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ABSTRACT
With the continuous increase in cases of enemy attacks, road accidents, goods traf-

ficking, and burglary attempts, surveillance is necessary for the safety of the country,
human wealth, and property. Since the inception of RADAR (during the second World
War), which is an acronym for radio detection and ranging, radar has been extensively
used for surveillance and monitoring. In-fact with continuous technological advancement
and because of the advent of various digital signal processing schemes, researchers are
continuously working to enhance the performance of radar systems. The two essential
aspects of radar systems are detection and estimation. The detector gives an estimate of
the number of targets present in the surveillance environment. Subsequently, the estimator
yields the estimates of the location and speed of the detected targets. Practically, the
reflected signal processed for the detection of targets and estimation of their range and
velocity, are heavily perturbed by thermal noise and clutter. Consequently, perturbation
because of thermal noise and clutter hinders the perfect detection of targets and accurate
estimation of their location and velocity.

The goal of this thesis is to propose new techniques for target detection and estimation
of the target’s range and velocity by suppressing the effects of thermal noise and clutter.
For this purpose, in this thesis, the following works are done.

Firstly, the orthogonal frequency division multiplexing (OFDM) based radar system
is explored for the detection of a small boat in sea clutter. For this, we propose a
technique to generate radar return for OFDM waveform using collected radar return data
for stepped frequency waveform. We then derive the system model for the estimated radar
return data specific to the OFDM waveform. Further, a detection test is proposed for the
derived signal model and surveillance environment. The close match between the derived
analytical expressions and simulation results validates the performance of the proposed
detector.

For estimation of the target’s range and velocity, an adaptive estimator based on a
sparse kernel least mean square algorithm is proposed. Being an adaptive algorithm, the
estimates are obtained by low computational complexity, and the accuracy of estimates is
guaranteed by the convex nature of optimizing cost function in reproducing kernel Hilbert
space. Subsequently, an adaptive kernel width optimization technique is proposed to
further lower the computational complexity of the proposed estimator. An expression for
the Cramer-Rao lower bound (CRLB) is derived and validated for the proposed estimator
over linear frequency modulated, and OFDM radar systems.

In the next work, we propose kernel maximum correntropy based estimators for range
and velocity estimation in non-Gaussian clutter. Additionally, an adaptive update equation
is derived for optimization of the kernel-width, which further lowers the dictionary-size,
and variance of the proposed estimator. For the performance evaluation of the proposed
estimators, an expression is derived for the CRLB using a modified Fisher information
matrix (FIM).

Next, a kernel minimum error entropy (KMEE) based estimator is proposed for the es-
timation of multiple targets’ direction of departure (DOD), the direction of arrival (DOA),
and the Doppler shift with multiple input multiple output radar in non-Gaussian clutter.
The computational complexity of the proposed KMEE based estimator is reduced by in-
corporation of novelty criterion based sparsification technique. Analytical expressions are
derived for the variance of estimation-error in DOD, DOA, and Doppler shift. Further,
for assessing the accuracy of the proposed estimator, the CRLB is calculated using the
Modified FIM.



Lastly, two efficient low complexity estimators, namely, the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF), are proposed. The EKF is advantageous
due to its implementation simplicity and fast computation; however, a derivative-based
implementation limits its use. The UKF outperforms the EKF and offers better stability
due to a derivative-free implementation. Simulation results reveal improved accuracy
achieved by the proposed EKF and UKF based estimators. Moreover, the EKF and
UKF based estimators show a closer match with the CRLBs compared with the existing
approaches along-with low computational complexity.
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ĥ estimated radar channel impulse response
tr trace of a matrix
c non-Gaussian K distributed clutter
e: vector estimation error at : Cℎ iteration
r(:) radar return for single antenna radar system at : Cℎ iteration
r: radar return for multiple input multiple output radar system at : Cℎ iteration
w additive white Gaussian distributed random vector
z complex correlated Gaussian distributed random vector (speckle component of c)

: unknown weight matrix inH at : Cℎ iteration
�w covariance matrix of w
�z normalized covariance matrix of z
� covariance matrix of the joint perturbation of c and w
(: modeling error
v: measurement noise
Q: covariance matrix of (:
R: covariance matrix of v:
P: |: covaraince matrix of state vector
F: state matrix
H: measurement matrix

xvi





Chapter 1

Introduction

In this Chapter, firstly, the motivation is given. Subsequently, various topics that are used

to develop the detection and estimation algorithms in forthcoming Chapters are discussed.

The Chapter ends with a thesis outline and a summary of the contribution of the thesis.

1.1 Motivation

In the various military, civilian and autonomous vehicle applications, to curb the rapid

increase in enemies attempts of infiltrating a country’s border and vehicles collision, ef-

ficient surveillance and monitoring system is needed. Since the inception of RADAR

(which is the acronym for Radio Detection and Ranging), during World War II, radar

systems are enormously used for monitoring and tracking in various military, civilian,

and autonomous vehicle applications [1, 4]. Eventually, with the advent of digital signal

processing and the rapid increase in digital technology, the earlier radar systems have been

evolved in terms of yielding better performance in a variety of real environments. The two

main performance evaluation criterion for the radar system is detection and estimation.

Studies have shown and proved that in many cases, the detection performance of the radar

system could be enhanced by exploiting diversity provided by processing sub-carriers of a

multi-carrier waveform individually [5–7]. Therefore, there is a possibility of developing

a technique to employ multi-carrier waveform like OFDM waveform in radar systems

mounted for the surveillance of the heavily perturbed marine environment. Further, the
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conventional estimation techniques are based on batch processing [2, 8, 9], i.e.; the radar

observations are stored and then processed simultaneously. This makes the conventional

estimators time-consuming and unsuitable for radar applications demanding fast process-

ing of data. Hence, there is a scope of developing adaptive estimation techniques suitable

for tracking and monitoring applications as they provide an online estimate of required

parameters. Furthermore, in practice, the radar return is affected by the clutter, this makes

the conventional estimators unsuitable for practical employment as the conventional es-

timation techniques are developed assuming the absence of clutter [2, 8, 9]. Hence,

there is a scope of developing adaptive estimation techniques capable of dealing with the

deleterious effects of non-Gaussian clutter. In a nutshell, to enhance the detection and

estimation performance of the various single antenna and multiple input multiple output

(MIMO) radar systems, in this thesis, efficient detection and different adaptive estimation

techniques along with Kalman filter based estimation techniques are developed.

1.2 Radar Systems

As illustrated in Fig. 1.1, in a basic radar system, the baseband pulsed waveform of

specific bandwidth and modulation (chosen specific to the application) is generated by

the pulse generator. For the surveillance of the radar environment, before transmission,

the baseband waveform is up-converted to a broadband pulsed waveform centered at a

very high-frequency via up converter. In a mono-static radar system, the same antenna

system is used for transmission of waveform and reception of reflection from the target.

The duplexer separates the transmitted waveform and received reflection, and diverts

them to the antenna and receiver section, respectively. After reception of reflection from

the target, commonly called radar return, before further processing, the radar return is

down-converted to baseband frequency. Subsequently, the radar return is discretized and

converted into discrete samples, and the resultant radar observations are arranged in a

2D radar matrix with row and column corresponds to slow time usually termed as pulse

repetition interval (PRI), and fast time range gate, respectively [1, 4]. After that, the radar
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observations are processed for the surveillance and monitoring of the environment. The

detector gives an estimate of the number of targets present in the surveillance environment.

Subsequently, the estimator yields the estimates of the corresponding range and velocity

of the detected targets.

Figure 1.1: Block diagram of basic radar system [1]

In this thesis, the developed detection and estimation algorithms are tested over the

two basic types of radar systems, single antenna radar systems and multi-antenna radar

systems. Particularly, in Chapter 2, Chapter 3 , Chapter 4, and Chapter 6 the algorithms are

developed for single antennamono-static radar systems and inChapter 5, the algorithms are

developed for multiple antenna radar system. Therefore, in the forthcoming subsections,

a single antenna radar system and MIMO radar system are briefly discussed.

1.2.1 Single Antenna Radar Systems

In this work, three basic types of single-antenna radar systems, LFM, SF, and OFDM

radar systems, are used to validate the performance of proposed detection and estimation

algorithms. As the name implies, the three types of radar systems use different modulation

techniques for the baseband pulse according to the application and bandwidth requirement.

For instance, LFM radar and SF radar are being used for a very long time for various

military and civilian applications. In comparison to LFM and SF radar, OFDM radar is

newer and introduced with the intent of combining the functionality of communication

systems and radar systems [7, 10, 11].

Schematic of LFMwaveform for single PRI (= )PRI) transmitted by LFM radar is shown
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Figure 1.2: Schematic of radar waveform transmitted in (a) LFM radar, (b) SF radar, and
(c) OFDM radar.

in Fig. 1.2a. The waveform is simulated according to the specifications given in Table.

1.1. Contrary to single tone pulsed radar waveform, the frequency of the LFM waveform

increases linearly. This linear modulation of frequency reduces the unwanted side-lobes

in the pulse compression output. Further, the schematic of the SF waveform for the group

of 25 PRIs is shown in Fig. 1.2b. As shown in Fig. 1.2b, unlike LFM radar, instead of

transmitting the waveform with linear increment in one PRI, the SF radar transmits the

chunk of single tone pulses in the group of PRIs. The pulses are centered at different

frequencies, and these frequencies are obtained by consecutively increasing the frequency

of the starting pulse. The specifications of the SF waveform are given in Table. 1.1. The
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OFDM waveform transmitted by OFDM radar is illustrated in Fig. 1.2c, the waveform is

simulated by the specifications given inTable. 1.1. The transmittedOFDMwaveform is the

summation of the finite number of sub-carriers, which oscillates with frequencies; integer

multiple of the reciprocal of the pulse width. The linear relation between the frequency and

pulse width of the sub-carriers guarantees the orthogonality between sub-carriers. This in

turn makes the OFDM radar bandwidth-efficient in comparison to other conventional radar

systems. Moreover, in detection, the processing of each OFDM sub-carrier separately at

the receiver provides gain in performance over conventional waveforms [5, 6].

Table 1.1: Example specifications for LFMwaveform, SFwaveform, andOFDMwaveform
shown in Fig. 1.2

LFM waveform Values SF waveform Values OFDM waveform Values
Number of frequencies 8 Number of channels 25 Number of sub-carriers 4
Frequency interval 625 KHz Frequency step size 5 MHz Subcarrier spacing 1.25 MHz
Center frequency 9 GHz Center frequency 9 GHz Center frequency 9 GHz

Bandwidth 5 MHz Bandwidth 125 MHz Bandwidth 5 MHz
Pulse duration 0.1 `s Pulse duration 0.2 `s Pulse duration 1 `s

PRI 0.1 ms PRI 0.1 ms PRI 0.1 ms

1.2.2 Multiple Input Multiple Output Radar System

In a communication system, multiple antennas with diversity in transmitting signal has

proved to provide performance gains over a single-antenna radar system. With the intent

to improve the performance of a radar system, the concept of MIMO radar has been

introduced, and similar to communication systems use of multiple antennas to transmit

orthogonal radar waveform and receiving the reflections from multiple antennas is proven

to be beneficial for radar systems. For instance, contrary to a standard phased-array radar,

which too have multiple antennas and transmits scaled versions of a single waveform, a

MIMO radar system can transmit via its antennas multiple probing signals that may be

chosen quite freely. Particularly, in MIMO radar, if the transmitter has #CG antennas and

receiver has #AG antennas, then #CG#AG different signals are processed at the receiver for

detection of targets and estimation of their parameters. Processing #CG different reflections

for each receive antenna provides an extra look at the targets and enhances the performance

of the radar system. To validate the improvement in the performance of MIMO radar over

a single-antenna radar system, receiver operating characterstics (ROC) of the detector
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based on generalized likelihood ratio test (GLRT) [12] for the different number of antenna

configuration is illustrated in Fig. 1.3. As shown in Fig. 1.3, for same probability of

false alarm (% FA) and for #CG = 2 and #AG = 1, MIMO radar system provides significant

gain in probability of detection (% D) over antenna configuration with #CG = 1 and #AG = 1

which corresponds to single antenna radar system. Further, performance of the MIMO

radar system increases with increase in #CG and #AG , and this provides a strong argument

to replace the single antenna radar system with the MIMO radar system. Further, in spite

of adequate research in the MIMO radar system, there is still a scope of development,

particularly in enhancing the performance of MIMO radar system in the presence of non-

Gaussian clutter. Therefore, with the objective of improving performance of the MIMO

radar system, in Chapter 5, estimator capable of estimating the location (in terms of the

direction of arrival (DOA) and direction of departure (DOD)), and velocity of multiple

targets in the presence of non-Gaussian clutter is developed.
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Figure 1.3: ROC of GLRT detector for different number of transmit and receive antenna.
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1.3 Introduction to Kernel Adaptive Filter based Estima-

tion Techniques for Radar Systems

In a radar system, the accurate estimation of the target’s range and velocity is not only es-

sential for determining the position and state of the target but also essential for continuous

tracking of the target. For years estimators based on batch processing of radar observa-

tions like a Fourier transform (FT), least squares (LS), and multiple signal classification

techniques commonly known as MUSIC are used for the estimation [2, 8, 9, 13]. In batch

processing techniques, the observations are first accumulated and processed in a group

to extract the significant information, which makes the conventional non-adaptive estima-

tors time/computationally expensive to compute the estimates of target parameters. As a

result, the batch processing techniques are not suitable for radar applications demanding

fast processing of radar observations, particularly in applications like military surveillance

and target tracking. Moreover, with an assumption of Gaussian distribution for thermal

noise, the solution yield by FT and LS is based on the maximum likelihood (ML). In radar

returns (shown in 3.9, 3.20, and 4.7), as the required parameters resemble with targets’

range and velocity is hidden as frequency of an exponential [1, 4], the solution provided

by ML doesn’t have a closed-form solution [14]. Consequently, the solution relied on

approximation and this results in sub-optimality of the estimates. Because of the limi-

tations mentioned above of conventional estimation techniques, there is a scope of novel

and efficient estimators capable of accurately estimating the target’s unknown parameters

hidden as frequency in radar returns perturbed by thermal noise and clutter.

For single antenna radar system, the generalized radar return for<Cℎ pulse in a coherent

pulse interval (CPI) of " pulses and ;Cℎ frequency/time sample can be mathematically

expressed as

A (<, ;) = exp( 92c<\1) exp( 92c;\2) + 2(<, ;) + F(<, ;), (1.1)

where \1 and \2 are the unknown parameters corresponding to target’s range and velocity,
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respectively, 2(<, ;) is the clutter sample and F(<, ;) is the thermal noise.

In (1.1), it should be noted that, since we are concerned with the estimation of the

target’s range and velocity, the term corresponding to the target’s complex amplitude has

been omitted (considering the target is the ideal reflector).

As illustrated in (1.1), the parameters of interest (\1 and \2) are related to the radar

return (A (<, ;)) via complex exponential. Further, in (1.1), for given \1 or vice versa, if the

inverse relationship
(
6(A (<, ;)) = {\1, \2}

)
between the unknown parameter set ({\1, \2})

and A (<, ;) is known, the set of unknown parameters {\1, \2} can be efficiently estimated.

However, estimation of 6(·) is non-trivial and not straightforward. Nevertheless, 6(·)

can be estimated by adaptive kernel based function approximation algorithms commonly

known as kernel adaptive filter (KAF)s.

In wireless communication, the KAFs are applied to perform various function approx-

imation problems, for instance, to recreate/estimate the transmitted symbols at the receiver

from received symbols affected by channel non-linearity and thermal noise [15–18]. In

this thesis, for the first time the problem of estimating \1 and \2 utilizing (1.1) is dealt

with the perspective of solving function approximation problem. Particularly, in Chapter

3, Chapter 4, and Chapter 5, various KAFs based estimators which include estimators

based on kernel least mean square (KLMS), kernel maximum correntropy (KMC), and

kernel minimum error entropy (KMEE), respectively are developed and tested over dif-

ferent radar systems perturbed by thermal noise and clutter. Therefore, in this section, a

brief introduction to KAFs based estimation techniques is given.

For estimation, at the : Cℎ instant, estimators based on KAF firstly transform the radar

return (r(:)) for all < and ; and for given \1 and \2 to reproducing kernel Hibert space

(RKHS) (H) via an implicit mapping function Φ(·). After transforming r(:) to H, at : Cℎ

instant for an arbitrary weight vector 8(: − 1) in H the estimate of 6(·) which in turn give

the estimate of desired parameter (3 (:)) can be written as

3̂ (:) = 6̂(r(:)) = 〈8(: − 1),Φ(r(:))〉H (1.2)

In 1.2, from basic adaptive filtering theory, it is explicit that for some optimum 8(>),
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the obtained estimate (3̂ (:)) can approximately resemble to the true value (3 (:)) s.t.

3̂ (:) = 〈8(>),Φ(r(:))〉H ' 3 (:). The 8(: − 1) reach the 8(>) by iteratively updating

8(: − 1) as follows

8(:) = 8(: − 1) − `OOO8(:−1)J: (8) (1.3)

where J: (8) is the suitable cost function, and 4(:) = 3 (:) − 〈8(: − 1),Φ(r(:))〉H is the

error in estimation.

As shown in (1.3), in order to update 8(:) iteratively (with increment in :), J: (8)

is successively optimized in terms of 8(: − 1) till the minimum of 4(:), which in-fact

corresponds to the closeness of 8(: − 1) to 8(>) is reached. For optimum working

of the estimator based on KAF, the J: (8) will be chosen according to the statistics of

the observation. For instance, if the observation is perturbed by Gaussian distributed

thermal noise, mean square error (MSE), i.e. J: (8) = E[|4(:) |2] is the suitable criterion

for updating 8(:). However, in case the observation is perturbed by non-Gaussian

clutter, the MSE will not yield suitable results, and therefore, some suitable optimization

criterion like maximum correntropy criterion (MCC) and minimum error entropy (MEE)

is needed. Different optimization criterion corresponds to a different type of estimators

based on KAFs. In this thesis, particularly in Chapter 3, Chapter 4, and Chapter 5, since,

the estimation is performed in the presence of thermal noise and clutter, the employed

optimizing criterion, cost function, and type of KAF based estimators in accordance with

the type of statistics of perturbation are described in Table 1.2.

Table 1.2: Types of criterion, cost function, and KAF based estimators according to a
different type of perturbation

Criterion Cost function (J: (8)) Perturbation KAF
MSE E[|4(:) |2] Thermal noise KLMS
MCC E

[
exp

(
− 42 (:)

2f2
2

) ]
Thermal noise and clutter KMC

MEE E[q(P4(:) (4(:)))] Thermal noise and clutter KMEE
where f2 is the correntropy Gaussian kernel width, P4(:) (4(:)) is the density function of
4(:), and q is the entropy function.

For illustration, the performance of estimators based on KLMS, KMC, and KMEE
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Figure 1.4: Average NMSE in the estimation of Doppler shift inMIMO radar system using
estimators based on KLMS, KMC, and KMEE in the presence of (a) Gaussian noise, and
(b) Gaussian noise and non-Gaussian clutter.

for estimation of Doppler shift in MIMO radar in the presence of Gaussian distributed

thermal noise, andGaussian distributed thermal noise plus non-Gaussian distributed clutter

is shown in Fig. 1.4a, and Fig. 1.4b, respectively. Particularly, as shown in Fig. 1.4a,

in the presence of Gaussian noise, minimum and approximately equal normalized MSE

(NMSE) is achieved by the estimators based on KLMS, KMC, and KMEE. This is because

estimators based on KLMS, KMEE, and KMEE is capable of dealing with Gaussian

noise. On the contrary, since the estimator based on KLMS, is not capable of dealing

with the effects of non-Gaussian clutter, higher MSE is achieved by the estimator based

on KLMS, as shown in Fig. 1.4b. However, estimators based on KMC and KMEE, due

to the optimization of MCC and MEE, handles the effect of non-Gaussian clutter and

consequently, yield minimum MSE in the estimation.

In Chapter 3 and Chapter 4 (where scalar parameter estimation is considered), if \: is

the parameter true value to be estimated and \̂: is the estimate of \: , then the NMSE for  

iterations is defined as 1
 

∑ 
:=1

(\:−\̂: )2
\2
:

. Similarly, in Chapter 5 (where vector parameter

estimation is considered), if ): is the parameter true value to be estimated and )̂: is the

estimate of ): , then the average NMSE for  iterations is defined as 1
 

∑ 
:=1
‖):−)̂: ‖2

‖): ‖2
.

10



1.4 Introduction toKalmanFilter basedEstimationTech-

niques for Radar Systems

Referring to radar return model A (<, ;), illustrated by (1.1) of Subsection 1.3, the unknown

information corresponds to range and velocity of the target, denoted by \1, and \2, re-

spectively, are assumed constant for processing interval of CPI of " pulses. This follows

assumption of constant target velocity a) << 2
2� , i.e. for ) = ")PRI, target remains in

the same range gate. However, for some radar applications like target tracking, where

continuous monitoring of the moving and accelerating target is necessary, the above as-

sumption about the target is ruled out [1, 4, 19]. Therefore, for such radar applications, at

an arbitrary time interval of : , if the target is assumed to move with a velocity s.t. causing

the target’s Doppler shift to increment by Doppler resolution
( 1
)PRI"

)
which in turn results

in increment of delay by delay resolution
( 1

2�
)
, the mathematical model defining the state

of the target, is formulated as

):+1 = 5 (): ) + (: = ): + Δ) + (: , for : = [1, 2, . . . ,  ] (1.4)

where ) = [\1 \2]) , Δ) = [ 1
2�

1
)%'�"

]) , and (: represents error in modeling the dynamic

state of the target.

Using (1.1) and (1.4) with an assumption of perturbation due to thermal noise, the

measurement model defining the radar return corresponding to the state model (1.4) is

given by

y:+1 = ℎ(x:+1) + v:+1 (1.5)

where ℎ(x:+1) =


Re (exp( 92c<):+1(1)) exp( 92c;):+1(2)))

Im (exp( 92c<):+1(1)) exp( 92c;):+1(2)))

 , and v: represents mea-

surement noise.

The problem of estimating delay and Doppler shift utilizing A (<, ;) is formulated

as state-space estimation problem consist of state and measurement model as (1.4), and
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(1.5), respectively. The celebrated Kalman filter has been effectively used for handling

the state space estimation problem [19–22]. Further, in Chapter 6, non-linear versions of

the Kalman filter called the extended Kalman filter (EKF), and an unscented Kalman filter

(UKF) is developed and found to outperform the conventional estimator based on FT and

adaptive estimator based on KLMS developed in Chapter 3. Therefore, in this section, a

brief introduction about the basic working of the Kalman filter is given.

The Kalman filter works in two phases a) Prediction and b) Update, over time the filter

recursively repeats the prediction and update step until the filter converges to a minimum

MSE level. The two phases of the Kalman filter are described as follows:

Prediction: Starting with the initial prediction of state vector, )̂>, and initial state error

covariance matrix P> = E[)̂> )̂)> ], the state vector and state error covariance matrix at : Cℎ

time instant are predicted by

)̂: |:−1 =F:−1)̂:−1 + (:−1

P: |:−1 =F:−1P:−1F):−1 +Q:−1 (1.6)

where F:−1 is the state matrix, and Q:−1 = E[(:−1(
)
:−1] is the process covariance matrix

Update: Subsequently, following prediction, using the Kalman gain matrix, K: =

P:H)
:
(H:P:H)

:
+ R: )−1 (where H: is the measurement matrix, and R: = E[v:v): ] is the

measurement noise covariancematrix), the predicted state vector and state error covariance

matrix is updated by

)̂: = )̂: |:−1 +K: (y: −H: )̂: |:−1)

P: = (I −K:H: )P: |:−1 (1.7)

In Chapter 6, two estimators based on the non-linear extension of Kalman filter and

popularly known as EKF and UKF are developed and tested for LFM radar system. The

obtained MSE convergence plot in the estimation of delay for the LFM radar system using

estimators based on EKF, UKF, and KLMS Modified-novelty criterion (NC) is shown
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Figure 1.5: Normalized MSE convergence plot in the estimation of delay using estimators
based on EKF, UKF, and KLMS Modified-NC.

in Fig. 1.5. As shown in Fig. 1.5, estimators based on EKF and UKF outperforms the

estimator based on KLMS Modified-NC (developed in Chapter 3) and achieves minimum

MSE of order 10−2 in the estimation of delay. Further, as illustrated in Fig. 1.5, UKF

provides slightly lower MSE than EKF. The detailed working of the developed estimators

based on EKF and UKF is given in Chapter 6.

1.5 Non-Gaussian K-Distributed Clutter

In this thesis, particularly in Chapter 2, Chapter 4, and Chapter 5, to consider the effect of

the non-Gaussian radar return, the clutter c is modeled by a spherically invariant random

process (SIRP). SIRP is mathematically described by a local Gaussian distribution with

variance modulated by an independent scalar random process [23] and [24]. Hence, the

clutter c can be mathematically modeled as

c ∈ C#×1 =
√
Uz (1.8)

where U ∈ R is a Gamma random variable with shape and size parameter, as a (controls

the non-Gaussianity of the clutter) and `2 (the average power of the clutter), respectively,

13



independent of z, and z is a complex correlated multi-dimensional Gaussian vector with

a normalized covariance matrix �z and zero mean vector, i.e, z ∈ NC(0,�z). As U is

Gamma distributed, c follows distribution, which is the generic distribution formodeling

clutter.

The probability density function (PDF) of U is given by [25]

PU (U) =
1

Γ(a)

(
a

`

)a
g(a−1) exp

(
−

(
a

`

)
U

)
, U ≥ 0. (1.9)

For a given value of texture enhancement U, and for #-dimensional vector z, PDF of

c is given as

Pc|U (c | U) =
1

c# |�c|U |
exp(−c��−1

c|Uc), (1.10)

where �c|U is given by

�c|U = E{cc� | U} = E{
√
Uz
√
Uz�} = U�z. (1.11)

Substituting (6.13) in (1.10) yields the final expression for the PDF of c given U as,

Pc|U (c | U) =
1

c#U
# |�z |

exp

(
− c��−1

z c
U

)
. (1.12)

Finally, expression for the PDF of K-distributed clutter (c) is obtained by averaging

(1.12) with respect to U and is expressed as

P(c) =
∫ ∞

0
Pc|U (c | U)PU (U)3U. (1.13)

1.6 Thesis Outline and Contributions

The organization and contributions of the thesis are described as follows:

Chapter 1. Introduction: In this Chapter, firstly, the motivation behind the work is

given, which is followed by a brief discussion of various topics used in the development
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of detection and estimation algorithms. The thesis outline and a summary of thesis con-

tributions are given in the last.

Chapter 2. Target Detection in Sea Clutter using OFDM Radar: In this Chapter,

a method is developed for the detection of a small boat in the sea environment using the

OFDM waveform. Firstly, a technique is proposed to generate radar return for OFDM

waveform using collected real-time radar return data for stepped frequency waveform.

Subsequently, the mathematical model for the estimated radar return data corresponding

to the OFDM waveform is derived. Further, a detection test based on modified GLRT is

proposed for the derived signal model and surveillance environment. Simulation results

reveal the improvement in target detection employing OFDMwaveform over SF waveform

and conventional normalized matched filter (NMF). The performance is further improved

as the number of OFDM sub-carriers increases.

Chapter 3. Range and Velocity Estimation in Gaussian Noise: In this Chapter,

adaptive estimators based on the KLMS algorithm are proposed. Further, to facilitate

sparse learning without affecting estimator’s performance, Platt’s NC is used to limit the

increasing size of the training samples, result in estimator based on KLMS-NC. Addition-

ally, a technique for tuning the kernel width from observations is proposed and is found to

be suitable in terms ofMSE and computational complexity. Furthermore, an analytical ex-

pression is derived for the Cramer-Rao Lower Bound (CRLB) of the proposed estimators.

Lastly, from the simulations, it is observed that the variance of the estimates corresponding

to the proposed estimators is lower than the existing non-adaptive estimation techniques,

and is closer to the achievable CRLB.

Chapter 4. Range and Velocity Estimation in non-Gaussian Clutter: In this Chap-

ter, for estimation of target’s range and velocity in the presence of non-Gaussian clutter, two

new KMC based estimation algorithms are proposed. Estimation is performed utilizing

MCC in RKHS, which provides accurate estimate in the presence of non-Gaussian clutter.

Further, to facilitate sparse learning, and for lowering computational complexity without

affecting estimator-performance, NC is used to limit the increasing size of training sam-

ples and the resulting estimator is named KMC-NC. Additionally, a technique is explored
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for tuning the hyper-parameter f from radar returns, and an adaptive update equation is

derived for its convergence to an appropriate value. Subsequently, for the considered radar

systems analytical expressions are derived for the CRLBs of the proposed RKHS based

estimators. Lastly, simulations performed over realistic LFM and SF radar systems reveal

that the proposed KMC based estimators provide significant gain over existing KLMS

based estimators along with lower computational complexity.

Chapter 5. Estimator for MIMO Radar: In this Chapter, an estimator for DOD,

DOA, and Doppler shift for multiple targets using MIMO radar in the presence of non-

Gaussian clutter is proposed. The effect of non-Gaussian clutter is handled by introducing

the adaptive estimator based on KMEE. Additionally, the computational complexity is

reduced by the incorporation of the sparsification technique based on NC, and the result-

ing estimator is termed KMEE-NC. Performance of the proposed algorithm is compared

with the derived MCRLB for DOD, DOA, and Doppler shift. Further, the accuracy of the

proposed estimator is validated through computer simulations over realistic MIMO radar

systems. The obtained simulation results reveal the viability of the proposed KMEE-NC

based estimator over another counterpart kernel-based adaptive estimators and conven-

tional estimators.

Chapter 6. Range andVelocity Estimation using EKF andUKFbased estimators:

In this Chapter, two new estimation techniques, based on EKF and UKF, for both delay

and Doppler shift estimation are proposed. The EKF is advantageous due to its implemen-

tation simplicity and fast computation; however, a derivative-based implementation limits

its use. The UKF outperforms the EKF and offers better stability due to a derivative-

free implementation. Better performance of the proposed estimators is guaranteed by the

proximity of the variance of the proposed estimator to CRLB in contrast to conventional

estimators based on FT and KLMS.

Chapter 7. Conclusion, Limitations and FutureWork: In this Chapter, the conclu-

sions drawn from the contributions and results of all Chapters are summarized. Further,

the scope for extension of the present work is also discussed.
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Chapter 2

Target Detection in Sea Clutter using

OFDM Radar

As shown in Fig.1.1 of Chapter 1 1, the primary step in the processing of radar return after

discretization is detection. Detection indicates the presence of targets in the surveillance

environment[1, 4]. Thus, in this Chapter, for detection of target in sea clutter, one of

the newer types of multi-carrier waveform is explored for surveillance in marine environ-

ment. Studies have shown potential merits of multi-carrier waveform like OFDM over

traditionally used waveforms [5–7, 10, 11, 26, 27]. Some of these advantages include

waveform diversity which leads to better detection performance[28–30]. However, to the

best of authors’ knowledge, the merits of OFDM waveform have not yet been verified and

validated using real radar return from sea clutter. The system model considered in the

literature either considers a noise-free environment or the environment where clutter and

thermal noise follows a Gaussian distribution. This makes the existing algorithms unsuit-

able for practical radar environment, which is affected by the interference that follows a

non-Gaussian distribution. Moreover, as [8, 13, 31] lack in measuring the performance of

target detector, their robustness and suitability against dynamic interference environment

is not guaranteed.

With the intent of analyzing the performance of OFDM waveform for marine applica-

tion, firstly, a technique to estimate the radar return for the OFDM waveform utilizing the
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available radar return data set for SF waveform is proposed. The data set for SF waveform

is taken from CSIR 2006 OTB 2006 Measurement Trial [32]. The estimation of radar

return is done in two steps. In the first step, impulse response (IR) of the radar system for

a single CPI is estimated by LS [33]. Then, the estimated IR is used for the estimation

of OFDM radar return. Further, a detailed analytical expression for the system model

corresponding to the estimated data at a particular range gate is proposed. Furthermore,

the GLRT based sub-optimum detector is proposed, and its performance is compared with

the existing NMF (optimum for conventional radar) [34]. Finally, to verify improvement

in the performance of detection test, the analytical expression of the % FA, and % D for the

proposed detection test are derived.

The rest of the Chapter is organized as follows: Method to transform radar return

data for SF waveform into radar return for OFDM waveform is described first. Then,

the proposed OFDM radar system model for the considered surveillance environment

is described. Next Section discussed the proposed modified target detection algorithm

for a single range gate and fixed CPI. Further, analytical expression for % D and % FA for

the proposed detection algorithm under Gaussian assumption are derived. Subsequently,

simulation results for the estimated IR of the radar channel and the proposed detector’s

performance obtained from estimated OFDM radar return data are given. Performance of

the proposed detector obtained by the analytical expressions for ROC and % FA is discussed

next. Finally, the last Section concludes the work.

2.1 Estimation of Radar Return

To obtain the radar returns for the OFDMwaveform, the complete radar system (including

radar channel, down converter, a pulse compressor, and sampler), whichwas used to record

the original radar returns for SFwaveform (H SFW(=)), is modeled as finite impulse response

(FIR) filter. Two main steps of data transformation are: estimation of radar system IR and

estimation of the response of the radar system for OFDMwaveform (considered as echoes

for OFDM waveform).
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2.1.1 Estimation of Radar Impulse Response

Without loss of generality, let the radar system IR be approximated as an complex FIR

filter IR with  -unknown complex coefficients h ∈ C ×1 = [ℎ(0), ℎ(1), · · ·, ℎ( − 1)]) .

Following this assumption, the response of an unknown radar system in terms of the

transmitted signal (G SFW) in the time domain is given by

H SFW(=) =
 −1∑
:=0

ℎ(:)G SFW(= − :) + 4(=), = = 0, 1, · · ·, # − 1, (2.1)

where 4(=) is the error in approximating the radar system as FIR filter [34, 35], = =

(0, 1, · · ·, # − 1) represents the index for the dimension of the fast time within one CPI,

H SFW(=) represents the radar return for SFwaveform.

For known values of H SFW(=) and G SFW(=), values of filter coefficients h can be estimated

by minimizing the LS cost function [34], given as

J (h) =
#−1∑
==0
| 4(=) |2= ‖e‖2 , (2.2)

where, e ∈ C#×1 = [4(0), 4(1), · · ·, 4(# − 1)]) .

Term e in (2.2), can then be written as

e = y SFW − X SFWh, (2.3)

where y SFW ∈ C#×1 = [H SFW(0), H SFW(1), · · ·, H SFW(# − 1)]) ,

X SFW ∈ C#× =



G SFW(0) G SFW(−1) . . . G SFW(−( − 1))

G SFW(1) G SFW(0) . . . G SFW(1 − ( − 1))

...
...

...
...

G SFW(# − 1) G SFW(# − 2) . . . G SFW(# − ( − 1))


and h = [ℎ(0), ℎ(1), · · ·, ℎ( − 1)]) .
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From (2.3) and (2.2), yield

J (h) = ‖y SFW − X SFWh‖2 = (y SFW − X SFWh)� (y SFW − X SFWh)

=y�SFWy SFW − y�SFWX SFWh − (X SFWh)�y SFW + (X SFWh)� (X SFWh). (2.4)

To obtain the value of h which minimizes (2.4), the differentiation of (2.4) with respect

to h is equated to zero as

X SFW
�X SFWh − X�

SFWy SFW = 0. (2.5)

From (2.5), the estimate of h is given by

ĥ = (X�
SFWX SFW)−1X�

SFWy SFW. (2.6)

2.1.2 Estimation of Radar Response for OFDM Pulsed Waveform

After estimating the filter coefficients of the radar system, response of the radar system

(modeled by the FIR system) for the OFDMwaveform is evaluated. For IR estimation and

radar return data estimation, the response of the radar system is calculated for single CPI,

and given by the convolution of ℎ̂(:) and G OFDM(:). The following relationship in time

domain describes the response of the radar system for OFDM waveform

H OFDM(=) =
 −1∑
:=0

ℎ̂(:)G OFDM(= − :), = = 0, 1, · · ·, # − 1.

Arranging H OFDM(=) in vector yields the estimated radar return for OFDMwaveform as

y OFDM = X OFDMĥ. (2.7)

To validate the correctness of the measured OFDM radar return data, Doppler process-

ing over measured OFDM radar return and available SF radar return data set are shown in

Fig. 2.1a and Fig. 2.1b, respectively. As shown in Fig. 2.1a and Fig. 2.1b, the Doppler
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spectrum of measured OFDM radar return follows the Doppler spectrum of original SF

radar return.

2.1.3 System Model

In this section, a system model for the estimated data is proposed, and the analytical

expression corresponding to the estimated scattered radar return for the OFDM waveform

is described.
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Figure 2.1: (a) Doppler spectrum of measured OFDM radar return, (b) Doppler spectrum
of original SF radar return data set.

Let us consider an OFDM waveform B(C) of !-sub-carriers modulated by complex 0;

phase codes from the set a = [00, 01, ..., 0!−1]. If the sub-carriers in frequency domain

are spaced by Δ 5 , then the expression for B(C) is given by

B(C) =
!−1∑
;=0

0; exp( 92c;Δ 5 C) for 0 ≤ C ≤ )> . (2.8)

where )> is the OFDM waveform duration without cyclic prefix. The sub-carriers are

orthogonal for )> = 1
Δ 5

. In this work, the echoes of the prior pulse reach the receiver

before the next pulse is transmitted, thereby avoiding inter-symbol interference [36].

Let 52 be the center frequency of transmission; then the transmitted signal is given by

(̃(C) = B(C) exp( 92c 52C) =
!−1∑
;=0

0; exp( 92c 5;C). (2.9)
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where 5; = 52 + ;Δ 5 is the sub-carrier frequency.

Radar return corresponding to (̃(C) is the sum of delayed and time scaled version of

(̃(C). Let us consider that the radar surveillance environment consists of % scatterers out

of which one is the target and others represent clutter. Scatterers are at distances ('?)%?=1,

moving with a velocity vector (v?)%?=1 and causing the delay (g?)%?=1. The complex

scattering coefficient (G; ?) of ?Cℎ scatterer for ;Cℎ sub-carrier is unknown but deterministic.

After making these basic assumptions, the received radar return for the ;Cℎ sub-carrier

and for the ?Cℎ scatterer is given by

Ã; ? (C) = G; ? B̃; (W? (C − g?)) + F̃; (C), (2.10)

where B̃; = 0; exp( 92c 5;C). The W? = 1 + V?, where V? =
2
〈
®v? ,u

〉
2

is the relative Doppler

shift of the ?Cℎ scatterer and 2 is the velocity of light, and F̃; represents the thermal noise

along the ;Cℎ subchannel. Hence, the received signal return from % scatterer along !

subchannels is given by

Ã (C) =
%∑
?=1

!−1∑
;=0

A; ? (C). (2.11)

Substituting (2.10) in (2.11), yields

Ã (C) =
{ %∑
?=1

!−1∑
;=0

0;G; ? exp( 92c;Δ 5 (C − g?)) exp( 92c 5;V? (C − g?))
}

exp( 92c 52C) + F̃(C),

(2.12)

where F̃(C) is the combined effect of thermal noise across all ! subchannels and %

scatterers i.e F̃(C) = ∑%
?=1

∑!−1
;=0 F̃; (C).

Thus, the corresponding complex envelope after removing the carrier (exp( 92c 52C))

is given by

A (C) =
%∑
?=1

!−1∑
;=0

0;G; ? exp( 92c;Δ 5 (C − g?)) exp( 92c 5;V? (C − g?)) + F(C). (2.13)

Since the estimated data set is the radar return from the single target, (2.13) can

be simplified by separating the terms for the phase shifts corresponding to the target.
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Remaining %−1 terms in the outer summation corresponds to the sea clutter. Thus, (2.13)

can be written as

A (C) =
!−1∑
;=0

0;G;C exp( 92c;Δ 5 (C − gC)) exp( 92c 5;VC (C − gC)) + 2(C) + F(C), (2.14)

where G;C , gC , and VC are the scattering coefficient, delay and relative Doppler shift respec-

tively, corresponding to the target, and 2(C) represent the clutter.

Before further processing, (2.14) is sampled with the sampling interval of <)PRI + gC ,

< = 0, 1, ..., " − 1, where < is the index for slow time dimension. Hence, the discrete

complex envelope of the received signal at the output of the ;Cℎ subchannel is

A; (<) = 0;G;C exp( 92c< 5;�C)PRI) + 2; (<) + F; (<) ; = 0, 1, ..., ! − 1, < = 0, 1, ..., " − 1,

(2.15)

where the constant exp( 92c<;Δ 5 )PRI) is considered along with the scattering coefficient

(G;C), and 5;�C = ( 52 + ;Δ 5 )
2
〈
®v?C ,u

〉
2

is the Doppler shift along ;Cℎ subchannel.

Arranging returns of all ! subchannels into one ! × 1 dimension vector, yields

r(<) = AXC5(<) + c(<) + w(<), < = 0, 1, ..., " − 1, (2.16)

where

• r(<) = [A0(<), A1(<), ..., A!−1(<)]) is the ! × 1 dimension vector of sub-carrier

return,

• A = diag[00, 01, ..., 0!−1] is the !×! diagonal matrix of optimized (peak to average

power ratio (PAPR)) transmitted phase codes,

• XC = diag[G0C , G1C , ..., G(!−1)C ] is the ! × ! diagonal matrix of scattering coefficients

across ! subchannels,

• 5(<) = [exp( 92c< 50�C)PRI), exp( 92c< 51�C)PRI), ..., exp( 92c< 5(!−1)�C)PRI)]) is

the ! × 1 dimension vector of phase shifts corresponding to different Doppler

frequencies 5�C = [ 50�C , 51�C , ..., 5(!−1)�C ] across ! subchannels,
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• c(<) = [20(<), 21(<), ..., 2!−1(<)]) is the ! × 1 dimension vector of sea clutter

return across ! subchannels,

• w(<) = [F0(<), F1(<), ..., F!−1(<)]) is the !×1 dimension vector of the samples

of thermal noise across ! subchannels.

Subsequently, concatenating all the temporal radar return data column-wise into a

matrix of dimension ! × " , the mathematical description for the OFDM radar return

matrix whose columns corresponds to the estimated OFDM radar return data is given by

R = AXC� + C +W. (2.17)

where

• R = [r(0), r(1), ..., r(" − 1)] is the ! × " matrix of all temporal returns,

• � = [5(0), 5(1), ..., 5(" − 1)] is the ! × " matrix of phase shifts corresponding

to temporal components <,

• C = [c(0), c(1), ..., c(" − 1)] is the ! × " matrix representing sea clutter returns

follows the distribution define in Section 1.5 of Chapter 1,

• W = [w(0),w(1), ...,w(" − 1)] is the ! × " matrix representing additive white

Gaussian noise (AWGN) samples s.t. w(<) ∈ NC(0,Ω2
FI).

2.2 Target Detection Test

In this section, a target detection test for the considered OFDM radar model perturbed

by sea clutter as described in (2.17) is proposed. The sea clutter follows the distribution

described in Subsection 1.5 of Chapter 1. For target detection, the proposed detection

algorithm is described next. Following this, to verify correctness of the detection test, an

analytical expression for % D and % FA of the detection test statistics is derived. The obtained

theoretical expression for % D and % FA validates ROC of the proposed detection algorithm.
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2.2.1 Modified Target Detection Test

In this section, for target detection, a sub-optimal GLRT based detector is developed and

discussed. The detector described in [37], proposed detection of the perfectly known signal

by considering the unknown texture enhancement factor U, and the known covariance

matrix �z of speckle component (z). From (2.16), due to unknown scattering coefficient

XC , the signal is not perfectly known at the receiver. Additionally, the covariance matrix �z

is also unknown. As the proposed system model (2.17) has unknown but deterministic XC ,

and it is applied over both the estimated radar return data and simulated data, the detection

test is modified by replacing the unknown XC and �z in GLRT by their ML estimates.

There are two hypothesis to perform the detection test, H0 for target absent, and H1

for target present. Hence, after applying assumption of sea clutter dominance over the

thermal noise, (2.17) yields

H1 :rE = pE + cE,

H0 :rE = cE, (2.18)

where rE = vec(R), pE = vec(AXC�), and cE = vec(C).

Test statistics Λ(r) is the ratio of likelihood of rE for two different hypothesisH0 and

H1.

Λ(rE) =
P(rE; X̂C ; �̂1,H1)
P(rE; �̂0,H0)

H1
≷
H0

_, (2.19)

where P(rE; X̂C ; �̂1,H1) 1 is the PDF of rE under hypothesisH1. Since under hypothesis

H1, XC and �1 are unknown, P(rE; X̂C ; �̂1,H1) is parametrized by the estimates of XC

and �1. Similarly, P(rE; �̂0,H0) is the PDF of rE under hypothesis H0. Similar to case

with hypothesisH1, since under hypothesisH0, �0 is unknown, the PDF (P(rE; �̂0,H0))

is parametrized by the estimates of �0. Further, X̂C is the ML estimate of scattering

coefficient matrix XC . The �̂1, and �̂0 are the ML estimates of covariance matrices �1,

1the semicolon (;) is used to represent parametrization, and comma “,” represents under a hypothesis.
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and �0, respectively.

As no close form expression for P(rE; X̂C ; �̂1,H1) and P(rE; �̂0,H0) is available,

(2.19) can be further simplified as

Λ(rE) =
∫ ∞
0 P(rE | U; X̂C ; "̂1|U,H1)PU (U)3U∫ ∞

0 P(rE | U; �̂0|U,H0)PU (U)3U

H1
≷
H0

_. (2.20)

where P(rE | U; X̂C ; �̂1|U,H1) and P(rE | U; �̂0|U,H0) are the conditional PDF of rE under

hypothesisH1 andH0, respectively, conditioned on U.

For formulating the GLRT, firstly, the texture (U) under both hypothesis supposing

that all other parameters are known are estimated, then the remaining unknown parameters

are replaced by their ML estimates.

From [37], for a known covariance matrix �z, the �̂0|U = Û0�z, and �̂1|U = Û1�z.

Since, z is Gaussian distributed correlated random process [25, 37, 38], the Û0 and Û1 are

considered to be the ML estimates of the unknown clutter powers. The same are estimated

by considering the following two likelihood functions

P(rE |U0;H0) =
1

c"U"0 |�z |
exp(
−r�E �−1

z rE
U0

),

P(rE |U1;H1) =
1

c"U"1 |�z |
exp(−(rE − pE)��−1

z (rE − pE)
U1

). (2.21)

Hence, ML estimate of U0 and U1 is given by

Û0 =
1
"

r�E �−1
z rE .

Û1 =
1
"
(rE − pE)��−1

z (rE − pE). (2.22)

Using (2.20), (2.21), and (2.22), the test statistics Λ(rE) is given by

Λ(rE) ∈ R =
(
Û0
Û1

)"
H1
≷
H0

_ =

(
Û0
Û1

)
H1
≷
H0

_
′
, (2.23)

where _′ = (_) 1
" .
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Substituting (2.22) in (2.23), yields the final expression for test statistics as

Λ(rE) =
r�E �̂

−1
z rE

(rE − vec(AX̂C�))��̂
−1
z (rE − vec(AX̂C�))

H1
≷
H0

_
′
. (2.24)

where �̂z =
1
�

∑�
8=1

(
"

r8E
� r8E

)
r8Er8E

� is the ML estimate of speckle covariance matrix �z

obtained from the � observations of rE from different range gates under hypothesis H0,

and X̂C = diag(diag(A−1R�� (���)−1)) is the ML estimate of XC .

2.2.2 Theoretical Analysis of Proposed Detector

From (2.24), it can be analyzed that for a given clutter power `tr(�z), better estimate ofXC

yields higher value of test statistics Λ(rE) which in turn improves the proposed detector’s

performance. In (2.24), for fixed signal to clutter ratio (SCR) = p�E pE
2`tr(�z) , increasing !

yields better estimate of XC (X̂C). Consequently, as X̂C approaches XC , the denominator in

(2.24) reduces further, thereby increasing the value of Λ(rE). Subsequently, Λ(rE) crosses

_
′ more number of times, and hence results in better target detection. Therefore, for same

% FA and _, in addition to providing frequency diversity, the OFDM waveform provides

additional information about the target from multiple scattering centers, which resonate

differently at different sub-carrier frequency [5].

Further, a closed-form expression for % D and % FA for K-distributed clutter is difficult

to achieve, hence the sea clutter is assumed to be uncorrelated Gaussian distributed. This

assumption is feasible for a very high value of shape parameter a, as given in [25], generally

for a & 20, the PDF PU (U) can be denoted as a Dirac function concentrated around the

deterministic value U = `2. Consequently, as PcE (cE) =
∫ ∞
0 PcE |U (cE |U)PU (U)3U, the

clutter PDF PcE (cE) reduces to multivariate Gaussian. For mathematical tractability and

simplicity of theoretical analysis, the test statistics in (2.23) is represented as

Λ′(rE) = Λ(rE)
1
" − 1 =

(
Û0
Û1

)
− 1. (2.25)
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For Gaussian distributed sea clutter, the ML estimates (Û0 and Û1) are given by

Û0 =
1
"

tr(R�R). (2.26)

Û1 =
1
"

tr((R − AXC�)� (R − AXC�)). (2.27)

From (2.25), (2.26) and (2.27) yield,

Λ′(R) = tr(R�PR)
tr(R�P⊥R)

, (2.28)

where P = �� (���)−1� is the projection matrix, and P⊥ is the orthogonal projection

matrix related to P as P⊥ = I −P (the dimension of I is " × ").

The analytical expressions for % D and % FA for the test statistics (2.28) are given by the

following relations

% D =

∫ ∞

_6

PH1 (Λ′(R))3Λ′(R) (2.29)

% FA =

∫ ∞

_6

PH0 (Λ′(R))3Λ′(R), (2.30)

where _6 is the detection threshold, PH1 (Λ′(R)) is the PDF of Λ′(R) under hypothesis

H1, and PH0 (Λ′(R)) is the PDF of Λ′(R) under hypothesisH0.

Under Gaussian assumption for sea clutter, both the numerator and the denominator

of (2.28) under hypothesisH0 are central Chi-Squared distributed random variables

tr(R�
PR) ∼j2

E1 under H0 (2.31)

tr(R�
P⊥R) ∼j2

E2 under H0, (2.32)

where E1 = 2!R(P) and E2 = 2!R(P⊥) are the degrees of freedom for numerator and

denominator respectively. Since, the ratio of central Chi-Squared distributed random

variable follows central �E1,E2 distribution, hence underH0, Λ′(R) is distributed as

Λ′(R) ∼ �E1,E2 . (2.33)
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Using (2.30), the expression for % FA can be defined in terms of the right tail probability

(&�E1 ,E2 (_6)) of �E1,E2 as

% FA = &�E1 ,E2 (_6), (2.34)

where

&�E1 ,E2
(_6) =

∫ ∞

_6

( E1
E2
)
E1
2 Λ′(R)

E1
2 −1

�( E1
2 ,

E2
2 ) (1 +

E1
E2
Λ′(R))

E1+E2
2
3Λ′(R) (2.35)

and � represents Beta function. Hence, the theoretical value of % FA is obtained by solving

(2.35) numerically with the method given in [39].

Contrary to the case under hypothesisH0, numerator of (2.28) under hypothesisH1 is

non-central Chi-Squared distributed randomvariable (j′2E1 (X)) with a non-centrality param-

eter X = tr{(AXC�) (AXC�)�}, and the denominator is central Chi-Squared distributed

random variable (j2
E2). Hence, their distribution are as follows:

tr(R�
PR) ∼ j′2E1 (X) under H1. (2.36)

tr(R�
P⊥R) ∼ j2

E2 under H1. (2.37)

Since the ratio of non-central and central Chi-squared distributed random variables is

non-central � ′E1,E2 (X) distributed, under hypothesisH1, Λ′(R) is distributed as

Λ′(R) ∼ � ′E1,E2 (X). (2.38)

Thus %D as shown in (2.29) can be written as the right tail probability

(&�
′
E1 ,E2 (X)

(_6)) of �
′
E1,E2 (X)

%D = &�
′
E1 ,E2 (X)

(_6), (2.39)
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where

&�
′
E1 ,E2 (X)

(_6) =
∫ ∞

_6

exp(−X
2
)
:=∞∑
:=0

(X/2):
:!

( E1
E2
) 1

2 E1+:

�( E1+2:
2 ,

E2
2 )
Λ′(R)

E1
2 +:−1(1 + E1

E2
Λ′(R)) −1

2 (E1+E2)−:

3Λ′(R). (2.40)

Similar to % FA as shown in (2.35), theoretical values of % D for different values of

detection threshold _6 and ! is obtained by solving (2.40) numerically.

Hence, from (2.35) and (2.40), the analytical expression forROCof (2.28), parametrized

by _6 and ! is given by

%D = &�
′
E1 ,E2 (X)

(&−1
�E1 ,E2
(%FA)). (2.41)

2.3 Simulation Results and Discussion

In this section, simulation results to validate the proposed method of estimating OFDM

radar return data and performance analysis of the proposed detector for estimated and

simulated data are described in detail.

Table 2.1: Specifications for SF waveform (G SFW) and OFDM waveform (G OFDM).

SF waveform (G SFW) Values OFDM waveform (G OFDM) Values
Number of frequency channels 25 Number of sub-carriers (!) 2; ; ; = 2, 3, 4, 5

Frequency step size 5 MHz Sub-carrier spacing (Δ 5 ) 31.25 to 3.9063 MHz
Center frequency ( 52) 9 GHz Center frequency ( 52) 9 GHz

Bandwidth (�) 125 MHz Bandwidth (�) 125 MHz
Pulse duration ()SF) 0.1 `s Pulse duration ()> = 1

Δ 5
) 0.032 to 0.256 `s

Pulse repetition interval ()PRI) 0.04 ms Pulse repetition interval ()PRI) 0.04 ms
Target velocity range (−8.34, 8.34) m/s Target velocity range (−8.34, 8.34) m/s

2.3.1 Estimation of Radar Return Data

Simulations for estimation of OFDM radar return is performed in two steps. In the first

step, IR h of the radar system is estimated by LS using the generated input signal G SFW(=)

and the output signal H SFW(=) depicted in Fig. 2.2a and Fig. 2.2b, respectively. For

simulations, H SFW(=) is taken from a single CPI of the original radar return data set from

the CSIR 2006 OTB 2006 Measurement Trial [40], and G SFW(=) is generated according

30



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec) 10
-3

-3

-2

-1

0

1

2

3

x
S

F
W

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec) 10-7

-2

-1.5

-1

-0.5

0

0.5

1

R
e
(y

S
F

W
)

(b)

Figure 2.2: (a) Burst of 25 pulses for one CPI representing the group of stepped frequency
pulses (G SFW), (b) Real part of recorded radar return (H SFW) for SF waveform for single
PRI.

to the specifications of the transmitted SF waveform, provided with the data sets and

described in Table-2.1. Estimated radar system IR for a single CPI is shown in Fig.

2.3a. The OFDM radar return data H OFDM(=) is estimated by observing response of the

radar system for generated OFDM waveform G OFDM(=) as shown in Fig. 2.3b for four

sub-carriers. Specifications for G OFDM(=) is given in Table-2.1. Particularly, for OFDM

waveform for ! = 4 and maximum ! = 32, estimated OFDM radar return data (H OFDM(=))

is shown in Fig. 2.4a and Fig. 2.4b, respectively.
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Figure 2.3: (a) Amplitude square of estimated radar system IR coefficients | ℎ̂ |2, (b) Real
part of incorporated OFDM waveform (G OFDM) for one single PRI.
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Figure 2.4: (a) Real part of an estimated radar return (H OFDM) for ! = 4, (b) Real part of
an estimated radar return (H OFDM) for ! = 32.
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2.3.2 Detector Performance for Estimated OFDM Radar Return

Performance of the proposed methodology of incorporating OFDM waveform in radar

systems is examined by analyzing the performance of the detection test given by (2.24). The

expected range of required detection threshold _ for which the detection test is evaluated

is calculated by utilizing the data from the observation corresponding to hypothesis H0.

The comparative plot for % FA for different values of _ corresponding to SF waveform and

different OFDM sub-carriers is shown in Fig. 2.5a. The decrease in % FA as ! increases

is observed in Fig. 2.5a, this reflects an improvement in the performance of target

detection test by exploiting the frequency diversity of an OFDM waveform. Moreover,

as shown in Fig. 2.5b, in the case of OFDM radar, receiving echoes for each OFDM

sub-carrier separately provide an additional “look” at the target, resulting in improved

target detection capability over SF radar and conventional NMF. Furthermore, from Fig.

2.5b, at % FA = 10−2, the % D achieved by SF radar and NMF is 0.2, and for the OFDM radar

% D ranges from 0.2 to 0.75, hence better % D is obtained in the case of OFDM radar, which

can further be enhanced by varying the number of sub-carriers. Effect of high resolution

and frequency diversity attained by an OFDM waveform is reflected by a decrease in % FA

and improvement in % D, as shown in Fig. 2.5a-2.5b (Please note that, since the real data

is limited in number the resulting plots are not smooth).

2.3.3 Detector Performance for Simulated OFDM Radar Return

The performance improvement observed by utilizing estimated OFDM radar return is

validated by running the detection test over simulated data as well as by using (2.17). For

K-distributed clutter, there is no closed form expression that relates % FA, _, and % D, hence,

the detection test is done for an ensemble for 105 Monte Carlo simulations. In (2.17), �

is generated for fixed target Doppler frequency set 5�C = [ 50�C , 51�C , ..., 5(!−1)�C ]. The

elements of 5�C takes value from the known Doppler frequency range (Doppler spread)

i.e. from {− 1
2) PRI

, · · · , 1
2) PRI
}. The diagonal elements of the matrix A are chosen from

the optimized set of phase codes with low PAPR. The values for diagonal elements
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Figure 2.5: (a) Probability of false alarm for SF waveform and OFDM waveform com-
prises different number of sub-carriers, (b) ROC of proposed detector test statistics and
conventional NMF detector.
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of XC is realized from the normal distribution having zero mean and unit variance i.e.

diag(XC) ∈ NC(0, I). To replicate the sea clutter by which the estimated OFDM radar

return data is affected, the K-distributed clutter part of (2.17) is simulated by utilizing the

relation shown in Subsection 1.5 of Chapter 1.

The elements of z are realized as z ∈ NC(0,�z), where �z has elements (�z)8 9 =

d |8− 9 | ∀ 8, 9 ∈ {1, ..., "}, where d is the one-lag correlation coefficient. The simulation

for obtaining detector performance is run for " = 11, the SCR is set at −10 dB, and

d = 0.9. The obtained simulation results for %FA and ROC are shown in Fig. 2.6a and Fig.

2.6b, respectively. As observed from Fig. 2.6a-2.6b, detector ROC and %FA obtained by

utilizing the simulated data follow similar trend as the detector ROC and %FA have followed

for estimated OFDM radar return data, shown in Fig. 2.5a-2.5b. Particularly, as shown

in Fig. 2.6b, proposed detector test statistics surpasses the performance of conventional

NMF detector. In Fig. 2.6b, the diagonal line corresponding to %FA = %D is shown with

line in brown. This analysis validates proposed method for estimating OFDM radar return

from the real radar return, since, both the simulated and measured radar return follows a

similar ROC trend.

2.3.4 Detector Performance under Gaussian Approximation for Sea

Clutter

In this section, performance of the proposed detection test under the assumption of un-

correlated Gaussian distributed sea clutter is demonstrated. For this, the detection test

derived for a very high value of a, described by (2.28) is used. For simulations, signal

part of the observations R is generated as described in Subsection 2.1.3 for K-distributed

clutter. However, the sea clutter, C, is realized as C ∈ NC(0,Ω2I), where Ω2 is variance

of the Gaussian distributed sea clutter. The SCR, defined as tr{(AXC�) (AXC�)� }
"!Ω2 , is set at

−10 dB and " = 11. As observed from Fig. 2.7a and Fig. 2.7b, with increase in !,

both the %FA and ROC has similar performance improvement as followed by the ROC

and %FA for estimated and simulated OFDM radar return data. Moreover, in Fig. 2.7b,

the diagonal line corresponding to %FA = %D is shown with line in brown. This analysis
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Figure 2.6: (a) Probability of false alarm utilizing simulated OFDM radar return data, (b)
ROC of proposed detector test statistics utilizing simulated OFDM radar return data and
NMF detector.
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Figure 2.7: (a) Probability of false alarm utilizing simulated OFDM radar return data and
derived analytical expression under the assumption of Gaussian distributed sea clutter, (b)
ROC utilizing simulated OFDM radar return data and derived analytical expression under
the assumption of Gaussian distributed sea clutter.

validates correctness and suitability of the proposed system model and detection test for

surveillance in the marine sea environment.
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2.4 Summary

In this Chapter, detection of small boat in the sea environment using OFDM waveform as

a transmitted surveillance waveform is performed. A method to estimate the OFDM radar

return data using CSIR recorded radar return data for SF waveform is proposed. Sys-

tem model corresponding to the mathematical representation of radar echoes for OFDM

waveform is proposed. The derived system model demonstrates the frequency diversity

obtained after employing the OFDM waveform in a radar system. Further, detection of

the target utilizing estimated data is done by modified GLRT. Simulation results for % FA

and % D, clearly show improvement in target detection over conventional NMF. The perfor-

mance is further improved as the number of OFDM sub-carriers increases. The obtained

improvement in detector performance with a number of OFDM sub-carriers is validated

through analytical expressions of %� and %��, and by detector’s performance obtained by

utilizing simulated data. The demonstrated improvement in detection performance implies

superiority and suitability of OFDM waveform over the conventional radar waveforms.

In subsequent Chapters, KAFs and Kalman filter based estimation techniques are

explored to estimate the range and velocity of a detected target.
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Chapter 3

Range and Velocity Estimation in

Gaussian noise

In Chapter 2, technique of detecting the target using OFDM radar is described. The

detection gives an estimate of a number of targets present in the surveillance environment.

As mentioned in Section 1.2 of Chapter 1, after detection the subsequent step is the

estimation of range and velocity of the detected targets. Target’s range is proportional to

the delay by which the returning radar return is received; similarly, the target’s velocity

is also proportional to the frequency shift in the carrier frequency of the transmitted

signal. Consequently, a target’s range and velocity are estimated by estimating the delay

and Doppler shift introduce by the range and velocity of the target, respectively [1, 4].

Therefore in this and subsequent Chapters, to accurately estimate a target’s delay and

Doppler shift, various kernel-based adaptive estimators have been developed and tested

over different radar systems, including conventional LFM and SF radar systems, and

recently introduced OFDM radar system.

In this Chapter, to improve delay and Doppler shift estimation in presence of thermal

noise, adaptive estimators based on KLMS in RKHS is proposed. Since, popular estimator

based FT [2, 8] optimizes non-convex ML cost function, it is prone to inaccurate estimates

of delay and Doppler shift, especially in low signal to noise ratio (SNR) region. In

comparison to existing estimator based on FT, the proposed estimation approach has
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a global minima, due to the optimization of convex cost-function in RKHS [15, 16,

41]. Moreover, unlike existing estimation approaches for the aforementioned parameters,

wherein the estimator’s performance is typically enhanced by increasing the number of

observations (thereby increasing computational complexity), the proposed KLMS based

estimation technique selectively adapts the estimator in RKHS using the Platt’s NC [17,

18, 42, 43]. This yields a sparse estimator named as KLMS-NC for unknown parameters in

RKHS, and convergence to the optimal parameter value is achieved by using a dictionary

of a finite number of observations. Upon sparsification by NC, the proposed estimator

is found to be computationally simple for practical deployment. Another challenge with

KLMS is in choosing an appropriate width of the popular Gaussian kernel. Silverman’s

rule yields the width of a kernel by exploiting the statistical properties of the incoming

observation [44]. However, the kernel width obtained by Silverman’s rule is not always

optimal [45], and is prone to estimation errors. Hence, in this Chapter, the kernel width

using the incoming radar observations are learned and adapt, the resulting estimator is

named as KLMS-Modified NC. The estimator based on KLMS-Modified NC, yields

better convergence and smaller dictionary sizes, thereby providing a versatile and robust

estimator for the estimation of delay and Doppler shift.

The Chapter is organized as follows: A brief introduction to the LFM and OFDM

radar system along with a detailed review of an OFDM radar return data matrix is given

first. Then, the proposed methodology of using KLMS based algorithms ( KLMS, KLMS-

NC, and KLMS-Modified NC) for parameter estimation is described. After that, for the

estimator based on KLMS-Modified NC, the expression for the bound on kernel width

learning parameter is derived. Further, explicit derivation of the CRLB for delay and

Doppler shift estimation is described. The description of the simulations of the proposed

estimators over practical radar-scenarios is given next. Finally, conclusions are drawn.

3.1 System Model

The proposed estimation algorithms, are applied to two basic monostatic radar systems

namely; LFM radar and OFDM radar. For many years LFM waveform is being used as
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a surveillance waveform in radar systems. In [46], the author introduced a multicarrier

waveform for radar systems called OFDM waveform and demonstrated the similarity of

its ambiguity plot to an ideal ambiguity plot (low side-lobe levels and narrow main-lobe

width). Initially, the idea of incorporating OFDM waveform in radar system was pursued

with the objective of combining communication and radar sensing together, specific to

vehicular systems [8, 47–49]. Eventually, researchers started exploring the utility of

OFDM waveform for other surveillance applications as well [31, 36, 50–53].

The radar environment and preliminary processing of echoes for LFM radar and

OFDM radar are same, with the only difference being in the type of modulation adopted

for continuous time baseband pulse B(C). Since two commonly used radar waveforms LFM

and OFDM are considered, the corresponding system model are described separately for

LFM and OFDM radar system.

In a given CPI, let radar system transmits " radar pulses [31, 54]. The transmitted

waveform is the pulse of a finite width which repeats after a certain PRI. Processing of the

waveform is considered on PRI basis, thus for CPI of " transmitted pulses, any arbitrary

<Cℎ transmitted pass-band pulse at central frequency 52 is

B< (C) = {B(C − <)PRI)} exp( 92c 52C), (3.1)

where B(C) is the baseband transmitted pulse and )PRI is the PRI.

The echo from the target is the delayed version of B< (C). If echo is from a single

target located at an unknown range ' and approaching towards the radar with an unknown

velocity E, then the time-delay by which an arbitrary <Cℎ pulse in CPI gets delayed is

g< = g> −
2
2
{E<)PRI}, (3.2)

where 2 is the velocity of light, and g>, is the unknown delay introduced in the pulse

because of the initial position of a target, given by g> = 2'
2
.
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The received baseband radar return for any arbitrary <Cℎ pulse is

A< (C) = Z {B< (C − g<)} + F(C), (3.3)

where, Z represents the complex attenuation factor which is proportional to the target

radar cross section (RCS), and F(C) denotes the measurement and thermal noise process

modeled as complex zero mean AWGN.

3.1.1 LFM Radar System Model

Let the transmitted LFM pulse be denoted as,

B LFM(C) = 0 exp ( 9cWC2), for 0 ≤ C ≤ )>, (3.4)

where 0 and W are the amplitude and frequency sweep rate respectively. )> is the duration

of the transmitted baseband LFM pulse.

The instantaneous frequency of B LFM(C) is

58 (C) = WC, (3.5)

where W = !Δ 5

)>
as !Δ 5 is the bandwidth of B LFM(C).

Substituting (3.4) in (3.3) yields the LFM radar return for the <Cℎ transmitted pulse as

A<LFM(C) = Z {B LFM(C − <)PRI − g<)} exp( 92c 52 (C − g<)) + F(C). (3.6)

The matched filter output is given by

A<LFM(C) = Z
∫ g<+)>

g<

B LFM(C − <)PRI − g<)B∗LFM(C − <)PRI − g) exp(− 92c 52g<)3C + F(C).
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Next taking the Fourier transform, yield

A<LFM( 5 ) =Z exp(− 92c 52g<)
∫ ∫ g<+)>

g<

B LFM(C − <)PRI − g<)B∗LFM(C − <)PRI − g)

× exp(− 92c 5 g)3C3g + F( 5 ).

The above step is basically done to account for significant range migrations from pulse

to pulse. Moreover, this avoids the need to interpolate to account for sub-pixel motion and

allows to factor out the magnitude square of the Fourier transform of the pulse [2].

Simplification, yield

A<LFM( 5 ) =Z exp(− 92c 52g<)
∫ ∫ g<+)>

g<

B LFM(C − <)PRI − g<)B∗LFM(C − <)PRI − g)

× exp(− 92c 5 (<)PRI + g − C)) exp(− 92c 5 (C − <)PRI))3C3g + F( 5 ).

Further simplification yield

A<LFM( 5 ) =Z exp(− 92c 52g<)
∫ g<+)>

g<

B LFM(C − <)PRI − g<) exp(− 92c 5 (C − <)PRI − g<)3C

× exp(− 92c 5 g<)
∫

B∗LFM(C − <)PRI − g) exp(− 92c 5 (<)PRI + g − C))3g + F( 5 ).

The simplified form of A< ( 5 ) is given by

A<LFM( 5 ) =| ( LFM( 5 ) |2 exp(− 92c 52g<) exp(− 92c 5 g<) + F( 5 ),

where ( LFM( 5 ) is the Fourier transform of B LFM(C).

Sampling in frequency domain at ; = [0, 1, . . . , ! − 1] with an interval of Δ 5 , and

dividing by | ( LFM(;Δ 5 ) |2, yield

A LFM(<, ;) = exp (− 92c 52g<) exp (− 92c;Δ 5 g<) + F(<, ;).

The constant power of the sample of white noise F(<, ;) is maintained by assuming

that the power spectra of the receiver noise F(C) and transmitted signal BLFM(C) do not vary
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much over the processed frequency band [2].

Substituting g< from (3.2), we get

A LFM(<, ;) = exp ( 92c< 53)PRI) exp (− 92c;Δ 5 g>) exp( 92c 53<; (
)PRIΔ 5

52
)) + F(<, ;),

where 53 = 2E 52
2

is the unknown Doppler shift owing to the target velocity.

Arranging A LFM(<, ;) in a matrix, the radar return matrix R LFM from a single scatterer

is given by [2].

R LFM = ZS LFM +W, (3.7)

where

S LFM =



1 . . . exp (− 92c(! − 1)Δ 5 g>)

exp ( 92c 53)PRI) . . . exp ( 92c 53)PRI) exp (− 92c(! − 1)Δ 5 g>)exp( 92c 53 (! − 1) () PRIΔ 5

52
))

...
...

...

exp ( 92c(" − 1) 53)PRI) . . . exp ( 92c(" − 1) 53)PRI) exp (− 92c(! − 1)Δ 5 g>)exp( 92c 53 (" − 1) (! − 1) () PRIΔ 5

52
))


.

(3.8)

is the matrix of signal part for LFM radar, and W is the matrix of the sampled complex

AWGN process.

An individual element of R LFM is given by

R LFM(<, ;) = Z exp ( 92c< 53)PRI) exp (− 92c;Δ 5 g>) exp( 92c 53<; (
)PRIΔ 5

52
)) +W(<, ;).

(3.9)

3.1.2 OFDM Radar System Model

Let the transmitted baseband OFDM pulse B OFDM(C) comprise of !-sub-carriers with a

frequency separation of Δ 5 . Then to maintain orthogonality between sub-carriers, )>
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satisfies, )> = 1
Δ 5

. Hence, the OFDM pulse is given by

B OFDM(C) =
!−1∑
;=0

0; exp ( 92c;Δ 5 C), for 0 ≤ C ≤ )>, (3.10)

where, 0; are the modulation symbol which takes values from the set of constant modulus

phase shift key (PSK) constellation set such that |0; |2 = 1.

The corresponding OFDM radar return is obtained by substituting (3.10) in (3.3) and

given as

A<OFDM(C) = Z
!−1∑
;=0

0; exp ( 92c;Δ 5 (C − <)PRI − g<)) exp( 92c 52 (C − g<)) + F(C). (3.11)

Removing carrier frequency yields

A<OFDM(C) = Z
!−1∑
;=0

0; exp ( 92c;Δ 5 (C − <)PRI − g<)) exp(− 92c 52g<) + F(C). (3.12)

After sampling at CB = <)PRI + =
!Δ 5

, in discrete form [1]

A<OFDM(=) =Z
!−1∑
;=0

0; exp ( 92c; =
!
) exp (− 92c;Δ 5 g>) exp ( 92c( 52 + ;Δ 5 ){

2E<)PRI

2
})

× exp(− 92c 52g>) + F(=), (3.13)

where F(=) is AWGN random variable. Assuming 52 + ;Δ 5 ' 52, (3.13) yields

A<OFDM(=) = U

���)︷                                                  ︸︸                                                  ︷
{ 1
!

!−1∑
;=0

0; exp (− 92c;Δ 5 g>) exp ( 92c;=
!
)} exp ( 92c< 53)PRI) + F(=),

(3.14)

where, U = !Z exp(− 92c 52g>). Stacking radar return A<OFDM(=) from (3.14) in vector form,

the final radar return vector for any arbitrary <Cℎ OFDM pulse is given as:

r<OFDM ∈ C!×1 = U exp ( 92c< 53)PRI)F−1A;d; + w, (3.15)

46



where, F−1 is the inverse discrete Fourier transform (IDFT) matrix

F−1 ∈ C!×! = 1
!



1 1 . . . 1

1 exp ( 92c
!
) . . . exp ( 92c(!−1)

!
)

...
...

...
...

1 exp ( 92c(!−1)
!
) . . . exp ( 92c(!−1) (!−1)

!
)


,

A; is the diagonal matrix of dimension ! × ! whose diagonal elements are the set of PSK

modulated symbol {00, 01, . . . , 0!−1}

A; ∈ C!×! =



00 0 . . . 0

0 01 . . . 0

...
...

...
...

0 0 . . . 0!−1


,

d; is the ! × 1 vector of exponential whose argument is the phase shift introduced by the

unknown delay g>

d; ∈ C!×1 = [1, exp (− 92cΔ 5 g>), . . . , exp (− 92c(! − 1)Δ 5 g>)]) ,

and w ∈ C!×1 = [F(0), F(1), . . . , F(! − 1)]) , which follows the distribution define in

Subsection 2.1.3 of Chapter 2, i.e. w ∈ NC(0,�w), where �w = Ω
2
FI.

At the receiver to recover the phase shifts introduced by delay and Doppler shift,

discrete Fourier transform (DFT) over A<OFDM(=) is computed as

r< = Fr<OFDM = U exp ( 92c< 53)PRI)A;d; + w 5 , (3.16)

where, F is the DFT matrix, and w 5 is the #-point DFT of w. Since DFT is a linear

operation, it will not affect the distribution of w.

Since, for a mono-static radar, the transmitted modulation symbols {0;∀;} are known
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at the receiver. This assumption will significantly simplify (3.16) as follows

A�
; r< = U exp ( 92c< 53)PRI)A�

; A;d; + A�
; w 5 .

r0< ∈ C#×1 = U exp ( 92c< 53)PRI)d; + w0
5 . (3.17)

Representation of (3.17), follows from the fact that A�
;

A; = I since |0; |2 = 1∀;. This

simplification will not change the statistical properties of w 5 . Arranging r0< in the vector

form [{r00}
) , {r01}

) , . . . , {r0
"−1}

) ]) for values of< = 0, 1, . . . , " −1 and substituting the

value of d; yields the final analytic form of OFDM radar return matrix, which is given as

R OFDM =[{r00}
) , {r01}

) , . . . , {r0"−1}
) ]) = US OFDM +W, (3.18)

where

S OFDM =



1 exp (− 92cΔ 5 g>) . . . exp (− 92c(! − 1)Δ 5 g>)

exp( 92c 53)PRI) exp ( 92c 53)PRI) exp (− 92cΔ 5 g>) . . . exp ( 92c 53)PRI) exp (− 92c(! − 1)Δ 5 g>)

...
...

...
...

exp ( 92c(" − 1) 53)PRI) exp ( 92c(" − 1) 53)PRI) exp (− 92cΔ 5 g>) . . . exp ( 92c(" − 1) 53)PRI) exp (− 92c(! − 1)Δ 5 g>)


.

(3.19)

is the signal part for OFDM radar. The individual elements of R OFDM are

R OFDM(<, ;) = U exp ( 92c< 53)PRI) exp (− 92c;Δ 5 g>) +W(<, ;). (3.20)

From (3.9) and (3.20), it is explicit that the radar echo matrix (for both LFM and OFDM

waveform) comprises of orthogonal exponentials, in rows and columns corresponding to

the unknown delay g> and Doppler shift 53 respectively. Moreover, from (3.9) and (3.20),

it is explicit that the unknown delay g> and Doppler shift 53 can be estimated if the exact

inverse relationship
(
6(·) : C −→ R

)
between the radar return (R(<, ;)) and the unknown

parameter (i.e. 6(R(<, ;)) ∈ R = g> or 6(R(<, ;)) ∈ R = 53) is known. However,

estimation of 6(·) is non-trivial. Hence, in this work, to estimate 6(·), an online learning

estimators based on adaptive KLMS algorithm is proposed.
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3.2 KLMS-based Estimation of Delay and Doppler shift

In the proposed algorithm, estimation of delay and Doppler shift is pursued independently.

This also allows delay and Doppler shift’s value space to be limited to one-dimension, i.e.

{g>, 53}∈ R.

For estimation of delay and Doppler shift, R LFM and R OFDM are given by

R LFM = ZS LFM +W. (3.21)

R OFDM = US OFDM +W. (3.22)

The estimation of g> is carried out by treating 53 as a known quantity. The range

{g><8= , g><0G} in which g> is expected to take the value is divided into  equal intervals

i.e. [g1
><8=

. . . g ><0G ]. Following this, at any instant : , (3.21) and (3.22) can be represented

as the collection of "-radar return vector observations

r:< = exp ( 92c< 53)PRI) exp( 92c 53<;
(
)PRIΔ 5

52

)
)d; + w0

5 ∀< = [0, 1, . . . , " − 1]

for LFM radar system and as r:< = exp ( 92c< 53)PRI)d; + w0
5
∀< = [0, 1, . . . , " − 1] for

OFDM radar system. Hence, this yields

r:
g> | 53 ∈ C

"!×1 = [r:0 , r
:
1 , . . . , r

:
"−1]

) . (3.23)

Equivalently, at instant : , the vector for the observations of radar return corresponding

to any arbitrary Doppler shift 5 :
3
from the set [ 5 1

3<8=
. . . 5  

3<0G
] of  -Doppler shifts is given

as

r:
53 |g> ∈ C

"!×1 = [r:0 , r
:
1 , . . . , r

:
!−1]

) , (3.24)

where r:
;
= exp (− 92c;Δ 5 g>)d< + w0

5
.
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3.2.1 Estimator based on KLMS

The KLMS algorithm provides convexity in RKHS which aids in the universal approxi-

mation of the arbitrary unknown function. Thus in this section, a KLMS based estimator

is proposed for both LFM and OFDM radar model.

The objective is to estimate the system with a mapping function 6(·) which at : Cℎ time

instant maps the input vector r(:) ∈ C"! (where r(:) = r:
g> | 53 , r

:
53 |g>)1 respectively, into

the corresponding output scalar 3 (:) ∈ C (where 3 (:) = g>: , 53 : ) as {6(r(:)) = 3 (:)}.

The KLMS algorithm proceeds with mapping the input vector r(:)∀: into the high

dimensional complex Hilbert space H via complex reproducing Mercer kernel ^ : X ×

X −→ C, where X ⊆ C"! . The : Cℎ input vector is mapped implicitly in H as Φ(r(:)),

Φ(r(:)) = ^(r(:), ·), (3.25)

where ^ is the mapping function used in a kernel-based adaptive algorithm which implic-

itly map the observations from finite-dimensional Euclidean space to high dimensional

complex Hilbert space H.

From Mercer theorem, the reproducing kernel ^(r(:), r(:′)) can be written as

^(r(:), r(:′)) = 〈Φ(r(:)),Φ(r(:′))〉H, (3.26)

where 〈·〉H represents the inner product operation in H and :′ is the index of vector

corresponding to :′Cℎ instant.

Let 8(: − 1) be a weight vector defined as function in linear space H, then from the

least mean square (LMS) algorithm inHwhich is equivalently called KLMS in input space

gives estimate of the desired output 3 (:) as 6̂(:) = 〈8(: − 1),Φ(r(:))〉H. The learning

rule (weight vector updation rule) for this algorithm is obtained by minimizing MSE, as

follows:

E[J: (8)] = E[|3 (:) − 6̂(:) |2] . (3.27)

1“,” is used in the relation (r(:) = r:
g> | 53 , r

:
53 |g> ) as a notation for “or” which means that r(:) can be

either r:
g> | 53 or r:

53 |g>
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In (3.27), MSE is estimated by the error of the instantaneous measurement i.e.

Ê[J: (8)] = J: (8), hence

J: (8) = |3 (:) − 6̂(:) |2. (3.28)

For stochastic gradient update, the gradient with respect to 8 is calculated, i.e.

O8J: (8) is computed by applying the rule of Wirtinger’s calculus given in [55, 56].

Hence, the adaptation factor by which 8 is updated is J: (8) = −4(:)`Φ(r(:)), where

4(:) = 3 (:) − 〈8(: − 1),Φ(r(:))〉H and ` is the learning rate parameter. Thus, the

final weight vector-update equation is 8(:) = 8(: − 1) + `4(:)Φ(r(:)), for the initial

condition 8(0) = 0, repeated application of the weight vector-update yields

8(:) = `
:∑
8=0

4(8)Φ(r(8)). (3.29)

Thus, the estimated output at : Cℎ time instant is given by

6̂(:) = 〈Φ(r(:)),8(: − 1)〉H = 〈Φ(r(:)), `
:−1∑
8=0

4(8)Φ(r(8))〉H (3.30)

From Mercer’s theorem as defined in (3.26), the estimated output 6̂(:) at : Cℎ iteration

is

6̂(:) = `
:−1∑
8=0

4(8)^(r(8), r(:)). (3.31)

In this work and other subsequent chapters on kernel based estimation, the most

commonly used Gaussian kernel function

^(r(8), r(:)) = exp
(
−

∑"!−1
9=0 (r 9 (8) − r∗

9
(:))2

f2

)
is used [55], where f is the kernel width and r 9 (·) is the 9 Cℎ element of r(·).

After replacing desired outputs (true parameters) and their corresponding inputs (ob-

servations) as 3 (:) = g>: , 53 : and r(:) = r:
g> | 53 , r

:
53 |g> , the pseudo code for KLMS based

estimator, is given in Algorithm-1.
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Algorithm 1 KLMS algorithm to estimate g> and 53
1: Inputs:

r(:) = r:
g> | 53 , r

:
53 |g>∀ :, 3 (:) = g>

: , 53
: ∀ :

2: Initialize:
4(0) ← 0, 6̂(0) ← ^(r(0), ·), D: ← {}, a: ← {},

choose ` and f, r(0) ← r0
g> | 53 , r

0
53 |g>

3: while {r(:), 3 (:)} available do
6̂(:) = `∑:−1

8=0 4(8)^(r(8), r(:))
4(:) = 3 (:) − 6̂(:), D: ← r(:), a: ← 4(:)

4: end while

3.2.2 Estimator based on KLMS-NC

At each instant : and for every input-output pair {r(:), 3 (:)}, iteratively learning and

updating the estimates, increases the size of dictionary D: as given in Algorithm-1.

Dictionary is a collection of all the important centers of Gaussian kernel ^ which keeps

track of all the input samples used for the training of a system. The increasing dictionary

size is due to the utilization of every observation r(:) for estimation. However, not all

the observations play a significant role in estimation of the non-linear system. To address

the problem of increasing sample size, Platt’s NC for sparsification techniques have been

introduced in [43].

In dictionary sparsification technique, for curbing the growth of linearly increasing

dictionary size, only important input observations are added as the new center. This

is accomplished by applying constraints on the Euclidean distance of an input observa-

tion. With each newly incoming input r(:) its Euclidean distance from the previously

stored centers are calculated as dis(r(:), r( 9)) = ‖r(:) − r( 9)‖2 ∀ 9 = 0, 1, . . . , (. If

minimum of dis(r(:), r( 9)) is less than or equal to a pre-assigned small number X1 i.e.

<8=︸︷︷︸
0≤ 9≤(

dis(r(:), r( 9)) ≤ X1 then the input observation will be discarded and not be added

in the dictionary D:−1 as a new input center. However, if <8=︸︷︷︸
0≤ 9≤(

dis(r(:), r( 9)) > X1

then absolute of the error | 4(:) | associated with the input observation is compared

against another pre-assigned small number X2. If | 4(:) |> X2, then the input observation

is treated as an important observation and gets added in the dictionary as a new center,

thereby results in modification of D:−1 as D: = {D:−1 ∪ r(:)}. Else the observation is

52



discarded, while the contents and size of dictionary remain unchanged. By doing this, the

sparsification method effectively reduces the required number of training regressors while

preserving a desirable performance.

The pseudo code for the proposed online estimator based on KLMSwith sparsification

is described in Algorithm 2.

Algorithm 2 KLMS algorithm to estimate g> and 53 with sparsification
1: Inputs:

r(:) = r:
g> | 53 , r

:
53 |g>∀ :, 3 (:) = g>

: , 53
: ∀ :

2: Initialize:
4(0) ← 0, 6̂(0) ← ^(r(0), ·), D: ← {}, a: ← {},

choose ` and f, r(0) ← r0
g> | 53 , r

0
53 |g>

3: while {r(:), 3 (:)} available do
6̂(:) = `∑|D:−1 |

8=0 4(8)^(D8
:−1, r(:))

4(:) = 3 (:) − 6̂(:)
dis( 9) =‖ r(:) − D 9

:−1 ‖ for 0 ≤ 9 ≤ (
4: if <8=︸︷︷︸

0≤ 9≤(

dis( 9) ≥ X1 and |4(:) | ≥ X2 then

D: = {D:−1 ∪ r(:)}, a: = {a:−1 ∪ 4(:)}
5: else

D: = D:−1, a: = a:−1
6: end if
7: end while

3.2.3 Estimator based on KLMS-Modified NC

The width f is an important parameter for Gaussian kernel function. Both the learning

rate and estimates are sensitive to the choice of f. For large values of f, all the input

vectors will look similar in the RKHS (with inner product close to unity). On the contrary,

low values of f results in almost zero inner product which in turn reflects that all the input

vectors are different. Hence, choosing an appropriate value of f is vital in KLMS. There

are methods to choose the finite kernel size like cross-validation, penalizing function,

plug-in method, and Silverman’s rule. The penalizing function and plug-in methods are

computationally expensive in the online learning system. Silverman’s rule is derived for

Gaussian approximation, and it is widely used to select the kernel size in kernel density

estimation [44, 57, 58]. However, for online learning algorithms, Silverman’s rule provides
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the sub-optimum value of kernel width [45, 58].

Thus, as KLMS is an online learning algorithm where the weights are updated at each

iteration the kernel width f can also be updated simultaneously by reducing the MSE at

each iteration [45]. If f: is the kernel width at : Cℎ iteration then the update equation for

f: is given by

f: = f:−1 − [
m

mf:−1
42(:). (3.32)

Due to system non-linearity, 3 (:) can be approximated as, 3 (:) = 6̂(r(:)) + D(:),

wherein, 6̂(· ) is the approximation of non-linearmappingwhich recovers the delay/Doppler

spread from the radar return, and D(:) is the approximation error at the : Cℎ time instant.

If 6:−1{· } is the estimated mapping after learning upto : Cℎ instant, then the error 4(:)

associated with input r(:) is

4(:) = 3 (:) − 6:−1(r(:)) = 6̃:−1(r(:)) + D(:), (3.33)

where 6̃:−1(r(:)) = 6̂(r(:)) − 6:−1(r(:)).

Substituting (3.33) in (3.32) yields

f: =f:−1 − 2[4(:) m

mf:−1
[6̃:−1(r(:)) + D(:)]

=f:−1 + 2[`4(:)4(: − 1) m

mf:−1
[^f:−1 (r(: − 1)), r(:)]

=f:−1 + d4(:)4(: − 1)
"!−1∑
9=0
(r 9 (: − 1) − r∗9 (:))2

^f:−1 (r(: − 1), r(:))
f3
:−1

, (3.34)

where d = 4[` is the kernel width learning parameter.

Similar to `, d controls the speed of convergence of kernel width to its steady-

state value. Subsequently, for the guaranteed convergence of kernel width, the detailed

derivation for bound on d is given in Appendix-A. Pseudo code for the proposed online

estimator based on KLMS with adaptive kernel width and sparsification is described in

Algorithm 3.

54



Algorithm 3 KLMS algorithm to estimate g> and 53 with adaptive kernel width and
sparsification
1: Inputs:

r(:) = r:
g> | 53 , r

:
53 |g>∀ :, 3 (:) = g>

: , 53
: ∀ :

2: Initialize:
4(0) ← 0, 6̂(0) ← ^(r(0), ·), D: ← {}, a: ← {},

choose `, f0, and d, r(0) ← r0
g> | 53 , r

0
53 |g>

3: while {r(:), 3 (:)} available do
6̂(:) = `∑|D:−1 |

8=0 4∗(8)^(D8
:−1, r(:))

4(:) = 3 (:) − 6̂(:)
dis( 9) =‖ r(:) − D 9

:−1 ‖ for 0 ≤ 9 ≤ (
4: if <8=︸︷︷︸

0≤ 9≤(

dis( 9) ≥ X1 and |4(:) | ≥ X2 then

D: = {D:−1 ∪ r(:)}, a: = {a:−1 ∪ 4(:)}
f: = f:−1 + d4(:)4(: −1)∑"!−1

9=0 (r 9 (: −1) −r∗
9
(:))2

(
^f:−1 (r(:−1),r(:))

f3
:−1

)
5: else

D: = D:−1, a: = a:−1
6: end if
7: end while

3.3 CRLB for Delay and Doppler shift in RKHS

In this section, to assess the performance of proposed estimators, CRLB for delay and

Doppler shift estimation are derived. Since the system model for LFM radar and OFDM

radar differs only in the observations, derivation for the CRLB is performed by considering

the system model of a generalized radar system, where signal model is given as

rE = sE + wE . (3.35)

The above signal model is generalization for LFM and OFDM radar, as sE is the

signal part of either LFM or OFDM radar system i.e. sE = vec(S LFM) or sE = vec(S OFDM).

Similarly, rE is the received radar return affected by AWGN wE of either LFM or OFDM

radar system corresponding to vec(S LFM) or vec(S OFDM) respectively. Mapping (3.35) to

RKHS (through the mapping function Φ : C# −→ H), (3.35) is given by

Φ(rE) = Φ(sE + wE) ≈ Φ(sE) + OΦ(sE)wE, (3.36)
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where OΦ(sE) is the Jacobian matrix. Let \ represent the unknown parameter whose

CRLB is evaluated.

The observations in 3.36 are function of unknown parameter \, hence CRLB of the

system model parametrized by the unknown parameter as in [35, Ch. 3.8] is given by

�'!�(\) = OΦ(sE)� �−1(\)OΦ(sE), (3.37)

where � (\) is the Fisher information for the system model described in (3.35) and is given

as

� (\) = −E
[
m2

m\2 lnP(rE; \)
]
, (3.38)

where P(rE; \) is the probability distribution function of observation rE in Euclidean

space.

P(rE; \) =
1

c# |�w |
exp

(
− (rE − sE)��w

−1(rE − sE)
)
,

where # is the cardinality of rE i.e. # = "!. Hence solving for (3.38) yields

lnP(rE; \) = −# ln(c |�w |
1
# ) − (rE − sE)��w

−1(rE − sE). (3.39)

Substituting (3.39) in (3.38) and utilizing E[rE] = sE, yields

� (\) = −2
(
msE
m\

�

�w
−1 msE
m\

)
. (3.40)

Substituting (3.40) in (3.37) and using the trace identity [59]

�'!�(\) = −1
2
tr(OΦ(sE)�

(
msE
m\

�

�w
−1 msE
m\

)−1
OΦ(sE)),

= −1
2
tr(OΦ(sE)�OΦ(sE)

(
msE
m\

�

�w
−1 msE
m\

)−1
). (3.41)

Since from kernel trick OΦ(sE)�OΦ(sE) = 〈OΦ(sE),OΦ(sE)〉H = # . Hence, (3.41)
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can be written as

�'!�(\) = −#
2
tr

((
msE
m\

� msE
m\

�w
−1

)−1)
. (3.42)

3.3.1 CRLB for Delay

Solving (3.42) for \ = g> for

LFM radar system (sE = vec(S LFM))

�'!� LFM(g>) = −
#

2
tr
((
mvec(S LFM)

mg>

� mvec(S LFM)
mg>

�w
−1

)−1)
=

#

8c2Δ 5 2"
∑!−1
;=1 ;

2
tr(�w).

(3.43)

Substituting �w = Ω
2
FI, the final expression for �'!� LFM(g>) is given by

�'!� LFM(g0) =
3Ω2

F#

4c2Δ 5 2(! − 1) (2! − 1)
. (3.44)

OFDM radar system (sE = vec(S OFDM))

�'!� OFDM(g>) = −
#

2
tr
((
mvec(S OFDM)

mg>

� mvec(S OFDM)
mg>

�w
−1

)−1)
=

3Ω2
F#

4c2Δ 5 2(! − 1) (2! − 1)
.

(3.45)

3.3.2 CRLB for Doppler shift

Solving (3.42) for \ = 53 , and for
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LFM radar system (sE = vec(S LFM))

�'!� LFM( 53) = −
#

2
tr
(
mvec(S LFM)

m 53

� mvec(S LFM)
m 53

�w
−1

)−1
,

=
#

8c2)2
PRI!

∑"−1
<=1 <

2(! + ! (!−1)Δ 5
52

+ (!−1)! (2!−1)Δ 5
6 52 )

tr(�w). (3.46)

Similar to delay, substituting �w = Ω2
FI and using

∑"−1
<=1 <

2 = ("−1)" (2"−1)
6 . The

�'!� LFM( 53) is given by

�'!� LFM( 53) =
3Ω2

F#

4c2)2
PRI! (" − 1) (2" − 1) (1 + (5+2!) (!−1)Δ 5

6 52 )
. (3.47)

OFDM radar system (sE = vec(S OFDM))

�'!� OFDM( 53) = −
#

2
tr
(
mvec(S OFDM)

m 53

� mvec(S OFDM)
m 53

�w
−1

)−1

=
3Ω2

F#

4c2)2
PRI(" − 1) (2" − 1)

. (3.48)

3.4 Simulation Results and Discussion

In this section, simulations for the proposed KLMS based delay and Doppler shift are

detailed and validated through simulations. The performance of the proposed estimation

algorithms are compared with FT and CRLB. Simulation parameters for both LFM and

OFDM radar are given in Table-3.2 and Table-3.3 respectively. Parameters of a waveform

used in the simulations are described in Table-3.4. The SNR is fixed at 10 dB for estimation

of delay and Doppler shift.

3.4.1 Estimation of Delay for LFM and OFDM Radar

Delay estimation is carried out by uniformly splitting the range of delay true values

{g><8= , g><0G} in 5050 equal parts. Samples corresponding to all 5050 delays are formed
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Table 3.1: Comparison of computational complexity of estimators based on KLMS,
KLMS-NC, and KLMS-Modified NC

Estimation algorithm Number of multiplications Complexity order
KLMS 5000 $ (:)

KLMS-NC 150 $ ( |D#�
:−1 |)

KLMS-Modified NC 100 $ ( |D"#�
:−1 |)

The following relation $ ( |D"#�
:−1 |) < $ ( |D#�

:−1 |) < : holds in which $ ( |D#�
:−1 |) and

$ ( |D"#�
:−1 |) are the cardinality of the dictionary for estimators based on KLMS-NC and

KLMS-Modified NC, respectively.

according to (3.23). From [15], out of 5050 samples, first 5000 samples are used for

training and remaining 1% for testing. Comparative plot of MSE convergence versus

iteration and dictionary size corresponding to LFM radar and OFDM radar are shown in

Fig. 3.1a. From Fig. 3.1a, it is observed that the final MSE achieved by KLMS-NC

and KLMS-Modified NC is lower than KLMS. Additionally, modification in KLMS as

KLMS-NC and KLMS-Modified NC provides low computational complexity and suitable

kernel width, respectively. For both LFM and OFDM radar system, regressors used for the

training of estimator in two modifications of KLMS are shown in Fig. 3.1a. In LFM radar

system out of 5000 regressors, only 160 and 100 regressors are used after incorporating

NC and Modified NC in KLMS, respectively. Similarly, the OFDM radar, utilizes 155 for

NC, and 135 forModified NC, out of 5000 regressors. Therefore, sparsification of samples

by NC reduces the computational complexity of an algorithm and provides lower MSE

than KLMS without NC as depicted in Fig. 3.1a. Comparative analysis of the number of

computations required for the convergence of estimator MSE for KLMS, KLMS-NC, and

KLMS-ModifiedNC for the given LFMandOFDM radar systemmodel and corresponding

to Fig. 3.1a is shown in Table-3.1.

3.4.2 Estimation of Doppler Shift for LFM and OFDM Radar

Similar to delay estimation, estimation of Doppler shift is carried out by uniformly splitting

the true value range of Doppler shift { 53<8= , 53<0G} in 5050 equal parts. Input samples
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Figure 3.1: Normalized MSE and Dicitonary size in estimation of (a) delay and (b)
Doppler shift for LFM and OFDM radar with estimators based on KLMS, KLMS-NC and
KLMS-Modified NC.

of an estimator are formed corresponding to each of 5050 Doppler shifts utilizing (3.24).

To illustrate effectiveness of proposed algorithm the input samples are as per [15], where

5000 samples are used for training of an estimator and the last 50 samples are used for

testing. At each : Cℎ iteration, the value of delay g:> is treated as known and is chosen

randomly from its available range {g><8= , g><0G}. Comparative plot for the convergence of

MSE in Doppler shift estimation versus iterations and evolution of dictionary size for all

three KLMS algorithms for LFM and OFDM radar are shown in Fig. 3.1b. Modification

in KLMS by employing NC and Modified NC reduces the final MSE. With Modified
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NC, KLMS provides the lowest MSE as compared to KLMS. Moreover, for LFM radar,

contrary to NC case where 150 samples are utilized for training of an estimator, KLMS-

Modified NC utilizes 100 samples out of 5000 as shown in Fig. 3.1b. Similar to LFM

radar, as shown in Fig. 3.1b, in OFDM radar system too the implementation of Modified

NC results in the utilization of 100 samples out of 5000. Whereas, KLMS-NC results in

the utilization of 160 samples. Improvement in the performance of an estimator for both

(LFM radar and OFDM radar) is because of the suitable kernel width which is achieved

gradually with successive iteration along with the reduction in estimator MSE.

Table 3.2: Parameters values used for simulations for LFM radar system.

Parameters KLMS {g>, 53} KLMS-NC {g>, 53} KLMS-Modified NC
{g>, 53}

` 0.15, 0.2 0.35, 0.2 0.55, 0.1
f 1.25 × 10−6, 10−2 0.4 × 10−6, 10−6 Dynamic
d Nil, Nil Nil, Nil 104.5, 106

f> Nil, Nil Nil, Nil 0.01, 0.01

Table 3.3: Parameters values used for simulations for OFDM radar system.

Parameters KLMS {g>, 53} KLMS-NC {g>, 53} KLMS-Modified NC
{g>, 53}

` 0.15, 0.25 0.35, 0.25 0.25, 0.25
f 10−5, 10−2 10−5, 10−5 Dynamic
d Nil, Nil Nil, Nil 106.5, 106.5

f> Nil, Nil Nil, Nil 0.01, 0.01

Table 3.4: Values of radar parameters

Parameters Values
Number of subcarriers (!) 8
Number of pulses (") 8
Subcarrier spacing (Δ 5 ) 76.25 KHz
Pulse duration ()> = 1

Δ 5
) 0.013 × 10−3sec

Pulse repetition interval ()PRI = 1.25)>) 0.016ms
Bandwidth {!Δ 5 } 610KHz

Set of delay true value {g><8= , g><0G}={ 1
!Δ 5

, )>} {0.0016 × 10−3, 0.013 × 10−3}sec
Set of Doppler true value { 53<8= , 53<0G}={− 1

2)%'� ,
1

2)%'� } {−30.4, 30.4}kHz

61



3.4.3 PerformanceComparisonofKLMSbasedEstimatorswithFourier

transform Method

A performance comparison between KLMS and FT is performed in this section. Since

FT method gives approximate ML estimates by minimizing the non-convex cost function,

the FT method is prone to produce erroneous estimates for the considered system model.

Moreover, as the estimates are obtained by searching location of the peak in the discrete

2D spectrogram, the estimates are susceptible to the resolution of spectrogram peak

(finer resolution of peak yields accurate estimates). Hence, for comparison between two

estimators (FT and KLMS), the variance of a 2D spectrogram is used as a metric. The

metric is chosen to measure the variance in the widening of peak in 2D spectrogram

against increase in the noise level.

The performance of FT and KLMS algorithm using NC andModified NC for the delay

and Doppler shift estimation is examined over the SNR ranges from −20 dB to 30 dB.

As shown in Fig. 3.2a and Fig. 3.2b, for the whole range of SNR, KLMS-Modified NC

performs far better than FT. The improvement in estimation is considerable for LFM radar

and OFDMradar, as shown in Fig. 3.2a and Fig. 3.2b, for the range of KLMS typically

from 0 dB to 30 dB, KLMS-Modified NC yields estimate of delay with lower variance

than KLMS-NC. However, for lower SNR range of −15 dB to −1 dB KLMS-NC and

KLMS-Modified NC have similar performance. Similar trend can also be observed for

OFDM radar.

From Fig. 3.2a and Fig. 3.2b, it can be observed that KLMS-Modifed NC and KLMS-

NC exhibit similar convergence characteristics in certain scenarios when the kernel-width

estimates by Silverman’s rule are close to the optimal value of the kernel-width. However,

from Fig. 3.2b, KLMS-Modified NC performs consistently better than KLMS-NC for

OFDM radar in general. Furthermore, KLMS in both extensions (NC and Modified NC),

and for both LFM radar and OFDM radar yields estimates (delay and Doppler shift) closest

to the CRLBs.
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Figure 3.2: Comparison of FT method with KLMS-NC and KLMS-Modified NC algo-
rithms for delay and Doppler shift estimation in (a) LFM and (b) OFDM radar.

3.5 Summary

In this Chapter, KLMS based estimation algorithms were proposed for LFM and OFDM

radar systems. The estimation of the target’s unknown parameters is performed via an

implicit mapping to RKHS. To facilitate sparse learning without affecting estimator per-

formance, Platt’s NC is used to limit the increasing size of training samples. Additionally,

a technique is explored for tuning the hyper-parameter f from observations and is found

to be suitable for both LFM and OFDM radar systems in terms of MSE and computational
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complexity. Moreover, optimization of the convex cost function over an RKHS makes

the proposed estimators viable for generalized radar models. Furthermore, an analytical

expression is derived for the CRLB of the proposed RKHS based estimators for the given

system model. Lastly, from the simulations, it is observed that the variance of the esti-

mates corresponding to the proposed estimators is lower than the existing non-adaptive

estimation techniques, and is closer to the achievable CRLB.

In this Chapter, estimation of delay and Doppler shift is pursued by utilizing the radar

observations perturbed by Gaussian distributed thermal noise. However, other than the

target of interest, practically, the radar surveillance environment is perturbed by reflections

from other objects as well called clutter. In practice, the clutter follows the non-Gaussian

distribution. The proposed KLMS based estimator uses MSE, which considers second-

order statistics of error (between the estimated and true parameter value); consequently,

the KLMS based estimators developed in Chapter 3 are suitable only for radar observations

perturbed by clutter with Gaussian approximation or Gaussian distributed thermal noise.

For extending the use of KAF based estimation techniques for practical radar systems

perturbed by non-Gaussian clutter and thermal noise, in the next Chapter, the KMC based

estimators are developed. The estimators developed in Chapter 4, instead of using MSE,

optimizes correntropy. Correntropy, being information-theoretic learning (ITL) criterion,

considers higher-order statistics of the error to incorporate the means of dealing with the

effects of non-Gaussian clutter in estimation in a practical scenario.
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Chapter 4

Range and Velocity Estimation in

non-Gaussian Clutter

In the previous Chapter, for efficient estimation of the target’s range and velocity, KLMS

based adaptive estimators are developed and tested for LFM and OFDM radar systems

perturbed by Gaussian distributed thermal noise. The KLMS based estimators are viable

due to the universal approximation of an arbitrary unknown function and convexity of the

cost function in RKHS [15, 16, 41, 60]. Convexity and universal representation make

estimators based on KLMS better suited in comparison to conventional estimation tech-

niques based on FT. Nevertheless, the radar return is affected by the undesired reflections

from objects [4, 61–63], these reflections are collectively called clutter and modeled by

non-Gaussian distributions [23, 64–66]. The KLMS based estimator uses MSE for adap-

tation, which is optimal for additive Gaussian distortion [61, 62]. However, the optimality

of KLMS based estimator for additive non-Gaussian distortion is not guaranteed because

MSE considers second-order statistics of error.

In this Chapter, the problemof delay andDoppler shift estimation is pursued in themore

realistic and practical environment, perturbed by thermal noise and clutter. Subsequently,

limitations of the conventional estimators based on FT and KLMS, in the presence of non-

Gaussian clutter are overcome by the proposed estimator based on KMC algorithm. The

proposed KMC based estimator uses MCC in RKHS and provides improved performance
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both in terms of computational complexity and estimation accuracy. MCC is an ITL

criterion and can be considered as a similarity measure between the two random variables

[67, 68]. Moreover, MCC is an online estimate of Renyi-U information criterion for U = 2

[69]. Additionally, maximizing the similarity between the desired parameter and estimated

parameter, results in a smooth loss function, and rejection of outliers. Furthermore,

KMC, unlike other estimators based on KLMS criterion considers higher order statistics

for estimation [61, 62, 67, 68, 70, 71]. Hence, maximization of smooth loss function

and consideration of higher order statistics makes estimators based on KMC viable in

the presence of clutter. However, the practical deployment of KMC based estimator

is limited by two aspects: i) KMC based estimator approximates the unknown function

using the radar return in RKHS. Consequently, they suffer from linear temporal increase in

computational complexity [18, 72], and ii) for smooth function approximation, the KMC

based estimator employs a continuous Mercer’s kernel; however the accuracy of function

approximation by KMC algorithm depends on the choice of appropriate kernel width

[15, 16, 45], which makes choice of appropriate kernel-width for MCC based estimation

crucial.

To mitigate the above limitations of KMC based estimator for range and velocity esti-

mation in the presence of non-Gaussian clutter, the two variants of KMC based estimator

are proposed. Firstly, for curbing increasing computational complexity of KMC based

estimation in RKHS, similar to KLMS-NC in Chapter 3, Platt’s NC [43] with KMC is

used. Secondly, for selection of an appropriate kernel width, an adaptive estimator for

stochastic update of the kernel-width using MCC is proposed, namely the KMC-Modified

NC.

The Chapter is organized as follows: A brief introduction to the LFM and SF radar

return is given first. After that, the proposed estimators based on KMC-NC and KMC-

ModifiedNCare described. Next, analytical expressions are derived for CRLBof theKMC

based target-parameter estimation, and overall variance of the estimators is quantified.

Followed this, simulation results are presented for validating the proposed KMC based

estimators. Finally, conclusion is given.
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4.1 System Model

Performance of the proposed estimators is analyzed over both the LFM and SF radar

system, which, in a given CPI transmits" radar pulses [5, 31, 54, 73, 74]. The transmitted

waveform is a pulse of finite width and repeats after a certain PRI. We consider processing

of the waveform on PRI basis. Then, from Section 3.1 of Chapter 3, the transmitted

pass-band pulse is given by

B< (C) =
(
B(C − <)PRI)

)
exp( 92c 52C), (4.1)

where B(C) is either the LFM or SF baseband transmitted pulse.

Without loss of generality, let us consider that the target is located at an unknown range

'> and % scatterers are located at range '?∀? = [1, · · · , %] from the radar. The received

pass-band radar return for an arbitrary <Cℎ pulse is given by

A< (C) = Z
(
B< (C − g<)

)
+ Z

%∑
?=1

B< (C − g?<) + F(C), (4.2)

where g< is define in Section 3.1 of Chapter 3, Z represents the complex attenuation factor

proportional to the target RCS and g?< =
2'?
2
.

The second term in (4.2) represents the combined effect of all the unwanted reflections

from the clutter henceforth, denoted as a random process 2(C). Consequently, from (4.1)

and (4.2), yield

A< (C) = Z
(
B(C − <)PRI − g<)

)
exp( 92c 52 (C − g<)) + 2(C) + F(C). (4.3)
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4.1.1 Radar return for LFM radar

After substituting (3.4) into (4.3), and following the steps given in [2], the radar return of

LFM radar for <Cℎ pulse and ;Cℎ frequency sample is given by

ALFM(<, ;) = ZGLFM(<, ;) + 2(<, ;) + F(<, ;) (4.4)

where GLFM(<, ;) = exp ( 92c< 53)PRI) exp (− 92c;Δ 5 g>) exp( 92c 53<; () PRIΔ 5

52
)), 2(<, ;)

are the sample from clutter follows the K distribution define in Section 1.5 of Chapter 1.

For < = 0, · · · , " − 1 and ; = 0, · · · , ! − 1, concatenating (4.4) in a vector yields

rLFM = ZxLFM + c + w, (4.5)

where rLFM = [ALFM(0, 0), ALFM(0, 1), · · · , ALFM("−1, !−1)]) , c = [2(0, 0), 2(0, 1), · · · , 2("−

1, ! − 1)]) , w = [F(0, 0), F(0, 1), · · · , F(" − 1, ! − 1)]) , and

xLFM = [GLFM(0, 0), GLFM(0, 1), · · · , GLFM(" − 1, ! − 1)])

4.1.2 Radar return for SF radar

For SF radar, B(C) for <Cℎ pulse is given by

B(C) = 1 exp( 92c<Δ 5 C), for 0 ≤ C ≤ )> (4.6)

where 1 is the amplitude, and Δ 5 is the frequency increment of SF waveform.

Substituting (4.6) into (4.3) and sampling at an interval of ;)> +<)PRI, the radar return

for SF radar for <Cℎ pulse and ;Cℎ fast time index is given by

ASF(<, ;) = ZGSF(<, ;) + 2(<, ;) + F(<, ;) (4.7)

where GSF(<, ;) = exp ( 92c 53 (<)PRI + ;)>)) exp (− 92c;Δ 5 g>)
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Concatenating (4.7) in a vector yields

rSF = ZxSF + c + w, (4.8)

where rSF = [ASF(0, 0), ASF(0, 1), · · · , ASF(" − 1, ! − 1)]) , and

xSF = [GSF(0, 0), GSF(0, 1), · · · , GSF(" − 1, ! − 1)])

For better estimation of delay andDoppler shift, theKLMSbased estimator is introduced in

Chapter 3. However, since KLMS based estimator works on the principle of minimization

of MSE criterion in RKHS, they are prone to yield inaccurate estimates in the presence of

non-Gaussian clutter. The estimation of the target’s delay and Doppler shift in the presence

of non-Gaussian clutter, has not been taken up in literature. To improve estimation of delay

and Doppler shift in the presence of non-Gaussian clutter, KMC based sparse estimators

are proposed in the next section.

4.2 KMC based Estimators

In the proposed estimators, estimations of delay andDoppler shift are pursued individually,

whereby, the true value of delay and Doppler shift is limited to one dimension, i.e. g>∈ R,

and 53∈ R.

For estimation of delay and Doppler shift, constant attenuation factor, Z , in (4.5) and

(4.8) is considered to be unity, hence

rLFM = xLFM + c + w, (4.9)

rSF = xSF + c + w. (4.10)

Subsequently, for given 53 , the range (g><8= , g><0G ) in which g> is expected to take

the value is divided into  equal intervals i.e. [g1
><8=

. . . g ><0G ]. At any instant : , (4.9)

and (4.10) can be written as r:< = exp ( 92c< 53)PRI) exp( 92c 53<; () PRIΔ 5

52
))d;+c+w ∀< =
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[0, 1, . . . , "−1] for LFMradar systemwhered; ∈ C!×1 = [1, · · · , exp (− 92c(! − 1)Δ 5 g>)]

and as r:< = exp ( 92c 53 (<)PRI + ;)>))d; + c + w ∀< = [0, 1, . . . , " − 1] for SF radar

system where d; ∈ C!×1 = [1, · · · , exp (− 92c(! − 1)Δ 5 g>)]. Hence, this yields

r:
g> | 53 ∈ C

"!×1 = [r:0 , r
:
1 , . . . , r

:
"−1]

) . (4.11)

Equivalently, at : Cℎ instant, vector for the observations of radar return for LFM and SF

radar system corresponding to any arbitrary Doppler shift 5 :
3
from the set [ 5 1

3<8=
. . . 5  

3<0G
]

of  -Doppler shifts is given as

r:
53 |g> ∈ C

"!×1 = [r:0 , r
:
1 , . . . , r

:
!−1]

) , (4.12)

where r:
;
= exp (− 92c;Δ 5 g>)d< + c + w and

d< ∈ C"×1 = [1, . . . , exp ( 92c(" − 1) 53)PRI) exp( 92c 53 (" − 1); ()PRIΔ 5

52
))])

for LFM radar system and

d< ∈ C"×1 = [exp ( 92c 53 ;)>), · · · , exp ( 92c 53 ((" − 1))PRI + ;)>))]

for SF radar system.

4.2.1 Estimator based on KMC-NC

In this section, the proposed KMC-NC based estimator is described in detail. The KMC

algorithm provides convexity in RKHSwhich aids in robust approximation of the unknown

function in RKHS in the presence of clutter. Thus, in this work, KMC-NC based estimator

is proposed for parameter estimation from LFM and SF radar model in the presence of

non-Gaussian clutter described by (1.8).

The parameters are estimated by using a mapping function 6(·), which at : Cℎ instant

maps the input vector r(:) ∈ C"! (where r(:) = r:
g> | 53 , r

:
53 |g>) to corresponding output
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3 (:) ∈ C (where 3 (:) = g>: , 53 : ) as (6(r(:)) = 3 (:)). The KMC algorithm proceeds

with mapping the input vector r(:)∀: into possibly infinite dimensional RKHS H by a

complex Mercer kernel ^. If the : Cℎ input vector is mapped in H as Φ(r(:)), then the

following relation holds

Φ(r(:)) = ^(r(:), ·). (4.13)

From Mercer theorem, the reproducing kernel ^(r(:), r(:′)) [16] can be written as

^(r(:), r(:′)) = 〈Φ(r(:)),Φ(r(:′))〉H, (4.14)

Similar to estimators based on KLMS, described in Chapter 3, if8(: − 1) ia a weight-

vector in linear space H, then from kernel trick, which is equivalently the inner product

in H, gives estimate of the desired output 3 (:) as 6̂(:) = 〈8(: − 1),Φ(r(:))〉H. The

learning rule given by MCC is

J (8) = E[^f2 (3 (:), 6̂(:))] . (4.15)

where ^f2 (3 (:), 6̂(:)) = exp
(
− (3 (:)−6̂(:))

2

2f2
2

)
is the correntropy function, and f2 is

correntropy Gaussian kernel function width.

The correntropy in (4.15) is difficult to evaluate without knowing the joint probability

density function of 3 (:) and 6̂(:) [61–63]. Therefore, (4.15) is estimated in terms of

error of the instantaneous measurement at : Cℎ instant as Ĵ (8) = J: (8) and given by

J: (8) = ^f2 (3 (:), 6̂(:)) = exp
(
− (3 (:) − 6̂(:))

2

2f2
2

)
. (4.16)

For stochastic gradient update of 8, the gradient of J: (8) with respect to 8 is

calculated (i.e. O8J: (8)). Hence, the weight-vector 8 is updated by the factor ` exp
(
−

42 (:)
2f2

2

)
4(:)Φ(r(:)), where 4(:) = 3 (:) − 〈8(: − 1),Φ(r(:))〉H is the instantaneous error

in adaptive estimation and ` is the learning rate parameter as 8(:) = 8(: − 1) + ` exp
(
−

42 (:)
2f2

2

)
4(:)Φ(r(:)). Subsequently, for the initial condition Ω(0) = 0, repeated application
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of the weight-vector update yields

8(:) = `
:∑
8=0

exp
(
− 4

2(8)
2f2

2

)
4(8)Φ(r(8)). (4.17)

Thus, the estimated output at : Cℎ time instant is given by

6̂(:) = 〈Φ(r(:)),8(: − 1)〉H = 〈Φ(r(:)), `
:−1∑
8=0

exp
(
− 4

2(8)
2f2

2

)
4(8)Φ(r(8))〉H,

= `

:−1∑
8=0

exp
(
− 4

2(8)
2f2

2

)
4(8)〈Φ(r(8)),Φ(r(:))〉H. (4.18)

Using Mercer’s theorem, the estimated output 6̂(:) at : Cℎ iteration is given as

6̂(:) = `
:−1∑
8=0

exp
(
− 4

2(8)
2f2

2

)
4(8)^(r(8), r(:)). (4.19)

As shown in (4.19), unlike the previously proposed estimator based on KLMS where

the estimate 6(:) is given by 6̂(:) = `∑:−1
8=0 4(8)^(r(8), r(:)) (3.31), the estimate of 6(:)

with the proposed estimator based on KMC have an additional factor
(
exp

(
− 4

2 (8)
2f2

2

) )
which

depends upon the instantaneous error 4(:). With a suitable choice of f2, this additional

factor, while dealing with non-Gaussian clutter facilitates the estimator based on KMC to

suppress the effect of heavy tailed outliers.

Further, similar to estimator based on KLMS, developed in Chapter 3, at each instant :

and for every input-output pair {r(:), 3 (:)}, repeated learning and updating the estimates,

increases the computational complexity of KMC based estimator as shown in (4.19). The

computational complexity increases because each incoming observations r(:) is used

for estimation. However, not all the observations are significant for estimation. Hence,

to selectively choose the observations and simultaneously reducing the complexity, the

sparsification technique based on NC [43], described in Section 3.2.2 of Chapter 3 is used.

After replacing desired outputs (true parameters) and their corresponding inputs (ob-

servations) as 3 (:) = g>: , 53 : and r(:) = r:
g> | 53 , r

:
53 |g> respectively, the pseudo code for

the proposed online estimator based on KMCwith sparsification is described in Algorithm
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4.

Algorithm 4 KMC algorithm to estimate g> and 53 with sparsification
1: Inputs:

r(:) = r:
g> | 53 , r

:
53 |g>∀ :, 3 (:) = g>

: , 53
: ∀ :

2: Initialize:
choose ` and f, r(0) ← r0

g> | 53 , r
0
53 |g> , 4(0) ← 0,

6̂(0) ← ^(r(0), ·), D: ← {}, a0 ← 4(0)
3: while {r(:), 3 (:)} available do
4: 6̂(:) = `∑|D:−1 |

8=0 exp
(
− 42 (8)

2f2
2

)
4(8)^(D8

:−1, r(:))
5: 4(:) = 3 (:) − 6̂(:)
6: dis( 9) =

r(:) − D 9

:−1

 for 0 ≤ 9 ≤ (
7: if min︸︷︷︸

0≤ 9≤(

dis( 9) ≥ X1 & |4(:) | ≥ X2 then

D: = {D:−1 ∪ r(:)}, a: = {a:−1 ∪ 4(:)}
8: else

D: = D:−1, a: = a:−1
9: end if
10: end while

4.2.2 Estimator based on KMC-Modified NC

As both the learning rate and parameter estimates are sensitive to the choice off, a suitable

kernel width f (size of the kernel) is a significant parameter for the proposed estimator

based on KMC. Consequently, similar to estimators based on KLMS, selecting a proper

value of f is vital for estimators based on KMC. Therefore, in this section, an iterative

update equation to learn f with radar observation (r(:)) is developed.

Since KMC is an online learning algorithm in which the weights in RKHS are updated

at each iteration, the kernel width f can also be updated simultaneously by applying MCC

[45]. If f: is the kernel width at : Cℎ iteration then the stochastic update equation for f: is

given by

f: = f:−1 − [
m

mf:−1

(
^f2 (4(:))

)
. (4.20)

where 4(:) is the instantaneous estimation error s.t. 4(:) = 3 (:) − 6̂(:) and ^f2 (·) is the

correntropy function.
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Since ^f2 (4(:)) = exp
(
− 42 (:)

2f2
2

)
, (4.20) can be written as

f: = f:−1 +
[

f2
2

exp
(
− 4

2(:)
2f2

2

)
4(:) m

mf:−1
(4(:)). (4.21)

Subsequently, 3 (:) can be written as

3 (:) = 6̂(r(:)) + D(:). (4.22)

where 6̂(· ) is the estimate of mapping which estimate the delay/Doppler spread from the

radar return, and D(:) is the approximation error at the : Cℎ time instant. If 6:−1(· ) is the

estimated mapping after learning upto : Cℎ instant, then error 4(:) associated with input

r(:) is given by

4(:) = 3 (:) − 6:−1(r(:)) = 6̃:−1(r(:)) + D(:), (4.23)

where 6̃:−1(r(:)) = 6̂(r(:)) − 6:−1(r(:)).

Substituting (4.23) into (4.21), yield

f: =f:−1 +
`[

f2
2

exp
(
− 4

2(:)
2f2

2

)
4(:) m

mf:−1
{6̃:−1(r(:)) + D(:)}

=f:−1 −
`[

f2
2

exp
(
− 4

2(:)
2f2

2

)
exp

(
− 4

2(: − 1)
2f2

2

)
4(:)4(: − 1) m

mf:−1
[^f:−1 (r(: − 1)), r(:)]

(4.24)

Since, ^f:−1 (r(: − 1)), r(:)) = exp
(
− ‖r(:−1)−r∗ (:)‖2

f2
:−1

)
, (4.24) is simplified as

f: =f:−1 − d exp
(
− 4

2(:)
2f2

2

)
exp

(
− 4

2(: − 1)
2f2

2

)
4(:)4(: − 1) exp

(
− ‖r(: − 1) − r∗(:)‖2

f2
:−1

)
× ‖r(: − 1) − r∗(:)‖2

f3
:−1

(4.25)

where d = `[

2f2
2
is the kernel width learning parameter.
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As shown in (4.25), the kernel width at each iteration : is adaptively updated by the

derived expression for learning f: , and converges to an optimal kernel width. Moreover,

as compared to the estimator based on KLMS-Modified NC (3.34), the additional factor

(exp
(
− 42 (:)

2f2
2

)
) in (4.25), similar to (4.19), compensates for the effect of non-Gaussian

clutter, and provides better adaptation of kernel width for the proposed KMC based

estimator.

Pseudo-code for the proposed online estimator based on KMC with adpative kernel

width and sparsification is described in Algorithm 5.

Algorithm 5 KMC algorithm to estimate g> and 53 with adaptive kernel width and
sparsification
1: Inputs:

r(:) = r:
g> | 53 , r

:
53 |g>∀ :, 3 (:) = g>

: , 53
: ∀ :

2: Initialize:
4(0) ← 0, 6̂(0) ← ^(r(0), ·), D: ← {}, a: ← {},
choose `, f0, and d, r(0) ← r0

g> | 53 , r
0
53 |g>

3: while {r(:), 3 (:)} available do
4: 6̂(:) = `∑|D:−1 |

8=0 exp
(
− 42 (8)

2f2
2

)
4∗(8)^(D8

:−1, r(:))
5: 4(:) = 3 (:) − 6̂(:)
6: dis( 9) =

r(:) − D 9

:−1

 for 0 ≤ 9 ≤ (
7: if <8=︸︷︷︸

0≤ 9≤(

dis( 9) ≥ X1 & |4(:) | ≥ X2 then

D: = {D:−1 ∪ r(:)}, a: = {a:−1 ∪ 4(:)}
8:

f: =f:−1 − d exp
(
− 4

2(:)
2f2

2

)
exp

(
− 4

2(: − 1)
2f2

2

)
4(:)4(: − 1) exp

(
− ‖r(: − 1) − r∗(:)‖2

f2

)
× ‖r(: − 1) − r∗(:)‖2

f3
:

9: else
10: D: = D:−1, a: = a:−1
11: end if
12: end while
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4.3 CRLB for Delay and Doppler shift in RKHS

To assess performance of the proposed estimators, in this section, CRLB for the variance

of the estimated delay and Doppler shift for the considered estimation problem in the

presence of non-Gaussian clutter and thermal noise is derived. The generalized system

model for LFM and SF radar return is given by

r = x + c + w. (4.26)

where from 4.9 and 4.10, x is the signal part of either LFM radar or SF radar (i.e x = xLFM

or x = xSF corresponding to rLFM or rSF, respectively).

After mapping (4.26) to RKHS, (4.26) is given by

Φ(r) = Φ(x + c + w). (4.27)

The first order Taylor series approximation of (4.27) yields

Φ(r) = Φ(x) + OΦ(x) (c + w). (4.28)

where OΦ(x) is the Jacobian matrix.

Let \ represent the unknown parameter whose CRLB is evaluated. From (4.28), the

observations are a function of unknown parameter \, hence CRLB of the system model

parametrized by the unknown parameter as in [75–77] and [35, Ch. 3.8] is given by

�'!�(\) = OΦ(x)� �−1(\)OΦ(x). (4.29)

where �−1(\) is given by

�−1(\) = EU
[
�−1(U; \)

]
(4.30)

In (4.30), � (U; \) = −Er|U
[
m2

m\2 lnP(r|U; \)
]
, where P(r|U; \) is the PDF of observa-
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tion r given U, and parametrized by \ in Euclidean space.

P(r|U; \) = 1
c# |� |

exp
(
− (r − x)��−1(r − x)

)
.

Since the marginal PDF of r is difficult to obtain, modified form of Fisher information,

formulated in (4.30) is used.

As c and w are independent, for given U, � = U�z + �w is the covariance matrix of

total equivalent disturbance i.e. c + w and # = "!.Hence solving for (4.30), yields

�−1(\) = 1
2

(
− EU

[(
mx
m\

�

�−1 mx
m\

)−1] )
. (4.31)

4.3.1 LFM Radar System

For LFM radar system x = xLFM and for delay \ = g>, hence CRLB for delay is given by

�−1(g>) =
1
2

(
EU

[(
mxLFM

mg>

�

�−1 mxLFM

mg>

)−1] )
, (4.32)

From trace identity, (4.32) is given by

�−1(g>) =
1
2

(
EU

[
tr

((
mxLFM

mg>

�

�−1 mxLFM

mg>

)−1)] )

�−1(g>) =
1

8c2Δ 5 2"
∑!−1
;=1 ;

2
EU [tr(�)] (4.33)

Solving (4.33), utilizing �z = d
|8− 9 | ∀8, 9 ∈ [1, · · · , #] and �w = Ω

2
FI, yield

�−1(g>) =
#

8c2Δ 5 2"
∑!−1
;=1 ;

2

(
EU [U] +Ω2

F

)
(4.34)

As defined in Section 1.5 of Chapter 2, U is gamma distributed, hence, EU [U] = `2 is
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the mean of U, subsequently (4.34) is given by

�−1(g>) =
3(`2 +Ω2

F)
4c2Δ 5 2(! − 1) (2! − 1)

(4.35)

Substituting (4.35) into (4.29) and usingOΦ(xLFM)�OΦ(xLFM) = 〈OΦ(xLFM),OΦ(xLFM)〉H =

# , yield

�'!�LFM(g>) =
3# (`2 +Ω2

F)
4c2Δ 5 2(! − 1) (2! − 1)

. (4.36)

For Doppler shift \ = 53 , hence CRLB for Doppler shift is given by

�−1( 53) =
1
2

(
EU

[(
mxLFM

m 53

�

�−1 mxLFM

m 53

)−1] )
, (4.37)

From trace identity, (4.37) is given by

�−1( 53) =
1
2

(
EU

[
tr

((
mxLFM

m 53

� mxLFM

m 53
�−1

)−1)] )
, (4.38)

Solving (4.38), yield

�−1( 53) =
# (`2 +Ω2

F )
8c2)2

PRI!
∑"−1
<=1 <

2(∑!−1
;=0 (1) + 2Δ 5

52

∑!−1
;=1 ; +

Δ 5

52

∑!−1
;=1 ;

2)
. (4.39)

Using
∑"−1
<=1 <

2 = " ("−1) (2"−1)
6 ,

∑!−1
;=1 ;

2 = ! (!−1) (2!−1)
6 , and

∑!−1
;=1 ; =

! (!−1)
2

�−1( 53) =
3(`2 +Ω2

F )
4c2)2

PRI! (" − 1) (2" − 1) (1 + (!−1)Δ 5
52

+ (!−1) (2!−1)Δ 5
6 52 )

. (4.40)

Substituting (4.40) into (4.29), yields

�'!� LFM( 53) =
3# (`2 +Ω2

F )
4c2)2

PRI! (" − 1) (2" − 1) (1 + (5+2!) (!−1)Δ 5
6 52 )

. (4.41)

As described in (4.36) and (4.41), modified Fisher information generalizes CRLB

expressions for LFM radar system. Consequently, if `2 −→ 0 (which is the case for no
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clutter), generalized CRLB expressions give by (4.36) and (4.41) will correspond to CRLB

expressions for Gaussian distributed noise given by (3.44) and (3.47), respectively.

4.3.2 SF Radar System

For SF radar system x = xSF and for delay \ = g>, hence CRLB for delay is given by

�−1(g>) =
1
2

(
EU

[(
mxSF

mg>

�

�−1 mxSF

mg>

)−1] )
, (4.42)

From trace identity, and similar to delay, (4.42) is given by

�−1(g>) =
#

8c2Δ 5 2"
∑!−1
;=1 ;

2

(
EU [U] +Ω2

F

)
(4.43)

Using EU [U] = `2 and substituting (4.43) into (4.29), yield

�'!�SF(g>) =
3# (`2 +Ω2

F)
4c2Δ 5 2(! − 1) (2! − 1)

(4.44)

For Doppler shift \ = 53 , hence CRLB for Doppler shift is given by

�−1( 53) =
1
2

(
EU

[(
mxSF

m 53

�

�−1 mxSF

m 53

)−1] )
, (4.45)

From trace identity, (4.45) is given by

�−1( 53) =
1
2

(
EU

[
tr

((
mxSF

m 53

� mxSF

m 53
�−1

)−1)] )
, (4.46)

Solving (4.46), yield

�−1( 53) =
3(`2 +Ω2

F )
4c2()2

> (! − 1) (2! − 1) + )2
PRI(" − 1) (2" − 1) + 3)>) PRI(! − 1) (" − 1))

(4.47)
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From (4.47) and (4.29), yield

�'!�SF( 53) =
3# (`2 +Ω2

F )
4c2()2

> (! − 1) (2! − 1) + )2
PRI(" − 1) (2" − 1) + 3)>) PRI(! − 1) (" − 1))

.

(4.48)

4.3.3 AnalyticalExpressions for theVariance inEstimation andUpper-

Bound on Estimators’ Dictionary-Size

For LFM and SF radar, the overall variance in estimation of delay at steady state for

proposed estimator based on KMC and estimator based on KLMS is denoted byΩ2
KMC(ĝ>),

and Ω2
KLMS(ĝ>) respectively, are given by

Ω2
KMC(ĝ>) = �'!�(g>) + SKMC (4.49)

Ω2
KLMS(ĝ>) = �'!�(g>) + SKLMS (4.50)

where SKMC =
_`Ω2

F

2−_` is the excess mean square error (EMSE) for KMC algorithm,

SKLMS =
`Ω2

F

2−` is the EMSE for KLMS algorithm, and �'!�(g>) is either �'!�LFM(g>) or

�'!�SF(g>).

Similar to delay, for LFM and SF radar, the overall variance in Doppler shift at steady

state for proposed estimator based on KMC and KLMS are denoted by Ω2
KMC( 5̂3), and

Ω2
KLMS( 5̂3) respectively.

Ω2
KMC( 5̂3) = �'!�( 53) + SKMC (4.51)

Ω2
KLMS( 5̂3) = �'!�( 53) + SKLMS (4.52)

where �'!�( 53) is either �'!�LFM( 53) or �'!�SF( 53)

Subsequently, by Cover’s sphere packing theorem in RKHS [16], for both LFM and

SF radar, the following upper-bound on dictionary-size of the estimators based on KMC
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and KLMS [41] is obtained:

|D∞ |KMC ≤
(
1 +Ω2

KMC

Z

)#
(4.53)

|D∞ |KLMS ≤
(
1 +Ω2

KLMS

Z

)#
(4.54)

where Ω2
KMC and Ω2

KLMS are the overall variance in estimation of delay or Doppler shift,

respectively for estimators based on KMC and KLMS, and Z =
√
(2 − 2 exp(− X1

f
)).

From (4.49)-(4.52), and for 0 < _ =
(
f2
2+Ω2

F+SKMC

2SKMC+2Ω2
F+f2

2

)
< 1 [78], it can be inferred that

for the proposed estimators based on KMC, the MCC provides robustness against non-

Gaussian clutter and results in lower variance as compared to estimators based on KLMS.

Additionally, from (4.53) and (4.54), it can be inferred that |D∞ |KMC < |D∞ |KLMS, hence,

in contrast to estimators based on KLMS, estimators based on KMC results in lower and

reasonable dictionary-size/computational complexity. The above arguments made about

the variance and computational complexity of the proposed and existing estimators are

verified by simulations in Section 4.4.

4.4 Simulation Results and Discussion

In this section, simulation results for delay g> andDoppler shift 53 estimation using the pro-

posed estimators is present and discussed. Subsequently, the comparative performance of

the proposed KMC based estimators with the previously proposed KLMS based estimators

and derived CRLB corresponding to g> and 53 is discussed.

The free parameters values of KMC and KLMS algorithm for LFM and SF radar are

given in Table-4.1, Table-4.2, Table-4.3and Table-4.4. Parameters of LFM radar and SF

radar used in simulations are described in Table-4.5 and Table-4.6, respectively. Without

loss of generality, for the estimation of delay and Doppler shift the SCR= x�x
tr(E(c� c)) is fixed

at 30 dB, and clutter to noise ratio
(
clutter to noise ratio (CNR)= tr(E(c� c))

#Ω2
F

)
is fixed at 10

dB [5].

In this work, for modeling the effect of non-Gaussian clutter, as described in (1.8) of
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Table 4.1: Parameters values used for simulations for KMC estimation algorithms for
LFM radar.

Parameters KMC-NC {g>, 53} LFM radar KMC-Modified NC {g>, 53} LFM radar
` 0.55, 0.55 0.55, 0.55
f 10−5.5, 10−6.4 Adaptive
d Nil, Nil 107.7, 109.2

f> Nil, Nil 10−5.4, 10−6.6

f2 0.0025, 0.0017 0.0117, 0.012

Table 4.2: Parameters values used for simulations for KMC estimation algorithms for SF
radar.

Parameters KMC-NC {g>, 53}SF radar KMC- Modified NC {g>, 53}SF radar
` 0.55, 0.55 0.55, 0.55
f 10−5.5, 10−6.1 Adaptive
d Nil,Nil 106, 109.2

f> Nil,Nil 10−5.2, 10−6.4

f2 0.0025, 0.0036 0.01, 0.02

Section 1.5 of Chapter 1, the clutter is assumed to follow SIRP. Moreover, to consider

the effect of impulsive noise and outliers the particular class of heavy tailed SIRP,  -

distributed random process is considered. For this, the random variable U in (1.8) is drawn

from gamma distribution with shape and size parameter, as a and `2, respectively. As a

decreases, the tail of the resultant distribution function for clutter becomes heavier, which

in turn introduces impulsive noises and outliers. Hence, to consider the effect of high

tailed clutter, simulations are performed for a = 0.1 as considered in [65, 66].

4.4.1 Estimation of Delay with KMC-NC and KMC-Modified NC

based Estimator

For estimating delay, the set of possible true values of g> (D) is formed by partitioning the

interval between g><8= and g><0G into  parts, i.e D ∈ [g1
><8=

. . . g ><0G ]. Thereafter, radar

returns (learning and testing samples) corresponding to  different delays are formed as

per (4.11). For learning and testing of the estimators based on KMC-NC, KLMS-NC,
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Table 4.3: Parameters values used for simulations for KLMS estimation algorithms for
LFM radar.

Parameters KLMS-NC {g>, 53} LFM radar KLMS-Modified NC {g>, 53} LFM radar
` 0.9460, 0.987 0.982, 0.983
f 10−5.5, 10−6.4 Adaptive
d Nil, Nil 107.7, 109.2

f> Nil, Nil 10−5.4, 10−6.6

Table 4.4: Parameters values used for simulations for KLMS estimation algorithms for SF
radar.

Parameters KLMS-NC {g>, 53}SF radar KLMS- Modified NC {g>, 53}SF radar
` 0.9581, 0.93 0.9735, 0.983
f 10−5.5, 10−6.1 Adaptive
d Nil, Nil 106,

f> Nil, Nil 10−5.2, 10−6.4

KMC-Modified NC and KLMS-Modified NC, the  is chosen as 5500. Out of these 5500

radar returns, 5000 are used for the learning of the estimators while the remaining 500 are

used to evaluate the estimators’ performance.

In Fig. 4.1a, for both LFM and SF radar in the presence of clutter and thermal noise,

the MSE performance of the proposed estimators based on KMC-NC is compared with

the existing adaptive estimator based on KLMS-NC and two linear estimators based on

Kalman filter MCC(MCC-KF) [70], and adaptive MCC(AMCC) [71]. From Fig. 4.1a,

it can be observed that the use of MCC in RKHS facilitates mitigation of non-Gaussian

clutter. Particularly, with suitable choice of f2 for the estimator based on KMC-NC

Table 4.5: Values of radar parameters for LFM radar.

LFM radar parameters Values
Number of frequency index (!) 8

Number of pulses (") 8
Frequency spacing (Δ 5 ) 15.6250 MHz

Pulse duration ()>) 0.013 × 10−3sec
Pulse repetition interval () PRI) 0.016ms

Bandwidth (!Δ 5 ) 125 MHz
Set of delay true value (g><8= , g><0G ) (0.0016 × 10−3, 0.013 × 10−3)sec

Set of Doppler true value ( 53<8= , 53<0G ) (−30.4, 30.4)kHz
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Table 4.6: Values of radar parameters for SF radar.

SF radar parameters Values
Number of fast index (!) 20
Number of pulses (") 25
Frequency spacing (Δ 5 ) 5 MHz

Pulse duration ()>) 0.1`sec
Pulse repetition interval () PRI) 40`s

Bandwidth (!Δ 5 ) 125 MHz
Set of delay true value (g><8= , g><0G ) (0.0008 × 10−6, 40 × 10−6)sec

Set of Doppler true value ( 53<8= , 53<0G ) (−12.5, 12.5)kHz
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Figure 4.1: (a) Normalized MSE and (b) Dictionary size in estimation of delay for LFM
and SF radar with estimators based on KMC-NC, KLMS-NC, AMCC, and MCC-KF in
the presence of non-Gaussian clutter.

as given in Table. 4.1, the additional factor
(
exp

(
− 42 (8)

2f2
2

) )
provides robustness against

non-Gaussian clutter, and yields accurate estimates of delay g> as compared to estimator

based on KLMS-NC, MCC-KF, and AMCC. Also, in Fig. 4.1b, it can be observed that the

dictionary-size of the proposed and existing estimator achieve respective upper-bounds and

consequently result in lower dictionary-size for KMC-NC based estimator as compared

to KLMS-NC based estimator. Furthermore, from Fig. 4.1b, a drastic reduction in the

computational complexity is observed for the proposed estimator with KMC-NC, which

in turn, makes KMC-NC based estimator practically deployable.

Further, Fig. 4.2a comparesMSE corresponding to the estimates of delay for both LFM

and SF radar system obtained by the estimators based on KMC-Modified NC and KLMS-

Modified NC respectively. As shown in Fig. 4.2a, it is observed that the performance of
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Figure 4.2: (a) Normalized MSE and (b) Dictionary size in estimation of delay for LFM
and SF radar with estimators based on KMC-Modified NC and KLMS-Modified NC in
the presence of non-Gaussian clutter.

KLMS-Modified NC based estimator is impaired in presence of clutter. On the contrary,

for the estimator based onKMC-ModifiedNC, using ITL criterion likeMCC, and selection

of proper kernel width by adaptive-learning at every iteration, provides a better estimate

of delay, and hence results in lower MSE floor. Further, in Fig. 4.2b, it is observed that

the computational complexity of the proposed estimator based on KMC-Modified NC is

reaching analytical upper-bound and significantly reduced in comparison to the estimator

based on KLMS-Modified NC. As shown in Fig. 4.2a, due to deleterious effect of clutter

on the gradient information (since a stochastic gradient algorithm adapts the kernel-width),

the KLMS-Modified NC converges to higher MSE floor. However, for modified kernel

MCC, the said effect is less pronounced due to the robustness of the MCC criterion to

non-Gaussian clutter.

4.4.2 Estimation of Doppler shift with KMC-NC and KMC-Modified

NC based Estimator

For estimating Doppler shift, similar to delay estimation, the interval between 53<0G

and 53<8= is divided in  parts to form a set of unknown Doppler frequencies as F ∈

[ 5 1
3<8=

. . . 5  
3<0G
]. Thereafter, the radar return (learning and testing samples) are formed
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Figure 4.3: (a) Normalized MSE and (b) Dictionary size in estimation of Doppler shift
for LFM and SF radar with estimators based on KMC-NC and KLMS-NC in the presence
of non-Gaussian clutter.
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Figure 4.4: (a) Normalized MSE and (b) Dictionary size in estimation of Doppler shift
for LFM and SF radar with estimators based on KMC-Modified NC and KLMS-Modified
NC in the presence of non-Gaussian clutter.
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corresponding to each Doppler shift utilizing (4.12). The  is chosen as same for the

delay estimation, i.e.  = 5500, with 5000 samples used for learning and the rest 500

samples used for evaluating the MSE performance. For both the LFM and SF radar

system, the improvement in the estimation accuracy and computational complexity of the

estimator based on KMC-NC for Doppler shift estimation over estimator based on KLMS-

NC is illustrated in Fig. 4.3a and Fig. 4.3b, respectively. Similar to delay estimation,

improved estimation of Doppler shift is achieved with lower computational complexity,

upon incorporation of ITL criteria like MCC.

Moreover, from Fig. 4.4a-Fig. 4.4b, it can be inferred that adaptive learning of the

kernel width for KMC-Modified NC based estimator results in lowerMSEwith reasonable

dictionary-size. Hence, from Fig. 4.4a-Fig. 4.4b, it can be concluded that the proposed

estimator based on KMC-Modified NC is viable for Doppler shift estimation as compared

to KLMS-Modified NC for deployment in practical radar systems impaired by clutter and

thermal noise.

4.4.3 Comparison of Estimators based on KMC and KLMS

For performance-evaluation of the proposed estimators, variance in the estimation of

delay and Doppler shift with proposed estimators based on KMC and estimators based on

KLMS for both LFM and SF radar is performed at SCR ranges from −20 dB to 30 dB and

compared against the derived CRLBs. For simulations, the CNR is fixed at 10 dB.

Next, the performance of estimators based on KMC and KLMS with NC andModified

NC for LFM radar and for delay and Doppler shift estimation are shown in Fig. 4.5.

Particularly, as shown in Fig. 4.5a and Fig. 4.5b, the proposed estimator based on KMC-

NC for all SCRs outperforms KLMS-NC based estimator and achieves variance closer to

CRLB. Further, KMC-Modified NC based estimator converges to a variance lower than

KLMS-Modified NC and closer to CRLB.

Further, in Fig. 4.6, for SF radar, the variance of the proposed KMC-NC based

estimator is compared with KLMS-NC for estimation of delay and Doppler shift. From

Fig. 4.6, it can be observed that the KMC-NC based estimator converges to lower
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Figure 4.5: Comparative performance of the estimator based on KMC-NC, KLMS-NC,
KMC-Modified NC and KLMS-Modified NC for estimation of (a) delay and (b) Doppler
shift for LFM radar system.
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Figure 4.6: Comparative performance of the estimator based on KMC-NC, KLMS-NC,
KMC-Modified NC and KLMS-Modified NC for estimation of (a) delay and (b) Doppler
shift for SF radar system.
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variance as compared to a corresponding KLMS-NC based estimator. Further, variance

in the estimation of delay and Doppler shift using KMC-NC based estimator is closer

to the achievable CRLB as compared to KLMS-NC. The same trend of lower estimator-

variance, and increased proximity of the estimator variance to the CRLB is observed for

KMC-Modified NC based estimator, as compared to KLMS-Modified NC based estimator.

4.5 Summary

In this Chapter, two new KMC based estimation algorithms are proposed for estimation of

target’s delay and Doppler shift in the presence of non-Gaussian clutter. Estimation of the

target’s unknown parameters is performed by maximizing a cost function (correntropy) in

RKHS, which provides an accurate estimate of delay and Doppler shift in the presence

of non-Gaussian clutter. Further, to facilitate sparse learning, and for lowering compu-

tational complexity without affecting estimator-performance, Platt’s NC is used to limit

the increasing size of training samples. Additionally, a technique is explored for tuning

the hyper-parameter f from radar returns, and an adaptive update equation is derived for

its convergence to an appropriate value. Subsequently, for the considered radar systems

analytical expressions are derived for the CRLBs of the proposed RKHS based estimators.

Proofs are provided, which reinforce the viability of KMC as a learning criterion for

practical clutter-impaired radar systems. Lastly, simulations performed over realistic LFM

and SF radar systems reveal that the proposed KMC based estimators facilitate 40 dB nor-

malized MSE gain over existing KLMS based estimators along with lower computational

complexity.

The detection and estimation algorithms proposed in Chapters 2, 3, and 4 are validated

over single-antenna radar systems, which includes OFDM radar, LFM radar, and SF radar.

The improved performance of communication systems with the advent of MIMO antenna

systems motivated the radar engineers and researchers to exploit the MIMO antenna

systems for radar purposes also. The initial work in MIMO radar has shown the potential

improvement in the estimation of range and velocity over a single-antenna radar system
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[79–81]. However, the literature still lacks efficient estimation algorithms for the practical

MIMO radar systems in the presence of non-Gaussian clutter. Hence, in the next Chapter,

an estimator for the MIMO radar system is developed, which efficiently estimates the

targets’ DOA, DOD, and velocity in the presence of non-Gaussian clutter and Gaussian

distributed thermal noise. The estimator developed in Chapter 5 is based on KMEE, which

to mitigate the effects of clutter non-Gaussianity in contrast to estimators based on KLMS

and KMC, utilizes another ITL criteria called MEE.
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Chapter 5

Estimator for MIMO Radar

MIMO radar was introduced with the intent of improving performance of the radar systems

[80, 82]. Diversity in transmitting orthogonal waveforms from transmit antennas and

collecting the superposition of echoes at each receiving antenna individually, provides

improvement in the performance ofMIMO radar over single antenna radar system [83, 84].

For instance, in MIMO radar, if the transmitter has #CG antennas and receiver has #AG

antennas, then, contrary to a single antenna radar system, #CG#AG signals are processed

at the receiver for detection of targets and estimation of their parameters. Fundamentally,

in MIMO radar the parameters which describes the targets’ position and velocity are the

DOD, DOA, and Doppler shift. Most conventional estimation techniques for MIMO radar

assume the absence of clutter [12, 85–87]. However, as mentioned in Chapter 4, practical

radar systems are effected by clutter due to the reflections fromunwanted objects/scatterers.

Hence, estimation techniques introduced in [12, 85–87], when employed in the presence of

non-Gaussian clutter, yield inaccurate estimates of parameters with a very high variance.

In MIMO radar, for estimation of the aforementioned targets’ parameters in the non-

Gaussian clutter environment, various variants of ML estimator are proposed in [88, 89],

and [90]. However, the estimation of DOD, DOA, and Doppler shift, in the presence of

non-Gaussian clutter, does not have a closed-form solution for optimization of ML cost

function [91]. Therefore, in [88], and [89], estimators based on iterative conditional ML,

and iterative joint ML are proposed, respectively. The ML based solution, proposed in
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[88], and [89] are based on the conditional likelihood, and the joint likelihood of the

observations, respectively. Further, in [90], an iterative ML estimator has been proposed

that is based on the marginal likelihood of the observations. In [90], it is mentioned

and shown that the estimators proposed in [88], and [89] are prone to yield suboptimum

estimates of desired parameters. Therefore in [90], an iterative ML estimator has been

proposed. The proposed estimator is based on the marginal likelihood of the observations

and claimed to perform better than the estimators proposed in [88], and [89]. However,

in [90], as the marginal likelihood of the observation is considered, the final estimate

depends on the numerical evaluation of integrals, which is computationally demanding.

In addition to the need for evaluation of integrals, as mentioned in Section 3, Remark 4

of [90], for say, % targets, the estimate of DOD/DOA, is obtained by performing the 2%

dimensional grid search algorithm of a highly non-convex function. Implementing a grid

search algorithm over the 2% dimension is computationally complex.

Thus, in this Chapter, KMEE based estimator is proposed for the estimation of multiple

targets’ DOD, DOA, and Doppler shift in a MIMO radar setting. Estimation of targets’

parameters is pursued in the presence of non-Gaussian clutter and Gaussian distributed

thermal noise. The KMEE is the KAF algorithm that uses an iterative stochastic gradient

descent algorithm to solve an estimation problem in RKHS. In the previous Chapters,

estimation of target’s range and velocity has been efficiently handled by the other KAF

based estimation algorithms namely KLMS algorithm and KMC algorithm in Chapter 3

and Chapter 4, respectively. However, since KLMS utilizes MSE criterion [18, 41, 92],

and is optimum for Gaussian noise, the estimation algorithm developed in Chapter 3

cannot be used for the estimation of parameters in MIMO radar system in the presence

of non-Gaussian clutter. In a later attempt, in Chapter 4, to deal with the effects of

non-Gaussian clutter, KMC based estimator proves to be better than the estimator based

on KLMS. Nevertheless, the performance of KMC based estimator may not be good

when faced with a more complicated non-Gaussian clutter scenario. The KMEE based

proposed estimator utilizes the MEE criterion, and being an ITL criterion, MEE optimizes

the higher-order statistics of error between the desired and the estimated parameter, which
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makes the estimator based on the KMEE criterion robust against the effects of heavy-tailed

non-Gaussian clutter.

The proposed adaptive estimator, unlike conventional non-adaptive estimators, learns

the unknown function (relating the MIMO radar return and unknown desired parameters:

DOA, DOD, Doppler shift) and iteratively estimate the desired parameters. Therefore,

without any sparsification criterion, like estimators based on KLMS and KMC, the com-

putational complexity of the estimators based on KMEE increases linearly and restricts the

practical applicability of the proposed estimators [60]. Consequently, similar to Chapter 3

and Chapter 4, for reducing the computational complexity of the proposed estimator based

on KMEE, we use a sparsification technique based on Platt’s NC [43].

The Chapter is organized as follows: The signal model for MIMO radar return is de-

scribed first. The proposed KMEE-NC based estimator is described next. Subsequently,

the analytical expressions for modified CRLB (MCRLB)1 using modified Fisher’s infor-

mationmatrix for estimation of DOD, DOA andDoppler shift are derived. Next, analytical

expression for the variance of the proposed estimator based on KMEE is derived. Simu-

lation results are discussed next. Finally, conclusions are drawn for the Chapter.

5.1 MIMORadar Signal Model in Non-Gaussian Clutter

In this section, the generalized signal model for MIMO radar is briefly discussed. The

considered MIMO radar is assumed to consist of #CG transmit antennas, and #AG receiving

antennas. Let the surveillance environment consist of % targets (identified by index ?)

with unknown DODs and DOAs be

) = [\1, \2, · · · , \?, · · · , \%], and 5 = [q1, q2, · · · , q?, · · · , q%]

, respectively. The ?Cℎ target is assumed to be moving with velocity E?. Further, if

orthogonal waveforms are transmitted, then the #CG × #AG MIMO radar signal matrix

1Because of the non-Gaussian nature of clutter, finding the close form solution of conventional CRLB
is difficult. Therefore, in this work, an analytical expression for MCRLB is derived using a modified Fisher
information matrix [93].
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R(<) for &Cℎ pulse after matched filtering in one coherent pulse interval at the receiver is

given by [94].

R(<) =
%∑
?=1

exp( 92c 5?<)a(\?)a) (q?) +W(<) + C(<) for < = [1, 2, · · · , "], (5.1)

where 5? is the Doppler shift for the ?Cℎ target normalized to the MIMO radar pulse

repetition frequency,

a(\?) =
[
exp

(
9
2c sin(\?)

_
3C1

)
, exp

(
9
2c sin(\?)

_
3C2

)
, · · · , exp

(
9
2c sin(\?)

_
3C#C G

)])
is the transmit steering vector, and

a(q?) =
[
exp

(
9
2c sin(q?)

_
3A1

)
, exp

(
9
2c sin(q?)

_
3A2

)
, · · · , exp

(
9
2c sin(q?)

_
3A#A G

)]
is the receiving steering vector in which 3C=C G , and 3

A
=A G

is distance of =CℎCG and =CℎAG antenna

from the reference transmit and reference receive antenna, respectively. W(<) is the

#CG ×#AG matrix of samples of thermal noise, and C(<) is the #CG ×#AG matrix of samples

of non-Gaussian clutter follows the characteristics defined in Section 1.5 of Chapter 1.

Concatenating R(<) from (5.1) into #CG#AG × 1 vector yields

r(<) = A() , 5)v(<) + w(<) + c(<) for < = [1, 2, · · · , "] . (5.2)

For simplicity, after dropping index <, (5.2) is given by

r = A() , 5)v + w + c, (5.3)

where A() , 5) = [a(\1, q1), a(\2, q2), · · · , a(\%, q%)], a(\?, q?) = E42(a(\?)a) (q?)),

v = [exp( 92c 51<), exp( 92c 52<), · · · , exp( 92c 5?<), · · · , exp( 92c 5%−1<), exp( 92c 5%<)]) ,

w = [W(1, 1),W(1, 2), · · · ,W(#CG , #AG)]) ,
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and c = [C(1, 1),C(1, 2), · · · ,C(#CG , #AG)]) .

From (5.1) and (5.3), the unknown parameters of interest \?, q?, and 5? of the ?Cℎ

target are exponentially related to r. Additionally, from (5.1) and (5.3), it is explicit

that, the unknown parameters are easily estimated if the unknown inverse relationship

between \?, q?, 5? and r is known. An adaptive estimator which iteratively estimates

the unknown inverse relationship for single antenna radar system based on the KLMS

and KMC are proposed in Chapter 3 and Chapter 4, respectively. However, since KLMS

optimizes MSE, which is optimum for Gaussian noise, and KMC can perform worst,

the KLMS based estimator and KMC based estimator cannot be used for MIMO radar

signal model perturbed by non-Gaussian clutter. Hence, in this Chapter, estimation of

DOD, DOA, and Doppler shift is performed using a KMEE based adaptive estimator. The

proposed estimator is based on the optimization of entropy of the error between the true and

estimated parameter set. Moreover, as optimization of entropy leads to the minimization

of higher-order statistics of error, the proposed estimator provides robustness against the

non-Gaussian clutter, which in turn reduces the effect of outliers introduced by the clutter

non-Gaussianity.

5.2 Estimator Based on KMEE-NC

This section discusses the proposed estimation technique based on KMEE along-with the

sparsification technique incorporated to reduce the computational complexity of the pro-

posed estimator. In thiswork, estimation of the set ofDODs () = [\1, \2, · · · , \?, · · · , \%]),

DOAs (5 = [q1, q2, · · · , q?, · · · , q%]), and Doppler shifts f = [ 51, 52, · · · , 5?, · · · , 5%]

for % different targets are done individually and individual parameter set is represented by

�. Therefore, � can be either ) , 5 or f depending upon which set of parameter have to

be estimated. This makes the considered estimation problem % dimensional i.e � ∈ R%.

As the proposed estimation algorithm is adaptive and works in two phases: training and

testing, the training and testing data is obtained by measuring MIMO radar return given

in (5.3) for  different values of ) , 5, and f. For this, the range in which unknown
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\? ∈ ( −c2 ,
c
2 ), q? ∈ (

−c
2 ,

c
2 ), and 5? ∈ (−0.5, 0.5) [90] are expected to take the value, are

uniformly divided into  different values. Consequently, the MIMO radar measurements

for any : Cℎ value of unknown parameter set given the value of other two parameter set are

given by

r): |5,f =A(): , 5)v + w: + c: , (5.4)

r5: |) ,f =A() , 5: )v + w: + c: , (5.5)

rf: |) ,5 =A() , 5)v: + w: + c: . (5.6)

After measuring the MIMO radar return, the MIMO radar return r: (which can be

either r): |5,f , r5: |) ,f or rf: |) ,5 at : Cℎ instant, corresponding to the estimation of ): , 5: or

f: , respectively) is mapped into a high dimensional RKHS (H), via an implicit mapping

function Φ(·) : C# −→ H, such that r: is mapped in H as Φ(r: ). If 
:−1 is an unknown

explicit weight matrix in H, then the unbiased estimate of the unknown parameter set

g: = �̂: is given by

g: = 〈
:−1,Φ(r: )〉H = Φ� (r: )
:−1, (5.7)

Main objective of an estimator based on MEE is to find the optimum 
> such that the

cost function (b-entropy 2) of the error minimizes [95, 96] i.e


> = arg min �b (e: )



where �b (e: ) is the b-entropy cost function, e: = d: − g: , d: is the desired or true value

of parameter set i.e. d: = �: . Since, minimizing �b (e: ) analytically is difficult, �b (e: )

can be minimized iteratively using the weight update equation as


: = 
:−1 − `
m

m
:−1

(
�̂b (e: )

)
, (5.8)

2In this work the most commonly used Shannon entropy (−H log H) is used, the other types of entropy is
described in [95].
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where ` is the learning parameter,

�̂b (e: ) =
1
!

:∑
D=:−!+1

b

[
P̂e(e(:, D))

]
is the sample estimate of �b (e: ). The P̂e(e(:, D)) is the estimated PDF [97] of e: using

! most recent errors.

Theoretically, iterative minimization of �̂b (e: ) guarantees convergence of the estimate

g: to the true value of parameters. Hence, the ensemble average of the estimated parameters

equates to the true value of the parameters, and this makes the proposed estimator unbiased

[15, 95]. Substituting �̂b (e: ) into (5.8), and using P̂e(e(:, D)) = 1
!

∑:
8=:−!+1 ^3 (e(:, D) −

e(:, 8)), where ^3 (x, y) = exp
(
− ‖x−y‖2

f2
3

)
and f3 is the width of the kernel function used

for PDF approximation, yields


: = 
:−1 − [
m

mΩ:−1

(
1
!

:∑
D=:−!+1

b

[
1
!

:∑
8=:−!+1

^3 (e(:, D) − e(:, 8))
] )
. (5.9)

Because of the outer summation, evaluating (5.9) is computationally inefficient. For
an on-line adaptation of 
, the instantaneous b-entropy could be used by dropping the
outer summation in (5.9), this, yields the weight update equation as


: =
:−1 − [
m

mΩ:−1

(
b

[
1
!

:∑
8=:−!+1

^3 (e(:, :) − e(:, 8))
] )
,

=
:−1 −
[

!
b
′
[

1
!

:∑
8=:−!+1

^3 (e(:, :) − e(:, 8))
] :∑
8=:−!+1

^
′
3 (e(:, :) − e(:, 8))

(
me(:, :)
m
:−1

− me(:, 8)
m
:−1

)
,

=
:−1 +
[

!
b
′
[

1
!

:∑
8=:−!+1

^3 (e(:, :) − e(:, 8))
] :∑
8=:−!+1

^
′
3 (e(:, :) − e(:, 8)) (Φ(r: ) −Φ(r8)). (5.10)

From (5.7) and (5.2), utilizing Mercer’s theorem
(
^f (r 9 , r: ) = 〈Φ(r 9 ),Φ(r: )〉H

)
[15],

estimate of � at : Cℎ instant is given by

g: =
:−1∑
9=1

$ 9 (:)^f (r 9 , r: ), (5.11)
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where ^f (r 9 , r: ) = exp
(
− ‖r 9−r∗

: ‖2

f2

)
, $ 9 (:) = $ 9 (: − 1) +∑

;

Z; (:), and

Z; (:) =



[

!
b
′
[

1
!

∑:
8=:−!+1 ^3 (e(:, :) − e(:, 8))

]
×∑:

8=:−!+1 ^
′
3 (e(:, :) − e(:, 8)), if ; = :

− [
!
b
′
[

1
!

∑:
8=:−!+1 ^3 (e(:, :) − e(:, 8))

]
×^′3 (e(:, :) − e(:, ;)), for : − ! < ; < :.

(5.12)

As shown in (5.11), in evaluating g: , there is a temporal increase in MIMO radar

observation. Consequently, as : (index for number of radar observation) increases, com-

putational complexity of the estimator increases linearly. This, in turn, restricts the

practical viability of the estimator. To circumvent this, similar to estimators based on

KLMS and KMC, NC [43] is used. According to the criterion the newly arrived MIMO

radar observation r: [15] will only be used for learning if it satisfies following conditions

| |e: | |2 ≥ X1,

min︸︷︷︸
0≤8≤(

| |D8
: − r

:
| |2 ≥ X2,

Algorithm-6, describes the pseudo-code of the proposed estimator based on KMEE-

NC.

Algorithm 6 Estimation of DOD, DOA, and Doppler shift using sparse estimator based
on KMEE-NC
1: Inputs: r: = r): |5,f , r5: |) ,f , rf: |) ,5∀ :, d: = ): |{5: , f: }, 5: |{): , f: }, f: |{): , 5: } ∀ :
2: Initialize constants X4, X3 , D1 = {r1}, [, $1(0), K, !.
3: while : ≤ K do
4: g: =

∑|D 9

:
|

9=1 $ 9 (:)^f (D 9

:
, r: )

5: e: = g: − d:
6: for ; = 1 : ! do
7: Compute Z; (:) according to (5.12)
8: end for
9: $ 9 (:) = $ 9 (: − 1) +∑

∀;
Z; (:)

10: if min8 ‖D (8): − r: ‖2 ≥ X1 and | |e: | |2 ≥ X2 then
11: D:+1 = D: ∪ (r: )
12: end if
13: end while
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5.3 Modified Cramer-Rao Lower Bound for DOD, DOA,

and Doppler shift in the presence of Non-Gaussian

Clutter

In this section, an analytical expression is derived for MCRLBs over the variance of the

unbiased estimate of DOD, DOA, and Doppler shift. In this work, since the estimation

of � is performed in a high-dimensional space H, therefore, the analytical expression for

MCRLB on the variance of the estimate of � is also derived in H. Thereby, mapping the

MIMO radar signal model given in (5.3) into H via Φ(·), yields

Φ(r) = Φ(s + w + c), (5.13)

where s = A() , 5)v.

The first order Taylor series approximation of (5.13) yields

Φ(r) = Φ(s) + OΦ(s) (w + c), (5.14)

where OΦ(s) is the Jacobian matrix.

From the set of unknown parameter (� = [Θ1,Θ2, · · · ,Θ?, · · · ,Θ%]), which is either

the set of DODs, DOAs, or Doppler shifts (i.e. � = [\1, \2, · · · , \?, · · · , \%], � =

[q1, q2, · · · , q?, · · · , q%] or � = [ 51, 52, · · · , 5?, · · · , 5%] ), the MCRLB for Θ? is given

by

"�'!�(Θ?) = OΦ(s)� [I−1(�)] ??OΦ(s) ∀ ? = [1, 2, · · · , %] (5.15)

where I(�) is the modified Fisher information matrix for the MIMO radar signal model

described in (5.3), subsequently, I(�) is given by

I(�) = EU
[
I(U;�)

]
. (5.16)
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In (5.16), elements of I(U;�) is given by

[I(U;�)] ?@ = −Er|U

[
m2 lnP(r|U;�)

mΘ?mΘ@

]
,∀ ?, @ = [1, 2, · · · , %] (5.17)

where

P(r|U;�) = 1
c#" |� |

exp
(
− (r − s)��−1(r − s)

)
is the PDF of r given U, and parametrized by � in the Euclidean space.

As w and c are independent, therefore, for given U, � = U�z + Ω2
FI is the covariance

matrix of total equivalent additive distortion i.e. c + w. Solving (5.17) for s = A() , 5)v,

yields

[I(U;�)] ?@ = 2
[
m (A() , 5)v)�

mΘ?
�−1 m (A() , 5)v)

mΘ@

]
. (5.18)

With the composite formof� (� = U�z+Ω2
FI), solving (5.18) is hard, as�−1 is difficult

to obtain. Therefore, in this work to derive theMCRLB, as per [93], the hypothesis that the

clutter power is much greater than the thermal noise i.e. (E[U] >>> Ω2
F) is considered.

The aforementioned assumption simplifies � as � = U�z. Hence, (5.18) is given by

[I(U;�)] ?@ =
2
U

[
m (A() , 5)v)�

mΘ?
�−1

z
m (A() , 5)v)

mΘ@

]
. (5.19)

Invoking the trace identity, (5.19) is expressed as

[I(U;�)] ?@ =
2
U
tr

[
m (A() , 5)v)

mΘ@

m (A() , 5)v)�
mΘ?

�−1
z

]
. (5.20)

For �z = d
|:−; |, using

�−1
z =



0, if |: − ; | > 1

1/(1 − d2), if : = ; = 1 or : = ; = #CG#AG

(1 + d2)/(1 − d2), if : = ; and 2 ≤ : ≤ #CG#AG − 1

−d/(1 − d2), if |: − ; | = 1


the elements of I(U;�) after using tr[BC] = ∑#C G#A G

:=1
∑#C G#A G
;=1 [B]:,; [C] ;,: , are given by
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[I(U;�)] ?@ =
2
U

#C G#A G∑
:=1

#C G#A G∑
;=1
[D]:,; [�−1

z ] ;,: , (5.21)

where D =
m (A() ,5)v)

mΘ@

m (A() ,5)v)�
mΘ?

.

Substituting (5.21) in (5.16), yields

[I(�)] ?@ = EU
[
2
U

] #C G#A G∑
:=1

#C G#A G∑
;=1
[D]:,; [�−1

z ] ;,: . (5.22)

In (5.22), since U is Gamma distributed, EU
[

2
U

]
= 2a

`2 (a−1) . Therefore, (5.22) is given

by

[I(�)] ?@ =
2a

`2 (a − 1)

#C G#A G∑
:=1

#C G#A G∑
;=1
[D]:,; [�−1

z ] ;,: . (5.23)

5.3.1 For DOD estimation

� = ) , therefore ∀?, @ = [1, · · · , %]

m (A() , 5)v)
m\?

=

9 exp(V)2c
_

[
cos(\?)3C1, · · · , cos(\?)3C#C G , · · · , cos(\?)3C1, · · · , cos(\?)3C#C G

])
#C G#A G×1

,

(5.24)

where V = 9 2c
_

(
sin(\?)3C=C G + sin(q?)3A=A G + _ 5?

)
.

Using (5.24), D will be a block matrix of dimension #CG × #AG , in which each block

[D]AB = E is a matrix of dimension #CG × #CG . The elements of E, ∀A, B = [1, · · · , #AG]

are given by

EGH =


4c2

_2 cos(\@) cos(\?) (3C=C G )
2, for G = H = =CG = [1, · · · , #CG]

4c2

_2 cos(\@) cos(\?)3CG3CH, for G ≠ H
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5.3.2 For DOA estimation

� = 5, therefore ∀?, @ = [1, · · · , %]

m (A() , 5)v)
mq@

=

9 exp(V)2c
_

[
cos(q@)3C1, · · · , cos(q@)3C#A G , · · · , cos(q@)3C1, · · · , cos(q@)3C#A G

])
#C G#A G×1

,

(5.25)

where V = 9 2c
_

(
sin(\?)3C=C G + sin(q?)3A=A G + _ 5?

)
.

Using (5.25), similar to DOD, D will be a block matrix of dimension #CG × #AG , in

which each block [D]AB = F is a matrix of dimension #AG × #AG . The elements of F,

∀A, B = [1, · · · , #CG] are given by

FGH =


4c2

_2 cos(q@) cos(q?) (3A=A G )
2, for G = H = =AG = [1, · · · , #AG]

4c2

_2 cos(q@) cos(q?)3AG3AH, for G ≠ H



5.3.3 For Doppler shift estimation

� = f, therefore ∀?, @ = [1, · · · , %]

m (A() , 5)v)
m 5 9

= 9 exp(V)2c
_

[
1, · · · , 1, · · · , 1

])
#C G#A G×1

, (5.26)

where V = 9 2c
_

(
sin(\?)3C=C G + sin(q?)3A=A G + _ 5?

)
.

Using (5.26),

D =
4c2

_2 I#C G×#A G .

Substituting D in (5.23), respectively , for � = [\1, \2, · · · , \?, · · · , \%],

� = [q1, q2, · · · , q?, · · · , q%] or � = [ 51, 52, · · · , 5?, · · · , 5%], yields the element of

I(�) for DOD, DOA, or Doppler shift, respectively. Subsequently, I−1(�) is obtain, and

from 5.15, using �(s)��(s) = 〈�(s),�(s)〉H = #CG#AG , the MCRLB for ?Cℎ target on
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the variance of DOD, DOA, or Doppler shift is given by

"�'!�(Θ?) = #CG#AG
`2 (a − 1)

2a
[
I−1(�)

]
??
. (5.27)

5.4 Analytical Expression for Overall Variance of Esti-

mator based on KMEE

In this section, the generalized analytical expressions for the variance in the estimation

of DOD, DOA, and Doppler shift of multiple targets are derived. The variance in the

estimation of Θ? (where Θ? is either \?, q?, or 5?) of ?Cℎ target with estimator based on

KMEE is given by

Ω2
Θ?
= "�'!�(Θ?) + (�"(� , (5.28)

where (�"(� is the steady state EMSE of estimator based on KMEE

The (�"(� is given by

(�"(� = lim
:→∞
E
[
‖e0 (:)‖2G(:)

]
, (5.29)

where e0 (:) = Φ� (r: )
̃:−1 is the a-priori error vector, i.e. 
̃:−1 = 
> − 
:−1 is the

weight error matrix inH at : Cℎ iteration and G(:) = Φ� (r: )Φ(r: ) is a !×! Grammatrix.

Using the energy conservation relation as per [95], we get

E[

̃:

2
G(:)] =E[


̃:−1
2

G(:)] − 2[E[e�0 (:)hq (e(:))][2E[hq (e� (:))G(:)hq (e(:))],

where, from (5.2), hq (e(:)) = 1
!
q
′
[

1
!

∑:
8=:−!+1 ^3 (e(:, :)−e(:, 8))

] ∑:
8=:−!+1 ^

′
3 (e(:, :)−

e(:, 8)) (Φ(r: ) −Φ(r8))

Solving for E[e�0 (:)hq (e(:))] and E[h�q (e(:))G(:)hq (e(:))] as per [69], yields

E[e�0 (:)hq (e(:))] =W2
:ℎ� (W

2
: ), (5.30)

E[hq (e� (:))G(:)hq (e(:))] =ℎ� (W2
: )E[‖Φ(r: )‖

2
G(:)], (5.31)
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where ℎ� (·), ℎ� (·) are defined in [69], and W2
:
= E[‖e0 (:)‖2G(:)]

The W2
:
can be further simplified as

W2
: =E[‖e0 (:)‖

2
G(:)] = E[e

�
0 (:)G(:)e0 (:)] = E[
̃

�

:−1Φ(r: )G(:)Φ� (r: )
̃:−1]

=E[
̃�

:−1‖Φ(r: )‖2G(:)
̃:−1] = #CG#AG! (`2 +Ω2
F)E

[ 
̃:−1
2

G(:)
]
, (5.32)

where E[‖Φ(r: )‖2G(:)] = #CG#AG! (`2 +Ω2
F)

Substituting (5.31) into (5.30) and using (5.32), yields

E[

̃:

2
G(:)] =E[


̃:−1
2

G(:)] − 2[#CG#AG! (`2 +Ω2
F)E

[ 
̃:−1
2

G(:)
]
ℎ�

(
#CG#AG! (`2 +Ω2

F)

×E
[ 
̃:−1

2
G(:)

] )
+ #CG#AG![2ℎ�

(
#CG#AG! (`2 +Ω2

F)E
[ 
̃:−1

2
G(:)

] )
×(`2 +Ω2

F) (5.33)

For steady state analysis taking lim
:→∞

to both sides of (5.33), yields

lim
:→∞
E[


̃:

2
G(:)] = lim

:→∞
E[


̃:−1
2

G(:)] − 2[#CG#AG! (`2 +Ω2
F) lim
:→∞
E
[ 
̃:−1

2
G(:)

]
×ℎ�

(
#CG#AG! (`2 +Ω2

F) lim
:→∞
E
[ 
̃:−1

2
G(:)

] )
+ #CG#AG![2

×ℎ�
(
#CG#AG! (`2 +Ω2

F) lim
:→∞
E
[ 
̃:−1

2
G(:)

] )
(`2 +Ω2

F). (5.34)

Since lim
:→∞
E[


̃:

2
G(:)] = lim

:→∞
E[


̃:−1
2

G(:)], (5.34) is given by

lim
:→∞
E
[ 
̃:−1

2
G(:)

]
=
[

2

ℎ�
(
#CG#AG! (`2 +Ω2

F) lim
:→∞
E
[ 
̃:−1

2
G(:)

] )
ℎ�

(
#CG#AG! (`2 +Ω2

F) lim
:→∞
E
[ 
̃:−1

2
G(:)

] ) . (5.35)

Representing (,�% = lim
:→∞
E
[ 
̃:−1

2
G(:)

]
as the steady state weight error power,

(5.35) is given by

(,�% =
[

2
ℎ�

(
#CG#AG! (`2 +Ω2

F)(,�%
)

ℎ�
(
#CG#AG! (`2 +Ω2

F)(,�%
) . (5.36)

Using (6.31) and (5.32), (�"(� is given by
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Table 5.1: Parameters values used for estimation algorithms based on KMEE-NC, KMC-
NC, and KLMS-NC for estimating DOD via simulations.

Parameters KMEE-NC KMC-NC KLMS-NC
` 0.57 0.57 0.57
f 10−6 10−6 10−6

f2 2 × 10−5 0.02 Nil
X4 10−8.5 10−8.5 10−8.5

X3 1.9 1.9 1.9
! 25 Nil Nil

(�"(� = #CG#AG! (`2 +Ω2
F)(,�% . (5.37)

5.5 Simulation Results and Discussion

In this section, we present and discuss simulation results performed to validate per-

formance of the proposed estimator based on KMEE-NC. For evaluating the average

NMSE
(
NMSE= 1

 C4

∑ C4
:=1
‖�:−�̂: ‖2

‖�: ‖2
, where  C4 is the number of MIMO radar observa-

tions used for testing
)
performance of the proposed estimator, the SCR=v�A� () ,5)A() ,5)v

`2tr(�z) ,

and CNR= `2tr(�z)
#C G#A GΩ

2
w
are both fixed at 30 dB [5]. The simulations are performed to estimate

the DOD, DOA, and Doppler shift of four different targets (i.e % = 4) illuminated by the

MIMO radar with #CG = 4, and #AG = 3 [90]. In (5.3), the clutter vector c is realized from

the non-Gaussian distribution described in Section 1.5 of Chapter 1. To compare perfor-

mance of the proposed estimator with other sparsified version of kernel based estimators

(KLMS-NC and KMC-NC) and existing estimators proposed in [88], [89], [90], and [91],

variance in estimation of parameters of first target is evaluated in the SCR range from −30

dB to 30 dB with an increment of 2 dB. The reported simulation results are obtained by

ensemble of 100 Monte Carlo runs. The free parameter values of KMEE-NC, KMC-NC,

and KLMS-NC for the estimation of DOD, DOD, and Doppler shift are summarized in

Table 5.1, Table 5.2, and Table 5.3, respectively. The value of free parameters mentioned

in Table 5.1, Table 5.2, and Table 5.3 are obtained by cross-validation [15, 16], to achieve

a desirable average NMSE convergence speed with minimum average NMSE value.
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Table 5.2: Parameters values used for estimation algorithms based on KMEE-NC, KMC-
NC, and KLMS-NC for estimating DOA via simulations.

Parameters KMEE-NC KMC-NC KLMS-NC
` 0.57 0.57 0.57
f 10−6 10−6 10−6

f2 2 × 10−5 0.02 Nil
X4 10−8.5 10−8.5 10−8.5

X3 2 2 2
! 20 Nil Nil

Table 5.3: Parameters values used for estimation algorithms based on KMEE-NC, KMC-
NC, and KLMS-NC for estimating Doppler shift via simulations.

Parameters KMEE-NC KMC-NC KLMS-NC
` 0.55 0.55 0.55
f 10−7.4 10−7.4 10−7.4

f2 2 × 10−5 0.02 Nil
X4 10−8.5 10−8.5 10−8.5

X3 6.4 6.4 6.4
! 20 Nil Nil

5.5.1 Estimation of DOD and DOA

Simulations using estimators based on KMEE-NC, KMC-NC, and KLMS-NC to estimate

DOD and DOA of four different targets are performed by dividing the interval of true

values of DOD and DOA, i.e., ( −c2 ,
c
2 ) into  = 5550 parts. Subsequently, the MIMO

radar observations corresponding to  = 5550 true values of DOD and DOA are obtained

by using (5.4) and (5.5), respectively. The starting  CA = 5000 pair of DOD and DOA true

values and respective MIMO radar observations i.e. (d: , r): |5,f) or (d: , r5: |) ,f) are used

to train the estimators. The rest  C4 = 550 pairs are used for testing performance of the

estimators and evaluating the average NMSE.

As shown in Fig. 5.1a, and Fig. 5.2a, the estimator based on KMEE-NC converges to a

lower average NMSE of the order 10−2 as compared to the estimator based on KLMS-NC.

Further, as reported in Fig. 5.1a, and Fig. 5.2a, the estimator based on KMEE-NC yields

estimates with average NMSE equal to the estimator based on KMC-NC. However, as

shown in Fig. 5.1b, and Fig. 5.2b, the computational complexity (dictionary size) obtained

in the estimation of DOD and DOA, using an estimator based on KMEE-NC is lower than
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the estimator based on KMC-NC and KLMS-NC. The lower average NMSE and lower

dictionary size obtained by the estimator based on KMEE-NC, validate the superiority

of the proposed estimator over other kernel based estimation techniques (KMC-NC and

KLMS-NC).
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Figure 5.1: (a) Average normalized MSE, and (b) Dictionary size in the estimation of
DOD using estimators based on KMEE-NC, KMC-NC, and KLMS-NC.
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Figure 5.2: (a) Average normalized MSE, and (b) Dictionary size in the estimation of
DOA using estimators based on KMEE-NC, KMC-NC, and KLMS-NC.
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5.5.2 Estimation of Doppler shift

Similar toDODandDOA, simulations to estimate normalizedDoppler shift for% = 4 using

estimators based on KMEE-NC, KMC-NC, and KLMS-NC are performed by dividing the

interval of true values of normalized Doppler shift i.e (−0.5, 0.5) into  = 5550 parts.

The MIMO radar observations corresponding to  = 5550 true values of Doppler shift

are obtained by using (5.6). Out of the 5550 pair of Doppler shift and MIMO radar

observations i.e. (d: , rf: |) ,5), 5000 are used to train the estimators. Subsequently, the

average NMSE in estimating normalized Doppler shift are evaluated using the remaining

550 pairs of Doppler shift and MIMO radar observations (d: , rf: |) ,5).

In the estimation of the Doppler shift, as depicted in Fig. 5.3a, average NMSE of

the estimator based on KMEE-NC converges to the order of 10−2 which is lower than the

averageNMSE achieved by the estimators based onKLMS-NC. Further, as reported in Fig.

5.3a, performance of the estimator based on KMEE-NC coincides with the performance

of estimator based on KMC-NC. However, similar to Doppler shift estimation, estimator

based onKMEE-NCoffers a gain overKMC-NC andKLMS-NC in terms of computational

complexity, as shown in Fig. 5.3b.
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Figure 5.3: (a) Average normalized MSE, and (b) Dictionary size in the estimation of
Doppler shift using estimators based on KMEE-NC, KMC-NC, and KLMS-NC.
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5.5.3 Comparative Performance of Estimators

For assessing the accuracy of the proposed estimation technique compared to existing

kernel based estimators and conventional estimators, the variance of the estimators is

compared with the respective MCRLBs. For this, simulations are performed to evaluate

variance in the estimation of DOD, DOA, and Doppler shift of the first target, i.e., ? = 1.

The estimators proposed in [88], [89], [90], and [91] are termed as conditional iterative

ML estimator (CIMLE), joint IMLE (JIMLE),marginal IMLE (MIMLE), and approximate

ML estimator (AMLE), respectively. As shown in Fig. 5.4a in the estimation of DOD,

the variance obtained with KMEE-NC in comparison to KLMS-NC, CIMLE, JIMLE,

MIMLE, and AMLE, is closer to the achievable MCRLB. This is because, unlike the

CIMLE, JIMLE, MIMLE, and AMLE, the estimator based on KMEE-NC optimizes

the convex cost function and result in improved performance as shown in Fig. 5.4a.

Furthermore, it is also observed that the variance of the estimator based on KMEE-NC

and KMC-NC overlaps. However, as depicted in Fig. 5.1b, Fig. 5.2b, and Fig. 5.3b,

KMEE-NC utilizes much lower radar observations than KMC-NC, which results in more

moderate computational complexity. Moreover, as shown in Fig. 5.4a, particular to DOD

estimation, KMEE-NC has lower variance than KMC-NC in the SCR range of 10 dB to

20 dB. Similar to DOD estimation, in Doppler shift estimation, as shown in Fig. 5.4b,

KMEE-NC yields lower variance than KMC-NC in the SCR range of 0 dB to 10 dB.

5.6 Summary

In this Chapter, an estimator for DOD, DOA, and Doppler shift for multiple targets using

MIMO radar in the presence of non-Gaussian clutter is proposed. The effect of non-

Gaussian clutter is handled by introducing the adaptive estimator based on KMEE. The

KMEE optimizes the MEE criterion in RKHS, which yields accurate estimates of parame-

ters by compensating the effect of non-Gaussian clutter. Practical viability of the proposed

KMEE based estimator is limited by its high computational complexity/dictionary size.

Thus, the computational complexity/dictionary size is reduced by the incorporation of the
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Figure 5.4: Comparative performance of the estimators for estimation of (a) DOD, (b)
DOA, and (c) Doppler shift of the first target.

sparsification technique based on NC. Performance of the proposed algorithm is compared

with the derived MCRLB for DOD, DOA, and Doppler shift. Further, accuracy of the

proposed estimator is validated through computer simulations over realistic MIMO radar

systems. The obtained simulation results reveal viability of the proposedKMEE-NC based

estimator over other kernel-based adaptive estimators.

In previous Chapters, particularly in Chapter 3, Chapter 4, and Chapter 5, KAF based

estimators (estimators based on KLMS, KMC, and KMEE), are developed and found to

yields an accurate estimate of vital parameters of targets. Consequently, they proved to

be a viable choice over conventional non-adaptive estimators. Nevertheless, for proper
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working, KAF based estimators require a suitable value of various system parameters

like kernel width (f) and learning rate (`). The inappropriate value of these parameters

adversely affects the estimation accuracy of the KAF based estimator. Moreover, being an

adaptive algorithm, more often, KAF based estimators require higher iterations number

to converge to an optimum solution corresponding to lower MSE value. Thus, to counter

the drawbacks of estimators based on KAF, next, a new class of estimators based on EKF

and UKF are developed. Estimation accuracy of the proposed estimators is tested over

Gaussian perturbed LFM radar system and compared with their best counterpart; estimator

based on KLMS-Modified NC.
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Chapter 6

Range and velocity estimation using

EKF and UKF based Estimators

As a solution for accurate estimation of delay and Doppler shift in Gaussian distributed

thermal noise, in Chapter 3, a KLMS based estimator has been developed and tested over

LFM and OFDM radar. The KLMS based estimator uses representer theorem [16] to

recursively estimate the unknown inverse function (between the unknown parameters and

returning signal) in RKHS [15, 16]. The estimated parameters are adaptively updated using

the LMS algorithm [15, 16]. However, as a major drawback of KLMS based estimators,

to learn the unknown function (6(·)), the KLMS algorithm requires precise knowledge

of various system parameters, like the kernel width (f), step size (`), and dictionary

thresholds (X1, X2). Suitable values of these parameters are obtained by tuning their values

in a fixed range. Moreover, these parameter values are model specific [15, 18, 56], hence

a priorly fixed set of parameter values is not appropriate for targets with varying system

dynamics (e.g., varying range and radial velocity) which is most common in practical

problems. Consequently, the KLMS based estimator is prone to result in poor estimation

accuracy. Another drawback is that being a stochastic gradient-based algorithm; the

KLMS based estimators require a large number of iterations to converge to a minimum

error (between the desired and estimated parameters) solution [16].

The solution of the estimates obtained by KLMS is given in terms of a recursive sum
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of weighted kernel evaluations, which grows with every new input radar return, which

in turn causes calculation of the estimates to be computationally demanding. A general

method to constrain the growing network size is to use the sparsification techniques. NC

based sparsification technique has been used along with KLMS (KLMS-NC and KLMS-

Modified NC) for the radar applications. The sparsified estimator does not use all the

arriving radar returns and instead used a selection criterion to determine if the input radar

returns will be used for estimation and stored in the dictionary. This enables the estimator

to give good performance with a limited dictionary size. While sparsification techniques

provides a solution to curb the growing kernel evaluations, they have certain limitations.

Firstly, at every time instant, a linear search throughout the existing dictionary is done to

establish whether or not the new input radar return is going to be stored in the dictionary.

This causes the addition of significant overhead in the estimation process. Secondly, since

KLMS-NC andKLMS-ModifiedNC are a dictionary-based learning approach [17, 18, 60],

spurious inputs added to the dictionary at the initial stages of the learning process affect

the future inputs which in turn affects the overall performance of the estimator adversely.

This Chapter introduces two novel estimation techniques to counter drawbacks of

estimators based on KLMS, and improve the estimation accuracy of delay and Doppler

shift. The proposed estimation techniques are based on two popular estimators; the EKF

[98], and the UKF [20, 99, 100]. To the best of authors’ knowledge, the EKF and UKF

have been tested for target tracking using radar-based measurements [19, 21, 22]. The

other version of Kalman filter; modified convolution kernel function [101], has been

used for parameter estimation of returning signal for the specific application of synthetic

aperture radar, modeled as LFM signal. However, EKF and UKF, have not been explored

for estimating the delay and Doppler shift for target tracking. The EKF implements the

concept of basicKalman filter [98] and offers a simple and straightforward implementation.

However, it approximates the non-linear system models as linear models obtained by first-

order linearization. Subsequently, it suffers from poor accuracy and stability, especially

in a complex environment such as low SNR and heavy-tailed clutters. A poor accuracy

in estimating the target’s states causes ambiguity in target identification. Unlike the EKF,
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the UKF considers the system models in their original form, which is helpful in accurate

estimation of a target’s parameters in a complex environment. Accuracy of the proposed

estimation techniques based on EKF and UKF is compared with the existing best version

of KLMS based estimator (KLMS Modified-NC) and estimator based on FT, in terms

of NMSE and variance. Simulation results reveal a lower NMSE and variance for the

proposed estimators, which concludes an improved accuracy.

The Chapter is organized as follows: Firstly, the signal model for received radar return

for the transmitted LFM signal is described. The proposed EKF and UKF based estimators

are described next. Further, simulation results along with analytical expressions for CRLB

on the variance in estimating the time-delay and Doppler shift are discussed. Finally, the

contribution of this work is concluded.

6.1 Signal Model Formulation

In this section, the radar return signal model is derived, which describes relationship

between the radar return and the desired unknown parameters viz delay and Doppler shift.

The estimation algorithms are implemented to most commonly used radar system called

mono-static LFM radar [4, 102].

Following the steps described in Subsection 3.1.1 of Chapter 3. The returning signal

for LFM radar is given by

A (<, ;) = exp ( 92c< 53)PRI) exp (− 92c;Δ 5 g>) exp( 92c 53<; (
)PRIΔ 5

52
)) + F(<, ;), (6.1)

From (6.1), it is explicit that the returning signal, A (<, ;), is exponentially related to

the desired delay, g>, and Doppler shift, 53 . The adaptive estimators to estimate g> and 53

based on KLMSModified-NC assuming Gaussian distribution for equivalent perturbation

is introduced in Chapter 3. However, the performance of the KLMS Modified-NC based

estimator is susceptible to inappropriate values of various system parameters. Moreover,

being an adaptive algorithm, KLMS Modified-NC requires large number of iterations

to reach the theoretical optimum solution, leading to large computational time. In this
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paper, to mitigate the shortcomings of existing state of the art algorithms, two advanced

estimation techniques based on EKF and UKF for estimating g> and 53 from the returning

signal A (<, ;) is introduced.

6.2 EKF andUKFbasedEstimation of delay andDoppler

shift

In this section, the proposed EKF and UKF based estimators for g> and 53 are described

in details. In noisy environments (as the case of LFM radar system), Bayesian framework

based estimators are most accepted for several decades (refer to [98, 103, 104] for detail

discussion). The Bayesian framework is based on state space formulation (discussed in

Section 6.2.1) [98] of the systemmodel, and it is implemented in two steps: prediction and

update. Two popular simplifications of Bayesian framework are Gaussian filtering [98],

and particle filtering [105]. The Gaussian filters are preferred over particle filters due to

their high estimation accuracy at appreciably low computational cost. The proposed EKF

and UKF are two popular Gaussian filters.

In this Chapter, firstly, the state space model for the LFM radar system is formulated,

and a brief discussion on Bayesian parameter estimation is provided. After that, elaborate

discussion of the proposed EKF and UKF based estimation of g> and 53 is given.

6.2.1 State Space Model for LFM Radar System

The state space model consists of state and measurement models, where the state model

characterizes the state dynamics while the measurement model represents the mathemati-

cal relation between the state and the measurement. Note that, the state is defined with the

unknown/desired parameters (g> and 53 in our case), while the measurement consists of

the observed quantities (the returning signal A (<, ;)). Subsequently, the state andmeasure-

ment variables are formulated as x = [g> 53]) 1 and r = [Re(A (<, ;)) Im(A (<, ;))]) ,

respectively. We formulate the model for targets with constant velocity as special cases of

1The 8Cℎ element of x is referred as x(8).
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the model for constant acceleration. The change in position is assumed to reflect a constant

increase in the time-delay, and any error due to this assumption is compensated with the

process noise. Similarly, any error due to the constant velocity is also compensated with

the process noise. Subsequently, the state model could be designed as an incremental

model, i.e.

x:+1 = 5 (x: ) + (: = x: + Δx + (: , (6.2)

where : ∈ {1, 2, · · · ,  },  = "! is total number of discretized samples of returning

signal and Δx = [) PRI
 
, 0]) is a constant shift in x between successive samples of returning

signal. (: is additive process noise which models the errors. (: is assumed to be zero

mean Gaussian with covariance Q: under the Gaussian filtering.

From (6.1), the measurement model can be formulated as

r:+1 = ℎ(x:+1) + v:+1 (6.3)

where v: represents measurement noise which is added to compensate any error in cap-

turing and/or processing of returning signals, and ℎ(x:+1) is given by

ℎ(x:+1) =


Re
(
exp ( 92c<x:+1(2)) PRI) exp (− 92c;Δ 5 x:+1(1)) exp( 92cx:+1(2)<; ()PRIΔ 5

52
))

)
Im

(
exp ( 92c<x:+1(2)) PRI) exp (− 92c;Δ 5 x:+1(1)) exp( 92cx:+1(2)<; ()PRIΔ 5

52
))

)  .
Under Gaussian filtering, v: is assumed to be zero mean Gaussian with covariance R: .

6.2.2 Bayesian Framework for Filtering

The Bayesian filtering is performed in two steps:

Prediction

This step constructs the pdf of states one step forward in time (in reference to the available

measurements) using Chapman-Kolmogorov equation [98, 103], i.e.

P(x: |r1::−1) =
∫
P(x: |x:−1)P(x:−1 |r1::−1)3x:−1, (6.4)
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where P(x: |r1::−1) is commonly known as prior pdf.

Update

This step reconstructs the pdf P(x: |r1::−1) on the receipt of a new measurement y: using

Bayes rule, i.e. [98, 103]

P(x: |r1:: ) = P(x: |r1::−1, r: ) =
1
2:
P(r: |x: )P(x: |r1::−1), (6.5)

where P(r: |x: ) is measurement likelihood which is obtained from (6.3) and 2: is a

normalization constant i.e.

2: = P(r: |r1::−1) =
∫
P(r: |x: )P(x: |r1::−1)3x: . (6.6)

The objective of Bayesian filtering is to constructP(x: |r1:: ), which is popularly known

as posterior pdf.

Hereafter, denoting P(x: |r1::−1) ∼ P(x: |:−1) and P(x: |r1:: ) ∼ P(x: |: ), which are

standard notations used in estimation and filtering literature [98, 103, 104].

6.2.3 EKF based Estimation of delay and Doppler shift

From the state space model of radar systems ((6.2) and (6.3)), the estimation of g> and 53

from returning signal, A (<, ;), is simplified as an estimation problem of x: from known

measurement r: . A conceptual solution for such problem is introduced as the Bayesian

framework. The EKF is an analytical simplification of Bayesian framework. It assumes

the conditional pdfs in the Bayesian framework ((6.4) to (6.6)) as Gaussian, i.e.

P(x: |:−1) ∼ NR(x: |:−1; x̂: |:−1,P: |:−1), (6.7)

P(x: |: ) ∼ NR(x: |: ; x̂: |: ,P: |: ), (6.8)
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where x̂: |: and P: |: are mean and covariance of x: |: . Subsequently, the problem is further

simplified to determine x̂: |:−1 and P: |:−1 in prediction step, and x̂: |: and P: |: in update

step. The computational aspect of the two steps is discussed herewith.

Prediction

x̂: |:−1 and P: |:−1 are obtained from the first and second moments of x, with pdf of x given

in (6.7). A simplified expression for x̂: |:−1 and P: |:−1 are given as [98, 103]

x̂: |:−1 = 5 (x̂:−1|:−1), (6.9)

P: |:−1 = F:P:−1|:−1F): +Q: , (6.10)

where

F: =
m 5 (x)
mx

����
x=x̂:−1 |:−1

=


1 0

0 1


is Jacobian of 5 (x) computed at x̂:−1|:−1. The detailed discussion is given in [98, 103, 104].

Update

In the update step, the predicted estimate and covariance, x̂: |:−1 and P: |:−1, are corrected

using the information received from new measurement. The correction step requires the

statistical information about predicted measurement, which is obtained in the following

steps.

• The predicted measurement is obtained as

r̂: |:−1 = ℎ(x̂: |:−1). (6.11)

• The error covariance of predicted measurement is obtained as

Prr
: |:−1 = H:P:−1|:−1H)

: + R: , (6.12)
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where

H: =
mℎ(x)
mx

����
x=x̂: |:−1

=


m cos(\1)
mx: (1)

m cos(\1)
mx: (2)

m sin(\1)
mx: (1)

m sin(\1)
mx: (2)

 ,
=


− sin(\1) m\1

mx: (1) − sin(\1) m\1
mx: (2)

cos(\1) m\1
mx: (1) cos(\1) m\1

mx: (2)

 . (6.13)

is Jacobian of ℎ(x) computed at x̂: |:−1. In (6.13), \1 = −2c;Δ 5 x: (1) + 2c<x: (2))PRI +

2c<;x: (2) (()PRIΔ 5 )/ 52).

Based on the error covariance of the predicted state and measurement, a Kalman gain

is computed as

K: = P: |:−1H)
: (P

rr
: |:−1)

(−1) . (6.14)

On the receipt of a new measurement r: , the desired estimate and covariance, x̂: |: and

P: |: , are obtained as

x̂: |: = x̂: |:−1 +K: (r: − r̂: |:−1), (6.15)

P̂: |: = P̂: |:−1 −K:Prr
: |:−1K)

: . (6.16)

For a detailed discussion please refer [98, 103, 104].

The posterior estimate x̂: |: = [ĝ>: 5̂3: ]) provides the desired estimate of delay and

Doppler shift. The steps involved in EKF based estimation of delay and Doppler shift is

summarized in Algorithm 7.

6.2.4 UKF based Estimation of delay and Doppler shift

The UKF [20, 99, 100] uses a derivative-free implementation for estimating x: from

known measurement r: , unlike the EKF. Moreover, it propagates the estimate and covari-

ance through true system model instead of propagating them through a derivative-based

locally approximated model. Note that, the objective of Gaussian filtering is to obtain the

estimate and covariance of states for characterizing the Gaussian pdfs; x̂: |:−1 and P: |:−1

in prediction step and, x̂: |: and P: |: in update step. The estimate and covariance are
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Algorithm 7 Estimation of delay and Doppler shift using EKF
1: Input: 5 : x: → x:−1, ℎ : x: → r: , Q: , and R:

2: Output: x̂: |:
3: Initialization: x̂0|0, P0|0
4: while : ≤  do
5: Derivative computation for state dynamics F: = m 5 (x)

mx

����
x=x̂:−1 |:−1

6: Prediction
x̂: |:−1 = 5 (x̂:−1|:−1)
P: |:−1 = F:P:−1|:−1F)

:
+Q:

7: Derivative computation for measurement model H: =
mℎ(x)
mx

����
x=x̂: |:−1

8: Update
r̂: |:−1 = ℎ(x̂: |:−1)
PHH
: |:−1 = H:P:−1|:−1H)

:
+ R:

K: = P: |:−1H)
:
(Prr

: |:−1)
(−1)

x̂: |: = x̂: |:−1 +K: (r: − r̂: |:−1)
P̂: |: = P̂: |:−1 −K:Prr

: |:−1K)
:

Return x̂: |:
9: end while
10:

obtained from the first and second moments. For systems with Gaussian assumption on

conditional pdfs, the moment computation involves an integral of the form ‘
∫ ∞
−∞ arbitrary

function × Gaussian pdf ’ [106, 107]. The integrals of this form are generally intractable

[106, 107], therefore an analytical solution does not exist. The UKF numerically approx-

imates the intractable integrals using unscented transformation [20, 99] based numerical

approximation.

The unscented transformation generates a set of 2=+1 symmetrically distributed sigma

points, with = being the system dimension which is two in the considered problem. It also

generates a set of 2= + 1 weights associated with sigma points. Considering x̂ and P be

the estimate and covariance of random variable x respectively, the set of sigma points, /,

can be obtained as [20, 100]

/0 = x̂,

/8 = x̂ +
(√
(= + ^)P

)
8
,

/=+8 = x̂ −
(√
(= + ^)P

)
8
,

(6.17)

120



where 8 = 1, 2, · · · , =, ^ is a constant (practitioner’s choice) and
(√
(= + ^)P

)
8
represents

8Cℎ column of
(√
(= + ^)P

)
. A preferred value of ^ is 3 − = i.e. = + ^ = 3. The weights are

generated as [20, 100]

W0 = ^/(= + ^),

W8 = W=+8 = 1/(2(= + ^)) .
(6.18)

As in (6.17), the sigma points depend on the distribution of random variable (charac-

terized by x̂ and P) which is different for prediction and update steps. Therefore, the UKF

generates two different set of sigma points: /:−1|:−1 in the prediction step and /: |:−1 in

the update step. /:−1|:−1 is generated with x̂ = x̂:−1|:−1 and P = P:−1|:−1, while /: |:−1

is generated with x̂ = x̂: |:−1 and P = P: |:−1. The weights are independent of distribution

of random variable, hence they are same for both the prediction and update steps. The

computational aspect of prediction and update steps for the UKF is discussed herewith.

Prediction

The predicted estimate and covariance, x̂: |:−1 and P: |:−1, are obtained as

x̂: |:−1 =

#B∑
9=1

W 9/
5

9 ,:−1|:−1, (6.19)

P: |:−1 =

#B∑
9=1

W 9 (/ 59 ,:−1|:−1 − x̂: |:−1) (/ 59 ,:−1|:−1 − x̂: |:−1)) +Q: , (6.20)

where

/ 5
9 ,:−1|:−1 = 5 (/ 9 ,:−1|:−1). (6.21)

Update

The computation of updated estimate and covariance, x̂: |: and P: |: , is based on statistical

information on predicted measurement, which is obtained in the following steps:
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Algorithm 8 Estimation of time-delay and Doppler shift using UKF
1: Input: 5 : x: → x:−1, ℎ : x: → r: , Q: , and R:

2: Output: x̂: |:
3: Initialization: x̂0|0, P0|0
4: while : ≤  do
5: Prediction

/ 5
9 ,:−1|:−1 = 5 (/ 9 ,:−1|:−1)

x̂: |:−1 =
∑#B
9=1, 9/

5

9 ,:−1|:−1
Calculate, P: |:−1, using (6.20)

6: Update
/ℎ
9,: |:−1 = ℎ(/ 9 ,: |:−1)

r̂: |:−1 =
∑#B
9=1, 9/

ℎ
9,: |:−1

Calculate, PAA
: |:−1 and P

xA
: |:−1, using (6.22) and (6.23), respectively.

K: = PxA
: |:−1(P

AA
: |:−1)−1

x̂: |: = x̂: |:−1 +K: (r: − r̂: |:−1)
P: |: = P: |:−1 −K:PAA: |:−1K)

:

7: Return x̂: |:
8: end while

• The estimate of predicted measurement is obtained as

r̂: |:−1 =

#B∑
9=1

W 9/
ℎ
9,: |:−1,

where

/ℎ
9,: |:−1 = ℎ(/ 9 ,: |:−1).

• The error covariance of predicted measurement is obtained as

Prr
: |:−1 =

#B∑
9=1

W 9 (/ℎ9,: |:−1 − r̂: |:−1) (/ℎ9,: |:−1 − r̂: |:−1)) + R: . (6.22)

• The cross-covariance between the predicted state and measurement is computed as

Pxr
: |:−1 =

∑
9

, 9 (/ 9 ,: |:−1 − x̂: |:−1) (/ℎ9,: |:−1 − r̂: |:−1)) . (6.23)
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Based on Prr
: |:−1 and P

xr
: |:−1, the Kalman gain is obtained as

K: = Pxr
: |:−1(P

rr
: |:−1)

−1. (6.24)

The desired parameters, x̂: |: andP: |: , are obtained by correcting the predicted estimate

and covariance on the receipt of new measurement r: . The correction is based on Kalman

gain, and obtained as

x̂: |: = x̂: |:−1 +K: (r: − r̂: |:−1),

P: |: = P: |:−1 −K:Prr
: |:−1K)

: .

The estimate x̂: |: = [ĝ>: 5̂3: ]) provides the desired estimate of delay and Doppler

shift. The estimation algorithm based on UKF is summarized in Algorithm 8.

Comparison between EKF and UKF

EKF is an early development using filtering under the Bayesian framework. As discussed

in Section 6.2.3, its implementation involves derivative-based computation, which causes

several limitations, like smoothness requirement for system models and poor stability.

Though it outperforms the KLMS Modified-NC based estimator and other estimators

used in radar systems, it has certain limitations. For instance, the derivative requires a

smooth system model; however, it is not guaranteed in the radar systems. Moreover, the

propagation of estimate and covariance through a locally approximated system models

leaves scope for further improvement. Despite all the limitations, it attracts practitioners

due to fast computation and implementation simplicity, especially in applications where

small shift in estimation accuracy does not affect the decisiveness [108–110].

UKF offers a derivative-free implementation, which is based on numerical approxi-

mation. Due to derivative-free implementation, it shows better stability in comparison to

the EKF. Along with derivative-free implementation, it offers higher order approximation

of moments. Thus, it outperforms the EKF in terms of estimation accuracy, especially in

complex environments [111–113].
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6.3 Simulation Results and Discussion

In this section, performance of the proposed EKF and UKF based estimation techniques

are validated over LFM radar system, and a comparative analysis with the existing esti-

mators based on KLMS Modified-NC and FT is discussed. The proposed algorithm is

implemented over two mono-static LFM radar systems having different parameter values.

The parameter values are shown in Table. 6.1, where Scenario I [2] and Scenario II

[3] refer to the two radar systems. As shown in Table. 6.1, the Scenario I represents a

practical LFM radar system whose parameter values are different from the other practical

LFM radar system refereed as Scenario II. The parameter values for both Scenario I and

Scenario II are taken from [2], and [3], respectively. The practicality of the two considered

Scenarios are validated from the fact that for the X-band radar the center frequency is in

GHz range. The initial values for x: |:−1 and P: |:−1, used in simulations for EKF and UKF

are mention in Table. 6.2. In simulations, for both EKF and UKF and for Scenario I,

Q: =


10−19.8 0

0 0.001

 , and for Scenario II, Q: =


10−16.7 0

0 2.5 × 10−6

 .
For both Scenario I and Scenario II and for both estimators based on EKF and UKF,

R: = f
2
E I (where f2

E is obtained according to SNR). The SNR is define as the relative

strength of signal with respect to noise, for this work SNR= ℎ(x:+1)
) ℎ(x:+1)
=f2

E
. The estimation

of time-delay and Doppler shift are obtained for SNR = 20 dB; however, the comparative

analysis is provided for various SNRs ranging from −30 dB to 20 dB. In simulations, for

UKF and for both Scenario I and Scenario II, ^ = 0.5 and 5 sigma points are considered

according to 2= + 1 (where = is the dimension of the state vector, which is 2 in this work).

The estimators based on EKF and UKF are run for 5000 iterations i.e.  = 5000.

6.3.1 Estimation of delay and Doppler shift

The EKF and UKF based estimators were implemented with simulated data obtained using

(6.2) and (6.3) over 5000 sampling intervals. The true data of states (obtained from (6.2))

are used as reference values for comparison. The NMSE corresponding to the delay and
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Table 6.1: LFM radar values of Scenario I [2] and Scenario II [3] used for simulations.

Quantity Values for Scenario I Values for Scenario II
Number of pulses (") 10 20

Number of frequency intervals (!) 500 500
Frequency increment (Δ 5 ) 10 MHz 10 MHz

Pulse duration ()>) 5 `s 200 `s
Pulse repetition interval () PRI) 1 ms 0.4 ms

Center frequency ( 52) 10 GHz 9 GHz

Table 6.2: Initial value of quantities used in simulations for Algorithm 7 and Algorithm
8.

Quantity EKF for Scenario I EKF for Scenario II UKF for Scenario I UKF for Scenario II
x̂: |:−1 [10−6.71 1] [10−5.25 1] [10−6.71 1] [10−5.35 1]

P̂: |:−1

[
10−14 0
0 1

] [
10−13.5 0

0 0.00025

] [
10−14 0
0 1

] [
10−14 0

0 0.00025

]

Doppler shift are obtained by implementing "2 = 100 Monte-Carlo executions, which is

given by

#"(�: (8) =
1
"2

"2∑
<2=1

(x<2
:
(8) − x̂<2

:
(8))2

(x<2
:
(8))2

, (6.25)

where 8 is the index corresponding to delay or Doppler shift. The NMSEs obtained from

different estimators are shown in Fig. 6.1, and Fig. 6.2 for Scenario I and Scenario

II, respectively. The figures show a reduced NMSE as well as a faster convergence for

the proposed EKF and UKF based estimators compared to the KLMS Modified-NC.

Specifically, as shown in 6.1a, the EKF and UKF based estimators attain the final NMSE

at around 3000Cℎ iteration, and KLMSModified-NC converges at around 4500Cℎ iteration.

Additionally, the final NMSE attained by EKF and UKF is significantly lower than KLMS-

ModifiedNC. Hence, though the estimators based on EKF, UKF, andKLMS-ModifiedNC

take time to converge, the EKF and UKF based estimators converge fast and attain much

lower final MSE as compared to estimator based on KLMS Modified-NC. The reduced

NMSE concludes an improved accuracy in estimation of delay and Doppler shift with the

proposed estimation techniques. The figures also conclude a relatively better accuracy for

the UKF compared to the EKF. Also, as shown in Table. 6.3, the relative computational

complexity of EKF and UKF are similar and lower than KLMS Modified-NC and FT as

=3 << "!. However, in simulations it is observed that the computational time of UKF is

1.7 times higher as compared to the EKF.
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Figure 6.1: NMSE plots of (a) delay and (b) Doppler shift estimation using estimators
based on KLMS Modified-NC, UKF, and EKF for Scenario I.
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Figure 6.2: NMSE plots of (a) delay and (b) Doppler shift estimation using estimators
based on KLMS Modified-NC, UKF, and EKF for Scenario II.
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Table 6.3: Computational complexity of estimators based on FT, KLMS Modified-NC,
UKF and EKF.

Estimators Computational complexity
FT $ ("! log2 "!)

KLMS Modified-NC $ ("!)
UKF $ (=3)
EKF $ (=3)

6.3.2 Analysis with Varying SNR

Accuracy of the proposed estimation techniques for various SNRs is evaluated in terms of

error variance. The error variance at : Cℎ instant is given as

Ω2
: (8) =

1
"2

"2∑
<2=1

(
x<2
:
(8) − x̂<2

:
(8)

)2
. (6.26)

The error variance in the estimation of delay and Doppler shift is evaluated at various

SNRs ranging from −30 dB to 20 dB. The variances are compared with the achievable

analytical CRLBs for each of the delay and Doppler shift. The CRLB analysis provides

an efficient tool for performance analysis of the EKF and UKF based unbiased estimators

[21, 22, 114], as well as for their comparison with the existing estimators used for time-

delay and Doppler shift estimation. In [114], authors derived the approximate expressions

for the CRLB on the variance of unbiased estimates of the parameters of a narrow-band

radar model in the presence of AWGN as well as interference with known structure. The

derived CRLB expression is, however, suitable for the non-Bayesian estimation approach

and cannot be applied for Bayesian estimator as considered in this work. Therefore, in

this work to derive the CRLB over the Bayesian estimate of g> and 53 , following recursive

expression of Fisher information matrix (J: ) is used

J: (8, 9) = −E
[
m2 ( lnP(r: , x: )

)
mx: (8)mx: ( 9)

]
; 8, 9 = 1, 2 (6.27)

where x: (8) is the 8Cℎ element of x: , J: (8, 9) is the element at 8Cℎ row and 9 Cℎ column of

J: , and P(·) is joint probability density function.
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From [115], J:+1 can be computed recursively as

J:+1 = D22
: − D21

: (J: + D11
: )
−1D12

: , (6.28)

where

D11
: =F):Q

−1
: F: ,

D12
: = − F):Q

−1
: = [D21

: ]
) ,

D22
: =Q−1

: +H)R−1
:+1H. (6.29)

The analytical expression of CRLB for time-delay and Doppler shift is given by

�'!�(g>: ) =J−1
:+1(1, 1), (6.30)

�'!�( 53 : ) =J−1
:+1(2, 2). (6.31)

The variances obtained from the EKF, UKF, KLMS Modified-NC and FT are shown

in Fig. 6.3 and Fig. 6.4. As shown in the figures, the variances obtained with the EKF and

UKF are closer to the achievable CRLB in comparison to the KLMS Modified-NC and

FT. Moreover, the figures validate a marginally better accuracy for the UKF compared to

the EKF, though the computational time is increased.

6.4 Summary

Increasing applications of target tracking in space technology, defense systems, and ocean

exploration requires highly accurate radar systems. The accuracy of radar is reflected

from the accuracy of target localization. The target localization is based on the delay

and Doppler shift in the returning signal, which can be estimated stochastically. The

recent approaches provide a comparatively accurate estimate than conventional methods.

However, they are based on model parameters specific to target dynamics (which vary in

practical problems). Also, they ignore the possibility of uncertainties in the modeling of
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Figure 6.3: Variance in the estimation of (a) delay, and (b) Doppler shift using estimation
techniques based on UKF, EKF, KLMS Modified-NC, and FT for Scenario I.
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Figure 6.4: Variance in the estimation of (a) delay, and (b) Doppler shift using estimation
techniques based on UKF, EKF, KLMS Modified-NC, and FT for Scenario II.

radar systems. This Chapter introduces two new estimation techniques, based on EKF

and UKF, for both delay and Doppler shift estimation in radar systems that outperform the

existing estimators in delay and Doppler shift estimation.
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Chapter 7

Conclusion, Limitations and Future

Work

In this thesis, detection and estimation algorithms in the presence of Gaussian distributed

thermal noise, and non-Gaussian clutter is developed and tested for OFDM, LFM, and

SF radar systems. The accuracy and utility of the proposed algorithms are validated via

detailed theoretical and simulation analysis. In this Chapter, the key contributions of

each Chapter along with inferences drawn from the simulation and theoretical analysis are

summarized. The Chapter ends discussing the limitations of the presented work and the

corresponding scope of the work in the future.

7.1 Conclusion

Initially, novel techniques to measure radar return for OFDM signal from radar return for

SF signal in the marine environment perturbed by sea clutter is proposed. For this, the

radar channel is modeled as an FIR filter with unknown filter coefficients. Subsequently,

the value of filter coefficients is estimated by optimizing the LS cost function, which is

further used for measuring the radar return for the OFDM signal. Next, a signal model for

modeling the OFDM radar return data is proposed. After that, a modified GLRT based

detector is proposed, in which the ML estimate of the unknown scattering matrix is used.

Subsequently, an analytical expression for the ROC of the proposed detection test with
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an assumption of Gaussian distributed clutter is derived. Simulations to estimate radar

return for the OFDM signal is performed using real radar return data collected by CSIR

for SF signal. The detection test performed using estimated data reveals the advantages

of using OFDM radar over conventional SF radar. For estimated OFDM radar return

data, a significant gain in detection performance is reported in the simulations of proposed

detector ROC. The performance of OFDM radar is further improved by increasing the

number of transmitted orthogonal sub-carriers. The detector performance obtained for the

estimated OFDM radar return is verified by the detector performance of simulated OFDM

radar return data. Finally, an agreement between the theoretical and simulated ROC of the

detector under the assumption of Gaussian distributed clutter confirms the advantages of

OFDM radar over conventional radar for surveillance in the marine environment.

Next, the problem of estimating a target’s delay and Doppler shift is dealt with a per-

spective of approximating the unknown inverse function. For this, firstly, a popular RKHS

based function approximation technique using the KLMS algorithm is developed. Subse-

quently, the linear increase in computational complexity of the KLMS based estimator is

controlled by utilizing the NC based sparsification technique. The resulting KLMS-NC

based estimator instead of utilizing every radar observations selectively selects the radar

observations for estimation. The estimation accuracy of the proposed estimators is further

increased by adaptively learning a suitable kernel width of the kernel function, and the

resulting estimator is termed as KLMS-Modified NC. Performance of the proposed esti-

mators: KLMS, KLMS-NC, and KLMS-Modified NC, is tested for LFM and OFDM radar

systems. The proposed estimators are found to achieve minimum MSE in the estimation

of both delay and Doppler shift with reasonable computational complexity. Moreover, due

to the optimization of the convex cost function in RKHS, and contrary to the conventional

estimator based on FT, the variance of the proposed estimators are found closer to the

achievable CRLB.

Further, estimators based on another class of KAFs utilizing MCC is explored for

estimating delay and Doppler shift in the radar environment perturbed by non-Gaussian

clutter. The proposed KMC based estimator, contrary to estimators based on KLMS,
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considers the higher-order statistics of error in optimization. Consequently, optimization of

higher-order statistics of error makes the estimator based on KMC capable of dealing with

the deleterious effects of clutter. However, similar to estimators based on KLMS, KMC

based estimator suffers from a linear increase in the radar observations, thereby resulting

in higher computational complexity. Therefore, KMC-NC based sparsified estimator,

which utilizes the NC sparsification technique, is developed. Furthermore, to choose an

appropriate kernel width, a technique is developed for tuning the kernel width from radar

returns, and an adaptive update equation is derived to choose an appropriate value of

kernel width. Subsequently, analytical proofs regarding CRLB and estimators dictionary

upper bounds are provided, which reinforces viability of KMC based estimators as an

efficient estimator for practical clutter-impaired radar systems. Simulations performed

over realistic LFM and SF radar systems reveal superiority of the proposed KMC based

estimators over existing estimators based on KLMS. Lastly, variance of the proposed

estimators is found to be nearer to the CRLB as compared to the KLMS based estimators.

Furthermore, in MIMO radar, for the estimation of DOD, DOA, and Doppler shift of

multiple targets in the presence of non-Gaussian clutter, the adaptive estimator based on

KMEE is introduced. Estimator based on KMEE optimizes the MEE criterion in RKHS

, and yields accurate estimates of parameters by compensating the effect of non-Gaussian

clutter. Nevertheless, practical viability of the proposedKMEEbased estimator is hindered

by its high dictionary size. Therefore, continuously increasing dictionary size is reduced

by the incorporation of the sparsification technique based on NC. Simulations performed

over MIMOradar reveals capability of compensating the effects of non-Gaussian clutter in

comparison to other kernel-based adaptive estimators. Lastly, based on the comparative

performance of the proposed estimator and existing estimator with the derived MCRLB, it

can be concluded that the KMEE based estimator is preferred for the MIMO radar system.

Finally, two novel estimation techniques, based on EKF and UKF, for both delay and

Doppler shift estimation in radar systems in the presence of Gaussian distributed thermal

noise are proposed. The KLMS-Modified NC based estimator provides a comparatively

accurate estimate than the conventional estimator based on FT.However, towork, estimator

132



based on KLMS-Modified NC requires appropriate values of various hyper-parameter. On

the contrary, the proposed estimators based on EKF and UKF are free from such problem

of choosing an appropriate values of various hyper-parameter. The better performance

of the proposed estimators in comparison to estimator based on KLMS-Modified NC is

guaranteed by the proximity of the variance of the proposed estimator to CRLB. Further,

the UKF based estimator marginally outperforms the EKF, however, with an increase in

computational complexity.

7.2 Limitations and Future work

• In Chapter 2, batch processing estimation technique based on LS is used, which

for large data becomes computationally complex. Also, currently, the detection

algorithm is developed for known values of a Doppler shift; however, in practice, a

Doppler shift is unknown. Moreover, the effect of a target velocity on the orthogo-

nality of OFDM sub-carriers has not been considered in the current work.

In the future, instead of using an estimation technique based on batch processing,

some online estimation techniques can be explored. Furthermore, there is a possi-

bility of developing a detection algorithm for unknown Doppler shift. Also, in the

future, the effect of target velocity on the orthogonality of OFDM sub-carriers can

be explored.

• In Chapter 3, Chapter 4, and Chapter 5, the estimation of target’s range and velocity

is done individually. The joint estimation of parameters, however, is required,

especially in multiple target scenarios.

The developed estimators based on KAF can be explored for joint estimation of the

target’s range and velocity, especially in the multiple target scenario where the exact

paring of estimated parameters is challenging.

• The KAF based estimators, proposed in Chapter 3, Chapter 4, and Chapter 5 suffers

with an unbounded temporal increase in computational/storage complexity. The
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temporal increase in computational/storage complexity is mitigated by NC based

sparsification technique. However, the NC based sparsified estimator at every time

instant utilizes a linear search throughout the existing dictionary, which causes

significant computational overhead.

In future, the unknown radar parameters may be estimated through an explicit

random Fourier feature based mapping, as opposed to existing implicit dictionary-

based RKHS formulations.

• In Chapter 6, the estimator based on EKF and UKF is applied over the radar system

perturbed by Gaussian distributed thermal noise. However, as described in Chapter

4, and Chapter 5, the practical radar environment is perturbed by non-Gaussian

distributed clutter.

In the future, variants of Kalman filter based estimator capable of dealing with the

effect of non-Gaussian clutter can be explored.
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Appendix A

Derivation of bound on kernel width

(f) learning parameter (d)

The kernel width update equation for KLMS-Modified NC is given by

f: = f:−1 + d4(: − 1)4(:)‖ r(: − 1) − r(:) ‖2
^f:−1 (r(: − 1), r(:))

f3
:−1

(A.1)

If f̃:−1 = f:−1 − f∗, and f̃: = f: − f∗, where f∗ is the optimum kernel width, then

subtracting f∗ from (A.1) yields.

f̃: = f̃:−1 − d4(: − 1)4(:)‖ r(: − 1) − r(:) ‖26(f:−1) (A.2)

where 6(f:−1) =
^f:−1 (r(:−1),r(:))

f3
:−1

Squaring both the sides of (A.2) yields

f̃2
: = f̃

2
:−1 − 2f̃:−1d4(: − 1)4(:)‖ r(: − 1) − r(:) ‖26(f:−1) (A.3)

+d242(: − 1)42(:)‖ r(: − 1) − r(:) ‖2 × 62(f:−1)
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From (A.3), the following relation holds

E[d242(: − 1)42(:)‖ r(: − 1) − r(:) ‖2 × 62(f:−1)] ≤ (A.4)

E[2f̃:−1d4(: − 1)4(:)‖ r(: − 1) − r(:) ‖2 × 6(f:−1)]

Further, from (A.4)

d ≤ 2E[f̃:−16(f:−1)]
E[62(f:−1)]

(A.5)

From the above equation, it can be observed that calculation of the upper bound involves

finding expression for E[f̃:−16(f:−1)] (denoted as I1), and E[62(f:−1)] (denoted as

I2). Therefore, in order to evaluate the upper bound on step-size, we derive analytical

expressions for I1, and I2 in the forthcoming subsections.

Calculation of I1:

In this section, we first calculate the value of I1.

E[f̃:−16(f:−1)] = E[f̃:−16(f∗ + f̃:−1)] (A.6)

Under the assumption of Gaussian distribution for f̃:−1, (A.6) can be evaluated as∫ ∞

−∞

f̃:−1

(f∗ + f̃:−1)3
exp

(
−‖ r(: − 1) − r(:) ‖2

2(f∗ + f̃:−1)2

)
exp

(−f̃2
:−1

2V2

)
3f̃:−1

where, V2 is the variance of f̃:−1. Next we rewrite the above integral equivalently as

follows

∫ ∞

−∞

∫ ∞

−∞

f̃:−1

(f∗ + f̃:−1)3
P̂ (r|r: )P̂ (r|r:−1) exp

(−f̃2
:−1

2V2

)
3f̃:−13r:

Wenote thatP(r|r:−1) = P(r|r: ), and the fact that the Renyi’s-U information potential
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with U = 2 can be expressed as

−�2(r|r: ) = log2(
∫ ∞

−∞
P2(r|r: )3r:

Next, we define a constant 'q = 2−�2 , and re-express the integral as follows:

= 'q

∫ ∞

−∞

∫ ∞

−∞

f̃:−1

(f∗ + f̃:−1)3
exp

(−f̃2
:−1

2V2

)
3f̃:−1 (A.7)

In (A.7), exp
(
−‖r(:−1)−r(:)‖2

2(f∗+f̃:−1)2

)
= 'q denotes Renyi’s information potential. Hence,

(A.7) can be expressed as

= 'q

∫ ∞

−∞

f̃:−1

(f∗ + f̃:−1)3
exp

(−f̃2
:−1

2V2

)
3f̃:−1 (A.8)

Replacing f̃:−1 = f
∗ tan2(\), sin2(\) = k, and solving yields

=
'q

f∗

∫ 1

0
k exp

(
− f

∗2

2V2
k2

(1 − k)2

)
3k (A.9)

Further, (A.9) can be simplified as

=
'q

f∗

∞∑
9=0

(−1) 9
9!

f∗2 9

2V2 9

∫ 1

0

k2 9+1

(1 − k)2 9
3k (A.10)

(A.10) is solved by series expansion and invoking properties of Mellin transform [? ,

eq. (6.2.6)]

5

(f∗2
2V2

)
=
'q

f∗

∞∑
9=0

(−1) 9
9!

f∗2 9

2V2 9 9 (2 9 + 1)c csc(2c 9) (A.11)

By Ramanujan’s master theorem, we can write the Mellin transform of 5 (·) as

" (B) = Γ(B) (−B) (1 − 2B)c csc(−2Bc)
'q

f∗
(A.12)
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By Mellin transform inversion

5

(f∗2
2V2

)
=

�
3,2
2,3

(
0, 12

0, 12 ,1

��� f∗22V2

)
− 2� 3,2

2,3

(
0, 12

1
2 ,1,1

��� f∗22V2

)
2c

'q

f∗

where � <,=
?,@

(
01,...,0?
11,...,1@

��� I) denotes the Meĳer’s G function.

Calculation of I2:

In this section an expression for I2 is derived for E[62(f:−1)] as follows

E[62(f:−1)] = E[62(f∗ + f̃:−1)] (A.13)

Under the assumption of Gaussian distribution for f̃:−1, (A.13) can be evaluated as

= 'q

∫ ∞

−∞

1
(f∗ + f̃:−1)6

exp
(−f̃2

:−1
2V2

)
3f̃:−1 (A.14)

Replacing f̃:−1 = f
∗ tan2(\), sin2(\) = ?, and assuming a Gaussian pdf, (A.14) yields

=
'q

f∗6

∫ 1

0
(1 − ?)4

∞∑
9=0

(−f∗22V2 ) 9

9!

(
?

1 − ?

)2 9
3? (A.15)

or

6

(f∗2
2V2

)
=

'q

2f∗6

∞∑
9=0

1
9!

(
−f∗2

2V2

) 9
Γ(5 − 2 9)Γ(1 + 2 9)

120
(A.16)

By Ramanujan’s master theorem, the Mellin transform can be written as

" (B) = Γ(B)Γ(5 + 2B)Γ(1 − 2B)

Inverting the Mellin transform gives us the following expression for 6
(
f∗2

2V2

)

6

(f∗2
2V2

)
=

'q
7.5c�

3,2
2,3

(
0, 12

0, 52 ,3

��� f∗22V2

)
f∗6
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Also, we note that

H̃: ≈ (1 − `) H̃:−1

=⇒ E[4:4:−1] = E[ H̃: H̃:−1] = (1 − `)E[| H̃:−1 |2]

Further, by Jensen’s inequality,

E[42
:4

2
:−1] = E[(4:4:−1)2] ≥ {E[4:4:−1]}2 = (1 − `)2E[| H̃:−1 |2]2

This gives the following (tighest) bound for d at f=2 << E[| H̃: |2]:

0 < d <
3.75f∗4

[
�

3,2
2,3

(
0, 12

0, 12 ,1

��� f∗22V2

)
− 2� 3,2

2,3

(
0, 12

1
2 ,1,1

��� f∗22V2

)]
�

3,2
2,3

(
0, 12

0, 52 ,3

��� f∗22V2

)
[3(1 − `) + `2f=2]

(A.17)

139





References

[1] M. A. Richards, Fundamentals of Radar Signal Processing. Tata McGraw-Hill

Education, 2005.

[2] T. J. Abatzoglou and G. O. Gheen, “Range, radial velocity, and acceleration MLE

using radar LFM pulse train,” IEEE Trans. Aerosp. and Electron. Sys., vol. 34, no. 4,

pp. 1070–1083, 1998.

[3] Y. X. Zhang, R. J. Hong, P.-P. Pan, Z. M. Deng, and Q. F. Liu, “Frequency domain

range sidelobe correction in stretch processing for wideband LFM radars,” IEEE

Trans. Aerosp. Electron. Syst., vol. 53, no. 1, pp. 111–121, 2017.

[4] M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin, Principles of Modern

Radar. Citeseer, 2010.

[5] S. Sen and A. Nehorai, “Target detection in clutter using adaptive OFDM radar,”

IEEE Trans. Signal Process., vol. 16, no. 7, pp. 592–595, 2009.

[6] N. Prasad, V. Shameem, U. Desai, and S. Merchant, “Improvement in target detec-

tion performance of pulse coded Doppler radar based on multicarrier modulation

with fast Fourier transform,” IET Radar, Sonar Navig., vol. 151, no. 1, pp. 11–17,

2004.

[7] S. H. Dokhanchi, M. R. B. Shankar, T. Stifter, and B. Ottersten, “OFDM-based

automotive joint radar-communication system,” in IEEE Radar Conf., April 2018,

pp. 0902–0907.

141



[8] M. Braun, C. Sturm, and F. K. Jondral, “Maximum likelihood speed and distance

estimation for OFDM radar,” in IEEE Radar Conf., 2010, pp. 256–261.

[9] A. Turlapaty, Y. Jin, and Y. Xu, “Range and velocity estimation of radar targets by

weighted ofdm modulation,” in 2014 IEEE Radar Conference. IEEE, 2014, pp.

1358–1362.

[10] C. Shi, F. Wang, M. Sellathurai, J. Zhou, and S. Salous, “Power minimization-

based robust OFDM radar waveform design for radar and communication systems

in coexistence,” IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1316–1330, 2017.

[11] D. Garmatyuk, P. Giza, N. Condict, and S. Mudaliar, “Randomized OFDM wave-

forms for simultaneous radar operation and asynchronous covert communications,”

in IEEE Radar Conf., April 2018, pp. 0975–0980.

[12] L. Xu, J. Li, and P. Stoica, “Target detection and parameter estimation for MIMO

radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 927–939,

2008.

[13] R. F. Tigrek, W. J. De Heĳ, and P. Van Genderen, “Ofdm signals as the radar

waveform to solve Doppler ambiguity,” IEEE Trans. Aerosp. Electron. Syst., vol. 48,

no. 1, pp. 130–143, 2012.

[14] D. Rife and R. Boorstyn, “Single tone parameter estimation from discrete-time

observations,” IEEE Transactions on information theory, vol. 20, no. 5, pp. 591–

598, 1974.

[15] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square algorithm,”

IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543–554, Jan. 2008.

[16] W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a comprehensive

introduction. John Wiley & Sons, 2011, vol. 57.

[17] R. Mitra and V. Bhatia, “Finite dictionary variants of the diffusion KLMS algo-

rithm,” arXiv:1509.02730, 2015.

142



[18] ——, “Finite dictionary techniques for MSER equalization in RKHS,” Signal,

Image and Video Processing, vol. 11, no. 5, pp. 849–856, 2017.

[19] G. Y. Kulikov and M. V. Kulikova, “The accurate continuous-discrete extended

Kalman filter for radar tracking,” IEEE Trans. Signal Process, vol. 64, no. 4, pp.

948–958, 2015.

[20] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear

systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068.

Int. Soc. Optics Photon., 1997, pp. 182–194.

[21] E. Cortina, D. Otero, and C. E. D’Attellis, “Maneuvering target tracking using

extended Kalman filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 27, no. 1, pp.

155–158, 1991.

[22] A. Farina, B. Ristic, and D. Benvenuti, “Tracking a ballistic target: comparison of

several nonlinear filters,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp.

854–867, 2002.

[23] T. Jian, Y. He, F. Su, C. Qu, and D. Ping, “Cascaded detector for range-spread target

in non-Gaussian clutter,” IEEE Trans. Aerosp. and Electron. Sys., vol. 48, no. 2, pp.

1713–1725, 2012.

[24] G. Trunk and S. George, “Detection of targets in non-Gaussian sea clutter,” IEEE

Trans. Aerosp. and Electron. Sys., no. 5, pp. 620–628, 1970.

[25] F. Gini and M. Greco, “Suboptimum approach to adaptive coherent radar detection

in compound-Gaussian clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 3,

pp. 1095–1104, 1999.

[26] M. Andric, D. Bujakovic, B. Bondzulic, S. Simic, and B. Zrnic, “Analysis of radar

Doppler signature from human data,” Radioengineering, vol. 23, no. 1, pp. 11–19,

2014.

143



[27] Z. Raida, Z. Kolka, R. Marsalek, J. Petrzela, A. Prokes, J. Sebesta, T. Gotthans,

Z. Hrubos, Z. Kincl, L. Klozar et al., “Communication subsystems for emerging

wireless technologies,” Radioengineering, vol. 21, no. 4, pp. 1036–1049, 2012.

[28] S. K. Chronopoulos, C. Votis, V. Raptis, G. Tatsis, and P. Kostarakis, “In depth

analysis of noise effects in orthogonal frequency division multiplexing systems,

utilising a large number of subcarriers,” in AIP Conf. Proceedings, vol. 1203, no. 1,

2010, pp. 967–972.

[29] C.Koliopanos, S.Chronopoulos, A.M.Tzechilidou, andC.T.Angelis, “Simulation,

modeling, and performance analysis of IEEE802.16e OFDMA systems for urban

and rural environments,” in 2nd International Conf. Signals Circuits Syst., 2008,

pp. 1–4.

[30] S. K. Chronopoulos, V. Christofilakis, G. Tatsis, and P. Kostarakis, “Preliminary

BER study of a TC-OFDM system operating under noisy conditions,” Journal of

Eng. Sci. Techno. Rev., vol. 9, no. 4, pp. 13–16, 2016.

[31] G. Lellouch, A. Mishra, and M. Inggs, “Impact of the Doppler modulation on the

range and Doppler processing in OFDM radar,” in IEEE Radar Conf., 2014, pp.

0803–0808.

[32] P. Herselman, C. Baker, and H. De Wind, “An analysis of X-band calibrated sea

clutter and small boat reflectivity at medium-to-low grazing angles,” Int. J. Navig.

Observ., vol. 2008, 2008.

[33] C. R. Ilvedson, “Transfer function estimation using time-frequency analysis,” Ph.D.

dissertation, Massachusetts Institute of Technology, 1998.

[34] N. Petrov, F. Le Chevalier, and A. G. Yarovoy, “Detection of range migrating targets

in compound-Gaussian clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 1,

pp. 37–50, 2018.

[35] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.

Prentice Hall PTR, 1993.

144



[36] G. Lellouch, A. K. Mishra, and M. Inggs, “Orthogonal frequency division multi-

plexing phenomenology: radar technique combining genetic algorithm-based pulse

design and energy detector for target recognition,” IET Radar, Sonar Navig., vol. 10,

no. 5, pp. 912–922, 2016.

[37] F. Gini, “Sub-optimum coherent radar detection in a mixture of K-distributed and

Gaussian clutter,” IET Radar, Sonar Navig., vol. 144, no. 1, pp. 39–48, 1997.

[38] F. Gini and M. Greco, “Covariance matrix estimation for CFAR detection in corre-

lated heavy tailed clutter,” Signal Process., vol. 82, no. 12, pp. 1847–1859, 2002.

[39] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With

Formulas, Graphs, and Mathematical Tables. Courier Corporation, 1964, vol. 55.

[40] P. Herselman andH.DeWind, “Improved covariancematrix estimation in spectrally

inhomogeneous sea clutter with application to adaptive small boat detection.” IEEE

Int. Conf. Radar, 2008.

[41] R. Mitra and V. Bhatia, “Low complexity post-distorter for visible light communi-

cations,” IEEE Commun. Letters, vol. 21, no. 9, pp. 1977–1980, 2017.

[42] B. Chen, S. Zhao, P. Zhu, and J. C. Príncipe, “Quantized kernel least mean square

algorithm,” IEEE Trans. Neural Net. Learn. Syst., vol. 23, no. 1, pp. 22–32, Dec.

2012.

[43] J. Platt, “A resource-allocating network for function interpolation,” MIT Press

Neural comput., vol. 3, no. 2, pp. 213–225, 1991.

[44] B. W. Silverman, Density estimation for statistics and data analysis. CRC press,

Apr. 1986, vol. 26.

[45] B. Chen, J. Liang, N. Zheng, and J. C. Principe, “Kernel least mean square with

adaptive kernel size,” Elsevier Neuro comput., vol. 191, pp. 95–106, May. 2016.

[46] N. Levanon, “Multifrequency complementary phase-coded radar signal,” IEE Proc.

Radar, Sonar and Navig., vol. 147, no. 6, pp. 276–284, Dec. 2000.

145



[47] C. Sturm, E. Pancera, T. Zwick, and W. Wiesbeck, “A novel approach to OFDM

radar processing,” in IEEE Radar Conf., May. 2009, pp. 1–4.

[48] C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar

and communications operations,” in Vehicular Technology Conf., 2009, pp. 1–5.

[49] C. Sturm, T. Zwick, W. Wiesbeck, and M. Braun, “Performance verification of

symbol-based OFDM radar processing,” in IEEE Radar Conf., 2010, pp. 60–63.

[50] G. Lellouch, A. K. Mishra, and M. Inggs, “Design of OFDM radar pulses using ge-

netic algorithm based techniques,” IEEE Trans. Aerosp. and Electron. Sys., vol. 52,

no. 4, pp. 1953–1966, 2016.

[51] ——, “Stepped OFDM radar technique to resolve range and Doppler simultane-

ously,” IEEE Trans. Aerosp. and Electron. Sys., vol. 51, no. 2, pp. 937–950, Apr.

2015.

[52] G. Lellouch and A. K. Mishra, “Optimization of OFDM radar waveforms using

genetic algorithms,” arXiv:1405.4894, 2014.

[53] G. Lellouch, A. Mishra, and M. Inggs, “Convex optimization for optimal PMEPR

and mismatched filter design in OFDM radar,” in Radar Conference, 2015 IEEE.

IEEE, 2015, pp. 37–41.

[54] G. Lellouch and A. K. Mishra, “Multi-carrier based radar signal optimization using

genetic algorithm,” in Springer International Conf. Soft Comput. Problem Solving,

Mar. 2014, pp. 525–534.

[55] P. Bouboulis and S. Theodoridis, “Extension ofWirtinger’s calculus to reproducing

kernel Hilbert spaces and the complex kernel LMS,” IEEE Trans. Signal Process.,

vol. 59, no. 3, pp. 964–978, Dec. 2011.

[56] R. Mitra and V. Bhatia, “The Diffusion-KLMS algorithm,” in Information Technol-

ogy (ICIT), 2014 International Conference on. IEEE, 2014, pp. 256–259.

146



[57] V. Bhatia, B. Mulgrew, and D. D. Falconer, “Non-parametric maximum-likelihood

channel estimator and detector for OFDM in presence of interference,” IET Com-

mun., vol. 1, no. 4, pp. 647–654, Aug. 2007.

[58] S. Theodoridis,Machine learning: a Bayesian and optimization perspective. Aca-

demic Press, Apr. 2015.

[59] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley,

MA, 1993, vol. 3.

[60] R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol

error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE

Photon. J., vol. 8, no. 4, pp. 1–13, Jun. 2016.

[61] S. Zhao, B. Chen, and J. C. Principe, “Kernel adaptive filtering with maximum cor-

rentropy criterion,” in International Joint Conference on Neural Networks (ĲCNN),

2011, pp. 2012–2017.

[62] Y. He, F. Wang, J. Yang, H. Rong, and B. Chen, “Kernel adaptive filtering under

generalized maximum correntropy criterion,” in International Joint Conference on

Neural Networks (ĲCNN), 2016, pp. 1738–1745.

[63] A. Singh and J. C. Principe, “Using correntropy as a cost function in linear adaptive

filters,” in International Joint Conference on Neural Networks (ĲCNN), 2009, pp.

2950–2955.

[64] M. Rangaswamy, D. Weiner, and A. Ozturk, “Computer generation of correlated

non-Gaussian radar clutter,” IEEE Trans. Aerosp. and Electron. Sys., vol. 31, no. 1,

pp. 106–116, 1995.

[65] P. l. Shui, M. Liu, and S. w. Xu, “Shape-parameter-dependent coherent radar target

detection in K-distributed clutter,” IEEE Trans. Aerosp. and Electron. Sys., vol. 52,

no. 1, pp. 451–465, 2016.

147



[66] M. Sahed, A. Mezache, and T. Laroussi, “A novel [z log (z)]-based closed form

approach to parameter estimation of K-distributed clutter plus noise for radar de-

tection,” IEEE Trans. Aerosp. and Electron. Sys., vol. 51, no. 1, pp. 492–505,

2015.

[67] L. Shi and Y. Lin, “Convex combination of adaptive filters under the maximum

correntropy criterion in impulsive interference,” IEEE Signal Process. Lett., vol. 21,

no. 11, pp. 1385–1388, 2014.

[68] R. He, W.-S. Zheng, and B.-G. Hu, “Maximum correntropy criterion for robust face

recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 33, no. 8, pp. 1561–1576, 2011.

[69] B. Chen, Y. Zhu, J. Hu, and J. C. Principe, System parameter identification: infor-

mation criteria and algorithms. Newnes, 2013.

[70] B. Hou, Z. He, X. Zhou, H. Zhou, D. Li, and J. Wang, “Maximum correntropy

criterionKalmanfilter forU-jerk trackingmodelwith non-Gaussian noise,”Entropy,

vol. 19, no. 12, p. 648, 2017.

[71] F. Jin and T. Qiu, “Adaptive time delay estimation based on the maximum corren-

tropy criterion,” Digital Signal Processing, vol. 88, pp. 23–32, 2019.

[72] B. Chen, S. Zhao, S. Seth, and J. C. Principe, “Online efficient learning with

quantized KLMS and L1 regularization,” in International Joint Conference on

Neural Networks (ĲCNN), 2012, pp. 1–6.

[73] S. Sen and A. Nehorai, “Adaptive OFDM radar for target detection in multipath

scenarios,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 78–90, Feb. 2011.

[74] ——, “Adaptive design of OFDM radar signal with improved wideband ambiguity

function,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 928–933, Feb. 2010.

[75] S. Sen, “Adaptive OFDM radar waveform design for improved micro-Doppler

estimation,” IEEE Sensors J., vol. 14, no. 10, pp. 3548–3556, 2014.

148



[76] A. Jung, S. Schmutzhard, and F. Hlawatsch, “The RKHS approach to minimum

variance estimation revisited: Variance bounds, sufficient statistics, and exponential

families,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4050–4065, 2014.

[77] A. Jung, S. Schmutzhard, F. Hlawatsch, Z. Ben-Haim, and Y. C. Eldar, “Minimum

variance estimation of a sparse vector within the linear Gaussian model: An RKHS

approach,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6555–6575, 2014.

[78] B. Chen, L. Xing, J. Liang, N. Zheng, and J. C. Principe, “Steady-state mean-square

error analysis for adaptive filtering under themaximumcorrentropy criterion,” IEEE

Signal Process. Lett., vol. 21, no. 7, pp. 880–884, 2014.

[79] B. Friedlander, “On the relationship between MIMO and SIMO radars,” IEEE

Trans. on Signal Process., vol. 57, no. 1, pp. 394–398, 2008.

[80] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela,

“MIMO radar: An idea whose time has come,” in Proceedings of the IEEE radar

conf., vol. 2004. Newark, NJ, USA, 2004, pp. 71–78.

[81] M. L. Bencheikh and Y. Wang, “Joint DOD-DOA estimation using combined

ESPRIT-MUSIC approach in MIMO radar,” Electronics Letters, vol. 46, no. 15,

pp. 1081–1083, 2010.

[82] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Process.

Mag., vol. 24, no. 5, pp. 106–114, 2007.

[83] D. R. Fuhrmann and G. San Antonio, “Transmit beamforming for mimo radar

systems using signal cross-correlation,” IEEETrans. Aerosp. Electron. Syst., vol. 44,

no. 1, pp. 171–186, 2008.

[84] P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE

Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, 2007.

[85] A. Hassanien, S. A. Vorobyov, and A. B. Gershman, “Moving target parameters

149



estimation in noncoherent MIMO radar systems,” IEEE Trans. Signal Process.,

vol. 60, no. 5, pp. 2354–2361, 2012.

[86] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO

radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883,

2006.

[87] B. Tang, J. Tang, Y. Zhang, and Z. Zheng, “Maximum likelihood estimation of DOD

and DOA for bistatic MIMO radar,” Signal Process., vol. 93, no. 5, pp. 1349–1357,

2013.

[88] X. Zhang, M. N. El Korso, and M. Pesavento, “Maximum likelihood and maximum

a posteriori direction-of-arrival estimation in the presence of SIRP noise,” in Int.

Conf. Acoust, Speech, Signal Process. (ICASSP). IEEE, 2016, pp. 3081–3085.

[89] ——, “MIMO radar target localization and performance evaluation under SIRP

clutter,” Signal Process., vol. 130, pp. 217–232, 2017.

[90] B. Meriaux, X. Zhang, M. N. El Korso, and M. Pesavento, “Iterative marginal

maximum likelihood DOD and DOA estimation for MIMO radar in the presence of

SIRP clutter,” Signal Process., vol. 155, pp. 384–390, 2019.

[91] O. Besson, Y. Abramovich, and B. Johnson, “Direction-of-arrival estimation in a

mixture of k-distributed and gaussian noise,” Signal Process., vol. 128, pp. 512–520,

2016.

[92] R. Mitra and V. Bhatia, “Diffusion-KLMS algorithm and its performance analysis

for non-linear distributed networks,” arXiv preprint arXiv:1509.01352, 2015.

[93] F.Gini, “A radar application of amodifiedCramer-Rao bound: parameter estimation

in non-Gaussian clutter,” IEEE Trans. Signal Process., vol. 46, no. 7, pp. 1945–

1953, 1998.

[94] A.M.Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radarwithwidely separated

antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2007.

150



[95] B. Chen, Z. Yuan, N. Zheng, and J. C. Príncipe, “Kernel minimum error entropy

algorithm,” Neurocomputing, vol. 121, pp. 160–169, 2013.

[96] T. Ogunfunmi and C. Safarian, “A quaternion kernel minimum error entropy adap-

tive filter,” in Int. Conf. Acoustics, Speech and Signal Process. IEEE, 2018, pp.

4149–4153.

[97] V. A. Epanechnikov, “Non-parametric estimation of a multivariate probability den-

sity,” Theory of probability & its applications, vol. 14, no. 1, pp. 153–158, 1969.

[98] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to

Tracking and Navigation: Theory Algorithms and Software. John Wiley & Sons,

2004.

[99] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for the nonlinear

transformation of means and covariances in filters and estimators,” IEEE Trans.

Autom. Control, vol. 45, no. 3, pp. 477–482, 2000.

[100] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”

Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[101] T. Gu, G. Liao, Y. Li, Y. Quan, Y. Guo, and Y. Huang, “An impoved parameter

estimation of lfm signal based on MCKF,” in IEEE Int. Geoscience and Remote

Sensing Sympo. IEEE, 2019, pp. 596–599.

[102] N. Levanon and E. Mozeson, Radar Signals. John Wiley & Sons, 2004.

[103] B. D. Anderson and J. B. Moore, Optimal Filtering. Courier Corporation, 2012.

[104] R. G. Brown, P. Y. Hwang et al., Introduction to Random Signals and Applied

Kalman Filtering. Wiley New York, 1992, vol. 3.

[105] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal

Process., vol. 50, no. 2, pp. 174–188, 2002.

151



[106] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans. Autom.

Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[107] A. K. Singh, R. Radhakrishnan, S. Bhaumik, and P. Date, “Adaptive sparse-grid

Gauss–hermite filter,” J. Comput. Applied Mathematics, vol. 342, pp. 305–316,

2018.

[108] M. Athans, R. Wishner, and A. Bertolini, “Suboptimal state estimation for

continuous-time nonlinear systems fromdiscrete noisymeasurements,” IEEETrans.

Autom. Control, vol. 13, no. 5, pp. 504–514, 1968.

[109] S. K. Rao, “Modified gain extended Kalman filter with application to bearings-only

passive manoeuvring target tracking,” IEE Radar, Sonar Navig., vol. 152, no. 4, pp.

239–244, 2005.

[110] T. Song and J. Speyer, “A stochastic analysis of a modified gain extended Kalman

filter with applications to estimation with bearings only measurements,” IEEE

Trans. Autom. Control, vol. 30, no. 10, pp. 940–949, 1985.

[111] R. Zhan and J. Wan, “Iterated unscented Kalman filter for passive target tracking,”

IEEE Aerosp. Electron. Syst. Mag., vol. 43, no. 3, pp. 1155–1163, 2007.

[112] Z. Jiang, Q. Song, Y. He, and J. Han, “A novel adaptive unscented Kalman filter

for nonlinear estimation,” in 46th Conf. Decision Control. IEEE, 2007, pp. 4293–

4298.

[113] L. Chang, B. Hu, A. Li, and F. Qin, “Transformed unscented Kalman filter,” IEEE

Trans. Autom. Control, vol. 58, no. 1, pp. 252–257, 2013.

[114] M. P. Masarik and N. S. Subotic, “Cramer-Rao lower bounds for radar parameter

estimation in noise plus structured interference,” in IEEERadarConference. IEEE,

2016, pp. 1–4.

[115] P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posterior Cramer-Rao bounds for

152



discrete-time nonlinear filtering,” IEEE Trans. Signal Process, vol. 46, no. 5, pp.

1386–1396, 1998.

153



List of publications

Journals:

1. U. K. Singh, V. Bhatia, and A.K. Mishra, “Small Boat Detection Using OFDM

Radar”, Radioengineering, vol. 28, no. 4, pp. 765-775, 2019. https://www.

radioeng.cz/fulltexts/2019/19_04_0765_0775.pdf

2. U. K. Singh, R. Mitra, V. Bhatia, and A. K. Mishra, “Kernel LMS-Based Estimation

Techniques for Radar Systems”, IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 5,

pp. 2501-2515, 2019. https://ieeexplore.ieee.org/abstract/document/

8603824/

3. U. K. Singh, R. Mitra, V. Bhatia and A. K. Mishra, “Range and Velocity Estimation

Using Kernel Maximum Correntropy Based Nonlinear Estimators in Non-Gaussian

Clutter”, IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 1992-2004, 2020.

https://ieeexplore.ieee.org/abstract/document/8880529.

4. U. K. Singh, R.Mitra, V. Bhatia, andA. K.Mishra, “KernelMinimumError Entropy

based Estimator for MIMO Radar in Non-Gaussian Clutter” (Submitted).

5. U. K. Singh, A. K. Singh, V. Bhatia, and A. K. Mishra, “EKF and UKF based

Estimators for Radar System” (Submitted).

Conferences:

1. U. K. Singh, V. Bhatia, and A. K.Mishra, “Multiple Target Detection and Estimation

of Range and Doppler for OFDM-RADAR System”, In International Conference

on Signal Processing and Integrated Networks IEEE, pp. 27-32, 2017. https:

//ieeexplore.ieee.org/abstract/document/8049910

2. U. K. Singh, R. Mitra, V. Bhatia, and A. K. Mishra, “Target Range Estima-

tion in OFDM Radar System via Kernel Least Mean Square Technique”, IET

https://www.radioeng.cz/fulltexts/2019/19_04_0765_0775.pdf
https://www.radioeng.cz/fulltexts/2019/19_04_0765_0775.pdf
https://ieeexplore.ieee.org/abstract/document/8603824/
https://ieeexplore.ieee.org/abstract/document/8603824/
https://ieeexplore.ieee.org/abstract/document/8880529
https://ieeexplore.ieee.org/abstract/document/8049910
https://ieeexplore.ieee.org/abstract/document/8049910


Digital Library, 2017. https://digital-library.theiet.org/content/

conferences/10.1049/cp.2017.0409

3. U. K. Singh, V. Bhatia, and A. K. Mishra, “Delay and Doppler shift Estimation for

Non-Constant Envelope Modulation in OFDM radar system”, IET Digital Library,

2017. https://digital-library.theiet.org/content/conferences/10.

1049/cp.2017.0410

4. U. K. Singh, R. Mitra, V. Bhatia, and A. K. Mishra, “Low-Complexity Complex

KLMS based Non-linear Estimators for OFDM Radar System”, In International

Conference on Advanced Networks and Telecommunications Systems IEEE, pp. 1-

6, 2018. https://ieeexplore.ieee.org/abstract/document/8710142

5. U. K. Singh, R. Mitra, V. Bhatia and A. K. Mishra, “Vector-Valued KLMS based

Multiple Target Range and Velocity Estimation using IEEE 802.11p Waveform

for Autonomous Vehicle”, International Conference on Advanced Networks and

Telecommunications Systems IEEE, pp. 1-6, 2019. https://ieeexplore.ieee.

org/abstract/document/9118030

6. A. Ramesh, U. K. Singh, R.Mitra, V. Bhatia andA.K.Mishra, “FixedBudget Kernel

LMS based Estimator using Random Fourier Features”, IEEE Radar Conference,

pp. 1-6, 2020. https://ieeexplore-ieee-org.proxy.bnl.lu/document/

9266618

155

https://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0409
https://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0409
https://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0410
https://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0410
https://ieeexplore.ieee.org/abstract/document/8710142
https://ieeexplore.ieee.org/abstract/document/9118030
https://ieeexplore.ieee.org/abstract/document/9118030
https://ieeexplore-ieee-org.proxy.bnl.lu/document/9266618
https://ieeexplore-ieee-org.proxy.bnl.lu/document/9266618

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS, NOTATIONS AND OPERATIONS
	Introduction
	Motivation
	Radar Systems
	Single Antenna Radar Systems
	Multiple Input Multiple Output Radar System

	Introduction to Kernel Adaptive Filter based Estimation Techniques for Radar Systems
	Introduction to Kalman Filter based Estimation Techniques for Radar Systems
	Non-Gaussian K-Distributed Clutter
	Thesis Outline and Contributions

	 Target Detection in Sea Clutter using OFDM Radar
	Estimation of Radar Return
	Estimation of Radar Impulse Response
	Estimation of Radar Response for OFDM Pulsed Waveform
	System Model

	Target Detection Test
	Modified Target Detection Test
	Theoretical Analysis of Proposed Detector

	Simulation Results and Discussion
	Estimation of Radar Return Data
	Detector Performance for Estimated OFDM Radar Return
	Detector Performance for Simulated OFDM Radar Return
	Detector Performance under Gaussian Approximation for Sea Clutter

	Summary

	 Range and Velocity Estimation in Gaussian noise
	System Model
	LFM Radar System Model
	 OFDM Radar System Model

	KLMS-based Estimation of Delay and Doppler shift
	Estimator based on KLMS
	Estimator based on KLMS-NC
	Estimator based on KLMS-Modified NC

	CRLB for Delay and Doppler shift in RKHS
	CRLB for Delay
	CRLB for Doppler shift

	Simulation Results and Discussion
	Estimation of Delay for LFM and OFDM Radar
	Estimation of Doppler Shift for LFM and OFDM Radar
	Performance Comparison of KLMS based Estimators with Fourier transform Method

	Summary

	 Range and Velocity Estimation in non-Gaussian Clutter
	System Model
	Radar return for LFM radar
	Radar return for SF radar

	KMC based Estimators
	Estimator based on KMC-NC
	Estimator based on KMC-Modified NC

	CRLB for Delay and Doppler shift in RKHS
	LFM Radar System
	SF Radar System
	Analytical Expressions for the Variance in Estimation and Upper-Bound on Estimators’ Dictionary-Size

	Simulation Results and Discussion
	Estimation of Delay with KMC-NC and KMC-Modified NC based Estimator
	Estimation of Doppler shift with KMC-NC and KMC-Modified NC based Estimator
	Comparison of Estimators based on KMC and KLMS

	Summary

	Estimator for MIMO Radar
	MIMO Radar Signal Model in Non-Gaussian Clutter
	Estimator Based on KMEE-NC
	Modified Cramer-Rao Lower Bound for DOD, DOA, and Doppler shift in the presence of Non-Gaussian Clutter
	For DOD estimation
	For DOA estimation
	For Doppler shift estimation

	Analytical Expression for Overall Variance of Estimator based on KMEE
	Simulation Results and Discussion
	Estimation of DOD and DOA
	Estimation of Doppler shift
	Comparative Performance of Estimators

	Summary

	Range and velocity estimation using EKF and UKF based Estimators
	Signal Model Formulation
	EKF and UKF based Estimation of delay and Doppler shift
	State Space Model for LFM Radar System
	Bayesian Framework for Filtering
	EKF based Estimation of delay and Doppler shift
	UKF based Estimation of delay and Doppler shift

	Simulation Results and Discussion
	Estimation of delay and Doppler shift
	Analysis with Varying SNR

	Summary

	Conclusion, Limitations and Future Work
	Conclusion
	Limitations and Future work

	Appendix Derivation of bound on kernel width () learning parameter ()
	LIST OF PUBLICATIONS

