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ABSTRACT

KEYWORDS: Matrix pencil, matrix polynomial, two-parameter matrix system, back-
ward error, semisimple eigenvalue, sparsity, Hankel matrix, symmetric-
Toeplitz matrix, perturbation theory, generalized inverse eigenvalue

problem, quadratic inverse eigenvalue problem, Frobenius norm.

This thesis deals with the structured and unstructured backward errors, and pertur-
bation analysis of one or more specified eigenpairs for matrix pencils, matrix polynomials
and two-parameter matrix systems. For a given set of specified eigenpairs, we develop a
general framework on backward error analysis in such a way that various types of inverse
eigenvalue problems, viz., matrix inverse eigenvalue problems, generalized inverse eigen-
value problems, and polynomial inverse eigenvalue problems are solved using our obtained

backward error results.

We raise the following two questions throughout the thesis with respect to matrix
pencils, matrix polynomials, and two-parameter matrix systems. The first question is,
what is the cumulative backward error of one or more approximate eigenpairs ? And
the second question is, what is the nearest matrix pencil for which given approximate

eigenpairs become the exact eigenpairs 7

To answer the above-raised questions, first, we develop a general framework of the
structured and unstructured backward error analysis of two specified eigenpairs of a
double-semisimple eigenvalue for matrix pencils. We establish relationships between the
unstructured backward error of a single eigenpair, structured backward error of two eigen-
pairs of a double semisimple eigenvalue, and the structured backward error of a single
eigenpair. Next, we move towards the answers of the above-raised questions in a more
general sense, i.e., the number of specified eigenpairs can be more than two and eigenval-

ues can be distinct. We further use the developed backward error results for solving the



different inverse eigenvalue problems; for example, we solve real symmetric quadratic in-
verse eigenvalue problem and the symmetric generalized inverse eigenvalue problem with

submatrix constraints.

After then, we discuss the backward error analysis of symmetric-Toeplitz and Hankel
matrix pencils. These two structured matrix pencils are particular types of a symmetric
matrix pencil. We present the backward error analysis of these matrix pencils in such a
way that the solutions of the symmetric-Toeplitz inverse eigenvalue problem and Hankel

inverse eigenvalue problem are a consequence of it.

Next, we discuss the backward error analysis for structured and unstructured ma-
trix polynomials and answer the above-raised questions. An n-by-n matrix polynomial
of degree [ have [n eigenvalues (finite or infinite) and the corresponding In eigenvec-
tors. Hence for each structured matrix polynomial, we provide the upper bound on the
maximum number of approximate eigenpairs whose backward error analysis can be done
simultaneously. This challenge has not arisen during the backward error analysis of a
single eigenpair. Further, we use the developed backward error results in solving different
kinds of quadratic inverse eigenvalue problems. In particular, we solve symmetric and

palindromic quadratic inverse eigenvalue problems.

Finally, the backward error analysis has been developed for two-parameter matrix
systems. We classify the two-parameter matrix systems based on the normal rank def-
inition. For two-parameter matrix systems, we obtain the structured and unstructured
backward error results of two approximate eigenpairs provided eigenvalue is semisimple.
Throughout the thesis, we answer the above-raised questions with respect to Frobenius

norm.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Matrix pencils and matrix polynomials are well-known terms in the field of numerical
linear algebra. They arise in numerous applications in engineering, mechanics, control
theory, linear systems theory, computer-aided graphic design, and vibration analysis, see
1, 17, 37, 38, 43, 44, 47, 51, 67, 70, 83, 84|. Eigenvalue problems of matrix pencils
are known as generalized eigenvalue problems, and eigenvalue problems of matrix poly-
nomials are known as polynomial eigenvalue problems. A two-parameter matrix system
is another well discussed and most widely used form of the multi-parameter matrix sys-
tem. It arises in different types of applications [11, 12, 40, 41]. In particular, it arises
in mathematical physics when the separation of variables is used to solve the boundary
value problems [73], in model updating [22], in three-point boundary value problems [39],
and in the quadratic two-parameter eigenvalue problem [55]. The eigenvalue problem of
two-parameter matrix systems is known as two-parameter eigenvalue problems. Finding
solutions to a linear system of equations, finding the eigenvalues and eigenvectors of ma-
trices, matrix pencils, matrix polynomials, and two-parameter matrix systems are always
very challenging tasks from a long back. Different authors have developed many numerical
algorithms to obtain the desired solutions. But due to the roundoff errors and truncation
errors of the available iterative methods, one can get only approximate solutions. Due
to the approximate nature of the obtained solutions, some major questions come into
the picture: are these computed solutions reliable to use ? Numerical algorithms that
we are using to get these solutions are stable or not? For which problem the obtained
approximate solution is exact 7 Answers of these questions are very much of importance
as ignorance of these answers may lead to insignificant results to our original problems.

For answering these questions, a term backward error is developed in numerical linear



algebra. The backward error of a computed solution tells us how far a solution stands
from the original problem. In other words, for a given problem and its given approximate
solution, backward error tells the minimum perturbation (in some appropriate norm) to
the problem for which the given approximate solution becomes exact. The term back-
ward error is used by different authors in different aspects. Backward error analysis is
one of the important and continuously developing areas in numerical linear algebra. If
we recall the history of backward error analysis, we find that Wilkinson was the first to
use the term backward error analysis [76, 77]. Wilkinson has developed the backward
error bounds for the computed triangular factorization of a matrix and further discusses
the backward error analysis of an approximate solution of the linear system using this
factorization. Boor and Pinkus [16] have studied the backward error analysis for totally
positive linear systems (see, [26, 58] and the references therein). Higham and Higham
[35] have discussed the backward error analysis of an approximate solution to a linear
system for structured as well as unstructured matrices. If we move further, we found
that different authors have developed the backward error analysis of eigenvalues. For
example, Malyshev [53] has discussed the minimal perturbation of a given n-by-n matrix
to the nearest matrices that have A € C as a multiple eigenvalue with respect to 2-norm,
see [31, 43, 44, 48, 49, 57| for information on the backward error analysis of one or
more eigenvalues. Similar to backward error analysis of eigenvalues, different authors have
developed the backward error analysis for a single eigenpair. For the matrix case, Dief
[24] has discussed the backward error analysis for a single approximate eigenpair. In the
series of developments of the backward error of a single eigenpair, the authors in [1] have
developed the backward error analysis of a single approximate eigenpair for various struc-
tured matrix pencils. They have also provided a comparison between unstructured and
structured backward errors. Many other authors have also contributed to the develop-
ment of the backward error analysis of a single eigenpair for structured and unstructured
matrix pencils and matrix polynomials, see [1, 2, 8, 9, 47, 50, 70]. Moving further,
we find that the theory of backward error analysis of a single eigenpair for structured
and unstructured multi-parameter matrix systems is also well studied in the literature,
see [27, 42, 50]. At this point, a natural question is arising: What is the backward
error of more than one approximate eigenpairs for structured and unstructured matrix
pencils, matrix polynomials, and two-parameter matrix systems? Some work has been
done in the field of backward error analysis of one or more approximate eigenpairs. For

example, Tisseur [71] has obtained the backward error formulas of one or more eigenpairs



for structured matrices, and for unstructured non-square matrix pencils, Chu and Golub
[18] have studied the backward error analysis for one or more eigenpairs. Still, these
works are not enough to answer the above-raised question. Hence finding the answer to

the above-raised question in every possible aspect is one of the main aims of the thesis.

The inverse eigenvalue problem is another major discussed topic in numerical linear
algebra. The term inverse eigenvalue problem refers to reconstructing the required matrix
or matrix pencil or matrix polynomial from the given eigeninformation, see [21]. In this
thesis, we are interested in solving the inverse eigenvalue problems from the given set of
eigenpairs. For example, let us consider the following inverse eigenvalue problem: The

second main aim of the thesis is to solve the different kinds of inverse eigenvalue problems.

e Let (N, ;) for i = 1 : k be specified eigenpairs, where \; € R and z; € C".

Construct a matrix G € C™" such that G = G from the given set of eigenpairs.

In the above inverse eigenvalue problem, we need to construct the required structured
matrix from the given eigenpairs set. This is called the matrix inverse eigenvalue problem
(MIEP). Similarly one can solve different kind of MIEP for different structured matrices.
See, [21].

Next, we discuss the generalized inverse eigenvalue problems. A generalized inverse
eigenvalue problem is to reconstruct the required matrix pencil from the given set of

eigenpairs. For example, consider the following inverse eigenvalue problem from [84].

e From a given set of eigenpairs (\;, z;) for i = 1 : p, construct the real symmetric
matrices Ag, A1 € C"" with the (2r+1) diagonal, where \; € C,z; € C", and
p<n,r<n.

Next, consider a quadratic matrix polynomial which is defined as follows:
P(\) = Ay + AA; + N2 A,.

Matrices A, A1, and A, can have different structures. For example P()) is called a monic
gyroscopic quadratic matrix polynomial if Ay = I,,, A; is a skew-symmetric matrix, and
Ay is symmetric matrix. The inverse quadratic eigenvalue problem (IQEP) is to construct
matrices Ay, A; and Ay from the measured eigenpairs. Some IQEP are summarized as

follows:



1. From a given set of eigenpairs (\;, z;) for i = 1 : n + 1, construct real symmetric
matrices A; and Ag such that (Ag+ Ay +M21,)z; = 0, where \; € C, and z; € C",
see [85].

2. From a given set of eigenpairs (\;,z;) for i = 1 : k, construct a T-palindromic
matrix polynomial, i.e., construct As, A; and Ay such that A, = AL, and A; = AT
such that (Ag+ \A; + A2 As)x; = 0, where \; € C, and z; € C", and k < 3”2—“, see
[88].

3. From a given set of eigenpairs (\;, z;) for i = 1 : k, construct Hermitian matrices
Ay, Ay and A such that (Ag + N\A; + M Ag)z; = 0, where \; € C, and z; € C",
and k < n.

We establish the backward error theory of one or more specified eigenpairs in such a way
that the solutions of different kind of inverse eigenvalue problems can be obtained from

the developed backward error theory.

For simplicity of presentation, first we obtain the results for matrix pencils, then for
matrix polynomials and finally for two-parameter matrix systems. The first chapter is in-
troductory in nature and provides the history of backward error analysis, basic definitions,
background ideas and pre-requisites for the remaining chapters. Chapter 2 dedicates for
the backward error analysis of two approximate eigenpairs of a semisimple eigenvalue for
structured and unstructured matrix pencils. This chapter also deals with the relation-
ships of the backward error of a single approximate eigenpair and the backward error
of two approximate eigenpairs. Chapter 3 discusses the backward error analysis of one
or more approximate eigenpairs for several structured matrix pencils. In this chapter
we also solve the quadratic symmetric inverse eigenvalue problem by linearizing it into a
large matrix pencil and applying the backward error results. Further, we also solve the
symmetric inverse eigenvalue problem with submatrix constraints. Chapter 4 provides
the backward error analysis of approximate eigenpairs for the special class of symmetric
matrix pencils, i.e., symmetric-Toeplitz and Hankel matrix pencils. This chapter also
deals with the inverse eigenvalue problem for matrices as well as the generalized inverse
eigenvalue problems. In Chapter 5, we generalize the backward error results from matrix
pencils to matrix polynomials. We show that different kind of structured quadratic in-
verse eigenvalue problems are also solvable from our developed backward error results. In
Chapter 6, we classify the two-parameter matrix systems on the basis of normal rank def-

inition. Further, we obtain the backward error formulas for structured and unstructured

4



two-parameter matrix systems. Finally, Chapter 7 concludes with important remarks and

some open problems.

1.2. Preliminaries

This section deals with some basic definitions and results which will be used through-
out the thesis. Throughout this thesis, C"™*™ denotes the vector space of m-by-n matrices
with entries from C, and C" denotes the vector space of column vectors [z, T, ..., 2,

I

where z; € C. We denote the n x n identity matrix by I,,.

Kernel and range of a matrix: Let B € C"*". Then the kernel of B is defined by
ker(B) := {z € C" : Bz = 0}. We denote the dimension of kernel of B by dim ker(B).
Kernel is also known as Null space and dim ker(B) is also known as nullity(B). The range
space of B is defined by range(B) := {Bz : * € C"}. The dimension of range of B is
called the rank of B and it is denoted by rank(B).

Spectrum of a matrix. Let B € C"*". Let A € C is said to be an eigenvalue of B if
det(B — AI,,) = 0. The set of all eigenvalue is said to be spectrum of B and it is denoted
by A(B).

Let A € A(B). Then algebraic multiplicity of A is defined as its multiplicity as a zero
of the characteristic polynomial det(B — AI,). Geometric multiplicity of A is defined as
the dimension of the ker(B — Al,,). An eigenvalue is said to be semisimple if its algebraic
multiplicity is equal to its geometric multiplicity. When both the multiplicities are equal

to one then the eigenvalue is said to be simple.

Inner product: Let V be a vector space over a field F. Then define (.,.): VxV = F

is said to be a inner product if the following conditions hold:

v,v) forallv e V.
v,v) =0 if and only if v = 0.

Q
4
£
I
2
4
£
N
]
=3
o
M
=
&
=
o
<
g
m
<

A

{
{
(v+u,w)y = (v,w)+ (u,w) for all u,v,w € V.
{
{

Note that (v, w) = wfv defines the inner product on C".
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Norm: We recall the definition of norm and its basic properties. Next we define the

norm for the space of two-parameter.

Definition 1.2.1. For a given vector space V over a field F, a function |.|| : V(F) — R

1s said to be norm if it satisfies the following conditions:

o |[v]| >0 forvelV.

e | =0 <= v=0.

o |lav|| = |a|||lv|| forv eV and o €F.
o v+ ul| <|v|| + ||ul| forv,ueV.

Clearly, For z € C", ||z||2 = />, |2i|? is a norm on C". It is called 2-norm on C™.

For x = [x1,...,2,] € C" and w := [wy, ..., w,| € R" we define

[llw =

||| is called the norm if only of each component of w is a positive real number. Oth-
erwise, |||, is called the seminorm. Similarly, for A € C"™*"  ||A||r = /tr(A# A) and
| All2 = maxz,=1(||Az||2) define the Frobenius norm and spectral norm on C™*", respec-

tively.

Unitary matrix: A matrix U € C™" is said to be unitary if U7U = I, = UU".

The Frobenius and spectral norms satisfy the following properties:

e ||Uz|| = ||U|| for any unitary matrix U and z € C".
o |[UAUH|| = ||A] for any unitary matrix U and A € C™*™.

Kronecker and Hadamard product: Next, we will discuss the definitions and

basic properties of kronecker and Hadamard product.

Definition 1.2.2. [12] Let A = (a;j) € C™*" and B = (b;;) € CP*9. Then the kronecker
product (tensor product) of A and B is defined by

CLllB . alnB
A@B=| : .| e

amB ... am.B



2 3

2 10 11
Example 1.2.3. Let A= |4 5| and B = . Then
12 20 30
7 8
(4 20 22 6 30 33
24 40 60 36 60 90
8 40 44 10 50 55
AR B =

48 80 120 60 100 150
14 70 77 16 160 240
(84 140 210 96 160 240

Some properties of kronecker product are as follows:

e For all Aand B, (A® B)T = AT @ BT and (A® B)f = A" @ BH.
e Let Ac C™ B e C™,C e C"™ and D € C5*%. Then

(A® B)(C ® D) = (AC ® BD) € C™**1,

Definition 1.2.4. [12] Let A = (a;;) € C™*" and B = (b;;) € C™*". Then the Hadamard
product of A and B is defined by

AoB = [aijbij].
-3 =2 i 3
Example 1.2.5. Let A = and B = . Then
7 8—1 3 -8 9 10
2i -6  —6i
AoB = .
—56 72—-91 30

Some properties of Hadamard product are as follows:

Suppose A, B,C' € C™*" and ¢ € C

e Forall A, BeC"™" AoB=DBoA.
e Forall A,B,C € C™" Ao (B+(C)=AoB+ AoC(.
e Forall A,B,C e C™*" and y € C, Ao (yB) =~(Ao B).

Pseudoinverse: A pseudoinverse AT € C"™™ of a matrix A € C"™*" is satisfied the

following four properties, known as the Moore-Penrose conditions:

7



o AATA = A,

o ATAAY = AT,

o (AAT)T = (AAY).
o (ATA)H = (ATA).

Theorem 1.2.6. [75, Theorem 4.3.7] Let A € C™*™ and b € C™, and let x € C" be the

minimum-norm solution of ||b — Ax||s = mingecm ||b — Awlla. Then x = Atb, where AT

1s the pseudo inverse of A.

Remark 1.2.7. A" exists for every matriz A, but, when A has full column rank then
AT A is invertible and

AT = (AF A1 AT
On the other hand, if A has full row rank then AA™ is invertible and

AT = AT (AATY,

Singular value decomposition [75]: Let A € C"*™ be a nonzero matrix with rank
r. Then A can be expressed as a product
(1.1) A=UxVH

where U € C™*™ and V € C™ ™ are orthonormal matrices, and ¥ = diag([o4,...,0,,0,...,0]T)
€ C™™ is a diagonal matrix, where o1 > 09 > ... > ¢, > 0. The decomposition (1.1) is

called the singular value decomposition of A. We usually use the abbreviation SVD.
Remark 1.2.8. Let A € C"™™ be a nonzero matrix with rank r. Then using SVD, we get
AT =VSTUH | where ¥+ = diag([1/0y,...,1/0,,0,...,0]T) € C™*™.

Orthonormal vectors and Gram-Schmidt process:

Definition 1.2.9. [75] Let uy, us € C" be called orthonormal if uus = 0, and uflu; =1

fori=1:2.

Definition 1.2.10. [75] Let S = {uy,us, ..., ux} be the set of linearly independent vectors

then S is said to be orthonormal set if ulfu; =0 for i # j, and uf'u; =1 fori=1:k.

Gram-Schmidt: Let S = {uy, us, ..., ux} be the set of linearly independent vectors,
where u; € C", and k < n. Define

V1 = Uy,



Vg = U — <’U1,U1>Ul’
<U3,U1> <U3,112>
U3 = U3 — —
N R G
k—1
<ukavi>

Vi = Uk — E

=1

<Ui7 Ui> "

The Gram-Schmidt process is an algorithm that produces a orthonormal set of vectors

{q17q27"'7q/€}a where QZ:”z_Z” ori=1:k.

Structured matrices:
Definition 1.2.11. A matriz B € R™" is called a symmetric matriz if B = BT,
Definition 1.2.12. A matriz B € R™" is called a skew-symmetric matriz if B = —BT.
Definition 1.2.13. A matriz B € C™*" is called a complex-symmetric matriz if B = BT.

Definition 1.2.14. A matrix B € C™*" is called a complex-skew-symmetric matriz if

B=-BT.
Definition 1.2.15. A matriz B € C™" is called a Hermitian matriz if B = B,
Definition 1.2.16. A matriz B € C™" is called a skew-Hermitian matriz if B = —BY.

Definition 1.2.17. A matrix A € C"" is said to be Hankel matriz if for any vector

[a11, .-y Qiny Qons - - -5 G| € C*7L the matriz A is of the following form.:
ai a2 A1(n-1) Q1n
ai2 ais Q1n Q2n
A=
a1(n—2) A (n—2)n
a1(n—1) A(pn—2)n Gn-1)n
| Qin A(n—2)n QA(n—1)n Qnn |

For Hankel matriz A, we define the generator vector of A in the following form:

vec(A, Hank) = [a11, ..., a1, G2y, - - - ,am]T

The Hankel matriz is a particular type of the complex-symmetric matriz.
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Definition 1.2.18. A matriz A € C™*" is said to be symmetric-Toeplitz matriz if for any

vector [ay, as, . .., a,]T € C", the matriz A is of the following form:
aq a9 N 4 o | (07%
a2 aq . An—1
A=
n-1 BEER az
L Qp, an—1 A3 a2 a1 i

For symmetric-Toeplitz matrix A, we define the generator vector of A in the following
form:
vec(A, symToep) = [a1,as, . .., an)" .

The symmetric-Toeplitz matriz is a particular type of the complex-symmetric matriz.

Proposition 1.2.19. Let Symm = {A € " : A = AT}, Then Symm is a vector space
over a field F and the dimension of Symm is (n® 4+ n)/2, where F = C or R.

Proposition 1.2.20. Let Ssymm = {A € F"™" : A= —AT}. Then Ssymm is vector
space over a field F and the dimension of Symm is (n* —n)/2, where F = C or R.

Proposition 1.2.21. Let Herm := {A € C"" : A= A"}. Then Herm is a vector space

over the field R and the dimension of Herm is n?.

Proof. Let A be a Hermitian matrix of the form A := E 4 iF, where E, F' € R"*". Since
Al = A we get E = E7 and F = —FT. Then by Proposition 1.2.19 and Proposition
1.2.20, we get that the dimension of Herm is (n* +n)/2 + (n* —n)/2 =n>.1

Proposition 1.2.22. Let Sherm := {A € C™" : A= —A"}. Then Sherm is a vector

space over the field R and the dimension of Sherm is n?.

Proof. Let A be a skew-Hermitian matrix of the form A = E + iF where E, F' € R™*",
Since A# = —A, we get E = —ET and F = FT. Then by Proposition 1.2.19 and
Proposition 1.2.20, we conclude that the dimension of Shermis (n?—n)/2+(n?+n)/2 = n?.

Proposition 1.2.23. [62] Let Hank = {A € C"*" : A is Hankel matriz}. Then Hank is

a vector space over the field C and dimension of Hank is 2n — 1.

Proof. Consider ¢; € C**~! for i = 1: (2n — 1). Then the Hankel matrices generated by
these 2n — 1 vectors form a basis for Hank.
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Proposition 1.2.24. [62] Let symToep := {A € C"*" : A is symmetric-Toeplitz matriz}.

Then symToep is a vector space over the field C and dimension of symToep is n.

Proof. Consider e; € C", for ¢ = 1 : n. Then the symmetric-Toeplitz matrices generated

by these n vectors form a basis for symToep.

Definition 1.2.25. Let x € C*, and x = [x1, 2o, ..., 7,7 Then

(5, 0 oo oo 0]
0O zo 0 ... O
diag(z)=1: 0 . D eCm
0
_O 0 Tn |
E 0 0]
0 2o O 0 0
diag(x)=|: 0 . Do ol € CY™ for (n < m).
0 0 . 0
_O o - - x, 0 ... 0_
(1 0 0]
0 2o 0 0
0
diag(z) = - 0 e C™™ for (n > m).
0 0 --- --- x,
0 O 0
000 ... ... 0

Definition 1.2.26. Let A = (a;;) € C™*". Then vec(A) € C"™ is defined as follows:

vec(A) = [a11, -, Qlpy ooy Aply e ey G

n2+n

Definition 1.2.27. Let A = (a;;) € C*" be a symmetric matriz. Then vec(A) € C 2

is defined as follows:

— T
VGC(A) = [a117 <oy Qln,y G225 - -5 G2ny - - -5 B(p—1)(n—1)) A(n—1)n, a’nn] .
11



Definition 1.2.28. Let A = (a;;) € C™" be a skew-symmetric matriz. Then vec(A) €
n2—n
C = s defined as follows:

VeC(A) = [a12, ey Q1p,a923, ..., A2p, - .. ,a(n_l)n]T.
Definition 1.2.29. Let a € C. Then define sgn(a) = 1, when a # 0 and sgn(a) = 0 when
a=0.

Definition 1.2.30. Let A = (a;;) € C™*". Then
sgn A = (sgna;;) € C™*".

441 9 0 3—1i
Example 1.2.31. Let A = 10 0 —5—1 89 |. Then
19 29 =77 0

1.2.1. Generalized eigenvalue problems

A matrix pencil is a pair of two matrices defined in the following manner:
(1.2) L(a, ) = aAg + BA1, Ap, A € CY" a = (a,B) € C*

Finding A = (Ao, A1) € C*\{(0,0)}, 0 # = € C" such that L(\)z = 0, is called generalized
eigenvalue problem (GEP). We denote the matrix pencil defined in (1.2) by L, then A
is called the eigenvalue and x is the corresponding right eigenvector of matrix pencil L.
Further, (A, x) is called the eigenpair of L. If 0 # y € C" such that y"L(\) = 0, then y
is called the left eigenvector corresponding to A\. We denote the space of matrix pencils
by L(C™™). A matrix pencil of the form (1.2) is called the homogenous matrix pencil.
When we substitute o = 1 in (1.2), then matrix pencil L is called the non-homogeneous

matrix pencil.

Definition 1.2.32. A matriz pencil L € L(C™™™) of the form (1.2) is said to be reqular
if det(L(N)) # 0 for some X = (Mg, A1) € C*\ {(0,0)}, otherwise it is called a singular

matrix pencil.
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At this point, let us consider the following homogeneous matrix pencil L, where

11 2 0
A(]: ,Alz .
11 0 0
Then
a+20 «
L(a, p) = ]
Q Q

Cleary, we get det(L(1,1)) = 2 # 0. Hence the given homogeneous matrix pencil is regu-
lar. Next, det(L(a, 5)) = 2af. Then (1,0) and (0, 1) are the eigenvalues of homogeneous
matrix pencil L. One can also see that (a,0) and (0,b) are also eigenvalues of L, where
a,b are arbitrary nonzero complex numbers. Hence at this point, it is important to dif-
ferentiate between two eigenvalues. For a homogeneous matrix pencil, two eigenvalues
(Ao, A1) and (o, p1) are called distinet if Agpr — Ao # 0. If A = (Ao, A1) is an eigen-
value of a homogeneous matrix pencil, then for nonzero a, (a\g,a);) is just an another
representation of eigenvalue . Hence for simplicity, one can also choose the normalized
(Mo, A1), i.e., (Ao, A1) is an eigenvalue of L if [A\g|*> + |A1|* = 1. On the other hand, let us

consider the non-homogeneous version of the above matrix pencil as follows:

L(1,8) = L(8) = 1+125 1]

We get det(L(3)) = 2, which gives only one eigenvalue and it is equal to zero. Clearly, for
non-homogenous matrix pencil version, one eigenvalue is missing. This missing eigenvalue
is called the infinite eigenvalue. For a homogeneous matrix pencil an infinite eigenvalue is
denoted by (0,1), and an eigenvalue (Ao, A1) with Ay # 0 corresponds to finite eigenvalue
i—é of the non-homogenous matrix pencil, see [3, 5]. So while dealing with homogeneous
matrix pencil instead of a non-homogeneous matrix pencil, we can handle both finite
and infinite eigenvalue together. From the overall discussion and the eigenvalues of the
homogeneous matrix pencil, we can see that (1,0) corresponds to the finite eigenvalue

% = 0, of the non-homogenous matrix pencil.

Spectrum of a matrix pencil. Let L be a matrix pencil of the form (1.2). Then

spectrum of L is given as follows:
A(L) := {\ = (Mo, A1) € C*\ {(0,0)} : det(L()\)) = 0}.

For a matrix pencil L, the algebraic multiplicity of an eigenvalue A = (Ao, A1) € A(L)

is its multiplicity as a zero of the characteristic polynomial det(L()\)). The geometric
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multiplicity of an eigenvalue (Ag, A1) € A(L) is defined as the dimension of the subspace
ker(L(A)). Finally, an eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity.

Structured matrix pencil: Let L be a matrix pencil of the form (1.2). We define
the different kind of structured matrix pencils based on the properties of matrices Ay and

A; by the following tables.

S Matrix structure

T-symmetric Ay = AT A = AT

T-skew-symmetric | Ag = —Af, Ay = —A] || S Matrix structure
Hermitian Ag = All, Ay = AT T-palindromic Ay = AT
skew-Hermitian | Ay = —AY, Ay = — AT || T-anti-palindromic | Ay = — AT

T-even Ay = AJ, Ay = —AT H-palindromic Ay = A

T-odd Ay = —Af, Ay = AT H-anti-palindromic | Ag = — A

H-even Ay = Al A = — A

H-odd Ao = —All A, = A

Definition 1.2.33. A matriz pencil L of the form (1.2) is said to be Hankel matriz pencil
if both Ay and Ay are Hankel matrices.

Definition 1.2.34. A matriz pencil L of the form (1.2) is said to be symmetric-Toeplitz

matriz pencil if both Ag and Ay are symmetric-Toeplitz matrices.

1.2.2. Polynomial eigenvalue problems

Similar to a matrix pencil, a matrix polynomial is defined as follows:
(13) P(Oé, 5) = Oéle + OélilﬂAl + -+ BZAI, Al e C" fori = 0, ceey l.

P(a, 8) defined in (1.3) is called the homogeneous matrix polynomial in (a, 3) € C% We
denote a matrix polynomial defined in (1.3) by P, and [ is called its degree. Finding
(e,d) € C*\ {(0,0)}, 0 # = € C" such that P(c,d)z = 0 is called the polynomial
eigenvalue problem (PEP). Together (c,d) is called the eigenvalue and x is called the
right eigenvector of the matrix polynomial P. ((¢,d),x) is called the right eigenpair of
matrix polynomial P. Similarly if yP(c,d) = 0 for some nonzero y, then y is called
the left eigenvector corresponding to (¢, d). We denote P;(C™*™) be the space of matrix

polynomials up to degree [. Similar to a matrix pencil by substituting & = 1 in matrix
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polynomial P of the form (1.3), we can get the non-homogeneous matrix polynomial.
If (c,d) is an eigenvalue of a homogeneous matrix polynomial P, then a(c,d) is also an
eigenvalue of P for each nonzero a € C. Hence, to differentiate between the eigenvalues,

we consider the normalized eigenvalue (c,d) € C*\ {(0,0)}, i.e, [c[*+ |s]* = 1.

Spectrum of a matrix pencil. Let P be a matrix polynomial of the form (1.3).

Then spectrum of P is given as follows:

A(P) :=={(c,d) € C*\ {(0,0)} : det(P(c,d)) = 0}.

For a matrix polynomial P, the algebraic multiplicity of an eigenvalue (¢, d) € A(P) is its
multiplicity as a zero of the characteristic polynomial det(P(c,d)). The geometric multi-
plicity (G.M.) of an eigenvalue (¢,d) € A(P) is defined as the dimension of the subspace
ker(P(c,d)). Finally, an eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity.

Definition 1.2.35. A matriz polynomial P € P(C" ™) of the form (1.3) is said to be
regqular if and only if det(P(c,d)) # 0 for some (c,d) € C*\ {(0,0)}, otherwise it is called

a singular matriz polynomial.

Structured matrix polynomial: Let P be a matrix polynomial of the form (1.3).
We define the different kind of structured matrix polynomials based on the properties of

matrices A;, 7 = 0 : [, by the following tables.

S Matrix structure
T-symmetric A; = AT
T-skew-symmetric | A; = — AT

Hermitian = Af

——Af

j =

skew-Hermitian

T-odd j = —AJ for jeven, A; = AT for j odd
; = Afl for jeven, A; = — Al for jodd
j = —All for jeven, A; = Al for jodd
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A
A
T-even Aj; = AT for jeven, A; = —AT for jodd
A
A
A

H-odd




S

Matrix structure

T-palindromic A=Al
T-anti-palindromic | A; = —A[
H-palindromic Ay = Al
H-anti-palindromic | A; = = A’

Linearization of a matrix polynomial: Let P(5) = Zi‘:o BtA; be a matrix poly-

nomial of degree [. A standard way to solve a polynomial eigenvalue problem P(f5)z = 0

is to convert it into a generalized eigenvalue problem L(3)z = 0, where

with

—Ag

Ay

0 0 |

I,
o |¥V=
I,

—A — A1

L(3) =X +pY, X,Y eCr*in,

_In

_Al

, and, z =

Bx

5l_1$

Then we can use different available numerical methods to solve the generalized eigenvalue

problem. @Z algorithm is used if all the eigenpairs are required or the problem is of small

to medium size. An Arnoldi or nonsymmetric lanczos-type method can be used if a few

eigenpairs are required or one can use Krylov method for large sparse problems.

If P(B) is a matrix polynomial, then the matrix pencils

and

Ci(B)

Co(B)

Ay Ais A
-1, 0
0o -1,
0 -1,
Ay -1, O
Al—2 0 _In
As O
Ao 0

Ay [ 4,
. L
0| +p
0 - -
0 | 4,
I,
0 |+8
_-[n
0 - -
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are called the first and second companion forms of P(\). The above forms are the most

common linearization forms.

Let P be a quadratic matrix polynomial given by P(3) = Ay + 3A; + 3%A,. In many
applications the given quadratic matrix polynomial have special structure, for example
when P(f3) is Hermitian, then the following linearizations can be used to convert the qua-
dratic polynomial eigenvalue problem P(f)x = 0 into a Hermitian generalized eigenvalue
problem L(3)z = 0.

AQ 0 0 —Ag 61’
L == =
Br=1, _4, +8 A a|’ L]
Al AO A2 O B:(]
L(B) = = .
) Ay 0 0 4" [x]

For more information on linearization, see [1, 37, 70].

1.2.3. Two-parameter eigenvalue problem

A two-parameter matrix system is defined in the following manner:
(1.4) W(a) := (Wi(a), Wa(a)), where Wi(a) := agVip + a1 Vig + aaVie, i =1: 2,

where V;; € C**"™ for i =1:2,7 =0:2, and a = (ap,a1,az) € C>. We denote the
system (1.4) by W := (W, W) € C*™ x C™*"2. Finding (A, A1, A2) € C3\ {(0,0,0)},
and non zero vectors x; € C™ such that W;(A)x; = 0 for i« = 1 : 2 is called a two
parameter eigenvalue problem (TEP). Further, (Ao, A1, A2) = A € C3\ {(0,0,0)} is called
an eigenvalue of (1.4), and the pair (z1,x9) is called an eigenvector of W corresponding
to A. We also denote an eigenvector corresponding to A by = = 21 ® x5 € C™"2. (A, ) is
called the eigenpair of W. We denote K be the space of two-parameter matrix systems.
By substituting g = 1 in (1.4), we can get the non-homogeneous form of a two-parameter

matrix system.

For a two-parameter matrix system of the form (1.4), we define the following operators:
Ag=V1 ®@Vay = Vi @ Vo1, A1 = Vip @ Vg — Vig ® Vg, Ay = Vip ® Vo — V12 ® Vi

If for any ag,a1,as € C, we have agQAg + a1 A1 + axsy is nonsingular, then we said
that a two-parameter matrix system is nonsingular and then from system of generalized
eigenvalue problems Agz = A\gAz, A1z = M Az, Agz = AAz, we can get the eigenvalue
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(Ao, A1, A2), and corresponding eigenvector z, of W, where z € C""2 2z = x; ® x5 is a
decomposable tensor. If for every aq, aq, as € C, we have agAg+ a3 A1+ s is singular,

then W is said to a singular two-parameter matrix system.

Spectrum of a two-parameter matrix system. Let IV be a two-parameter matrix

system of the form (1.4). Then the set of eigenvalues of W is defined as
AW) ={x e C*\ {(0,0,0)} : det(W;(N\)) =0 for i = 1,2}.

If X\ is an eigenvalue of a homogeneous two-parameter matrix system W, then a is also an
eigenvalue of W for each nonzero a € C. Hence, to differentiate between the eigenvalues,

we consider the normalized eigenvalue A € C?\ {(0,0,0)}, i.e., |Ao|> + [M]* + [Xo]* = 1.

Definition 1.2.36. [42] The geometric multiplicity (G.M.) of an eigenvalue A = (Ao, A1, A2)

of a two-parameter W is defined in the following manner:
G.M. = dim(ker(W1(N))) x dim(ker(WW(X))).

Definition 1.2.37. [60] The algebraic multiplicity (A.M.) of A = (Ao, A1, A2) is equal to
the intersection multiplicity of two curves wy = 0 and wy = 0 at X\. Here w; = det(W;(«))
fori=1,2.

Definition 1.2.38. An eigenvalue X = (Ao, A1, Ao) of W is semisimple if its algebraic and

geometric multiplicity coincide.

Structured two-parameter matrix systems: Let W be a two-parameter matrix
system of the form (1.4). We define the different kind of structured two-parameter matrix

i =1:27=20:2 by the following

systems based on the properties of matrices V;,

tables.
S Matrix structure
Complex symmetric Vij = Vg fort=1:2,j=0:2
Complex skew-symmetric | Vi; = —V;]T fort=1:2,7=0:2
Hermitian Vij=Vifori=1:2,j=0:2
Skew-Hermitian Vij = —V;’ fori=1:2,7=0:2
T-even alternating Vij = VWT fori=1:2,7=0,2and Vj; = -V fori=1:2.
T-odd alternating Vij = —Vg fori=1:2,7=0,2and V;; = VZF{ fori =1:2.
H-even alternating Vij = Vé{ fort=1:2,5=0,2 and V;; = —VZ{I fori =1:2.
H-odd alternating Vij = —Vf fori=1:2,7=0,2and Vi1 = Vi fori =1:2.
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Two-parameter norm: Let W € K be a two-parameter matrix system of the form
(1.4). Then ||.|| : K — R is defined as [|[W]| = \/2?21 232':0 |Vi;l|%, forms a norm over

vector space K.

e Clearly ||W]| > 0.

e For W € K and ||[W|| = 0 implies that \/Zle Z?:o |Vijl|% = 0. This gives
|Vijllp = 0. We get V;; =0 fori=1:2;j =0:2. Hence we get W3 =0 = Ws. In
particular W = 0. On the other hand if W = 0 then clearly W; = 0 = W, which

gives W]l =0.
e For a € C we have [laW || = /52, S50 af2[|Vigl} = lal /S0, X2, [Visllh =
alll |-

o If W,W € K then [[W + W2 = 37, 3770 IVij + Vil < 30, 20 Vil +
S Yo IVl = W2 + T2,

Il is called the two-parameter norm. In the similar manner, we can define the weighted

two-parameter norm as follows:

T

T
w
Let W € K be a two-parameter matrix system of the form (1.4), and w = [ 1] €
Wa

R?*3 be a nonnegative matrix, where w; = [wjo, wi, wi]" € R*\ {(0,0,0)} and wy;,i =

1:2,j = 0 : 2 are nonnegative real numbers. Then .||, : K — R is defined as

Il = \/ S22 Z?:o |wi;Vij||%, forms a norm over vector space K if every wj; is positive

and form a seminorm if otherwise.

Let W = (W, Ws) be a two-parameter matrix system of the form (1.4). Then we
define the normal rank of W; for i = 1: 2 by

Nrank (W;) =  max  rank(W;())).
AeC3\{(0,0,0)}

Let us discuss the above definition with the following example.

Example 1.2.39. Let W be a two-parameter matriz system of the form (1.4), where

0 0
0 (03] —|—2062

+ 201 + 3 0
Wi(a) = [*0T T TR ]:Wz(&):

0 a1 — 20[2

Clearly for A = (1,1, 1), we have rank(W; (X)) = 2. Hence Nrank (W) = 2. But on the
other hand, for all A € C*\ {(0,0,0)}, we get rank(W5()\)) = 1. Hence Nrank (Ws) = 1.
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CHAPTER 2

BACKWARD ERROR ANALYSIS OF TWO APPROXIMATE
EIGENPAIRS OF A DOUBLE-SEMISIMPLE EIGENVALUE

Abstract: This chapter deals with the backward error analysis of two approximate eigen-
pairs of a double-semisimple eigenvalue for structured and unstructured matrix pencils.
We develop the backward error results in such a way that one can theoretically compare
the structured and unstructured backward errors of a single eigenpair and backward error

of two eigenpairs of a double semisimple eigenvalue.

2.1. Introduction

Matrix pencils arise in many applications, see [1, 17, 67, 51]. Backward erorr analysis
of eigenvalues has been developed by different authors in the literature. Malyshev [53]
has discussed the minimal perturbation of a given n-by-n matrix to the nearest matrices
that have A € C as a multiple eigenvalue with respect to 2-norm. Further, this work
has been extended for two distinct prescribed numbers, and the nearest matrix has been
obtained that contains these prescribed numbers in its spectrum, see [31, 48, 57]. For a
given n-by-n matrix, the above work has been extended for k (k < n) prescribed eigen-
values by Lippert [49] and Kokabifar et al. [43]. For the matrix polynomial setup, E.
Kokabifara et al. [44] have extended the above idea for k specified distinct eigenvalues
and provided the backward error and the minimum perturbed matrix polynomial for the
unstructured case. Similar to the backward error of eigenvalues, different authors have
developed the backward error analysis of a single approximate eigenpair for unstructured
as well as structured matrix pencils and matrix polynomials (see, [1, 8, 9, 45, 67]). For
the matrix case, Tisseur [71] has extended the backward error results from one specified
eigenpair to more specified eigenpairs. The author has obtained the backward error for-

mula for Hermitian, skew-Hermitian, complexr symmetric, complex skew-symmetric and



doubly structured matrices using [68, Lemma 1.4], [71, Lemma 2.4] along with “W-trick”.
Tisseur has investigated the structured backward error analysis by imposing the appro-
priate conditions on approximate eigenpairs, for example, while computing the backward
error result for Hermitian matrices, the author has assumed that the columns of X, the
approximate eigenvectors matrix, are orthonormal. This condition seems to be natural
as we always get a set of orthonormal vectors for a given Hermitian matrix. Similar to
the Hermitian case, the author has imposed two natural conditions during the backward
error analysis of Hermitian unitary matrices, first is the orthonormality condition on X},
and second is the approximate eigenvalues matrix, Ay = diag(£1). In the same manner,
in this Chapter we discuss the natural conditions on the given approximate eigenpairs to
perform the backward error analysis. Next, in [18] Chu and Golub have studied the back-
ward error analysis of one or more approximate eigenpairs for unstructured nonsquare
matrix pencils when approximate eigenvalues are distinct, and eigenvectors are linearly
independent. Though they worked on one or more eigenpairs and obtained the unstruc-
tured backward error, results of backward error analysis of more than one approximate

eigenpairs for structured matrix pencils are still unanswered.

The above discussion on the backward error analysis of approximate eigenvalues or
eigenpairs for unstructured/structured matrices, matrix pencils and matrix polynomials
leads to a natural question that what will be the cumulative backward error of two approx-
imate eigenpairs of a given matrix pencil ? Before finding the answer to this question, we
want to emphasize on the point that whenever the author in [71] has imposed a condition
on X} or A to obtain the structured backward error formula, that condition seems to be
a natural one for that particular structure. In a similar manner, to answer the question
raised above, we shall propose certain conditions, which we believe are natural, in order to
approximate eigenpairs under which we can obtain the backward error results for a large
class of matrix pencils. To understand the natural condition, we recall one important
result: if an eigenvalue of a matrix pencil is repeating but semisimple, we always get a set
of orthonormal eigenvectors corresponding to that eigenvalue (see, Lemma 2.2.6 for more
information). Using this result, we obtain the backward error formula for two approx-
imate eigenpairs of a semisimple eigenvalue with multiplicity two. Here we add that a
generic situation for a multiple eigenvalue is a double eigenvalue (see, for example, [56]).
For obtaining backward error results, we adopt and extend the technique of [1, 8, 9]. This
technique works on the orthonormal properties of approximate eigenvectors. In general,
we can not get the orthonormal vectors corresponding to distinct eigenvalues; hence the
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question of finding the structured backward error of two approximate eigenpairs is still
open when eigenvalues are distinct or defective. We answer the above-raised question for
structured as well as unstructured matrix pencils. We work with T-symmetric/T-skew-
symmetric, Hermitian/skew-Hermitian, T-even/T'-odd, and H -even/H -odd matrix pencils

(see, [17, 32, 62, 87] for more on structured matrix pencils and matrix polynomials).

Let L(C™*™) be the space of matrix pencils, and let L € L(C"*") be of the form
L(a, 8) :== aAg + BA;, where Ag, Ay € C", a = («, B) € C% Suppose (A, ;) for i = 1,2
are two approximate eigenpairs of L, where A € C? \ {(0,0)} and 0 # z; € C" In
this chapter, we find the nearest 0L € L(C"*") of the form 0L(«, 5) := adAy + BIA,
dAg,0A; € C™™ such that two approximate eigenpairs (A, z1) and (A, z3) become the
exact eigenpairs of L + 0L. We use the Frobenius norm to investigate the structured
backward error analysis. Results are developed in such a way that T-symmetric & T'-
skew-symmetric cases are presented in a single platform. Similarly, Hermitian & skew-
Hermitian, T-even & T-odd, and H-even & H-odd cases are also presented in a single plat-
form. Further, we find relationships between the backward error of a single approximate
eigenpair, the backward error of two approximate eigenpairs for a semisimple eigenvalue
with multiplicity two, and the structured backward error of two approximate eigenpairs

for a semisimple eigenvalue with multiplicity two.

2.2. Structured matrix pencils and preliminaries

Let L(C™*™) be the space of matrix pencils and homogeneous matrix pencil L € L(C™*")

is defined as follows :

(2.1) L(a, ) := ady + BA;, Ap, A, € C™", (o, B) € C2.

Finding A = (Mg, A1) € C?\ {(0,0)}, 0 # = € C" such that L(A)z = 0, is called the
generalized eigenvalue problem (GEP). A is called an eigenvalue of (2.1) and z is the
corresponding right eigenvector. If 0 # y € C" such that y#L()\) = 0, then y is called the
left eigenvector corresponding to A. We denote (2.1) by L, and (A, z) is an eigenpair of
L. We define Ll := (| Aollr, 1 4s 1r) 2 = (I Aoll3 + |4 [3)2, where || denotes the
Frobenius norm on C"*™, and ||.||2 denotes the 2-norm on C". Non-homogeneous matrix

pencils can be obtain by fixing & = 1 in (2.1). We denote the spectrum of L by A(L),
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and it is given by
A(L) :={X = (Mg, A1) € C*\ {(0,0)} : det(L()\)) = 0}.

When (Mg, A1) € C*\{(0,0)} is an eigenvalue of L, then (a)g, a)\;) is another representation
of the eigenvalue (Ao, A1) for any 0 # a € C. Hence for a given homogeneous L, we
normalize (Mg, A1) € A(L) as |Xo|? + |M\|* and consider A(L) is a subset of unit sphere
St :={(Xo, \1) € C%: |Xo|? + [M1]* = 1}. By working in the homogeneous setup, one can
handle the infinity eigenvalue together with the finite eigenvalue (see, [4] for more detail on
homogeneous eigenvalue problems). Throughout this chapter, we consider regular matrix

pencils for the establishment of our results.

Definition 2.2.1. The algebraic multiplicity (A.M.) of an eigenvalue X = (Ao, A1) € A(L)

is its multiplicity as a zero of the characteristic polynomial det(L()\)).

Definition 2.2.2. The geometric multiplicity (G.M.) of an eigenvalue (\g, A1) € A(L) is
defined as the dimension of the subspace ker(L(\)).

Definition 2.2.3. An eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity (see, [81] for more detail on semisimple eigenvalues).

Let L be a matrix pencil of the form (2.1), and let A = (Ao, A;) € C?\ {(0,0)} be its
eigenvalue. Then A is said to be a double eigenvalue if its algebraic multiplicity is two.
We will consider a double-semisimple eigenvalue for the backward error analysis, since a
generic situation for a multiple eigenvalue is a double eigenvalue (see, [56, 80] for more
information on double-semisimple eigenvalues). We work with structured matrix pencils
of the form (2.1). These structured matrix pencils are defined by Table 2.1 based on
the properties of matrices Ag, A; € C"*". After defining the different structured matrix
pencils, we extend the backward error definition from a single approximate eigenpair to
two approximate eigenpairs. Backward error analysis for a single approximate eigenpair

has been discussed in [1].

Definition 2.2.4. Let L be a matriz pencil of the form (2.1). Let (A xz1) and (A, z2)
be two approzimate eigenpairs of L where A € C*\ {(0,0)}, and 0 # 1,7 € C". Then

unstructured and structured backward errors of two approzimate eigenpairs (A, x1) and
(A, z2) are defined by

nr(A, 1, xo, L) := inf{||0L|| r, (L(\) 4+ 0L(X\))x; = 0; fori= 1,2}, and
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nE(\ @1, 22, L) = f{ 0Ll L €S, (L) +L(\)z; = 0; fori = 1,2},

respectively. Here §L is a matrix pencil of the form (2.1) such that éL(«, ) = ad Ao+ B0 A;
with (5140,(5/11 < Cnxn’ |||5L|||F = \/H(SA()H%‘ + ||5A1||%, and

S :={ T-symmetric, T-skew-symmetric, Hermitian, skew-Hermitian, T-even, T-odd,
H-even, H-odd}.

After defining the backward error formulas, now we recall some useful results.

Remark 2.2.5. Eigenvectors corresponding to a double-semisimple eigenvalue of a ma-
trix pencil L, are not uniquely determined. Using this information, we will establish the

following lemma.

Lemma 2.2.6. Suppose p = (po,p1) € C>\ {(0,0)} is a double-semisimple eigenvalue
of a matrix pencil L. Then there exists two orthonormal vectors y,,ys € C", such that
L(p)y; = 0 for i = 1,2. In particular, every double-semisimple eigenvalue p of L has two

orthonormal eigenvectors.

Proof. Let (po, p1) be a double-semisimple eigenvalue of L. It implies that its algebraic and
geometric multiplicity will be two. Then there exists two linearly independent eigenvectors

21,22 € C" such that L(p)z; = 0 for ¢ = 1,2. By Gram-Schmidt process, we can set

H

= ﬁ and yp = I\Z:ﬁill’ where v = % € C. We can easily see that L(p)y; = 0, and

Y1, Yo are orthonormal. Wl
S Matrix structure
T-symmetric Ag= AL A = AT
T-skew-symmetric | Ag = —Al, Ay = —AT
Hermitian Ay = Al A = AF
skew-Hermitian | Ag = —Af, Ay = — A
T-even Ag= AT A = —AT
T-odd Ag=—Al Ay = AT
H-even Ay = Al A = — A
H-odd Ag=—All A = A

TABLE 2.1. An overview for structured matrix pencils
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The above lemma gives a guarantee that for a double-semisimple eigenvalue, we always

get two orthonormal eigenvectors.

Remark 2.2.7. Using the Gram-Schmidt process, we can extend the above lemma for a

semustmple eigenvalue with algebraic multiplicity more than two.

After recalling the preliminary results, we will establish backward error results for two

eigenpairs of a double-semisimple eigenvalue.

Remark 2.2.8. Since we are interested in finding the backward error of two approximate
eigenpairs of a double-semisimple eigenvalue, hence in light of Lemma 2.2.6, from now
onwards, we will take the orthonormal eigenvectors corresponding to a double-semisimple

eigenvalue.

Lemma 2.2.9. Let x1,29 € C" be orthonormal vectors. Define P, = (I — xlx{{ —

zoxdl), PS¢ o= (I —aoxdl), and PE, = (I — xy2i"). Then

_ pH
1' P11312 _le:x27
2. Parlza:gl'l = lezxng =0,

3. PCay=0= P .

Proof. Proof is computational and is easy to check.

Next, we discuss the backward error analysis of T-symmetric and T-skew-symmetric

matrix pencils.

2.3. Backward error for T-symmetric and T-skew-symmetric ma-
trix pencils

In this section, we present the structured backward error analysis of two approximate
eigenpairs of a double-semisimple eigenvalue for T-symmetric and T'-skew-symmetric ma-
trix pencils. We start this section with the following existence theorem for T'-symmetric/T -
skew-symmetric matrix pencils. Throughout this section, ¢ = 1 represents a T-symmetric

matrix pencil and € = —1 represents a T-skew-symmetric matrix pencil.

Theorem 2.3.1. Let L € L(C™*") be a T-symmetric/ T-skew-symmetric homogeneous
matriz pencil of the form (2.1). Let (A, z1) and (X, x2) be two approximate eigenpairs of
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L, where A = (Mg, A1) € C*\ {(0,0)} is a double-semisimple eigenvalue, and x1,zo € C"

are orthonormal vectors. Set k; := —L(X)z; fori=1:2, and define

5A, = Z)\Oka; + €T; k) Py zs and §A, Z)\lk’x + €T, k) lem,
where Hy(X) = (|\o]? + [M|2)Y2. Then there exists a T-symmetric/T-skew-symmetric
matriz pencil 6L € L(C"™) of the form éL(a, ) = adAg + BIA;, such that (L(X\) +
OL(A\))x; =0 fori=1:2.

Proof. The proof is computational and is easy to check.

Lemma 2.3.2. Let L € L(C"™") be a T-symmetric/ T-skew-symmetric homogeneous
matriz pencil of the form (2.1). Let (A, xz1) and (\,x2) be two approzimate eigenpairs of
L, where A = (Mg, A1) € C*\ {(0,0)} is a double-semisimple eigenvalue, and xy, x5 € C"
are orthonormal vectors. Set k; := —L(\)x; for i = 1 : 2. Then the following equality
holds fort =1,2

(2T ko) (€Tt + 712l 2, = Z T Tky.

J=1,j#t
Proof. The proof is computational and obtained by using the fact that ezTky = 274;. B

Next, we establish the main result of this section.

Theorem 2.3.3. Let L € L(C™") be a T-symmetric/ T-skew-symmetric homogeneous
matriz pencil of the form (2.1). Let (A, x1) and (X, x2) be two approzimate eigenpairs of L,
where X = (Mg, A1) € C?\ {(0,0)} is a double-semisimple eigenvalue, and x1,zo € C" are
orthonormal vectors. Set k; := —L(\)x; for i =1: 2. Then there ezists a T-symmetric/
T-skew-symmetric 0L of the form 0L(«a, f) = ad Ao+ 55 Ay such that (L(X)+0L(N))z; = 0.

The perturbation matrices are given by

2 e — <
_ P ki +exkI'P,. .. (2T ko) (eTpall + Ty 2k)
(5A0 _ ()\0 x; 7 i 1: 2) + 1 1 2 ’
2 ) 30
2 e — <
— P, kixl + exik] Py, A (2T ko) (eTozt + 7128
A, = x; vty vy Lz 1\Lq 2 247 149 '
=Y Ny O 30

The backward error is given by

—((1+6)/2))Ixfki\2) |z3 ka2
H3(X) H3(N)
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Proof. From Theorem 2.3.1, there exists a T-symmetric/T-skew-symmetric 0L of the
form dL(«, ) = adAg+ 5 A; such that L(\)z;+0L(\)z; = 0 for i = 1, 2. For constructing
0A; for j = 0,1 such that 0A; = e(SA;F, we consider

2 n—2
— [ A 6B;"
(2.2) 5A; = UT6 AU = | B ,
n—2 L (53] ‘ (SD]
o 49 50 Saus -
where 0A4; = 2 Ot (lie)a]’m ,0B; = |bj ij} ,0D; = 65DjT for j = 0,1, and
(5a/j712 Té&j’zg -

U € C"™" is a unitary matrix such that U = [Vl Vz} with V; = [fm %] € Cr2.

We need to construct JL such that (L(A) 4 dL(\))x; = 0 for ¢ = 1 : 2. Since it is given
that k; = —L(\)x;, we get k; = 0L(\)z;. From (2.2), we get ﬁ;()\) = UTSL(M\)U. Using
the properties of U, we get 0L(\)UHz; = UTSL(\)z; = UTk;. This implies

5//1\0 edBE| | e 5/14\1 BT | |e; VIk; _ ) ) )
0 + M\ = . Further simplification gives
0By 0Dy | |0 0B1 0D, 0 Vi k;
. ()\0530 + )\1531)61 ‘/QTkz 7

where e; € C? is a vector having 1 at i'® position and 0 elsewhere. From (2.3), we get the

following equations

(24) ((1 + e)/2))\0(5a0,ii + ((1 + 6)/2))\15@1@' = IEZT]C“ 1= 1, 2,
(2.5) Xoboi + Mbyi = Vi ki, i =1,2.
The minimuminorm solutions ?f (2.4) and (2.52 are given by dag; = @ Hgg/\) a1k,
day s = (1;5) H;Q\Zk)x;ffki, boi = %%Tki,bli = %VQTIQ By Equation 2.3, we get two

more equations

(26) /\050/0712 + )\15@1’12 = [Egkh

(27) /\05(10’12 -+ )\15(11’12 = exfkg.

Since A; = €Al for j = 0,1, we get ex{ky = x3k;. Hence Equations 2.6 and 2.7 are
the same. The minimum norm solution of (2.7) is given by dag 12 = %m?kg, daie =
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e)\l

2T ky. Substituting back all these obtained entries in (2.2), we get

H2
(I;G)HQj kl H§ k2 ZZE (V2Tk1)
(2.8) 5A; =T %(/\xlk’g “;61% Tha eqpy (Vika)T | U
kom0

Further simplifying (2.8) and setting dD; = 0, we get the desired structured per-
turbation matrices 0 Ag and dA; whose Frobenius norms are minimum. For ¢ = 1,2, we
need to show ((L(\) + 0L(\))x; = 0. Consider (L(\) + 0L(\))z; = L(A\)z; + 0L(\)z; =
—k; + M0 Aox; + MOA T = —k; + ink‘i + (2T ky) (o + 7128 )2, using Lemma 3.3.3,
we get (L(\) + 6L(\)xz; = —k; + Py k; + 2]2.:17].# Tal k= 0.

Since the Frobenius norms of 64y and dA; are minimum, hence (n3(\, z1,72,L))? =
16A0 I3+ 16A1l17 where |6 Aol z+18A1 I3 = 325 10A;1F+1+e)I0B; 15 = 32 104,15+

xk zlk Vit k; o
2085113 = £, (14 €)/2) 0t 4 alehial 4 oL ince [|Vi7ky |2 = ([al|? — o7 kil -

|22 k;|?, and using Remark 2.3.6, we get

s 2Rl = (L NI e
(O 1,2, ) = 3 0 )2l

=1

Remark 2.3.4. Results for non-homogeneous matriz pencils can be obtained by fixing

Ao = 1 in Theorem 2.3.5.

Remark 2.3.5. By extending {1, x5} to the basis of C", we get another (n — 2) linearly
independent vectors {xs, ..., x,}. Then using the Gram-Schmidt process on {x1,...,x,},

we get the desired Vo € C*(=2),
Remark 2.3.6. For e =1,—1 we have exTky = a1ky, and |exTky|? = |27 ky|? = |22 Ky |2

Corollary 2.3.7. Let L be a non-homogeneous T-symmetric/T-skew-symmetric non-
homogeneous matriz pencil L of the form L(vy) = Ag+vA;. Let (pu,x1) and (u, x2) be two
approximate eigenpairs such that p € C 1s a double-semisimple eigenvalue and x1, x5 € C"

are orthonormal vectors. Set k; := —L(u)x; for i =1:2. Then the following holds:

(ng(ﬂﬂ X1, T2, L)) S \/n%‘(ﬂ’a L1, L)2 + 771%(,“7 I, L)2

Proof. For the T-symmetric case by substituting A\g = 1, \; = u, and € = 1 in Theorem
2.3.3, we get the following relation

|23 k|
(1 +[ul?)

2
2[|K:13 — |= kil
(29) (77187(”’ Ty, T2, L))2 = Z( 3
2T

29
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From [1, Theorem 3.1], we have

20[Kill3 — | kil

(2.10) (np(p, 2, L))? = Li=1:2.
g (1 + |pf?)
By substituting Equation 2.10 in Equation 2.9, we get
2
|23 K [?
(211) (US(M»$1>3727 N>$Za -2
g ; (14 [ul?)
Tk? 2
Since |302—1|2 > 0, we get the desired result.
(L+|pf?)

Remark 2.3.8. The result for the T-skew-symmetric case can be obtained in a similar

manner by using € = —1 and [1, Theorem 3.2].

Next, we present the backward error analysis for unstructured matrix pencils, and
by that analysis, we will establish a relationship between structured and unstructured

backward errors.

2.4. Backward error analysis for unstructured matrix pencils

In this section, we derive the backward error formula for two approximate eigenpairs of a
double-semisimple eigenvalue without imposing any structure on matrix pencils. We start
this section with the following theorem, which gives a guarantee that there always exists

a matrix pencil for two approximate eigenpairs of a double-semisimple eigenvalue.

Theorem 2.4.1. Let L € L(C™™) be a matriz pencil of the form (2.1). Let (\,x1) and
(X, ) be two approximate eigenpairs of L, where X = (Mg, A1) € C*\ {(0,0)} is a double-
semisimple eigenvalue, and x1,xo € C" are orthonormal vectors. Set k; == —L(\)x; for
1=1:2, and define

P, rp
(212) Z/\ka —;[S;x) T1:T2 nd5A1 ZAlkSE +.’I?£L’) xlm7
2

where Ha(\) = (|Ao]? + |A1|?)Y/2. Then there exists a matriz pencil 6L € L(C™™) of the
form SL(a, f) = adAg + BOA1, such that (L(X\) 4+ 6L(A))x; =0 fori=1:2.
Proof. 'The proof is computational and is easy to check. B

Now we present the main result of this section.
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Theorem 2.4.2. Let L € L(C"*") be a homogeneous matriz pencil of the form (2.1). Let
(A, 1) and (X, z2) be two approzimate eigenpairs of L, where X = (A, A1) € C*\ {(0,0)}
1s a double-semisimple eigenvalue, and x1,xo € C" are orthonormal vectors. Set k; :=
—L(N)a; fori=1,2. Then there exists a matriz pencil 6L of the form dL(«, 8) = adAo+
BOA; such that (L(X) 4+ 0L(A))x; = 0. The perturbation matrices are given by

X

[«%)

=

I

™
m >|
NMPT‘

&m
||Mm

T TE:
(ne(\, 21,29, 1))* = Py

Proof. From Theorem 2.4.1, there always exists a matrix pencil §L of the form 0L(a, ) =
adAy + f0A; such that L(A\)x; + 0L(A)x; = 0 for ¢ = 1,2. To construct JA; for j = 0,1,

we consider

2 n—2
. 2 [ 64, | 80,7
(2.13) 0A; = UTSA;U = ,
w2 | 0B; | 6D,
e 0ajin 0aj12 :
WheI‘e 514] - ,5B] - |:b]1 b]2:| 5 50] - |:Cj1 Cj2:| fOI“ j - O, 1, and U G
5(1,j’21 5(13"22

C™*™ is a unitary matrix such that U = [Vl VQ} with V; = [561 ;UQ] € C™ 2. Since we
need to construct 0L such that (L(\) + dL()A))z; = 0, we get k; = 0L(N)z; fori =1 : 2.
From 0L(A) = UTSL(A)U, we have SL(\)Uz; = UTSL(\)z; = UTk;. This implies

640 6CT] [e: e VT, -
“16B, 6D, |0 +M §B. 6D VTE , further simplification gives
‘ 0 ! 1 9 Ri
(2.14) (AodAg + A10A;)e f
(M0By + MdBy)ei|  |Vak

where ¢; € C? is a vector having 1 at i** position and 0 elsewhere. From (2.14), we get
the following equations
(215) )\O(SCLO,“‘ + )\15&17“' = .CL'ZT]C“ 1= 1, 2,

(2.16) Noboi + by = Vil ki, i=1,2
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The minimum norm solutions of (2.15) and (2.16) are given by dag;; = H§—w;—’“kﬂ day ; =
— — _ 2
%%Tk:z and by; = %VQT&-, b = %ka’i. Further from (2.14), we get the following

two equations:

(2.17) Aodag21 + Aiday a1 = 73 ki,

(2.18) Aodap 12 + Mdag 2 = .fli',{kz.

The minimum norm solutions of (2.17) and (2.18) are given by dag 21 = %x%kl, day o =
%x%kl; dag 12 = %x{kg, 0ay 12 = %xfkg

Similar to the T-symmetric/T-skew-symmetric case, substituting back all these ob-
tained entries in (2.13) along with §D; = §Dy = 0, and 6C; = 0Cy = 0, we get the desired
perturbation matrices with the minimum Frobenius norms. Similar to Theorem 2.3.3, we

can obtain the backward error for the unstructured case, which is given by

After establishing the unstructured backward error formula for two approximate eigen-
pairs, we now establish a relationship between unstructured and T'-symmetric/T -skew-

symmetric backward errors.

Corollary 2.4.3. Let L € L(C"*") be a T-symmetric/ T-skew-symmetric matriz pencil of
the form (2.1). Let (A, z1) and (X, x3) be two approzimate eigenpairs of L, where x1, x5 €
C™ are orthonormal vectors, and A\ = (Mg, \1) € C?\ {(0,0)} is a double-semisimple
eigenvalue. Then the following holds:

(UIST‘<)‘7 L1, T2, L)) < \/i(nF(/\7 Ty, T2, L))

Proof. From Theorem 2.3.3, we get (n5(\, x1, 79, L)) < 37 % Also using Theorem
2
|

2
2.4.2, we have (nF()\,thaL))Q = Z

. Hence we get
(77?'(/\7 L1, X2, L)) < \/5 (77F()\» L1, T2, L)).

Now we present a relationship between the backward error of a single eigenpair and the

backward error of two approximate eigenpairs of a double-semisimple eigenvalue.

Corollary 2.4.4. Let (p1, 1) and (u,z2) be two approximate eigenpairs such that p € C

15 a double-semisimple eigenvalue of a non-homogeneous matriz pencil L of the form
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L(y) = Ao + vA;. Set k; := —L(p)x;, where x; € C" for i = 1,2. Then the following
holds:

(1 01, 2, 1) = \ [ 0, L) + 73 22, 1L).

Proof. By substituting A\ = 1, and A\; = p in Theorem 2.4.2, we get np(u, 1,2, L) =

12 . .
2?:1 (MTL“%). On the other hand by [1], we have ng(u,x;, L) = % for i = 1,2.

On combining these two results, we get ng (i, 21, 29, L) = \/n%(p, x1, L) + n% (1, 29, L). A

Remark 2.4.5. For T-symmetric/ T-skew-symmetric matriz pencils, a relation between
the unstructured backward error of a single approximate eigenpair and the structured back-
ward error of two approzimate eigenpairs of a double-semisimple eigenvalue can be estab-

lished by using Corollary 2.4.4 and Corollary 2.4.3.

Remark 2.4.6. From now onwards, we will not invoke the existence theorem separately
as we did for T-symmetric/T -skew-symmetric and unstructured cases by Theorem 2.5.1
and Theorem 2.4.1, respectively, because the construction of Ay and 0Ay in each case

itself gives a quarantee of the existence of the required structured matrix pencil.

2.5. Backward error analysis for Hermitian/skew-Hermitian ma-
trix pencils

This section deals with the backward error analysis of Hermitian and skew-Hermitian
matrix pencils. First, we state and prove the main result of this section. Later, we
establish a relationship between the backward error of a single approximate eigenpair
and the backward error of two approximate eigenpairs of a double-semisimple eigenvalue.
Before moving to the main result of this section, we now present an important lemma as

follows.

Lemma 2.5.1. Let L be a Hermitian/skew-Hermitian matrixz pencil of the form (2.1). Let
A= (Mo, \1) € C2\{(0,0)} be a double-semisimple eigenvalue of L satisfying I(AoA;) # 0,
i.e., L(Ao, \)y; = 0 fori = 1,2 where y1,yo € C™ are the eigenvectors corresponding to
A. Then yiT Ajyr = 0,y Ajys = 0 for j =0, 1.

Proof.  Given that X is a double-semisimple eigenvalue of L, i.e.; (AgAg+ A1 A1)y; = 0 for
i = 1,2. This gives y"(AoAo + M A1)y = 0. Using the fact that A; = €Al for j = 0,1,
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we get y (A\oAg + M Ay = 0 and y7 (AgAg + A1 A;)y; = 0. Solving these two equations
along with S(Ag);) # 0, we get the desired result. W

Throughout this section, € = 1 represents the Hermitian case and € = —1 represents the

skew-Hermitian case.
Remark 2.5.2. For e = —1 we have \/e = /—1 =1, an imaginary number.

Remark 2.5.3. Let L € L(C"*™) be a Hermitian/ skew-Hermitian homogeneous matriz
pencil of the form (2.1). Suppose (A, z1) and (X, z2) are two approximate eigenpairs of L
with A = (Ao, \1) € C?\ {(0,0)} is a double-semisimple eigenvalue such that F(AgA;) =
0, and z1,z9 € C" are orthonormal vectors. Set k; := —L(AN)xz; fori = 1 : 2. Then

Nexdlky = Njatlky for j =0:1, and |exl ki |? = |21 ko|?.

Now, we state and prove the main result of this section.

Theorem 2.5.4. Let L € L(C™™) be a Hermitian/ skew-Hermitian homogeneous matrix
pencil of the form (2.1). Let (A, x1) and (A, x2) be two approximate eigenpairs of L,
where A = (Mg, A1) € C*\ {(0,0)} is a double-semisimple eigenvalue, and x1, x5 € C" are
orthonormal vectors. Set k; == —L(\)x; for i = 1 : 2. Then there exists a Hermitian/
skew-Hermitian matriz pencil SL of the form dL(«, 5) = adAg + BIA; such that (L(X\) +
SL(A\))z; = 0. The perturbation matrices, for S(AA1) = 0, are given by

2 2

0Ay = d i STty nd §A, = i i Ty
=2 H3(\) ond i =2 H3(\) |

i=1 i=1
and the backward error is given by

2

(771%()‘7 L1, L2, L))2 = Z(

=1

2||kill3 — | k;)?
H3 ()

|28 k|2

HF ()

)2

The perturbation matrices, for S(Xg1) # 0, are given by

H H
lezazg kle xzkz Px1:x2

2
Ay = — T Aor.a + 0\ Zalvi T w1ty
(5 0 Z( x;x; 0L X; + )\0 H%()\) + E)\O H%()\) )
=1
4 IQ(XliL‘gk’l — 6)\11’{1]{32)1‘{[ ZL‘l(E)\lfL’gkal — Xll'{{k’g)l‘g[ d
— — — — an
AoA1 — AoA1 AoA1 — Aot
2
=1
i $2(€)\0${{]€2 — Xol'glkl)l'{{ T (XU.T{{kQ — E)\ol'gkl)xg

)\Oxl — XO)\l X())\1 - >\Oxl
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In this case, the backward error is given by
fhl? f

ROy + ) (@ ko) (24 k1))

2 1
k013 — e
B\ @122, L)) = (e Ay +2 ) - 4
e ZZ ’ H3 () SO
(e + ol

213 (NoA)[2H3 (M)

(Hy(A) = 4IS (M)

Proof. For constructing dA; for j = 0,1 such that dA4; = ecSAf, we consider

2 n—2
_ 0A. | B

(2.19) 0A; = UMsAU = ) | 05, :
n—2 (SB] ‘ 5D]

— oa. Sas
where 04; = Vedajn @j,12

€dajin  \/€0a;2
0D; = 65DjH for j = 0,1, and U € C"*" is a unitary matrix such that U = [Vl Vg] with

] with 5aj,tt € Rfort =1 2, 5B] = [bjl bj2]7

Vi = |:I1 xz] € C™2. Since we need to construct 6L such that (L()\) + dL()\))z; = 0,
we get k; = 0L(AN)z; for i = 1 : 2. From (/F\I/J(z\) = UHSL(N\)U we have gf()\)UHxi =
UHSL(\)z; = URk;. This implies

5Ay esBH] [e; 5A, 5BH]| [e [k,
0 +A1 . Further simplification gives
0By 0D, 0 0By 0D 0 Vi k;
MobAg + MoA e | [VIEE
(2.20) (oddo + Mo )e !
()\05.80 + /\15B1)€Z’ ‘/2sz

where ¢; € C? is a vector having 1 at " position and 0 elsewhere. From (2.20), we get

the following four equations and one system of equation:

(221) \/E)\Q(Saom‘ + \/E)\léaui = IZH]{?“ 1= 1, 2,
(2.22) Xoboi + Mbui = Vy'ky, i = 1,2,
Xo M| |6 "k
(2.23) 0 A Qo2 | _ &2 M1 .
)\0 )\1 6@1712 37{{]{?2
The minimum norm solution of (2.22) is given by by; = %VZH k; and by; = H2 5 Vi k;.

Case-1: If %(XO)\I) = 0, then the minimum norm solution of (2.21) is given by dag;; =

Ig(’\/{’)xfki,éal,ii = I‘{g’\l xf'k;. Since A; = €Al for j = 0,1, and I(AoA1) = 0, we get

system (2.23) is consistent by using Remark 2.5.3. The minimum norm solution of (2.23)
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k1 and da; 12 = HGQ)‘(l x5 k1 Substituting back all these obtained

is given by dag 12 = HQ’\( B

entries in (2.19), we get

,\j Aj “H
(2.24) 514] =U Hzl kl H2j k? HQ(/\) (‘/2Hk2) Ut
H2(>\) VQHkl HQ(/\) V2Hk2 Dj

Further, simplifying (2.24) and setting dD; = 0 along with Remark 2.5.3, we get the

desired perturbation matrices d Ay, 0 A; whose Frobenius norms are minimum.

Next, we need to show (L(\) + 0L(A\))z; = 0 for ¢ = 1,2. Consider (L(\) + 0L(\))z; =
L(N)z; + 0L(N)x; = —k; + MdAox; + MOoA1x; = —k; + k; = 0. Since the Frobenius
norms of 64y and §A; are minimum, hence (n3.(\, 21, 72, L))? = ||0Ag||% + ||0 A1 ]|%, where
1640[1% + 04113 = X5 194,13 + 2010813 = 5, Bt + 2kl 4 ol bl Since
Vi k|13 = ||k:l|3 — |2 ks)? — |2 K;]?, and using Remark 2.5.3, we get

2
2||k:13 — [ kil |25k [
S(\ L))? = 21 -2 .
(nF( y L1y L2, )) ;( HQQ()\) ) H22()\)

Case-2: If S(A\g)\;) # 0, then using Lemma 2.5.1, we get dagi = —%xfl/loxi,éaui =
—%xf{Alxi. When 3(M\A1) # 0, ie., oA — AA; # 0, then the unique solution of

6)\1Z‘§k’1 —Xﬂc{{kz —E)\()Clrgk‘l +X0x{{k2
XOAI_AOXI Xox\l—)\oxl
the minimum norm solution. Similar to Case-1, we get the desired perturbed matrices

by substituting back the obtained entries in (2.19). In this case (n2(\,x1,29,L))% =
16 Aol + ll6As %, where

system (2.23) is given by dag 12 = , which is

and (5&1712 =

12
6AdE + (54 = 3 |l Age |2+Zz”k Lt
T - H3(\)
j=0 =1 2
2|€/\1:)3§k:1 )\1131 k2|2 + |>\01’{1k2 GAOIQ k;1|2 2|I{I7~2|2 + |$£{T1|2
|/\0>\1 - )xo)\1|2 HZ(\)

Since
|€)\1I£Il€1 — Xlx{ik2|2 + |ng{{k2 - 6/\017§]€1|2 _ H2(/\) |ZL’§I]€1|2_—|- |ZL’{{I€2|2
MoA1 — Ao |2 ? 413 (N1 2

R + X)) (@ k) (@4 k1)
2[S(AoA)?

Y
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we get

2 1 )
5 i o2y ollEill3 — |2k |2) R((Ag + M) (21’ ks) (237 k1))
Np(\, 1, 29, L <x1AxZ +2 —€ —
( F( 1,42 Zzljzo | J | H22(/\) |%(/\()/\1)|2

|£E ]{31‘2+|£L’ k‘g‘2
2|3 (NoA)[2H3 (N)

(Hy(A) = 41S(AoM)?) -

Corollary 2.5.5. Let L be a non-homogeneous Hermitian/skew-Hermitian matriz pencil
of the form (2.1). Let (p,x1) and (u,z2) be two approzimate eigenpairs where p € R
1s a double-semisimple eigenvalue and x1,x5 € C" are orthonormal vectors. Set k; :=

—L(p)x;. Then the following inequality holds:

(np (ks 21,22, L)) < \/msa(m 21, L)% + np(u, 22, L)%,

Proof. Substituting \g = 1, A\; = p in Theorem 2.5.4 and using [1, Theorem 3.6], we get

the desired backward error relation. Il

Remark 2.5.6. Let (11, 1) and (u, x2) be two approximate eigenpairs of a non-homogeneous
Hermitian/skew-Hermitian matriz pencil L where u € C is a double-semisimple eigen-
value, and x1,x5 € C" are orthonormal eigenvectors. Then similar to Corollary 2.5.7,
substituting Ao = 1,\y = p in Theorem 2.5.4, and using Theorem 3.6 of [1], we get
(s @1, 22, L) = /(3 (21, 1)) + (13(1, 0, 1))? = V24/ (0 (p, 01, 1))? + (e (1, 72, 1))
when p? = —1. Further, using Corollary 2.4.4 in the above relation, we get n3. (i, x1, 2, L) =
V2(nE (i, 1, 29, L)) when p? = —1 and for p?> = —1, we get HE(\) — 4|(MoA1)|? = 0.

Similar to Hermitian/skew-Hermitian matrix pencils next, we present the backward

error analysis for H-even/H -odd matrix pencils.

2.6. Backward error analysis for H-even/H-odd matrix pencils

In this section, we will discuss the backward error analysis for H-even and H-odd

matrix pencils. We start this section with the following important lemma.

Throughout this section, € = 1 represents the H-even case and ¢ = —1 represents the
H-odd case.

Lemma 2.6.1. Let L be a H-even/H-odd matriz pencil of the form (2.1). Suppose A\ =

(Ao, A1) € C2\ {(0,0)} is a double-semisimple eigenvalue of L satisfying R(AA1) # 0,
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i.e., L(Xo, \)y; = 0, fori = 1,2 where y1,y, € C" are the eigenvectors corresponding to
A. Then yff Ajyr = 0,y Ajya =0 for j =0,1.

Proof. Proof follows similar to Lemma 2.5.1 by using the fact that Ay = €Al A} =
—eAl N

Remark 2.6.2. Let L € L(C" ") be a H-even/ H-odd homogeneous matriz pencil of
the form (2.1). Suppose (A, x1) and (\,x2) are two approzimate eigenpairs of L, where
A= (Ao, A1) € C2\ {(0,0)} is a double-semisimple eigenvalue such that R(XgA) = 0, and
x1,x9 € C™ are orthonormal vectors. Let k; := —L(\)x; for i =1: 2. Then )\oe% =

NTHky, Mexllky = —M\aflky, and |ex ki)? = |28 ky|?.

Now we state and prove the main result of this section.

Theorem 2.6.3. Let L € L(C"*™) be a H-even/H-odd matriz pencil of the form (2.1). Let
(A, z1) and (A, x2) be two approzimate eigenpairs of L, where x1, x5 € C" are orthonormal
vectors and X = (Mo, \1) € C*\ {(0,0)} is a double-semisimple eigenvalue. Set k; =
—L(N)x; fori =1:2. Then there exists a H-even/H-odd matriz pencil §L of the form
OL(a, B) = adAg + BOA; such that (L(N) + 6L(N))x; = 0. The perturbation matrices, for
R(AoA1) = 0, are given by

2 2 <
)\0]@[17,{—[ + EAOxikZHPazlzx Alkzxf] — 6)\1Iik’ZHPz1:z

i=1 i=1

In this case, the backward error is given by

2
20kl — ol kil® | leihsl?
S 2 2 i . 1

i=1

The perturbation matrices, for R(XoA1) # 0, are given by

2
kixH vk P, .
5140 = ( x;x; AQJ?I’ +)\0L+€>\OM)
2 HE (N HEO)
N oMzl ki + edjall k)l N w1 (el by + Ml ky)xl! and
oA + Ao AoAr + Ao ’
2
5141 = Z( iKll'fIAlﬂjleH + )\1% — 6)\1T)\1>2)

.

Il
A =

X 0Ly kl — 6)\0.77{]]{32)33{{ i iL‘l(X(ﬂ?{{kQ — e)\oxfkl)xg
o1 + Ao o1+ AoAg
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In this case, the backward error is given by

2 1 2

—2 =2
s 2 g2y 2l Hz 21905”%\2 R((AL — Ag) (1" ka) (23 k1))
Ne(A\, x1, 29, L = (| Ajz; +e€ —

!5’52 k1|2 + |21 kol? (
2|R(AoA1)|2HZ(N)

Hy(\) — 4R ) -

Proof. To construct §A; for j = 0,1 such that 64y = edAf and 64, = —ed A, we

consider

2 n—2
__ 5Ay | edByH
(2.25) 5Ag = UT§ AU = 0 ‘ @ |
5B, \ 5D,
2 n—2
5A, | —eoB
(2.26) 5A, = UTsAU = | b ,
5B, \ 5D,
_ ) 5 — [y=es §
where 54 — | V001 01z | s \Vmaa dae | o oh o sp
6(5@0,12 \/E5a0,22 —€5a1,12 v—€5a1,22

—edDy ", 0B; = [bﬂ bﬂ} for j = 0,1, and U € C™" is a unitary matrix such that
U= [V1 VQ] with V} = [xl xQ] € C™2, Similar to Theorem 2.5.4, we get the following

equations:

(227) \/E)\()(;CLO’M + v/ —E)\l(SCLLM = .fL’lHkl, 1= 1, 2,

(228) )\0b0i + >\1b1i = ‘/QH]{?“ 'L - 1, 2,
Ao —Ai| |6 "k

(2.29) 0 1 Qoaz| _ €2 R .
Ao AL | |daia 21k

The minimum norm solution of (2.28) is given by by; = %VQH ki, bi; = %VQH k;. Next,

we have the following two cases.

Case-1: If R(\g)\;) = 0, then the minimum norm solution of (2.27) is given by dag; =

I}g()‘)? ok, day; = \1{127)\1 wHk;. Since Ay = €Al Ay = —eAll and R(M\\1) = 0, we get

system (2.29) is consistent by using Remark 2.6.2. The minimum norm solution of (2.29)

is given by dag12 = /{;1 and da; 12 = ]{71 Substituting these obtained values

o
) H2(
n (2.25) and (2.26), we get the desired perturbed matrices and backward error.
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Case-2: If ®(\g)\;) # 0, then using Lemma 2.6.1, we get dapi; = —%ZEiHA()I’i, and
day; = —/—exf Az, Since R(AoA1) # 0, ie., AoAL + AA; # 0, the unique solution of
6)\1$£{k1 + Xliﬂ{{kg —6)\0$5{]€1 + Xoﬂ?llqu

X())\l + )\QXl Xo)\l + AOX
which is the minimum norm solution. Using these obtained values, we can get the desired

0Ag, 0A; and backward error in this case. Wl

system (2.29) is given by dag12 = and day 12 =

I

Remark 2.6.4. Suppose (p,x1) and (u,z3) are two approzimate eigenpairs of a non-
homogeneous H-even/H-odd matriz pencil L such that p € C is a double-semisimple
eigenvalue and x1,x9 € C" are orthonormal vectors. Then similar to Corollary 2.3.7,
substituting \g = 1,A\; = p in Theorem 2.6.3, and wusing [1, Theorem 3.7|, we get
(e (1 w1, 22, 1))* = (np (i, 21, 1)) + (07 (1, 22, 1)) = 2((nr (1, 21, ))* + (np (1, 22, 1))?)
for u? = 1. Further, using Corollary 2./4.4 in this obtained relation, we get n$(u, v1, 2o, L) =
V2(nE(it, 1, 29, L)) when u? = 1. Note that for u*> = 1, we have Hi(\) — 4|R(MoA1)|? = 0.

Next section deals with the backward error analysis of T-even and T-odd matrix

pencils.

2.7. Backward error analysis for 7T-even/T-odd matrix pencils

In this section, we state and prove the structured backward error theorem for T-even/T -
odd matrix pencils. The derivation of the theorem is similar to the previous section. Hence
we discuss only those steps which are unique for this section. We start this section with

two important lemmas as follows:

Lemma 2.7.1. Suppose A = (Ao, A1) € C? such that \g # 0, A\; #0, and e = 1, —1. Then
the following equality holds:

1 L el =l

G:\)  HX(\)  GENHP(N)

where G (\) = \/|’\°|2(1+6);|’\1|2(1_6) and Hy(N\) = (|Mo]? + [ M [?)/2.

Proof. The proof follows by using the definitions of G.(\) and Hs(\). B

Throughout this section, ¢ = 1 and ¢ = —1 represent the T-even and T-odd cases,
respectively.
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Lemma 2.7.2. Let L € L(C"*") be a T-even/ T-odd homogeneous matrixz pencil of the
form (2.1). Suppose (A, 1) and (A, x2) are two approzimate eigenpairs of L, where \ =
(Mo, A1) € C2\{(0,0)} is a double-semisimple eigenvalue and 1,5 € C" are orthonormal

vectors. Set k; = —L(\)x; for i =1:2. Then the following equality holds fort =1,2:

Z Z T;x Tk:v Z T;T Tkt

i=1 j=1,j7#¢ J=1,j#t

Proof. The proof is computational and obtained by using the fact that z; and x, are

orthonormal vectors.l

Remark 2.7.3. For \y = 0, we have 1k = —exTky, and for \; = 0 we have z1k, =

Remark 2.7.4. We have (14 ¢€)?/4 = (1+¢€)/2 fore=1,-1.

Now we present the main theorem of this section.

Theorem 2.7.5. Let L € L(C™™) be a T-even/ T-odd matriz pencil of the form (2.1).
Let (A, z1) and (A, x2) be two approximate eigenpairs of L, where x1,2o € C" are or-
thonormal vectors, and X = (Mg, A1) € C?\{(0,0)} is a double-semisimple eigenvalue. Set
k; == —L(\N)x; for i = 1,2. Then there exists a T-even/ T-odd matrixz pencil 0L of the
form SL(a, B) = adAg + BOA; such that (L(\) + dL(\))x; = 0. Then we have

Case-1: If \g # 0 and \; # 0, then the perturbation matrices are given by

2

— (]_ -+ E) fz(L’T]{JZ.TH — ﬁzl:ij k,le + Em—ikTlezxz
5A — )\ K3 1 A K3 1
oS L S ey T )

i=1
2 2 Tk; m + €T;x Tk: :13
2 Z —

0

2 —
~ (=) malkw  — Py akixl —emikI Py, .0,
0A; = g A L\ — L .
! =5 Gy HZ())

)+
=1

Ttk — exjal kjal

2 2
szjjli i Vi
et : 2\ ’




Aol?(1 A]2(1 —
where G¢(\) = \/‘ o1+ + M 6). In this case, the backward error is given by

2
2
2| k;|2 M2 — [P |2l k) Tk )? TEo|? IN A
O L) = 3 ||2 12, (Al : | 012)|371 | ) |3 k| 42r|l’1 2| (! of Ml
— H3(}) G2(A)H3(A) 2H3(X) Al Aol
€ € T
- <|)\1|2 - |A0|2)%(($?k2)($gk1))

Case-2: If \g =0 or \y =0, then we have the following two cases:

(1) If Ao = 0 and X\ # 0, the perturbation matrices are given by Ay = 0 and
2

T
- k
5A1 = Z<_((1_6)/2)EZ$?Alxlxﬁ_Px1nglfsz[L'fI + $_1$31A1Px1xz)—l—%(fzxfl—eflwé{)
=1 1

In this case the backward error is given by

2
1—e€
O o ) = 2l — T g2 — 2T A
i=1

(27) If Ao # 0, and Ny = 0, the perturbation matrices are given by 60A; =0 and

2 B T},
0Ay = Z(—((1+€)/2)fi$?140$i$f—le;xQAol’ifL'ZH — :1c_z~:B;TFAOP5,;1::,;2)—l—M
i=1
In this case, the backward error is given by

2
(A 21,9, 1))* = 20| Aol — ((1+ €)/2)[a] Aol — 2|w] Aol

i=1
Proof.  For constructing 6A4; for j = 0,1 such that 64y = edAl,04; = —ed AT, we
consider
2 n—2
— 2 5 A, dB,T
(2.30) 5Ag = UTS AU = o | DBy ,
n—2 5B() ‘ 5D0
2 n—2
. o [ 04 | —esBy”
(2.31) A, = UT6AU = | By ,
n—2 5Bl ‘ 6D1
— [4i9s 5 — %9 —ed
where 64, = 5 000,11 16 Qp,12 A, — 5 00111 1 €0G1,12 6Dy = 65D0T7
5610,12 ( J;) 5610,22 5611,12 ( ;6) 5611,22

6D, = —edDy 7, 0B = [bj bjg] for 7 =0,1, and U € C™" is a unitary matrix such that
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U= [Vl VQ] with V; = [1’1 1’2] € C™*2, Similar to Theorem 2.5.4, we get the following

equations
(2.32) (1 +€)/2)Aobagii + (1 — €)/2)Mibar; = o] ks, i=1,2
(2.33) Noboi + Mby = Vi ki, i =1,2
(234 [AU - [(sao,m _ ;cQTlﬁ] |
Ao N das 12 exTky
The minimum norm solution of (2.33) is given by by; = %V;kl and by; = %VZT/@

Case-1: When )y # 0 and \; # 0, then the minimum norm solution of (2.32) is given
by dagi = ((1+ e)/Q)Gg—?/\)szk, and day; = ((1 — e)/Q)Gg—(l/\)szk, In this case dag 12 =

acgkl +exf

ko wQTkl—eachg
20 ) 5&1712 = .

21

Case-2: When Ay = 0 but \; # 0, we get system (2.34) is consistent by using Remark

2.7.3. The minimum norm solution of (2.34) is given by dag12 = 0 and da; 15 = xif“ I
this case dap;; = 0 and day 4 = —(1;)3:?/11:61'. When )y # 0 but A\; = 0, we get system

(2.34) is consistent by using Remark 2.7.3. The minimum norm solution of (2.34) is given

Tk . 1
by dag 12 = xi—ol, day 12 = 0. In this case dag;; = —(QLg)yciToni and day ;; = 0.

Similar to earlier sections, we can get the backward error expression and perturbation

matrices for Case-1 and Case-2 each case. B

Remark 2.7.6. Let (11, 1) and (p, x2) be two approximate eigenpairs of a non-homogeneous
T-even/T-odd matriz pencil L, where p € C is a double-semisimple eigenvalue and
x1, 22 € C" are orthonormal vectors. Then similar to Corollary 2.3.7, substituting Ao =
1,\i = u in Theorem 2.7.5, and using [1, Theorem 3.4], we get (n3(p, 1,72, L))?* =
(2 (g 1, L)%+ (13 (1, 22, 1)) = 2((e (1, 21, 1))* + (e (1, 9, 1))?) when ] = 1. Pur-
ther, using Corollary 2.4.4, we get (0 (1, 1,29, L)) = V2(np(p, 21, 22, L)) when |p| = 1.

Finally, we summarize the relation between unstructured and structured backward errors
of a single approximate eigenpair and two approximate eigenpairs. Let (u,z1) and (p, x2)
be two approximate eigenpairs such that u € C is a double-semisimple eigenvalue of a
non-homogeneous matrix pencil L. Then by Table 2.2, we present relationships between
the structured backward error of two approximate eigenpairs of a double-semisimple eigen-
value (n%(u, z1, 79, 1L)), the unstructured backward error of two approximate eigenpairs
of a double-semisimple eigenvalue (ng(u, 1,9, L)), and the structured backward error of
a single approximate eigenpair (3 (u, z;, L)) for i = 1,2.
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2.8. Numerical example

In this section, we illustrate our developed theory with a numerical example using

Matlab 7.11.0. Let L be a T'-skew-symmetric non-homogeneous (o = 1) matrix pencil of

the form (2.1). Let Ao, A; be defined by

0 —0.2600 + 0.64871 —0.1135 + 0.34161 —0.3040 — 0.63661_

A = 0.2600 — 0.6487i 0 —0.0914 — 0.56871 —0.7628 + 0.4553i
" 0.1135 — 0.34161  0.0914 4 0.56871 0 0.3138 — 0.3496i |
0.3040 + 0.63661  0.7628 — 0.45531  —0.3138 + 0.34961 0
i 0 —0.0996 — 0.8100i 0.6837 +0.2671i  0.0716 + 0.0580i |
4 0.0996 + 0.8100i 0 0.2214 — 0.59721  —0.2433 — 0.0032i
1 =
—0.6837 — 0.2671i —0.2214 + 0.5972i 0 0.2821 + 0.2661i
—0.0716 — 0.05801  0.2433 + 0.0032i  —0.2821 — 0.2661i 0
These are random matrices such that Ay = —Al and A; = —AT. Clearly L is a regular

matrix pencil. The approximate eigenpairs of L are obtained by using Matlab formula
[V, D] = eig(Ap, A1). Let u = —D(2,2) = —D(3, 3) be an approximate multiple eigenvalue
of L, and its corresponding eigenvectors are V(:,2) and V (:, 3). Orthonormal eigenvectors
x1, T2 corresponding to p, are obtained by z1 := V (3, 2)/||V(:,2)]| and z2 := (V(:,3) — v *
V(,2)/IIV(:,3) —v*V(:,2)|, where v = % Using Theorem 2.3.3 for e = —1,
we get the following perturbation matrices

[ 0 —0.0170 — 0.48731  0.3412 — 0.14631  0.1048 + 0.2769i ]
54, — 0.0170 + 0.4873i1 0 —0.0294 — 0.00851  0.2473 — 0.0822i1
—0.3412 4+ 0.14631  0.0294 + 0.00851 0 —0.0096 + 0.15571
—0.1048 — 0.27691 —0.2473 + 0.08221  0.0096 — 0.15571 0
[ 0 —0.0891 + 0.71431 —0.5315 4 0.13351 —0.0880 — O.4281i_
A, — 0.0891 — 0.7143i -0 0.0409 + 0.01931  —0.3797 + 0.06211
0.5315 — 0.13351 —0.0409 — 0.01931 0 0.0503 — 0.22471
0.0880 + 0.42811  0.3797 — 0.06211  —0.0503 + 0.2247i 0

n5(, 1, w9, L) = 1.8809. Clearly, L(u)z; + 6L(u)z; = 0 for i = 1,2.
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Remark 2.8.1. When we encounter with two approximate eigenpairs (X, x1) and (X, x2),
where X 1s a double-semisimple eigenvalue, the existing backward error theory of a sin-
gle eigenpair fails to provide the minimum norm §L € L(C™ ™) which satisfies (L(\) +
OL(A\))x; = 0 fori = 1,2. On the other hand, by using our theory, one can easily construct
the required perturbed matrixz pencil, and backward error corresponding to two approrimate

eigenpairs of a double-semisimple eigenvalue. M
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CHAPTER 3

STRUCTURED PERTURBATION ANALYSIS OF
SPECIFIED EIGENPAIRS FOR MATRIX PENCILS WITH
SPARSITY

Abstract: This chapter is devoted for the backward error analysis of one or more approxi-
mate eigenpairs of structured matrix pencils. We worked with different structured matrix
pencils which includes structures such as T-symmetric, T-skew-symmetric, Hermitian,
skew-Hermitian, T-even, T-odd, H-even, H-odd, T-palindromic, T-anti-palindromic, H-
palindromic, and H-anti-palindromic. Further, our backward error results are developed
in such a way that one can solve the different kind of inverse eigenvalue problems. This
shows that the backward error of one or more eigenpairs and inverse eigenvalue problems

are interconnected.

3.1. Introduction

Backward error and perturbation analysis of a single eigenpair are well developed
in case of structured and unstructured generalized eigenvalue problems (see, [1, 8, 9]).
Since many applications require an only specific set of eigenpairs, for example, consider
a problem of vibration in engineering applications which leads to an n-by-n general-
ized eigenvalue problem (GEP), required smallest m € N (m < n) eigenpairs (see, [65]).
Hence it is necessary to compute one or more specified eigenpairs. For computing these
eigenpairs, several numerical methods are available in the literature, for more details see,
[46, 54, 64, 66, 69, 83] and references therein. Development of the backward error
analysis for more than one approximate eigenpairs will provide a better understanding of
the quality of the computed eigenpairs and stability of the numerical methods. Literature

is very much restricted when it comes to the backward error and perturbation theory of



more than one specified eigenpairs. Though in the last chapter we have taken a step to-
wards the backward error analysis of two approximate eigenpairs provided the eigenvalue
is double-semisimple, but the question that what will be the backward error in general,
is still open for discussion. In this chapter, we discuss the backward error analysis of

eigenpairs in more general way.

We have discussed in the last chapter that Tisseur [71] has obtained the backward
error formulas and perturbation matrices of more than one specified eigenpairs for dif-
ferent structured matrices by generalizing the existing definition of backward error of a
single approximate eigenpair. But in the case of a matrix pencil, the existing results of
perturbation theory on a single approximate eigenpair are not sufficient to answer the

following questions:

1. For a given matrix pencil and its given one or more eigenpairs, what is the nearest
matrix pencil for which the given approximate eigenpairs simultaneously become
the exact eigenpairs?

2. What is the value of backward error when one or more approximate eigenpairs of a
given matrix pencil become exact eigenpairs of an appropriately perturbed matrix

pencil ?

Inverse eigenvalue problem (IEP) deals with the construction of the perturbed ma-
trices from the given spectral data which consists one or more eigenpairs. Development
of the backward error analysis of GEP for more than one eigenpairs play an impor-
tant role to provide the solution of a different kind of inverse eigenvalue problems (see,
[19]). For example, consider the Problem 5.4 of [21, Chapter 5], which requires the con-
struction of a quadratic matrix polynomial with prescribed eigenpairs. By linearization,
quadratic eigenvalue problems (QEP) can be transformed into large GEP which has the
same eigenstructure. Hence the Problem 5.4 is equivalent to solve the real symmetric
GEP for more than one eigenpairs. For more information on the conversion of QEP to
GEP, see [37, 70]. Another inverse eigenvalue problem which we discuss in this chap-
ter is [89, Problem 1.1]. This problem requires to construct a symmetric matrix pencil
from the given specified eigenpairs under the submatrix constraint. We explain both the
[EPs by examples in Section 3.8. Further, the matrices in eigenvalue problems reflect the
properties of underlying physical models; their structured backward error has a special

attraction. If the coefficient matrices of GEP are structured, arbitrary perturbation to
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GEP will not respect the structure and lead to insignificant results. Hence necessary care
should be adopted while analyzing the structured perturbation, so the property of physi-
cal model will not be destroyed during backward error analysis of different structures such
as symmetric, skew-symmetric, T-even/T-odd, Hermitian/skew-Hermitian, palindromic

(see, [1, 10, 17, 52, 51]).

Several eigenvalue problems arise with matrices having a large number of zeroes, this
is called the zero structured or sparsity structure (see, [59, 87]). For this kind of matrices,
it is necessary to work with those perturbed matrices which respect the sparsity structure.

Hence for maintaining sparsity, we need to construct sparse perturbation matrices.

The main purpose of this chapter is to present a detailed structured backward error
analysis of s-specified eigenpairs (s > 1) of structured matrix pencils which also pre-
serve the sparsity. For the matrix case [71] provides the backward error formula and
perturbation matrices for different structures without sparsity. In [87] the authors have
adopted the methodology from [71, Section 3] for analyzing the structured backward er-
ror formula of one approximate eigenpair for symmetric, skew-symmetric, Hermitian, and
skew-Hermitian polynomial eigenvalue problems. However, the results in [71, 87] are
unable to answers the above raised questions. Hence for given s-approximate eigenpairs
((Nios Ai1), ;) of an n-by-n matrix pencil, where (Mg, A1) € C?\ {(0,0)} and 0 # x; € C"
for i = 1: s, we extend the methodology of [35, Section 4] and [71, 87], so that these s-
approximate eigenpairs become the exact eigenpairs of an appropriately perturbed matrix

pencil. We discuss the perturbation analysis with respect to Frobenius norm.

3.2. Structured matrix pencils and preliminaries

Let us recall the definition of a matrix pencil. A matrix pencil L is a pair of two

matrices defined as follows:
(3.1) L(a, B) := aAg + BA;, Ay, Ay € C™", and (o, B) € C*.

Now, we define different structured matrix pencils of the form (3.1) by Table 3.2 based

on the properties of matrices Ay, A; € C"*".
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S Matrix structure

T-symmetric Ay = AL A = AT

T-skew-symmetric | Ag = —Al' Ay = —AT || S Matrix structure
Hermitian Ay = A, Ay = AT T-palindromic Ay = AT
skew-Hermitian | Ag = —A{l, Ay = —A{" || T-anti-palindromic | Ag = —A]

T-even Ay = A7, Ay = AT H-palindromic Ay = Al

T-odd Ag=—AfF, Ay = AT H-anti-palindromic | Ay = — A

H-even Ag= Al A = — A

H-odd Ag=—All A = Al

TABLE 3.1. Types of structured matrix pencils

Throughout this chapter, w := (wy, wl)T € R? be a nonnegative vector such that wg, w;
are nonnegative real numbers. Define w™' := (wy ', w; )T and w; ' = 0 for w; = 0. Next,

for a given nonnegative weight vector w = (wp, w;)?, we define the pencil norm as follows

(3.2) ILllw2 = [l(woll Aol wil[ Al ) ll2 = (w5l AollZ: + wi]| Av[[7)"2.

Further, we generalize the definition of backward error from one approximate eigenpair
to s-approximate eigenpairs for unstructured and structured matrix pencils. Further
results are developed for describing the relation between structured and unstructured

backward errors.

Definition 3.2.1. Consider A5 := {A1, Ag, ..., A} and x1.5 = {x1,29,..., 25}, where
A € CI\{(0,0)} and 0 # x; € C™, fori =1:s. Let (\;, z;) be the s-approzimate eigenpairs
of the matrixz pencil L € L(C™™™) of the form (3.1), fori=1:s. Then unstructured and

structured backward errors of s-approximate eigenpairs (N\;, x;) for matriz pencil L are
defined by

Nw 7 (A:s, T1os, L) := Inf{[|0L]| w2, (L(A;) + dL(N))z; = 0; for 1 <i < s}, and
US),F(/\LS,J?LS,L) = inf{[|0L||y2, 0L € S, (L(\;) + 0L(X\))x; =0; for 1<i<s},
respectively, where 0L € L(C"*™) is of the form (3.1), ||0L w2 is given by (3.2), and
S = { T-symmetric, T-skew-symmetric, T-even, T-odd, Hermitian, skew-Hermitian,
H-even, H-odd, T-palindromic, T -anti-palindromic, H -palindromic and

H -anti-palindromic }.
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Remark 3.2.2. Substituting s = 1 in Definition 3.2.1 corresponds to the unstructured

and the structured backward errors for a single approzimate eigenpair (see, [1]).

Remark 3.2.3. For obtaining the backward error and the perturbation matrices of differ-

ent structured matrix pencils, we take s < n.

Remark 3.2.4. The following relations are the immediate consequences of the definitions

of backward error:
nw,F(Alz& T1:sy L) S nzsu,F<>\1157 T1:s, L)7 ?:1?}5{ nw,F()\i7 L, L) S 77w,F(/\1:s; T1:s, L)7 and

ax WS,F(A@ r;, L) < US;,F()‘l:w T1ss, ).

3.2.1. Construction

For the establishment of the backward error analysis of specified eigenpairs, we need

the following constructions.

1. Let y, € C*. Then N¢(y,) € C**("*+0)/2 ig defined by

(3.3) N(y,) := [Nf(yp) . NZ—(l—e)m(yp) , forp=1:s.
For € = 1, define N}(y,) € C™" N}(y,) € C**=Y and Nl(y,) € C" as follows:
: 1 (0 0 ... ... 0]
1,2 .3 n
Yyp Y Y - Y T
P 11’ b b yeous Yy o Yy 0
0y, 0 ... 0 )
1 1 1 0 42 0 ... 0 1 0
Ni(yp) =0 0 gy, ... 0,Ny(y):= ) ;and N, (yp) == |
o ' 0 0 vy, ... 0
- ' - yr
0 0 0 ... ¢y} =P
- = (0 0 0 ... 4]

Similarly for € = —1, define N; !(y,) € C™*™=Y N1 (y,) € C™*=2 and N, (y,) €

C"™ as follows:

yg yg’ e Yy 0 0O ... O
—yzl, 0 B ¢ yg yf; e Yy
1 2
Ny, = 0 —Yp ...1 (,) Ny = —y? o2 .0 |
; 0 -y, ... 0 -y, ... 0
: : : 0 : c 0
0 0 0o ... —y; | 0 0o ... —yf,_




and
—1 T
N2 (Yp) =10 0 ... yp —y{:*l] :

Remark 3.2.5. Superscript “—17 in N~(y,) is only for notational point of view.
It should not mismatch with the inverse of N(y,).

2. Matrices C' := (¢;;) and D := (d;;) are defined in the following manner:

1 when 7=, 1 when ¢=j.

C—{\% when ¢ # j, D—{\/ﬁ when ¢ # j,

3. Let A; = (ajum) € C",0A; = (da;n) € C**", and w; be nonnegative real number

for j = 0,1. Then for e = &1, we define A5 = w;vec(dA; osgn A;jo D, €) as follows:

wj (56Lj711 SgN ;11

V2w; §a;195gn a1 V2w;da; 155N @19

\/§wj5aj71n SgN G5 1n \/§ wj5aj71n SgN A5 1n

Al w; 0a; 22 SN A 22 e \/ﬁwjéaj,gg SgN a; 23
J j .
\/ij5aj,23 SgN A 23 :

\/§ U}j5aj72n SgN A j on

\/§wj(5aj72nsgn ajon

_\/5 W;j0aj (n—1)n SN A, (n—1)n |

W5 005 nnSEN Aj

4. For € = +1, define vec(sgn A; o C, ) € C"*+/2 a5 follows:

V2 V2
vec(sgn A0 C,1) = [sgna;i, ..., TSgn Ajins - - - SEN A} (n—1)(n—1)> TSgn j,(n—1)n> SEN aj,m]T,

vec(sgn A; o0 C,—1) = 7[sgn Aj12, - SEN Ajin, - - -, SN A} (n—2)(n—1), SN U} (n—2)n, SN aj,(n,l)n]T.

We use the above terminologies in the subsequent sections for the development of pertur-

bation theory of different structured matrix pencils.
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3.3. Perturbation on 7T-symmetric and 7T-skew-symmetric matrix
pencils with s-specified eigenpair(s)

This section deals with the perturbation theory and the backward error analysis of
matrix pencils in which both the matrices are T-symmetric/T-skew-symmetric. Fur-
ther, backward error results are obtained for a single approximate eigenpair and two-
approximate eigenpairs. Before stating the theorem, let 0 # z, € C" and 0 # \, =
(Apos Ap1) € C*\ {(0,0)} for p=1:s. Then we define

Nip MNi
N5, NS )
(35) N¢ = ‘20 ‘21 c Csnx(n Jren)7

N Na
with N, = wj_l)\ijE(xp)diag(vec(sgn A;oCe€)), where N°(x,) is defined by (3.3).

Now, we introduce the following two important lemmas, which are useful for deriving

the main result of this section.

Lemma 3.3.1. Let 64 = (da;;) € C™" be a symmetric matriz, x = [z',2%,...,2"|" €
C™, andb=[b',0?,...,0"|" € C". Then §Ax = b is equivalent to N'(x)vec(§A) = b, where
vec(0A) = [6air, ..., 001,002, ..., 000, ..., 0G(n—1)n-1); OC(n-1)n; Sana)t, and N(z) is
defined by (3.3).

Proof. Expanding § Az = b, we get the following n equations:

5@111'1 + 5&12£L‘2 + -+ 5@1(71_1):3(”*1) + 5a1n$n — bl7

(5&121’1 + (5&221’2 + -+ 5@2(n,1)$(n_1) + 5612”1’” = b2,

Sa1nx’ + 0agn2® + -+ + 00 (n_1)nt ™Y + S x™ = b

Further rearranging these equations by writing d A in vector form, we get N'(z)vec(dA) =
b, which is required. W
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Remark 3.3.2. Similar to the symmetric case, we can obtain the result for skew-symmetric
matrices. For skew-symmetric matriz A, N=1(x) is defined by (3.3), and vec(§A) =
[0ara, . .., 0a1n, 0ags, . .., 8G2, - - ., 0Q(m—2)(n-1), 0Q(n—2)n: OQ(n—1)n)" -

Lemma 3.3.3. Let A,0A € C™™ be symmetric matrices and z,b € C". Then (0A o
sgnA o C o D)x = b is equivalent to N'(z)diag(vec(sgn Ao C,1))¢ = b, where N*(z) is
defined by (3.3), ¢ = vec(6Aosgn Ao D) and C, D are defined in Subsection 3.2.1.

Proof. Since §A o sgnA = (da;; sgn a;;), on considering (64 osgnA o C' o D)x = b, we get

the following n equations similar to Lemma 3.3.1

sgnaiz

N AL (V26a1,)(

)al 4 dage sgn ager? + - - - + (\/§5a2n>(

SgNn Ay,
(5ansgn CLllilfl + (\/55@12)( g—l

sgn ajs
(V20a12)( 7

Jz" = b,
sgh da,

V2

)l,n — b2’

Sgn sy,

V2

sgn ayy,

V2

(\/§5a1n)( )1’1 + (\/iéagn)( )x2 + .. 4 5annsgn annxn = ",

Further rearrangement gives N'(z)diag(vec(sgn A o C,1))¢ = b, which is required. W

Remark 3.3.4. For more clarity, we present the proof of Lemma 3.3.3 for n = 3.
Consider (JAosgn Ao C o D)z = b, we get

1 V2 V2 xt bt
ol|v2 1 V2 22| = [b?
3 3

7 V2 V2 1 €T b

dair darz daiz sgnaj; sgnajz sgnais

daiz Oagy Odags| © |sgnajz sgnage sgnagg| ©

— = 5‘}—‘
SN N

sk -

daiz dagz dasz sgnajz Sgnagy SgNas3

Expanding the above expression, we get the following three equations:

sgnaiz

V2

ot 4 Sagg sgn ags 1 + (V2 dags)(

SgN ay3

V2

SgN a3 >$3
V2

Jz? + dazz sgn agzx® = b3.

(5&11 sgn CL11$1 + (\/55@12)(

)$2 + (\/55@13)( )$3 = bl,

sgnaia

(\/55@12)( = 52,

&

Sgh a1 Sgu g3

)a! + (V2 dags)( /3
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By rearranging the above equations, we get

[ dayisgnay ]
222 23 0 0 0 \/iéalgsgnalg bt
V2 6a38en a
(3.6) 0 2" 0 22 2% 0|Y BRI e
0 0 28 0 22 48 Oazsgn azy b
V2 6agssgn as;
L 5a338gna33 )
where
sgnai 0 0 0 0 0
sSgnai2
0 0 0 0 0
0 \f Sehais 0 0
Y = V2
0 0 0 Sgn agg 0 0
Sgn as3
0 0 0 0
V2
0 0 0 0 0 sSgn ass

System (3.6) is the same as N*'(z)diag(vec(sgn Ao C,1))¢ = b.

Remark 3.3.5. For the skew-symmetric case diag(vec(sgn Ao C, 1)), and N'(x) have to
be replaced by diag(vec(sgn Ao C, —1)) and N~(x), respectively.

Now we state and prove the main result of this section in the light of the above
lemmas. Throughout this section, € = 1 represents the T-symmetric case, and € = —1

represents the T'-skew-symmetric case.

Theorem 3.3.6. Let L € L(C™") be a T-symmetric/T-skew symmetric homogeneous
matriz pencil of the form (3.1). Let (\,,x,) be the s(s < n) approzimate eigenpairs
of L with A\, = (M\po, A\p1) € C*\ {(0,0)}, and 0 # x, € C" forp =1 : s. Set r :=
[r? rf oot T, where r, := —L(\y)z, forp=1:s. If N (defined in Equation 3.5)

has full row rank, then the backward error is given by
Mo, (Mes T1s, L) = [[ NN N

A minimizing T'-symmetric/skew-symmetric matriz pencil 0L € L(C™*™), such that (L(\,)+
OL(A,))z, =0, is of the form dL(a, B) := adAg+ B0 Ay, where §A; = (da;jqw), for j = 0,1,
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are given by

X swy A (sen ay ) (Thel oy, + €Thery (oo (NNl for £k,
Yo P (p-1) (p—1)
-]7 -

> et %wjﬂxpj(sgn ajvtk)f’;ea(pfl)n(NCNEH)*lr, for t=k.

Here eyt (p—1)n; €4 (p-1)n € C*.

Proof. For the given s-approximate eigenpairs (\,,z,) of matrix pencil L, we need to
construct 0L € L(C"*") which preserves sparsity such that (L(\,) + 0L(\,))z, = 0. By
assumption L(A,)z, + 7, = 0, for p = 1 : s. Then r, = 6L()\,)z, = Z;:o Api0A;x, =
(Apo 0 A0 + Ap10 A1)z, = (ApodAg 0 sgndy + A\,;10A; o sgndy)x,, where JA; are replaced
by (0A; o sgnA;) to maintain the sparsity in the perturbed matrices. Now, we have

Ty = Zl Api(0A; o sgnd;j)z, = Zl Api(0A; o sgnA; o D o C)x,. Further, we get

=0 =0
Ty = Z;:O ijj’l/\pj(éAj o sgnd; o Do C)x,. Finally rearranging r, by using Lemma
3.3.3, we get 1, = Z;l':o w; ' Ay Ne(z,)diag(vec(sgnd; o C,€))AS = Zjl':o N5;AS, where

A§ = wjvec(dA; osgn Aj o D, ¢) is a column vector defined in Section 3.2.1, and Ny, =

w; ' Ay N¥(z,)diag(vec(sgn A;oC, €)). Here N¥(z,) € Crx*+em)/2 diag(vec(sgn A;0C, €)) €
C(n2+en)/2><(n2+en)/2’ and A; c C(n2+5n)/2‘

T
Using r, = Z;l‘zo N;;AS, Ny = [N;O N;J and A€ = [AET AET} , we get r, =
NyA® For p=1:s, we get the following system of equations:

€ € AB
, 1o = N5A® = [Nfo NEJ As ,o.., and ry =

1

Af

o= NjAC = [Ng, N .
1

N:AC = [N o N 561] . On writing these s equations in the combined form, we get

Af

1 Ny N

T NS, NS A¢
(37) N R

: A§

T's Ng Ng

By Equation 3.7, we have r = N°A¢ and under the assumption that N€¢ is a full row
rank matrix, the minimum norm solution of r = NA€ is given by A€ = N“¥(NNH)~1p,
Expanding the first N in the minimum norm solution, we get the desired entrywise
perturbations of matrices 0 A;, and the backward error in Frobenius norm case is given by

18 #(Mis, T15, L) = ||0L |0, where

IOLI, » = willdAolE + willdALE: = |A[E, # = INT (N N) 3.
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In particular, the backward error, when N€ has full row rank, is given by
ni,F(Allsu L1:s, L) = HA€”F - ||NEH(NEN€H)_1T||F'

Now we need to show that (L(\,) 4+ 0L(\,))z, = 0 for p=1: s, for this consider

(L()\l) + 5L()\1))ZE1 —-r1 + 5L(>\1)$1 -1 _Nf_ -7 1
(L(/\Q) -+ (5L()\2)).CCQ —T9 + (5L()\2)1‘2 —7T9 N2€ —79 72
= = + A€ = + =0,
| (L(Xs) + O6L(As))zs | | —7s + OL(Ag)xs | |7 ] | V¢ | | —7s | |75 |
T
where OL(\,))z, = NgA, for p = 15 s, N = [N NgT ... NT|, and A7 =

N6H<N6N6H)—1T_.

Remark 3.3.7. When N€ is not a full row rank matriz but Equation 3.7 is consistent,
then using Theorem 1.2.6 and singular value decomposition, we get N¢ = UV and

the minimum norm solution A¢ = VX TUr. The backward error is given by
UE,F()\LS; T1:ss L) = HVGZEJrUGHTHF'

Here U,V are unitary matrices and X contains the singular values of N€. In this case,
we can not get the general formula for the perturbed matrixz entries because singular value

decomposition of N is not known explicitly.

Remark 3.3.8. If Fquation 3.7 is inconsistent, i.e. rank(N€¢) # rank([N€,r]), then a
manimal perturbation matriz pencil does not exist. In this case the backward error is given

by 775;,17()\1:57 L1:s, L) = OQ.

Now we present the backward error results for two approximate eigenpairs and a
single approximate eigenpair by the following corollaries. The obtained result for a single

approximate eigenpair will be the same as the existing result of [87, Theorem 2.

Corollary 3.3.9. Let L € L(C"*") be a T-symmetric/T-skew-symmetric homogeneous
matriz pencil of the form (3.1). Suppose (A1, x1), (A2, x2) are the approximate eigenpairs
of L with 0 # x, € C" and A\, = (Ao, A\p1) € C*\ {(0,0)} forp=1,2. Set r = [rlT TQT}T,
where 1, == —L(\y)z, for p = 1,2. If N¢ (defined as below) has full row rank, then the

backward error is given by

ntsu,F(/\LQv X1:2, L) = “NEH(NGNEH)_ITHF'
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A minimizing T-symmetric/skew-symmetric 0L € L(C™*™), such that (L(\,)+0L(\,))x, =
0, is of the form dL(a, 5) := adAg + BIA;, where 0A; = (dajqy) for j = 0,1, are given by

swi 2 (sgn aj ) [ (Thel + exiel) + hoj(Thel |+
6ajatk = 6x26k+n)](N€N€H> r, fO’I” t 7é k?
%wﬁ(sgn aju) [ MZRel + Nojahel J(NNMYtr, for t=k,

N¢, Nt
where N¢ = [ 10 1
N3y Ny

€ C2nx(n*+en) g defined in Theorem 3.3.6, and ey, €k, €xin, €rin €

cm.

Proof. Substituting s = 2 in Theorem 3.3.6, we get the desired result for two specified
ergenpairs.
After obtaining the backward error result for 2-specified eigenpairs, now we establish the

result for a single specified eigenpair which coincides with the existing result.

Corollary 3.3.10. Let L € L(C™*") be a T-symmetric/T-skew-symmetric homogeneous
matriz pencil of the form (3.1). Let (A1, x1) be an approximate eigenpair of L with 0 #
1 € C" and \; = (Ao, A1) € C*\ {(0,0)}. Set vy := —L(\)xz1. If N¢ (defined as below)

has full row rank, then the backward error is given by
Mo.r(\y 1, L) = [NH(NN) e

A minimizing T-symmetric/skew-symmetric 6L € L(C™ ™), such that (L(A1)+dL(\))z; =
0, is of the form dL(a, ) := adAg+ BO A1, where 6A; = (dajw), for j =0,1, are given by

S %w]-_2X1](xlet +extel (NN "y (sgnaju), for t#k,
J - _
Lrew 2N (sgn aj ) Trel (NCNH) 1y for t=k,

here N¢ = [Nfo Nfl] € Crx(n’ten) ;o defined in Theorem 3.3.6 and ey, e, € C™.

Proof. Substituting s = 1 in Theorem 3.3.6, we get the desired result for homogeneous

matrix pencil case of [87, Theorem 2|. B

Remark 3.3.11. To obtain zeroes at the desired places in the perturbed matrices 0A;, j =
0 : 1, one can replace sgnA; by sgn L; in Theorem 3.3.6. Here L; = (l;) € R™™ and
L = 0 if we require da;y, = 0, else lj 4 = 1.
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3.4. Perturbation for Hermitian and skew-Hermitian matrix pen-
cils with s-specified eigenpair(s)

In this section, we discuss the perturbation matrices, and the backward error formula
for one or more approximate eigenpairs for Hermitian and skew-Hermitian matrix pen-
cils. Before we state and prove the main results of this section, let 0 # z, € C", )\, =
(Apos Ap1) € C*\ {(0,0)} and Ct+n+2n(p—1);s Ct+2n(p—1)s Ch+n+2n(p—1); Ck+2n(p—1) € C*". Con-
sider ¢pj o 1= (€rr2n(p-1) + €erntanp-1))" (G5 — i) + (€rt2np-1) — i€hintonp-1)" (egy; +
iehl), Gpj = R(Apip), hpj 1= S(Npzp), g5 := R(\pszy), hiyy i = S(Nyyzp) for p=1: s and
t,k =1 :n. Define

Niy Np
N§, NS

(3.8) New= |2 T e e

€ €
_NSO Nsl_

N(gps) =Ny AjoC,
where Nj; = wj—l [ (993) ( m)] diag ([ vec(sgnd; o Ce)
N<(hp;)  N7(gp;) vec(sgnd; o C, —e)

constructed by (3.3). Throughout this section, ¢ = 1 represents the Hermitian case, and

),forj:(),l, are

€ = —1 represents the skew-Hermitian case.

Theorem 3.4.1. Let L € L(C™") be a Hermitian/skew-Hermitian homogeneous ma-

triz pencil of the form (3.1). Let (\y,x,) be the s(s < n) approzimate eigenpairs of

L with 0 # x, € C" and N\, = (Mo, M\p1) € C*\ {(0,0)} forp = 1 : s. Set r :=

[%(rl)T S(r)" o R S(r)T T, where r, = —L(\,)xp, for p =1 : s. If N¢

(defined in Equation 3.8) has full row rank, then the backward error is given by
Ma.r(Miss D16, L) = [N (NNE) .

A minimizing Hermitian/skew-Hermitian matriz pencil 6L € L(C™*™), such that (L(\,)+
OL(Ap))x, =0, is of the form éL(«, B) := ad Ao+ B6 A1, where 6A; = (da;qu), for j =0,1,

are given by

(sgnaju) 3 py Vewy (gm CttL=cn(2p— 1)+%2n(p71) + €hy,

T € eT —
€t Lten(2p—1)+ 5520 (p— 1))(N N fort =F,
(sgna;u) Zp_l ;w] Cpj, tk(NeNeT) fort # k.

Here e; € C**™ for any i € N.

56Lj7tk =
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Proof. For the given s-approximate eigenpairs (\,,z,) of matrix pencil L, we need to
construct minimal norm sparse 6L € L(C"*") such that (L(\,) + dL()\,))z, = 0. By
assumption L(Ay)z, + 17, = 0 for p = 1 : 5. Then r, = dL(\,)z, = Z;:o Api0Ajz, =
Z;:o(%(éAj)"‘i%(éAj))(%()‘pjxp)‘i‘i%()‘pjxp)) = Z;:O R(6A;) R(Apjwp) —S(6A;)S(Apjzp)
+ US04 R(Apjzp) + R(6A;)S(Apjap)) = Z;:o[%(aAj)%()‘pjxp) — S(04;)S (M) +
1(S(0A;)R(0A;) + R(6A;)S(Apjxp))] osgn Aj o Do C = R(rp) +i3(r,), where

(3.9) R(rp) [R(0A;)gp; — S(0A;)hy] o (sgnd;) o Do C,

J

(3.10) 3(rp) = Y [R(OA )y + S(54;)gp5] © (s814;) 0 D 0 C,

5=0
for p =1 :s. By applying Proposition 1.2.21 and Proposition 1.2.22 for Hermitian (skew-
Hermitian) case, we get that R(0A;), I(0A;) are real symmetric (skew-symmetric) and
real skew-symmetric (symmetric) matrices, respectively. Now separating the unknown

and known variables in (3.9) and (3.10) by using Lemma 3.3.3, and Remark 3.3.5, we get

)AE?

] for j = 0,1. Writing s equations in the

the following system for p=1:s

R(r,) N (gy) N ()] vec(sgnA; o C, e)
— W dia
%m»] 2 ] g([

N¢(hp;)  N7(gp;) vec(sgnd; o C, —¢)

vec(R(0A;) osgn A; 0 D)
where AS = w

vec(S(dA;) osgn A; o D, —¢)
combined form, we get

E I :

N Ni, Nj
I(ry) . . .
(3.11) : — N?O N_21 A
Af

§R(7a8)
Ny Ng
%(TS) - -

If N€ has full row rank, then solving the above system in the least square sense, we get

A= NT(NNT)™ [&e(rl)T ST .. R S|

The backward error in Frobenius norm case is given by 03 (A, Z1:5, L) = ||0L]|w,r, where

1
I6Llwr = | D w?l8A|E = INT(NNT) ]l
=0
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After obtaining the result for the general case, now we state the following corollary for a

single approximate eigenpair, which is immediate from Theorem 3.4.1 for s = 1.

Corollary 3.4.2. Let L € L(C"*") be a Hermitian/skew-Hermitian homogeneous matric
pencil of the form (3.1). Let (A1, x1) be an approximate eigenpair of L with 0 # x; € C"
and A1 = (A0, M1)) € C?*\ {(0,0)}. Let ry := —L(A\)xy. If N¢ (defined as below) has full

row rank, then the backward error is given by
Ma.r(Ar, 21, L) = [NT(NND) .

A minimizing Hermitian/skew-Hermitian 0L € L(C™*™), such that (L(A1) + 0L(A1))zy =
0, is of the form 0L(«, B) := adAg+ B0 Ay, where 0A; = (da;), for j = 0,1, are given by

w;?(sgn ajy) (gijea%n + hﬁjea%n) (N NY~Yr for t=F,

5aj,tk =
%w{Q(Sgn aj,tk>clj,tk(N€N6T)_1rv Jor t#Fk,

here cju, = (e + iet+n)T(gfj - ihlfj) + (e — i€k+n>T(EgL’ + iehﬁj)u and N¢ = [Nfo Nfl} €
C22* gyith, Niy, N7, are defined in Theorem 3.4.1.

3.5. Backward error for T-even and 7T-odd matrix pencils with
s-specified eigenpair(s)

In this section, we discuss the backward error analysis of matrix pencils of the alter-
native structures, i.e., Ag, A; € C™" are symmetric and skew-symmetric, respectively
for T-even case and vice-versa for T-odd case. Before moving to the main result of this

section, we define the matrix N€ as follows:

Nip Nyff
NE - NQEO Nz_lﬁ snx2n? € -1 € ;
= 1 eC such that Nj, = w, Ao N(z,)diag(vec(sgn Ag o C,¢))
Nio Ny

and N, := wi ' A1 N¢(,,)diag(vec(sgn Ay o C, —¢)) are defined in Equation 3.3. Now we

state and prove the theorem for T-even/T-odd case.

Throughout this section, ¢ = 1 and ¢ = —1 exhibit the T-even and T-odd cases,

respectively.
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Theorem 3.5.1. Let L € L(C™™™) be a T-even/T-odd homogeneous matriz pencil of

the form (3.1). Suppose (\,,x,) are the s(s < n) approzimate eigenpairs of L with
T

0 # z, € C", and X\, = (Mo, Ap1) € C2\ {(0,0)}. Set r := |¢T I .. rST] , where

rp = —L(\,)xp, forp=1:5s. If N (defined as above) has full row rank, then the backward

p

error 1s given by

M (Mg, P16, L) = [N NN,

A minimizing T-even/T-odd 0L € L(C™"), such that (L()\,) + 6L(\,))z, = 0, is of the
form SL(a, ) := adAg + SIA1, where 6A; = (dajw), for j = 0,1, are given by

(')‘ao y = { przl %U)O_2Xp0 (Sgn aO,tk)(f];€f+(p_l)n + gf;6£+(p_1)n>(NeNeH)—1T7 fOT‘ " ?é k),
tk —

> ot Hewg Ao (sgn agjtk)f’;etﬂ(pfl)n(NENEH)’lr, for t=k,

day 4 = { Zzzl %wl_2xp1 (sgn al’tk)(flljetTJr(pfl)n - efztoeer(pfl)n)(NENEH)_l?‘, for t#k,

22:1 %wﬁxpl(sgn alytk)T’;etTjL(p_l)n(NeNEH)_lr, for t=k

Here eyt (p-1)n; ert(p-1)n € C.

Proof. For the given s-approximate eigenpairs (\,, x,) of the T-even (T-odd) matrix pencil
L, we need to construct minimal norm 0L such that (L()\,)+dL(),))z, = 0. By assumption
L(\,)z, + 1, = 0, for p = 1 : s. For sparsity, we replace dA; by (§A4; o sgnA;), then
rp = OL(Ap)z, = Z;:O ApjOA Ty = Z;:O Api(0 Aj o sgn Aj)ay = 231:0 Apj(0Aj 0 sgnA; o
D o C)x,. Let Aj = wovec(dAgosgnAjo D e), and AT = wyvec(dA; o sgnd; o D, —e).

Then similar to previous theorem, we get

rp = wy Ao N(zp)diag(vec(sgn Aj o C,€))A§ + wy " A\p1 N~ ¢(z,)diag(vec(sgn Aj o C, —e)) AL €

rp= NSA§+ NATS = NEAC,

Combining the above s equations for p =1 : s, we get r = N°A°. Perturbation matrices

and backward error for the T-even/T'-odd case are obtained similar to Theorem 3.3.6. W

Remark 3.5.2. For the T-odd case (e = —1), NZ;)I s constructed according to the skew-

symmetric case, and Npl1 15 constructed according to the symmetric case.

Remark 3.5.3. The difference between T'-symmetric, T -skew-symmetric, Hermitian, skew-
Hermitian, T-even/T-odd, and H-even/T-odd cases is the construction of matriz N€

which 1s of different sizes for each structured matriz pencil.
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3.6. Perturbation analysis for H-even and H-odd matrix pencils
with s-specified eigenpair(s)

Similar to the above section, this section deals with the backward error analysis of
one or more approximate eigenpairs for H-even and H-odd matrix pencils. For stating
the main theorem of this section, let 0 # x, € C", A, = (M\po, \p1) € C*\ {(0,0)}, and
Cht2n(p—1)1 Cit2n(p—1)5 Chtnt2n(p—1)» Citnt2n(p—1) € C?>n" forp=1:s,and t,k =1:n. Next,

consider the following notations as follows:

Cpo,tk = (et+2n(p—1) + i€t+n+2n(p—1))T(g£0 - 1h§0) + (6k+2n(p—l) - i€k+n+2n(p—l))T(€g;0 + iEh;O)7
Cpltk = (et+2n(p71) + iet+n+2n(p71))T(g§1 - ihl&)+ (€k+2n(p71) - iek+n+2n(p71))T(_€g;1 - iﬁhfn),
and gp; := R(\yzp), hpj = I(Apyap), and gl := R(\yah), by = S(\p),). Further, we

» '"pg
define

(3.12) N¢:= e CFnxn?,

€ R
where ij =

Ngy;) —N7(hy, A;joC

;1 [ (9ps) ( P])] diag ([ vec(sgnd; o C,€) ) for j — 0,1, are
Ne(hy;)  N7(gp))

defined by Equation 3.3. Now we state the following theorem for H-even/T'-odd case.

vec(sgnd; o C, —¢)

Throughout this section, € = 1 and € = —1 exhibit the H-even and H-odd cases, respec-

tively.

Theorem 3.6.1. Let L € L(C™™) be a H-even/H -odd homogeneous matriz pencil of the
form (3.1). Suppose (\,,x,) are s (s < n) approzimate eigenpairs of L with 0 # z, € C",
and Ay = (Mo, Ap1) € C*\ {(0,0)}. Set r := [é}k(rl)T S(r)" o R S(r)T T,
rp = —L(\p)zp, for p=1:s. If N¢ (defined in Equation 3.12) has full row rank, then

the backward error is given by

nzsv,F(ALSu L1:s, L) = HNET(NEN€T>_1T“F'
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A minimizing H-even/H-odd 0L € L(C™*"), such that (L(X\,) + dL(\,))z, = 0, is of the
form dL(a, ) := adAg + SIA;, where 6A; = (dajw), for j = 0,1, are given by

s —2( t T t
(sgnag) Zp:1 Vewg (gp06t+%n(2p,1)+%2n(p,1) + Ehpo

— T enel\—1 —
dag ik = et+%n(2p—1)+%2n(p—1)) (NN )~ r, fort =k,
(senao) D)y Twy 2 cpo ik (NEN) 1, fort # k,

s — 2( ¢ T ot
(sgn ay i) szl\/ €W, <9p16t+%n(2p_1)+%2n(p_1) ehy,y

— T e nel\— —
day = et+%n(2p71)+%2n(p—1)><N N1y, fort=k,
(Sgn al,tk) 22:1 %wl_QCpl,tk(NGNGT)ilra fO’I" t 7é k.

Here e; € C**™ for any i € N.

Proof. The proof follows immediately from Theorem 3.4.1 and Theorem 3.5.1. W

After obtaining the results for T-symmetric/ skew-symmetric, Hermitian/ skew-Hermitian,
T-even/odd, and H-even/odd matrix pencils, we present the backward error analysis of
T-palindromic/T -anti-palindromic, and H -palindromic/H -anti-palindromic matrix pen-

cils in the following section.

3.7. Perturbation analysis for palindromic matrix pencils

To understand the backward error analysis and the perturbation theory of palindromic
matrix pencils, we define matrices M€(\,,y,), which are obtained by the given approx-
imate eigenpairs (\,,¥,), where A\, = (A, \p1) € C*\ {(0,0)}, and 0 # y, € C" for
p = 1 : s. For construction of M¢(\,,y,), we need to understand the construction of
matrices M(y,) for e = 1, —1, where M*(y,) € C™™ and M~'(y,) € C"™"*. Superscript
'—1" in M~!(y,) is only for notational point of view. It should not mismatch with the

inverse of M (y,).

1. For deriving the backward error formula of specified eigenpairs, we define the ma-
trices M*(y,), M~(y,) and M¢(\,,y,) for p=1: s as follows:

My = | Mi(y) o M) and M7 () = M7 y,) o My ()]

MO ) = [ Ao M (5) + N M 1) - oM () + A M (35)]

For € = 1, define M} (y,) € C"™, M, (y,) € C"*" and M} (y,) € C™*™ as follows:
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y;yzyg...yg 0O 0 0 ... 0
0O 0 0 ... 0 y;yiy;’...yg
Mi(y,)=10 0 0 ... 0|,My(y,)=]0 0 0 ... 0],
0 0 0 0 0 0 0 0
0 0 O 0
0 0 O 0
MTlL(yp>:
0O 0 0 ... 0
Y Yo Yp oo Yy

Similarly, for e = —1 define M; '(y,) € C™*™ as follows:

M (yp) = diag([y, ...y )i =1,...,n.

Aoy
2. Suppose Ay = (ap ), 0A0 = (dap) € C™™. Define A := A'OQ , where
_AOTL_
wo 0 1SN Ay i1
Ao = : , and wy is a nonnegative real number.

Wo 5ao,msgn ao,1n
T
3. Define vec(sgndo) = [sgnao,i1,---,580a0,1n, - - -,SENAQ 1, - - -, SN A nn]  for Ag = (agj) €

C™<". Here vec(sgndg) € C™. Let My = wy ' M€( Ny, yp)diag(vec(sgnAp)). Define
T
(313) ME€ = MleT MzeT o M;Ti| , where M€ e (Csnxn2'

We use the above constructions in the next subsections for obtaining the backward

error and perturbed matrices of palindromic matrix pencils.

3.7.1. Perturbation analysis for T-palindromic/7T-anti-palindromic matrix pen-

cils

This section deals with the perturbation theory and the backward error analysis of s-

specified eigenpairs of T-palindromic and T -anti-palindromic matrix pencils. Throughout
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this section, € = 1 represents the T-palindromic case, and ¢ = —1 represents the T-anti-

palindromic case.

Theorem 3.7.1. Let L € L(C"*") be a T-palindromic/T -anti-palindromic homogeneous

matriz pencil of the form (3.1). Let (A,, x,) be the s(s < n) approzimate eigenpairs of L
T

with 0 # x, € C", and X\, = (Ao, \p1) € C2\{(0,0)}. Set r:= |+T T .. rsT] , where

rp = —L(\,)x, forp=1:s. If M (defined in Equation 3.13) has full row rank, then the

backward error is given by
ni,F()‘lzsa T1:s, L) = \/EHMEH(MEMEH)_erF'

A minimizing T-palindromic/T -anti-palindromic matriz pencil 0L € L(C"*™), such that
(L(Ap) + 0L(Ap))x, = 0, is of the form dL(c, B) == adAy + B0 Ay, where §A; = (0a;u),
for 3 =0,1, are given by
5 — { Dt Wo (581 a50k) Ny Ty (p 1y + M- Ty (pry) (M M) M, for t 3 &,
I s — N & N = enNfeH\—
=1 Wo *(sgn jer) (Api T + 6>‘p(1*j)gvjl;)etTJr(p—l)n(]\/[ M), fort=k
Here e (p—1yn: €t (p—1)n € C. If M€ has not full row rank but rank(M¢) = rank([M¢,r]),

then the backward error is given by
ni,F()\lzsa 1.5, L) = V2|V DU |,

where U, V< are unitary matrices and D¢ contains singular values of MF€.

Proof. For the given s-approximate eigenpairs (A,,z,),p = 1 : s, of L, we need to con-
struct 0L such that (L(\,) + 6L(\,))z, = 0. By assumption L(\,)z, + r, = 0 for
p=1:s.Thenr, =0L(\,)z, = Z;:o A6 A, = (wowy " Apod Ag+wowy A1 A1)z, Since
§A; = eS AL we get 1, = (wowy 'A\podAg 0 sgn Ag + ewowy ' A0 AL o sgn Al)x,. Let Ay =
wovec(§Ago sgn Ap). Then r, = [wy Ao M (z,) +ewy Ay ML (z,)] diag(vec(sgn Ag)) A =
wy ' Me(\p, x,) diag(vec(sgn Ag)) Ag = MSA,, where

M = [wy ' Apo M () + ewy ' Ay M~ ()] diag (vec(sgn Ap)).
On writing r, = MyA, for p=1:s, in the combined form, we get

T T
(3.14) [TIT rf o TT} Z[MfT Mgt M A

s

If M€ has full row rank, then in the least square sense, we get the minimal solution

Ag = M (MM)~1r, If M€ has not full row rank and Equation 3.14 is consistent, then

Ay = VeD U, Here U¢, V¢ are unitary matrices of appropriate sizes and D contains

the singular values of M¢. Now using equation Ay = M?(MM?)~1r and expanding
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the first M<?, we get the desired entrywise perturbations. Backward error in Frobenius
norm case is given by 19 p(Ars, Z1:5, L) = [|0L||w,r, where [0L||2, 5 = Z;:o w6 A;]|% =
2w (|6 Ao||%. Then [|SL||2, = 2|[Aolf3 = 2[| M (M<M")~'r||3. For full row rank M,

the backward error is given by
M (Miss 1, L) = V2 M (MM || .

When M€ has not full row rank but Equation 3.14 is consistent, then the backward error
is given by 7S 5 (A1, @155, L) = V2|[V<D U r||. Similar to Theorem 3.3.6, we can easily
see that (L()\,) +dL(\,))z, =0forp=1:5. 1

Remark 3.7.2. If M€ is not a full row rank matrix but Equation 5.14 is consistent, then
explicit formula for the perturbed matrix pencil is not possible, though we can construct

the perturbed matrices using singular value decomposition.

Remark 3.7.3. If Equation 3.1/ is inconsistent i.e. rank(M¢) # rank([M¢,r]). Then

a minimal perturbation matriz pencil does not exist, and the backward error is given by

ni,F()\lzsa L1:ss L) = OQ.

For simplicity, we state the following corollary for two approximate eigenpairs, which

is immediate from Theorem 3.7.1 for s = 2.

Corollary 3.7.4. Let L € L(C™™) be a T-palindromic/T-anti-palindromic homogeneous
matrixz pencil of the form (3.1). Suppose (A1, x1), (Ao, x2) are two approzimate eigenpairs
of L with 0 # z, € C", and \, = (M\po, \p1) € C2\{(0,0)}, forp =1,2. Setr, := —L()\,)x,.
If M€ (defined as below) has full row rank, then the backward error is given by

My r (A2, 212, L) = V2| M (M M) || .

A minimizing T-palindromic/T -anti-palindromic 0L € L(C" "), such that (L(\,)+0L(\,))x,

0, is of the form 0L(«, B) := ad Ay + BIA;, where §A; = (daju) for j = 0,1, are given by

(

wo ? (sgn aju) [(MyThel + edig—yTiel) + (Aoa5ef,+
5@ 6)\2 1- ])w26k+n)](M€MEH) fO’f’ t 7& ka
th = -
’ wy 2 (sgn aj ) (AT + eAl(l,j)xﬁ)ef + (A20Th+
\ A Th)el, J(MeMT) "y, fort=k.
MG
Here M€ = [M1] e C>"* such that Mg = wy ' M¢(\p, x,)diag(vec(sgndy)) for p=1,2.
2

67



Similar to the T-palindromic/T-anti-palindromic case, next we obtain the result for

H -palindromic/H -anti-palindromic matrix pencils. B

3.7.2. Perturbation analysis for H-palindromic/H-anti-palindromic matrix pen-

cils

Before we prove the main result of this section, let z, € C*, A\, = (Mo, \p1) € C*\
{(0,0)}. Define g,; := R(A\pjwy), hyy = S(Apjwyp), gy = R(Apsah), by i= (), for
7=0,1,p=1:s,and t,k =1 :n. Define

M(gp) = | M (g0) + M (gpn) - Mb(gp0) + €My ()]
M(hy) = [ M (hyo) + M (hyr) . MY (hyo) + My ()]
and
M g [M%gp) —MG(@)] ing ([vec<sgn Ao) ) |
M<(h,) M~(gp) vec(sgn Ap)
Then M€ := [MfT Mgt M;T}T e Cxn27° Now we are ready to provide the

following theorem for H-palindromic and H-anti-palindromic matrix pencils. Throughout
this section, € = 1 represents the H-palindromic case, and ¢ = —1 represents the H-anti-

palindromic case.

Theorem 3.7.5. Let L € L(C"*™) be a H -palindromic/H -anti-palindromic homogeneous
matriz pencil of the form (3.1). Let (\,,x,) be the s(s < n) approximate eigenpairs
of L with 0 # x, € C", and N\, = (Mo, Ap1) € C*\ {(0,0)} forp =1 : s. Set r :=
T
[%(rl)T S(r)" . R(r)T S(ry)T| , where ry == —L(A\))z, forp =1 s. If M€
(defined as above) has full row rank, then the backward error is given by
M (Atiss @1ss, L) = V2| M (MMT) |
A minimizing H -palindromic/H -anti-palindromic 6L € L(C™"), such that (L()\,) +
OL(A\p))x, = 0, is of the form dL(a, ) := adAg+ S6 A1, where §A; = (daju,) for j =0,1,

are given by

( D e L w2 (sgn aju) [gpse tT+2(p o T €950 j)e;‘fp+2(p—1) + hy; tT+(2p Dn
+ehy, ])6k+(2p e (= h’pjet+2(p 1 el j)€£+2(p 1)
0, = (gpjet+(2p—1)n - Eg;t)(l—j)ek—l-@p—l)n)](M6M€T) ift #k,
Z; 1w0_2(sgn aj, tk)[(g;;j +€9,t3(1—j))€tT+2(p—1)n (h +€ht ) f+(2p n
[ Hi(=hy; + Eht (1—5) )e?+2(p n +i(gp; — 69;(17j))€t+(2p71)n](MEMET) r,oift=Fk
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Here e; € C*" for any i € N. If M€ is not a full row rank matriz but rank(M¢) =
rank([M¢,r]), then the backward error is given by

Thsl‘),F()‘LSa T1:s, L) = \/§|” VEDE+U€HT”|F7

where U, V¢ are unitary matrices and D¢ contains the singular values of M€.

Proof. For the given s-approximate eigenpairs (\,, z,) of L, we need to construct 0L such

that (L(A,) + 0L(\,))z, = 0. Since §A; = €6 AL, similar to the previous theorem, we get

= 0L(\,)z, = (M\pod Ao+ MdA) T, = (M\pod Ao+ A1 0 AT )z, = Mo (R(GA0) +1S(6A0)) +
E)\pl( (0Ao) +13(340)) "]z, = [(R(0Ao) +1F(6A40)) (R(Apozp) +iS(Apozy)) + €(R(9A40)" —
iS(0A40)T) (R(Mp1p) +iS(Ap1zp))] = [(R(GAg) +iS(6Ag)) o sgnAg(R(N\por,) +iS(Apop)) +

e(R(0A0)" —iS(0A0)") o (sgn Ao)" (R(Aprap) +1S(A\pp))] = R(6A0) © sgnAeR(Apo,) +
iR(dAp)osgn Ao (Apoz,) +iS (0 Ag) osgn AgR(Apox,) — (0 Ag) osgn AgS(Apoxy) +eR(0A))
(sgn Ag)TR(Apizp) + ieR(6A0)T o (sgn Ag)TS(Apizy) — 1€S(0A0)T o (sgn Ag)TR(Ap12,)
€S(6A0)T o (sgn Ag)TS(\px,) = R(rp) +1S(rp), where

T

@)

+

§R(rp) = R(0A) o (sgn Ao)gpo + 6%(5A0)T o (sgn A())Tgpl — 3(6Ap) o (sgn AO)hpO +
6%(5A0)T o (sgn AO)Thpl,
S(rp) = R(5Ap) o (sgn Ag)hyo + e%((SAO)T o (sgn Ag)Thpl + (0 Ap) o (sgn Ap)gpo —

€3(3A40)" o (sgn Ao)" g1,

forp=1:s. Let AY = wo(R(5Ap)osgndy), and AF = wovec(I(5Ag)osgndy). Separating
the unknown and known variables similar to the previous theorem, we get the following

system for p=1: s

(3.15)  R(r,) = wy M (g,)diag(vec(sgnip)) Ay — wy ' M ~¢(h,)diag(vec(sgndy))Ag .
Similarly, we get the following system for p=1:s

(3.16) (1) = wy " M*(h,)diag(vec(sgndg)) AN + wy ' M~(g,)diag(vec(sgniy))Ag.

By combining Equation 3.15 and Equation 3.16, we get

(3.17) rﬁ(n’) ] M

S(rp)

AS‘E
AS|
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Further combining Equation 3.17, for p =1 : s, we get

R(r1)

() Ms AR
(3.18) Lo = Ag

Rrg) | |] S

S(rs)

If M€ has full row rank, then in the least square sense, we get the minimal norm so-

AR
lution A = ML (M M)~ 'r, where A = | . Then the backward error in Frobe-

N}

0
nius morm case is given by nE’F()\lisax1287L) = ||0L ||, where |||5L|Hqu = 2wd||6 Ao||* =

2w ([ROA)? + 135 40)I7) = 2MIAF(IE + 2 AFIE = 2 M (MM) " 7.0

Now we illustrate our theory by some examples and discuss its importance in solving

the inverse eigenvalue problem.

3.8. Numerical examples and discussion on inverse eigenvalue
problem

For illustration of the theory, we present an example for the T-palindromic generalized

eigenvalue problem.

Example 3.8.1. Let L € L(C3*3) be a T-palindromic matriz pencil of the form (5.1)

with the following information:

986.5689 1 1+1 986.5689 7.2 0
Ag = 7.2 3—1 0 Ay = 1 3—1 8-—1
0 8 —1 10.236 141 0 10.236

Let (A1, x1) and (Ao, x3) be two approzimate eigenpairs of L, where Ay = (12.001 +
31, ~19.66), A2 = (13.96,2 — 3i),2; = [1.01125 + 0.023,3.3,7 — i|”, 2o = [11.12,5 +
31,2.089]7, and (wo, w1)” = (1,1). By the given information, we get that M¢ has full row
rank. Then applying Theorem 3.7.1, the perturbed matrices are given by
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[8.8567 — 0.0013i —1.7026 + 1.5201i  0.4736 — 0.4314i |

§Ay = 10> x | —0.7530 + 0.2216i 0.4126 — 1.5527i 0 ,
0 0.1164 + 0.14461  —0.2834 + 0.20251

[8.8567 — 0.0013i —0.7530 + 0.2216i 0 ]

§A; = 10%x | —1.7026 + 1.5291i 0.4126 — 1.5527i  0.1164 + 0.1446i | ,
| 0.4736 — 0.4314i 0 —0.2834 + 0.20251 |

and the backward error is given by 7737F()\1:2, T1.0, L) = 935.1024. Clearly, we have 6 Ay =
§AT.

Next, we discuss the connection between inverse eigenvalue problems and backward

error theory. First, we discuss the real symmetric inverse eigenvalue problem.

Let Q(\) = A2I + A\C + K be a quadratic matrix polynomial. The inverse eigenvalue
problem is to find matrices C, K such that the given approximate s-eigenpairs (A, X)

satisfy the following equation
(3.19) XA+ CXA+ KX =0,

where A € R*** has specified eigenvalues \; € R on its diagonal and X € R"** has the
corresponding eigenvectors x; € R™ as its column. We need to construct C, K € R™*"
with C' = CT and K = K7 so that (3.19) is satisfied. Solving (3.19) is the same as solving
NIz, + \Cx; + Kz; = 0 for i = 1 : s. Further using technique of [70], we can convert
the above QEP into GEP of the form

(3.20) (Go + NiGh)y: = 0,

where G =

C K I, O \i; ) .
,Ghp = JYi = for : = 1 : s. Solution of the Problem

3.20 will provide the solution for the Problem 3.19. Problem 3.20 is the generalized T-

symmetric non-homogeneous eigenvalue problem which can be solved by Theorem 3.3.6.

We will illustrate it by an example for s = 2.

Example 3.8.2. Let (A1, x1) and (A2, z2) be two specified eigenpairs, where \y = 112.001,
Ao = —13.02, 2y = [0.01125,3.3]", and zy = [1.12,2.25]7. We construct C' = (¢;;), K =
(kij) € C**% such that Equation 3.19 satisfies. Additionally, we construct C' in such a way

that coo = 0, so that the desired sparsity also maintain. By the above discussion, we know
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that solving Problem 3.19 is the same as solving Problem 3.20. Suppose C' = Py + 0 P,

1
K=P +6P, and I, = [ . Choose Py and Py as follows:
0

0:

31.02 7.2 b 12.4500 2.0000
72 0 2.0000 0.0033]

4] o
For j = 0,1, we find 0P; using Theorem 5.5.6, where 0Py = o1 OPo,12

, and 6P, =
dposz O

5271,11 5])1,12
5]91,12 5]71,22

Remark 3.8.3. Since we can choose different Py, P; so matrices C' and K are not unique.

We also maintain the sparsity of matriz C' by choosing dpg 22 = 0.

By applying Theorem 3.3.6 along with Remark 3.3.11, we get

[ 0.3853  —0.0211 0.0076 2.2104 |
L |-00211 0 22104 —1.2539
GO = 10" x s
0.0076 22104 0 0
92104 —12539 0 0
(00001 0 0 0 |
\ 0 00001 0 0
G1 = 10" x
0 0 —0.0076 —2.2104
0 0 —22104 1.2539

Clearly Gy = GI, Gy = GT and (Go+\G1)y; = 0 fori = 1,2. Hence our theorem pro-
vides the solution for the real symmetric inverse eigenvalue problem, which also preserves

the sparsity.

Remark 3.8.4. Note that Remark 3.5.11 gquarantees that there will be no perturbation in

G'1 corresponding to the block matrix 5.

Next, we discuss an another inverse eigenvalue problem [89, Problem 1.1], which
require to construct the symmetric matrices K, M € R™*™ from the given set of eigenpairs
(i, 7;), and from symmetric matrices Ko, My € R%*4 such that Kz;—pu;Mxz; = 0,i =1 : s,
Ky = K([1,d]), My = M([1,d]), where K([1,d]) and M([1,d]) are the d x d leading
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principal submatrices of K and M, respectively. Here u; € R, x; € R®, and 1 < d,s <
n,s+d<n.

To solve this problem, we set K = Q¢ + Q9 and M = Q1 + Q1, where Qg, Q1
d n—d d n—d

. d Ko 0 d M() 0
are known matrices such that @y = , Q1= , and
n—d 0 0 n—d 0 0

dQo, 0(); are matrices to be determine. Next, in Remark 3.3.11, we choose L; = (I;4) €
R™™ in such a way that [;;, = 0 for 1 < ¢,k < r, else [, = 1 for j = 0 : 1. Now
to determine matrices 6@y, 0Q1, we apply Theorem 3.3.6 with \; = (1, —u;) along with
Remark 3.3.11. We illustrate the above discussion by the following example for n = 5,d =
2, and s = 3.

Example 3.8.5. Let (u1,21), (o, x2), and (us,x3) be three specified eigenpairs, where
= —25, py = 47,3 = 3345, x; = [0.4538,0.4324,0.8253,0.0835,0.1332)7, x5 =
[0.1734, 0.3909, 0.8314, 0.8034, 0.0605)7, and x5 = [0.3993, 0.5269, 0.4168, 0.6569, 0.62830]” .
1.2952 1.3883] . [0.2384 1.4845]

Let Ky =
’ [1.3883 0.4725 14845 1.2946

Now, as per the above discussion on applying the Theorem 3.3.6 along with Remark

3.3.11, we get

0 0 —0.4031 —0.0917 —0.3548]
0 0 —-0.4173 0.0179 —0.2725
0Qop = |[—-0.4031 —0.4173 0.1402 —0.0470 —0.4389] ,

—0.0917 0.0179 —0.0470 0.3998  0.1176
| —0.3548 —0.2725 —-0.4389 0.1176 —0.2185

0 0 —0.8050 0.1414 —0.9728]
0 0 —1.2962 0.5205 —1.6919
0Q1 = |—0.8050 —1.2962 0.9672 —0.2943 1.2353

0.1414  0.5205 —0.2943 0.0565 —0.3767
| —0.9728 —1.6919 1.2353 —0.3767 1.5871 |
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In particular, we get

[ 1.2952  1.3883 —0.4031 —0.0917 —0.3548]
1.3883  0.4725 —0.4173 0.0179 —0.2725
K = Qo+d6Qo= [-04031 —0.4173 0.1402 —0.0470 —0.4389] ,
—0.0917 0.0179 —0.0470 0.3998  0.1176
| —0.3548 —0.2725 —-0.4389 0.1176 —0.2185

[ 0.2384  1.4845 —0.8050 0.1414 —0.9728]
1.4845  1.2946 —1.2962 0.5205 —1.6919

M = Qi+0Q:= [-0.8050 —1.2962 0.9672 —0.2943 1.2353
0.1414  0.5205 —0.2943 0.0565 —0.3767

| —0.9728 —1.6919 1.2353 —0.3767 1.5871 |

Clearly, Kz; — p;Mx; = 0 for i = 1 : 3. Also K = K7 such that K, = K([1,d]), and
M = M7 such that My = M([1,d]).

Remark 3.8.6. Similar to above inverse eigenvalue problems, one can also solve the
symmetric generalized inverse eigenvalue problem of [84] which asks to construct the real
symmetric matrices Ao, Ay € C"™ with the (2d+1) diagonal from a given set of eigenpairs

(i, ;) fori=1:s. Here u; € Ryx; € R", and s <n,d < n.

To solve the above inverse eigenvalue problem, one can set A; = D; + dD;, where D;
is the known symmetric matriz with (2d+1) diagonal and §D; is the unknown matriz for
1 =1:2. Then applying the Theorem 3.3.6, we get the desired Ay and Ay. Note that the
sparsity property of D; helps us to obtain Ay, Ay € C™*™ with the (2d+1) diagonal.

For further understanding of the developed backward error theory, we present an
example of the T- symmetric generalized eigenvalue problem.

Example 3.8.7. Let L € L(C3*3) be a T-symmetric matriz pencil of the form (3.1) with

the following information:

0 1 -1 —1 0 —1.15
Ap=11 3—-i i |, A= 0 3+1 1—0.5],
-1 1 1 -1.15 1-05 —1.5

let (A1,21) and (Aa, o) be two approximate eigenpairs of L, where A\; = (112.001 4+
3, —119.0066), Ao = (13.96, —31); 71 = [0.01125+0.0231, 3.3, 8—i]”, 2 = [1.12, 31, 2.089]",
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and (wo,wy)T = (1,1). By the given information, we get that N€ is a full row rank matriz.

Then applying Theorem 3.3.6, the perturbed matrices are given by

0 —1.0155 — 0.68381  0.2128 — 0.11611
0Ay = |—1.0155—0.68381 —2.6100 + 1.4382i 0.0461 — 1.2377i |,
| 0.2128 —0.11611  0.0461 —1.23771  —0.6819 + 0.04361

[0.1182 + 0.03641 0 0.4428 — 0.3899i
0A; = 0 —1.0740 — 1.29021 —0.1225 — 1.01361{ ,
0.4428 —0.38991  —0.1225 — 1.01361 ~ 2.0809 — 0.00151

and the backward error is given by ’r],SVF(Al:Q, x1.0, L) = 5.0473.

Remark 3.8.8. From [87, Theorem 3|, we get 05 (A1, 71, L) = 2.0576, and 15 (A2, 29, L) =
4.0332. Results provided in [87] are not sufficient for obtaining the combined backward error and

perturbed structured matriz pencil, which we can get by our results.

Finally, we present an example for the T-symmetric case when N' is not a full row

rank matrix.

Example 3.8.9. Let L € L(C3*3) be a T-symmetric matriz pencil such that Ay and A,
are defined in Example 3.8.7. Let (A1, x1) and (Ag, x2) be two approximate eigenpairs of L,
where \; = (1.23 + 2i,1.001212), Xy = (1.23 + 2i,1.001212), z; = [0.0057, 0.8899, 0.999]7
and x5 = [1.25,2.121,0.2223]7. By the given information, we get that rank(N') = 5,

which is not a full row rank. Hence by using Remark 3.53.7, we get

0 —0.7315+ 0.19571  0.8631 — 0.49951
0Ag = |[—=0.7315+0.19571 —3.5604 + 1.47161 —0.0827 — 1.0940i | ,
| 0.8631 —0.49951  —0.0827 — 1.09401 —0.6774 — 0.54471

[0.0941 — 0.19641 0 0.3742 + 0.20191
0A; = 0 —1.3298 — 0.96451 0.3789 — 0.2744i
0.3742+0.20191  0.3789 — 0.2744i  0.0465 — 0.3677i

Clearly, we get that §Ay = 6AL, and §A, = SAT, which also preserve sparsity. In
this case UE’F()\LQ,.CELQ,L) = 4.9823. On the other hand, 771507F()\1,a:1,L) = 3.5515, and
T]E’F()\Q, xQ,L) =4.7769. 1
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CHAPTER 4

BACKWARD ERROR ANALYSIS OF SPECIFIED
EIGENPAIRS FOR HANKEL AND SYMMETRIC-TOEPLITZ
STRUCTURES

Abstract: In the continuation of the backward error analysis of specified eigenpairs, in
this chapter, we discuss the backward error analysis for Hankel and symmetric-Toeplitz
matrix pencils for one or more specified eigenpairs and its use in solving the inverse

eigenvalue problems.

4.1. Introduction

Hankel and symmetric-Toeplitz matrix pencils arises in many application, see [13, 14,
25, 28]. In particular, a Hankel matrix pencil arises in the shape reconstruction of
the polygon from its moments [30] and a symmetric-Toeplitz matrix pencil appears in
the estimation of sinusoidal signals in noise [74]. The coefficient matrices of Hankel and
symmetric-Toeplitz pencils belong to the class of complex-symmetric matrices. Hankel and
symmetric- Toeplitz matrices have additional properties that complez-symmetric matrices
do not have in general. For a Hankel matrix, each ascending skew-diagonal from left to
right is constant, while for a symmetric-Toeplitz matrix, each diagonal is constant. Zhang
et al. [87] have provided the backward error formula of a single approximate eigenpair for
the complex-symmetric matrix pencils, which also preserves sparsity. As per the knowledge
of the authors, the backward error analysis of Hankel and symmetric-Toeplitz matrix
pencils is not discussed in the literature. Since Hankel and symmetric-Toeplitz matrix
pencils are special kinds of a complex-symmetric matrix pencil; hence one can apply the
backward error results of complex-symmetric matrix pencils on Hankel and symmetric-

Toeplitz matrix pencils. But this provides very unreliable backward error results, because



the existing backward error results of complex-symmetric matrix pencils do not consider
all the properties of these two structures (Hankel and symmetric-Toeplitz) during the
backward error analysis. Hence to obtain the accurate backward error results, we need
to take care of the structures while doing the backward error analysis because negligence
in the structures of these structured matrix pencils’ coefficient matrices provides false

information about the computed solution, which leads to insignificant results.

Inverse eigenvalue problems deal with the construction of perturbed matrices from a
given set of spectral data, which consist of one or more eigenpairs. Backward error analysis
of Hankel and symmetric-Toeplitz matrix pencils plays an important role in providing the
solution of different inverse eigenvalue problems. For example, consider Problem 5.2 of
[21, Chapter 5], which requires the construction of a symmetric- Toeplitz matrix from given
specified eigenpairs. In the same manner one can solve Problem 5.1 of [21, Chapter-5],
which requires the construction of a Hankel matrix from a given set of eigenpairs (see, for
example, [19, 61, 79, 82| for more information on inverse eigenvalue problems). Though
in [20] Moody and Melissa have solved Problem 5.2 of [21, Chapter 5] for two specified
eigenpairs in a very descriptive manner, in this chapter, we are interested in solving this
problem for two or more specified eigenpairs. Moving further, we find that different
authors have constructed the matrix pencil from a given set of eigenpairs, which is known
as the generalized inverse eigenvalue problem. For example, in [86] the authors have
solved the generalized inverse eigenvalue problems for Hermitian and J-Hamiltonian /skew-
Hamiltonian matrices, where J € R™ " such that J> = —1I,, (see, [33, 34, 78, 84] for
more information on generalized inverse eigenvalue problems). In this chapter, we are also
interested in solving the generalized inverse eigenvalue problems for symmetric-Toeplitz

and Hankel matrices.

Hence for obtaining the accurate backward error results and solving the above inverse
eigenvalue problems, we need to develop the backward error theory for one or more spec-
ified eigenpairs. In particular, for a given set of s (s < n) approximate eigenpairs (\,, z,)
of an n-by-n matrix pencil, where )\, := (A\yo, \p1) € C*\ {(0,0)} and 0 # =z, € C" for
p =1 : s, we find the smallest structured perturbed matrix pencil with respect to the
Frobenius norm so that given specified eigenpairs become exact eigenpairs of an appro-

priately perturbed problem.
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4.2. Matrix pencils and preliminaries

Throughout this chapter, L be a matrix pencil of the form (2.1) defined in the earlier

chapters. Next, we define the Hankel and symmetric-Toeplitz matrix pencils.

Definition 4.2.1. A matriz pencil L of the form (2.1) is said to be Hankel if both the

matrices associated with it are Hankel.

Definition 4.2.2. A matriz pencil L of the form (2.1) is said to be symmetric-Toeplitz

matriz pencil if both the matrices associated with it are symmetric-Toeplitz.

Definition 4.2.3. A vector v € C" is called symmetric if J.v = v and skew-symmetric

if Jov = —v, where J. is the exchange matriz, i.e., ones on the anti-diagonal and zero
elsewhere.

Throughout this chapter, w := (wp,w;)T € R? be a nonnegative vector such that
wp, w; are nonnegative real numbers. Define w™! := (wy ', w; )T and w; ' = 0 for w; =

0. Next, we recall the definitions of unstructured and structured backward errors of s-

approximate eigenpairs for matrix pencils.

Definition 4.2.4. Consider A5 := {A1, A2, ..., A} and x1.5 = {x1,29,..., 25}, where
A € C*\{(0,0)}, and 0 # x; € C" for i = 1:s. Let (\;,z;) be s-approzimate eigenpairs
of a matriz pencil L of the form (2.1). Then unstructured and structured backward errors
of s-approzimate eigenpairs (N\;,x;),i = 1: s, are defined by
Nw.F(ALis, T1sy L) i= Inf{||0L]| w2, (L(A;) + IL(\,))z; = 0; for 1 : s},
and
e 7 (M, T15, L) := inf{||0L[lw 2, 0L € S, (L(X\;) 4+ 6L(\;))x; = 0; for 1: s},

respectively, where 0L € L(C™*™) is of the form (2.1), and ||0L||,2 is given by (3.2). Here

S denotes the set of structures, and we consider S := { Hankel, symmetric-Toeplitz }.

Remark 4.2.5. For s =1 in the above definitions correspond to unstructured and struc-
tured backward errors for a single eigenpair (see, [1] for more on backward error of a

single eigenpair).

Before moving towards the main results of this chapter first, we establish some im-
portant results related to Hankel and symmetric- Toeplitz matrices.
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Lemma 4.2.6. Let §A € C" " be a Hankel matriz generated by [dai1, . .., 0a1n, day, . . . ,6am]T.
Let x = [2Y,22,...,2"]T € C" and b = [b},b%,...,b"]T € C". Then §Ax = b is equivalent to

X (z,Hank)Vec(0 A, Hank) = b, where X (g Hank) € Cn*2n=1 s given by

2! 2 " 0 0 |
0 zt 22 " 0
X(z,Hank) =
0
| 0 0 ot 22 " |

Proof. Consider Az = b, we get

[ dary daio . 001 (n—1) dary |
days  dais . day, daoy, 1] [ ]
x? b?
0ay(n—2) 04 (n—2)n
dain-1)y --- . da(n—2yn 0Q(n—1)n _1:"_ _b”_
| dai, oo 00— 0G(—1)n  Opp |

By expanding the above system, we get the following n equations:

daprt + dapr® + ...+ 5al(n_1)x(”*1) + dap,z" = bl,

Sa122" + 0a132? + ... + a1,V + Sag,x" = V2,

Sarn® + dag,x® + ... + da(—1y, ™Y 4 daya™ = b

Further rearranging these equations by writing 0 A in vector form, we get X g pank)vec(dA, Hank) =

b, which is required. B

Lemma 4.2.7. Let 6A be a symmetric-Toeplitz matriz generated by [day, day, . . ., da,)".
Let x and b be defined as in Lemma 4.2.6. Then §Ax = b is equivalent to the following

system

Xz symToep)Vec(d A, symToep) = b,
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where X (4 symmoep) € C"*™ is given by

2t 0 0 0 0 22 2° x"
22 7! 0 0 0 22 ot z" 0
X (2,symToep) = o " +
0 x? 0 "
0 0 " 0
2" gt g2 x? :1:1_ 0 0 0 0|

Proof. The proof is similar to Lemma 4.2.6. H

After establishing the preliminary results next, we present the main results of the
chapter in the following sections. Next, we discuss the backward error analysis for Hankel

matrix pencils.

4.3. Backward error analysis of Hankel matrix pencils

In this section, we derive the backward error formula of specified eigenpairs for a Han-
kel matrix pencil. For this derivation, we need the following matrix M whose construction

is given as follows: Let w = (wg, w;)” be a nonnegative weight vector. Define

4n—2
M= T ecman?,

where M,; = w; ' Ay M(j, xp, Hank) € C™**~! for p = 1 : s, j = 0,1. Construction of
M(j, z,, Hank) will be done in the following manner using the approximate eigenpairs
(Ap, zp) of Hankel matrix pencil L € L(C™ ™) of the form (2.1), where (Ay, A\p1) = A, €
C?\{(0,0)},0 # z, € C". M(j,x,, Hank) € C"*?"~! is given by

(4.1) M (j, zp, Hank) = X(,, Hankydiag (vec(sgn A; o Cy, Hank)),
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where X, Hank) is given by Lemma 4.2.6,
\/Lisgn aj711

1
Tisgn aj712

\/n;jsgn @j,1(n—1)
vec(sgn A; o Cy, Hank) = \/Lﬁsgn aj.1n , and

1

1

/2581 A (n-1)n
1

58N Ajnn

1 1 1 11
ﬁa"'aﬁvi/n_la'“vﬁaﬁ
WV1,V2,...,v/n,vn—1,...,v/2,v/1]7, respectively. Before moving towards the derivation of

the main result of this section, we introduce the following lemma.

Cyr, Dy are Hankel matrices of size n, generated by the vectors [ﬁ, ]T,

Lemma 4.3.1. Let A,6A € C™" be Hankel matrices generated by [ayy, . .., Gin, Qon, - - - 5 Gy ©
and [dayy, ..., 01, 0Gon, . . ., 0an,|T, respectively. Let x = [z',2% ..., 2"]T € C" and
b=[b4,0% ..., 0"|T € C". Then we get that (§A osgn Ao Cy o Dy)x = b is equivalent to
X(z,Hank)diag(vec(sgn A o Cy, Hank))pg = b, where X (g wank) 15 defined by Lemma 4.2.0,
¢ = vec(0Aosgn Ao Dy, Hank), and Cy, Dy are defined in the beginning of this Section.

Proof. We have 0 A osgn A = (da;;sgna;;). On considering (0A osgn Ao Cy o Dy)z = b,

we get the following n equations similar to Lemma 4.2.6

Sansgnans’ + (vV20a12) (BE2)2% + ..+ (Vndar,) (E )" = b,
(V20a10) (£282)a! + (vV/30a13) (B242)22 + .. + (v — L0ag,)(Eete)z" = 12,

(\/ﬁaalnxsgn%)xl + (Vn — 15a2n)(sfg/%l)$2 + .o+ 0a,,8EN Appx™ = b
Further rearrangement gives X, pankydiag(vec(sgn A o Cy, Hank))¢y = b, which is re-
quired. H

Next, we derive the main result of this section.

Theorem 4.3.2. Let L € L(C™ ™) be a homogeneous Hankel matriz pencil of the form
(2.1). Let (N\p,xp) be s(s < n) approzimate eigenpairs of L, where X\, = (Ao, A\p1) €
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C?\ {(0,0)}, and 0 # x, € C". forp =1 :s. Set r := [rI vl ... 711", where r, =
—L(\y)z, forp=1:s. If M (defined in the beginning of this section) is a full row rank
matriz, then there exists a Hankel matriz pencil L € L(C" ") of the form 6L(a, ) :=
adAy + BIA; such that (L(),) + 0L(N,))x, = 0 for p =1 : s, where generator vectors

[0aj11, .-y 00510, 0j0n, - . 0a;nn]" of A5, for j =0,1, are given by

s |t—ql+1
Za—(i=1) T Hy\—1
R T e \+1 (sgnatg Z Z ATy Ve 1 oy (MM
where €14 (p—1n € C" and 1 < t,q < n. Further, the backward error is given as follows:

nzsu,F()‘lzsa T1:s, L) = “MH(MMH)_ITHF'

If M is not a full row rank matriz but rank(M) = rank([M,r]), then 0A; and backward
error can be obtained by using singular value decomposition of M. In this case the backward
error is gwen by 1% p(As, 215, L) = |[VETUHr||p, where U,V are unitary matrices of

appropriate sizes and X is a matrix containing the singular values of M.

Proof. Corresponding to a Hankel matriz pencil L(c, ) = aAy + BA;, where A; for
j = 0,1 are generated by [a;11,@j12, - -, @j1n, @j2n, - - -, @jnn)’ , and for given approximate
eigenpairs (A, x,), we need to construct a Hankel matriz pencil 0L such that (L(\,) +
dL()\,))z, = 0 which preserves the sparsity. By using Proposition 1.2.23 for constructing

Hankel §A;, we consider the following generating vectors of length (2n — 1):
{(501]"11, (5@3‘712’ c. ,(501]"1”, (501]‘72”, .. ,56Lj’nn]T, fOT j = 0,1.

We have r, = —=L(\,)z, for p =1 :s. Then r, = 0L(\,)z, = Z;l':o Apj0A;x,. For main-
taining sparsity, we replace A, by (6A4;osgn A;). Hence r, = Z;:o Api(0A;0sgn Az, =
ZJ 0 Api(0A4; 0 sgnAj o Dy o Cy)x,. We get

1
(4.2) Ty = Z w; ' wiAp;(6A; 0 sgn Aj o Dy o Cpr)y
=0
On rearranging (4.2) by using Lemma 4.3.1, we get the following system
1
(4.3) Ty, = Z w; ' Apj X (@, Hanky diag (vec(sgn A; o Cy, Hank)) A;, where

j=0
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\/iwj&zj’nsgn 511
ﬂwjéaj7lgsgn a;12

vVn — leéaj,l(n_l)sgn aj,l(n—l)
(4.4) A; = wjvec(6Ajosgn Ao Dy, Hank) = VNw;a; 1,880 a1y, ,7=0,1.

Vn — 1w;da; 2,50 ajon

V2W;0aj (5 1)nSEN A (n—1)n

\/ijéaj,nnsgn @jnn
Using Equation 4.1 and Equation 4.3, we get
1 1
(4.5) rp =Y _w; Ay M(j, 2, Hank) Ay = Y~ My Aj = MA,
=0 =0

T
where M, = []\/[0 Mpl] ,and A = [Ag AlT] . Using r, = Mp,A forp =1 : s, we

p
Ao

, Te = MQA =
A

get the following system of equations: r; = M;A = |:M10 Mu}
1

(M M| [i“
1

combined form, we get

],...,TSZMSA:[MSO |

O] . Writing these s equations in the
1

T My My
(4.6) T2 _ My My Ay
: : : Ay

Ts MSO Msl

By Equation 4.6, we get r = M A, under the assumption that M is a full row rank matrix,

the minimum norm solution of » = M A is given by
(4.7) A= M (MM,

Now expanding the first M in (4.7) and using (4.4), we get the desired entries of per-

turbed matrices. The backward error is given by 03 p(Avs, 1.5, L) = [|0L||w,p, where

ULl = 3/ wBlI6Aol% + IS Av |3

Since A is a minimum norm solution, we get ||0L[l,.r = ||Allr = [|[MZ(M M) 1r||F is
also minimum. Hence 15 »(Ars, 215, L) = [|A|lp = |MP(MM7)~'r| . Now we need to
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show that (L(\,) 4+ 0L(A,))x, = 0 for p =1 : s. For this consider

(L(A1) + 0L(A1))z4 —r1 4+ 0L(A)x; —r M, —ry 1 0

(L(Xo) + '5L<)\2))SU2 _ |t 5P(A2)x2 _ —'7”2 N ]\@ A —.7”2 N 7”'2 _ O |

| (L(As) + 0L(A)) s | | =75+ 0L(As)zs —rs| [ M | —rs| |7 0]
where we use dL(\,)))z, = M,A for p =1 : s, M, = |MT ML ... M]T T, and

A= MI(MME)~1rm

Remark 4.3.3. When M is not a full row rank matriz but (4.6) is consistent, then using
singular value decomposition, we get M = USVH . Since system (4.6) is consistent, we get
at least one solution of the system (4.6), and using Theorem 1.2.6, the minimum norm
solution of r = MA is given by A = VETUHr, and 05 z(Ars, 215, L) = [|MFr||p, where
M+ = VESTUH. Clearly by using A = VESTUHr, we can construct the desired §A, and
0Ay. Here U,V are unitary matrices of appropriate sizes and X is a matrix containing the
singular values of M. We can not get the perturbed matriz entries in explicit form because

singular value decomposition of M is not known explicitly.

After obtaining the backward error result for Hankel matrix pencils, in the next sec-

tion, we discuss the backward error analysis for symmetric-Toeplitz matrix pencils.

4.4. Backward error analysis of specified eigenpairs for symmetric-
Toeplitz matrix pencils

This section deals with the backward error analysis of symmetric-Toeplitz matrix pen-
cils. Similar to the previous section, we construct the matrix M for the symmetric-
Mo My
My Moy

Toeplitz case in the following manner: Let M := € C2 where M,; =

MSO Msl
wj_l)\ij(j, zp, symToep) € C**" forp=1:s,j =0, 1. Construction of M(j, z,, symToep)
can be done in the following manner using the approximate eigenpair (A, z,) of a symmetric-

Toeplitz L € L(C™ ™) of the form (2.1) with nonnegative weight vector w = (wp, w;)?,
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where (A0, \p1) = A, € C?\ {(0,0)},0 # z, € C". M(j,x,,symToep) € C™" is given by
(4.8) M(j, z,,symToep) = X (4, symToep)diag(vec(sgn A; o Cy, symToep)),

where X, symToep) 18 given by Lemma 4.2.7 and

diag (vec(sgn A; o Cy, symToep)) =

1 1
dia sgna;q, SgNna; o, ..., ———=SgNa;,| |,
g([\/—g 7,1 \/—\/—g 7,2 ﬂﬁg J7])

with Cy, Dy are symmetric-Toeplitz matrices of size n, generated by vectors

1 1 1 1 . — T
[%,m,...,m,m] and [v/n, V2v/n —1,...,vV2v2,vV2V1]T,
respectively.

Lemma 4.4.1. Let A and A € C™" be symmetric-Toeplitz matrices generated by
a1, az,...,a,)%, and [6ay,day,. .., 0a,]", respectively. Let v = [x', 2% ... 27T € C"
and b = [b1, 0% ..., 0"T € C". Then (0A o sgnA o Cy o Dy)x = b is equivalent to
X (z,symToep)diag(vec(sgn Ao Cy, symToep))ps = b, where X (5 symtoep) 5 defined by Lemma
4.2.7, ¢ps = vec(0A osgn A o Dy, symToep) and Cy, Dy are defined in the beginning of

this Section.

Proof. The proof is similar to Lemma 4.3.1. H

Now using the above construction and Lemma 4.4.1, we derive the following main

theorem of this section.

Theorem 4.4.2. Let L € L(C™™) be a symmetric-Toeplitz matriz pencil of the form
(2.1). Suppose (\p,z,) are s(s < n) approzimate eigenpairs of L for p =1 : s, where
N = (Mo A1) € C2N\{(0,0)}, and 0 # =z, € C*. Set r = [rI, vl ... 711", where
rp, = —L(Ay)z, for p =1 s. If M (defined in the beginning of this section) is a full
row rank matriz, then there exists a symmetric-Toeplitz matrix pencil 0L of the form

OL(e, B) := adAg+ PO A, such that (L(X\,) + dL(A,))z, =0 forp=1:s, where generator

vectors [0a;1,0a;9, . ..,0a;,]" of §A;, for j=0,1, are given by

51 (Sgna] a) Zp 1D i TN )‘pj_; 1T+q 1+(p—1)n (MM™)=tr, forq =1,
0,4 = Q(n q+1) (sgnajyq) Zp 12 q+1[ mf;o z‘+q—1+(p—1)n+
xq“ 1 ﬂ(p D J(M M)~y forqg=2:n,
where €irg_1+p—1n € C™ eiyp_1yn € C".  Further, the backward error is given by
Toor(Aris, T1is, L) = [[ M (MM )| .
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When M is not a full row rank matriz but rank(M) = rank([M,r]), then 6A; and
backward error are obtained by using the singular value decomposition of M. In this case
the backward error is given by 1% p(Avs, 215, L) = [|VETUr||p, where U,V are unitary

matrices of appropriate sizes and Y is a matriz containing the singular values of M.

Proof. Construction of the backward error formula and perturbed matrices for a symmetric-
Toeplitz matrix pencil can be done similar to Theorem 4.3.2. Let sparse symmetric-Toeplitz
A; be generated by vectors [a;1,a;2,...,a;,]" for j = 0,1. Using Proposition 1.2.24, for
constructing sparse symmetric-Toeplitz 0A;, we take the following generator vectors of

length n:
[5CL]‘71, (50,]‘72, ce ,5&j7n]T, for j = 0, 1.

Following the steps of Theorem 4.3.2, we get

1
(4.9) rp = Z w; ' wiAy; (0Aj o sgn Aj o Dy o Cy)xy,

Jj=0

rearranging (4.9) by using Lemma 4.4.1, we get

(4.10) Ty = 21: wj_l)\ij(%symToep)diag (vec(sgn A; o Cy,symToep)) A;, where
=0

(4.11)

Vnw;da;sgna;
V2y/n — Tw;da;2sgn a;o

A; = wjvec(0A; osgn A; o Dy, symToep) = :

V2V2w; aj (n-1)5g0 a5, (1)
\/§\/ij5 @j,SgN a;j p,

Similar to Theorem 4.3.2, using Equation 4.8 and Equation 4.10, we get r = M A whose

minimum norm solution, when M has full row rank, is given by
(4.12) A= MT (MM 1y,

T
where A = [Ag AIT] . By (4.11) and (4.12), we get the desired perturbation entries

and backward error similar to the previous theorem. B

Remark 4.4.3. Similar to Remark /.3.3, when M is not a full row rank matriz, but
r = MA is consistent, then using singular value decomposition, we get M = UXVH.

Using Theorem 1.2.6, the minimum norm solution of r = MA is given by A = VE+tUHr,
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and 0y p(Ms, T1s, L) = [|[VETUr||p. Here U,V are unitary matrices of appropriate sizes,

and X is a matrix containing the singular values of M.

4.5. Discussion on inverse eigenvalue problems

In this section, we establish the results for two inverse eigenvalue problems. First, we
obtain the result for the symmetric-Toeplitz inverse eigenvalue problem, which comes as a
corollary of Theorem 4.4.2. By this corollary, we can solve the symmetric- Toeplitz inverse

eigenvalue problem.

Corollary 4.5.1. Let A € C™*" be a symmetric-Toeplitz matriz generated by a1, as, . . ., a,]".
Suppose (1, v,) are s (s < n) approzimate eigenpairs of A forp =1 : s, where p, € C,
and 0 # v, € C". Set r .= [rI, v, ..., rD1T, where r, = —(A — p,1,)v, forp=1:s. If
M (defined in the beginning of section 4.4) is a full row rank matriz, then there ezists a
symmetric-Toeplitz 0A such that (A + 6A — pp,I,)v, = 0 for p =1 : s, where generator

vector [6ay, day, . .., 0a,|T of 0A, is given by

n— 1_1 _
(sgnaq)zp 12 o v, zT—s—q 1+(p—1)n (MMH) lfr, forq=1,

n—q+11—;
0aq =\ 35m q+1 j(senag) 3oy > iy Tl Le(p-1n T
v el ) (M M), forq=2:n.

Further, the backward error is given by 15 o(pi1.s, v1:s, L) = | M7 (MM™) 17| 5.

When M is not a full row rank matriz but rank(M) = rank([M,r]), then A and
backward error are obtained by the singular value decomposition of M. In this case the
backward error is given by 1% p(pivs, V15, L) = |[VETUr||p, where U,V are unitary ma-

trices of appropriate sizes and X has the singular values of M.

Proof. Substituting A9 = A, Ay = I,,, w = (1,0)7, and A\ = 1, \p1 = —pp, 7, = v, for
p=1:51in Theorem 4.4.2, we get the desired result. B

Remark 4.5.2. We observe that for establishing the above corollary, we use the fact
that identity matrix 1, is one type of symmetric-Toeplitz matrixz. On the other hand,
I, is not a Hankel matriz. Hence result for the Hankel inverse eigenvalue problem is
not a straight forward consequence of Theorem /.3.2. For the Hankel case, we state the

following theorem whose proof follows similar to the proof of Theorem 4.5.2.
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Before stating the theorem, we define M := € Cmxn=1 where M,y =

MSO
wpM(0,v,, Hank) € C™2"~! for p = 1 : s. Construction of M, can be obtained by

(4.1) using the approximate eigenpairs (fi,,v,) of a given Hankel matrix A.

Theorem 4.5.3. Let A € C™™ be a Hankel matriz generated by [a11, . . ., Q1n, Gony -+ -, Q)L -

Let (u,,v,) be s(s < n) approzimate eigenpairs of A for p =1 : s, where p, € C, and
0# v, € C Setr = [l 7l ... rT)T where r, = —(A — p,I)v, forp =1: s If
M (defined as above) is a full row rank matriz, then there exvists a Hankel A such that
(A+0A—p,l,)v, =0 forp =1: s, where generator vector [dayy, . . ., 0a1,, 00, - ., O] T
of 0A is given by

s |t—ql+1
1

Ot = m(sgn ag) Y, Y T Vel oy (MM
p=1 =1

where € —14p-1n € C", and 1 < t,q < n. Further, the backward error is given by

nzsl),F(ulzsa V1:s, L) = HMH(MMH)_ITHF'

When M is not a full row rank matriz but rank(M) = rank([M,r]), then 6A and
backward error are obtained by the singular value decomposition of M. In this case back-
ward error is given by ny p(p1:s, v1:s, L) = [|[VETUHr||p, where U,V are unitary matrices

of appropriate sizes and X is a matrix having the singular values of M.

Proof. Following the steps of Theorem 4.3.2 along with w = (1,0)7, Ao = 1, \p1 = —pp,

and z, = v, for p =1 : s, we get the desired result. W

4.6. Numerical examples and solution of inverse eigenvalue prob-
lems

In this section, we illustrate our developed results and their necessity with numerical
examples using MATLAB software. In the first three examples, we obtain the backward
error of a single approximate eigenpair and corresponding perturbed matrix pencil for
Hankel and symmetric-Toeplitz structures. For convenience, we take weight vector w =

(1, )7 for first three examples.
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Example 4.6.1. Let L € L(C**3) be a Hankel matriz pencil of the form (2.1), where

Hankel matrices Ay, A1 are given by

1.02 0 53 —12.78  6.38i 0
Ao=10 53 i |, A= 6.38i 0 59 + 4i
53 i 1+i 0 59 +4i 79 — 8i

Let (A1, 1) be an approzimate eigenpair of L, where Ay = (7124.001+-3i, —197.0066+369i)
and x1 = [1 +1,3 +1,8 — 33i]T. Then using the results of (87|, we get

0.2196 + 0.37271 0 —5.2945 — 0.03351
0Ay = 0 —0.8354 — 0.31701  1.8233 — 4.34001
—5.2945 — 0.03351  1.8233 —4.34001  0.7269 — 5.2990i

)

0.0132 — 0.02171  0.0306 — 0.00531 0
0A; = ]0.0306 — 0.0053i 0 —0.2752 + 0.02551
0 —0.2752 + 0.02551 —0.2946 + 0.10881

?75,1:()\17561711) = 11.4120. On the other hand, using Theorem 4.3.2 for s = 1, we get

0.3277 + 0.5268i 0 —5.2866 — 0.0341i
0Ap = 0 —5.2866 — 0.0341i  1.8149 — 3.9261i
—5.2866 — 0.03411  1.8149 — 3.9261i  0.7654 — 5.2953i

Y

0.0182 — 0.03151  0.0397 — 0.0132i 0
0A; = [0.0397 — 0.0132i 0 —0.2536 + 0.01451
0 —0.2536 + 0.01451 —0.2955 4 0.10671

nﬁ’F(Al,xl,L) = 12.2681. Using the results of [87|, perturbed matrices can only preserve

the complex-symmetric structure, but by our results, perturbed matrices can preserve the

Hankel structure.

Example 4.6.2. Let L € L(C3*3) be a symmetric-Toeplitz matriz pencil of the form
(2.1), where symmetric-Toeplitz Ay, Ay are given by

0 1.3 —1+i 22 + 3i 0 ~1—2i
Ao=1| 1.3 0 1.3 |, A = 0 22 + 3i 0
—1+4i 1.3 0 —1—2i 0 22 + 3i
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Let (A1, x1) be an approzimate eigenpair of L, where Ay = (112.23 4 288i,1845.001212)
and x; = [11.25 — 0.7i,2.121 + 3i,0.2223|7. Then using the results of [87], we get

0 —4.9231 + 0.69871  0.3448 — 0.00961
0Ag = [ —4.9231 + 0.69871 0 —0.0528 — 0.09751 | ,
0.3448 — 0.00961  —0.0528 — 0.09751 0
—22.0811 — 2.81571 0 0.8010 + 1.8970i
0A; = 0 —20.1161 — 3.01884i -0
0.8010 + 1.89701 0 0.0448 + 0.07271

ngyF(Al,xl,L) = 31.1042. Using Theorem 4.4.2 for s =1, we get

0 —1.3—0i 0.3901 — 0.0608i
§Ay = —1.3-0i 0 —1.3-0i ,
0.3901 — 0.06081 —1.3 — 0i 0
—22 — 3i 0 1.1837 + 2.0381i
0A; = 0 —22 — 3i -0
1.1837 + 2.0381i 0 —22 — 3i

5. p(Ar, 21, L) = 38.6934. We can also see that (L(Ay) + 0L(Ay))zy = 0.

Remark 4.6.3. Though the backward error obtained by our method is higher than the
backward error of [87] but it is the actual backward error when we consider additional
properties during backward error analysis of Hankel and symmetric-Toeplitz matriz pen-
cils. Matrices §Ag and §A; obtained by our method respect the required structures which
are not possible by [87]. Hence the development of our results is very much essential to

understand the real structured backward error analysis.

Finally, for a Hankel matrix pencil, when M is not a full row rank matrix, but system
(4.6) is consistent, we illustrate this situation by an example. In this case, using Remark
4.3.3, we get the required backward error and perturbed matrix pencil which preserve the

sparsity.

Example 4.6.4. Let L € L(C**®) be a Hankel matriz pencil of the form (2.1), where

Hankel matrices Ay and Ay are given by

0 0 11.0000 0 0 0
Ay = 0 11.0000 0+ 1.0000i| , A1 = |0 0 59.0000 + 4.00001
11.0000 0 + 1.00001 0 0 59.0000 + 4.00001 79.0000 — 8.0000i
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Let (A1, z1) be an approximate eigenpair of L, where Ay = (7124.0014-3i, —197.0066+3691),
ry = [1,1.2+1,0]7. Clearly, M is not a full row rank matriz as rank(M) =2 < 3. Then
using the results of [87], we get

0 0 —1.4061 — 0.8403i
0Ag = 0 —11.0000 — 0.0000i —2.5277 + 0.3977i | ,
| —1.4061 — 0.84031  —2.5277 + 0.3977i 0
0 0 0
0A; = |0 0 0.0904 + 0.1200i
10 0.0904 + 0.1200 0

nlsU’F()\l,xl,L) = 11.8113. On the other hand, our results provide the following perturbed

matrices
[ 0 0 —11.0000 — 0.0000i
0Ay = 0 —11.0000 — 0.0000i  1.8312 — 3.93261 | ,
| —11.0000 — 0.0000i ~ 1.8312 — 3.9326i 0
[0 0 0
0A; = |0 0 —0.2543 + 0.0138i
0 —0.2543 +0.0138i 0

The backward error is given by 775’)7F()\1,$1,L) = 20.0192. Clearly, our method preserves

the Hankel structure.

Our target is to solve [21, Problem 5.2], which asks to construct a symmetric-Toeplitz
matrix 7" € C™*" from a given set of real orthonormal eigenvectors {vy,va, ..., vs}, where
each v; is symmetric or skew-symmetric, and a set of real numbers {1, o, . . ., s }. Before
discussing that how we apply Corollary 4.5.1 to get the desired symmetric-Toeplitz matrix

T, we define the matrix of ones,

(11 1]

11 1
(4.13) H, =

11 ... .1

To apply the Corollary 4.5.1, we need matrix A. Since H,, is a symmetric- Toeplitz matrix,
we set A = H, be an arbitrary symmetric-Toeplitz matrix in Corollary 4.5.1. Then
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T = A+ A is the desired symmetric-Toeplitz matrix. Now, we illustrate this problem for

n = 3 and two specified eigenpairs (s = 2).

Example 4.6.5. Let (u1,v1) and (po, v2) be two specified eigenpairs, where iy = —20, j1g =
89.23 and v, = [\/Lg, \/ig, \/Lg]T, Vg = [—%, 0, \/LE]T Construct symmetric-Toeplitz T € C3*3
such that Tv; = pv; for 1 = 1,2. By setting A = Hs, and substituting the values of
11, p2, v1, Vg in Corollary 4.5.1, we get 0A as follows:

51.8200 —37.4100 —37.4100
0A = |—-37.4100 51.8200 —37.4100| . Then
—37.4100 —37.4100 51.8200

52.8200 —36.4100 —36.4100
T = A+ 0A = [=36.4100 52.8200 —36.4100]| , is the desired symmetric-Toeplitz
—36.4100 —36.4100 52.8200

matriz.
—11.5470 —63.0951
Also Tvy = pyvy = | —=11.5470] , and Tvy = psvy = 0
—11.5470 63.0951

Remark 4.6.6. One can set arbitrary symmetric-Toeplitz A instead of H, to get the

required symmetric-Toeplitz matrix T

Next target is to solve [21, Problem 5.1], which asks to construct a Hankel matrix
G € C™ from a set of real orthonormal eigenvectors {vy,vs,...,vs}, and a set of real
numbers {1, o, . . ., fs}. Since H,, is also a Hankel matrix, hence similar to symmetric-
Toeplitz case, we set A = H,, in Theorem 4.5.3 to obtain the desired G = A + d A. Now,

we illustrate this problem for n = 3 and two specified eigenpairs (s = 2).

Example 4.6.7. Let (11, v1) and (pz, v2) be two specified eigenpairs, where p; = 10.3, pg =
—53.27 and v, = [\/Li,(),\%]T,vg = [—%,%,%,]T. Construct Hankel G € C**3 such that
Guv; = pv; for i =1,2. By setting A = Hs, and substituting the values of piy, pa, v1, Vo in

Theorem 4.5.3, we get 6A as follows:

—17.4818 19.0129  25.7818
0A=|19.0129 257818 —21.0129
25.7818 —21.0129 —17.4818
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Then

—16.4818 20.0129 26.7818
G=A+d6A= ] 200129 26.7818 —20.0129| , is the desired Hankel matriz.

26.7818 —20.0129 —16.4818

7.2832 35.5133
Also Gvy = vy = 0 , and Guy = lovy = | —=17.7567| . Stmilar to the matrix
7.2832 —35.5133

wverse eigenvalue problem, one can solve the generalized inverse eigenvalue problem. We
illustrate the generalized inverse eigenvalue problem for symmetric-Toeplitz structure by

the following example.

Example 4.6.8. Let (A, x1) and (A2, x3) be two specified eigenpairs, where \y = (1, —25+
i),\ = (1+1,9.89) and v, = [\%,O, \%]T,:cg = [0,1,0]%. Construct symmetric-Toeplitz
matrices Ty, Ty € C**3 such that NigTox; + M\nTix; = 0 for i = 1,2. For constructing Ty
and Ty, set Ay = Ay = Hs, in Theorem 4.4.2. Then using the given eigenpairs, 6Ag and

0Ay are given by

[0.0498 +0.03391 —1.0000 — 0.00001  0.0329 — 0.00551 ]
0Ag = |[—1.0000 — 0.0000i —0.0498 + 0.03391 —1.0000 — 0.0000i | ,
| 0.0329 — 0.00551  —1.0000 — 0.00001 —0.0498 + 0.03391 |

[1.0926 — 0.0995i —1.0000 — 0.0000i —0.8282 + 0.1038i |
§A; = | —1.0000— 0.0000i —1.0926 — 0.0995i —1.0000 — 0.0000i
| —0.8282 4 0.10381 —1.0000 — 0.0000i —1.0926 — 0.09951

Finally,

[0.9502 +0.03391  0.0000 — 0.00001 1.0329 — 0.00551
To = [0.0000 —0.0000i 0.9502 + 0.0339i 0.0000 — 0.0000i | ,
11.0329 —0.00551  0.0000 — 0.00001 0.9502 + 0.03391

[—0.0926 — 0.0995i —0.0000 — 0.0000i  0.1718 + 0.10381
Ty = [-0.0000 —0.0000i —0.0926 — 0.0995i —0.0000 — 0.0000i
| 0.1718 4+ 0.10381  —0.0000 — 0.00001  —0.0926 — 0.09951

Clearly, )\iOTO-%i + )\ilTl-Ti =0 fO?"’i = 1, 2.

Remark 4.6.9. Since Ay and Ay are arbitrarily chosen symmetric-Toeplitz matrices,

hence obtained symmetric- Toeplitz matrix pencil is not unique.
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Remark 4.6.10. Similar to the generalized inverse eigenvalue problem of symmetric-
Toeplitz matrices, we can solve the generalized inverse eigenvalue problem for Hankel

matrices by using Theorem 4.3.2.
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CHAPTER 5

PERTURBATION ANALYSIS OF SPECIFIED EIGENPAIRS
FOR STRUCTURED MATRIX POLYNOMIALS

Abstract: This chapter discusses the backward error analysis of specified eigenpairs
for structured and unstructured matrix polynomials. We generalize the methodology of
Chapter 3 to obtain the backward error results for matrix polynomials. In particular, for
palindromic matrix polynomials, our results generalized the results of [47]. Further, the
backward error results developed in this chapter allow us to solve the different kinds of

quadratic and polynomial inverse eigenvalue problems without linearization.

5.1. Introduction

The term matriz polynomial is a well-known in numerical linear algebra which refers
to the expression P(\) = Zé:o N A;, where A;, j = 0 : [, are n X n matrices, A is a complex
scalar, and non-negative integer [ is known as the degree of the matrix polynomial (see,
(23, 51, 72] for more on matrix polynomials). Matrix polynomials with special structures
occur in numerous applications in mechanics, control theory, linear systems theory and
computer-aided graphic design, see [8, 9]. In particular, palindromic matrix polynomials
arise in the mathematical modelling and numerical simulation of surface acoustic wave
filters and vibration analysis of railway tracks excited by high-speed trains, see [17, 51].
For obtaining the eigenvalues and eigenvectors of matrix polynomials, the most widely
used approach is to linearize the given matrix polynomial into a bigger size matrix pencil
(see, [37] for more on linearization). In practice, the eigenpairs of the linearized matrix
pencil are approximate due to the rounding errors, and truncation errors of the iterative
methods. Hence the obtained eigenvalues and eigenvectors may contain a huge amount
of error which can leads to insignificant results. Since the backward error analysis tells

us that how much accurate these obtained eigenpairs for a matrix polynomial, the role of



backward error analysis of these obtained eigenpairs with respect to matrix polynomials

become very much crucial to understand the reliability of these obtained eigenpairs.

Though in Chapter 3, we have discussed the detailed backward error analysis of one
or more eigenpairs for matrix pencils but results for matrix pencils are not enough to
cover the backward error analysis of one or more specified eigenpairs for structured and
unstructured matrix polynomials. In [87] the authors have obtained the structured back-
ward error formulas of one eigenpair for T'-symmetric, T -skew-symmetric, Hermitian, and
skew-Hermitian matrix polynomials which also preserve sparsity. In [2, 8, 9] the authors
have obtained the backward error of a single eigenpair for different structured matrix
polynomials but the literature of backward error analysis of more than one eigenpairs is
still open for development. Hence in this chapter, we are concerned to obtain the back-
ward error formulas of the given specified eigenpairs and corresponding perturbed matrix
polynomials for different structured as well as unstructured matrix polynomials which
also preserve sparsity. These results will give a more realistic picture of the backward

error analysis of eigenpairs.

Next, a given n X n matrix polynomial P()\) of degree [ can have up to In eigenpairs.
Hence during the backward error analysis of each structured matrix polynomial, we need
to find the cap on the maximum number of approximate eigenpairs. This challenge has
not arisen during the backward error analysis of a single eigenpair. In particular, if P(\)
is a matrix polynomial of degree [, and ((¢;,d;), z;),i = 1 : s (s < nl), are given s approx-
imate eigenpairs, where (c;,d;) € C?\ {(0,0)} and 0 # z; € C*, we provide the upper
bound on s for each structure. We have adopted and extended the vectorization method-
ology of Chapter 3 to obtain the desired backward error and corresponding perturbed
matrix polynomial. We develop a general framework such that our perturbed matri-
ces preserved sparsity in addition to the structure. The structures we consider include
T-symmetric, T-skew-symmetric, Hermitian, skew-Hermitian, H-even, H-odd, T-even,
T-odd, T-palindromic, T-anti-palindromic, H-palindromic, and H-anti-palindromic ma-
trix polynomials. In particular, if we consider the palindromic structure, the authors in
[47] have obtained the backward error of one specified eigenpair of palindromic matrix
polynomials provided the corresponding minimization problem is solvable. We generalize
the work of [47] from backward error of one specified eigenpair to backward error of one

or more eigenpairs and discuss the comparisons in detail.
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Next, we discuss in detail that how one can apply the backward error results of one
or more eigenpairs to solve the quadratic inverse eigenvalue problems. In particular, we
have discussed and solved the symmetric quadratic inverse eigenvalue problem [21, Prob-
lem 5.4]. We will also discuss and solve the T-palindromic quadratic inverse eigenvalue
problem [88]. We illustrate both the quadratic inverse eigenvalue problems with suitable
examples. One can also solve the other palindromic quadratic inverse eigenvalue problems
of [88]. In the similar manner, one can also solve the other structured inverse eigenvalue

problems for the above mentioned structures.

5.2. Matrix polynomials and definitions

Let us recall the definition of a matrix polynomial. Let P;(C"*") be the space of
matrix polynomials up to degree [ and a matrix polynomial P € P;(C"™") be of the

following form:
(5.1) P(a, ) = alAg+ a1 BA + -+ B4, A, €eC™" fori=0,....1L

P(a, B) defined in (5.1) is called the matrix polynomial in (a, 3) € C% We denote (5.1)
by P. Finding (¢,d) € C*\ {(0,0)}, 0 # 2 € C" such that P(c,d)z = 0 is called the

polynomial eigenvalue problem. ((c,d), z) is called the eigenpair of matrix polynomial P.

Definition 5.2.1. A matriz polynomial P(«, ) = Zizo o' TiBIA; is said to be regular
if and only if det(P(c,d)) # 0 for some (c,d) € C*\ {(0,0)}, otherwise it is called the

singular matrix polynomial.

Spectrum of matriz polynomial P € P;(C"*™) is defined as follows:

AP) == {(\, ) € C*\ {(0,0)} : det(P(A, p)) = O}.

Throughout this chapter, w := (wy,...,w;)T € R™! be a nonnegative vector such that
each w; is a nonnegative real number. Define w™! := (wy',...,w;")T and w; ' = 0 for
w; = 0. For a given nonnegative weight vector w = (wy,...,w;)T € R, define the

matrix polynomial norm as follows:

l
(5:2) [Pl := ll(woll Aol - will Aull)llz = (Y w? | Adl®)"2,
=0

where ||.|| is the Frobenius norm.
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Next, based on the different properties of the coefficient matrices A;,j = 0 : [, of
matrix polynomial P of the form (5.1), we define different kind of structured matrix

polynomials by Table 5.1.

Now, we generalize the definition of backward error from one eigenpair to s eigenpairs

for unstructured and structured matrix polynomials.

Definition 5.2.2. Consider Ai.s = {A, Ao, ..., A} and v, = {x1,29,...,25}, where
(ci,d;) = N € C*\ {(0,0)} and 0 # x; € C". Let (\;,x;),i = 1 : s, are approzimate
eigenpairs of matriz polynomial P of the form (5.1). Then we define unstructured and

structured backward errors for s approximate eigenpairs (A;, x;) by
Nw.F(Aisy T1:5, P) i= Inf{|0P w2, (P(Ni) +0P(N))x; = 0; for 1 <i <s}, and

e r (A, T1is, P) i= inf{[|0P |2, 0P €S, (P(N\)+ 6P(\;))x; =0; for 1 <i < s},

respectively, where dP is of the form (5.1), ||0P]|,2 is given by (5.2), and

S={T-symmetric, T-skew- symmetric, Hermitian, skew Hermitian, T-even, T-odd,

H-even, H-odd, T-palindromic, T-anti-palindromic, H-palindromic H -anti-palindromic}.

S Matrix structure

T-symmetric Aj = A?

T-skew-symmetric | A; = —A;-F

Hermatian A= AJH

skew-Hermitian Aj = —Af

T-even Aj = A]T for jeven, A; = —A]-T for j odd

T-odd Aj = —A;*-F for jeven, A; = A? for j odd

H-even Aj= AJH for jeven, A; = —AJH for j odd

H-odd Aj = —Af for jeven, A; = Af for j odd
S Matrix structure
T-palindromic Aj = AZT_ j
T-anti-palindromic | A; = —AITﬁ-
H-palindromic Aj= AR y
H-anti-palindromic | A; = —Aﬁj

TABLE 5.1. An overview for structured matrix polynomials
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Remark 5.2.3. For s =1 in the above definitions correspond to unstructured and struc-

tured backward error for a single eigenpair (see, [8]).

Remark 5.2.4. Let P € P;(C™™™) be a matriz polynomial of the form (5.1). Then similar
to a matriz pencil, the following relations are also hold for a matriz polynomial and are

immediate consequences of the definitions of backward error:
nw,F(/\lzsa T1:s9 P) S 7]5‘;’}7’()\1:87 T1:s, P)7 Ilg?}g nw,F(Apa xpa P) S T]w,F()\I:S) T1:s) P)7 and

Irgz%)g nS,F()‘ZH Lp; P) < msu,FO‘ltsa L1:s) P)'

Now, we discuss the backward error analysis for T-symmetric and T-skew-symmetric

matrix polynomials.

5.3. Perturbation of T-symmetric/7T-skew-symmetric matrix poly-
nomials

This section deals with the backward error analysis of T-symmetric and 7T-skew-
symmetric matrix polynomials. Before stating the theorem, let 0 # z, € C" and 0 #
A = (¢, d,) € C?*\{(0,0)} for p=1: s, and w = (wy, ..., w;)T be a non-negative vector.
We define

Nleo DRI Nlel
N¢ — ‘Ntzo e Ay Ecsnx(l—i—l)(7”b2—i—€n)/27
Nseo DRI N'sel

where Ny, = wj_lc]lg_jdg]\fe(:Up)diag(vec(sgn AjoCle)),j=0:1p=1:s, are constructed
by (3.3). Now, we state and prove the main result of this section. Throughout this section,
€ = 1 represents the T-symmetric case and ¢ = —1 represents the T-skew-symmetric case.
The upper bound on the number of approximate eigenpairs “s” for T-symmetric and 7T-
skew-symmetric matrix polynomials is capped by Table 5.2. Now, we state and prove the

main result of this section.

Theorem 5.3.1. Let P € P(C™") be a T-symmetric/T-skew-symmetric matriz poly-

nomial of the form (5.1). Let ((cp,d,),x,) be s approzimate eigenpairs of P, where
T

0#x, € C"and 0 # X\, = (¢p,d,) forp=1:s. Setr = [TIT rf .o rT) where
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rp = —P(cp, dp)z, forp=1:s. If N¢ (defined as above) is a full row rank matriz, then
there ezists a minimizing T-symmetric/T-skew symmetric 0P € Py (C"*™) of the form

0P(a, B) = YL, o/ BI5 A, where §A; = (8azu) for j =0,1,...,1 are given by

s -2 15 4 = = e nTeH \—
50/ p = { ZPZI %wj ZCP ]d%<8gn ajvtk)(xgef+(p—l)n + 6x;€£+(p_1)n>(N N H) 1T fOT 13 3& k
j’t -

e o g
> et %wj ey di (sgn aj,tk)x’;eer(pfl)n(NeNEH) Ly for t=k.

Then (P(c,, dy) + 0P(cp, dy,))z, = 0 and the backward error is given by
nzSu,F(/\I:57 T1:s, P) - ||NEH<N€NEH)_1T||F‘

If N€ is not full a rank matriz but rank(N€¢) = rank([N€,r]), then the perturbed matrices

are obtained by singular value decomposition of N¢ and the backward error is given by
nS,F<)\1:S7 T1:s, P) = ”VGDGJFUGHTHP”

where U, V¢ are unitary matrices and D¢ is a diagonal matriz with singular values of N€.

Proof. The proof for T-symmetric/T-skew-symmetric matrix polynomials follows simi-
lar to the proof of T-symmetric/T-skew-symmetric matrix pencils. But for the sake of
completeness, we recall the proof so one can easily understand the changes for the poly-
nomial version. Corresponding to a given T-symmetric/T-skew symmetric P € P;(C"*"),
the given approximate eigenvalues are (c,,d,) and corresponding eigenvectors are x,, for
p = 1 :s. We need to construct structured 6P € P;(C"*") which has sparsity such
that (P(\,) + 6P()\,))z, = 0. By assumption P(\,)z, + 7, = 0 for p = 1 : s. Then
rp, = 0PNz, = Zé’:o chId}§ A;x,,. For maintaining sparsity replace 6A; by (64 0sgn A;)
which gives r, = S\ ¢ dl(0A; o sgnA;j)z,. Finally, we get

J=0"p

I
Ty, = Z c;_jdg(éAj osgnd; o Do (),

J=0

where C, D are defined by (3.4).

(1PN

Structure upper bound on number of eigenpairs “s

T-symmetric s < (I+1)(%)

T-skew-symmetric | s < (I + 1)("7—1)

TABLE 5.2. Upper bound on eigenpairs for T-symmetric and 7T-skew-

symmetric matrix polynomials
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Let A§ = w;vec(dA; osgnAj o D). Then using Lemma 3.3.3, we get
! !
(5.3) 1= Zw;lcé_jdg;Ne(:vp)diag([vec(sgn(Aj) o C,e)])Aj = Z Ny AG = NyAS,
j=0 Jj=0
T
where NS = [N;O N;l] , A= [ABT AZGT] for p=1:s. From (5.3) we have
rp, = NyA© for p = 1: s. Further, writing these s equations in the combined form we get

the following system

(5.4) r = N°A®,
rl N5, ... Ng| |Ag
r NS, ... NS A¢
(5.5) = S
T NS ... Ng| | As

If in (5.4) N€is a full row rank matrix, then the minimum norm solution of the system

(5.5) is given by
(5.6) A= NH(N N,

and expanding the first N7 in (5.6), we get the desired entries of perturbed matri-
ces 0A; for 7 = 0 : [. In this case the backward error in Frobenius norm is given by
775)7]:’()\1:5"%‘1:57]?) = |||6P”|w,Fa where

!
I6PI r =D wil6AllE = A% F = N (NN 7.
i=0
We get the backward error when N€ is a full rank matrix as follows:

Mo r(Aiss, 715, P) = [ A = [N (NN 7|

Now, we need to show that (P(c,,d,) + dP(c,,d,))x, =0 for p=1: s, for this consider

(P(Cla dl) + 5P(Cla dl))xl -7y + 5P(Cl, dl)l’l -1 ]\/'1E - 71
P(cq,dy) + 0P (co,dy))x —1r9 + 0P (co, do)x —r N¢ —r r
( (2 2) ' (2 2))2 _ 2 '<2 2)2 _ '2+ '2 A€ — .2+ 2 :07
(P(Cs’ ds) + 5P(CS7 d8)>x8 —Ts+ (SP(C& ds)xs —Ts NSE —Ts Ts
B R - - - T -7 T
where we use 0P(),))z, = NAS, for p = 1: 5, N = [NfT NgT oL N;T] , and

A¢ = NH(NNHY-1r.
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If N€is not a full row rank matrix but system (5.5) is consistent, then using Theorem 1.1,

we get N¢ = U SV and using Theorem 1.2.6, we get A¢ = VeXetU<?y and
o p(Aiss, 215, P) = [VETUL 7| ..

Here U€, V¢ are unitary matrices and ¥¢ has the singular values of N€¢ In this case,
we can not get the perturbed matrix entries in explicit form because the singular value

decomposition of N€ is not known explicitly in terms of the given information.
Remark 5.3.2. When rank(N¢) # rank([N¢,r]), then 1% p(Avs, 21, P) = 00.

Remark 5.3.3. If one is interested in obtaining the backward error formula without spar-
sity, then by following the above procedure with sgn A; = sgn H,, for j = 0 : 1, where H,
1s the matriz of all ones, we get the backward error result without sparsity. Hence this
method is valuable for obtaining the backward error with sparsity as well as for backward

error without sparsity.

Remark 5.3.4. By substituting s = 1 in Theorem 5.3.1, we get the result of backward
error of a single approximate eigenpair for T-symmetric/T -skew-symmetric matrix poly-
nomials [87, Theorem 2].1

5.4. Backward error of Hermitian/skew-Hermitian matrix poly-
nomials

In this section, we discuss the backward error analysis for Hermitian and skew-Hermitian
matrix polynomials. Throughout this section, € = 1 represents the Hermitian case and ¢ =
—1 represents the skew-Hermitian case. The upper bound on the number of approximate
eigenpairs s for Hermitian and skew-Hermitian matrix polynomials is capped by Table

5.3. Next, we discuss the main theorem of this section as follows.

[1Ph]

Structure upper bound on number of eigenpairs “s

Hermitian s < (Bh)n

skew-Hermitian | s < (%1)n

TABLE 5.3. Upper bound on eigenpairs for Hermitian and skew-Hermitian

matrix polynomials
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Theorem 5.4.1. Let P € P;(C"*™) be a Hermitian/skew-Hermitian homogeneous matriz
polynomial of the form (5.1). Let ((¢p,dp), xp) be s approzimate eigenpairs of P, where
0#x, € C"and 0 # N\, = (¢,,dp). Set r = [%(rl)T S(r)" o R(r)T ST T,
where r, == —P(cp, d,)x, for p=1:s. If N (defined as below) is a full row rank matriz,
then there exists a minimizing Hermitian/skew-Hermitian 6P € Py (C™™™) of the form
P (a, ) :== Zé:o al=IBISA;, where §A; for j=0:1 are given by

’
E t
Sgn a’j tt \/_w gp] t+ (1 €) (2p 1)+ (1+e)2 ( ) + Ehp]

_ el e nel\—1 o
6aj’tk - t+¥n(2p71)+%2n(p71)) (N N ) T f07” t==k
(sgnajam) Y 2wy fojun(NNT)r, for t#k,
\ p=1

with fpjtk = (€r4on(p—1) T 1€tntan(p— 1))T(g£j - ih’;j) + (ert2n(p—1) — i€k+n+2n(p—1))T(€9;t;j + iehl,),
A o
9,; = Rley 'dpay), by = S(ep 'dpy) forp =1 : s

j=0:10 andt,k =1:n. Then (P(cp,dp) + 6P(cp,dp))xp = 0 and the backward error is given

i
9pj = R(cp ]df,xp), hpj = \’(Cp Jd{,wp)

by
M (Miss @15, P) = [[NT(NND) |, where
N§ ... N§,
N&, ... NS
NE = '20 '21 e CanX(l+1)n2 and
[N -+ NG|
N¢ —N—¢(h,; A;oC,
N;] _ ] (9pj) (hpj) diag vec(sgn Aj o Cle)
N€(hyp;)  N7(gpj) vec(sgn A; o C, —e)

for j = 0 : 1 are constructed by Equation 3.3. If N¢ is not full rank matriz but rank(N€) =

rank([N€, 7)), then the backward error is given by
msu,p()\1:57931:s7P) = HVEDH_UEHTHFv

where U, V¢ are unitary matrices and D¢ is a diagonal matrix with singular values of N¢. Here

€ = 1 stands for Hermitian case and ¢ = —1 stands for skew-Hermitian case.

Proof. Proof can be obtained by taking the summation from 0 to [ instead of 0 to 1, and

to replace \,; with ci;j dg; in Theorem 3.4.1. Hence, we are omitting the proof.

Remark 5.4.2. By substituting s = 1 in Theorem 5.4.1, we get the backward error
result of a single approzimate eigenpair for homogeneous matriz polynomial case of [87,

Theorem 3].1
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Structure | upper bound on number of eigenpairs “s”
T-even s < (Hn+ (%), when [ is even

T-odd s < (Hn+ (%21), when [ is even

T-even s < (H%1)n, when [ is odd

T-odd s < (%1)n, when [ is odd

TABLE 5.4. Upper bound on eigenpairs for T-even and T-odd matrix poly-

nomials

5.5. Backward error analysis for T-even/T-odd matrix polynomi-

als

In this section, we discuss the backward error analysis of matrix polynomials whose coeffi-
cient matrices are alternatively symmetric and skew-symmetric. Throughout this section,
€ = 1 represents the T-even case and € = —1 represents the T-odd case. The upper bound
on the number of eigenpairs s for T-even and T-odd matrix polynomials is capped by

Table 5.4. Now, we state the main theorem of this section.

Theorem 5.5.1. Let P € P;(C"*") be a T-even/T-odd homogeneous matriz polynomial
of the form (5.1). Set ((cp,d,), x,) be s approzimate eigenpairs of P with 0 # x, € C" and
let 0 # N\, = (cp,dp). Setr = |pT ¢I rST]T where r, == =P(\,)z, forp=1:s.If
N¢ (defined as below) is has full row rank, then there exists a minimizing T-even/T-odd
0P € P;(C™™) of the form 0P(c,s) == S._, ¢ 's'0 Ay, where §A; = (8a;4.),7 = 0: 1, for

even j are given by

s —2 =7 73 — — enteH\—
S0 — { > o1 5W; ¢y di(sgn ajik)(x’;efﬂp_l)n + ex;efﬂp_l)n)(]\f NI~y for t#k
j’t -

-2 1—7 45 — Hy—
> et w2 ]df,(sgnaj,tk)x’;ea(pfl)n(NGNE )y for t=F,

and 6A; = (daj ) for odd j are given as follows

5 ~2.1=j gi I 7 € NTE —
0a; ik = { 2o 305 e dy(sen a5 ) (Thel 1y = ek p1y) (NN for ¢ £k
gtk = I r R
2 p—1 17“’;‘ 26 Jdg)(sgnaj:tk)xl;ef—i—(p—l)n(N Nefy=Ly for t=
Then (P(cp, dy) + 0P (cp, dy))x, = 0 and the backward error is given by
N (Miss T15, P) = [ NT(NNT) ||, where
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- B A
Ny Ny ... NV
€ —€ -1 lE
) Nyg Ny® ... Nz(z ) . - . :
Ne=| ‘ _ such that Nf; = w; ' 7d N¢(x,)diag(vec(sgn 4; oC, €)),
(NG Noo..o NG

and N, ¢ = w; 'cl- ]d]NE(xp)dlag(vec(sgnA oC, —e¢)) for 5 =0:1 are defined in Equation
3.38. Here size of N¢ is sn x (Ln? + k) when 1 is an even integer, and sn x (£1)n?
for odd 1.

Proof. Corresponding to T-even/T-odd matrix polynomial P, given approximate eigen-
pairs are (A, x,) for p =1 :s. We need to construct minimal norm 0P such that (P(\,)+
dP(\,))z, = 0. Since P(\,)x, + r, = 0. Then r, = dP(\,)z, = Zé oAb A, =
Zj o ChIdI(0A; o sgnAj)x, = Z] _o 7 di(6A; 08gnA;j 0 Do C)xp. Let A = wjvec(A; o
sgnAjoD, €) and AJC = wjvec(dAjosgnAjoD, —e). Then r, = Zé 0 j—cven W 1 AN ()

diag([vec(sgnA; o C,e)])AS + Z] —0.j=odd W AN (xp)diag([vec(sgnAj o C,e)])A; .
Further, we get

! !
o= > NRASH ) NA = NA forp=1:s,
j=0,j=even j=0,j=o0dd
™7T .
where Ny = [N;O Ny ... N;l(_l)l} , Af = [AST Al—fT A;(*l)l . Combining

the s equations, we get

r = N°A®, where

[Ne, N7 NCD']
™ 10 1 - 1
r N&  Na€ ... NGD'e
- .2 N©— '20 ?1 21.
ro Ne N ... NGV

Perturbation matrices and backward error formula can be obtained in the same manner

as we get in Theorem 5.3.1. W

5.6. Backward error analysis for H-even/H-odd matrix polyno-
mials

In this section, we discuss the backward error for H-even/H-odd matrix polynomials.

For this first we define the basic terminology. Let z, € C", (¢, d,) € C*\ {(0,0)} for
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p=1:s, and Ct4on(p—1)) Ck+2n(p—1)s Chtn+2n(p—1); Ct+n+2n(p—1) € C*n for t,k=1:n.
Deine fy; ik = (€r4an(p—1) +1€tinianp-1))" (95 = 1h55) + (Chtanp-1) — Chintonp-1))" (€gh; +
ieh;j) when j is even and zp; 4 = (€ryonp-1) + iet+n+2n(p_1))T(g£j — ih’;j) + (Ektan(p-1) —
i€k tnian(p-1))" (—€gl; —iehl.) when j is odd, where g,; := R(c 7 dlx)), hy; = (7 d ),

gl =R(cFdixt), b = (i Idial) forp=1:5s,j=0:1, and t,k = 1:n. Next, define

- . . 1 le-
N Np® - Nl(l :
€ —€ (~1)'e
NE _ N20 N21 “e N2l E C2Sn><(l+1)n2
N¢ N ... NGV

where

NS = w;l [N€(9pj) _N_e(hpj>] ding ([ vec(sgnd; o Ce)
Ne(hp;)  N7(gps) vec(sgnA; o C, —e)

),forj—():l

Throughout this section, € = 1 represents the H-even case and ¢ = —1 represents the

are defined by Equation 3.3.

H-odd case. The upper bound on the number of approximate eigenpairs s for H-even

and H-odd matrix polynomials are capped by Table 5.5.

Structure | upper bound on number of eigenpairs “s”

H-even s < (BL)n for all 1
H-odd s < (B1)n for all 1

TABLE 5.5. Upper bound on eigenpairs for H-even and H-odd matrix poly-

nomials

Now, we state the main theorem of this section.

Theorem 5.6.1. Let P € P;(C"*") be H-even/H-odd homogeneous matriz polynomial
of the form (5.1). Let ((cp,d,),x,) be s approzimate eigenpairs of P with 0 # z, € C"
and 0 # X\, = (¢p, 8p) forp=1:s. Setr := [é}k(rl)T S(r)" o Rr)T S(r)" T,
where 1, == —P(\,)x, forp =1:s. If N° (defined as above) is a full row rank matriz,

then there ezists a minimizing H-even/H -odd matriz polynomial 6P € P (C™™) of the
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form 6P (o, ) := Z;:o ' IBISA;, where §A; = (daj),7 = 0: 1, are given by
(

t
(sgnaju Z\/_w ng t+1 n(2p—1)+1E2n(p-1) +ehy,

(S&j’tk = Zﬂ+1;€n(2p71)+1562n(p71))(NGNET)ilr fOT’t = k
(sgn aj,tk)z%w;2fpj,tk(N€NET)_17" fort #k,
\ p=1

for even j, and §A; = (0a;,tk),7 =0:1, are given by

p

S/ _ eht.
(sgnaju Z €w; gp] t+1 €n(2p—1)+1<2n(p—1) el

_ el e neT\— —
0 = TRET 1)+1 <o (p— 1))(N N~ hr fort =k
Sgn Qj tk Z Zp] tk NENET) fOT’t 75 k,

\

for odd j. Here e; € C*" for every i € N. Then (P(cy,d,) + 0P (cp, dy))z, = 0 and the

backward error is given by

nSJ,F(ALS? T1:s, P) = HNGT(N6N6T>71T”F'

Proof. Proof is computational and follows similar to Theorem 5.4.1 and Theorem 5.5.1.

5.7. Backward error for T-palindromic/ T-anti-palindromic ma-
trix polynomials

To understand the backward error analysis and perturbation theory of palindromic matrix
polynomials, we need to understand the construction of matrix M¢((cp,d,), j, yp), which
is obtained by ((cp, d,), y,) € C*\ {(0,0)} x C™. For construction of M¢((¢c,,d,), J,yp), we
need to understand the construction of matrices M(y,) for € = 1, —1, where M*(y,) €
C™ and M~ (y,) € C™"°.

Remark 5.7.1. Superscript “—1" in M~*(y,) is only for notational point of view. It
should not be mismatched with the inverse of M (y,).
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Throughout this section w := (wg, wy, ..., w;)T € R™*! be a nonzero and nonnegative
vector such that w; = w;_; for j = 0 : [. For deriving the backward error formulas
of specified eigenpairs, we need the construction of the matrices M*(y,), M~(y,) and

M<((cp,dp), j,yp). We define

M) = M) - My M) = (M) - Mi(y,)| and
M ((cp,dp). 3, yp) = [Cﬁ,’jdiMf (yp) + GCi;dé*jMfl(yp) cee e cé’jdz)Mﬁ(yp) + Eczdéingl(yp)] ;
for p=1:s, where
y;ygy;’...yg 0 0 0 ... 0
0o 0 0 ... 0 yzl,ygy;’...yg
M{(y)=10 0 0 ... 0|,My(y,)=1]0 0 0 ... 0], and
0 0 0 0 0 0 0 0
0 0
0 0
My(y,)= 1|t + + ... i]|,and
00 0 ... 0
Y Yo Yp - Uy

M (y,) = diag([y;, ..., y7]") €C™" 2 =1,... n.

Ajl
A wjéamsgn aji1
j2
Suppose A; = (ajum), 0A; = (0a;4) € C". Define A; := _] , where Aj; =
A‘ W;0a;,nSEN Aj1n,
[ =]
and w; is a nonnegative real number for j = 0 : [. Before stating the theorem define
My, My ... M Mi, My ... My Nf%
€ 3 € Ms, Ms, ... M. N¢
Ve — MQO M, ... MQZ G = ‘20 21 .21 2% _where

=1 when [ is odd
= —1, when [ is even
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My, = (w; e 7dI M (y,) + ew; ' ehdlT M~ (y,))diag(vec(sgn A;)) is defined as above and

Lo

Ny = wi'egdg N(y,) diag(vec(sgnA. o C,¢))
2 2 2

is defined in Section 3.3. M€ is of size “sn x (I+1)n?” and G is of size “sn x ((I+1)n?+

(n*+en)/2)”.

Throughout this section, ¢ = 1 represents the T-palindromic case and € = —1 repre-

sents the T-anti-palindromic case.

Remark 5.7.2. For a palindromic matriz polynomial, backward error of an approximate

eigenpair (p, x), where u € C,x € C", is defined by Li et al. [47] in the following manner:

[1/2]
min{y| > w|SAil} : (P(u) + P () = 0},

From now onwards, for palindromic structures we calculate the backward error of one
or more specified eigenpairs with respect to the above definition, i.e., if ((¢;,d;),z;) for

1 =1:s are s approrimate eigenpairs of a palindromic matrix polynomial P, then

11/2)
M7 (Ais, T1:5, P) = min{ Z w26 Ail|% : (P(c, d;) + 6P (ciydi))x; =0 fori=1: s}.
i=0

By using the above definition, we can easily compare ours and backward errors of Li et
al. [47) . Since we are also providing the perturbed matrices together with the backward

error formula, so one can also calculate the backward error according to definition 5.2.2.

The upper bound on the number of eigenpairs s for T-palindromic and T-anti-palindromic

matrix polynomials are capped by Table 5.6

Structure upper bound on number of eigenpairs “s”
T-palindromic s < ($)n+ 2 when [ is even
T-palindromic s < (H1)n, when [ is odd

T-anti-palindromic | s < (£)n + 251, when [ is even

T-anti-palindromic | s < (41)n, when [ is odd

TABLE 5.6. Upper bound on eigenpairs for T-palindromic and T-anti-

palindromic polynomials
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Now, we state and prove the theorem for T'-palindromic and T -anti-palindromic matrix

polynomials.

Theorem 5.7.3. Let P € P;(C"*") be a T-palindromic/T -anti-palindromic homogeneous
matriz polynomial of the form (5.1). Let ((¢p,dp),xp),p =1 : s be s approzimate eigen-
pairs of P, where 0 # x, € C* and 0 # A\, = (¢p,d,). Set r:= | oI . TE]T’ where
rp = —P(\,)z, forp=1:s. Then

Case-1: Ifl is odd, and M€ (defined as above) is a full row rank matriz, then there exists
a minimizing T -palindromic/T -anti-palindromic 0P € P, (C"*™) of the form éP(a, f) :=
Z;:o al=IB5 A, where §A; = (daju) for j =0:1 are given by

Z;svzl sgn(a;, tk)(w*QCZ_]d%w’“etTHp T
00tk = ewl’_2jc;dl Tzt eZ:—i—(p 1)n>(M€M€H) fort #k,
3 s (o) ek T + e S Tl (MM fort = k.

Here e (p—1yn € C, €pip-1)n € C". Then (P(cp,d,) + 6P(cp, dy))ax, =0 forp=1:5

and the backward error is given by
Mo (Aiss, 215, P) = [ M (M M) .

If M€ is not a full rank matriz but rank(M€) = rank([M¢,r]), then the backward error is
given by

775),F<)\1287 T1:s, P) = HVEDGJFUﬁHTHF’
where U, V¢ are unitary matrices and D¢ is a diagonal matriz with singular values of M€.

Case-2: Ifl is even, and G (defined as above) is a full row rank matrices, then there exists
a minimizing T-palindromic/T -anti-palindromic §P € Py(C"*™) of the form 6P («, B) :=
Zé‘:o a'IB5A;, where §A; = (daju) for j=0:1, j # % are given by

Z; 1 5gn(azu) (w; 2Cp ]d% ’; tT+(p Dt
daju = ew; jc;dl Izt ngr (- 1)n)(GeGﬁH) fort # k,

D o=t sgn(aj,tk)(wj & jdgﬁ + ew, 2JC’;7:dl J_t) €t (p— 1)n(GEGEH)_17’, fort =k,

and 6A; = ((5aé7t,€) is given by

1
Zp:l %w%_QCP Z%(Sgna’l tk)(xlgegr(pfl)n + EIE;€£+( -1) n)(GeGEH)_IT fOT' t 7& k

T
S Hew el d)(sgn ai &) The (GeGH)~1y for t=k.
2 )

pt+p1
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Here ey (p—1yn € C", epyp-1)n € C. Then (P(cp,dp) + 6P(cp, dp))xy, =0 forp=1:5

and the backward error is given by

US;,F()\L& T1:s) P) = ||G€H(G€G6H)_1THF'

Proof. Case-1: When P € P;(C"*") is a T-palindromic/T -anti-palindromic matrix poly-

nomial of the form (5.1) and [ is an odd natural number.

Corresponding to a given T'-palindromic/anti-palindromic P, its given approximate
eigenpairs are ((cp,dp), xpy) for p =1 : s. We need to construct structured 0P such that
(P(cp, dp) + 0P(cp, dp))x, = 0, which also preserve sparsity By assumption P(c,,d,)x, +
r, =0forp=1:s Thenr, =0P(c,,dy)z, = ZJ oAb A, = Zz o(wjw; e IdIdA;+
wy—jw;_ ]cjdl 10 A1_j)xy. Since 6 A;_; = €0 AT, and w; = wy_;, we get r, = Zé o(wjw; cl Idj
0A; + ewjw; cg]dijj 5A]T)xp. Further, for maintaining the sparsity, we get

i
Ty = Z(w]w YIdIA; o sgn A + ewjw; ' )dL TS AT o sgnAT )z,
=0
Let A; = wjvec(6A; osgn A;). Then r), = Zé o(w; b IdI M () + ew; ' dl T M~ ()
diag(vec(sgn 4;))A; = Z;:o wj_lME((cp,dp),],xp)dlag(vec(sgn ANA; = Zé':o My Aj =
MZA, where
T
W:A%A%.”MLJA:b§M ”A%,m1

2

M;; = (w_lcé_jdi;Ml(xp) + ewj_lc;di,_jM_l(xp))diag(vec(sgn Aj)).

J

Finally, we get r, = M;A for p=1: s. Writing s equations in combined form we get

o R DV VR V2 I M
r Ms, Ms, ... M:: A Ms
(5.7) r= =0 20T 2 T A = MEA.

If M€ is a full row rank matrix, then from (5.7), minimal norm solution of r = M°A

is given by A = MH (M M")~'r. Now using equation A = MH (M MH)~1r and

expanding the first M, we get the desired entry-wise perturbations. If M€ has not full

rank but system M¢A = r is consistent, then A = V<D U1 Here U¢, V¢ are unitary

matrices of appropriate sizes and D" is pseudoinverse of D¢. Backward error in Frobenius

norm case is given by 18 p(A.s, 1.6, P) = [|0P[|ur, where [[6P]2 = S5 w?||54,)3.
113



But S w2642 = A% = |MH (M M) ~r||2. Hence backward error when M¢

is full rank is given by
UE,F()\].:S7 T1:s, P) = HM6H<M€M€H)_1THF‘

When M€ is not a full rank matrix but system is consistent, then the backward error is
775;7]5‘()\1;5, X1:s, P) — ||V6DE+U6H7"||'

Case-2: When P € P,(C"*") is a T-palindromic/T-anti-palindromic matrix polyno-
mial of the form (5.1) such that [ is even natural number. To construct JP such that
(P(cp, dp) +0P(cp, d )):cp =0 for p =1 : s, by following the process of case-1, we get r, =
7 —
5P(cp,d];)1;p = Z] oG A A, = Yo (wwy e YRIdISA; 4wy jc]dl I6AI-j)xy +
w%w;cgdgcﬁléxp. Since dA;_; = ed AT, and w; = w;_;, we get 1, = Zé o(wjw; b Idig Ao
. Lol

sgnA; + eijj_lc;déﬂé/l? osgnAl)z, + w%w;cﬁ d; (5A% osgn A% o C o D)x, where C, D
are defined by 3.4.

Let A; = w;vec(dAjosgnA;), and let Ag = wévec(éA%osgnA%oD, €) is defined at Sec-

~ 2

tion 3. 2 1. Thenr, = Zé o(w; ' M () +ew; el dLT M~ () )diag(vee(sgn A;)) A+

('wl dQNe(:Up) dlag(vec(sgnAz oC, e))A, , where N¢(x,) is defined at Subsection 3.2.1.
Further simplification gives

r, = Zé oW ’1M6((cp,dp),j, z,)diag(vec(sgnd;))A; + N6 Ai, where M<((cp, dp), 7, )
is defined at the beginning of this section and Nﬂ = w?l 2d2NE(:cp)dlaLg(Vec(sgnAz o
C,¢)). Similar to Case-1, we get r, = zj:o M;jAj + N;éAEé = GLA°, where G; =

T
[M;O Mg ... ]\4;1~ N;%} A= [Ag AT AZT Ag . Finally, we get r, = G},A
for p =1:s. Writing s equations in the combined form, we get

] [ € € € € i -AO- M ]

- M, Mi ... My N1é A Ge

1
Ms, Ms, ... MS NS €
5.8) r=|"|= oo A ?2 A = G°A°.
: : : : : A :
_TS_ -Mseo MS€1 P MSGZ seé_ AEL _GS_

Similar to the previous case, using system r = G°A€, we can obtain the desired entry wise

perturbation and backward error formula.

Remark 5.7.4. For Case-1, when [ is an odd natural number, we get the even number of

coefficient matrices 6A; in the perturbed matriz polynomial 6P, which can be paired with
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the property 0A; = edA;_; for j = 0 : 1, and we get the backward error results in this
case. But when [ is an even natural number, then all the coefficient matrices can be paired
similar to Case-1 except 514% which satisfied 5A% = eéAg Now to tackle this coefficient
matrix 514%7 and to obtain the backward error formula, we use the construction of Section

3.2.1 as described in Case-2.

Remark 5.7.5. Ifrank(M€) # rank([M<,r]), then the backward error 0§ p(Ars, 1.5, P) =

.

Remark 5.7.6. If rank(G*) # rank([G*,]), then the backward error 0§ p(Avs, 1.5, P) =

.

5.8. Backward error analysis for H-palindromic/H-anti-palindromic
matrix polynomials

In this section, we state the theorem and related important terminologies for constructing
the backward error formulas for H-palindromic/H-anti-palindromic matrix polynomials.
Before stating the theorem, let x,, € C", \, = (c,,d,) € C*\ {(0,0)} and e; € C**" for any
i € Nand s < n. Define g,; := R(c, Id)x,), hy; := (b dlxy,), gb; = R(chTdlal), bl =

S(cIdial) forp=1:s,j=0:1,and t =1:n. Define

Me(gpj):[Mll(gpj)+6Mfl(gp(l—j)) Mi(gpj)JrﬁM{l(gp(z—j))}a
M () = [ M} () + M Byiey) oo MAChyy) + €My ()]
Mgy My ME] (Mf, Mo MG Nf%_

e [Mi Mi Myl M M My N
MG M& ... MS] My, MG . MG NG|

= { 1—71’ when [ is odd } 7M;j _ wj_l [Mf(gpj) —Me(hpj)] diag <lvec(sgn Aj)
Me(hp;)  M™(gp;) vec(sgn A;)

)

is defined in

% —1, when [ iseven

g —ve,] (] veetsan a0 00
. 2 2 12 2

2 NE(hp%) N*G(gp%) Vec(sgn(Aé)oC,—e)
Section 3.4. Further M¢ is of size “2snx2(I1+1)n?” and G is of size “2snx (2(I+1)n2+n?)”
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for H-palindromic/anti-palindromic cases. Throughout this section, ¢ = 1 represents the
H-even case and € = —1 represents the H-palindromic case. The upper bound on the
number of eigenpairs s for H-anti-palindromic and H-anti-palindromic matrix polynomials

are capped by Table 5.7.

[P}

Structure upper bound on number of eigenpairs “s

H-palindromic < (L)n+ 2, when [ is even

H-palindromic s < (B, When [ is odd

o~

H-anti-palindromic | s < (5)n + %, when [ is even

2

H-anti-palindromic | s < (&1)n, When [ is odd

TABLE 5.7. Upper bound on eigenpairs for H-palindromic and T-anti-

palindromic matrix polynomials

Next, we prove the main result of this section by the following theorem.

Theorem 5.8.1. Let P € P,(C" ™) be a H-palindromic/H -anti-palindromic matriz poly-
nomial of the form (5.1). Let ((¢cp,dy),x,) be s-approximate eigenpairs of P, where 0 #

T
x, € C" and 0 # N\, = (¢p,d,) forp=1:s. Setr = %(rl)T S(rl)T %(TS)T S(TS)T] ,

where r, == —P(\,)x, for p=1:5s. Then

Case-1: Ifl is odd, and M¢ (defined as above) is a full row rank matrices, then there exists
a minimizing H -palindromic/H -anti-palindromic 0P € Py(C"*™) of the form dP(«, ) :=
22:0 a'IB5A;, where §A; = (daju) for j=0:1, j # % are given by

( T

Z; ((sgnaj ) [wy 29& tT+2(p n +Ewl_2jg;(lf #Ekr2p-1nt
w; *hy; €4 (ap 1y T EW - Ty € (ap1yn T i(—W 72l iCtra(p—tynt
ew, th ek+2(p D )+
oaju = § i(wy Qg;f]etTJr(zp 1 ewlfjg;(lfj)egﬂzpfl)n)](MEMeT)’lr, fort #k,
E; L(sgnaj ) [(w; 29123‘ + ewlii»g;( - '))etT+2(p n + (w fzht '
ew, th ) €1t (2p—1)n —H(—wj_Qh + ew; h ) €riap-1)nT
i(w; g5 — w9505l ap1yn) (MM eT) " fort=k

Here ey (p-1yn € C*", exyp-1yn € C. Then (P(cp, d,) + 6P(cp,dp))x, =0 forp=1:s

and the backward error is given by

nSJ,F(/\LS?xl:s? P) - ||MET<M€MET)_1T||F‘
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If M€ is not full rank matriz but rank(M€) = rank([M€,r

given by

1), then the backward error is

nz,F(Alzsa L1:s, P) = ||V€D€+U5HT||Fa

where U, V¢ are unitary matrices and D¢ is a diagonal matriz with singular values of M€.

Case-2 : Ifl is even, and G¢ (defined as above) is a full row rank matrices, then there exists

a minimizing H-palindromic/H -anti-palindromic 0P € Py (C"™™) of the form dP(«

P) =

Zé‘:o a'IB5A;, where §A; =

(

(0ajq) for j=0:1, 7 # % are given by

s -2 k —2
Zp— (sgn aj ) [w; = gpe tT+2(p n +6wl—jg;(l—j)€£+2(p—1)n+
—Zhlc T h

pJ t+(2p n
—21k
Wy i€l 10 + €W Jhp(l )€k+2<p )+

+ 6Ujl €k+(2p 1)n+

(uw

. -2 kT

1LW -€

56Lj,tk _ ( i IpiCt+@2p—1)n
—21t —2 1t T

w; "hy,; 4 ew, jhp(z )€ @p-tn T

i(—wj_th + ew; h >t+2( Dt

\
and 6A; = (5%,“;) is given by

(

(sgn a’%,tt) Z\/Ew; (gf)%eT

p=1

Lt n(2p—1)+ 2

T
&Léﬂf/@ CttLten2p—1)+ 15 2n(p—1)
S

(sgnag ) suw; cpu(GGT)™

\ p=1

) (GeGeT)—l

Here

Cplitk = (€t+2n(p—1) + i€t+n+2n(p—1))T(g§é - ’ihk ) +
forp=1:s, andt,k =1:n. Then (P(c,,d ) + 0P (cp, d

backward error is given by

ng,F()\LS) T1:s,s P) = ||G6T(G€G€T)_

If G¢ is a not full rank matriz but rank(G®) = rank([G,r

given by

_Ewl—jgp( )ek+(2p n NGGT) 1,
ng:l(Sgn aj,tk)[(wj_Qg;;j + Ewlfjgp(lfj))eaﬂ(pfl)n_l_
(

i(wj_29;t;j - Ewl—jgp(lfj))et+(2p71)n](GEGET)_I

2n(p—1)

(ek+2n(p—1)

fort # k,

fort =k,

+eht,
1)
fort=k

fort # k.

— iek-&-n-&-?n(p—l))T(Eg;é + IEh;%),
b))z, =0 forp=1:s, and the

1T‘||F.

1), then the backward error is

nS,F()\llsa L1:s) P) = ”V€D6+U€HT”F’

where U, V¢ are unitary matrices and D¢ is a diagonal matrixz with singular values of G€.

For H-palindromic case we take ¢ =1 and for H-anti palindromic case ¢ = —1.
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Proof. Proof is computational and follows from Theorem 5.7.3, and Theorem 3.7.5.

Next, we obtain the backward error formula of one or more approximate eigenpairs

for unstructured matrix polynomials.

5.9. Backward error analysis for unstructured matrix polynomi-
als

In this section, we are interested in finding the backward error of approximate eigen-
pairs for unstructured matrix polynomials. To obtain the unstructured backward error,
we ignore any kind of structure while doing the analysis. Before going to the main re-
sult of this section, we construct matrices K by using the given approximate eigenpairs
((cp,dp), p) € C*\ {(0,0)} x C",p =1 : s, of a matrix polynomial P of the form (5.1).
Let

KlO R Kll
Ky ... K o
K = :20 :21 € C 7 where K, = w; eI d) K (x,)diag(vec(sgn A;)),
Ko ... Ky
with ) ]
_91:110 Ty 0 0]
0 x}) T, 0 0
K(z,) = 0 0
i 0 0 0 0 le) xg_

forp=1:sand j=0:1L

Now, we state the main theorem of this section as follows:

Theorem 5.9.1. Let P € P;(C™™™) be a homogeneous matriz polynomial of the form

(5.1). Let ((cp,dp), ) be s(s < nl) approximate eigenpairs of P with 0 # x, € C" and
T
0# X\, = (cp,dp). Setr:= [rip i .oorT) where v, = —P(A\))xp, forp=1:5 If K

(defined as above) is a full row rank matriz, then there exists a minimizing 0P € P;(C"*™)
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of the form 6P (o, ) := Zé’:o al=IBISA;, where §A; = (da;m) for j=0:1 are given by

s

Sajue =Y wi ey di(sgn aju) (Tpely (1) (KET) ',

p=1

and e, (p—1)n € R*". The backward error is gien by
(nS),F()\llsa T1:s, P))2 - ||KT(KKT)_IT||F'

If K is not a full rank matriz but rank(K) = rank([K,r]), then the backward error is
given by

(nE,F(Allsa T1:s, P))2 = ||V6D€+U€HTHF7

where U, V¢ are unitary matrices and D¢ is a diagonal matriz with singular values of K.

Proof. Corresponding to a given matrix polynomial P, its given approximate eigenpairs
are (\p, ), p = 1 : s. We need to construct unstructured 6P which has sparsity such that
(P(\,)+6P(N\,))x, =0 for p=1:s. By assumption P(\,)z, +7, =0 for p=1:s. Then
rp =0P(\,)x, = Zé‘:o cé*jdgéAixp, for maintaining sparsity replace dA; by (dA4;0sgn A;),

hence, we get

!
rpy = Z I (5A; o sgnA;)x,.

=0
Let A; = wjvec(6V; osgnA;) for j =0 : [. Then similar to Theorem 5.3.1, we get

l l
(5.9 1= wi'dVdK(z,)diag([vec(sgn(4;)))AS = Y " K,A; = KA,

J=0 J=0

T
K l} , A= [AOT AlT] for p = 1 : s. Rest of the proof

0 p

where K, = [K

follows similar to Theorem 5.3.1.

Further, in this chapter, we are also interested in solving the real symmetric qua-
dratic inverse eigenvalue problem. This problem asks to construct a matrix polynomial
with real symmetric coefficient matrices from a given set of approximate eigenpairs. These
eigenpairs can be real as well as complex. These matrix polynomials are known as real
symmetric matrix polynomials. Hence for solving this problem next, we discuss the back-

ward error analysis for real symmetric/skew-symmetric matrix polynomial.
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5.10. Backward error of real symmetric/skew-symmetric matrix

polynomials

In this section, we are interested in the backward error analysis of approximate eigen-
pairs for real symmetric/skew-symmetric matrix polynomials. Let P € P;(C"*") be a
real symmetric/skew-symmetric matrix polynomial, i.e., A; € R™" for j = 0 : [. Let
((¢p,dp),xp),p = 1 : s be s approximate eigenpairs of P, where (c,,d,) € C*\ {(0,0)},

and z, € C". Using approximate eigenpairs, we define the matrix N¢ as follows:

Ny, ... Nj
N€¢ = N2€0 T NQﬁl e (C2sn><(l+1)(n2+en)/2
_N 0 - Ny
where
N*(gp;)
€ —1 Y2 . .
b = W; [ . diag <[vec(sgnAj o(C, e)]) , for 7=0:1
N (hpj)
Throughout this section, € = 1 represents a real symmetric matrix polynomial and e = —1

represents a real skew-symmetric matrix polynomial. The upper bound on the number of

eigenpairs s is s < @(n +€).

Now, we state the main theorem of this section. Since the proof of the theorem is

similar to Theorem 5.4.1, we recall only the main steps of the proof.

Theorem 5.10.1. Let P € P;(C™™™) be a real symmetric/skew-symmetric matric polyno-
mial of the form (5.1). Let ((cp,d,),x,) be s approzimate eigenpairs of P, where 0 # z,, €
C" and 0 # N\, = (¢p,dp) forp=1:s. Setr = [é)%(rl)T S(r)" L Rr)T ST T7
where r, = —P(c,, dy)x, forp=1:s. If N (defined as above) is a full row rank matriz,
then there exists a minimizing real symmetric/skew-symmetric 6P € P (C"™™™) of the form

P (a, ) = Zé’:o a'IBISA;, where §A; = (daju) for 5 =0:1 are given by

4 S
, Ate), =2(t T t
<Sgna7’tt)zl 2 wj (gpjet-i-(li;E)n(Qp—l)—i-@Qn(p—l) +€hpj
p:
- T enel\—1 _
0,k = 61t+(12+€)71(2;7—81)+(12‘6)271(;;—1))(N N) fort =k,
(sgn ajvtk)z%w]-_2fpj7tk(N€N€T)*1r, fort #k,
\ p=1
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kT kT T T i 7
GpiCiionp—1) T PpiCiinionp-1) €g;jek+2n(p e Gh;j€k+n+2n(p 1) Ipj = %(Cé IdiTy),

fp Idlx,), gb; = R(cIdiat), bl = S(c7dial) forp=1:5,7=0:1 and
t,k=1:n. Then (P(c,,dy,) + dP(cp, d,))x, =0,

=
&
=
E

I

and the backward error is given by
ng,F(Altsv T1:s, P) = HNGT(N6N6T>717,HF'

If N¢€ is not a full rank matriz but rank(N¢) = rank([N€,r]), then the backward error is
given by
UE,F(M:S, T1:s; P) = ||V€D€+U6HT||F’

where U, V¢ are unitary matrices and D¢ is a diagonal matriz with singular values of N€.

Proof. Corresponding to a real symmetric/skew-symmetric P € P;(C"*"), its given ap-
proximate eigenvalues are A, and corresponding eigenvector are z, for p = 1 : s. We
have to construct structured minimal norm sparse éP € P;(C**") such that (P(),) +
P (N, )):Ep = 0. By assumption P(\,)z, +r, =0, for p =1 : s. Then r, = dP(\,)z, =
Zj oIS A, = 2220 0A;(R(LFdlxy,) +1S(ch 7 dix,)). For maintaining sparsity, we
replace dA4; by (0A; o sgnA;), we get r, = Zé‘:o 0A; o sgn A;(R(csId)x,)) + 10A; o
sgn A;(S(ch 7 dlxp)). Finally we get

r, = Zé’:o dA; osgn Aj(%(cé*jd{)xp)) +16A; osgn Aj(%(céjjd{)xp))] oDoC = R(r,)+

p
i3(r,), where

MN

R(r,) = [0A; osgn A;g,iloDoC

<.
Il
o

~

S(rp) = ) _[6Aj osgn Ajhylo Do

.
o

for p = 1 : s. Now separating the unknown and known variables, we get the following

system for p=1:s

510 [%(rp)] _ i wr? [Ns(ng;] diag ( |vec(sgn 4; 0 C. )| ) A5 = i NEAS

A% = w;vec(6AjosgnAjo De), for j=0,1,...,1L

Rest of the proof will follow similar to the proof of Theorem 5.4.1.
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After obtaining the result for the general case, we discuss the backward error result

for quadratic matrix polynomial by the following corollary.

Corollary 5.10.2. Let Q(8) = Ao+ BA1+3?As, be a non-homogeneous real Hermitian,/skew-
Hermitian quadratic matriz polynomial such that A; € R™™ for j =0 : 2. Let (up, xp)
be s approximate eigenpairs of Q(B), where p, € C,z, € C*\ {0} forp =1 :s. Set
o= R0r)T S0r)T L Ry %(rs)T]T, where rp, = —Q(up)x, forp=1:s. If
N€ is a full row rank matriz, then there exists 6Q(8) = 0 Ay + B6A; + 320 Ay such that
(Q(pp) + 0Q(11p))x, = 0, where 0A; = (daj ), =0: 2 are given by

/ s
(I+¢), —2( t T t
(sg ]ﬂft)E 2 Y (gp] t+%n(2p_1)+@2n(p—1)+ pj
p=1
T e njeT\—1
=4 e NN r ort==%k
(50,],15]4 t+ (1;e)n<2p71)+(1%€)2n(p71))( ) Y f 9
S
J) T\-1
(sgnaju) Y sw; dpj (N N)™r, fort #k,
\ p=1

k k :
where dpjﬂfk = gpj€f+2n(p—1) + hpj€f+n+2n(p—1) + Egztyjeg—f—Qn(p—l) + Eh;f)jez—ﬁ-n—ﬁ—Zn(p—l)? 9pj = %(M%ZQD)?
hp = (), g = R(al), hly = S(wlal) forp=1:5,j=0:2, and t,k =1 :n.

The backward error is given by
UZ,F(AM, L1:ss P) = |’N6T(NENET>7IT||F'
If N€ is not full rank matriz but rank(N€) = rank([N€,r]), then 0A; are constructed using

singular values decomposition of N€.

Proof. Substituting | = 2,¢, = 1,d, = p, in Theorem 5.10.1, we get the desired result.

Remark 5.10.3. We know that for a real symmetric matriz polynomial if (A, z) is an
eigenpair, where A € C?\ {(0,0)},2z € C", then (\,T) is also an eigenpair. Rest of
the eigenpairs are real. Using this information, and size of the matrix N¢, we get that

s < @(n +€).
5.11. Numerical examples and discussion of quadratic inverse

eigenvalue problems

In this section, we illustrate our theory with suitable examples and graphs. We start our

discussion with the solution of quadratic inverse eigenvalue problems. In particular, [21,
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Problem 5.4] ask to construct C; K € R™" from the given specified eigenpairs (A, X)
such that

(5.11) XN +CXA+ KX =0,

where A € C®*° has specified eigenvalues p; € C on its diagonal and X € C"**® has
corresponding eigenvector x; € C™ as its column. We need to construct C, K € R™*" with

C =CT and K = K7, so that Equation 5.11 is satisfied.

Quadratic inverse eigenvalue Problem 5.11 is equivalent to solving pZlz; + pu;Cx; +
Kz; =0fori=1":s. Since we need to construct C, K € R"*" we set C' = A;+0A4;, K =
Ao + 0Ag, where Ag, A; are fixed but arbitrarily chosen real symmetric matrices. Then
applying Corollary 5.10.2 with weight vector w = (1,1,0), we get dAg, dA; and hence
desired C, K which satisfied p?lx; + p;Cz; + Kx; = 0 for i = 1 : s. We will illustrate it

by an example for s = 3.

Example 5.11.1. Let (u;,x;) for i = 1 : 3 be specified eigenpairs where p; = fi, =
—0.2168—4.31591, 3 = —0.3064, x1 = To = [—0.4132+5.28011, —4.3518+3.2758i, —0.1336—
4.0588i, —5.1414+4.4003i, 8.6146—4.0112i)7, and x5 = [-9.6715, —9.1357, —4.4715, —6.9659,
— 4.4708]". Choose

[0.2028 0.107 05112 0.55515 0.3508 |
0.107  0.7468 0.64565 0.4757 0.58775
Ap= 105112 0.64565 0.5252 0.44195 0.5505 | ,
0.55515 0.4757 0.44195 0.3795 0.5682

| 0.3508  0.58775 0.5505  0.5682  0.1897 |

[0.9501  0.4966 0.6111 0.44585 0.4746 |
0.4966 0.4565 0.4052 0.87845 0.3988
0.6111 0.4052 0.9218 0.82755 0.49475
0.44585 0.87845 0.82755 0.4103 0.45175

| 0.4746  0.3988 0.49475 0.45175 0.1389 |

Then applying Corollary 5.10.2, we get

Ay

[—1.6514 —0.7099 —0.1769 0.0671 —2.6998]
—0.7099 0.3340 1.2028  0.7282 —0.3518
C=1-0.1769 1.2028 3.6546  0.7699  1.5992 |,
0.0671  0.7282  0.7699  0.3928 —0.1274
| —2.6998 —0.3518 1.5992 —0.1274 —1.8210)
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[ 0.7075 —0.8079 —1.9246 0.2321 —0.9079]
—0.8079 1.8371 —0.2280 2.2767 —5.1703
K= |-19246 —0.2280 5.0627 —1.9317 5.0950 |,
0.2321 22767 —1.9317 3.5307 —7.9849
|—0.9079 —5.1703 5.0950 —7.9849 17.6420
which satisfy pilx; + p;Cr; + Kx; =0 fori=1:3. Clearly C = CT K = KT.

Remark 5.11.2. Since we can choose different Ay, A1 so C, K are not unique.

Next, we discuss the quadratic inverse eigenvalue problem of the following form:
(5.12) MXAN+CXA+ KX =0,

where we need to construct matrices M,C, K € C™" such that M = M%7, C = C* and
K = K. Quadratic inverse eigenvalue problem 5.12 is equivalent to solving u?Maxz; +

1;Cri+ Kx; =0fori=1:s.

In this quadratic inverse eigenvalue problem matrices are not restricted to real entries,
it means for the given approximate eigenpairs we can construct the matrices M, C' and K
from the complex field. We set K = Ay + 64y, C = A1 + 0A,, and M = Ay + 0 Ay where
Ag, Ay and Ay are fixed but arbitrarily chosen Hermitian matrices. Similar to previous
inverse eigenvalue problem, here for finding § Ag, dA; and § As, we use Theorem 5.4.1 with
Il = 2. We will illustrate this inverse eigenvalue problem by the following example for
s = 3.

Example 5.11.3. Let (u;, x;) for i =1: 3 are specified eigenpairs defined in the previous

example. Choose

—0.3244 -+ 0.0000i 1.3963 4 0.3470i 0.7618 — 0.26371 1.3544 + 0.59321 0.2723 — 0.72411—
1.3963 — 0.3470i 0.5259 + 0.0000i 0.7379 + 0.6874i 1.2276 + 0.35831 1.7100 + 0.0944i
Ag = [0.7618 +0.26371 0.7379 — 0.68741 0.4580 + 0.0000i 1.9095 — 0.1989i 0.1570 — 0.0216i
1.3544 — 0.59321 1.2276 — 0.35831 1.9095 + 0.1989i 0.1564 + 0.0000i 1.2176 — 0.21791
0.2723 +0.7241i  1.7100 — 0.09441 0.1570 + 0.0216i 1.2176 + 0.2179i 1.6346 + 0.0000i

_1.6294 -+ 0.0000i 1.0033 —0.0371i 0.2846 + 0.43121 1.0553 — 0.21671 1.2881 + 0.31861_
1.0033 + 0.0371i 0.5570 + 0.0000i 1.5175 4 0.41791 1.3793 + 0.3354i 1.0006 + 0.3485i1
0.2846 — 0.43121 1.5175 —0.41791 1.9143 + 0.0000i 1.4011 — 0.1847i 1.6494 4 0.6119i
1.0553 + 0.21671 1.3793 — 0.3354i 1.4011 4 0.1847i 1.5844 4 0.00001 1.8935 + 0.5225i1
1.2881 — 0.31861 1.0006 — 0.34851 1.6494 — 0.61191 1.8935 — 0.52251 1.3575 + 0.00001
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&
I

—0.5521 -+ 0.00001
1.1781 — 0.15511
1.4064 — 0.0348i
1.1219 + 0.5402i
0.9597 + 0.3434i

1.1781 + 0.1551i
1.9195 + 0.0000i
0.5955 — 0.17191
1.1325 + 0.4958i
0.4781 4 0.3484i

Then by above discussion, we get

_0.0178 -+ 0.00001
0.3304 + 0.15601
0.3074 — 0.19101
0.6939 — 0.0991i
0.8037 + 0.06871

[1.5608 + 0.0000i
1.3287 — 0.0333i
0.5771 — 0.3665i
1.1114 + 0.2769i

1.5979 — 0.0747i

—0.0361 + 0.0001
0.3696 — 0.07631
0.6438 — 0.0605i1
0.7567 + 0.2953i
0.2906 — 0.2714i

0.3304 — 0.1560i
0.5566 + 0.00001
0.5918 — 0.4660i
1.2508 — 0.3542i
1.1863 — 0.2165i

1.3287 + 0.0333i
1.2126 + 0.0000i
1.7469 — 0.29641
1.7729 — 0.2093i
1.0639 — 0.22051

0.3696 + 0.07631
0.8224 + 0.0000i
—0.2709 — 0.28051
0.5394 + 0.2127i
—0.2257 — 0.3047i

1.4064 + 0.0348i1
0.5955 4 0.1719i
1.0119 + 0.00001
0.8377 — 0.1504i
1.7052 + 0.0984i

0.3074 4 0.1910i
0.5918 + 0.46601
1.0174 + 0.00001
1.2786 + 0.0331i
1.1548 + 0.36801

0.5771 + 0.3665i
1.7469 + 0.2964i
2.1851 + 0.00001
1.6049 + 0.06271
1.6561 — 0.3479i

1.1219 — 0.5402i
1.1325 — 0.4958i
0.8377 + 0.1504i
0.2986 + 0.00001
0.5010 + 0.92211i

0.6939 + 0.09911
1.2508 + 0.3542i
1.2786 — 0.0331i
0.2492 + 0.00001
0.9270 + 0.2494i

1.1114 — 0.27691
1.7729 + 0.20931
1.6049 — 0.0627i
1.6961 + 0.00001
2.1438 — 0.4383i

0.9597 — 0.3434i
0.4781 — 0.3484i
1.7052 — 0.0984i
0.5010 — 0.9221

1.8585 + 0.0000i

0.8037 — 0.06871_
1.1863 + 0.21651
1.1548 — 0.3680i
0.9270 — 0.2494i
1.5546 + 0.00001

1.5979 + 0.0747i)
1.0639 + 0.2205i
1.6561 + 0.3479i
2.1438 + 0.4383i
1.1219 + 0.0000i

0.6438 + 0.06051
—0.2709 + 0.2805i1
0.3838 + 0.00001
0.3221 — 0.2041i
1.1276 — 0.2017i1

0.7567 — 0.2953i1
0.5394 — 0.21271
0.3221 4 0.2041i
0.0304 + 0.0000i
0.0718 + 0.5548i

0.2906 4+ 0.2714i

—0.2257 4 0.30471

1.1276 + 0.2017i1
0.0718 — 0.5548i
1.4121 + 0.0000i

which satisfy p?Mz;+p;Cri+Kx; =0 fori =1:3. Clearly M = M",C = CH K = K.

Next, we discuss the quadratic T-palindromic inverse eigenvalue problem. For the
given specified eigenpairs (u;, z;),7 = 1 : s, the quadratic T-palindromic inverse eigenvalue
problem is to construct the matrices Dy, D1, and Dy such that Dy = DI D; = DT and
(Do + ;D1 + p?Dy)x; = 0, where p; € C,z; € C" and s < 2n.

We use Theorem 5.7.3 for solving the quadratic T-Palindromic inverse eigenvalue
problem. For getting the solution let D; = A; + 6 A; for i = 0 : 2, where A;,i =0 : 2 are
the known matrices, and dA; are the unknown matrices to be obtained using Theorem

5.7.3. Set A; = Hs, where H,, is defined by (4.13).

To illustrate the problem let us consider the eigenpairs information from [88, Example

4.3] which asks to construct a T-palindromic quadratic matrix polynomials of size 3 x 3
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from the given set of eigenpairs (u;, z;),7 = 1 : 5. By Table 5.6, we know that the maximum
value of s for quadratic T-palindromic matrix polynomial (I = 2) can be (3n + 1)/2,
which can be maximum 5 for n = 3. Let the eigenpairs are given as follows: p; =1, us =
1/i, pg = 1+i, pg = 1/(1+41), us = 2i, and 21 = [1,0,0]7, 29 = [0,1,0]7, 25 = [0,0,1]7, 24 =
[1,1,1]%, 25 = [-1,0,1]7.

By applying Theorem 5.7.3 for [ = 2 on the given eigenpairs (u;, z;),7 = 1: 5, we get

[ 1.0046 — 0.0180i —1.0061 +0.10541 —1.0180 + 0.00464]

0Ag = |—1.0475—0.0960i —1.1861 + 0.3393i —1.1147 — 0.0597i
| —1.0113 — 0.0067i  —0.9725 4-0.0872i —1.0067 4-0.0113i
[—1.0000 + 0.0000i —0.7986 — 0.0414i —0.9887 + 0.0067i |
oA —0.7986 — 0.0414i —1.0000 + 0.0000i —0.8531 — 0.1422i

0A,

| —0.9887 + 0.00671

[_1.0046 — 0.0180i
—1.0061 + 0.1054i

—0.8531 — 0.1422i

—1.0475 — 0.09601
—1.1861 + 0.33931

—0.9843 — 0.0136i |

—1.0113 — 0.0067i|
—0.9725 + 0.0872i

| —1.0180 +0.00461 —1.1147 — 0.05971 —1.0067 + 0.01131 |

Finally, we get the required Dy, Dy, and Dy as follows:

[0.0046 — 0.0180i —0.0061 +0.10541 —0.0180 + 0.00461
Dy = Ag+0Ag= |—0.0475 —0.0960i —0.1861 + 0.3393i —0.1147 — 0.0597i| ,
| —0.0113 —0.00671  0.0275 4 0.08721  —0.0067 + 0.01131
[—0.0000 -+ 0.00001 0.2014 — 0.04141 0.0113 + 0.00671
Dy, = A;+0A; = | 0.2014 — 0.0414i  0.0000 + 0.0000i 0.1469 — 0.1422i | ,
| 0.0113+0.0067i  0.1469 — 0.14221  0.0157 — 0.01361
[—0.0046 — 0.0180i —0.0475 — 0.0960i —0.0113 — 0.0067i
Dy = Ay+0As = | —0.0061 + 0.1054i —0.1861 + 0.33931  0.0275 + 0.0872i
| —0.0180 4 0.00461  —0.1147 — 0.05971  —0.0067 + 0.01131

Clearly, one can see that (Dg + ;D1 + pu2Dy)z; = 0 for i = 1 : 5. Also, Dy = DY and
D1 - D{

Remark 5.11.4. Similar to the above quadratic inverse eigenvalue problems, one can
also solve the different kind of palindromic inverse eigenvalue problems of [88] by using

our developed backward error theory.
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Remark 5.11.5. Theory of [88] works under the assumption that the approximate eigen-
values should be nonzero and distinct (Condition A2 of [88]). On the other hand by using
our theory one can also solve the palindromic quadratic inverse eigenvalue problems for

repeated as well as for zero eigenvalues.

Moving further, we find that Li et al. [47] have developed the backward error formulas
of a single approximate eigenpair for different kind of palindromic matrix polynomials. On
the other hand, we have developed backward error of one or more approximate eigenpairs
for the palindromic matrix polynomials. Hence at this point, we want to numerically
compare the backward error results of a single approximate eignepair of [47] with our
results. For this comparison, we have performed several numerical runs for arbitrary
specified eigenpair (A, z) for H-palindromic quadratic matrix polynomial, where A\ € C,
and z € C"”. We found that for a single specified eigenpair, backward error obtained
by our method (without sparsity) is equal to the backward error obtained by Li et al.
when |A| = 1. For |\| # 1, we have obtained the Figure 5.1 which shows the comparison
between structured backward error obtained by our method (with and without sparsity)

and backward error bounds obtained by Li et al. [47].

—-G-— Our structured backward error without sparsity
— = — Li's backward error bound
20k Our structured backward error with sparsity

Backward error value
=
S
T
*
|

Index of an approximate eigenpair

FiGure 5.1. Backward errors comparison of a single eigenpair for H-

palindromic matrix polynomial

From Figure 5.1, one can easily see that whenever we consider both sparsity and H-
palindromic structure for obtaining the backward error of a single approximate eigenpair,

the backward error bounds obtained by Li et al. [47] give quite large values, which seem
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unreasonable. For example, suppose we consider indexes 6, 9 and 10 of Figure 5.1 and
compare the different backward error values. We can see that the backward error bound
of Li et al. gives a higher value even when we consider both sparsity and H-palindromic
structure together for calculating the backward error. This comparison shows that though
the authors of [47] provide the upper bound for the backward error of a single eigenpair

but this upper bound is quite far from the exact backward error value.

Next, Figure 5.2 provides the comparison between the structured and unstructured
sparse as well as non-sparse backward errors for two specified eigenpairs with respect to
the definition 5.2.2 (See Remark 5.3.3 for obtaining the backward error without sparsity).
By Figure 5.2, we can easily understand that unstructured backward error is always the
lower bound for all the backward errors and structured backward error with sparsity is
always an upper bound when we consider the backward error for more than one eigen-
pairs. Theoretically it is easy to verify. Interestingly by the figure, we observe that the
graph of structured backward error (H -palindromic) and the graph of unstructured back-
ward error with sparsity cut each other. This shows that the “sparsity structure” and
“H -palindromic structure” are theoretically incomparable. To obtain this graph, we per-
form several numerical experiments with H -palindromic matrix polynomial and run the

numerical experiment with arbitrary set of two specified eigenpairs.

T T
75 =
— © — Unstructured backward error
— % — Structured backward error
7 * Unstructured backward error with sparsity =
R — % — Structured backward error with sparsity

Backward error value
w IS o >
w o IS o o o > o
T T T T T T T T
*
\
\
/
/
/ /
*
\
\
A
\
\
@ *
\
*
L L L L L L L L

~

2
T
I

Index of two specified eigenpairs

FiGURE 5.2. Backward error comparison of two eigenpairs for H-

palindromic quadratic polynomial

Remark 5.11.6. Similar to Figure 5.2 for H-palindromic structure, one can also obtain

the similar figures for other structures. W
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CHAPTER 6

BACKWARD ERROR ANALYSIS OF SPECIFIED
EIGENPAIRS FOR TWO-PARAMETER EIGENVALUE
PROBLEMS

Abstract: In the continuation of the detailed study of backward error analysis of spec-
ified eigenpairs, this chapter is dedicated for the structured and unstructured backward
error analysis of two approximate eigenpairs of a double semisimple eigenvalue for two-
parameter eigenvalues problems. We work with different structures such as complex sym-
metric, complex skew-symmetric, Hermitian, skew-Hermitian, T-even alternating, T-odd
alternating, H-even alternating, and H-odd alternating two-parameter matrix systems
with respect to Frobenius norm. Further, we illustrate the developed theory with the help

of numerical experiments.

6.1. Introduction

Backward error analysis is one of the most important topics in numerical linear algebra.
The term backward error analysis is discussed by different authors in different aspects
and is continuously developing. If we briefly recall the development, we can find that the
backward error analysis of approximate solutions for linear systems is already discussed by
different authors and is well developed (see, for example, [35, 36, 63] and the references
therein). For the matrix case, Dief [24] has discussed the backward error analysis for a
single approximate eigenpair, and this work is further extended for structured matrices
by Tisseur [71] for one or more eigenpairs. Backward error analysis of a single and
more approximate eigenpairs for matrix pencils is well developed but it is limited to a
single approximate eigenpair for matrix polynomials (see, for example, [1, 7, 8, 9, 10]).

More specifically in [6] the authors have discussed the backward error analysis of two



approximate eigenpairs of a double-semisimple eigenvalue for structured and unstructured
matrix pencils. Next, in [42] Hochstenbach and Plestenjak have found the backward error
of an approximate eigenpair for unstructured multiparameter eigenvalue problems. In the
same paper, they have also obtained the backward error of an approximate eigenpair for
Hermite multiparameter eigenvalue problems provided the given approximate eigenvalue
is real. In [50], the author has extended the work of [42] and obtained the backward error
of an approximate eigenpair for a Hermite multiparameter eigenvalue problem provided

the approximate eigenvalue is complex.

A given multiparameter eigenvalue problem (MEP) can have more than one eigen-
pairs in general. Hence the backward error analysis of approximate eigenpairs can not
be limited to a single eigenpair. Next step in the backward error analysis for MPE is
to investigate the backward error formula of two approximate eigenpairs. Situations for
two eigenpairs are not as similar as for the case of a single eigenpair. For the given
two approximate eigenpairs, one can face different situations. For example, the given
approximate eigenvalue can be semisimple. The given approximate eigenvalue can be
defective, i.e., both the eigenvalues are same and eigenvectors are linearly dependent. It
may also possible that both the eigenvalues are distinct, but eigenvectors are linearly in-
dependent. Further, these obtained eigenpairs are approximate, not exact. This happens
due to roundoff errors. Backward error is an essential tool to understand the quality
of computed approximate solutions. A two-parameter eigenvalue problem is the most
widely discussed form of the MEP (see, for example, [11, 12, 15, 22, 29, 55| for more on
two-parameter eigenvalue problems). Two-parameter eigenvalue problems arise in many
applications, particularly in mathematical physics when the method of separation of vari-
ables is used to solve boundary value problems (see, [39, 73] and the references therein).
In this chapter, we are interested in the backward error analysis for a two-parameter

eigenvalue problem.

From the above discussion, we know that the backward error analysis of a single
approximate eigenpair is well discussed for two-parameter eigenvalue problems, but the
backward error analysis of two approximate eigenpairs is unanswered even for a semisimple
eigenvalue (see, [27, 42] for more on backward error analysis of a single eigenpair). Hence a
natural question arises that what will be the backward error of two approximate eigenpairs
of a given two-parameter eigenvalue problem when the given approximate eigenvalue is

semisimple with multiplicity two? We answer the above question with respect to the
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Frobenius norm for unstructured and structured two-parameter eigenvalue problems. We
work with complex symmetric, complex skew-symmetric, Hermitian, and skew-Hermitian
two-parameter eigenvalue problems (see, [27, 42| for more details on structured two-

parameter eigenvalue problems).

6.2. Two-parameter matrix system and its classification

Let us start this section by recalling the definition of a two-parameter matrix system.
Let K be the space of two-parameter matrix systems. A two parameter matrix system is

defined in the following manner:
(6.1) W(a) = (Wi(a), Wa(a)), where Wi(a) := agVio + a1 Vi + asVie, i =1: 2,

where V;; € C**™ for i =1:2,7 =0:2, and a = (ap,a1,az) € C> We denote the
system (6.1) by W := (Wy, W) € C"*™t x C™*™2, Finding (Ao, A1, \2) € C*\ {(0,0,0)},
and non zero vectors x; € C" such that W;(A\)z; = 0 for i = 1 : 2 is called a two
parameter eigenvalue problem (TEP). Further, (Ao, A1, A2) = A € C3\ {(0,0,0)} is called
an eigenvalue of (6.1), and the pair (z1,23) is called an eigenvector of W corresponding

to .

Remark 6.2.1. If )\ is an eigenvalue then aX is also an eigenvalue of for each nonzero
a € C. Hence, we consider the normalized eigenvalue A € C3\ {(0,0,0)} for our analysis,
i.e., |)\0’2 + |>\1|2 + |/\2|2 =1.

Remark 6.2.2. Let (Ao, A1, \2) € C*\ {(0,0,0)} be an eigenvalue of W. Then \g = 0

corresponds to an infinite eigenvalue and \g # 0 corresponds to a finite eigenvalue.

Remark 6.2.3. By fizing ag = 1 in (6.1), we can get the non-homogeneous form of a
two-parameter matriz system. In that case by firing A\g = 1 in a homogeneous eigenvalue
(Ao, A1, A2), we can easily get the corresponding non-homogeneous eigenvalue (1, A1, Aa).
In the non-homogeneous case for simplicity we denote an eigenvalue by (A1, \2) instead of
(1, A1, A2).

Definition 6.2.4. Let W be a two-parameter matriz system of the form (6.1). Then the
set of eigenvalues of W is defined as

AW) ={X e C*\ {(0,0,0)} : det(W;(\)) =0 fori=1,2}.
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At this point, we present an example.

Example 6.2.5. Let W be a two-parameter matriz system of the form (6.1), where
Wi(a) == agVip + a1Vis + aaVig, i =1: 2, such that

5 0 7 0 2 0 2 0 1 0
‘/10 = 7‘/11 = 7‘/12 = 7‘/20 = 7‘/21 - 7‘/22 —
0 0 3 01 0
8 0
. Then
0 2
4 1 69 10 16 3 1 5
AW = s y ) ) )
V) = (-~ =) ) )

V35 V35 V35
2 7

07_7__
V53" /53

VA117 /5117 /5117

( )}-

In this chapter, we are interested in the backward error analysis of two approximate
eigenpairs, especially when the approximate eigenvalue is semisimple. At this point we
need to understand the definitions of geometric and algebraic multiplicities of an eigen-

value A = (Ao, A1, A2) of a two-parameter matrix system W.

Definition 6.2.6. [42] The geometric multiplicity (G.M.) of an eigenvalue A = (g, A1, \2)

of a two-parameter W is defined in the following manner:
G.M. = dim(ker(W;(A))) x dim(ker(W(A))).

Definition 6.2.7. [60] The algebraic multiplicity (A.M.) of X\ = (Ao, M1, A2) is equal to
the intersection multiplicity of two curves wy =0 and wy = 0 at A. Here w; = det(W;(a))

fori=1,2.

Definition 6.2.8. An eigenvalue X = (Ao, A1, Aa) of W is semisimple if its algebraic and

geometric multiplicity coincide.

Definition 6.2.9. An eigenvalue A = (Ao, A1, A2) is said to be a double-semisimple eigen-

value if it is semisimple and its geometric multiplicity is two.

Next, we present an example from [73] to understand the above definitions.

Example 6.2.10. Let W be a two parameter matriz system of the form (6.1) such that
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4 0 0 100 010
Vio=10 0 0[,Vi1=1{0 6 0|,Vi2=1]1 0 1];
000 001 010

20 0 0 V3 70
‘/20: 7‘/21: 7‘/22: .
0 0 V3 0 0 1

Here wy = (4o + 201)ad — 6(4ag + ar)ad and wy = 303 — 20agas — 7at. We have
(1,0,0) as one of the eigenvalues of W. Eigenvalue (1,0,0) has multiplicity two. We get
dim(ker(W7(1,0,0))) = 2 and dim(ker(W5(1,0,0))) = 1. Hence G.M. and A.M. of (1,0,0)

is equal to two and (1,0,0) is a double-semisimple eigenvalue of W.

Remark 6.2.11. If (Ao, A1, A2) is a double-semisimple eigenvalue of a two-parameter
matrixz system W, then either dim(ker(Wi (Ao, A1, A2)) = 2 and dim(ker(Ws(Ag, A1, A2)) =1
or dim(ker(Wa(Xo, A1, A2)) = 2 and dim(ker(Wy (Ao, A1, A2)) = 1. Without loss of generality
we assume that dim(ker(Wi(Xo, A1, A2)) = 2 and dim(ker(Wa(Ao, A1, A2)) = 1 for the

backward error analysis.

Next, we classify the two-parameter matrix systems based on the normal rank which
is defined as follows: Let W be a two-parameter matrix system of the form (6.1). Then

we define the normal rank of W; for ¢ =1: 2 by

Nrank (W;) =  max  rank(W;())).
AeC3\{(0,0,0)}

Based on the normal rank, let us consider the following examples:

Example 6.2.12. Let W be a two-parameter matriz system of the form (6.1), where

3+051+042 0
0 4+061+042

1+061+C(2 0

Wi(a) =
0 7+C¥1+O[2

) WQ(Q) =

Then Nrank (W;) = 2 and Nrank (W3) = 2. One can see easily that the above two-

parameter matriz system has no eigenvalue.

Example 6.2.13. Let W be a two-parameter matriz system of the form (6.1), where

Qo + a1 + Qo 8] 7W2(a): [oq—ag 0] '

Wila) =
1 (a) . 0 0
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Then Nrank (W7) = 1 and Nrank (W) = 1. On the other hand, one can check easily
that the spectrum of W is C®\ {(0,0,0)}.

Example 6.2.14. Let W be a two-parameter matriz system of the form (6.1), where

Oéo+Cl€1+Oé2 0 a1 + Qo 0

Wl(a) = 7W2(a> =

0 oo+ aq + g 0 ap + Qo

—1

Then Nrank (W;) = 2 and Nrank (W) = 2. Also we have A(W') = {(0, \/Li’ =) (\/LE’ 0, \’/—%)}

Example 6.2.15. Let W be a two-parameter matriz system of the form (6.1), where

+ + 0 -2 0
Wila)= |07 T ],W@):[O‘l 2 ]

0 a1 — Qg 0 0

Then Nrank (W) = 2 and Nrank (Wy) = 1. But the spectrum of W is nonempty.

As we can see from the above examples that not every two-parameter matrix system
needs to have the eigenvalues. In general, a given two-parameter matrix system need not
have a common root, which leads to an interesting observation that unlike to a matrix,
matrix pencil, and matrix polynomial where we always get a solution (solution means an
eigenvalue), a two-parameter matrix system may not have an eigenvalue at all. Based on
this observation, we can categorize two-parameter matrix systems in the following two
categories: regular and irregular. Further, each class can be divided into two categories,

namely weakly and strongly.

A two-parameter matrix system W of the form (6.1) is said to be regular if Nrank (W;) =
ny and Nrank (W3) = nay (see, [55]). Otherwise, we called a two-parameter is irregular.

We further classify the two-parameter matrix systems in the following categories:

(1) A two-parameter matrix system W is said to be weakly regular if Nrank (W) =
ni, Nrank (Ws) = ngy, and the spectrum of W is empty.
(2) A two-parameter matrix system W is said to be strongly regular if Nrank (W;) =
ny, Nrank (Ws) = ngy, and has a nonempty spectrum.
(3) A two-parameter matrix system W is said to be weakly irregular if either
Nrank (W;) < ny or Nrank (W) < ny and its spectrum A(W) = C3?\ {(0,0,0)}.
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(4) A two-parameter matrix system W is said to be strongly irregular if either
Nrank (W;) < my or Nrank (W;) < ny and its nonempty spectrum is a proper
subset of C*\ {(0,0,0)}.

Next, we discuss an important lemma as follows.

Lemma 6.2.16. Suppose X\ = (A, A1, A2) € C*\ {(0,0,0)} is a double-semisimple eigen-
value of a two-parameter matrixz system W. Then there exists orthonormal vectors x1,xo €
C™ such that (Wy(A\))x; =0 fori=1:2 and y; € C" such that (Wy(\))y = 0.

Proof. Let A = (Ao, A1, A2) € C3\ {(0,0,0)} be a double-semisimple eigenvalue of W. Tt
implies that its algebraic multiplicity and geometric multiplicity are equal to two. Then
Without loss of generality we say that dim(ker(WW;()))) = 2 and dim(ker(Ws(N))) = 1.
Now dim(ker(W1(\))) = 2 implies that there exists two linearly independent eigenvectors
21,29 € C™ such that (Wy(N))z; = 0 for i = 1 : 2, and there exists y; € C" such that
(W2(A))yr = 0.

H
By Gram-Schmidt process, we can set x; = z; and Ty = 2z —y2, where v = % e C.

1
We can easily see that (WW;(A))z; = 0 fori =1:2, and x;, 25 are orthogonal, in particular

orthonormal. W

Next, based on the properties of matrices Vj;,i = 1: 2,5 = 0 : 2 of a two-parameter
matrix system W of the form (6.1), we present Table 6.1 to classify the two-parameter

matrix systems.

S Matrix structure

Complex symmetric Vij = Vg fort=1:2,j=0:2
Complex skew-symmetric | Vi; = —V;]T fort=1:2,7=0:2
Hermitian Vij=Vifori=1:2,j=0:2

A

Skew-Hermitian j=—Vifori=1:2,j=0:2

j=Vlfori=1:2,j=02and Vg = —VIfori=1:2.

=

T-even alternating

T-odd alternating Vij = —Vg fori=1:2,7=0,2and V;; = V;{ fori =1:2.
H-even alternating Vij = Vé{ fort=1:2,5=0,2and V;; = —VZ{I fort =1:2.
H-odd alternating Vii = —VZ? fori=1:2,7=0,2and V;; = VZ{{ fori=1:2.

TABLE 6.1. An overview for structured two parameter matrix systems
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wi

Throughout this chapter w = [ € R?*3 be a nonnegative matrix, where w; =

T
Wy
[wio, wi, wi)T € R3\ {(0,0,0)} and w;j,i = 1 : 1,5 = 0 : | are nonnegative real num-

bers. For a nonnegative matrix w we define the component-wise inverse via w™! =

-1 -1 -1
Wyp Wi Wig . _1 )
. . , where we use the convention that w;;~ = 0 if w;; = 0. For a non-
Wy Wy Wop

negative vector v = [vz} € R"and xr = [xj} € C" we define the weighted 2-norm/seminorm
by [|]loe = (31 vZ|zi|?) /2. If v is strictly positive, i.e., each component of v is positive,

then this is a norm, and if it has at least one zero component then it is a seminorm.

Next, we define the unstructured and structured backward errors for two approximate
eigenpairs. Let (A, 1 ®vy;) and (A, 2o®7;) be two approximate eigenpairs of W, where \ €
C3\ {(0,0,0)} is a semisimple eigenvalue, z1, 7o € C™ and y; € C™. Then unstructured

and structured backward errors are given by
T p (A 12, y1, W) = Inf{[[[ 6W1, 0Wo) w2 = (Wi(A) + Wi (A))z; = 0,0 =1 2;
(W2(A) + 6Wa(A))yr = 0},

ni’F()\,ZL‘LQ, y1, W) = inf{ | (0W1, 0W2)||wz2 : W € S, (Wi (A) + Wi(N)z; = 0,0 =1:2;

(Wa(X) + 0Wa(A))yr = 0},

respectively, where 0W;,i = 1 : 2, are of the form (6.1) such that éW;(«) := 25:0 a;oVi;,

w € R*3 is a nonnegative matrix, ||||(5VV1,(5VV2)||||2072 = |||5VV1|||12%2 + |||5I/V2|||i)2’2 with
IOWill3, 2 = 35— wii|6Vis|)* for i = 1: 2, and

J

S := {complex symmetric, complex skew-symmetric, Hermitian, skew-Hermitian,

T-even alternating, T-odd alternating, H-even alternating, H-odd alternating}.

Remark 6.2.17. One can see Chapter-2 and Chapter-6 of [27] to obtain structured and

unstructured backward error formulas of a single approximate eigenpair.

To derive the backward error formulas, we will recall the concept of derivative of the
map from [9]. Let z,v € C?. The partial gardient V;||z||,2 of the map C* = R, 2 — ||z[,2
which is just the derivative of the map C — R, z; — ||[20, 21, 22)"||»2 With the variable

20, Zi—1, Zit1, - - -, 22 are fixed as constants.

Let A = [Ao, A1, Ao)T € C*\ {(0,0,0)} and wy, = [wyo, wp1, wye]’ € R*\ {(0,0,0)} for

p = 1 : 2 are nonnegative vectors. Define Higlg()‘) = wg | Xol? + w2 M |? + wi | Aef?.
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Now introducing

L R
M Hyp() |
where the partial gradient is evaluated at [Ag, A1, Ao]? and is given by Vi1, =
w;f)\i
Hw5172(>\)'

Lemma 6.2.18. [9] Let A = [)\0, )\1, )\Q]T S (Cg \ {(0,0,0)} Wy = [U}po,wpl,wpg]T S Rg \
{(0,0,0)}, p = 1: 2, be nonnegative vectors and Vi, -1, = M 2,i=0:2.

Then

'3
H 1,00 ) P
2
2 2 _
E wpi‘vpinp_l,Q‘ =
i=0

Proof. Proof of the above equality is given in the following manner:

9 2 w_-4|)\‘|2 2 —2|)\,|2
w2, VyiH, —1 2 = wz'm—l —l =L
Z pll et wy, 72| Z mHi;172()‘) Z H2*1 2<)‘>

=0 1=0

Next, for € = £1, we define G2~ (\) = L9 woi | Aol + (1;) w M)+ L

€wy 2 2

2 Al

Lemma 6.2.19. [9] Let A = [M\o, A\, 2o]T € C3\ {(0,0,0)}, w, = [wpo,wpl,wpg]T €

R?*\ {(0,0,0)}, p = 1: 2, be nonnegative vectors and V,;G L= (1;6)(;” /\(/\),p 1:
€ wp ,2 ewp17
- _ (1-¢) w:?/\i 4.
2,1 =0,2, and VpiGeyw;{Z = Tm,p =1:2. Then
2
> wiVuG | P=1
i=0 Cwp 2

Proof. For e = +1, we have (lff) (1+6) ,and U= 6) (1 9. Proof of the above equality

is given in the following manner:

i:w2.|v G |2 - (1+¢) w? |/\0|2 (1- 5) |/\ ? (1+¢) w? |/\2|2
= ’ pogiplz()\) ’ - (Siplz()\) ’ pZCgprl,z(/\)
Then

Zw?‘v ve! 2= (1+e) wihol>  (1—e) wlM? (1+€) wyy|Xel? _
o e 2 @ )2 @ 6O

€ wy L2 € wy 7,2 € wy 7,2

Now, in the light of Lemma 6.2.16, we derive the backward error formulas for unstruc-
tured and structured two-parameter matrix systems. Note that throughout this chapter,

a two-parameter matrix system can be either regular or irregular.
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6.3. Backward error analysis for unstructured two-parameter eigen-
value problems

In this section, we derive the backward error formula for two approximate eigenpairs

of a double-semisimple eigenvalue for an unstructured two-parameter matrix system.

Theorem 6.3.1. Let W be a two-parameter matriz system of the form (6.1). Let (A, 1 ®
y1) and (A, 1o ® y1) be two approzimate eigenpairs of W, where X = (Ao, A, Ag) € C3 '\
{(0,0,0)} is a double-semisimple eigenvalue, x1,z5 € C™ are orthonormal vectors, and
y1 € C™ such that yHy, = 1. Set ry := —Wi(Nay fort =1 :2 and 119 := —Wo(N)y;.

Then the unstructured backward error of approximate eigenpairs is given by

2

rall3 1712]]3
(Nw.r(X, Z1:2, Y1, W))2 = g + )
=1 Hi;lg()\) H,i;lg(A)

T

w

where H?_, [(X) = wi*|Xol® + wi®| M [ + wi? | Xel?, i = 1: 2, and w = [ ;
i wl

€ R?*3 be a

nonnegative matriz with w; = [wiy, wi, wi]? € R*\ {(0,0,0)}.

Proof. For constructing the unstructured backward error formula, we need the minimum

Frobenius norm values of §V;;,¢ =1:2,j = 0: 2. For this purpose, we consider

2 n—2
— T 2 (5/‘/?] ‘ (5CUT
(62) 5‘/1j == Ul (5‘/1]'[]1 = 5
n—2 5B1j ‘ 5D1j

5U1j,11 5U1j,12

Whel"e (5/‘/?] — ,5B]_j — |:b1j,1 blj,2:| 5 (SC]_] — [clj,l Clj,2:| 5 fOl“ j — 0 : 2,

5U1j,21 5U1j,22
and U; € C™*™ is a unitary matrix such that U; = [UH U21i| with Uy = [wl 962]
€ Cm*? and

2 n—2
ST Ovg; T

(6.3) Vo = Uy §Vo;Uy = ? V24,11 ‘ 25,1 7
n—2 baj1 ‘ dD,;

where U, = [Uu U22] with U, = [yl} € C™x! Tt is given that ry := —Wi(\)a; for
t =1:2and rp := —W5(\)y;. Then using the unstructured backward error definition,
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we get ryy = Wi (A)x, for t = 1: 2 and 15 := §Wa(A)y;. From (6.2) we have (F/ﬁ/;()\) =
U LW (A\)U;. Further, we get CS/W\Z(A)Ulet = U, "oW (N = Uylry for t = 1: 2. This

implies

2 —_—
Vi, 0CL | |e Ulr
Zwljwl_jl)\j Y l ‘= 1; " , further simplification gives
=0 5B1j 5D1j 0 U21Tt1
(6.4) (wiowig AedVig + w11w1_j1>\15V11 + wiawiy A2 Vio)ey B Ulira
(wiowig A0 Bio + wiiwiy' A1 By + wizwiy A2d Bia)ey U

Also, from (6.3) we have m()\)UgHyl = Uy 6W5(N)yy = Uy r15. This implies

2

dvainn L 1 ULr
E ijwQ_jl)\j AR = 1TZ 1 further simplification gives
=0 b2j,1 5D2j 0 U22T12

T
Uiz

T
U22T12

-1 -1 -1
(waowag AgdV20,11 + WarWay A10V21 11 + Warliy A20V2211) B

(6.5)

Y

-1 -1 -1
(WaoWag Aobao 1 + Wa1Way A1ba1 1 + Warlay Aabas 1)

tth

where e¢; € C? is a vector having 1 at ' position and 0 elsewhere. From (6.4), we get the

following equations

1 1 1 T
(6.6) WiWig AoOV10,4 + Wi1W1; AMOVI1 + WigWis Aa0Vig e = Ty T, T = 1,2,

(6.7) wlowfol)\oblo,t + wnwﬁl)\lbn,t + w12wf21)\2512,t = U2Tl7“t1> t=1,2.
From (6.5), we get the following equations

-1 ~1 1 T
(6.8) WaoWag AgOU20,11 + Wo1Way A10V21,11 + WaalWas A20V22 11 = Yj T12,

(6.9) wzowi]l)\onO,l + w21w2*11)\1b21,1 + w22w2*21)\2b2271 = Uggmz-
The minimum norm solutions of (6.6) and (6.7) are given by
V104t = EAlox?Tt17 V114t = EAuxtTTﬂ, Mg = z1412313?7}1;
biot = Zay, U2T17“t1, biit = Za, UleTﬂ, biot = Zays U2T17“t1-
The minimum norm solutions of (6.8) and (6.9) are given by
dv0,11 = EAzoleﬁm 09111 = 5A21y1T7”12, dV9g11 = zAgzleT‘u;

= T - T - T
520,1 = ZA20U127‘12, 521,1 = ZA21U127”12, 522,1 = ZA22U127”12-
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Further from (6.4), we get the following two equations

1 1 -1 T
(6.10) W1oW1g OV10,21 + Wi1W1q A10V11,21 + Wi2Wiy A20Vi221 = T3 711,

(6.11) WioWyy 6V10.12 + Wi1wW1 A 0V11 12 + WiaWi5 AedU19 12 = T To1 .
The minimum norm solutions of (6.10) and (6.11) are given by

_ T - T _ = T .
57}10,21 = ZA10T9 T11, 57]11,21 = 24, Lo T11, 57}12,21 = ZA15T9 11,

= T - T - T
51}10,12 = ZA10%7 721, 57111,12 = ZA;1 X1 T2, 51}12,12 = ZApp Ty 721

The backward error is given by (np(\, 1., y1, W))? = 3.7 123 o Wi 10Vi;||?, where wi; || 6V4;|* =
w%j||(5V1j||2 + w%jH(SBleQ + w%j||501j||2 + w1jH5D1j||27 and w2jH5V2jH2 = w2j|5v2j,11|

wij |2 l|? + w3l boga [|* + w35 |0 Daj|*.

We have Y75 wh[[0Vi;|2 = 37— S, wiilovijul? + whloviaal? + whldviz|* +

2 2
willbigell® + willeyll® + 116Dyl17 = 3750 2oy wijlzay Pl ra + |za, Pllafra ] +
|24y, Plleg i + [zay, P USral)? + wleclJtHZ + ||6Dy;]|?. Since using Lemma 6.2.18, we
get
L 2 , [ViH —12’ ‘xt re? Ezs Tt1|
2.2 wiilea,Plalral ZZ wi; —Z
j=0 t=1 t=1 j=0 w1172 1,2
2 S |Vlz 12| |x1r21|2 ;T
33 e i = 33t T e gl
j=0 t=1 t=1 j=0 wfl,z w11,2
2 & , IViH, 12| ‘I27"11|2 |x r |
1
> whjleagPlegral® = ZZ wi; _Z t
j=0 t=1 t=1 j=0 w1_272 wy?
2 2 ‘vlz 17ﬁtlH2 |I rtll
33, Pl = 33, Saica
=0 t=1 =1 j=0 —2 wl ,2

. T, T Ty T xlrq |2 ULy,
Finally, we get ZJQ.:O w? [0Vi,]12 = 37, I}gt tl'(A) + 5 oy 21|(/\) + 5 1 “l( 5t I, I(H/\) +
wy 2 wy 2

o wiillerjall” + 325 wi; 18Dy, where ||U217"ﬂ||2 = N2 = a2 — o mlz- Since

we need minimum norm solution hence setting ¢, = 0 and 0D;; = 0, we get

||7“11|| + |71 ||
6.12 § w? || 6Vi;|)? = :
( ) 1] 1172(A)
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In the same manner by using Lemma 6.2.18, we have 22 o Wi [|6Va;|* = ZQ. o W3; 025117

T U
Wi ||ba1[|* +wd;lleag||? +wd; |0 Doy ||* = I}gljm()\) +4 12:12(||) where [|[Uiario||* = [[ria|* —
wy ,2 ,2

ly{r12|?. Similar to (6.12), we get

[[712]”
(6.13) Z%J |0Va1* = 0

’LU27

Using (6.12) and (6.13), we get

[ra[” + |72 ]|? |12

-
IZE RN YR TCRN Y

(614) (nw,F()Ha:l:Qayl?W))Q =

Remark 6.3.2. Substituting back all the obtained entries in (6.2) and (6.3), we get the

desired perturbed matrices.

Next, we state the backward error result for complex symmetric and complex skew-

symmetric two-parameter matrix systems.

6.4. Backward error analysis for complex symmetric/complex
skew-symmetric two-parameter eigenvalue problems

In this section first we discuss the backward error analysis for complex symmetric and
complex skew-symmetric two-parameter matrix systems. Next, we establish a relationship
between unstructured and structured backward errors. Throughout this section, ¢ = 1
represents a complex symmetric two-parameter matrix system and € = —1 represents a

complex skew-symmetric two-parameter matrix system.

Theorem 6.4.1. Let W be a complex symmetric/ complex skew-symmetric two-parameter
matriz system of the form (6.1). Let (A, x1 ® y1) and (A, z2 ® y1) be two approzimate
eigenpairs of W, where X = (Ao, A1, A2) € C*\{(0,0,0)} is a double-semisimple eigenvalue,
xr1,r9 € C™ are orthonormal vectors, and y; € C" such that yf{yl = 1. Set ry =
—Wi(Nzy fort =1:2 and ry := —Wy(N)yy. Then the backward error of approzimate

eigenpairs is given by

2 2lrall3-(+e)/2lzfral? 2||r12[l3—(14€)/2[y] r12|?
(77ISUVF()\7 L1, Y1, W))Q _ Zt:l( Il tleHg_l ié}\\) ¢ reil )+ ( Il 12||2H§_1 ié)\|)y1 12] )—
wy T, wyt,

|f’52 r11)?
277, L
wy
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wi

where H? ., (\) = wio? [ Xo|? + wi | M |? + wi | Ao)? i =1:2, and w = [ € R¥3 be a

T
Wy

nonnegative matriz with w; = [wiy, wi, wi]? € R\ {(0,0,0)}.

Proof. For constructing the structured backward error formula, we need the minimum

Frobenius norm values of 0V;; such that 6V;; = = edVE

-0 =1:2,7=20:2. For this purpose,

we consider

2 n—2

__ Ve §B..T ]

(6.15) oV, = UTSVi,U = I el I
0Bi; | 0Dy

(1+e€)
T5U1j,11 E5Ulj,12

0v1j12 @501]',22_
0Ch; = [Clj,l Clj72:| , 0Dy = edDy;" for j = 0:2, and U; € C™*™ is a unitary matrix
such that U; = [Un UQI} with Uy = [ml xQ} € C™*2, Further

2 n—2
(1+6) T
e 2 OvVgs; bos
(6.16) SVaj = UL 6Vo,;Uy = 5 0V25 11 ‘ €b2;,1 7
n—2 baj1 ‘ 0Dy

where 0Dy; = eéngT for j =0:2, and Uy = [U12 U22} with Uyg = [yl} € Crzx1,

It is given that ry := —Wi(A)xy for t = 1: 2 and riy := —Ws(A)y;. Then using the
structured backward error definition, we get ryy := Wi (A)z; for t = 1 : 2 and ryp =
OWo(A)y1. From (6.15) we have (5W()\) U;TWi(A\)U;. Further, we get cS/W\Z()\)UlH:Ut =
UP6Wy( Nz, = UyTry for t = 1: 2. This implies

oVi; esBL] [e ULr
Zwuwlj Y b L further simplification gives
(SBlj (5D1j 0 Ugi’l“ﬂ

(6.17) (wl()wfol)\ofsvlo + wllwﬁl)\15V11 + 7~U12w1_21)\25V12)6t UlLra
(wlowfol)\ofSBlo + wnwﬂl)\ldBn + w12w;21>\25312>€t U2T17't1

Also, from (6.16) we have (%()\)UQHyl = U2T5W2()\)y1 = Uy 'ry5. This implies
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T
Uiari2

T
U22T12

, further simplification gives

2 €
S [0 a8
WajWo; Aj
=1 5D2j 0

ij,l

(1+¢)

(6.18) [T

(wzowggle5b2o,1 + w21w511A15521,1 + w22w2*21)\25b22’1)

T
Uiaria

T
Usariz

—1 —1 1
(wWa0Wag AodU2011 + W21Way A10V21 11 + Wy AabV22 11)

)

tth

where e, € C? is a vector having 1 at position and 0 elsewhere. From (6.17), we get

the following equations for t = 1,2

(1+e) (1+¢) 1

1+e¢
Wi1W1g AM0V11 4+ ( )

-1 T
W12W19 >\25U12,tt = Ty Te1,

(6.19)

-1
W1Wiy Ao0V10,4 +

-1 -1 -1 T
(620) W10W1g /\leoﬂg + W11W1q )\1()11,15 + W12W19 /\2b127t = U21T’t1.

From (6.18), we get the following equations

(6.21)
1+4+¢ _ 1+€ _ 14+¢€ _
( )w20w201)\0(51120,11 + ( 5 )w21w211)\15'v21,11 + ( 5 )w22w221)\25?122,11 = Z/1T7“12>
(6.22) WaWay Aob20,1 + Wa1 Wy A1bay 1 + Waatay Agbaa 1 = Ugyria.

The minimum norm solutions of (6.19) and (6.20) are given by

(I+e)_ 7 (I+e)_ 71 (I+e)_ 7
5U10,tt = TZwat Tt1, 57}11,& = ZA1 Ty T, 51}12,& = TZAmIt 1
- T - T - T
blo,t = zAloUertly bll,t = ZAn U217”t17 b12,t = ZA12U217”t1-

The minimum norm solutions of (6.21) and (6.22) are given by

(1+¢)
2

(1+e€)
2

(1+¢€)

_ T
9 ZA12Y1 T12;

_ T - T
51}20,11 = ZA10Y1 7“12751)21,11 = ZA11Y1 T12, 51}22,11 =

2 T 2 T 2 T
b, = Wyg Zan UrgT12, D12,1 = Way 245, UiaTi2, baoy = Wy Zap, UpTra.
Further from (6.17), we get the following two equations

—1 —1 -1 T
(6.23) WioW1g Ao0V10,12 + Wi1W1g A10V11,12 + WiaWig A20V1212 = Ty T11,

~1 ~1 1 T
(6.24) WipW1 AoOV10,12 + Wi1Wig A1OV11,12 + WiaWis A20Vi2,12 = €T] Ta1.

Equation 6.23 and Equation 6.24 are equal. The minimum norm solutions of (6.23) is
given by

- T - T - T
51}10,21 = €2A,0T1 721, 5U11,21 = €24, T21, 51}12,21 = €ZA1,T1T21-
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The backward error is given by (np(\, 1.9, y1, W))? = S0 12] o Wi 16Viz]|?, where w?; ][0V,
= w%j||5‘/1j||2 + 2“’%]‘”5313‘”2 + wfj||5D1jH2, and w2jH5V2jH2 = ij’5U2j,11’2 + w2j||c2j,1|| +

w3;|[bgj 1 [|* 4 w3 |6 Doy |-

Similar to Theorem 6.3.1 by using Lemma 6.2.18, we have Ef o Wi;l[0Vis]1* =

S o e (L4 €) /20w 601 + 203|001 121 + 203, |11 + wh [ 6Dy 1* = S5, ((1+

€)/2) 72 |z’ 71't1| + 9 |m1:21|( 5+ 2||U mslH) + Z] 0w1]||5D1]||2 where |ULra|? = |ral® —
1 Wy

x] Tt1 — |2T Ttl . dlnce we nee t e minimum norm solution hence setting 1, = 0, we
1 5 Si d h | h 0Dy; =0
get
rallf = (1 + /2lral?, _ |afrl
6.25 SViill? ¢ _ o 12 '
(6.25) ZwUH l Z< ol )= 2gnhy
wy 2 2
In the same manner, we have Z?:O w3 |0V ||? = Z?:o w; |61 2 + 2w, |[boja |1?
r r 2 . .
w10y, |2 = s 2 dbnell where |[Upria |2 = [[rial> — [yF 1o, Similar to (6.25),
w ,2 w 2
we get ’ ?
2
2/r2]l3 = (1 +€)/2)|yfria)?
(6.26) ngijSVQjHQ: 1213 ((2 )/2)|yi 12| '
=0 Hw2*172(/\)

Using (6.25) and (6.26), we get

2 2|ren 12— ((14€)/2)|aL 7 |2 2|lr12]|2—((14€)/2)|yLri2]?
(1% P\ 312,90, W))? = Yo, (Bl ogeient) o (Hrligmainnst) -
2_|96’§F7”11|2 o -
Hw1_1,2(A).

Now we present the relation between complex symmetric/complex skew-symmetric

and unstructured backward errors.

Lemma 6.4.2. Let W be a complex symmetric/ complex skew-symmetric two-parameter
matriz system of the form (6.1). Let (A\,x1 ® y1) and (A, x2 ® y1) be two approximate
eigenpairs of W, where X = (X, A1, Aa) € C*\{(0,0,0)} is a double-semisimple eigenvalue,
r1,x9 € C™ are orthonormal vectors, and y; € C™ such that yfyl = 1. Set ry =
—Wi( Nz fort =1:2 and rig := —Wo(N)yy. Then

(7712(/\; T1:2, Y1, W)) < \/§<77F()‘7 T1:2, Y1, W))
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Proof. From Theorem 6.4.1, we have

re1|3— € xtTr,«, 2 ri2|3— € Trig|?
(SN, 210, 1, W))? = Zf:1<2H 13— ((+ )f\)\ 1 )+ 2[r12ll5—((1+€)/2)[yy 127

| I;lil 1o ) Higl,z()\)
2-H227111(>\)
. |95tT7"tl|2 Y1 r12]? |23 r10 |2
SIDCG—>O —ZO,and—ZO,weget
H’i;l,Q()\) Hw21,2()\) Hifl,Q()\)
2
2||r H i 13
S tl 2 121|2
A, 1 2 < .
(nF( ,551.2,91, Z H5)71 Hi;12()\)

Now, using the backward error expression of Theorem 6.3.1 and above inequality, we get

the desired result.

Next, we present the backward error analysis for Hermitian/skew-Hermitian two-

parameter matrix systems.

6.5. Backward error for Hermitian/skew-Hermitian two-parameter
eigenvalue problems

This section deals with the backward error analysis of Hermitian and skew-Hermitian
two-parameter matrix systems. For this backward error analysis first we define the fol-

lowing terminologies.

Let W be a Hermitian /skew-Hermitian two-parameter matrix system of the form (6.1).
Let A = (Ao, A, A2) € C*\ {(0,0,0)}, and 1, 25 € C™ be orthonormal vectors, and y; €

Cn such that y7y; = 1. Introduce 14 := —Wi(A)a; fort = 1: 2 and rp := —Wa(\)y;, and
wi
and w =
wy

Furthermore, define

€ R?*3 be a nonnegative matrix with w; = [wyg, wi, wiz]? € R3\{(0,0,0)}.

ReXo) RGeM)  R(eAr) R(Vedo)  R(Ved)  R(Ved2) 2o AL g

G — w10 w11 w12 H PR w20 w21 w22 P w10 w11 w12
' S(Wero)  S(Ved)  S(Vers) S(Wero)  S(Hed)  S(Vers) Ao AL Do
w10 w11 w12 w20 w21 w22 w10 w11 w12

Fort=1:2set

g = G+ [%(Iirﬂ)] ,]’L _ H+ [%(y{;rl2>] , Lo— K+ [6%’57’11 7
S i) S(yp r12) Ty T2
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where g; := [gi0, 911, gio) T3 h = [ho, by, ho]T5 k := [ko, k1, k2]T. Now, we derive the main re-
sult of this section. Throughout this section, e = 1 represents a Hermitian two-parameter

matrix system and € = —1 represents a skew-Hermitian two-parameter matrix system.

Theorem 6.5.1. Let W be a Hermitian/skew-Hermitian matriz two-parameter matriz
system of the form (6.1). Let (A, z1®y1) and (X, 22®Q11) be two approximate eigenpairs of
W, where X = (Ao, A, A2) € C*\{(0,0,0)} is a double-semisimple eigenvalue, xy, x5 € C™
are orthonormal vectors, and y; € C" such that yf'y, = 1. Set ryy == —Wi(N)a; for
t=1:2 and rio := —W3(N)y1. Then we have

Case-1: When (Mg, A1, X2) € R3, then the backward error of approximate eigenpairs is
given by

_ S 2lrall? = o Jafra ol
HT, (N H2 ()

Wy

2||7”12||2 - |yf{7”12’2

Higlg()‘)

(ni,F()\7x1:27y17W))2 —+

Case-2: When (A, A\, \o) € C*\ R3, then the backward error of approzimate eigenpairs

s given by
2 2 p 2 2 5
S 2 _ gtj |2 2 2
(nw,F(Aaxl:Zath)) - Zzywl‘ +Z‘w2’ _'_QZ‘wl’ +
7=0 t=1 J 7=0 J 7=0 J
2 2 2
2(21&:1 ||71151||2 _ Et:l Zi:l |$(Zfl”f’t1|2) + 2( ||T12||2 B |y{IT12|2>
1,00 ROV
T
w
where Hi,l ,(A) = wig?| Aol? + wit M )? +wit Ael? i =1:2, and w = [ lT € R?*3 be a
) w!

nonnegative matriz with w; = [wiy, wi, wi]? € R3\ {(0,0,0)}.

Proof. For constructing the structured backward error formula, we need the minimum
Frobenius norm values of V;; such that 0V;; = eéVif,i =1:2,7=0:2. For this purpose,

we consider

2 n—2
. Vi | eoBH
(6.27) oV, = Utsv,U = “‘6“ :
n—2 5Blj ‘ (5D1j

\/E5U1j,11 5?)1]‘,12

6(5?11]',12 \/E5U1j,22
0Dy, = 65D1jH for j =0:2, and U; € C™*™ ig a unitary matrix such that Uy = [Uy; Us]
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where (5‘/1J = with 5vlj,tt - R, (5B1j = [blj,l blj,2]7 (501]‘ = [Clj,l Clj,2]7




with Uy = [l‘l, J?Q] e Cmx2,

2 n—2
— 2 €0y ebyi1 1
(6.28) SVay = UL Vo Uy = Veduzn ‘ 2L,
n—2 b2j71 ‘ 5D2j
where 51)2]'711 S ]R, 5D2j = €5D2jH fOI‘j =0: 2, and UQ = [U12 UQQ] with U12 =1y €
Cm2*1 Tt is given that ry (= —Wi(A)z; for t = 1 : 2 and rp := —Wy(A)y;. Then
using the structured backward error definition, we get r;y := 0Wj(N)x, for t = 1 : 2

and rp = 0Wa(\)y;. From (6.27), we have (5/1/[\71(/\) = UH5Wi(\)U;. Further, we get
Wi (N 2y = UL 6W4 (V) = UyPry for t = 1: 2. This implies

Vi, esBHT [e Uty
Z:wljwlj1 & 2 il I bt , further simplification gives
6By, 6Dy | |0 Ujyra

(6.29) (wi0wig AodVig + wirwi A6 Vir + wiawis A2dVia)ey Ulira
(’wlowl—ol/\g(SBlo —|— wuwl_ll)\l(SBn + wlgwf21A25Blg)et Ug?"ﬂ 7

Also, from (6.28) we have (5/1/\1//2(/\)U2Hy1 = U2H5W2()\)y1 = Uyry,. This implies

Utsriz o . .
, further simplification gives

2
Vo b 1
Zw2j’w2jl)\j[ o 2“] [0

bgj’l 5D2j

H
UpTia

—1 -1 -1 H
VE(WapWwag AoOU20,11 + WarWay A10U1 11 + WorWay A20U2211) Uiariz

(6.30)

Y

-1 -1 -1 H
(wapway AObap1 + Warway A10bo1 1 + Waatay A2dbag 1) UssTi2

where e; € C? is a vector having 1 at t* position and 0 elsewhere. From (6.29), we get

the following equations

(6.31)  Vewiowyy ANodvios + Vewnwit Aidvi g + Vewrawiy Aadvia gy = vfra, t=1,2,

(6.32) wiowig Aobios + winwi Mbii g + wipwiy Aebiay = Usira, t=1,2.
From (6.30), we get the following equations

-1 -1 -1 H
(6-33) \/Ewm)wzo >\05U20,11 + \/Ew21w21 /\151)21,11 + \/Ew22w22 )\25022,11 =1 "2,

-1 -1 -1 H
(6.34) WaWag Aob20,1 + Wo1Wqy A1b211 + Waalay Aobaa 1 = Ugyria.
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When (Ag, A, A2) € R3, then the minimum norm solution of (6.31) is given by

51}10tt ZAlo\/_fEt 7“1:1751)11 tt = ZAH\/_fEt 7“t1751212tt ZAlz\/_l't T¢1-

On the other hand when (A\g, Aj, o) € C*\R?, we can rewrite (6.31) in the following form

Z wljwlj \/_/\ ) 0V = ?R(xf?“ﬂ)

Z wljwu S(VeN;) 6vijs = S(afrs)

The minimum norm solution of the above two equations in the combined form is given by

w105v10,tt R(Vedo)  R(VeA)  R(Vedo) * %(xH,,, )
(6.35) w1100 =40 A v = C = g0, 900 90]" = g
110V1L et S(Wed)  S(ed)  S(ve) S(pH T
w10 w11 w12 \S(fEt Ttl)
w125U12,tt

The minimum norm solution of (6.32) is given by
— prH —  rrH —  rrH
biot = Za,,Ug1 71, b1t = Za, U1, bioy = Za, Ug i

When (Ag, A\, A2) € R3, then the minimum norm solution of (6.33) is given by

- H - H - H
5U20,11 = ZAQO\/E% 12, 5U21,11 = ZAy \/E?Jl 12, 5U22,11 = ZAg \/E?h T12.

When (A, A1, Ao) € C3\ R3, separating (6.33) in real and imaginary parts, we get the

following two equation

2
(636) Z \/EU)ijEjI%()\j) (5U2j’11 = %(yflrlg)
7=0
2
(637) Z U)ij;jl\/g %( ) (51)2] tt = %(yfl?”‘lz)
j=0

The minimum norm solutions of (6.36) and (6.37) in the combined form is given by

wgo(svgo,u R(Vedo) RV R(Ver) * %(yH’f’m)
(6.38) W10V = | 2 = = i = [ho, ha, )" = .
21002111 I(Vedo)  SHed)  S(Vehr) ( H,. ) » 11,
1) w20 w21 w22 Yi 712
W220U22,11

The minimum norm solution of (6.34) is given by

- H - H - H
520,1 = ZA2OU127‘12, 521,1 = ZA21U12T12; 522,1 = ZA22U127"12-
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Further from (6.29), we get the following two equations

-1y 17 -1y _ H
(6.39) W1Wiy Ao0V10,12 + W11W1T A1OV11,12 + WiaWiy A20V1212 = €5 111,

-1 -1 -1 H
(640) W1oW1g )\06?)10712 + W11W1q >\1(5U11,12 + W12W1o )\2(5’012’12 =Ty T21-

When (Mg, A1, \2) € R3, we know that exfry; = 2r,;. Hence (6.39) and (6.40)

are the same and the minimum norm solution (6.40) is given by

- H - H - H
57}10,12 = ZAw\/E% 21, 51}11,12 = ZAH\/E% 21, 57112,12 = ZAm\/EJ?l T21.

On the other hand if (Mg, A1, A2) € C*\ R, from (6.39) and (6.40), we get the minimum

norm solution as follows:

wW100V10,12 Y M + exgrn
| wio w11 w12 _ T _ .
Ao A1 A2 x{irm
wip Wil wi2
w125v12,12

The backward error is given by (ne(\, 212,91, W))? = 37, Z] o wiill0Vi;|I?, where

Wi [[6Vas |12 = w8V 1 + 2w, |6 B |1* + wi, 6Dy][2, and wd||dVay||> = w3;|0va;|> +

w3 ||cajall* + w3 l|baja[|? 4 w3, |0 Das||?. When (Ao, A1, A2) € R?, similar to Theorem 6.3.1

by using Lemma 6.2.18, we get Z? owi;lloVa;)* = Z?:o S Wk |vrja [P 2w3 [ Svr 10+

2w, |buel|>+u, 0Dy 12 = T, 75 j“‘ P2 Y50 2 e wh 10Dy
w) wil2

where ||Uflry ||> = [Jra)® — |2 rt1|2 |z&fr1|?. Since we need the minimum norm solution

hence setting 0D,; = 0, we get

2 2 2
= 2”7’151”2 > |$H7”t1|2 |1/‘H7‘21|2
642 2' 6V 112 — Zt—l t=1 t . 2 1 )
( ) 'E_ wle 1]” H2_12()\) H2—12()\)
wy wy

When (g, A1, Ao) € CH\R?, we get S5 wi,[|0V4;]2 = 35 X7 w%]|5U1j,tt|2+2w%j|5U1j712|2
202, byl 4+ w3 10Dy 12 = 355 S0y |22 24 2] 22 2 4 2058 16D, 2, where

2™
|UEri || = |rall® — |2 rq |* — |28 ry|?. Since we need the minimum norm solution hence
setting 0Dy; = 0, we get
(6. 43)
2 2 2 2 2 2 H,. |2
o rallt =0 D
ZMIJH(S‘/UHQ ZZ|QU |2+22| |2+2 thl || tl” 221571 Zz71| i t1| )
wy H?, ()
7j=0 t=1 wy ,2

In the same manner, when (Ao, A1, A2) € R3, we have Z? o W;]|0Va,]|* = Z? Ong](%gj,nl?—i-

T 2
2w, |[bo;al* + wii[|l0Dy ] = - Tfj‘m + 2 ”Umjlj(“) + w3,[|0D; %, where [|Uyzrsl|?

Wa V2
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712> = Jyfriz|?. Similar to (6.42), we get

2[|r1a|* — ‘y{{ﬁz’Q)
w2_12()\)

On the other hand, when (Ao, A1, o) € C*\R?, we have Z] o W;]|0Vay|* = Z] o W3; 025 11]?
Uiar
+ 2w§ij2j,1”2 +w§jH5D2jHQ = ZJ =0 |w2 ’2 QHLIQ(”A) +w2jH5D2jH27 where HU127"12H

(6.44) zw%uw\? (

w2
|r12]1* = [yfriz|?. Similar to (6.43), we get
2 2
h; [712]* = |y’ o]
(6.45) wyl0VaylI* = 1= + 2 )-

For (Ao, A1, X2) € R? by using (6.42) and (6.44), we get
(6.46)

2 2 2 H 2 H 2 2 H 2
2||r r x 2
(SN, 219, 51, W))? > i 2l l® — Do o ra 9 Bt [r12]l® — |y1 12|

H? () 12, () ZEN0Y

Similarly for (Ag, A1, A2) € C*\R3 by using (6.43) and (6.45), we get the desired backward

error. W

6.6. Backward error for T-even/T-odd alternating two-parameter
eigenvalue problem

In this section we discuss the backward error analysis for T-even alternating and 7-
odd alternating two-parameter matrix systems. For this backward error analysis first we

define the following terminologies.

Let W be a T-even/T-odd alternating two-parameter matrix system of the form (6.1).
Let A = (Mg, A1, A2) € C3\ {(0,0,0)}, 21,25 € C™ are orthonormal vectors, and y; € C2
such that yfy; = 1. Introduce ryy := —Wi (M), for t = 1: 2 and ryp := —Ws(\)yy, and
T
wy

w =
L@T

Furthermore, define

€ R**® be a nonnegative matrix with w; = [w;o, wi1, wip]? € R3\ {(0,0,0)}.

2o M A2
A= |wwo w11 w12
DY ST U I
w10 w11 w12
and set N
A A A T
[w— o w—] [1‘2 7’11]
a:= ,
Ao M A2 T
w10 w1 wi2 €ryral
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where a := [ag, a1, as]”.

Throughout this section, € = 1 represents a T-even alternating two-parameter matrix

system and € = —1 represents a T-odd alternating two-parameter matrix system.

Theorem 6.6.1. Let W be a T-even/T-odd alternating two-parameter matriz system of
the form (6.1). Let (\,x1 ® y1) and (A, 22 ® y1) be two approximate eigenpairs of W,
where A = (Mg, A1, A2) € C*\ {(0,0,0)} is a double-semisimple eigenvalue, xq, x5 € C™
are orthonormal vectors, and y; € C" such that yi'y, = 1. Set ryy = —Wi( Nz for
t =1:2 and rig ;== —Wa(Nyy. Then the backward error of approximate eigenpairs is

given by

2
1 2 |z 11| + |2 7oy |?
S 2 T 2 2 1
Th /\71'1:2,91,W - - Ty Te1| — 2 -+
( ,F( )) ; (G2 ()\) H271 2(}\))‘ t !t ‘ H5)171’2<)‘)

wy o,
2
2||7”t1||2 2, 2||7“12Hg 1 2 T. 2
+2 \—\ + ( - Nyi r12]7,
22, o) Z w0 e T,

t=1 ng 2 2 2
where H? ., ,(A) = wig’[Mof* + wi* |\ + wi”| Aol and giflz(A) = T2l +
wl
(1 w2\, 2—1—(1Jr6 2|2 fori=1:2, and andw = | | € R>3 be a nonnegative
z2 T g
Wy

matriz with w; = [wg, wi1, wi)T € R\ {(0,0,0)}.

Proof. For constructing the structured backward error formula, we need the minimum

Frobenius norm values of §V;; such that 6Vi; = edV;1,i =1:2,j = 0,2. For this purpose,

ij
we consider

2 n—2
— oVi; | e6By;"

(6.47) oVi; = ULsvi,U, = 2 Y ‘ eV
0Bi; | 0Dy

(1+¢€)
T5U1j,11 €5U1j,12

where (ﬁ/; = , 0By = [blﬂ blj’2i| , 00 = [61]',1 Clj,Q} , 0D

(5?11]',12 %51)1]‘,22
= eéDle for j = 0,2, and U; € C™*™ is a unitary matrix such that U; = [Un U21]

with Uy = [551 x2:| € Cm*2, Next, we consider

2 n—2
_ (1+e)5 ‘ b T
(6.48) 5V, = U2T5V2jU2 _ 2 5 0U2;511 ‘ €021 ’
n—2 baj ‘ 0Dy
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where 6D2j = €5D2jT for j = O, 2, and U2 = |:U12 U22] with U12 = |:y1] S (CnQXl.

Further to get 6V;; = —edV{}, we consider

2 n—2
_ Vi | e6ByT
(6.49) Vit = U6V Uy = u | By ,
n—2 581_7 ‘ 5D11
— 1=9) 5y —edv
where 0Viy = —edViE,i=1:2, 0V = | 2~ (1+€) S 0B = [511,1 b11,2} ;
51}11,12 75011,22

0Cy = [011,1 011,2} , 0Dy = —edDy; 7. Next, we consider

2 n—2
— (1_5)6 _ b T
(6.50) Vo = Uy 6V Uy = ’ z V2,1 ‘ €9211 7
n—2 ba11 ‘ 0 Doy

where 5D21 = —65D21T7 and U2 = [U12 U22] with U12 = [?ﬁ] € Cn2X1.

It is given that ry := —Wi(A)x, for t = 1: 2 and ri5 := —Ws(A)y;. Then using the
structured backward error definition, we get ry = IWi(A)zy for t = 1 : 2 and 75 =
dW3(N)y;. From (6.49) we have 5171//1()\) = U;"6W;(\)U;. Further, we get (S/W\Z()\)UlH:Ut =
UP6Wy( Nz, = UyTry for t = 1: 2. This implies

Ve €BT oV —edBT e
w10w1_01/\0 0 O+ wllwl_ll/\l . H : +
5310 (SDlo 5311 5D1j 0
71 (ﬁ/; ed BL, et Uliry
W12W19 A2 = T )
5B12 5D12 0 Uglrtl
further simplification gives
(6 51) (’wlowfol)\o(s/‘/TQ + wllwﬁl)\lé/‘/z + w12w1’21)\2(5/VTg)et Ulr‘q?”ﬂ
(wlo’wl_ol)\o(SBlO + wuwl—ll)\léBH + wlgwlex\25312)et U271rt1

Also, from (6.48) and (6.50) we have cS/I/\I//g(/\)UgHyl = Uy 6Wa(N)yy = Uy 'r15. This implies

149 5y, ebl, =9 5 —ebl 1
w20w2_01)\0 D) 20,11 20,1 + w21w2_1 )\1 9 21,11 21,1 +
b20,1 0Dy 521,1 0Dy, 0
_1 (1—;) 5U22,11 6b§2 1 1 Uf’é?“m
w22w22 )\2 ’ = T
ba21 0Dy 0 Usar12
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Further simplification gives

(6.52)
(1+¢) —1 (19 —1 (1+¢) —1 T
5 Wa20Wsq(q )\051}20’11 + Tw21w21 )\157}21’11 + Tw22w22 /\251)22’11 U12T12
1 -1 —1 o T ’
(w20w20 )\051)2071 + Wo1Woyy )\15()2171 + Wo2Woy )\25()2271) U227“12

where e; € C? is a vector having 1 at ¢ position and 0 elsewhere. From (6.51), we get
the following equations for t =1 : 2

(1+¢) (1—¢) (I1+¢)

—1 1 1 T
(6.53) WioW1y Ao0V10,4 + Wi Wiy A0V 4+ Wi2W1y A20V124 = Ty T4,

-1 -1 -1 T
(654) W10W1g /\leoﬂg + W11W1q )\1()11,15 + W12W19 /\2b127t == U21T’t1.

From (6.52), we get the following equations

(6.55)

1+e¢ _ 1—c¢ _ 1+e _

( >w20w201>\05v20,11 + ( )w21w211)\16U21,11 + ( )w22w221>\25022,11 = lehz,
(6.56) WaWay Aob20,1 + Wa1 Wy A1bay 1 + Waatay Aabaa 1 = Usyris.

The minimum norm solutions of (6.53) and (6.54) are given by

(1+¢€) (1—¢) (1+¢€)
_ T — T _ = T
v = 5 ZAnTi T, Vi1 = 5 ZAuTi T, Mg = 5 FAnTi T
— T — T — T
blO,t == ZA10U21Tt17 bll,t = ZA11U21Tt17 b12,t = ZA12U21Tt1'

The minimum norm solutions of (6.55) and (6.56) are given by

Sva0,11 = ((14€)/2)Z 041 712, 002111 = ((1—€)/2)Za,, 41 712, 62211 = ((14€)/2)Z .91 T12;
b1 = wg_()QgAmUl:’;Tlm bio1 = w2_125A21 Ulj;ﬁ% bao1 = w2_225A22U17;7“12-

Further from (6.51), we get the following two equations

-1 ~1 ~1 T
(6.57) WioW1g Ao0V10,12 + Wi1W1g A1OV11,12 + WiaWiy A20V1212 = Ty T11,

-1 -1 -1 T
(658) W10W1g )\0(51}10712 — W11Wqg )\16?)11712 + W12W1o /\251)12,12 = €T T21.

From (6.57) and (6.58) the minimum norm solution is given by

w105U10,12 Ao AL A + acTrn
2
(6.59) Wy 0V o | = | W0 W w2 —
’ Ao A A exTr
w10 w1l wiz2 1721

w125’012,12

Backward error is given by (np(\, 1.0, y1, W))? = 2?21 Z?:o w?j |0V ||?, where w%j [0VA4?
= wi; [[0Vi;]]? + 2w, |0 By ||* + wi; |0 Dy |7, and w3, ||6Va;]|* = w3;]0vaj11|* + w3 || s I +
w3, [|baja[|? + w3, [0 D2
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Similar to Theorem 6.3.1 by using Lemma 6.2.19, we have Z _owi;lloVi; I =

2 2 (1
D im0 2 %w%ﬂévlj’tf+2wfj|5vlj,12|2+2wfj||b1j,t|!2—I—wfj|]5D1j||2 Zt 1 ‘xt:tl‘(/\)—l-

22 X [ 4 S wh 10Dyl whete [USirall” = llra P =l ra [~ e ra

w ,2

Since we need the minimum norm solution hence setting 6Dy, = 0, we get

2 2
Zw2||6‘/1||2 _ Z( 2H7’t1H% +( 1 . 2 )|1‘T7”t1|2—
—~ 1j J ]{271 ()\) G2 1 ()\) H2,1 (/\) t

wy ,2 cwl2 wy ,2
2
|25 |* + |2] | aj 12
6.60 2 +2 —|".
(6.60) H2_ (N ) Z‘wu’
wy T, 7=0
In the same manner, we have Z?:o wi; [|0Va;|]? = Z?:o w3;10va;11 1> 4 2w3, ;1 ]|* +
;6D |” = G2 + 242, where [[Unroll” = [irial? ~ [y riof*. Similar to (6.60),
€w ,2 2
we get ’ -
2”7"12”2 1 2 T, |2
(6.61) wy;[16Va;1* = +( - )yr il
Z 2j J 712( ) (6;2 12()\) Hi;1,2</\) 1
wy

Using (6.60) and (6.61), we get

|2l r11)? + |2 7oy |?

2
. ) 1 2 T, |2
. |/‘/ — - o 2
(nw7F()\,1‘1,2,y17 )) Z (G2 ()\) H? ) ()\))‘xt Ttl‘ szfl,Q()\) +

t=1 wal,Z wy o,
: ( 2”7’}1“% )+2 2 | a; |2 2H7‘12||% +( 1 2 )| T |2 u
2 . 2 2 2 yimzl-
2 o) 2 ) IR ey

6.7. Backward error for H-even/H-odd alternating two-parameter
eigenvalue problems

This section deals with the backward error analysis of H-even alternating and H-odd
alternating two-parameter matrix systems. For this backward error analysis first we

define the following terminologies.

Let W be a H-even/H-odd alternating two-parameter matrix system of the form (6.1).

Let A = (Ao, A, A2) € C*\ {(0,0,0)}, and x1, 25 € C™ be orthonormal vectors, and y; €

C2 such that y7y; = 1. Introduce ryy := —Wi(A)a; fort = 1: 2 and 715 := —Ws(\)y, and
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wi
and w = -
Wy
Furthermore, define

R(Vero) RW=ed) R(er2)
L = 7@ :

€ R?*3 be a nonnegative matrix with w; = [wg, wi, wiz]? € R3\{(0,0,0)}.

w10 w11 w12 w20 w21 w22

r?(ﬁko) R(V—e1) §)“3(\/9\2)]

S(Wedo) S(V=ed)  S(Vera) SWedo) S(W=eM)  S(Heh2)
w10 w11 w12 w20 w21 w22
DY TP VDt
7 — | wio wir wiz |
2o A Ao
w10 w11 w12
Fort =1:2 set
R(xHr R(yHr extr
=L = Q7 (yLH) 2=z
S(xy'ra) S(yi'ri2) Ty
where I; := [li, li1, lo] 75 q := [q0, @1, 2] 7 2 := [20, 21, 20]T. Now, we derive the main result

of this section. Throughout this section, ¢ = 1 represents a H-even alternating two-
parameter matrix system and ¢ = —1 represents a H-odd alternating two-parameter

matrix system.

Theorem 6.7.1. Let W be a H-even/H-odd alternating matriz two-parameter matriz

system of the form (6.1). Let (A, 21 ®y1) and (N, z2®1y1) be two approximate eigenpairs of

W, where A = (Ao, A1, A2) € C*\{(0,0,0)} is a double-semisimple eigenvalue, xq, x5 € C™

are orthonormal vectors, and y; € C" such that yf'y, = 1. Set ryy == —Wi(N)x; for
=1:2 and ri5 := —W3(N)y;. Then we have

Case-1: When \g € VeR,\; € /=R, \y € \/eR, then the backward error of approxi-

mate eigenpairs is given by

_ eallral? —lafral) ) lefral] | 2lrel’ — lyi'rl?
= -2
H? (M) H? (M) H? (V)
1 1 > 2

(7757F()\7 T1:2, Y1, W))2

Case-2: Otherwise, the backward error of approximate eigenpairs is given by

2 2 9
ly; : 2
(UE,F(A7$1:2,Q1,VV))2= g E |#|2+ E |L|2+2§ :| J‘|2_’_
- w o Wa; s w1

2
j=0 t=1 J j=

2 2 2
Q(Zt:1 [ ll” = D el Dici |5E71;q7"t1|2) 2 Ir12l* — ’y{Iﬁ?P)
Hjl,lg(A) HiQ,IQ(A) ’
T
w
where H2_, (X)) = wi®|Xol® + wi®| M + wi? | Xel?, i = 1: 2, and w = [ ; € R**3 be a
i wl

nonnegative matriz with w; = [wiy, wi, wi]? € R*\ {(0,0,0)}.
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Proof. Proof is similar to Theorem 6.5.1. We present only the main steps of the proof.
For constructing the structured backward error formula, we need the minimum Frobenius

norm values of 0V;; such that 6V;; = 6(5‘/;f7i =1:2,5 =0 : 2. For this purpose, we

consider
2 n—2
— 2 (S/X/TJ ‘ 6(5Ble
(6.62) oV = U1H5V1J'U1 = )
n—2 531]‘ ‘ 5D1j

\/E5U1j,11 51}1;’,12

65?11]‘,12 \/Eévlj,m
0Dy = eéDUH for j = 0,2, and U; € C™*™ is a unitary matrix such that U; =

[UH U21:| with Uy = [xl xQ} € Cm*2, Next, we consider

where (S/‘-/T] = with 5U1j,tt € R, 581]' = [blj,l blj,Q]a 6OU = [Clj,l Clj,g],

2 n—2
P — 5 . b ) H T
(6.63) 5V = Uf(SngUQ _ 2 Vedva; 11 ‘ €02;1 ’
n—2 baj1 ‘ 0Dy,

where 5D2j = G(SDQJ'H for j = 0, 2, and U2 = |:U12 UQQ] with U12 = —y1:| € CTLQXI. Further

to get 6Vi; = —edVi, we consider
2 n—2
— Vi, | —edB "
(6.64) Vo =Ullsvuty = |2 L ,
n—2 531] ‘ 5D11

V —65?111,11 51}11,12

—652111712 \/E5U11,22
—edD . for j = 0: 2, and U; € C"*™ is a unitary matrix such that U; = (U1 Usy]

with Uy = [z1, x2] € C*2. Also, to get 6Va; = —edVi, we consider

where 5/‘/?1 =

75311 - |:b11’1 b11’2i| 5 5011 - |:611,1 61172] 76D11 -

2 n—2
— [ 5 b H
(6.65) Vo = Uy 6V Uy = ’ €0ta1,11 ‘ €021,1 :
n—2 ba1,1 ‘ 0Dy,

where (5’02]'?11 S ]R, (5D21 = 6(5D21H, and U2 = [Ulg U22] with U12 =11 € CnQXl. From now
onwards, rest of the proof is similar to Theorem 6.5.1.
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6.8. Numerical experiments

In this section, we discuss the behaviour of structured and unstructured backward er-
rors of a single and two approximate eigenpairs of a double semisimple eigenvalue through
numerical experiments. For example, by using Matlab software, we have generated sev-
eral random Hermitian and complex symmetric two-parameter matrix systems of the form
(6.1). For these structured two-parameter matrix systems, we present two tables. In these
tables, we have compared the structured (complex symmetric or Hermitian) and unstruc-
tured backward errors of a single approximate eigenpair, and structured and unstructured
backward errors of two approximate eigenpairs of a double-semisimple eigenvalue. From
Table 6.2 and Table 6.3, we have found that there is a large difference between the back-
ward error of a single eigenpair and the backward error of two approximate eigenpairs of a
double-semisimple eigenvalue. These tables show that the existing study of the backward
error analysis of a single eigenpair [27] is not sufficient for getting the true backward error
results. The development of our results is quite important for getting a real picture of the

backward error analysis.
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Remark 6.8.1. For rest of the structures discussed in this chapter, one can easily obtain

the similar tables to show the importance of backward error analysis.

Remark 6.8.2. We have borrowed the backward error formulas for a single approximate

eigenpair from [27].

In [50] authors have plotted the graph which represents the ratio between structured
(Hermitian) and unstructured backward error of a single eigenpair for two-parameter
eigenvalue problem. They found that the majority of ratio lies in interval [1, 4]. In the
similar manner, next we present two graphs which represents the ratio between structured
(Hermitian or complex symmetric) and unstructured backward errors of two specified
eigenpairs of a double semisimple eigenvalue. To obtain these graphs, we have generated
several random Hermitian and complex symmetric two-parameter matrix systems of the
form (6.1) by using Matlab software. From the several numerical experiments, we have
found that the majority of the ratios usually distributed in [1, 2]. From the several numer-
ical experiments, we have taken 100 random numerical values to plot the graphs: Figure

6.1 and Figure 6.2.
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FIGURE 6.1. Ratio of complex symmetric backward error and unstructured

backward error.

Remark 6.8.3. Similar to Figure 6.1 and Figure 6.2, one can also plot the graphs for
the rest of the structures to obtain the respective intervals.
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FIGURE 6.2. Ratio of Hermitian backward error and unstructured back-

ward error.

Remark 6.8.4. From Table 6.2 and Table 6.3 one can get the following relations between
the structured and unstructured backward errors of a single approximate eigenpair and

two approximate eigenpairs of a double-semisimple eigenvalue whose proofs are immediate

from the respective definitions:
77F()\> L1, Y1, W)7 UF()U T2, Y1, W) < 77F()\7 T1:2, Y1, W)7

ng()\axlvyb W)vnlg()‘vx%yb W) S 7720\7331:2’917”/)’
ne(A, T12, y1, W) < 772()\,%1;2,%, w).m
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CHAPTER 7

CONCLUSION AND SCOPE FOR FUTURE WORK

This thesis is revolving around the backward error analysis of one or more specified
eigenpairs of structured and unstructured matrix pencils, matrix polynomials, and two-
parameter matrix systems. A general framework on backward error analysis is established
for specified eigenpairs in such a way that the different kinds of inverse eigenvalue problems
can be solved using our developed results. In particular, in Chapter 2, we have studied
the structured and unstructured backward error analysis of two specified eigenpairs of a
double-semisimple eigenvalue for matrix pencils. We have also obtained the relationships
between the unstructured backward error of a single eigenpair, structured backward error
of two eigenpairs of a double-semisimple eigenvalue, and structured backward error of a

single approximate eigenpair.

In Chapter 3, we have obtained the backward error formulas of one or more specified
eigenpairs for structured matrix pencils. We have also obtained the minimal Frobenius
norm perturbed matrix pencils, which also preserve the sparsity. Further, we have used
our backward error results in such a way that the different kinds of inverse eigenvalue
problems are also solvable. In Chapter 4, we have established the backward error results
for Hankel and symmetric-Toeplitz matrix pencils. We have further used these back-
ward error results to solve the matrix inverse eigenvalue problems and generalized inverse

eigenvalue problems of both the structures.

Next, in Chapter 5, we have extended the backward error results from matrix pencils to
matrix polynomials. For each structured matrix polynomial, we have provided the upper
bound on the maximum number of approximate eigenpairs whose backward error analysis
can be done simultaneously. We have also obtained the unstructured backward error of
one or more specified eigenpairs. Further, we have used the developed backward error
results in solving the different kinds of quadratic inverse eigenvalue problems. Finally, in

chapter 6, we have classified the two-parameter matrix systems on the basis of normal



rank definition. We have further found the backward error formulas of two approximate

eigenpairs for structured and unstructured two-parameter matrix systems.

Though we have discussed a detailed backward error analysis for one or more specified
eigenpairs, there are many questions that are still open and need to be answered to further
develop the literature of backward error analysis of more than one approximate eigenpairs.

Some of the unanswered questions are summarized by the following points:

e What is the the backward error of two approximate eigenpairs of a double-semisimple
eigenvalue for x-palindromic and x-anti-palindromic matrix pencils ? Here % &
{T,H}.

e Can we develop the backward error analysis for two approximate eigenpairs of a
double-semisimple eigenvalue for matrix polynomials ?

e What is the backward error for three or more eigenpairs for two -parameter matrix
systems and for multi-parameter matrix systems 7

e Can we develop the backward error analysis for multi-parameter matrix systems in
such a way that inverse eigenvalue problems for multi-parameter matrix systems

are also solvable from those results ?
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