

workflow that goes into sorting one frame. This algorithm takes the frame object as input and

makes use of the predefined operations as statements. For instance, in line 3, SortedVehicles

set is obtained using equation 4.4, in line 5, N is obtained using Algorithm 5 and so on.
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Algorithm 6: Sorting vehicles in a frame
Input: Frame object
Output: Sorted Frame

1 all_vehicles_sorted = False;
2 while !all_vehicles_sorted do
3 Get SortedVehicles set;
4 Get UnsortedVehicles set;
5 Find N ;
6 if N < len(UnsortedVehicles) then
7 Select and shift N vehicles from UnsortedVehicles to SupportingVehicles set;
8 Solve optimization (LP) problem;
9 if N == 0 then

10 if new_frame == True then
11 Rearrange vehicles in frame;
12 end
13 all_vehicles_sorted = True

14 end
15 Move vehicles;
16 end
17 else
18 if new_frame == True then
19 Rearrange vehicles in frame;
20 end
21 Merge frames;
22 end
23 end

4.3.5 Frame Merge

As we have discussed above, when the distribution of vehicles in the frame is such that

either there are a larger number of vehicles to be shifted into a lane than it’s occupancy limit

or all the unsorted vehicles are required to be made supportive, then the solution of the LP

problem is not feasible. In such a case, the frame is to be merged with another frame. In our

implementation, we have merged such frames with the frame upstream to that frame. This

is because the frame upstream has spent greater time in the scenario and is more likely to be

sorted. We have also put the restriction that the frame upstream should be sorted before it

merges. The current frame will wait for the upstream frame to be sorted before it can merge

and in the mean-time will just continue traveling with Vcommon velocity. When two frames

merge, the fstart of the following frame is the start position of the new frame and the fend of
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Figure 4.9: The figure shows a case where the rearrangement of vehicles will be
required to prevent a collision. The red vehicle is associated with Frame 1 but
protrudes into Frame 2 as it is not moved by the lane sorting LP formulation

the leading frame is the end position of the new frame. Since a sorted frame might help an

unsorted frame in getting sorted, frames are never destroyed while they are inside the lane

sort area.

In case the first frame in the scenario can’t find a solution, then it will just increase its frame

length to 1.5 times its current length.

4.3.6 Rearrange Vehicles in Frame

As can be seen in the Algorithm 6, whenN is greater than or equal to the number of unsorted

vehicles in the frame, we will be doing a frame merge operation. This is because the LP

solver will not be able to give any solution for the positions of the vehicles in the frame and

also until the frame ahead is not sorted, merge operation will be in a pending state. Now

suppose, the frame that needs to merge has just been created and the last vehicle’s front

center is just inside the frame and the rest of the body of the vehicle is outside the frame

as shown in the Figure 4.9. The last vehicle is in a dangerous position and will remain in

that position because it’s repositioning is only governed by the solution of the LP solver.

Now since the solution of the LP solver is not feasible, all the vehicles in this frame will

be traveling as they are in the frame. This creates a vulnerable scenario in which if a new

frame is created just after this frame then the last vehicle will be inside the following frame’s

boundary and can cause a collision.

To prevent such a scenario, we have a routine that rearranges vehicles in a frame when the

frame is created and it’s N is greater than or equal to the number of unsorted vehicles in it

or when all the vehicles in the frame are already sorted. The rearrange routine is placed as

shown in Algorithm 6 (lines 11 and 19). It contains another LP formulation that only forces
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vehicles to be inside the frame. The constraints are same as constraints given in Equations

4.10 and 4.11. And the objective is to minimize the overall vehicle movement. The variable

new_frame is initialized with True when a frame is created and is set to False after it is

processed by either the sort routine or the rearrange routine for the first time. Now a question

might arise that what if even rearranging of vehicles inside a frame is not possible? This will

only happen when the incoming vehicles are very tightly packed and the separation between

vehicles is less than the safety gap (SG) that have been considered in the LP formulation.

This puts a limit on the value of the safety gap we have used in our work. We can thus make

the following statement:

The value of the safety gap (SG) that can be used in the implementation is limited by the

spacing of vehicles in the incoming traffic. Or we can also say that the maximum value of

the SG that we can use during lane sorting is the average spacing of vehicles in the incoming

traffic.

Please note that the average spacing of vehicles in every frame in the incoming traffic should

also be greater than or equal to the SG considered.

4.3.7 Shifting Vehicles Inside Frame

After a vehicle has been assigned a channel, it is required to move to that channel by making

smooth changes in its velocity. Also, when it reaches the channel it should again have the

Vcommon of the frame as its velocity. To perform this smooth change in position and velocity

of vehicles, we make use of a proportional controller relation for updating velocity of any

vehicle wanting to shift its position. Let us consider the scenario shown in Figure 4.6. The

velocity while changing its position at each step of the simulation is given by following

relations.

distance_offset = yCi − yi (4.22)

velocity_offset = Vcommon − vel (4.23)
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vel = vel +Kd ∗ distance_offset+Kv ∗ vel_offset (4.24)

Kd and Kv are determined experimentally to result in smooth position shifts. The velocity

of the vehicle is updated at every step using the relationship shown above. Please note that

initially, vel, which is the instantaneous velocity of the vehicle, will be equal to Vcommon.

Due to the distance_offset, the value of vel will change, however, the change in velocity will

then be reverted to again attain Vcommon by the velocity_offset factor.

4.3.8 Adjusting Vcommon and Frame Length

We saw that when the safety gap is greater than the average spacing of vehicles in a frame, the

solution to the MILP problem will not exist. This puts a limit on the value of the safety gap.

Though we have considered a fixed safety-gap of 2 meters for simulations, it is not necessary

to set it to a fixed value. Alternatively, it can be varied based on the traffic density and

average spacing between vehicles. Also, since the vehicles participating in the cooperative

lane sorting procedure are under tight coordination with each other due to minimal relative

velocities, we can have lower values of safety-gaps. Such tight coordination of vehicles is

also seen in platooning procedures and, there as well minimal safety gaps are required. Using

a smaller value of SG will make the CLS algorithm applicable to higher traffic densities. For

this reason, SG should only be large enough to satisfy the safety requirements.

To accommodate varying traffic, Vcommon is required to be adjusted accordingly such

that the output rate of vehicles is always equal to the input rate. However, we need to

come up with a mechanism that does not result in any disturbance in the CLS procedure.

To devise such a mechanism, we only need to make sure that the relative positions of two

frames should never decrease during or after velocity change. Now, there are only two

possibilities for Vcommon. It can either be decreased or increased. Suppose, there are n

frames in the scenario numbered 1, 2, ..., n which are traveling with the velocity Vcommon.

Now let us consider that new frames will now be assigned a velocity equal to Vcommon′

such that Vcommon′ < Vcommon. That means the frame n+1, n+2, ... will have a velocity of

Vcommon′. Now the two boundary frames corresponding to two different Vcommons will have
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an ever-increasing relative separation. So, decreasing Vcommon at any time is safe.

On the other hand, increasing Vcommon will result in a decreasing separation in frames.

For that reason, we will have to make every frame (1, 2, 3, ..., n, n+1, ...) travel with

Vcommon′. Frames with frame number 1, 2, ... n that were earlier traveling with Vcommon

will now transit to the velocity Vcommon′. Frames that are undergoing sorting will continue

to do so but with the new common velocity. As we have shown, the shifting mechanism of

vehicles does not depend on common velocity rather on the relative positions and velocities,

change in common velocity will not affect the lane sorting procedure.

To vary the output rate of vehicles, other than varying the common velocity, we can also vary

SG within the allowed range.

4.3.9 Complexity Analysis of CLS

The CLS algorithm has been shown to be frame-centric. Thus, the complexity of the overall

algorithm is proportional to the complexity of the procedure to sort a single frame. Let us

therefore analyse the complexity of one frame sort procedure. We will be using Algorithm 6

by considering one step at a time and getting its complexity.

Algorithm 6 starts with setting a boolean variable named all_vehicles_sorted to False. Untill

it is true, the while loop on line number 2 is repeated. Which means the complexity of

Algorithm 6 is K (a finite number) times the complexity of one iteration of the while loop.

Moving ahead, line number 3 and 4 give the set of sorted and unsorted vehicles. Both these

are obtained by one traversal of the list of vehicles in the frame. Hence, the combined

complexity of line number 3 and 4 is proportional to number of vehicles in the frame i.e. of

the order of O(m); where m is the number of vehicles in the frame.

Line 4 gives N, the number of vehicles to be shifted from UnsortedVehicles to Support-

ingVehicles set. The algorithm to obtain N is given in Algorithm 5 and it involves traversing

through all the vehicles in the frame once. Hence the complexity of line number 4 is of the

order of O(m) as well.

Moving ahead, we can see that either the line number 6 to 16, corresponding to the condition

in if statement or line number 17 to 22 corresponding to condition in else will be executed.

Let us first discuss the complexity of if block.
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The if block will execute if N is less than the number of elements in UnsortedVehicles set.

Next, if N is nonzero, the LP problem is formulated and solved to obtain solution.

If N is nonzero, the LP problem is formulated and solved to obtain solution. Or else if N is

0 and frame is just created, the rearrange routing is invoked which also involves formulating

an LP problem and solving it. And if N is 0 and frame is not a new frame, then it would

mean that the frame is sorted.

This implies that the complexity of if block is proportional to the complexity of obtaining

linear programming solution. As the complexity of mixed integer linear programing is in

polynomial order with respect to the number of variables in the worst case [117], complexity

of the if block is in polynomial order with respect to the number of variables or number of

vehicles in the frame i.e. O(mk), where k is a constant.

Similarly, the complexity of the else block is also of the order of O(mk) as it also involves

one LP formulation.

Adding all the individual complexities, the overall complexity of Algorithm 6 is given by:

O(K1.(m+m+mk))

In a long run, the complexity can be said to be of the order of:

O(mk))

Since the while loop will only run for a finite number of times, the complexity of sorting

one frame is of the order O(mk)).

4.4 Simulation

The algorithm presented considers a general road with n number of lanes. Every vehicle

has a current lane and a destination lane which may or may not be the same. Vehicles are

spawned into the system on a random lane. However, in the simulation we consider a sce-

nario consisting of three lanes. The road is assumed to be destined towards an intersection

such that the vehicles in the scenario are destined to go either right, left, or straight. Thus the

objective of the algorithm is to sort vehicles into the lane corresponding to the destination

direction of vehicles i.e. vehicles destined to go right should be brought to the right lane,

vehicles destined to go left should be brought to the left lane and the vehicles destined to go

straight should be brought on the middle lane. Vehicles may arrive on any lane which may
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or may not be the same as their destination lane.

The algorithm may well be applied to a scenario in which the number of destination direction

is not equal to the number of lanes on the road. In such a case, one or more lanes will carry

the traffic of vehicles corresponding to multiple destinations. For instance, a road with two

lanes, destined towards an intersection, can have one exclusive lane for the left turn and a

shared lane for right turning and straight going vehicles.

For simulation, we have used the Simulation for Urban MObility (SUMO) simulator which

is an open-source, microscopic road traffic simulator. SUMO accepts the scenario, network,

and route information in .xml format. The control logic is implemented inside a Python script

which is interfaced with the SUMO simulator using the value retrieval and value setting func-

tions given in the Traci library provided by SUMO. We have used the Mixed Integer Linear

Programming (MIP) solver for formulating and solving linear programming problems. It is

included in the Python package index and requires Python 3.5 or newer [118]. In the sim-

ulation, we have kept the length of the road to be sufficiently large and then recorded the

average distance required by vehicles to get sorted. For simulations, we have generated 10

sets of random route files with 50 vehicles corresponding to traffic densities of 1000, 2000,

3000, 4000, and 5000 vehicles per hour. The frame length is varied in the range of 5 to 45

meters in steps of 10. Variation of frame length corresponds to varying occupancy limit from

1 vehicle to 9 vehicles in the frame as with the values of vehicle length (3 m) and safety gap

(2 m) considered, one vehicle will need a space of 5 meters. The final results are generated

by averaging the results of 10 sets of simulations.

The distance required to sort vehicles in lanes depends on three factors that are: (i) Inter-

spacing of consecutive vehicles in the scenario, (ii) Traversal velocity of vehicles, and (iii)

Frame size. Let us first discuss how these three factors affect the lane sorting distance. The

CLS algorithm utilizes free space in a frame for moving around vehicles. For high traffic

density in which vehicles are densely packed, there is less free space available. As we have

seen when frames are densely packed, the number of iterations it takes for a frame to get

sorted increases as the procedure is repeated until we have an empty SupportingVehicles set.

Thus the time of sorting to sort a frame is higher in such a case. The second factor comes

into the picture here. For a frame taking a longer time to get sorted will travel a greater

distance if its velocity is large and vice-versa. Lastly, the effect of the frame size on sorting
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distance is due to the amount of space available for vehicles to move. Thus, for a densely

packed frame, having a larger frame size is favorable. However, having a larger frame size

with sparse traffic will result in greater sorting distance because vehicles will be required to

move a distance equal to the frame length before they can start the sorting procedure.

Put in simple words, we require some extra space in between vehicles for performing the

lane change operations. The greater this space in the incoming traffic, the smaller should

be the lane sorting distance. In case when this space is not available in the incoming traffic

or when the space present is not sufficient for efficient lane sorting, we have an option of

increasing the frame size to capture more extra space. However, as discussed above, having

too large a frame size can also increase the sorting distance.

Keeping the effects of the factors discussed above in mind let us discuss the results obtained.

Variation of the average distance to sort with respect to traffic density and frame length

can be seen in Figure 4.10. In these figures, on the abscissa, we have varying traffic density

and on the ordinate, we have average sorting distance. Each line in plots corresponds to

different values of frame length.

All these graphs show an increasing trend of average sorting distance with respect to

traffic density for each frame length. However, the frame length of 5 meters has a profound

behavior and this is because this length corresponds to the occupancy of 1 vehicle in each

lane. For very low traffic in which vehicles are very sparse, this frame length is most suitable

because vehicles will rarely have conflicts and also will be able to perform lane change as

soon as they enter the scenario. Thus this frame length will result in minimum sorting dis-

tance. On the other hand, at very high traffic, a frame length of one will result in an excessive

number of frames which in turn will result in an increased number of frame merge requests.

Since frames can’t be merged unless the frame upstream is not completely sorted, this will

result in additional distance traveled while waiting for the upstream frame to get sorted. Thus

frame length of 5 meters will result in maximum sorting distance at very high traffic.

As we discussed earlier that the length of the frame should only be sufficient to capture

enough extra space and having a frame length larger than that will result in a greater value

of sorting distance. Evidence of this can be found by looking at the sorting distance corre-

sponding to different frame lengths for the traffic density of 5000 vehicles per hour in the

three plots of Figure 4.10. In each of these plots, the minimum sorting distance is obtained
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(a) Variation of average sorting distance with respect to varying traffic density
for Vcommon = 5m/s
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(b) Variation of average sorting distance with respect to varying traffic density
for Vcommon = 10m/s
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(c) Variation of average sorting distance with respect to varying traffic density
for Vcommon = 15m/s

Figure 4.10: Average sort time vs. traffic density for different values of Vcommon
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for an intermediate value of frame length. Frame lengths smaller or greater than that will

result in greater average sorting distance. Apart from the lowest and highest traffic densities,

the same observations can also be made for intermediate traffic densities, for instance, the

average sorting distance corresponding to the traffic density of 3000 vehicles per hour for

different common velocities and frame lengths are shown in Figure 4.11 Following thumb-

rule can be given from the above observations:

Appropriate frame length for any traffic density will be the one that will result in a good

balance between the number of vehicles in the frame and free space present inside the frame

which vehicles can use to get sorted.

For traffic density other than 1000 vehicles per hour, this balance is found at a frame length

greater than 5 meters.

The most appropriate choice of Vcommon for any given traffic density and length of road

available can be determined using the discussed experimentation. Using these experiments,

we can also generate a look-up table that would give the most appropriate frame-length and

common velocity for the given traffic density and available road length. We have considered

common velocities of 5, 10, and 15m/s only for demonstration, however, the experimenta-

tion can be repeated for finer values of velocities and also for frame lengths. This look-up

table can then be referred to in the future to decide the frame length and Vcommon that has

to be kept so that vehicles incoming with the given traffic density sort themselves within

the available road length. This look-up table based approach is very efficient as there is no

need for additional processing in addition to traffic monitoring, hence less computation and

infrastructure is required.

4.5 Discussion

The CLS algorithm is presented in this chapter to rearrange the incoming traffic such that

every vehicle reaches its desired lane. The CLS algorithm is simulated for a range of traffic

densities and varying adjustable parameters such as common velocity and frame length. The

distance required in each simulation run is recorded in a look-up table that is referred to

decide parameter values (frameLen, Vcommon, and SG) for the input traffic density such that

the sorting distance is less than the available road length.
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Figure 4.11: Variation of average sorting distance with respect to varying frame
length for traffic density = 3000 Veh/hr

The CLS algorithm presented in this chapter is set-up according to the architecture con-

sidered. Since in the considered architecture, we have a straight road to which there is

incoming unsorted traffic at one end and sorted traffic at the other end. To suit this setup,

we defined the frame creation, frame merge, and frame rearrangement routines to cater to

the needs of the architecture assumed. If we observe, we can say that sorting one frame is

central to the CLS algorithm and is its basic building block.

This one frame sort routine can be used in some other architecture setup as well given

that appropriate considerations are done for the safe and efficient implementation. The CLS

algorithm being a generalized algorithm in terms of the number of vehicles wanting to change

lanes, it offers us the freedom to apply it even for an individual vehicle lane change problem

with coordination of other vehicles in its frame. Obviously, the rest of the vehicles will

behave as supporting vehicles.

When we consider sorting one frame as the simplest unit, we can also redesign the com-

munication and computation architecture to suit the requirements of the given scenario. For

instance, the one frame sort routine can be used over an ad-hoc frame created by a speed

synchronized group of vehicles traveling on a highway out of which some of the vehicles

are wanting to change lanes with the cooperation of the rest of the vehicles in that frame.

Most importantly, in any such setup, the ad-hoc frame creation should always satisfy the

independence of the frame at all times.

In addition to the freedom, CLS offers in terms of redesigning the applicability, num-
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ber of vehicles wanting to change lanes in a frame, and communication and computation

architecture, the following advantages are associated with it:

• A minimum velocity change is exercised while changing lanes, other than that vehicles

are required to maintain a fixed velocity. This ensures passenger comfort and since

there are minimum acceleration and deceleration, there is minimum wastage of fuel

and minimum exhausts from the vehicle.

• The frame-based architecture of CLS keeps batches of vehicles independent. This

also makes their computation independent enabling parallel processing of individual

frames. Such independence allows us to have flexibility in terms of computation ar-

chitecture as well (centralized or decentralized).

• We have not specified how vehicles move laterally to change lanes. They are only

required to maintain the longitudinal velocity to be constant. Thus vehicles have the

freedom to have the desired steering control to change lanes as allowed by the hori-

zontal jerk and passenger comfort requirements.

• Considering a fixed common velocity may feel like a harsh requirement but we believe

it is very practical even for conventional vehicles with the present technology such as

ACC and CACC. Having this requirement gives an additional advantage and that is

the minimized relative motion of vehicles. This is advantageous as we can have lower

safety gaps in between vehicles thus resulting in the packed arrangement of vehicles

and as a result, improved capacity of roads.

• The application of MILP to solve for channel and vehicle positions results in very less

computational requirements by the CLS algorithm. Added with the applied mechanism

to accurately determine the number and choice of vehicles to be made supportive,

keeps the required iterations to a minimum. This makes the proposed algorithm fit for

real-time use.

• Since the frames are kept independent from each other by the design and by the frame

rearrangement routine, delay in computation for one frame will never lead to collision

threats.
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4.6 Summary

In this work, we approached the unexplored problem of cooperative lane sorting among

autonomous vehicles. The lane sorting problem is presented as a group task that all the

vehicles in the scenario perform cooperatively. The presented algorithm first simplifies the

problem by restricting each vehicle to maintain a fixed velocity that is common for all the

vehicles in the scenario. This allows us to formulate a non-linear programming problem

reducible to linear programming. Application of this linear programming formulation along

with a well-structured skeleton of the algorithm that uses a frame-based approach on straight

road results in a collision-free lane sorting of vehicles. The algorithm presented except

assuming a straight road does not assume any particular scenario rather is generalized in

terms of the number of lanes, incoming traffic density, and width of lanes. We do specify

the safety-gap used in this work and discuss how it depends on the inter-spacing of vehicles

in the incoming traffic. The implementation of the proposed algorithm is performed in the

SUMO simulator and results are presented for different values of traffic density, velocity,

and frame length. The experimentation presented can be used to decide the frame length and

Vcommon for a given traffic density and available road length.

In the next chapter, we will present the HAIM algorithm for intersection management of

AVs using a velocity based heuristic algorithm.
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Chapter 5

Heuristic Autonomous Intersection

Management

This chapter presents the proposed Heuristic Autonomous Intersection Management (HAIM)

algorithm for intersection management of autonomous vehicles. The HAIM algorithm is a

velocity-based algorithm that makes use of 4 levels of heuristics to resolve conflicts. We will

next present the architecture considered, assumptions made, and behavior of vehicles and the

intersection manager, and after that, we present the HAIM algorithm.

5.1 Architecture

5.1.1 Physical Architecture

Let us consider two straight roads carrying bi-directional traffic. Both the roads have three

lanes dedicated to both directions of traffic. Now suppose these roads intersect, resulting in

an intersection with 4 arms. These arms can be associated with directional specifiers such

as East, West, North, and South. Each of these arms contains a total of 6 lanes with three

lanes each for incoming and outgoing traffic to the intersection. Before the intersection, we

have an approach length in all 4 directions which is divided into two parts. First, we have a

buffer region and then we have an approach region with the approach region being closer

to the intersection. The Buffer Region starts at the Buffer Start Line (BSL), and ends at

the Approach Start Line (ASL) and the approach region starts at the ASL and ends at the
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Intersection Start Line (ISL). On the outgoing side of the road, we have the Intersection

Exit Line (IEL) as the boundary between the intersection region and the depart length. The

depart length is also divided into two regions. The region closer to the intersection is called

the Rapid Depart Region (RDR). RDR starts at the IEL and ends at the Virtual Depart

Line (VDL) and after the VDL, we have the depart region. This architecture is shown

in Figure 5.1, where we can also see the values of each of the lengths considered in this work.

10.5 m
3.5 m

Buffer
Region

50 m

Lane area

150 m

12.25 m50m

VDL

BSL ASL

ISL
IEL

RDR

Figure 5.1: Architecture constants

We will use the term "Intersection Scenario" to denote the whole scenario consisting of

the intersection region, approach regions, and the buffer region.

5.1.2 Communication Architecture

The intersection scenario is equipped with two types of communication agents. The first one

is known as Road Side Units (RSU). RSU are present along buffer start line in all four direc-

tions. The other one is a central controller which we call the Intersection Manager (IM) and

it is placed at the intersection region. There is a third player as well in the communication

setup and that is the Connected and Autonomous Vehicle (CAV) itself. All three players of

communication i.e. CAV, RSU, and IM perform wireless communication to exchange infor-

mation. Vehicles and IM only communicate with the Road Side Units whereas Road Side

Units communicate with both Vehicles as well as the IM. Thus RSUs are the mediators in

the communication between vehicles and the IM.
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Alternatively, we can also have an architecture in which no RSU is required. This is possible

because the range of wireless communication in WAVE protocol can be a maximum of 1000

meters. In such architecture, vehicles will directly communicate with IM and vice-versa.

Outgoing message from every vehicle contains information about the vehicle specifications

(which includes the Vehicle’s unique identifier), route plan, and arrival details (arrival ve-

locity and arrival time). On the other hand, the outgoing message from the IM contains the

vehicle identifier, specifying the vehicle for which the message is destined, and the target

velocity for that vehicle. This target velocity is calculated by the IM using the Heuristic

Autonomous Intersection Management (HAIM) algorithm presented in this chapter.

Before proceeding let us first get a rough estimate of the communication delays associated

with the considered scenario.

Communication Delay Estimates:

Following are the distances that are used in the scenario.

1. Buffer Length (BL): 50 metres

2. Approach Length (AL) : 150 metres

3. Total Intersection Length (IL) : 21 metres

If IM is placed at the center of the intersection area than total distance between the

vehicle at the start of the buffer region and the IM will be given by:

Distance (D) = BL + AL + IL/2 = 210.5 meters

For a round trip, the total distance will be double this figure (i.e. 421 meters). There can be

some additional distance if the IM is placed at some height. Let us round this to 500 meters

for the round trip distance.

For wireless communication:

It is possible to have wireless communication in vehicular applications for up to a distance

of 1000 meters [119]. We could have an architecture in which all the vehicles will directly

communicate with the IM.

Wireless communication takes place with the velocity of light which is given by c = 3×108.

The minimum communication delay will then be given by:
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Delaywl = 500
3
× 10−8 = 1.66 µsec

With RSU:

Since the considered scenario is using RSU for communication, a possible architecture

would be that an RSU is connected near the start of the buffer region and which is

communicating with the IM via a copper wire. In this case the majority of communication

delay will be caused by the current speed in the wire.

The speed of current in wire can have a velocity in the range 50-99% of the velocity of light.

Let us take the worst case of 50%. If the RSU is connected at the start of the RSU then the

distance of the wire will be around the same as considered for wireless communication.

Then the time taken by one round-trip of message will be double the time taken by wireless

communication, i.e.,

Delaywired = 3.33 µsec

Now let us suppose that the RSU is connected at the start of the buffer region on the side

of the road. For a scenario with three lanes and lane width of 3.5 meters, distance of a vehicle

from the side of road will be less than 10.5 meters, let us assume it to be 10 meters. Also,

the RSU can be placed at a height, let us assume the height to be maximum 10 meters. The

distance between the vehicle and RSU will then be:

DisR−V = 10
√

2 ≈ 15 meters

Round trip time delay in communication with RSU = 30/c = 0.1 µsec

Now let us suppose that the vehicle is traveling with its maximum allowed velocity of 17

metres/sec. Then the distances covered in these time intervals are:

• No RSU

Communication is between vehicle and central controller:

Distance = 17 m/s * 1.66 µ sec = 0.002822 cm.

• With RSU:

– Communication between vehicle and RSU:

Distance = 17 m/s * 0.1 µ sec = 0.00017 cm

– Communication between RSU and central controller:

Distance = 17 m/s * 3.33 µ sec = 0.005661 cm
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– Total round trip delay via RSU on both the ways:

Distance = 17 m/s * (3.33 + 0.1) µ sec = 0.005831 cm.

These delay estimates are calculated to make sure that the buffer length considered is suffi-

cient for multiple communication hops in case of imperfect communication.

5.2 Assumptions

The following assumptions are made while proposing the HAIM algorithm.

• We assume traffic that only consists of CAVs. In the proposed HAIM algorithm, vehi-

cles will require autonomous control over both longitudinal as well as latitudinal move-

ment to traverse the fixed trajectory inside intersection thus requiring SAE Level-2 or

higher autonomous vehicles.

• Every vehicle communicates with IM via RSUs to obtain the target velocity by the time

vehicle is in the buffer region. In this way, we abstract away from the communication

and computation related delays and assume that all communication and computation

related tasks are completed while the vehicle is in the buffer region.

• The incoming traffic is sorted. By sorted we mean that vehicles are traveling on the

lane corresponding to their destination direction i.e. vehicles destined to go left at the

intersection travel on the left lane, vehicles destined to go straight at the intersection

travel on the center lane, and vehicles destined to go right at the intersection travel on

the right lane. This rules out the possibility to overtake in the approach region as well.

U-turns are not allowed at the intersection.

• For the sake of simplicity, we have assumed all vehicles are of the same type i.e. they

have the same length, breadth, and acceleration and deceleration rate.

Restrictions on the movement of vehicles in lane bring discipline in traffic and organize

it. Since vehicles travel in a specified lane in the approach region and also the approach

lane has a corresponding depart lane, we have a one to one correspondence between arrival

and departure lanes. This one to one correspondence, along with fixed trajectories of
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lane-to-lane connections will reduce the possible conflicting areas to the overlapping areas

of these lane to lane connections. We would have conflict-free intersection management

if we can schedule vehicles such that there is no overlap in the occupancy at any shared

conflict point by two vehicles. The intersection control task is thus reduced to scheduling

vehicles at these conflict points.

5.3 Vehicle Behavior

Consider a vehicle traveling safely before the buffer start line. It will cross BSL first to

enter the buffer region. Let us say this happens at the moment enterTime and the vehicle

has a velocity of enterVel. As soon as the vehicle enters the buffer region, it is required to

send a message packet containing its identification, physical parameters which are its length

and width, movement parameters which are acceleration and deceleration rate, its arrival

parameters which are its arrival time and arrival velocity, and its route plan parameter which

is its destination direction at the intersection. Since we have a one to one correspondence

between the arrival lane with the depart lane, we can also specify the arrival lane in place of

the route parameter. Hence the message packet the vehicle will send to the IM will contain

the following information.

< vehicleId, length, width, arriveLane, arriveV el, arriveT ime, acc, dec >

Please note that arriveTime and arriveVel are the time and velocity of the vehicle at the

moment it is going to cross the approach start line (ASL). Thus arriveTime is not same as

enterTime and arriveVel is not always same as enterVel. To prevent any collision inside the

buffer region, velocity of vehicles in the buffer region is limited by the velocity of the vehicle

present inside buffer region ahead in the same lane. If there is no vehicle ahead in the same

lane inside the buffer, the arriveVel will be same as the enterVel. After we get the arriveVel,

arriveTime is evaluated using the Newton’s laws of motion. Please note that the information

sent by a vehicle to the IM are saved by the IM and refered using the vehicleId when needed

for instance enterTime[vehicleId] will refer to the enter time of the vehicle with vehicleId as
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its id.

By the time vehicle is in the buffer region, it will receive the target velocity (Vtarget) from

the IM. As soon as the vehicle crosses ASL, it will start transiting from the arriveVel to

the Vtarget. When the vehicle attains the Vtarget, it will maintain the velocity throughout the

rest of the approach region and the intersection region. After exiting the intersection region,

vehicle is required to attain the maximum allowed velocity in the scenario (maxVel). As soon

as vehicle crosses the IEL, it will accelerate to the maxVel and travel with it thereafter. Figure

5.2 shows a possible velocity profile of a vehicle in the intersection scheduled by the HAIM

algorithm.

Venter

Vtarget
Vmax

Distance Covered 

Velocity

Buffer Approach + Intersection

Figure 5.2: A possible velocity profile of vehicle

5.4 Intersection Manager Behavior

The job of the intersection manager (IM) is to calculate the Vtarget for each incoming vehicle

using the HAIM algorithm. The pipeline for finding the Vtarget for any incoming vehicle

starts when IM receives any packet from a new incoming vehicle. This velocity will be

transmitted back to the vehicle once it has been calculated. Requests for calculating Vtarget

are processed in the sequence of the arrival of the message packet from vehicles. Since we

assume that there is no packet loss, the arrival order of packets is the same as the arrival order

of vehicles inside the intersection scenario. Thus, the IM processes the velocity requests

sequentially in the order of the arrival of message packets from vehicles.

To perform the above-mentioned task, the IM is required to have the exact values of the

infrastructure parameters such as lane width, approach length, positions of the conflict points,
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Table 5.1: Information available with the IM

Variable Name Used Detail

Vehicle Information

arriveVel Velocity of vehicle at ASL
arriveTime Time while crossing ASL
arriveLane Lane id of the vehicle

cp1, cp2, cp3, cp4 Indices of conflict points in vehicle path

Lane Information lastVehicleDepartTime Depart time of previous vehicle in the lane
intersectionPathLen Length of path in intersection for the lane

Conflict Point Information cp_record Reservation record at conflict point

Infrastructure Information
approachLen Length of the approach

departLen Length of the RDR
maxVel Speed limit for the scenario

departure point, etc. Along with this, the IM stores information about the arrival details of

every vehicle, reservation record for every conflict point and depart points, output velocity of

each completed heuristic layer, etc. All details related to a particular vehicle can be accessed

using its identification number as the index. Table 5.1 contains the information IM has at

its disposal. Vehicle, lane and conflict point information are accessible using the index of

the vehicle, lane or conflict point respectively. Infrastructure variables are present as global

variables.

5.5 Motivations for the HAIM algorithm

The characteristic features of the HAIM algorithm based on the above description of the

architecture under consideration and behaviors of vehicles and the IM are the following.

• HAIM is a heuristic algorithm. It makes use of four levels of heuristics which suc-

cessively resolve all conflicts a vehicle can have in the approach region, intersection

region, and depart region.

• The HAIM algorithm provides a velocity that has to be attained by the vehicle as

soon as it enters the approach region and then maintained throughout the rest of the

approach and the intersection region. This makes the HAIM algorithm a Velocity

based approach.

• The intersection is modeled as a set of conflict points and the intersection management
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is reduced to the scheduling of vehicles at these conflict points.

The motivation behind proposing a heuristic algorithm for intersection management comes

from the fact that this is a real-time control problem that requires strict compliance of timing

constraints. The computational requirements will increase with the increase in the number of

vehicles in the scenario. An efficient and less computation-intensive algorithm will always

be a better option for such scenarios. We have seen various algorithms in the literature survey

that makes use of computationally intensive procedures such as optimization. Furthermore,

only a few articles have attempted to meet the real-time requirements of this problem. The

HAIM algorithm, being a heuristic one does not need any computationally intensive proce-

dures and implements rule-based scheduling of vehicles.

In the HAIM algorithm, vehicles are required to maintain a constant velocity given by the

IM after crossing the ASL. This also means that HAIM implements a stop free intersection

traversal of vehicles preventing the formation of queues before the intersection. The constant

velocity also reduces the energy requirements of the vehicles by preventing unnecessary ac-

celeration and deceleration phases. As a result, this results in the reduction of the emission

of harmful gases and improved economy of the vehicle.

Autonomous vehicles have far more accurate control of their movement with respect to that

of a manually controlled vehicle. They are also obedient and will always respect the set of

instructions they are given. This demonstration of discipline by the autonomous vehicles

encourages us to trust their ability to traverse a given trajectory defining the lane to lane

connection in the intersection region. Vehicles are already sorted according to their desti-

nation direction and added with the predefined trajectory, we will have a reduced version

of the problem we are dealing with. When the lane discipline and trajectory conditions are

placed, intersection reduces to a set of 16 conflict points with 4 conflict points in each lane

to lane connection (except right-turning lanes, they have no conflict) as shown in Figure 5.3.

We can also say that the entire intersection has been broken down into separate lane to lane

intersections. This will greatly reduce the state space of the problem and thus will facilitate

devising an efficient intersection control algorithm.

We will next describe the Heuristic Autonomous Intersection Management (HAIM) algo-

rithm.
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Figure 5.3: A four-way intersection

5.6 The HAIM Algorithm

The HAIM algorithm is a combination of four levels of heuristics each resolving some of

the conflicts sequentially and ultimately having conflict-free scheduling of vehicles. The

first heuristic in HAIM resolves conflicts of vehicles in the approach region and prevents

rear-end collisions between two successive vehicles in the same lane. We call this heuristic

as Lane Conflict Prevention Heuristic (LCPH). The LCPH will return a velocity that will

satisfy these requirements; we call this velocity as the Vlane. The next three heuristics resolve

intersection conflicts in a successive manner. The names of these heuristics in order of their

application are i) First Enter First Serve Heuristic (FEFSH), ii) Window Heuristic (WH), and

iii) Reservation Heuristic (RH). Each of these heuristic layers will return one velocity each

named Vfefs, Vwindow, and Vreservation respectively. These velocities may or may not have

the same value. One of these three velocities will be set as the target velocity Vtarget. Vtarget

will be evaluated using the selection logic defined later in this chapter.

Before we go further on to the HAIM algorithm, we should first discuss the data structure

used by the IM to store reservation data corresponding to conflict points and depart points.
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The data structure used for conflict point reservations data is called Record and for saving the

single timing values such as arriveTime, we use the data structure named Register. The data

structure Register resembles a simple register that stores one value of the double datatype.

On the other hand, Record data structure resembles the Queue data structure with First In

First Out property. Figure 5.4 shows a record of reservations for a conflict point. Each

element of the record will have two fields corresponding to the in_time and out_time of the

vehicle at that conflict point. Here the in_time and out_time are the times at which the vehicle

will enter that conflict point and exit that conflict point respectively and they are calculated

based on the Vtarget of the vehicle. The length of the record is decided based on the estimate

of the number of vehicles in the scenario as the vehicle under consideration can only have

a conflict with vehicles already in the scenario and not the ones that have already left or the

ones still to enter. We take its size to be 20 i.e. at every conflict point, a record of the previous

20 reservations will be kept. The elements of the record are always kept in decreasing order

of in_time i.e. the top of the record (having index 0) will have the largest absolute in_time.

With every new reservation, one element will be added to the record. We can add an element

at any position in the record. We will see later in the respective sections that FEFSH and RH

only make reservations at the top of the record. Whereas, the WH can insert an element at

any position in the record. Always an insertion in the record is followed by shifting of all the

following elements by one position and the last element gets deleted. We will next describe

each of these layers of heuristics in detail.

5.6.1 Lane Conflict Prevention Heuristic

The process of resolving conflicts starts with guaranteeing a safe traversal of the vehicle in

its lane. Inside the lane, a vehicle can have collision only with either the vehicle ahead or

the vehicle behind in the same lane. Collision free lane traversal can be realized if, for every

vehicle, we resolve conflict only with the vehicle ahead in the same lane. The next incom-

ing vehicle will also run this routine, as a result, we will have a conflict-free lane traversal

throughout the scenario. Based on this logic, we design our approach towards resolving

head-on collisions in the lane.

The strategy applied to prevent a head-on collision with the vehicle ahead in the lane is to

make the departure time of the vehicle greater than the departure time of the previous vehicle
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Figure 5.4: The Record data structure

in the lane plus a safety margin. We will next elaborate on this.

The departure time that we are talking about is the virtual departure time. The virtual de-

parture time is the time at which the vehicle would reach the Virtual Departure Line if the

vehicle continues to travel with Vtarget velocity after passing the IEL. However, the vehicle

is actually required to accelerate to the maxVel after passing the IEL. As a result, the ve-

hicle would never reach the VDL at the virtual departure time unless Vtarget is the same as

maxVel. The concept of virtual depart time and virtual depart line is introduced to create

enough separation between successive vehicles in the lane around the IEL so that there is no

head-on collision in the depart region. The length of RDR is calculated using Newton’s laws

of motion and represents the maximum length required for the greatest velocity transition

using the considered vehicle parameters.

We will call the virtual depart time as depart time only and VDL as the departure point or

departure line. The IM has a depart time register for every lane and updates that register ev-

ery time a vehicle on that lane is assigned its Vtarget. This means that the depart time register

will contain the virtual depart time of the last vehicle that entered that lane.

Let us define a function called findVelocity(vId, targetTime, targetDis, v_max). This function

is present at the IM, and the IM makes use of this function whenever it needs to find a ve-

locity that will enable a vehicle with vehicle identification number given by vId, to reach a

point which is at a distance targetDis from the ASL at the time targetTime or later, starting
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with the arrival velocity (arriveVel). Please note that the goal here is to reach the targetDis

not before the targetTime. Also note that the IM has the arrival information of every vehicle

in the scenario and can access them using the vehicle identification (vId). The algorithm for

findVelocity() function is given in Algorithm 7.

Algorithm 7: findV elocity() function
Input: vId, targetTime, targetDis, v_max
Output: vel

1 t_e = arriveT ime[vId];
2 t_t = targetT ime;
3 v_e = arriveV el[vId];
4 T = t_t − t_e;
5 D = targetDis;
6 if (t_t < t_e || (acc ∗ T ∗ (acc ∗ T + 2 ∗ v_e) − 2 ∗ acc ∗D) < 0) then
7 vel = v_max ;
8 else if (v_e ∗ T < D) then
9 vel = (v_e − acc ∗ T ) −

√
acc ∗ T ∗ (acc ∗ T + 2 ∗ v_e) − 2 ∗ acc ∗D;

10 else if (v_e ∗ T > D) then
11 vel = (v_e − acc ∗ T ) +

√
acc ∗ T ∗ (acc ∗ T + 2 ∗ v_e) − 2 ∗ acc ∗D;

12 else
13 vel = v_e;
14 end
15 vel = min(vel, v_max);
16 return vel

In Algorithm 7, the condition inside if can be read as "if either the target time is smaller

than the enter time of vehicle or it is not physically possible for the vehicle to reach the

target distance at the target time with the given acceleration". The second condition (after ||)

inside if can be rearranged as shown below.

D > v_e ∗ T + acc∗T∗T
2

Which encodes the same explanation given above. If it is physically possible for the vehicle

to reach the target distance at the target time, the velocity will be given by the following

expressions given inside the two else if’s. These expressions are derived from Newton’s

laws of motion.

To obtain the Vlane for a new incoming vehicle with vId as its vehicle identification, the

findVelocity() function will be called with the following arguments.

vId = vId

targetTime = lastVehicleDepartTime[laneNum]
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targetDis = approachLen + intersectionPathLen + departLen

v_max = Maximum velocity allowed in scenario (taken as 17m/s)

Where, laneNum is the identification of the lane on which the vehicle entered, ap-

proachLen is the approach length, intersectionPathLen is the length of the trajectory of the

vehicle inside the intersection, and departLen is the depart length of the scenario.

Vlane obtained above is saved as a vehicle information with the variable name laneVel and

can be accessed later using the vehicle id.

We will be using the findVelocity() function further in this chapter inside the FEFS heuris-

tic and the Reservation heuristics as well. As for the Buffer region, as previously mentioned,

the velocity of the vehicle is limited by the velocity of the vehicle ahead in the same lane

inside the buffer, thus, head-on collision inside the buffer is prevented given that the vehicle

made a stable entry into the buffer i.e. it was not about to collide at the time of entering. The

velocity returned by the findVelocity() function will at this stage will be called as the Vlane.

Vlane is the maximum velocity with which the vehicle can travel and not have any collision in

the lane. This means, the velocities returned by the three heuristics for resolving intersection

conflicts are always less than or equal to the Vlane or in other words, Vlane is the limiting

velocity for the three intersection conflict resolving heuristics.

For right turning vehicles, the Vlane will be their final velocity as they do not have any inter-

section conflicts. The maximum velocity for right turning vehicles can have a lower value

than other vehicles to have a safe turning at the intersection.

5.6.2 FEFS Heuristic

This is the first heuristic to resolve the intersection conflicts. The name FEFS stands for

First Enter First Serve and this heuristic applies the same principle in its working. The

basic scheme in the FEFS Heuristic is to reserve conflict points for vehicles in order of their

arrival into the scenario. We have seen earlier that there are 4 conflict points in each vehicle’s

trip through the intersection and the reservation data for these conflict points are stored in

the form of records at the intersection manager. To resolve conflict, FEFS heuristic finds a

velocity that will result in crossing times at the first two conflict points in the vehicle’s path

such that they are greater than the previous reservations at those conflicts points. In other
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words, the FEFS scheme makes a reservation only at the top of the reservation record i.e.

after all the existing reservations.

To calculate Vfefs, we use the same procedure that we used to obtain Vlane except that here

we apply it twice for each of the first two conflict points and the target time for each of these

procedures will be the depart time at the top of the record of the respective conflict point plus

the safety gap. The maximum value of Vfefs for any vehicle is limited by its Vlane. Vfefs will

be the minimum of the velocities corresponding to the first two conflict points. The reason

only the first two CPs are considered in the FEFS scheme is that only a small fraction of

vehicles have a conflict on the later two conflict points. Let us see why is it so. Figure 5.5

shows all the conflict points present inside the intersection region. We can see in this figure

that every conflict point is an intersection of two lane-to-lane connections. The indexing of

these conflict points shown in this figure is done using the position of that conflict point in

both the lane to lane connections. For instance, if the index of any conflict point is (a, b), it

means that it is ath conflict point in one of the lane connective and bth conflict point in the

other lane connective with the smaller number coming ahead.

On observing, we can see that all these indices are one of the following possibilities.

(1, 3), (1, 4), (2, 3), and (2, 4)

This means that the conflict point under consideration is always either the first or the second

conflict point in one of the lane to lane connective and either the third or the fourth conflict

point in the other lane to lane connective.

Now according to the FEFS heuristic, where only the first two conflict points in a lane

to lane connections are checked for conflicts we can call the lane to lane connection that has

the lower index as considerate and the lane to lane connection that has the higher index as

non-considerate. With the possible indexing, we can say that at every conflict point, always,

one of the lane-to-lane connections is considerate and the other is non-considerate. Put in

other words, a lane-to-lane connection will be considerate at the first two conflict points

and non-considerate at the later two conflict points. As per this strategy, at every conflict

point, one of the two lane-to-lane connections will always be considerate. This is the

reason that most of the conflicts are resolved by the FEFS Heuristic. However, still, some

conflicts remain unresolved. The reason behind these remaining conflicts is that in the FEFS
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Figure 5.5: Conflict point indexing

heuristic, pre-existing reservations at the third or fourth conflict points are not checked and

this can result in a collision if a slow-moving vehicle that entered earlier has a reservation

on either the third or the fourth conflict point at the same time. In other words, any vehicle

that shares either the third or the fourth conflict with the vehicle under consideration entered

before and already has a reservation at the shared conflict point at an overlapping time slot

then there will be a collision.

The procedure to obtain the Vfefs involves calling the findVelocity() twice. Once for the

first conflict point and then for the second conflict point. The arguments passed to the

findVelocity() are as shown below.

vId = vId; vehicle id of the vehicle under consideration

targetDis = distance of the concerned conflict point from the ASL

maxVel = laneVel[vId] i.e. the laneVel calculated for that vehicle

targetTime = cp_record[0]

The pseudo-code for finding the Vfefs is shown below.

v_cp1 = f i n d V e l o c i t y ( v_id , t a r g e t _ t i m e _ c p 1 , t a r g e t _ d i s t a n c e _ c p 1 , l a n e V e l [ v Id ] )

v_cp2 = f i n d V e l o c i t y ( v_id , t a r g e t _ t i m e _ c p 2 , t a r g e t _ d i s t a n c e _ c p 2 , l a n e V e l [ v Id ] )

f e f s V e l = min ( v_cp1 , v_cp2 , l a n e V e l [ v Id ] )
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The minimum of the velocities obtained for the two conflict points and the Vlane for that

vehicle is set as the Vfefs. The reason behind taking the minimum of the two velocities

corresponding to the two conflict points is that the requirement in the findVelocity() function

is that the returned velocity should result in a passing time not less than the target time. So,

taking the minimum of the two velocities will ensure that this condition is respected at both

the conflict points. And if both the velocities are greater than the Vlane, then Vlane is set as

the Vfefs. After calculating Vfefs, it is saved as fefsVel at the IM.

5.6.3 Window Heuristic

So far we have resolved the conflicts in lane preventing head-on collisions in vehicles in the

same lane using the lane collision prevention heuristic and also all the conflicts occurring

at the first two conflict points in the path of any vehicle. Though most of the conflicts are

resolved by the FEFS heuristic, there remains a possibility of conflict and collision at the

last two conflict points as they were not checked in the FEFS heuristic. The strategy while

finding both the Vlane as well as Vfefs has been to make the vehicle pass after the passing time

of the previous vehicle at that point. Both these strategies makes use of the findVelocity()

function explained earlier. Also, both these strategies made use of only one register that

saves the passing time of the previous vehicle. In lane velocity calculation, this register

was the previous vehicle departure time register for the corresponding lane and in the Vfefs

calculation, this register was the top element of the reservation record of the corresponding

conflict point.

The strategy employed to calculate the Vfefs suffers from another drawback except for some

unresolved conflicts. This drawback is the phenomenon of piling of delays. The piling of

delays happens when the delay in the trip of one vehicle gets added to the trip of another

vehicle and this happens successively to generate large delays. This happens at large traffic

volumes when the vehicles are scheduled only using the FEFS heuristic (by neglecting the

colliding vehicles for a while). At lower traffic, when there is sufficient duration between

the arrival of vehicles, and only a few vehicles are required to reduce their speed to meet the

passing condition at the first two conflict points. In such conditions, trips of vehicles are not

much dependent on other vehicle’s trip. In such low traffic conditions, delays in vehicle trips

do not pile up. However, at higher traffic when the duration between the arrival of vehicles
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is very small, the trips of vehicles are more dependent on vehicles that entered earlier. Thus

the delay in the earlier vehicle’s trip will get added to their trip as well.

To prevent this, we need to have a mechanism that can break this delay pile and not allow

them to accumulate over time. This can be done if vehicles are allowed to pass through the

intersection before the previously entered vehicle. This will prevent unnecessary slowing

down of vehicles that can pass the intersection with a faster velocity. Also, the dependency

of vehicles on previously entered vehicles will decrease resulting in better efficiency of the

intersection control.

This is where the Window heuristic comes into the picture. In the window scheme, rather

than adding the reservation only at the top of the reservation record, the entire record is

scanned for a window in between reservations at all four conflict points. The greatest velocity

for which such a window exists will be selected as the Vwindow. To find the Vwindow, we use

an iterative strategy. The iterations start with Vlane for that vehicle and go in the decrement

mode. At each iteration, a window is checked in the complete reservation record at all four

conflict points. If a window is found, iterations stop otherwise it will continue with another

decrement. Iterations will stop if the iterative velocity reaches zero. That would mean that

no window is present. In that case, the Vwindow will be set as zero. The algorithm to calculate

Vwindow is shown in Algorithm 8.

The function isWindowAvailable(cpi, vel, d_cpi) searches entire record of the given

conflict point (cpi) which is at a distance d_cpi from the ASL to search whether the travel

time corresponding to the given velocity (vel) falls inside a window or not. It returns true

when a window is present for the given velocity in the reservation record of all four conflict

points; otherwise, it returns false. If the velocity returned by the window scheme is non

zero, it is always conflict-free as it is derived by considering previous reservations at all four

conflict points.

5.6.4 Reservation Heuristic

Window heuristic resolves some of the conflicts that are left unresolved in the FEFS

heuristic but it is not guaranteed that it will resolve all those unresolved conflicts. This is

because the Window heuristic may not get a window in between previous reservations and

can return a zero velocity. This means the possibility of conflicts has still not vanished. To

119



5.6. THE HAIM ALGORITHM

Algorithm 8: Function to find Vwindow

Input: vId, cp1, cp2, cp3, cp4, d_cp1, d_cp2, d_cp3, d_cp4
Output: Vwindow

1 vel = laneV el[vId];
2 cp1_clear = False;
3 cp2_clear = False;
4 cp3_clear = False;
5 cp4_clear = False;
6 while (vel > 0 and not(cp1_clear and cp2_clear and cp3_clear and cp4_clear))

do
7 cp1_clear = isWindowAvailable(cp1, vel, d_cp1);
8 cp2_clear = isWindowAvailable(cp2, vel, d_cp2);
9 cp3_clear = isWindowAvailable(cp3, vel, d_cp3);

10 cp4_clear = isWindowAvailable(cp4, vel, d_cp4);
11 vel = vel - del_v;
12 end
13 if vel < 0 then
14 vel = 0;
15 else
16 vel = vel + del_v;
17 end
18 end
19 Vwindow = vel;
20 return Vwindow

resolve the remaining conflict cases and making the overall algorithm free from collisions,

the third heuristic is needed. We call this as the Reservation heuristic.

In Reservation Heuristic, the last two conflict points are resolved for conflicts. A procedure

same as that of the FEFS heuristic is employed but for the later two conflict points instead of

the first two. We again call the findVelocity() function twice for the last two conflict points

and assign the minimum velocity out of two and that vehicle’s Vfefs as the Vreservation. The

following pseudo-code depicts the logic of the Reservation heuristic.

v_cp3 = f i n d V e l o c i t y ( vId , t a r g e t T i m e _ c p 3 , t a r g e t D i s _ c p 3 , l a n e V e l [ v Id ] )

v_cp4 = f i n d V e l o c i t y ( vId , t a r g e t T i m e _ c p 4 , t a r g e t D i s _ c p 4 , l a n e V e l [ v Id ] )

r e s e r v a t i o n V e l = min ( v_cp3 , v_cp4 , f e f s V e l [ v_ id ] )
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5.6.5 Decision Logic

Figure 5.6 shows the decision flow of the HAIM algorithm. First three heuristics are used

for all vehicles i.e. the calculation of laneVel, fefsVel and widnowVel is common for all,

whereas the Vreservation is calculated only for those cases whereVfefs and Vwindow could not

resolve conflicts on the last two conflict points. Whether conflicts are resolved by Vfefs or

not is determined using internal simulation. In the internal simulation, the arriving time of

the vehicle is calculated using Vfefs on the third and the fourth conflict points. Introduction

to the simulator used for this purpose is given in the Section 5.7. If there is an overlap with

earlier reservations, then it would mean that there is an unresolved conflict.

After Vfefs, the Vwindow is calculated for all vehicles. If Vwindow is nonzero, then the algo-

rithm will be terminated and Vwindow will be set as Vtarget. This is because Vwindow gives a

reservation that is earlier to some of the previously entered vehicle hence the obtained veloc-

ity is greater than what we would have obtained using the FEFS or the Reservation heuristic.

Also, if Vwindow is nonzero, it will never result in a conflict. So, in such a case, we need

not calculate Vreservation. In case Vfefs results in a conflict and Vwindow is not nonzero then,

Vreservation is calculated and set as Vtarget.

5.7 Simulation

The presented algorithm (and scenarios) is realized and simulated in the SUMO traffic sim-

ulator. SUMO (Simulation of Urban MObility) is an open-source, highly portable, micro-

scopic road traffic simulation tool. In SUMO, a scenario is built by combining various input

files containing specifications of nodes, edges, connections, routes, and network [120]. All

these files are combined in a configuration file to start the simulation. TraCI (Traffic Control

Interface) library is used to control vehicles in the simulation. A screenshot of the simulation

is given in Figure 5.7

Along with the proposed heuristic, we have also implemented, on the same platform,

two more autonomous intersection control algorithms along with the conventional traffic

light control. The first one is the FCFS reservation policy presented in [62] with intersection

modeled as a group of square blocks and these blocks are reserved for incoming vehicles
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Figure 5.6: Decision flow of the HAIM algorithm

Table 5.2: Parameter Values

Parameter Value

Maximum Velocity 17m/s
Acceleration 3m/s2

Safety gap 500ms
Approach length 150m

Buffer length 50m
Simulation time 3600s

depending on their time-line. A granularity of 48 is taken, which means, the intersection is

modeled as a group of 48x48 square blocks.

The second scheme implemented is the CIVIC algorithm [84]. The CIVIC algorithm solves

the intersection management problem using nonlinear constrained optimization by minimiz-

ing the length of overlap of trajectories of vehicles inside the intersection area. The length of

the overlapping trajectories is calculated by using Newton’s equations of motion and the ob-
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Figure 5.7: A simulation screenshot

jective function is calculated by adding these overlaps for each pair of vehicles on conflicting

lanes. Also, the phase conflict map in [84] is modified according to the phase numbers used

in the intersection model.

These two algorithms are very popular in the autonomous intersection management domain

and can be considered as benchmark algorithm also, they belong to two different approaches

towards autonomous intersection management namely multi-agent approach and nonlinear

constrained optimization approach respectively. For these reasons, we choose them for mak-

ing comparative analysis with the proposed heuristic approach. In all the implementations,

we have used the same intersection, traffic, and safety gaps. In the proposed scheme, we

adapt the vehicle length in simulation by adding a delay equal to the time that vehicle would

take to pass the conflict point and depart point. Since vehicles travel only on the center of

their respective lane, a lateral safety gap is not required. Results are obtained for the delay in

vehicle trip time. Delay time is chosen as the parameter for performance evaluation because

it is an independent parameter and other performance matrices such as the mean velocity of

vehicles etc. will have non-orthogonal dependence on it. The values of parameters used in

the simulation are given in Table 5.2.

Simulation is performed for different traffic densities for a simulation time of 3600 sec-

onds. With similar environmental and traffic conditions, delay times are recorded for dif-

ferent schemes of intersection management. These are shown in Table 5.3 and visualized in

Figure 5.8.

As we can see, the presented algorithm outperforms the other three intersection

management algorithms. Traffic lights have the largest delay owing to the fixed halt of
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vehicles during red light making vehicles decelerate and again accelerate on green light

causing a delay in these transitions of velocity plus the wait time during the red phase. Our

scheme outperforms the FCFS algorithm because, in the FCFS algorithm, an availability

check is performed at all the granules (blocks) which are lying in the trajectory of the

vehicles. On the other hand, in our scheme, we only need to make 4 availability checks

corresponding to the four conflict points. And the reason why the proposed algorithm results

in less delay than the CIVIC algorithm is that in the CIVIC algorithm, optimization is

performed only to minimize the overlap of trajectories of two vehicles inside the intersection

area, and no factor is added to this optimization that targets to reduce the delay in scheduling.
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Figure 5.8: Simulation results

5.8 Discussion

The HAIM algorithm presented in this chapter had approached the autonomous intersection

management task with a heuristic algorithm. The reason for choosing a heuristic approach is

to keep the computational requirements to a minimum. This will facilitate the algorithm in

becoming a suitable method for the autonomous intersection management task owing to the
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Table 5.3: Simulation results

Delay (in Sec.)
Density(v/h) TL FCFS CIVIC Proposed
500 13.88 0.288 1.012 0.0416
1000 14.56 0.615 1.234 0.059
1500 14.60 0.833 1.387 0.093
2000 15.83 1.604 1.500 0.149
2500 16.03 1.827 1.768 0.209
3000 16.68 2.430 1.845 0.236
3500 18.06 2.479 1.932 0.264
4000 18.87 3.077 1.985 0.328
4500 24.65 3.250 2.027 0.329
5000 29.02 4.090 2.125 0.389

real-time behavior of the problem. All the four heuristics have a complexity of the order of

O(k), where k is a constant, i.e. each heuristic will take a constant amount of time making

the overall complexity of the intersection management of n vehicles to be of the order O(n)

as each vehicle will be considered once. This is a very significant advantage as the real-time

restrictions are more sensitive for the intersection management problem compared to the re-

quirement of minimizing delay in trip time and maximizing the efficiency of the intersection

management.

Three heuristics out of four make use of an analytical formula for the computation of their

velocity. Whereas in Window heuristic, iterations are performed for searching windows at

all four conflict points in between successive reservations. As there are four conflict points,

ten reservation fields in each reservation record, and the iterative velocity decrements by 0.1

m/s for a velocity span of 17m/s, for calculating Vwindow for one vehicle, the maximum com-

putational time will be proportional to (4*20*17/0.1) which will still result in a complexity

of the order of O(k).

In our approach to find the maximum safe velocity for passing the intersection, we first try to

find the maximum velocity that will not result in a lane conflict. This velocity will be called

the Vlane for that vehicle. Since any velocity greater than Vlane can result in a collision, the

Vlane sets a limit for the next three heuristics.

After resolving lane conflicts, we shift our focus to resolving intersection conflicts. Using

the restrictions on the lane behavior of vehicles and trajectory inside intersections, we reduce
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the collision space to some regions of the intersection region called Conflict Points. There

are a total of 16 conflict points with 4 conflict points in each vehicle’s trip. We can also say

that the intersection management problem of the 4-way intersection has been reduced to that

of 16 single lane intersections. In FEFS heuristic, we resolve conflicts only for the first two

conflict points. The FEFS heuristic resolves the majority of conflicts at lower traffic den-

sity. At lower traffic density the duration between the arrival of successive vehicles is large,

thus only a few vehicles have to insert a delay in their trip to respect previous reservations.

However, at higher traffic, the trip of a greater number of vehicles overlap with reservations

made at conflict points. These vehicles will require to slow down thus introducing a delay

in their trip. Since there are shared conflict points, delay in one vehicle trip can get added to

other vehicle’s trip. In FEFS heuristic, vehicles are granted passing only after the previous

vehicle’s schedule. Thus, delays can get piled up to result in large delays in scheduling. A

mechanism is thus required to break this delay pile before it affects the performance of in-

tersection management.

The next layer of heuristic serves this exact purpose. It allows vehicles to get reservations

even before earlier entered vehicles. In this heuristic, a window is searched in between reser-

vations at all the conflict points. For this reason, this is called Window heuristic. Though

window heuristic breaks the delay pile and returns conflict-free velocity when it returns a ve-

locity, it is not guaranteed to always return a velocity. There might be a case where the FEFS

heuristic results in conflict at either of the last two conflict points and the Window heuristic

could not find a window. In such a case, we will require the final heuristic layer called the

Reservation heuristic. This heuristic will resolve conflict at third and fourth conflict points

and we will ultimately have conflict-free intersection management.

As we see, each layer in HAIM serves a specific purpose. The FEFS heuristic finds velocity

for most of the vehicles at low traffic. As traffic increases, the significance of the Window

heuristic will increase. It will break delay piles and enable efficient control of the intersec-

tion and finally, the reservation scheme will guarantee no collision condition.

The simulation result obtained shows that along with satisfying safety requirements, the

HAIM algorithm also performs better in terms of delay induced in vehicles trip. We per-

formed a comparative study with two other approaches towards intersection management.

One belongs to the multi-agent-based approach and the other belongs to the nonlinear
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constrained optimization-based approach. The HAIM algorithm outperforms both these

schemes and thus proves out to be more efficient.

As we mentioned earlier, through the buffer region, we have abstracted away from commu-

nication and computation related delays. We can adjust the length of the buffer region to

account for the unreliability in communication and computation. Increasing buffer length

will not create any issue until the approach length is kept sufficiently long to have velocity

transitions. We had earlier discussed how a constant velocity based intersection management

results in lower emissions, lower energy wastage, stop-less intersection passing, and more

comfortable journey for passengers. These benefits along with the encouraging results in fa-

vor of the HAIM algorithm make the HAIM algorithm a very efficient and safe intersection

management algorithm.

5.9 Summary

In this chapter, we presented the HAIM algorithm for the intersection management of au-

tonomous vehicles. The complexity of the task is first reduced by defining the lane behavior

and turning trajectory for vehicles to scheduling vehicles at four conflict points. To resolve

all the conflicts, a four-leveled heuristic is employed in which the first heuristic resolved all

conflicts that could result in rear-end collisions whereas, the next three heuristics resolved

all the intersection conflicts successively. The HAIM algorithm, along with being free from

computationally intensive procedure implements a velocity-based intersection management

procedure in which vehicles are required to attain and then maintain the velocity assigned by

the centralized intersection manager. The advantages of the fixed velocity-based approach

are also discussed. A comparative analysis of the HAIM algorithm with three other intersec-

tion management schemes is performed. Results show that the HAIM algorithm outperforms

all other intersection management schemes with respect to the delay caused in scheduling.

In the next chapter, we will present the literature pertaining to the formal verification,

their application to autonomous systems such as autonomous robots and autonomous vehi-

cles and finally we will see the literature that targets the verification using statistical model

checking technique.
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Chapter 6

Formal Verification Literature Survey

6.1 Formal Verification

Formal verification has now become a well known technique in the industrial domain. It’s

popularity has grown to a level that in various industrial applications, verification is consid-

ered as a very crucial part of the product development life cycle. Typically, the verification

and validation phase takes most of the development time [121]. The importance of formal

verification comes from the fact that it is based on solid mathematical foundation and gives

the maximum coverage of state space with respect to other validation techniques. With the

rise in the use cases, verification techniques have also evolved to expand the classes of sys-

tems they can be applied on. The field of formal verification has not only grown in length but

also in width. By length we mean the classes of systems on which these techniques can be

applied and by width we mean the options or different underlying formalisms or languages

that can be used for this purpose. There are several available formalisms to: (a) model the

system and (b) specifying the properties. However, the choice of these two formalisms are

sometimes interdependent. A very detailed and precise introduction to the formal verifica-

tion is given in [23]. The author in this work give introduction to the underlying concepts,

techniques, tools and formalisms. Though this article do not cover all the tools and for-

malisms available today as it dates back to the time when formal verification was not in as

advanced stage as it is today but still it is a very good read for interested readers.

A much recent article that give very good insight about the verification methods that are in

usage today is given in [122]. In this work, authors discuss the relationship between verifica-
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tion and logical reasoning and also provide an overview of all the current popular tools and

methods that are there at the current time.

The benefits of using formal verification has attracted its use in a spectrum of applications.

In various applications, the use of formal verification has now become indispensable such as

in designing of digital systems, communication protocols, operating systems, etc. Whereas

in various other applications such as cryptographic encoding, block chain smart contracts,

etc. its usefulness has been realized and its use is becoming more important than ever.

Since in this thesis we are dealing with the formal verification of the HAIM algorithm, which

is an intersection management algorithm for autonomous vehicles, we will restrict our dis-

cussion to the literature associated with formal verification of autonomous systems such as

autonomous robotic systems and/or autonomous vehicles only.

6.1.1 Formal Verification of Autonomous Systems

Autonomous systems is a class of systems that covers a wide range of application scenarios.

These systems often work in complex environments and have minimum input from humans.

They are mainly characterized by their decision making ability using the gathered knowl-

edge of the environment and objects inside it. Some examples of application scenarios of

autonomous systems are industries (eg. autonomous warehouses), transportation (eg. au-

tonomous vehicles), inside house (eg. robotic assistants) and even in space (eg. mars rover).

Increasing popularity of autonomous systems and their application in more and more human

interactive scenarios have made the formal verification of such systems a critically important

procedure as it may help in giving safety related assurance along with those related to per-

formance and efficiency.

A comprehensive study on current state-of-the-art for formal modeling, specification and

verification of autonomous systems is discussed in [123]. In [124], and [115] authors em-

phasize on the fact that the system development life cycle should be considerate of detecting

the faults in the design as early as possible. They propose a workflow that incorporates a

incremental design process by using a component based design language and verification

framework that allows building up the reasoning on the behavior of the overall system start-

ing from the component level.

The motion planning of a group of autonomous robots in a given environment is a well
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known research problem. This can include simple tasks such as "Go from point A to B"

but it can well be quite complex also such as "From the second street, navigate through the

roundabout and join the main street and then park at the central parking". Though the tempo-

ral logic such as CTL and LTL are capable of expressing such rich requirements, a challenge

that remains is to construct a finite model that can faithfully capture the robot motion and

control capabilities. However, the added challenge in formally verifying the functioning of

such systems is to prevent state-space explosion that may arise even in small systems. Au-

thors in [75] use a distributed formal synthesis approach to deal with this problem. They

proposed a framework that allows for using the given requirements in Regular Expressions

to automatically synthesize the control and communication strategies for robots.

In [67], authors demonstrate modeling and formal verification of heterogeneous multi-agent

system using three case studies. In [76] and [79], authors approach the verification of the

robotic swarm algorithms using model checking. The robotic swarm is a group of individual

robots which works in unison to fulfill some task. An example of requirement from such

systems is that is should be fail-safe i.e. failure of any robots in this swarm should not result

in the failure of the complete swarm. To check the swarm algorithms for such requirements,

either the swarm would have to be realized in actual or in simulation. Both however, will

keep the analysis relevant only to the particular scenario. Keeping this in mind, authors chose

to perform formal temporal verification of the swarming algorithm using model checking.

A popular representation of autonomous systems is through agent-based notation. In agent-

based representation of autonomous systems, the autonomous entity is called as an agent and

an agent is characterized by the ability to make the decision of when to act and how to act

in response to the changes in its environment. This concept of agent came in late 1980’s and

has been used vastly in both industry and academia. However, with the further development

of this line of research, it was realized that these agents are required to have explanation of

why it takes a certain course of action along with when and how. This extension of agents

use the architecture given by the Belief, Desire, and Intent (BDI) approach and are known

as Rational Agents. Article [125] gives a very good introduction to rational agents and also

discusses how we can approach formal verification of autonomous agents represented as ra-

tional agents. In [126], authors perform formal verification of the high level decision making

software components of an autonomous vehicle using rational agents which are presented
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as being intelligent instead of reactive, and has an ability to assess the situation to make the

best decision. For instance, which obstacle to collide with to keep the damages to a mini-

mum in case a collision is unavoidable. Rational agents are modeled using Gwendolen agent

modeling language, and AJPF (Agent Java Path Finder) is used for formal verification of

specifications written in Linear Temporal Logic.

In [73], authors tackle the problem of formally verifying a decentralized self-adapting system

using model checking. They first perform the behavior analysis of the design of the system

under consideration which is a decentralized traffic monitoring system, then perform model-

based testing of the implementation of the system and finally run-time diagnosis after system

deployment. In [127], authors undertake the task of designing a high level planner/scheduler

for Care-O-bot, a robotic assistant and then formally verifying it using model checking.

The article [128] is an attempt in the direction of analysing the available options with respect

to the choice of formalism and level of formality for the formal analysis of autonomous vehi-

cle systems. They perform a case study over the formal verification of the Lateral State Man-

ager module of an autonomous vehicle using three different verification approaches namely

Supervisory Control Theory, Model Checking and Deductive Verification. The goal is not to

compare rather differentiating based on the objective of technique and studying how multiple

formalisms can help to deal with challenges in developing the autonomous vehicle technol-

ogy.

In literature a work that talks about the formal verification of an autonomous intersec-

tion management algorithm which is indeed the work closest to our work as presented in

the next chapter is given in [129], where the authors approach the safety verification of an

intersection using the KeYmaera theorem prover. They verify the safety property of the two

most basic building blocks of any intersection scenario namely T-intersection/merging and

two-lane intersection. The properties verified corresponding to these two cases in this work

translate to: i) If the vehicle and stoplight start in a controllable state, then the vehicle will

never enter the intersection while the light is red and ii) If the stoplight and the two cars start

in a controllable state, no car will enter the intersection while its light is red, respectively.

Our work differs from this work in two respects, which are: (i) We present verification of the

autonomous intersection management algorithm as applied on a four-way intersection with

3 lanes in either direction and (ii) We use model-theoretic verification because the model of
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the system involves much realistic situations such as dynamic and non-deterministic instan-

tiation of vehicles, custom data structure and layered nature of the heuristic which makes

model checking the preferred choice because of its ability to perform precise modeling of

such system which would otherwise be complex and error-prone in a theorem prover such as

KeYmaera.

In [130], authors introduce a spatial logic called Multi-Lane Spatial Logic (MLSL) and an

abstract model of the multi-lane motorway based on the local view of the cars. Using the

MLSL, properties needed for safety proof can be formulated and later used as guards and

invariants in the design of abstract lane-change controllers. This work has been extended

in [131, 132].Furthermore, [133] addresses how to model and verify traffic scenario such as

intersection, turns, crossroads and T-intersections. This work is similar to the work presented

with respect to the safety proof approach. The key idea behind the safety proof in both is to

prove that the vehicle occupy and reserve disjoint spaces. However, the difference lies in the

fact that in the mentioned work, the occupancy is determined using the view of each individ-

ual car whereas, a discrete grid model is used in the presented work and this grid is updated

centrally by the Intersection Manager. The discrete position of a vehicle is determined in

terms of cells of grid occupied by it at any moment. Also, since vehicles travel only in their

respective lanes, this grid is one dimensional (array) and each route has a corresponding

occupancy array in the lane and the intersection region.

6.1.2 Statistical Model Checking

Statistical Model Checking (SMC) is the extension of model checking for stochastic

systems where the quantitative properties of the system are expressed in terms of measure of

executions of the system satisfying certain temporal properties. The key idea behind SMC

is to observe a fixed number of executions of the simulatable model of the system by certain

monitoring procedure and deduce whether the system satisfies the desired temporal property

or not. The results of SMC are generally associated with a bound of making the error and

this is the trade off that has to be done to gain the advantage in terms of memory and time

requirements [34]. SMC only requires the system to be simulatable [134] thus, increasing

the class of systems that it can be applied on. We are going to discuss next some previous

works that have used statistical model checking to verify quantitative measure of the
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satisfaction of the required properties by any autonomous vehicle system. Reference [135]

targets the problem of formal verification of autonomous systems with a case study on the

traffic sign recognition in autonomous vehicles. They define the architecture of the system

in a domain specific architectural language called EAST-ADL. This model is included with

functional and non-functional properties such as time and energy constraints. To include the

stochastic nature, the probabilistic extension of EAST-ADL constraints is defined and its

semantics are translated to Uppaal-SMC for formal verification. In Reference [136], authors

propose a verification architecture for automated cyber-physical systems. They perform two

case studies corresponding to perception system and decision making system. Their main

idea is to formulate some Key Performing Index (KPI) in a temporal language and use them

to guide the verification using Statistical model checking. In another work [137], the authors

present verification of the functioning of controllers present in an autonomous vehicle to

prevent collision in a traffic jam situation. There are two types of controllers considered:

first one is only responsible for following the front vehicle without collision and the other

controller has responsibility of safe changing of lane. The controllers are modeled using

C++ codes and the driveway is modeled as stochastic high-level Petrinets.

6.2 Summary

In this chapter, we presented the existing works targeting the formal verification of au-

tonomous systems and associated algorithms. We observed that in the literature survey

presented above, the focus is kept primarily on one or more sub-modules of autonomous

vehicles that are responsible for any dynamic driving task of the vehicle such as lane follow-

ing, lane change, and so forth. This means that the current literature on the application of

statistical model checking in Intelligent Transport Systems (ITS) domain has primarily been

vehicle-centric. To the best of our knowledge there has not been any work in the literature

that deals with the statistical verification of any traffic management algorithm such as an in-

tersection management while considering the dynamic nature of the problem and at the same

time assuring the correctness of the modeling performed.

Inspiring from this, we introduce the application of SMC to ITS algorithms such as inter-
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section management. In the next chapter, verification of the HAIM algorithm is performed

at different stages of its implementation. Internal verification and artificial error injection

testing is done to verify correct modeling of the system.
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Chapter 7

Formal Verification of HAIM

7.1 Introduction

In the last two chapters, we have learned about the underlying techniques of formal verifi-

cation and existing literature on the formal verification of autonomous systems such as au-

tonomous robots, autonomous vehicles, domestic assistance robots, etc. using non-stochastic

and stochastic techniques. We also mentioned that the statistical analysis of a safety prop-

erty of any intelligent transportation system has not been carried out in the literature so far to

the best of our knowledge. We believe that there is a genuine application of statistical tech-

niques in this domain. Vehicular traffic in an ITS domain generally have a non-deterministic

distribution thus, taking this into consideration while analyzing the performance of any ITS

related controller should result in more faithful results. This motivates us to propose a sta-

tistical model checking of the HAIM algorithm. Along with providing the correctness proof

of the HAIM algorithm with respect to the no collision property, we also give evidence of

the faithful modeling of the overall system using two complementary procedures which are

implementation verification and error-injection testing. In this chapter we will give every

detail of the procedure of generating the correctness proof of the HAIM algorithm against no

collision property using statistical model checking. The tool we have used for this purpose

is the Uppaal model checker, particularly its SMC variant known as Uppaal-SMC.

In the following section, we give an overview on: challenges in formal verification of au-

tonomous systems, choice of verification paradigm used and the choice of tools used in our

work.
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7.1.1 Associated Challenges

For every technology, no matter how efficient or time saving it is, it has to satisfy the most

important property and that property is safety. Safety is of utmost importance in the tech-

nologies that interface with humans. That is the reason before deploying any technology

it becomes mandatory to prove its safety. In fact, the U.S. Department of Transportation

(DoT), in its latest guideline issue [14] for the autonomous vehicle development, has put

great emphasis on verification, validation, and compliance of safety standards such as ISO

26262, IEC 61508, and so forth.

As a method to bring confidence in the safety of their technology, various autonomous

vehicle original equipment manufacturers (OEMs) use their technology to drive for long dis-

tances in test drives on public roads and later use this driving distance as a measure of the

confidence in the safety of their technology. This is known as public road testing. Although

testing is an important step in any product development life cycle, it also has its limitations.

In case of autonomous vehicle technology, the extent of testing that is required to guaran-

tee with the given confidence, the safety of operation is impractical. The study presented

in Reference [138] says that to prove with 95 percent confidence that self-driving fleet has

a 20 percent lower fatality rate than that for human driven, it would require 100 vehicles to

drive around 24/7 for around 225 years! This calls for a complementary technique in the

development cycle that can generate correctness proofs for the corresponding subsystems in

a reasonable amount of time. Formal verification is one such technique.

7.1.2 The Choice of Verification Technique and Formalism Used

Formal verification is a systematic approach that uses mathematical reasoning to verify that

the specification (requirement) is preserved in the implementation (system model). As we

discussed earlier, broadly there are two classes of formal verification methods which are: (i)

Property-oriented verification and (ii) Model-oriented verification and in our case, model-

oriented approach is more appropriate as we are not working with general properties, math-

ematical axioms, rather with we are completely aware of the system. In addition to that,

the model-oriented tools present provide some features that can realize systems that are non-

trivial otherwise. For instance, we have used dynamic instantiation of a vehicle template for
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non-deterministic arrival of vehicles, just as real world traffic.

Verification is a crucial part of any hardware or software system development life cycle.

It is aimed towards finding errors in the design as early in the development life cycle as

possible. The process of formal verification starts with the representation of the system in a

formal language that is suitable for the verification technique used. The choice of formalism

to model the system depends most importantly on the expressiveness that will be required to

faithfully model the key dynamics of the system. For instance, a reactive system with finite

states without a notion of time can be modeled using Labeled Finite State Automata (LFSA).

On the other hand a time-critical system cannot be modeled using the same LFSA. They will

need a formalism that can either model time or temporal ordering among the states of the sys-

tem. Timed Automata (TA) and Timed Petri-Nets (TPN) are two such formalisms that have

been used to model time-critical systems. Though such formalisms can indeed model timing

characteristics of time critical systems, they are not panacea. In fact, real-time cyber-physical

systems that involve complex dynamics and stochastic behavior are not expressible by these

formalisms [139]. Also, the model checking of such systems is undecidable and one thing

that can be done is to approximate them with the available formalisms [140]. Alternatively,

this problem can be solved by incorporating the formalism that can model the stochastic and

non-linear dynamical behavior of the system and then exploiting the technique of Statistical

Model Checking (SMC) [141]. The main idea behind SMC is to make an executable model

of the system under consideration and perform a finite number of simulations. Results of

these simulations are monitored and are used by the statistical techniques such as sequential

hypothesis and Monte-Carlo simulations to find whether the system satisfies the required

property with some given degree of confidence. One limitation of SMC is that it provides

results not on the basis of exhaustive exploration, rather, a bounded number of simulations.

Due to this fact, SMC is considered as a compromise between testing and the classical model

checking. Though SMC is not as powerful as the classical model checking, it is still equiva-

lent to running an exponential number of simulations [121].

Though TPN is capable of modeling real-time and time-sensitive systems, tools present for

model checking TPN models are not sophisticated enough to support statistical model check-

ing [142]. Timed Automata, on the other hand, has tools such as Uppaal and Prism that are

sophisticated, well maintained and also allow statistical analysis of the model. Apart from
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these, other modeling formalisms are Promela (of the SPIN model checker), CSP (of FDR

model checker), TLA+ (of TLC model checker), Event-B, UML, Z, and so forth. A survey

of existing tools for formal verification is given in Reference [143]. Out of all these model

checkers, we have used the Uppaal model checker because of the following advantages it

offers.

1. It works with models developed in Timed Automata (and their extensions) formalism.

2. It supports statistical model checking in Uppaal-SMC extension.

3. It supports the dynamic instantiation of templates

4. It supports graphical modeling which is an intuitive and easy way of modeling.

5. It offers high-level data structures and functions.

6. It is available for academic use without any cost, it is well maintained and has a big

active community of users.

Out of these, features 2, 3, 4 and 5 are the ones that have been exploited in this work and

their presence as a combination is the main reason for using this particular model checker.

In the presented work, we perform formal verification of the Heuristic Autonomous Intersec-

tion Management (HAIM) algorithm, which is presented in Chapter 5 of this thesis, using

the Uppaal Model Checker, particularly its SMC variant. Verifying the HAIM algorithm

for “No Collision” property will involve modeling traffic injection, vehicle behavior, Inter-

section Manager (IM), and collision detection procedure. As formal verification is aimed

towards developing the system right, we perform verification at every stage of implementa-

tion of the HAIM algorithm. As we shall see, in the HAIM algorithm, we resolve conflicts

in 4 stages where every following stage tries to resolve conflicts unresolved in the earlier

stage. Verification is done after the implementation of each of these stages. This will guide

the implementation of the HAIM algorithm and will also let us verify the claimed behaviors

of each of these stages. After vehicles are scheduled by the HAIM algorithm, vehicles will

travel with the assigned velocity and collision detectors will then check for collisions at ev-

ery step of the simulation. Verification engine analyses these models for several runs against

specified properties to check for their compliance. Furthermore, we perform implementation
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verification by checking the satisfiability of some invariant conditions on the execution of

the model and error injection to perform sanity checking of the model. In other words, we

propose and demonstrate how to exploit the advantages of SMC in formal verification and

alongside verifying sane modeling of the system.

7.1.3 Uppaal Model Checker

Uppaal [144] is a verification tool suite appropriate for verification of systems that can be

modeled as a collection of non-deterministic processes with finite control structure and real-

valued clocks communicating through channels or shared variables. Uppaal consists of three

main parts—a description language, a simulator, and a model checker. The system to be

verified is modeled as a group of TA. The description language is used to define variables,

function definitions, and implement the inherent logic. A TA consists of various locations

and these locations are connected by using edges. The edges are annotated with selections,

guards, updates, and synchronizations. The purpose of these annotations is explained below.

selection: To non-deterministically bind a given identifier to a value in a given range.

update: Expression that is evaluated when the edge is traversed. In Uppaal, we can use

functions in update expression.

guard: Expression that has to evaluate to true for the edge to be traversed.

synchronization: Processes communicate and synchronize using channels. This annotation

may work as a publisher or a receiver on the edge.

Locations in Uppaal are labeled with invariants. Invariants are expressions that should

always evaluate to true for the time the system is in that particular location. Locations in

Uppaal can be made Urgent or Committed. These are the locations in which time is not

allowed to pass that is, they freeze time. Furthermore, if a process is in a committed location,

then the next transition must involve an edge from one of the committed locations.

Uppaal requirement specification supports five types of properties given in Table 7.1.

In this table, p and q are state properties specified with atomic proposition; A and E are

path quantifiers that stand for Always and Existential respectively and [] and <> are state

quantifiers that stand for ’for all states’ and ’for some state’ respectively.

For systems that need dynamic creation and termination of automata and/or needs as an
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Table 7.1: Properties in Uppaal.

Name Example

Possibly E <>
p

Invariantly A[] p

Potentially al-
ways

E[] p

Eventually A <>
p

Leads to p−− >
q

output the estimate of a probability, the standard Uppaal model checker will not suffice. For

this reason, we choose Uppaal’s Statistical Model Checker (SMC).

Uppaal-SMC [139] performs several runs of the system then uses results from statistics to get

an overall estimate of the correctness of the system with respect to a property. Uppaal-SMC

is different from the traditional Uppaal in the way that it allows us to specify the probability

distribution that drives the timed behavior and also that the SMC engine offers the output of

any query in probabilistic terms. The engine can: (i) Estimate the probability of an event,

(ii) Compare the probability of an event with a value, and (iii) Compare two probabilities

without computing them individually.

In Uppaal-SMC, to include the probabilistic nature, the query language is enhanced with the

weighted version of the Metric Interval Temporal Logic (MITL) [145] which is defined by

the following grammar.

φ ::= p | ¬φ | φ1 ∧ φ2 | Oφ | φ1U
x
≤dφ2,

where p is an atomic proposition, x is a clock, d is a natural number, O is the next

operator, U is the Until operator and the logical symbols have their usual meanings. The

weighted formula φ1U
x
≤dφ2 is satisfied by the run if φ2 is satisfied before the clock x exceeds

d, and until that, φ1 is satisfied. Two derived temporal operators known as time constrained
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eventually (♦), and time constrained always (�), are defined as follows.

♦≤dx φ = true Ux
d φ and �≤dx φ = ¬ ♦≤dx ¬φ.

The eventually operator is defined in terms of the Until operator and the Always operator

is defined in terms of the eventually operator. This allows us to write the following four types

of queries in Uppaal-SMC.

1) Quantitative analysis or probability estimation: Estimates the probability of a path

expression being true.

For ex. Pr [<= K] {[] φ}, will give probability of φ to be true at every state when

the system is run for K number of steps.

2) Qualitative model checking or hypothesis testing: Checks whether the probability of a

property is less than or greater than the specified bound.

For ex. Pr [<= K] {[] φ} >= P , will state whether probability of φ to be true at

every state when the system is run for K number of steps is greater than P or not.

3) Probability comparison: Compares two probabilities indirectly without estimating

them.

For ex. Pr [<= K] {[] φ1} <= Pr [<= K] {[] φ2}, will compare the two

probabilities and return truth value of the expression.

4) Value estimation: Estimates the value of an expression by running a given number of

simulations.

For ex. E [<= K] {V ar}, will give the estimated value of the variable V ar.

We next discuss the modeling of HAIM in Uppaal-SMC. We model our Intersection

system using two automata, which are (i) Traffic Automaton and (ii) Master Automaton.

The Master automaton is divided into three sections depending on the functionality, these

three sections are:

- Vehicle Initialization Section,

- Controller Section, and
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- Movement and Collision Check Section

We will next discuss these automata individually.

7.2 Modeling HAIM in Uppaal SMC

7.2.0.1 Traffic Automaton

Traffic automaton releases new vehicles into the system. The release of vehicles is done

after a non-deterministic time interval given by the bound given in the guard expression of

Figure 7.1. This bound is fixed to generate a traffic density of a minimum of 500 vehicles per

hour and a maximum of 5000 vehicles per hour. This density range is the same as that used

in Chapter 5. This spawning procedure that releases every vehicle after a non-deterministic

time interval, mimics the traffic arrival pattern of vehicles in real-world traffic scenarios.

With a simulation step of 0.1 s, min_spawn_time and max_spawn_time come out to be 7

(closest integer) and 72. To obtain these numbers we divide the total number of steps in one

hour (which is 36000) by the number of vehicles to be spawned in one hour that is, 5000 and

500 respectively.

The Master automaton is declared as a dynamic template and it is instantiated every time a

vehicle is spawned in the system. Dynamic templates are declared using the spawn function

as can be seen in the Traffic automaton in Figure 7.1. To terminate a dynamic template, exit

command is used. Also, there can be multiple instances of a dynamic template present at one

time that means multiple master templates can exist at the same time with different levels of

progression within their automaton. We will next discuss the Master template in detail.

Figure 7.1: Traffic automaton.
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7.2.0.2 Master Automaton

The Master automaton is as shown in Figure 7.2. The master automaton which is defined as

a dynamic template, realizes three functionalities which are:

• Encoding the complete behavior of a vehicle starting from initialization, to traversing

the approach region, the intersection region and the depart region.

• Encoding the entire processing that goes into calculating the target velocity for that

vehicle using the HAIM algorithm.

• Encoding the collision detection procedure in approach region as well as intersection

region.

Virtually we can divide the Master automaton into three sections which are: Vehicle initial-

ization section, Controller section, and Movement and collision check section. Let us next

discuss each of these sections in detail.

Vehicle Initialization Section Controller Section Movement and Collision Check Section

Figure 7.2: Master automaton.
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7.2.0.3 Vehicle Initialization Section

The Master automaton starts in this section as it contains the initial location. Dashed edges

following the initial location represent probabilistic edges with the relative weights specified

as annotations. These dashed edges will randomly decide the source lane and the destination

lane of the vehicle. All the weights are kept the same to get equally distributed traffic. The

initialize_vehicle() function initializes the vehicle using the values of dir and lane variables.

This function resolves the indexes of the conflict points that lie in the path of this vehicle and

distances between successive conflict points are also assigned in this function. The arrival

velocity of the vehicle is set randomly (less than maximum velocity).

7.2.0.4 Controller Section

This section represents the working of the Intersection Manager and implements the HAIM

pipeline. The pipeline starts with calculating the lane velocity for the vehicle. Lane velocity

is then used as the starting point for calculating the rest of the three velocities namely FEFS

velocity, Window velocity, and the Reservation velocity. To decide which of these three

velocities will be the final velocity, we implement the logic flow given in the flowchart in

Figure 7.3, in the function find_Vfinal().

It is this section of the Master automaton in which stage-wise implementation of

HAIM algorithm is done. The find_V final() function is attached to the outcomes of

find_V lane(), find_V fefs(), find_V window() and find_V reservation() respectively

in the corresponding implementation stage. We discuss more about this in the next section.

The modeling of the HAIM algorithm in the Controller section of the Master automaton uses

committed states to model the assumption that all of the communication and computation

has been flawless and the vehicle has received its Vfinal that is, the velocity the vehicle has to

attain after it leaves the buffer region. The movement of the vehicle starting from the end of

the buffer region is modeled inside the Movement and Collision Check section of the Master

automaton.
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Start

Conflict at 
3rd or 4th CP?

Calculate V_lane

Calculate V_window

V_window > 0

Calculate V_fefs

V_window > 0?
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N

V_final = V_fefs

N

V_final = V_windowY

Calculate V_reservation

V_final = V_reservation

Return V_final

Y

N

Figure 7.3: Decision flow of the HAIM algorithm

7.2.0.5 Movement and Collision Check Section

After leaving the buffer region, the vehicle will travel in the lane and first of all, make a

transition from the entering velocity to the assigned velocity (Vfinal). At each step, the

position and velocity of the vehicle are updated. For the time the vehicle is travelling in

the lane, the Master automaton will be in the location move_in_lane. When the vehicle

comes inside the intersection area, the automaton will come into the move_in_intersection

location. Functions update_lane_occupancy and update_int_occupancy update the position

of the vehicle in the lane and the intersection occupancy vectors respectively. These positions

are used by the lane and intersection collision detection routines.

To detect lane collisions, we use the discrete position of the vehicle given by the lane

occupancy vector of the corresponding lane. Lane occupancy vector is an array of cells.

Those cells which coincide with the position of the vehicle have a value of 1. To determine

the occupied cells for a vehicle, we first find the cell corresponding to the head position of
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Table 7.2: Functions used in Uppaal model.

Serial no. Function name Description

1 initialize_vehicle() Initialize variables such as enter_vel, cp_indices, cp_distances, etc.

2 find_Vlane() Iterate to find safe lane velocity.

3 find_Vfefs() Iterate to find velocity that satisfies critical CP at FEFS stage.

4 find_Vwindow() Iterate to find velocity that find window between present reservations.

5 find_Vreservation() Iterate to find velocity that satisfies critical CP at reservation stage.

6 find_Vfinal() Implements the logic flow diagram shown in Figure 7.3.

7 update_lane_occupancy() Update lane position of vehicle in the lane occupancy vector.

8 update_int_occupancy() Update intersection position of vehicle in the intersection occupancy vector.

9 check_lane_collision() Checks in each lane occupancy vector for length of continuous occupancy.

10 check_int_collision() Checks for simultaneous occupancy of CP by two vehicles.

the vehicle and then set all the cells to 1 that comes under the length of the vehicle. For

simplicity, we have used in the simulation, the same length (3 met.) for all the vehicles. The

procedure update_lane_occupancy() implements this logic.

Now, to detect a collision, we will look for the number of cells for which there is con-

tinuous occupancy. If the length corresponding to continuous occupancy of cells crosses

the length of one vehicle then that would mean there is a collision between two vehicles.

Illustration is shown in Figure 7.4. Complete overlap of occupancy of two vehicles would

go undetected. However, with the limits of velocity and the dimensions of vehicles used, it

would not be possible for two occupancies to be non-overlapping at one step and completely

overlapping at the very next step because that would require relative distance of at least the

length of the vehicle (3 m) to be covered in one times step which is greater than maximum

possible value (1.7 m). The collision condition is checked for each lane occupancy vector

at every simulation step. For any positive detection, a lane collision counter is incremented.

The function check_lane_collision() performs the above mentioned operation. The guard,

invariant and update of clock variable x make sure that the collision is run at every step of

the simulation. When the vehicle is through the intersection area, the Master template will

be terminated.

The intersection collision detection routine works in the same fashion as that of lane col-

lision detection. Here also, the position of the vehicle inside the intersection is represented

using discrete cells inside the intersection occupancy vector. As we have modeled vehicle

occupancy using line segment, the width of the vehicle is not modeled. This was not a con-
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No Collision
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Figure 7.4: Lane collision detection.

cern in the lane collision detection as vehicle always follow the order in which they entered.

However, in case of collision detection in an intersection, the width has to be modeled. Along

with width, we also need to model the orientation of vehicle in the intersection due to the

angle of intersection at the conflict point. Angle of intersection is as depicted in Figure 7.5b.

To model these two, we use extended occupancy of vehicles. This means, the line segment

corresponding to the length of the vehicle is extended on both ends by a width given by the

expression shown in Figure 7.5b, this figure also shows how this expression models the ge-

ometry of vehicle at the conflict point. The occupancy of cells of these vectors is updated at

every step for each vehicle in the simulation. Like in lane collision detection, we calculate

the position of the cell corresponding to the head of the vehicle and then find the trailing

occupancy cells using the length of the vehicle. Implementation is done inside the function

update_int_occupancy().

To detect the intersection collision, we use a different approach than in the case of lane

collisions. The cells corresponding to all the conflict points are determined in all the lane to

lane connections. Width of vehicles is incorporated in collision detection by extending the

intersection occupancy of vehicles on both sides by a length given in terms of the width of

the vehicle in Figure 7.5b. This way we detect the intersection collision of vehicles using

their occupancy only at common conflict point. Simultaneous occupancy by two vehicles of

the cell corresponding to a common conflict point will mean that there is a collision in the

intersection. If that happens, an intersection collision counter is incremented. The function

check_int_collision() performs the above mentioned operation. The guard, invariant and

update of clock variable x make sure that the collision check is performed at every step of the
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simulation. Figure 7.5a illustrates the working of the intersection collision detection routine.

Table 7.2 lists all the functions used in the Uppaal-SMC model of the HAIM algorithm.
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(a) Intersection collision detection.
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Figure 7.5: Intersection collision detection logic and occupancy extension to
model vehicle width and angle of intersection

7.3 Verification

To perform the sanity check of the modeling of the HAIM algorithm in Uppaal-SMC, we

perform verification to verify the claims made about the properties of the reservation made

by the three constituent layers along with verifying the safety property for the complete

heuristic. To do this, we model the HAIM algorithm in the following stages.

1) Model with only Vlane.

2) Model with Vlane and Vfefs.

3) Model with Vlane, Vfefs and Vwindow.

4) The complete model with all the velocities.
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At each of these stages, queries are run to get the probability (confidence) of the model in

resolving lane and intersection collisions. Since we put the collision count in counters called

lane_collisions and int_collisions, to determine the confidence of model in resolving col-

lisions, we encode a query that has a literal meaning as: What is the probability that the

count of the given counter is always zero when the model is run for a bounded (given) num-

ber of steps. In Uppaal-SMC, this query when translated for lane collision and intersection

collisions both look as

Pr [<= K] {[] lane_collisions == 0}, and

Pr [<= K] {[] int_collisions == 0}

These are the queries that are passed to the model checker. Here, K is the number of

steps for which the model is run. We perform verification for values of K ranging from 1000

to 5000, this way we can observe the evolution of the behavior of the model at each stage of

implementation. Choosing a larger value ofK is constrained by the time the model checking

tool takes to return results. For K = 5000, the verifier took close to 88 days to give output

for query corresponding to the complete model.

Verification results are tabulated in Table 7.3. This table contains verification results cor-

responding to five values of K which are 1000, 2000, 3000, 4000, and 5000. For each value

of K, there is a verification result corresponding to the 4 implementation stages mentioned

above. Verification results corresponding to no lane collision and no intersection collision

are given in columns 3 and 4 of the table respectively. Columns 5 and 6 give results for

artificial error injected systems as explained in Section 7.4.2.

7.3.1 Model with Lane Velocity As the Final Velocity

The lane velocity is calculated by making the depart time of the current vehicle greater than

that of the previous vehicle in the same lane. This velocity is the maximum velocity with

which the vehicle can travel that will not result in a collision in the lane. However, it can

result in a collision inside the intersection. Thus the claim made about the model with lane

velocity as the final velocity is that the vehicle will not undergo any lane collision but it

can result in an intersection collision. Thus the statistical model checker should return the
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Table 7.3: Verification results

Steps Velocities Used Pr(no_lane_col) Pr(no_int_col) Pr(no_int_col) in
Erroneous System (IM)

Pr(no_int_col) in
Erroneous System (Veh)

Vlane [0.99, 1] [0.772123, 0.792123]
Vfefs [0.99, 1] [0.971126, 0.991126]

Vfefs and Vwindow [0.99, 1] [0.982451, 1]
1000

Vfefs , Vwin. & Vres. [0.99, 1] [0.99,1]

[0.757588, 0.857588] [0.848374, 0.948374]

Vlane [0.99, 1] [0.567835, 0.587835]
Vfefs [0.99, 1] [0.950781, 0.970781]

Vfefs and Vwindow [0.99, 1] [0.974259, 0.994259]
2000

Vfefs , Vwin. & Vres. [0.99, 1] [0.99, 1]

[0.599051, 0.699051] [0.721003, 0.821003]

Vlane [0.99, 1] [0.411410, 0.431410]
Vfefs [0.99, 1] [0.930020, 0.950020]

Vfefs and Vwindow [0.99, 1] [0.965653, 0.985653]
3000

Vfefs , Vwin. & Vres. [0.99, 1] [0.99, 1]

[0.424255, 0.524255] [0.664092, 0.764092]

Vlane [0.99, 1] [0.296923, 0.316923]
Vfefs [0.99, 1] [0.912165, 0.932615]

Vfefs and Vwindow [0.99, 1] [0.954518, 0.974518]
4000

Vfefs , Vwin. & Vres. [0.99, 1] [0.99, 1]

[0.317209, 0.417209] [0.563821, 0.663821]

Vlane [0.99, 1] [0.213275, 0.233275]
Vfefs [0.99, 1] [0.89438, 0.914348]

Vfefs and Vwindow [0.99, 1] [0.947572, 0.967572]
5000

Vfefs , Vwin. & Vres. [0.99, 1] [0.99, 1]

[0.263008, 0.363008] [0.48794, 0.58794]

maximum possible confidence value for no lane collision but not for no intersection collision.

Verification results are given in Table 7.3 in rows corresponding to Vlane.

7.3.2 Model with FEFS Velocity As the Final Velocity

The FEFS velocity is calculated by resolving conflicts only for the first two conflict points.

So, there is a possibility that a slow-moving vehicle that entered before the current vehicle

has a reservation at the third or the fourth conflict point at a time which overlaps with the

current vehicle’s schedule. Such conflicts are not resolved in the FEFS scheme so when the

FEFS scheme is used alone, it may result in intersection collisions. However, since the FEFS

scheme starts from the lane velocity and goes in the decrement mode to find FEFS velocity,

we can say that FEFS velocity is always less than or equal to the lane velocity. Hence, there

should not be any lane collisions. Also, since the FEFS scheme resolves various intersection

collisions, the probability of no intersection collision is expected to be more than that in the

previous stage. Verification results are given in Table 7.3 in rows corresponding to Vfefs.
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7.3.3 Model with FEFS Velocity and Window Velocity

Window scheme performs a window search operation within the previous reservations and

its main aim is to further reduce the delay after the FEFS scheme by finding a greater velocity

than the FEFS velocity if possible. It is claimed in the HAIM algorithm that the Window

velocity is guaranteed to return a collision-free velocity if it returns a velocity. And in case it

cannot find a window, the Vfefs will be the final velocity. So at this stage, the final velocity

is given by window scheme if the Vwindow exists; otherwise, the Vfefs is assigned as the final

velocity.

Since both FEFS and Window schemes return a velocity that is smaller than or equal

to the Lane velocity, there should not be any lane collision caused in this stage as well.

Also, as some of the conflicts unresolved by the FEFS scheme are resolved by the Window

scheme, we expect a greater probability of no intersection collision than in the previous

stage. Verification results are given in Table 7.3 in rows corresponding to Vfefs and Vwindow.

7.3.4 Complete Model with FEFS, Window and Reservation Velocities

Here we have all the constituent layers of HAIM, that means, this model should result in

a collision-free trip through the lane and the intersection. The logic flow shown in Fig-

ure 7.3a is used to decide the final velocity. Verification results are given in Table 7.3 in

rows corresponding to Vfefs , Vwindow & Vreservation. The verification times for this stage of

implementation are given in the Table 7.4.

Table 7.4: Verification timings

S.No. Number of Steps Verification Time
1 500 8.5 hrs
2 1000 1.63 days
3 2000 7.8 days
4 3000 20.47 days
5 4000 42.2 days
6 5000 88 days
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7.4 Implementation Verification

So far, we have introduced the HAIM algorithm, modeled it in the formalism of probabilistic

timed automata using the Uppaal-SMC tool and presented verification results corresponding

to four different stages of implementation. All this has been presented with an underlying

assumption that the modeling of the HAIM algorithm is done faithfully. In fact, the majority

of works in literature have this underlying assumption. This assumption leaves a possibility

of false positive. In an attempt to prove the sanity of the modeling performed, correctness

verification of the modeling itself is presented in this section.

7.4.1 Invariant Satisfiability

To prove that the model of HAIM correctly captures its properties, we define invariant con-

ditions that the model should satisfy at every instant of the run. These properties are directly

inherited from the HAIM algorithm itself. In other words, these properties represent invari-

ant conditions over the execution of the algorithm and their fulfillment would mean faithful

translation of the system. Following is the list of properties verified.

1. 0 ≤ Vfefs ≤ Vlane:

Satisfaction of this property will assert that Vfefs is always less than Vlane as claimed

in the HAIM algorithm. The encoded CTL property is shown on line number 1 of

Table 7.5

2. 0 ≤ Vwindow ≤ Vlane

Satisfaction of this property will assert that Vwindow is always less than Vlane as claimed

in the HAIM algorithm.The encoded CTL property is shown on line number 2 of Table

7.5

3. 0 ≤ Vreservation ≤ Vlane

Satisfaction of this property will assert that Vreservation is always less than Vlane as

claimed in the HAIM algorithm.The encoded CTL property is shown on line number

3 of Table 7.5

4. Vreservation ≤ Vfefs:
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As Vreservation considers all four CP instead of the only first two and as a result

Vreservation is the velocity that is minimum in all satisfying velocities of 4 conflict

points. The encoded CTL property is shown on line number 4 of Table 7.5

5. Vreservation ≤ Vwindow (if Vwindow exists):

As Vwindow finds window between reservations below the top of the reservation record,

Vwindow is not less than Vreservation if Vwindow exists. The encoded CTL property is

shown on line number 5 of Table 7.5

Properties queried in the model checker and their results are given in Table 7.5.

Table 7.5: Properties checked for invariant satisfiability

S.no Property Confidence

1 Pr([] [0, 1000] Vfefs >= 0 && Vfefs <Vlane) [0.99, 1]

2 Pr([] [0, 1000] Vwindow >= 0 && Vwindow <Vlane) [0.99, 1]

3 Pr([] [0, 1000] Vreservation >= 0 && Vreservation <Vlane) [0.99, 1]

4 Pr([] [0, 1000] Vreservation <= Vfefs) [0.99, 1]

5 Pr([] [0, 1000] Vwindow != 0 –>Vwindow >Vreservation) [0.99, 1]

Along with verifying the above specified properties using the model checker, we also

perform a simulation to visualize these properties. For this purpose, we plot the difference of

the Vfefs, Vwindow and Vreservation from Vlane as shown in Figure 7.6. A non-negative value

throughout this graph shows that Vlane is always greater than the rest of the three velocities.

Also, the relative magnitudes can be compared as specified by above properties. We can

also notice one thing from this graph and it is that Vfefs almost coincides with Vreservation

except only at a few time steps. This tells us that only at few occasions, Vfefs is different

from Vreservation. This confirms our claim that most of the conflicts are resolved at first two

conflict points.

Values of the probability outputs given in Table 7.3 shows that vehicles actually cross

the lane and intersection regions and reach their destination. However, to prove it, we insert

in the Master automata, a state called Cross before the Terminate state. We then ask the

simulator that how many templates are currently in the scenario and how many templates
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Figure 7.6: Difference of other velocities from Vlane.

has reached the Cross state. To get the output, the following query is passed to the verifier.

simulate 1 [<= 500] numOf(Master), sum(v : Master) (v.Cross)

The graph that this query generates will depict the number of Master templates present

at any given time in the simulation and also will give a spike of truth value of 1.0 every time

a master template reaches the Cross state. The graph is shown in Figure 7.7. We can observe

in this graph each spike of the truth value v.Cross corresponds to a decrease in the graph

of numOf(Master). This shows that Master templates actually traverse through the lane and

intersection and get terminated.

7.4.2 Artificial Error Injection Testing

We will now deliberately inject errors into our model and see whether the verifier reflects the

error in the model or not. If the error is reflected, it should mean that the model has deviated

from a setting that was indeed correct. One could argue that if a system is incorrect, then in-

troducing some error will make it more incorrect and hence, the error injection result should

not prove anything. However, in the context of the presented subsection, where verification

results have given affirmation of the correctness of the algorithm and also algorithm’s be-

havior is proved to be preserved by the model as established by invariant satisfiability, error

injection will indeed strengthen the confidence in overall implementation. To inject errors,

we choose Vehicle and Controller (IM) as these are the two prominent entities. To inject an

error in the IM, we choose the maximum satisfying velocity of all 4 CPs instead of the mini-
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Figure 7.7: Number of active templates at any given time and templates getting
terminated.

mum. This way the IM will resolve conflict only at one CP whereas, on other CPs, conflicts

may occur. The results obtained confirm that the error injected system is making overlapping

reservations which result in collisions as evident by the low probability in the output given

in the second last column of Table 7.3.

To model vehicle malfunctioning, we make some (every tenth) of the vehicles in the

simulation disobedient. These vehicles will just travel with their initial velocity disregarding

other vehicles and the intersection manager. Outputs corresponding to this error injection is

given in the last column of Table 7.3.

7.5 Discussion

Results given in Table 7.3, along with implying the correctness of the HAIM algorithm,

also verify the claimed behaviors of its constituent four heuristics. Starting with the first

stage of implementation which corresponds to Vlane only, we obtain maximum confidence

for no lane collision and non-maximum confidence for no intersection collision, which is

what we expected. As all other velocities are less than or equal to Vlane, we would expect

that all of them result in maximum confidence in no lane collision. In the second stage

of implementation, we use Vfefs only. As Vfefs resolves some of the intersection conflicts
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but not all, we would expect the confidence for no intersection collision at this stage to be

not maximum but more than that in the case of Vlane. Similarly, as Vwindow resolves some

of the conflicts unresolved by Vfefs but not all, we expect at this stage greater confidence

for no intersection collision but not maximum. The final stage shall resolve all the conflicts.

Hence, it should result in maximum confidence for no lane collision as well as no intersection

collision. As we can see in Table 7.3, all these expectations are met in each set of experiments

corresponding to different values of K. Though the numbers presented in Table 7.3 does not

contain much significance when considered alone. However, the evolution of these results

with an increasing number of steps and with an increasing level of implementation of the

algorithm, tells us about the behavior of the stages of implementation.

The methodology adopted to represent vehicles and their occupancy inside lane and the

intersection has a small memory footprint, results in very efficient collision detection, and

captures essential dynamics even in the limited resources of the verification tool. The geom-

etry of the vehicle while crossing the conflict point is considered using the angle of intersec-

tion and extended occupancy. By performing the verification of the model, we demonstrate

how internal verification can be done and argue about its importance in the complete verifi-

cation. Apart from satisfying invariants, we perform two error injections in the system, one

in the IM and another in the vehicle. However, the first error injection in which the IM is

made to work in an erroneous manner should result in more number of collisions. This is be-

cause the IM will make incorrect reservations for all the incoming vehicles. Whereas, in the

second error injection, only some of the vehicles are made disobedient. Due to this reason,

we expect the probability of no intersection collision in the first erroneous system to be less

than the second one. Meeting of all these expectations added with the proof of termination

of Master templates, gives us the evidence of faithful modeling of the overall system. In

fact, the stage-wise implementation and verification has helped us a lot in surfacing errors in

implementation numerous times during the development of the HAIM model.

The query we give to the verifier translates to, “What is the probability that there is

no lane/intersection collision at all when the system is simulated for K number of steps”.

Since Vlane, Vfefs and Vwindow do not guarantee the no-intersection-collision condition, the

probability for no-intersection-collision for the first three stages of implementation does not

show maximum confidence. Also, this probability should decrease with an increase in the
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number of steps. Same is the case with error injected systems as well. For a simulation with

a sufficient number of steps, these values should reach the minimum confidence range of the

verifier however, the choice of simulation steps is restricted by the verification time. Though

the work presented considers verification for 5000 steps, it demonstrates how we can model

an intersection scenario, vehicle behavior, and collision detection and verify with limited

resources of a model checker.

Verification results obtained for the model corresponding to the complete model with all

four heuristic-levels give absolute confidence in resolving all conflicts and giving a colli-

sion free intersection control implementation. The confidence shown by the verifier for the

complete heuristic is [0.99, 1] which represents the absolute confidence by the verifier. This

output shows that the actual probability of no collision in the scenario can be anything be-

tween 0.99 and 1.0, both values included. This absolute confidence is shown only when in all

the runs, verifier could not find any counter example and that is the reason it includes a prob-

ability of 1.0 in its result. Had it been the case that it found even a single counter-example,

we would not have received this output. In SMC, the required precision can be adjusted to

trade off with the number of runs verifier performs to give results which is a direct measure

of the verification time the verifier takes.

Due to restriction on the number of steps for which verification is done because of the

timing requirements, the present verification scheme is carried out for up to 5000 steps of 0.1

seconds each. Although, it is the first step, we believe it’s a step in the right direction. The

verification time observed in our procedure reflects the observations made in [138], which

states that the timing requirements for testing an autonomous vehicle technology could take

impractical amount of time. However, further research dedicated to decrease the verification

time using parallel computations, state-space reduction, etc. would result in multi-fold re-

duction in it and would make verification play a critical role in generating correctness proofs

for autonomous vehicles, related hardware and software modules and associated algorithms

in the coming future.
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7.6 Summary

In this chapter, we performed the correctness verification of the proposed HAIM algorithm

against the "no collision" property. For this purpose, we used the Uppaal-SMC model

checker which accepts input-system modeled in a formalism similar to the probabilistic time

automata. Using quantitative model checking that gives results in probabilistic terms, along

with verifying the "no collision" property, the claimed behaviors of the four heuristic levels

of the HAIM algorithm are verified by applying statistical model checking at every stage

of HAIM implementation. Later, to verify faithful modeling of the system, we performed

implementation verification using invariant satisfiability, artificial error injection, and simu-

lation based verification. Results obtained give evidence of the "no collision" property and

faithful modeling with absolute confidence.
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Chapter 8

Conclusion and Future Research

Directions

8.1 Conclusion

In this dissertation, we presented our contributions with the objective of utilizing the capabil-

ities of CAVs for enhancing the traffic management strategies in the form of two algorithms,

one each for (i) cooperative lane changes of a group of vehicles and (ii) intersection man-

agement of autonomous vehicles. Before that, we introduced a new ITS procedure called

Lane Sorting and discussed how it stands out of the existing ITS procedures of cooperative

lane changing and platooning. The lane sorting procedure is introduced with an intention to

accurately define objectives and requirements for scenarios that involve simultaneous lane

changes of a group of vehicles within the available length of road. Defining these require-

ments and objectives accurately shall result in dedicated efforts that cater to such scenarios.

The proposed algorithm for lane sorting called CLS implements a cooperative algorithm

in which incoming traffic is divided into independent batches called frames. To sort ve-

hicles in a frame, a non-linear programming problem reducible to MILP was formed and

then solved for optimum vehicle positions in the frame. The independence of every frame

along with ensuring safety also offers freedom in terms of communication and computation

model used and also in terms of redesigning of the cooperative lane sorting procedure for

different applications for instance the CLS algorithm could also be used for cooperative lane
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change of individual vehicles at highways. Simulations were performed for various traffic

densities to obtain the average length of road required to sort all vehicles with different val-

ues of adjustable parameters (Vcommon, and frameLen). Repeated simulations results can be

recorded for any given scenario to create a look-up table that can be referred to set the values

of parameters such that vehicles are sorted within the available length.

The next contribution of this dissertation is the algorithm for intersection management

of autonomous vehicles. We propose the Heuristic Autonomous Intersection Management

(HAIM) algorithm which is a four-leveled heuristic algorithm that resolves all the conflicts

in lane and intersection progressively. The HAIM algorithm demonstrates an application of

the previously defined CLS algorithm by considering sorted traffic with respect to the desti-

nation direction at the intersection. The lane discipline along with pre-defined trajectories at

intersections greatly reduced the complexity of the problem. Out of the four heuristics, the

first one resolves all the rear-end collisions that a vehicle can have in lane whereas the later

three heuristics progressively resolved all intersection conflicts. A comparative analysis for

the HAIM algorithm was performed with two existing autonomous intersection management

algorithms and also with traffic light control. Simulation results showed that the HAIM al-

gorithm results in a minimum trip delay due to scheduling out of all. Also, the HAIM being

a heuristic algorithm does not involve any computationally intensive procedure and has a

complexity of O(n) with n being the number of vehicles incoming to the intersection.

The CLS and HAIM algorithm, both make use of a constant velocity traversal of vehicles.

Having minimum changes in velocity offers benefits such as maximum comfort, minimum

fuel consumption, maximum economy, minimum exhaust, etc. Also having a common ve-

locity for all vehicles in a scenario allows us to keep a lower value of inter-vehicle distances

such as in platooning and also in the CLS algorithm.

The next major contribution of this dissertation and the final one is the formal verifica-

tion of the proposed HAIM algorithm to guarantee that all the lane and intersection conflicts

are indeed resolved in an intersection controlled by the HAIM algorithm. We make use of

the statistical model checking technique for this task. Along with verifying the no-collision

property, techniques are employed to verify that faithful modeling of the scenario, vehicle

behavior, HAIM algorithm, and collision detection were performed. For this purpose, a

systematic combination of techniques such as internal verification using invariant satisfiabil-
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ity, artificial error injection, and simulation-based verification was used. Verification results

obtained showed absolute confidence in no collision property and faithful modeling of the

overall system. The employed verification procedure also gave evidence of satisfaction of

the claimed behaviors of the HAIM algorithm.

8.2 Future Research Directions

It is critical to put dedicated efforts towards exploration and implementation on how tim-

ing requirements of verification of autonomous vehicles and associated algorithms can be

reduced for instance, by parallel computation. We would pursue this line of research in the

future.

Enhancing the efficiency and safety of lane changing operations by utilizing cooperative

property of CAVs could make a huge difference in traffic management systems as lane

changing is one of the most common maneuvers in driving. Extending the proposed CLS to

dedicated scenarios such as highways, urban roads, curved roads, etc. and investigating the

improvements it results could be a possible advancements of the presented work.

The proposed HAIM algorithm has shown promising results and extending it to a traffic that

schedules a traffic involving both autonomous vehicles and manually driven vehicle would

be an extension that will find relevance in the near future.

Along the similar line as verification of the HAIM algorithm, we would like to pursue the

verifciation of the CLS algorithm to ensure the property of collision freedom. We would also

like to enumerate various scenarios and their respective maneuvering algorithms, especially

those in which there is a chance for collision. Then verify such algorithms to evaluate the

safety property of "collision freedom".
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