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ABSTRACT
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This thesis deals with the structured and unstructured backward errors, and pertur-

bation analysis of one or more specified eigenpairs for matrix pencils, matrix polynomials

and two-parameter matrix systems. For a given set of specified eigenpairs, we develop a

general framework on backward error analysis in such a way that various types of inverse

eigenvalue problems, viz., matrix inverse eigenvalue problems, generalized inverse eigen-

value problems, and polynomial inverse eigenvalue problems are solved using our obtained

backward error results.

We raise the following two questions throughout the thesis with respect to matrix

pencils, matrix polynomials, and two-parameter matrix systems. The first question is,

what is the cumulative backward error of one or more approximate eigenpairs ? And

the second question is, what is the nearest matrix pencil for which given approximate

eigenpairs become the exact eigenpairs ?

To answer the above-raised questions, first, we develop a general framework of the

structured and unstructured backward error analysis of two specified eigenpairs of a

double-semisimple eigenvalue for matrix pencils. We establish relationships between the

unstructured backward error of a single eigenpair, structured backward error of two eigen-

pairs of a double semisimple eigenvalue, and the structured backward error of a single

eigenpair. Next, we move towards the answers of the above-raised questions in a more

general sense, i.e., the number of specified eigenpairs can be more than two and eigenval-

ues can be distinct. We further use the developed backward error results for solving the



different inverse eigenvalue problems; for example, we solve real symmetric quadratic in-

verse eigenvalue problem and the symmetric generalized inverse eigenvalue problem with

submatrix constraints.

After then, we discuss the backward error analysis of symmetric-Toeplitz and Hankel

matrix pencils. These two structured matrix pencils are particular types of a symmetric

matrix pencil. We present the backward error analysis of these matrix pencils in such a

way that the solutions of the symmetric-Toeplitz inverse eigenvalue problem and Hankel

inverse eigenvalue problem are a consequence of it.

Next, we discuss the backward error analysis for structured and unstructured ma-

trix polynomials and answer the above-raised questions. An n-by-n matrix polynomial

of degree l have ln eigenvalues (finite or infinite) and the corresponding ln eigenvec-

tors. Hence for each structured matrix polynomial, we provide the upper bound on the

maximum number of approximate eigenpairs whose backward error analysis can be done

simultaneously. This challenge has not arisen during the backward error analysis of a

single eigenpair. Further, we use the developed backward error results in solving different

kinds of quadratic inverse eigenvalue problems. In particular, we solve symmetric and

palindromic quadratic inverse eigenvalue problems.

Finally, the backward error analysis has been developed for two-parameter matrix

systems. We classify the two-parameter matrix systems based on the normal rank def-

inition. For two-parameter matrix systems, we obtain the structured and unstructured

backward error results of two approximate eigenpairs provided eigenvalue is semisimple.

Throughout the thesis, we answer the above-raised questions with respect to Frobenius

norm.
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NOTATION

N the set of natural numbers

R the set of real number

C the set of complex numbers

Cm×n the set of complex matrices of dimension m× n
Rm×n the set of real matrices of dimension m× n
A ◦B Hadamard product of Matrices A and B

A⊗B Kronecker product of Matrices A and B

AT the transpose of A ∈ Cm×n

AH the conjugate transpose of A ∈ Cm×n

A the conjugate of A ∈ Cm×n

A−1 the inverse of A ∈ Cn×n

A+ the pseudoinverse of A ∈ Cm×n

det(A) determinant of A ∈ Cn×n

rank(A) rank of matrix A

det(A) the determinant of A ∈ Cn×n

tr(A) the trace of A ∈ Cn×n

In the Identity matrix of order n

‖x‖2 =
√∑n

i=1 |xi|2 the 2-norm on Cn

σmin(A) the smallest singular value of matrix A ∈ Cm×n

σmax(A) the largest singular value of matrix A ∈ Cm×n

‖A‖F =
√
tr(AHA) the Frobenius norm of A ∈ Cm×n

‖A‖2 = max‖x‖2=1 ‖Ax‖2 the spectral norm of A ∈ Cm×n

Λ(A) the spectrum of a matrix A

ei the vector in Cn having 1 at ith position and 0 elsewhere

i the imaginary number

<(z) Real part of z ∈ Cn

=(z) Imaginary part of z ∈ Cn

A([1, r]) r × r leading principal submatrix of A ∈ Cn×n





CHAPTER 1

INTRODUCTION

1.1. Introduction

Matrix pencils and matrix polynomials are well-known terms in the field of numerical

linear algebra. They arise in numerous applications in engineering, mechanics, control

theory, linear systems theory, computer-aided graphic design, and vibration analysis, see

[1, 17, 37, 38, 43, 44, 47, 51, 67, 70, 83, 84]. Eigenvalue problems of matrix pencils

are known as generalized eigenvalue problems, and eigenvalue problems of matrix poly-

nomials are known as polynomial eigenvalue problems. A two-parameter matrix system

is another well discussed and most widely used form of the multi-parameter matrix sys-

tem. It arises in different types of applications [11, 12, 40, 41]. In particular, it arises

in mathematical physics when the separation of variables is used to solve the boundary

value problems [73], in model updating [22], in three-point boundary value problems [39],

and in the quadratic two-parameter eigenvalue problem [55]. The eigenvalue problem of

two-parameter matrix systems is known as two-parameter eigenvalue problems. Finding

solutions to a linear system of equations, finding the eigenvalues and eigenvectors of ma-

trices, matrix pencils, matrix polynomials, and two-parameter matrix systems are always

very challenging tasks from a long back. Different authors have developed many numerical

algorithms to obtain the desired solutions. But due to the roundoff errors and truncation

errors of the available iterative methods, one can get only approximate solutions. Due

to the approximate nature of the obtained solutions, some major questions come into

the picture: are these computed solutions reliable to use ? Numerical algorithms that

we are using to get these solutions are stable or not? For which problem the obtained

approximate solution is exact ? Answers of these questions are very much of importance

as ignorance of these answers may lead to insignificant results to our original problems.

For answering these questions, a term backward error is developed in numerical linear



algebra. The backward error of a computed solution tells us how far a solution stands

from the original problem. In other words, for a given problem and its given approximate

solution, backward error tells the minimum perturbation (in some appropriate norm) to

the problem for which the given approximate solution becomes exact. The term back-

ward error is used by different authors in different aspects. Backward error analysis is

one of the important and continuously developing areas in numerical linear algebra. If

we recall the history of backward error analysis, we find that Wilkinson was the first to

use the term backward error analysis [76, 77]. Wilkinson has developed the backward

error bounds for the computed triangular factorization of a matrix and further discusses

the backward error analysis of an approximate solution of the linear system using this

factorization. Boor and Pinkus [16] have studied the backward error analysis for totally

positive linear systems (see, [26, 58] and the references therein). Higham and Higham

[35] have discussed the backward error analysis of an approximate solution to a linear

system for structured as well as unstructured matrices. If we move further, we found

that different authors have developed the backward error analysis of eigenvalues. For

example, Malyshev [53] has discussed the minimal perturbation of a given n-by-n matrix

to the nearest matrices that have λ ∈ C as a multiple eigenvalue with respect to 2-norm,

see [31, 43, 44, 48, 49, 57] for information on the backward error analysis of one or

more eigenvalues. Similar to backward error analysis of eigenvalues, different authors have

developed the backward error analysis for a single eigenpair. For the matrix case, Dief

[24] has discussed the backward error analysis for a single approximate eigenpair. In the

series of developments of the backward error of a single eigenpair, the authors in [1] have

developed the backward error analysis of a single approximate eigenpair for various struc-

tured matrix pencils. They have also provided a comparison between unstructured and

structured backward errors. Many other authors have also contributed to the develop-

ment of the backward error analysis of a single eigenpair for structured and unstructured

matrix pencils and matrix polynomials, see [1, 2, 8, 9, 47, 50, 70]. Moving further,

we find that the theory of backward error analysis of a single eigenpair for structured

and unstructured multi-parameter matrix systems is also well studied in the literature,

see [27, 42, 50]. At this point, a natural question is arising: What is the backward

error of more than one approximate eigenpairs for structured and unstructured matrix

pencils, matrix polynomials, and two-parameter matrix systems? Some work has been

done in the field of backward error analysis of one or more approximate eigenpairs. For

example, Tisseur [71] has obtained the backward error formulas of one or more eigenpairs

2



for structured matrices, and for unstructured non-square matrix pencils, Chu and Golub

[18] have studied the backward error analysis for one or more eigenpairs. Still, these

works are not enough to answer the above-raised question. Hence finding the answer to

the above-raised question in every possible aspect is one of the main aims of the thesis.

The inverse eigenvalue problem is another major discussed topic in numerical linear

algebra. The term inverse eigenvalue problem refers to reconstructing the required matrix

or matrix pencil or matrix polynomial from the given eigeninformation, see [21]. In this

thesis, we are interested in solving the inverse eigenvalue problems from the given set of

eigenpairs. For example, let us consider the following inverse eigenvalue problem: The

second main aim of the thesis is to solve the different kinds of inverse eigenvalue problems.

• Let (λi, xi) for i = 1 : k be specified eigenpairs, where λi ∈ R and xi ∈ Cn.

Construct a matrix G ∈ Cn×n such that G = GH from the given set of eigenpairs.

In the above inverse eigenvalue problem, we need to construct the required structured

matrix from the given eigenpairs set. This is called the matrix inverse eigenvalue problem

(MIEP). Similarly one can solve different kind of MIEP for different structured matrices.

See, [21].

Next, we discuss the generalized inverse eigenvalue problems. A generalized inverse

eigenvalue problem is to reconstruct the required matrix pencil from the given set of

eigenpairs. For example, consider the following inverse eigenvalue problem from [84].

• From a given set of eigenpairs (λi, xi) for i = 1 : p, construct the real symmetric

matrices A0, A1 ∈ Cn×n with the (2r+1) diagonal, where λi ∈ C, xi ∈ Cn, and

p ≤ n, r ≤ n.

Next, consider a quadratic matrix polynomial which is defined as follows:

P (λ) = A0 + λA1 + λ2A2.

Matrices A0, A1, and A2 can have different structures. For example P (λ) is called a monic

gyroscopic quadratic matrix polynomial if A2 = In, A1 is a skew-symmetric matrix, and

A0 is symmetric matrix. The inverse quadratic eigenvalue problem (IQEP) is to construct

matrices A2, A1 and A0 from the measured eigenpairs. Some IQEP are summarized as

follows:

3



1. From a given set of eigenpairs (λi, xi) for i = 1 : n + 1, construct real symmetric

matrices A1 and A0 such that (A0+λiA1+λ2i In)xi = 0, where λi ∈ C, and xi ∈ Cn,

see [85].

2. From a given set of eigenpairs (λi, xi) for i = 1 : k, construct a T -palindromic

matrix polynomial, i.e., construct A2, A1 and A0 such that A2 = AT0 , and A1 = AT

such that (A0 + λiA1 + λ2iA2)xi = 0, where λi ∈ C, and xi ∈ Cn, and k ≤ 3n+1
2
, see

[88].

3. From a given set of eigenpairs (λi, xi) for i = 1 : k, construct Hermitian matrices

A2, A1 and A0 such that (A0 + λiA1 + λ2iA2)xi = 0, where λi ∈ C, and xi ∈ Cn,

and k ≤ n.

We establish the backward error theory of one or more specified eigenpairs in such a way

that the solutions of different kind of inverse eigenvalue problems can be obtained from

the developed backward error theory.

For simplicity of presentation, first we obtain the results for matrix pencils, then for

matrix polynomials and finally for two-parameter matrix systems. The first chapter is in-

troductory in nature and provides the history of backward error analysis, basic definitions,

background ideas and pre-requisites for the remaining chapters. Chapter 2 dedicates for

the backward error analysis of two approximate eigenpairs of a semisimple eigenvalue for

structured and unstructured matrix pencils. This chapter also deals with the relation-

ships of the backward error of a single approximate eigenpair and the backward error

of two approximate eigenpairs. Chapter 3 discusses the backward error analysis of one

or more approximate eigenpairs for several structured matrix pencils. In this chapter

we also solve the quadratic symmetric inverse eigenvalue problem by linearizing it into a

large matrix pencil and applying the backward error results. Further, we also solve the

symmetric inverse eigenvalue problem with submatrix constraints. Chapter 4 provides

the backward error analysis of approximate eigenpairs for the special class of symmetric

matrix pencils, i.e., symmetric-Toeplitz and Hankel matrix pencils. This chapter also

deals with the inverse eigenvalue problem for matrices as well as the generalized inverse

eigenvalue problems. In Chapter 5, we generalize the backward error results from matrix

pencils to matrix polynomials. We show that different kind of structured quadratic in-

verse eigenvalue problems are also solvable from our developed backward error results. In

Chapter 6, we classify the two-parameter matrix systems on the basis of normal rank def-

inition. Further, we obtain the backward error formulas for structured and unstructured

4



two-parameter matrix systems. Finally, Chapter 7 concludes with important remarks and

some open problems.

1.2. Preliminaries

This section deals with some basic definitions and results which will be used through-

out the thesis. Throughout this thesis, Cm×n denotes the vector space of m-by-n matrices

with entries from C, and Cn denotes the vector space of column vectors [x1, x2, . . . , xn]T ,

where xi ∈ C. We denote the n× n identity matrix by In.

Kernel and range of a matrix: Let B ∈ Cm×n. Then the kernel of B is defined by

ker(B) := {x ∈ Cn : Bx = 0}. We denote the dimension of kernel of B by dim ker(B).

Kernel is also known as Null space and dim ker(B) is also known as nullity(B). The range

space of B is defined by range(B) := {Bx : x ∈ Cn}. The dimension of range of B is

called the rank of B and it is denoted by rank(B).

Spectrum of a matrix. Let B ∈ Cn×n. Let λ ∈ C is said to be an eigenvalue of B if

det(B − λIn) = 0. The set of all eigenvalue is said to be spectrum of B and it is denoted

by Λ(B).

Let λ ∈ Λ(B). Then algebraic multiplicity of λ is defined as its multiplicity as a zero

of the characteristic polynomial det(B − λIn). Geometric multiplicity of λ is defined as

the dimension of the ker(B − λIn). An eigenvalue is said to be semisimple if its algebraic

multiplicity is equal to its geometric multiplicity. When both the multiplicities are equal

to one then the eigenvalue is said to be simple.

Inner product: Let V be a vector space over a field F. Then define 〈 ., .〉: V ×V → F
is said to be a inner product if the following conditions hold:

1. 〈v , v〉 for all v ∈ V.
2. 〈v , v〉 = 0 if and only if v = 0.

3. 〈v + u ,w〉 = 〈v , w〉+ 〈u ,w〉 for all u, v, w ∈ V.
4. 〈cv , w〉 = c〈v , w〉 for all c ∈ F and v, w ∈ V.
5. 〈v , w〉 = 〈v , w〉.

Note that 〈v , w〉 = wHv defines the inner product on Cn.
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Norm: We recall the definition of norm and its basic properties. Next we define the

norm for the space of two-parameter.

Definition 1.2.1. For a given vector space V over a field F, a function ‖.‖ : V (F) → R
is said to be norm if it satisfies the following conditions:

• ‖v‖ ≥ 0 for v ∈ V.
• ‖v‖ = 0 ⇐⇒ v = 0.

• ‖αv‖ = |α|‖v‖ for v ∈ V and α ∈ F.
• ‖v + u‖ ≤ ‖v‖+ ‖u‖ for v, u ∈ V.

Clearly, For x ∈ Cn, ‖x‖2 =
√∑n

i=1 |xi|2 is a norm on Cn. It is called 2-norm on Cn.

For x = [x1, . . . , xn] ∈ Cn and w := [w1, . . . , wn] ∈ Rn, we define

‖x‖w =

√√√√ n∑
i=1

|wixi|2.

‖x‖w is called the norm if only of each component of w is a positive real number. Oth-

erwise, ‖x‖w is called the seminorm. Similarly, for A ∈ Cm×n, ‖A‖F =
√
tr(AHA) and

‖A‖2 = max‖x‖2=1(‖Ax‖2) define the Frobenius norm and spectral norm on Cm×n, respec-

tively.

Unitary matrix: A matrix U ∈ Cn×n is said to be unitary if UHU = In = UUH .

The Frobenius and spectral norms satisfy the following properties:

• ‖Ux‖ = ‖U‖ for any unitary matrix U and x ∈ Cn.

• ‖UAUH‖ = ‖A‖ for any unitary matrix U and A ∈ Cn×n.

Kronecker and Hadamard product: Next, we will discuss the definitions and

basic properties of kronecker and Hadamard product.

Definition 1.2.2. [12] Let A = (aij) ∈ Cm×n and B = (bij) ∈ Cp×q. Then the kronecker

product (tensor product) of A and B is defined by

A⊗B =


a11B . . . a1nB

...
...

am1B . . . amnB

 ∈ Cmp×nq.
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Example 1.2.3. Let A =


2 3

4 5

7 8

 and B =

[
2 10 11

12 20 30

]
. Then

A⊗B =



4 20 22 6 30 33

24 40 60 36 60 90

8 40 44 10 50 55

48 80 120 60 100 150

14 70 77 16 160 240

84 140 210 96 160 240


.

Some properties of kronecker product are as follows:

• For all A and B, (A⊗B)T = AT ⊗BT and (A⊗B)H = AH ⊗BH .

• Let A ∈ Cm×n, B ∈ Cr×s, C ∈ Cn×t and D ∈ Cs×q. Then

(A⊗B)(C ⊗D) = (AC ⊗BD) ∈ Cmr×sq.

Definition 1.2.4. [12] Let A = (aij) ∈ Cm×n and B = (bij) ∈ Cm×n. Then the Hadamard

product of A and B is defined by

A ◦B = [aijbij].

Example 1.2.5. Let A =

[
2 −3 −2i

7 8− i 3

]
and B =

[
i 2 3

−8 9 10

]
. Then

A ◦B =

[
2i −6 −6i

−56 72− 9i 30

]
.

Some properties of Hadamard product are as follows:

Suppose A,B,C ∈ Cm×n and c ∈ C

• For all A,B ∈ Cm×n, A ◦B = B ◦ A.
• For all A,B,C ∈ Cm×n, A ◦ (B + C) = A ◦B + A ◦ C.
• For all A,B,C ∈ Cm×n and γ ∈ C, A ◦ (γB) = γ(A ◦B).

Pseudoinverse: A pseudoinverse A+ ∈ Cn×m of a matrix A ∈ Cm×n is satisfied the

following four properties, known as the Moore-Penrose conditions:
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• AA+A = A.

• A+AA+ = A+.

• (AA+)H = (AA+).

• (A+A)H = (A+A).

Theorem 1.2.6. [75, Theorem 4.3.7] Let A ∈ Cm×n and b ∈ Cm, and let x ∈ Cn be the

minimum-norm solution of ‖b − Ax‖2 = minw∈Cm ‖b − Aw‖2. Then x = A+b, where A+

is the pseudo inverse of A.

Remark 1.2.7. A+ exists for every matrix A, but, when A has full column rank then

AHA is invertible and

A+ = (AHA)−1AH .

On the other hand, if A has full row rank then AAH is invertible and

A+ = AH(AAH)−1.

Singular value decomposition [75]: Let A ∈ Cn×m be a nonzero matrix with rank

r. Then A can be expressed as a product

(1.1) A = UΣV H ,

where U ∈ Cn×n and V ∈ Cm×m are orthonormal matrices, and Σ = diag([σ1, . . . , σr, 0, . . . , 0]T )

∈ Cn×m is a diagonal matrix, where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The decomposition (1.1) is

called the singular value decomposition of A. We usually use the abbreviation SVD.

Remark 1.2.8. Let A ∈ Cn×m be a nonzero matrix with rank r. Then using SVD, we get

A+ = V Σ+UH , where Σ+ = diag([1/σ1, . . . , 1/σr, 0, . . . , 0]T ) ∈ Cm×n.

Orthonormal vectors and Gram-Schmidt process:

Definition 1.2.9. [75] Let u1, u2 ∈ Cn be called orthonormal if uH1 u2 = 0, and uHi ui = 1

for i = 1 : 2.

Definition 1.2.10. [75] Let S = {u1, u2, . . . , uk} be the set of linearly independent vectors

then S is said to be orthonormal set if uHi uj = 0 for i 6= j, and uHi ui = 1 for i = 1 : k.

Gram-Schmidt: Let S = {u1, u2, . . . , uk} be the set of linearly independent vectors,

where ui ∈ Cn, and k ≤ n. Define

v1 = u1,
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v2 = u2 −
〈u2, v1〉
〈 v1, v1〉

v1,

v3 = u3 −
〈u3, v1〉
〈 v1, v1〉

v1 −
〈u3, v2〉
〈 v2, v2〉

v2,

...

vk = uk −
k−1∑
i=1

〈uk, vi〉
〈 vi, vi〉

vi.

The Gram-Schmidt process is an algorithm that produces a orthonormal set of vectors

{q1, q2, . . . , qk}, where qi = vi
‖vi‖ or i = 1 : k.

Structured matrices:

Definition 1.2.11. A matrix B ∈ Rn×n is called a symmetric matrix if B = BT .

Definition 1.2.12. A matrix B ∈ Rn×n is called a skew-symmetric matrix if B = −BT .

Definition 1.2.13. A matrix B ∈ Cn×n is called a complex-symmetric matrix if B = BT .

Definition 1.2.14. A matrix B ∈ Cn×n is called a complex-skew-symmetric matrix if

B = −BT .

Definition 1.2.15. A matrix B ∈ Cn×n is called a Hermitian matrix if B = BH .

Definition 1.2.16. A matrix B ∈ Cn×n is called a skew-Hermitian matrix if B = −BH .

Definition 1.2.17. A matrix A ∈ Cn×n is said to be Hankel matrix if for any vector

[a11, . . . , a1n, a2n, . . . , ann]T ∈ C2n−1, the matrix A is of the following form:

A =



a11 a12 . . . a1(n−1) a1n

a12 a13 . . . a1n a2n
...

...

a1(n−2) a(n−2)n

a1(n−1) . . . . . . a(n−2)n a(n−1)n

a1n . . . a(n−2)n a(n−1)n ann


.

For Hankel matrix A, we define the generator vector of A in the following form:

vec(A,Hank) = [a11, . . . , a1n, a2n, . . . , ann]T .

The Hankel matrix is a particular type of the complex-symmetric matrix.
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Definition 1.2.18. A matrix A ∈ Cn×n is said to be symmetric-Toeplitz matrix if for any

vector [a1, a2, . . . , an]T ∈ Cn, the matrix A is of the following form:

A =



a1 a2 . . . an−1 an

a2 a1
. . . an−1

...
. . . . . . . . .

...

an−1
. . . . . . a2

an an−1 a3 a2 a1


.

For symmetric-Toeplitz matrix A, we define the generator vector of A in the following

form:

vec(A, symToep) = [a1, a2, . . . , an]T .

The symmetric-Toeplitz matrix is a particular type of the complex-symmetric matrix.

Proposition 1.2.19. Let Symm := {A ∈ Fn×n : A = AT}. Then Symm is a vector space

over a field F and the dimension of Symm is (n2 + n)/2, where F = C or R.

Proposition 1.2.20. Let Ssymm := {A ∈ Fn×n : A = −AT}. Then Ssymm is vector

space over a field F and the dimension of Symm is (n2 − n)/2, where F = C or R.

Proposition 1.2.21. Let Herm := {A ∈ Cn×n : A = AH}. Then Herm is a vector space

over the field R and the dimension of Herm is n2.

Proof. Let A be a Hermitian matrix of the form A := E + iF, where E,F ∈ Rn×n. Since

AH = A, we get E = ET and F = −F T . Then by Proposition 1.2.19 and Proposition

1.2.20, we get that the dimension of Herm is (n2 + n)/2 + (n2 − n)/2 = n2.�

Proposition 1.2.22. Let Sherm := {A ∈ Cn×n : A = −AH}. Then Sherm is a vector

space over the field R and the dimension of Sherm is n2.

Proof. Let A be a skew-Hermitian matrix of the form A = E + iF where E,F ∈ Rn×n.

Since AH = −A, we get E = −ET and F = F T . Then by Proposition 1.2.19 and

Proposition 1.2.20, we conclude that the dimension of Sherm is (n2−n)/2+(n2+n)/2 = n2.

Proposition 1.2.23. [62] Let Hank = {A ∈ Cn×n : A is Hankel matrix}. Then Hank is

a vector space over the field C and dimension of Hank is 2n− 1.

Proof. Consider ei ∈ C2n−1, for i = 1 : (2n− 1). Then the Hankel matrices generated by

these 2n− 1 vectors form a basis for Hank.
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Proposition 1.2.24. [62] Let symToep := {A ∈ Cn×n : A is symmetric-Toeplitz matrix}.
Then symToep is a vector space over the field C and dimension of symToep is n.

Proof. Consider ei ∈ Cn, for i = 1 : n. Then the symmetric-Toeplitz matrices generated

by these n vectors form a basis for symToep.

Definition 1.2.25. Let x ∈ Cn, and x = [x1, x2, . . . , xn]T . Then

diag(x) =



x1 0 · · · · · · 0

0 x2 0 . . . 0
... 0

. . .
...

...
...

. . . 0

0 0 · · · · · · xn


∈ Cn×n.

diag(x) =



x1 0 · · · · · · 0 0 . . . 0

0 x2 0 . . . 0 0 . . . 0
... 0

. . .
...

...
...

...
...

. . . 0 0 . . . 0

0 0 · · · · · · xn 0 . . . 0


∈ Cn×m for (n < m).

diag(x) =



x1 0 · · · · · · 0

0 x2 0 . . . 0
... 0

. . .
...

...
...

. . . 0

0 0 · · · · · · xn

0 0 . . . . . . 0
...

...
...

0 0 . . . . . . 0


∈ Cn×n for (n > m).

Definition 1.2.26. Let A = (aij) ∈ Cm×n. Then vec(A) ∈ Cmn is defined as follows:

vec(A) = [a11, . . . , a1n, . . . , . . . , an1, . . . , amn]T .

Definition 1.2.27. Let A = (aij) ∈ Cn×n be a symmetric matrix. Then vec(A) ∈ Cn2+n
2

is defined as follows:

vec(A) := [a11, . . . , a1n, a22, . . . , a2n, . . . , a(n−1)(n−1), a(n−1)n, ann]T .
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Definition 1.2.28. Let A = (aij) ∈ Cn×n be a skew-symmetric matrix. Then vec(A) ∈
Cn2−n

2 is defined as follows:

vec(A) := [a12, . . . , a1n, a23, . . . , a2n, . . . , a(n−1)n]T .

Definition 1.2.29. Let a ∈ C. Then define sgn(a) = 1, when a 6= 0 and sgn(a) = 0 when

a = 0.

Definition 1.2.30. Let A = (aij) ∈ Cm×n. Then

sgnA = (sgn aij) ∈ Cm×n.

Example 1.2.31. Let A =


−4 + i 9 0 3− i

10 0 −5− i 89

19 2i −77 0

 . Then

sgnA =


1 1 0 1

1 0 1 1

1 1 1 0

 .

1.2.1. Generalized eigenvalue problems

A matrix pencil is a pair of two matrices defined in the following manner:

L(α, β) := αA0 + βA1, A0, A1 ∈ Cn×n, α = (α, β) ∈ C2.(1.2)

Finding λ = (λ0, λ1) ∈ C2 \{(0, 0)}, 0 6= x ∈ Cn such that L(λ)x = 0, is called generalized

eigenvalue problem (GEP). We denote the matrix pencil defined in (1.2) by L, then λ

is called the eigenvalue and x is the corresponding right eigenvector of matrix pencil L.

Further, (λ, x) is called the eigenpair of L. If 0 6= y ∈ Cn such that yHL(λ) = 0, then y

is called the left eigenvector corresponding to λ. We denote the space of matrix pencils

by L(Cn×n). A matrix pencil of the form (1.2) is called the homogenous matrix pencil.

When we substitute α = 1 in (1.2), then matrix pencil L is called the non-homogeneous

matrix pencil.

Definition 1.2.32. A matrix pencil L ∈ L(Cn×n) of the form (1.2) is said to be regular

if det(L(λ)) 6= 0 for some λ = (λ0, λ1) ∈ C2 \ {(0, 0)}, otherwise it is called a singular

matrix pencil.
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At this point, let us consider the following homogeneous matrix pencil L, where

A0 =

[
1 1

1 1

]
, A1 =

[
2 0

0 0

]
.

Then

L(α, β) =

[
α + 2β α

α α

]
.

Cleary, we get det(L(1, 1)) = 2 6= 0. Hence the given homogeneous matrix pencil is regu-

lar. Next, det(L(α, β)) = 2αβ. Then (1, 0) and (0, 1) are the eigenvalues of homogeneous

matrix pencil L. One can also see that (a, 0) and (0, b) are also eigenvalues of L, where

a, b are arbitrary nonzero complex numbers. Hence at this point, it is important to dif-

ferentiate between two eigenvalues. For a homogeneous matrix pencil, two eigenvalues

(λ0, λ1) and (µ0, µ1) are called distinct if λ0µ1 − λ1µ0 6= 0. If λ = (λ0, λ1) is an eigen-

value of a homogeneous matrix pencil, then for nonzero a, (aλ0, aλ1) is just an another

representation of eigenvalue λ. Hence for simplicity, one can also choose the normalized

(λ0, λ1), i.e., (λ0, λ1) is an eigenvalue of L if |λ0|2 + |λ1|2 = 1. On the other hand, let us

consider the non-homogeneous version of the above matrix pencil as follows:

L(1, β) := L(β) =

[
1 + 2β 1

1 1

]
.

We get det(L(β)) = 2β, which gives only one eigenvalue and it is equal to zero. Clearly, for

non-homogenous matrix pencil version, one eigenvalue is missing. This missing eigenvalue

is called the infinite eigenvalue. For a homogeneous matrix pencil an infinite eigenvalue is

denoted by (0, 1), and an eigenvalue (λ0, λ1) with λ0 6= 0 corresponds to finite eigenvalue
λ1
λ0

of the non-homogenous matrix pencil, see [3, 5]. So while dealing with homogeneous

matrix pencil instead of a non-homogeneous matrix pencil, we can handle both finite

and infinite eigenvalue together. From the overall discussion and the eigenvalues of the

homogeneous matrix pencil, we can see that (1, 0) corresponds to the finite eigenvalue
0
1

= 0, of the non-homogenous matrix pencil.

Spectrum of a matrix pencil. Let L be a matrix pencil of the form (1.2). Then

spectrum of L is given as follows:

Λ(L) := {λ = (λ0, λ1) ∈ C2 \ {(0, 0)} : det(L(λ)) = 0}.

For a matrix pencil L, the algebraic multiplicity of an eigenvalue λ = (λ0, λ1) ∈ Λ(L)

is its multiplicity as a zero of the characteristic polynomial det(L(λ)). The geometric
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multiplicity of an eigenvalue (λ0, λ1) ∈ Λ(L) is defined as the dimension of the subspace

ker(L(λ)). Finally, an eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity.

Structured matrix pencil: Let L be a matrix pencil of the form (1.2). We define

the different kind of structured matrix pencils based on the properties of matrices A0 and

A1 by the following tables.

S Matrix structure

T -symmetric A0 = AT0 , A1 = AT1

T -skew-symmetric A0 = −AT0 , A1 = −AT1
Hermitian A0 = AH0 , A1 = AH1

skew-Hermitian A0 = −AH0 , A1 = −AH1
T -even A0 = AT0 , A1 = −AT1
T -odd A0 = −AT0 , A1 = AT1

H-even A0 = AH0 , A1 = −AH1
H-odd A0 = −AH0 , A1 = AH1

S Matrix structure

T -palindromic A0 = AT1

T -anti-palindromic A0 = −AT1
H-palindromic A0 = AH1

H-anti-palindromic A0 = −AH1

Definition 1.2.33. A matrix pencil L of the form (1.2) is said to be Hankel matrix pencil

if both A0 and A1 are Hankel matrices.

Definition 1.2.34. A matrix pencil L of the form (1.2) is said to be symmetric-Toeplitz

matrix pencil if both A0 and A1 are symmetric-Toeplitz matrices.

1.2.2. Polynomial eigenvalue problems

Similar to a matrix pencil, a matrix polynomial is defined as follows:

(1.3) P(α, β) := αlA0 + αl−1βA1 + · · ·+ βlAl, Ai ∈ Cn×n for i = 0, . . . , l.

P(α, β) defined in (1.3) is called the homogeneous matrix polynomial in (α, β) ∈ C2. We

denote a matrix polynomial defined in (1.3) by P, and l is called its degree. Finding

(c, d) ∈ C2 \ {(0, 0)}, 0 6= x ∈ Cn such that P(c, d)x = 0 is called the polynomial

eigenvalue problem (PEP). Together (c, d) is called the eigenvalue and x is called the

right eigenvector of the matrix polynomial P. ((c, d), x) is called the right eigenpair of

matrix polynomial P. Similarly if yHP(c, d) = 0 for some nonzero y, then y is called

the left eigenvector corresponding to (c, d). We denote Pl(Cn×n) be the space of matrix

polynomials up to degree l. Similar to a matrix pencil by substituting α = 1 in matrix

14



polynomial P of the form (1.3), we can get the non-homogeneous matrix polynomial.

If (c, d) is an eigenvalue of a homogeneous matrix polynomial P, then a(c, d) is also an

eigenvalue of P for each nonzero a ∈ C. Hence, to differentiate between the eigenvalues,

we consider the normalized eigenvalue (c, d) ∈ C2 \ {(0, 0)}, i.e, |c|2 + |s|2 = 1.

Spectrum of a matrix pencil. Let P be a matrix polynomial of the form (1.3).

Then spectrum of P is given as follows:

Λ(P) := {(c, d) ∈ C2 \ {(0, 0)} : det(P(c, d)) = 0}.

For a matrix polynomial P, the algebraic multiplicity of an eigenvalue (c, d) ∈ Λ(P) is its

multiplicity as a zero of the characteristic polynomial det(P(c, d)). The geometric multi-

plicity (G.M.) of an eigenvalue (c, d) ∈ Λ(P) is defined as the dimension of the subspace

ker(P(c, d)). Finally, an eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity.

Definition 1.2.35. A matrix polynomial P ∈ P(Cn×n) of the form (1.3) is said to be

regular if and only if det(P(c, d)) 6= 0 for some (c, d) ∈ C2 \ {(0, 0)}, otherwise it is called

a singular matrix polynomial.

Structured matrix polynomial: Let P be a matrix polynomial of the form (1.3).

We define the different kind of structured matrix polynomials based on the properties of

matrices Aj, j = 0 : l, by the following tables.

S Matrix structure

T -symmetric Aj = ATj

T -skew-symmetric Aj = −ATj
Hermitian Aj = AHj

skew-Hermitian Aj = −AHj
T -even Aj = ATj for j even, Aj = −ATj for j odd

T -odd Aj = −ATj for j even, Aj = ATj for j odd

H-even Aj = AHj for j even, Aj = −AHj for j odd

H-odd Aj = −AHj for j even, Aj = AHj for j odd
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S Matrix structure

T -palindromic Aj = ATl−j

T -anti-palindromic Aj = −ATl−j
H-palindromic Aj = AHl−j

H-anti-palindromic Aj = −AHl−j

Linearization of a matrix polynomial: Let P(β) =
∑l

i=0 β
iAi be a matrix poly-

nomial of degree l. A standard way to solve a polynomial eigenvalue problem P(β)x = 0

is to convert it into a generalized eigenvalue problem L(β)z = 0, where

L(β) = X + βY, X, Y ∈ Cln×ln,

with

X =



0 In 0 . . . 0

0 0 In
. . .

...
...

. . . 0

In

−A0 −A1 −A2 . . . −Al−1


, Y =



−In
−In

. . .

−In
−Al


, and, z =


x

βx
...

βl−1x

 .

Then we can use different available numerical methods to solve the generalized eigenvalue

problem. QZ algorithm is used if all the eigenpairs are required or the problem is of small

to medium size. An Arnoldi or nonsymmetric lanczos-type method can be used if a few

eigenpairs are required or one can use Krylov method for large sparse problems.

If P(β) is a matrix polynomial, then the matrix pencils

C1(β) :=



Al−1 Al−2 Al−3 . . . A0

−In 0 . . . . . .
...

0 −In
. . . 0

...
. . . . . .

...

0 . . . −In 0


+ β



Al

In
. . .

. . .

In


and

C2(β) :=



Al−1 −In 0 . . . 0

Al−2 0 −In . . .
...

Al−3 0
. . . . . . 0

...
. . . . . . −In

A0 0 . . . . . . 0


+ β



Al

In
. . .

. . .

In


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are called the first and second companion forms of P(λ). The above forms are the most

common linearization forms.

Let P be a quadratic matrix polynomial given by P(β) = A0 + βA1 + β2A2. In many

applications the given quadratic matrix polynomial have special structure, for example

when P(β) is Hermitian, then the following linearizations can be used to convert the qua-

dratic polynomial eigenvalue problem P(β)x = 0 into a Hermitian generalized eigenvalue

problem L(β)z = 0.

L(β) =

[
A2 0

0 −A0

]
+ β

[
0 −A2

−A2 −A1

]
, z =

[
βx

x

]

L(β) =

[
A1 A0

A0 0

]
+ β

[
A2 0

0 −A0

]
, z =

[
βx

x

]
.

For more information on linearization, see [1, 37, 70].

1.2.3. Two-parameter eigenvalue problem

A two-parameter matrix system is defined in the following manner:

(1.4) W (α) := (W1(α),W2(α)), where Wi(α) := α0Vi0 + α1Vi1 + α2Vi2, i = 1 : 2,

where Vij ∈ Cni×ni for i = 1 : 2, j = 0 : 2, and α = (α0, α1, α2) ∈ C3. We denote the

system (1.4) by W := (W1,W2) ∈ Cn1×n1 ×Cn2×n2 . Finding (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)},
and non zero vectors xi ∈ Cni such that Wi(λ)xi = 0 for i = 1 : 2 is called a two

parameter eigenvalue problem (TEP). Further, (λ0, λ1, λ2) = λ ∈ C3 \ {(0, 0, 0)} is called

an eigenvalue of (1.4), and the pair (x1, x2) is called an eigenvector of W corresponding

to λ. We also denote an eigenvector corresponding to λ by x = x1 ⊗ x2 ∈ Cn1n2 . (λ, x) is

called the eigenpair of W. We denote K be the space of two-parameter matrix systems.

By substituting α0 = 1 in (1.4), we can get the non-homogeneous form of a two-parameter

matrix system.

For a two-parameter matrix system of the form (1.4), we define the following operators:

∆0 = V11 ⊗ V22 − V12 ⊗ V21,∆1 = V12 ⊗ V20 − V10 ⊗ V22,∆2 = V10 ⊗ V21 − V12 ⊗ V20

If for any α0, α1, α2 ∈ C, we have α0∆0 + α1∆1 + α2∆2 is nonsingular, then we said

that a two-parameter matrix system is nonsingular and then from system of generalized

eigenvalue problems ∆0z = λ0∆z,∆1z = λ1∆z, ∆2z = λ2∆z, we can get the eigenvalue
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(λ0, λ1, λ2), and corresponding eigenvector z, of W, where z ∈ Cn1n2 , z = x1 ⊗ x2 is a

decomposable tensor. If for every α0, α1, α2 ∈ C, we have α0∆0 +α1∆1 +α2∆2 is singular,

then W is said to a singular two-parameter matrix system.

Spectrum of a two-parameter matrix system. Let W be a two-parameter matrix

system of the form (1.4). Then the set of eigenvalues of W is defined as

Λ(W ) = {λ ∈ C3 \ {(0, 0, 0)} : det(Wi(λ)) = 0 for i = 1, 2}.

If λ is an eigenvalue of a homogeneous two-parameter matrix system W, then aλ is also an

eigenvalue of W for each nonzero a ∈ C. Hence, to differentiate between the eigenvalues,

we consider the normalized eigenvalue λ ∈ C3 \ {(0, 0, 0)}, i.e., |λ0|2 + |λ1|2 + |λ2|2 = 1.

Definition 1.2.36. [42] The geometric multiplicity (G.M.) of an eigenvalue λ = (λ0, λ1, λ2)

of a two-parameter W is defined in the following manner:

G.M. = dim(ker(W1(λ)))× dim(ker(W2(λ))).

Definition 1.2.37. [60] The algebraic multiplicity (A.M.) of λ = (λ0, λ1, λ2) is equal to

the intersection multiplicity of two curves w1 = 0 and w2 = 0 at λ. Here wi = det(Wi(α))

for i = 1, 2.

Definition 1.2.38. An eigenvalue λ = (λ0, λ1, λ2) of W is semisimple if its algebraic and

geometric multiplicity coincide.

Structured two-parameter matrix systems: Let W be a two-parameter matrix

system of the form (1.4). We define the different kind of structured two-parameter matrix

systems based on the properties of matrices Vij, i = 1 : 2, j = 0 : 2, by the following

tables.

S Matrix structure

Complex symmetric Vij = V T
ij for i = 1 : 2, j = 0 : 2

Complex skew-symmetric Vij = −V T
ij for i = 1 : 2, j = 0 : 2

Hermitian Vij = V H
ij for i = 1 : 2, j = 0 : 2

Skew-Hermitian Vij = −V H
ij for i = 1 : 2, j = 0 : 2

T -even alternating Vij = V T
ij for i = 1 : 2, j = 0, 2 and Vi1 = −V T

i1 for i = 1 : 2.

T -odd alternating Vij = −V T
ij for i = 1 : 2, j = 0, 2 and Vi1 = V T

i1 for i = 1 : 2.

H-even alternating Vij = V H
ij for i = 1 : 2, j = 0, 2 and Vi1 = −V H

i1 for i = 1 : 2.

H-odd alternating Vij = −V H
ij for i = 1 : 2, j = 0, 2 and Vi1 = V H

i1 for i = 1 : 2.
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Two-parameter norm: Let W ∈ K be a two-parameter matrix system of the form

(1.4). Then ||||.|||| : K → R is defined as ||||W |||| =
√∑2

i=1

∑2
j=0 ‖Vij‖2F , forms a norm over

vector space K.

• Clearly ||||W |||| ≥ 0.

• For W ∈ K and ||||W |||| = 0 implies that
√∑2

i=1

∑2
j=0 ‖Vij‖2F = 0. This gives

‖Vij‖F = 0. We get Vij = 0 for i = 1 : 2; j = 0 : 2. Hence we get W1 = 0 = W2. In

particular W = 0. On the other hand if W = 0 then clearly W1 = 0 = W2 which

gives ||||W |||| = 0.

• For a ∈ C we have ||||aW |||| =
√∑2

i=1

∑2
j=0 |a|2‖Vij‖2F = |a|

√∑2
i=1

∑2
j=0 ‖Vij‖2F =

|a|||||W ||||.
• If W,W ∈ K then ||||W +W ||||2 =

∑2
i=1

∑2
j=0 ‖Vij + V ij‖2F ≤

∑2
i=1

∑2
j=0 ‖Vij‖2 +∑2

i=1

∑2
j=0 ‖V ij‖2F = ||||W ||||2 + ||||W ||||2.

||||.|||| is called the two-parameter norm. In the similar manner, we can define the weighted

two-parameter norm as follows:

Let W ∈ K be a two-parameter matrix system of the form (1.4), and w =

[
wT1

wT2

]
∈

R2×3 be a nonnegative matrix, where wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)} and wij, i =

1 : 2, j = 0 : 2 are nonnegative real numbers. Then ||||.||||w : K → R is defined as

||||W ||||w =
√∑2

i=1

∑2
j=0 ‖wijVij‖2F , forms a norm over vector space K if every wij is positive

and form a seminorm if otherwise.

Let W = (W1,W2) be a two-parameter matrix system of the form (1.4). Then we

define the normal rank of Wi for i = 1 : 2 by

Nrank (Wi) = max
λ∈C3\{(0,0,0)}

rank(Wi(λ)).

Let us discuss the above definition with the following example.

Example 1.2.39. Let W be a two-parameter matrix system of the form (1.4), where

W1(α) =

[
α0 + 2α1 + 3α2 0

0 α1 − 2α2

]
,W2(α) =

[
0 0

0 α1 + 2α2

]
.

Clearly for λ = (1, 1, 1), we have rank(W1(λ)) = 2. Hence Nrank (W1) = 2. But on the

other hand, for all λ ∈ C3 \ {(0, 0, 0)}, we get rank(W2(λ)) = 1. Hence Nrank (W2) = 1.
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CHAPTER 2

BACKWARD ERROR ANALYSIS OF TWO APPROXIMATE

EIGENPAIRS OF A DOUBLE-SEMISIMPLE EIGENVALUE

Abstract: This chapter deals with the backward error analysis of two approximate eigen-

pairs of a double-semisimple eigenvalue for structured and unstructured matrix pencils.

We develop the backward error results in such a way that one can theoretically compare

the structured and unstructured backward errors of a single eigenpair and backward error

of two eigenpairs of a double semisimple eigenvalue.

2.1. Introduction

Matrix pencils arise in many applications, see [1, 17, 67, 51]. Backward erorr analysis

of eigenvalues has been developed by different authors in the literature. Malyshev [53]

has discussed the minimal perturbation of a given n-by-n matrix to the nearest matrices

that have λ ∈ C as a multiple eigenvalue with respect to 2-norm. Further, this work

has been extended for two distinct prescribed numbers, and the nearest matrix has been

obtained that contains these prescribed numbers in its spectrum, see [31, 48, 57]. For a

given n-by-n matrix, the above work has been extended for k (k ≤ n) prescribed eigen-

values by Lippert [49] and Kokabifar et al. [43]. For the matrix polynomial setup, E.

Kokabifara et al. [44] have extended the above idea for k specified distinct eigenvalues

and provided the backward error and the minimum perturbed matrix polynomial for the

unstructured case. Similar to the backward error of eigenvalues, different authors have

developed the backward error analysis of a single approximate eigenpair for unstructured

as well as structured matrix pencils and matrix polynomials (see, [1, 8, 9, 45, 67]). For

the matrix case, Tisseur [71] has extended the backward error results from one specified

eigenpair to more specified eigenpairs. The author has obtained the backward error for-

mula for Hermitian, skew-Hermitian, complex symmetric, complex skew-symmetric and



doubly structured matrices using [68, Lemma 1.4], [71, Lemma 2.4] along with “W-trick”.

Tisseur has investigated the structured backward error analysis by imposing the appro-

priate conditions on approximate eigenpairs, for example, while computing the backward

error result for Hermitian matrices, the author has assumed that the columns of Xk, the

approximate eigenvectors matrix, are orthonormal. This condition seems to be natural

as we always get a set of orthonormal vectors for a given Hermitian matrix. Similar to

the Hermitian case, the author has imposed two natural conditions during the backward

error analysis of Hermitian unitary matrices, first is the orthonormality condition on Xk,

and second is the approximate eigenvalues matrix, Λk = diag(±1). In the same manner,

in this Chapter we discuss the natural conditions on the given approximate eigenpairs to

perform the backward error analysis. Next, in [18] Chu and Golub have studied the back-

ward error analysis of one or more approximate eigenpairs for unstructured nonsquare

matrix pencils when approximate eigenvalues are distinct, and eigenvectors are linearly

independent. Though they worked on one or more eigenpairs and obtained the unstruc-

tured backward error, results of backward error analysis of more than one approximate

eigenpairs for structured matrix pencils are still unanswered.

The above discussion on the backward error analysis of approximate eigenvalues or

eigenpairs for unstructured/structured matrices, matrix pencils and matrix polynomials

leads to a natural question that what will be the cumulative backward error of two approx-

imate eigenpairs of a given matrix pencil ? Before finding the answer to this question, we

want to emphasize on the point that whenever the author in [71] has imposed a condition

on Xk or Λk to obtain the structured backward error formula, that condition seems to be

a natural one for that particular structure. In a similar manner, to answer the question

raised above, we shall propose certain conditions, which we believe are natural, in order to

approximate eigenpairs under which we can obtain the backward error results for a large

class of matrix pencils. To understand the natural condition, we recall one important

result: if an eigenvalue of a matrix pencil is repeating but semisimple, we always get a set

of orthonormal eigenvectors corresponding to that eigenvalue (see, Lemma 2.2.6 for more

information). Using this result, we obtain the backward error formula for two approx-

imate eigenpairs of a semisimple eigenvalue with multiplicity two. Here we add that a

generic situation for a multiple eigenvalue is a double eigenvalue (see, for example, [56]).

For obtaining backward error results, we adopt and extend the technique of [1, 8, 9]. This

technique works on the orthonormal properties of approximate eigenvectors. In general,

we can not get the orthonormal vectors corresponding to distinct eigenvalues; hence the
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question of finding the structured backward error of two approximate eigenpairs is still

open when eigenvalues are distinct or defective. We answer the above-raised question for

structured as well as unstructured matrix pencils. We work with T -symmetric/T -skew-

symmetric, Hermitian/skew-Hermitian, T -even/T -odd, andH-even/H-odd matrix pencils

(see, [17, 32, 62, 87] for more on structured matrix pencils and matrix polynomials).

Let L(Cn×n) be the space of matrix pencils, and let L ∈ L(Cn×n) be of the form

L(α, β) := αA0 + βA1, where A0, A1 ∈ Cn×n, α = (α, β) ∈ C2. Suppose (λ, xi) for i = 1, 2

are two approximate eigenpairs of L, where λ ∈ C2 \ {(0, 0)} and 0 6= xi ∈ Cn. In

this chapter, we find the nearest δL ∈ L(Cn×n) of the form δL(α, β) := αδA0 + βδA1,

δA0, δA1 ∈ Cn×n such that two approximate eigenpairs (λ, x1) and (λ, x2) become the

exact eigenpairs of L + δL. We use the Frobenius norm to investigate the structured

backward error analysis. Results are developed in such a way that T -symmetric & T -

skew-symmetric cases are presented in a single platform. Similarly, Hermitian & skew-

Hermitian, T -even & T -odd, and H-even & H-odd cases are also presented in a single plat-

form. Further, we find relationships between the backward error of a single approximate

eigenpair, the backward error of two approximate eigenpairs for a semisimple eigenvalue

with multiplicity two, and the structured backward error of two approximate eigenpairs

for a semisimple eigenvalue with multiplicity two.

2.2. Structured matrix pencils and preliminaries

Let L(Cn×n) be the space of matrix pencils and homogeneous matrix pencil L ∈ L(Cn×n)

is defined as follows :

L(α, β) := αA0 + βA1, A0, A1 ∈ Cn×n, (α, β) ∈ C2.(2.1)

Finding λ = (λ0, λ1) ∈ C2 \ {(0, 0)}, 0 6= x ∈ Cn such that L(λ)x = 0, is called the

generalized eigenvalue problem (GEP). λ is called an eigenvalue of (2.1) and x is the

corresponding right eigenvector. If 0 6= y ∈ Cn such that yHL(λ) = 0, then y is called the

left eigenvector corresponding to λ. We denote (2.1) by L, and (λ, x) is an eigenpair of

L. We define |||L|||F := ‖(‖A0‖F , ‖A1‖F )‖2 = (‖A0‖2F + ‖A1‖2F )1/2, where ‖.‖F denotes the

Frobenius norm on Cn×n, and ‖.‖2 denotes the 2-norm on Cn. Non-homogeneous matrix

pencils can be obtain by fixing α = 1 in (2.1). We denote the spectrum of L by Λ(L),
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and it is given by

Λ(L) := {λ = (λ0, λ1) ∈ C2 \ {(0, 0)} : det(L(λ)) = 0}.

When (λ0, λ1) ∈ C2\{(0, 0)} is an eigenvalue of L, then (aλ0, aλ1) is another representation

of the eigenvalue (λ0, λ1) for any 0 6= a ∈ C. Hence for a given homogeneous L, we

normalize (λ0, λ1) ∈ Λ(L) as |λ0|2 + |λ1|2 and consider Λ(L) is a subset of unit sphere

S1 := {(λ0, λ1) ∈ C2 : |λ0|2 + |λ1|2 = 1}. By working in the homogeneous setup, one can

handle the infinity eigenvalue together with the finite eigenvalue (see, [4] for more detail on

homogeneous eigenvalue problems). Throughout this chapter, we consider regular matrix

pencils for the establishment of our results.

Definition 2.2.1. The algebraic multiplicity (A.M.) of an eigenvalue λ = (λ0, λ1) ∈ Λ(L)

is its multiplicity as a zero of the characteristic polynomial det(L(λ)).

Definition 2.2.2. The geometric multiplicity (G.M.) of an eigenvalue (λ0, λ1) ∈ Λ(L) is

defined as the dimension of the subspace ker(L(λ)).

Definition 2.2.3. An eigenvalue is said to be semisimple if its algebraic multiplicity is

equal to its geometric multiplicity (see, [81] for more detail on semisimple eigenvalues).

Let L be a matrix pencil of the form (2.1), and let λ = (λ0, λ1) ∈ C2 \ {(0, 0)} be its

eigenvalue. Then λ is said to be a double eigenvalue if its algebraic multiplicity is two.

We will consider a double-semisimple eigenvalue for the backward error analysis, since a

generic situation for a multiple eigenvalue is a double eigenvalue (see, [56, 80] for more

information on double-semisimple eigenvalues). We work with structured matrix pencils

of the form (2.1). These structured matrix pencils are defined by Table 2.1 based on

the properties of matrices A0, A1 ∈ Cn×n. After defining the different structured matrix

pencils, we extend the backward error definition from a single approximate eigenpair to

two approximate eigenpairs. Backward error analysis for a single approximate eigenpair

has been discussed in [1].

Definition 2.2.4. Let L be a matrix pencil of the form (2.1). Let (λ, x1) and (λ, x2)

be two approximate eigenpairs of L where λ ∈ C2 \ {(0, 0)}, and 0 6= x1, x2 ∈ Cn. Then

unstructured and structured backward errors of two approximate eigenpairs (λ, x1) and

(λ, x2) are defined by

ηF (λ, x1, x2,L) := inf{|||δL|||F , (L(λ) + δL(λ))xi = 0; for i = 1, 2}, and
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ηSF (λ, x1, x2,L) := inf{|||δL|||F , δL ∈ S, (L(λ) + δL(λ))xi = 0; for i = 1, 2},

respectively. Here δL is a matrix pencil of the form (2.1) such that δL(α, β) = αδA0+βδA1

with δA0, δA1 ∈ Cn×n, |||δL|||F :=
√
‖δA0‖2F + ‖δA1‖2F , and

S :={ T -symmetric, T -skew-symmetric, Hermitian, skew-Hermitian, T -even, T -odd,

H-even, H-odd}.

After defining the backward error formulas, now we recall some useful results.

Remark 2.2.5. Eigenvectors corresponding to a double-semisimple eigenvalue of a ma-

trix pencil L, are not uniquely determined. Using this information, we will establish the

following lemma.

Lemma 2.2.6. Suppose p = (p0, p1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue

of a matrix pencil L. Then there exists two orthonormal vectors y1, y2 ∈ Cn, such that

L(p)yi = 0 for i = 1, 2. In particular, every double-semisimple eigenvalue p of L has two

orthonormal eigenvectors.

Proof. Let (p0, p1) be a double-semisimple eigenvalue of L. It implies that its algebraic and

geometric multiplicity will be two. Then there exists two linearly independent eigenvectors

z1, z2 ∈ Cn such that L(p)zi = 0 for i = 1, 2. By Gram-Schmidt process, we can set

y1 = z1
‖z1‖ and y2 = z2−γz1

‖z2−γz1‖ , where γ =
zH1 z2
zH1 z1

∈ C. We can easily see that L(p)yi = 0, and

y1, y2 are orthonormal. �

S Matrix structure

T -symmetric A0 = AT0 , A1 = AT1

T -skew-symmetric A0 = −AT0 , A1 = −AT1
Hermitian A0 = AH0 , A1 = AH1

skew-Hermitian A0 = −AH0 , A1 = −AH1
T -even A0 = AT0 , A1 = −AT1
T -odd A0 = −AT0 , A1 = AT1

H-even A0 = AH0 , A1 = −AH1
H-odd A0 = −AH0 , A1 = AH1

Table 2.1. An overview for structured matrix pencils
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The above lemma gives a guarantee that for a double-semisimple eigenvalue, we always

get two orthonormal eigenvectors.

Remark 2.2.7. Using the Gram-Schmidt process, we can extend the above lemma for a

semisimple eigenvalue with algebraic multiplicity more than two.

After recalling the preliminary results, we will establish backward error results for two

eigenpairs of a double-semisimple eigenvalue.

Remark 2.2.8. Since we are interested in finding the backward error of two approximate

eigenpairs of a double-semisimple eigenvalue, hence in light of Lemma 2.2.6, from now

onwards, we will take the orthonormal eigenvectors corresponding to a double-semisimple

eigenvalue.

Lemma 2.2.9. Let x1, x2 ∈ Cn be orthonormal vectors. Define Px1:x2 := (I − x1x
H
1 −

x2x
H
2 ), P c

x1
:= (I − x2xH2 ), and P c

x2
:= (I − x1xH1 ). Then

1. Px1:x2 = PH
x1:x2

,

2. Px1:x2x1 = Px1:x2x2 = 0,

3. P c
x1
x2 = 0 = P c

x2
x1.

Proof. Proof is computational and is easy to check.

Next, we discuss the backward error analysis of T -symmetric and T -skew-symmetric

matrix pencils.

2.3. Backward error for T -symmetric and T -skew-symmetric ma-

trix pencils

In this section, we present the structured backward error analysis of two approximate

eigenpairs of a double-semisimple eigenvalue for T -symmetric and T -skew-symmetric ma-

trix pencils. We start this section with the following existence theorem for T -symmetric/T -

skew-symmetric matrix pencils. Throughout this section, ε = 1 represents a T -symmetric

matrix pencil and ε = −1 represents a T -skew-symmetric matrix pencil.

Theorem 2.3.1. Let L ∈ L(Cn×n) be a T -symmetric/ T -skew-symmetric homogeneous

matrix pencil of the form (2.1). Let (λ, x1) and (λ, x2) be two approximate eigenpairs of
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L, where λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue, and x1, x2 ∈ Cn

are orthonormal vectors. Set ki := −L(λ)xi for i = 1 : 2, and define

δA0 =
2∑
i=1

λ0
kix

H
i + εxik

T
i Px1:x2

H2
2 (λ)

and δA1 =
2∑
i=1

λ1
kix

H
i + εxik

T
i Px1:x2

H2
2 (λ)

,

where H2(λ) = (|λ0|2 + |λ1|2)1/2. Then there exists a T -symmetric/T -skew-symmetric

matrix pencil δL ∈ L(Cn×n) of the form δL(α, β) = αδA0 + βδA1, such that (L(λ) +

δL(λ))xi = 0 for i = 1 : 2.

Proof. The proof is computational and is easy to check. �

Lemma 2.3.2. Let L ∈ L(Cn×n) be a T -symmetric/ T -skew-symmetric homogeneous

matrix pencil of the form (2.1). Let (λ, x1) and (λ, x2) be two approximate eigenpairs of

L, where λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue, and x1, x2 ∈ Cn

are orthonormal vectors. Set ki := −L(λ)xi for i = 1 : 2. Then the following equality

holds for t = 1, 2

(xT1 k2)(εx2x
H
1 + x1x

H
2 )xt =

2∑
j=1,j 6=t

xjx
T
j kt.

Proof. The proof is computational and obtained by using the fact that εxT1 k2 = xT2 k1. �

Next, we establish the main result of this section.

Theorem 2.3.3. Let L ∈ L(Cn×n) be a T -symmetric/ T -skew-symmetric homogeneous

matrix pencil of the form (2.1). Let (λ, x1) and (λ, x2) be two approximate eigenpairs of L,

where λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue, and x1, x2 ∈ Cn are

orthonormal vectors. Set ki := −L(λ)xi for i = 1 : 2. Then there exists a T -symmetric/

T -skew-symmetric δL of the form δL(α, β) = αδA0+βδA1 such that (L(λ)+δL(λ))xi = 0.

The perturbation matrices are given by

δA0 =
2∑
i=1

(λ0
P
c

xi
kix

H
i + εxik

T
i Px1:x2

H2
2 (λ)

) +
λ0(x

T
1 k2)(εx2x

H
1 + x1x

H
2 )

H2
2 (λ)

,

δA1 =
2∑
i=1

(λ1
P
c

xi
kix

H
i + εxik

T
i Px1:x2

H2
2 (λ)

) +
λ1(x

T
1 k2)(εx2x

H
1 + x1x

H
2 )

H2
2 (λ)

.

The backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − ((1 + ε)/2))|xTi ki|2

H2
2 (λ)

)− 2
|xT2 k1|2

H2
2 (λ)

.
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Proof. From Theorem 2.3.1, there exists a T -symmetric/T -skew-symmetric δL of the

form δL(α, β) = αδA0+βδA1 such that L(λ)xi+δL(λ)xi = 0 for i = 1, 2. For constructing

δAj for j = 0, 1 such that δAj = εδATj , we consider

(2.2) δ̃Aj = UT δAjU =

[ 2 n−2

2 δ̂Aj εδBj
T

n−2 δBj δDj

]
,

where δ̂Aj =

[
(1+ε)

2
δaj,11 εδaj,12

δaj,12
(1+ε)

2
δaj,22

]
, δBj =

[
bj1 bj2

]
, δDj = εδDj

T for j = 0, 1, and

U ∈ Cn×n is a unitary matrix such that U =
[
V1 V2

]
with V1 =

[
x1 x2

]
∈ Cn×2.

We need to construct δL such that (L(λ)+ δL(λ))xi = 0 for i = 1 : 2. Since it is given

that ki = −L(λ)xi, we get ki = δL(λ)xi. From (2.2), we get δ̃L(λ) = UT δL(λ)U. Using

the properties of U, we get δ̃L(λ)UHxi = UT δL(λ)xi = UTki. This implies

λ0

[
δ̂A0 εδBT

0

δB0 δD0

][
ei

0

]
+ λ1

[
δ̂A1 εδBT

1

δB1 δD1

][
ei

0

]
=

[
V T
1 ki

V T
2 ki

]
. Further simplification gives

(2.3)

[
(λ0δ̂A0 + λ1δ̂A1)ei

(λ0δB0 + λ1δB1)ei

]
=

[
V T
1 ki

V T
2 ki

]
,

where ei ∈ C2 is a vector having 1 at ith position and 0 elsewhere. From (2.3), we get the

following equations

((1 + ε)/2)λ0δa0,ii + ((1 + ε)/2)λ1δa1,ii = xTi ki, i = 1, 2,(2.4)

λ0b0i + λ1b1i = V T
2 ki, i = 1, 2.(2.5)

The minimum norm solutions of (2.4) and (2.5) are given by δa0,ii = (1+ε)
2

λ0
H2

2 (λ)
xTi ki,

δa1,ii = (1+ε)
2

λ1
H2

2 (λ)
xTi ki, b0i = λ0

H2
2 (λ)

V T
2 ki, b1i = λ1

H2
2 (λ)

V T
2 ki. By Equation 2.3, we get two

more equations

λ0δa0,12 + λ1δa1,12 = xT2 k1,(2.6)

λ0δa0,12 + λ1δa1,12 = εxT1 k2.(2.7)

Since Aj = εATj for j = 0, 1, we get εxT1 k2 = xT2 k1. Hence Equations 2.6 and 2.7 are

the same. The minimum norm solution of (2.7) is given by δa0,12 = ελ0
H2

2 (λ)
xT1 k2, δa1,12 =
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ελ1
H2

2 (λ)
xT1 k2. Substituting back all these obtained entries in (2.2), we get

(2.8) δAj = U


(1+ε)

2

λj
H2

2 (λ)
xT1 k1

λj
H2

2 (λ)
xT1 k2 ε

λj
H2

2 (λ)
(V T

2 k1)
T

ελj
H2

2 (λ)
xT1 k2

(1+ε)
2

λj
H2

2 (λ)
xT2 k2 ε

λj
H2

2 (λ)
(V T

2 k2)
T

λj
H2

2 (λ)
V T
2 k1

λj
H2

2 (λ)
V T
2 k2 δDj

UH .

Further simplifying (2.8) and setting δDj = 0, we get the desired structured per-

turbation matrices δA0 and δA1 whose Frobenius norms are minimum. For i = 1, 2, we

need to show ((L(λ) + δL(λ))xi = 0. Consider (L(λ) + δL(λ))xi = L(λ)xi + δL(λ)xi =

−ki + λ0δA0xi + λ1δA1xi = −ki + P
c

xi
ki + (xT1 k2)(εx2x

H
1 + x1x

H
2 )xi, using Lemma 3.3.3,

we get (L(λ) + δL(λ))xi = −ki + P
c

xi
ki +

∑2
j=1,j 6=i xjx

T
j ki = 0.

Since the Frobenius norms of δA0 and δA1 are minimum, hence (ηSF (λ, x1, x2,L))2 =

‖δA0‖2F+‖δA1‖2F where ‖δA0‖2F+‖δA1‖2F =
∑1

j=0 ‖δ̂Aj‖2F+(1+ε2)‖δBj‖2F =
∑1

j=0 ‖δ̂Aj‖2F+

2‖δBj‖2F =
∑2

i=1((1 + ε)/2)
|xTi ki|2
H2

2 (λ)
+ 2

|xT1 k2|2
H2

2 (λ)
+ 2

‖V T2 ki‖2
H2

2 (λi)
. Since ‖V T

2 ki‖2 = ‖ki‖2− |xT1 ki|2−
|xT2 ki|2, and using Remark 2.3.6, we get

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − ((1 + ε)/2)|xTi ki|2

H2
2 (λ)

)− 2
|xT2 k1|2

H2
2 (λ)

.�

Remark 2.3.4. Results for non-homogeneous matrix pencils can be obtained by fixing

λ0 = 1 in Theorem 2.3.3.

Remark 2.3.5. By extending {x1, x2} to the basis of Cn, we get another (n− 2) linearly

independent vectors {x3, . . . , xn}. Then using the Gram-Schmidt process on {x1, . . . , xn},
we get the desired V2 ∈ Cn×(n−2).

Remark 2.3.6. For ε = 1,−1 we have εxT1 k2 = xT2 k1, and |εxT1 k2|2 = |xT1 k2|2 = |xT2 k1|2.

Corollary 2.3.7. Let L be a non-homogeneous T -symmetric/T -skew-symmetric non-

homogeneous matrix pencil L of the form L(γ) = A0 + γA1. Let (µ, x1) and (µ, x2) be two

approximate eigenpairs such that µ ∈ C is a double-semisimple eigenvalue and x1, x2 ∈ Cn

are orthonormal vectors. Set ki := −L(µ)xi for i = 1 : 2. Then the following holds:

(ηSF (µ, x1, x2,L)) ≤
√
ηSF (µ, x1,L)2 + ηSF (µ, x2,L)2.

Proof. For the T -symmetric case by substituting λ0 = 1, λ1 = µ, and ε = 1 in Theorem

2.3.3, we get the following relation

(2.9) (ηSF (µ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − |xTi ki|2

(1 + |µ|2)
)− 2

|xT2 k1|2

(1 + |µ|2)
.
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From [1, Theorem 3.1], we have

(2.10) (ηSF (µ, xi,L))2 =
2‖ki‖22 − |xTi ki|2

(1 + |µ|2)
, i = 1 : 2.

By substituting Equation 2.10 in Equation 2.9, we get

(2.11) (ηSF (µ, x1, x2,L))2 =
2∑
i=1

(
ηSF (µ, xi,L)

)2 − 2
|xT2 k1|2

(1 + |µ|2)
.

Since
|xT2 k1|2

(1 + |µ|2)
≥ 0, we get the desired result.

Remark 2.3.8. The result for the T -skew-symmetric case can be obtained in a similar

manner by using ε = −1 and [1, Theorem 3.2].

Next, we present the backward error analysis for unstructured matrix pencils, and

by that analysis, we will establish a relationship between structured and unstructured

backward errors.

2.4. Backward error analysis for unstructured matrix pencils

In this section, we derive the backward error formula for two approximate eigenpairs of a

double-semisimple eigenvalue without imposing any structure on matrix pencils. We start

this section with the following theorem, which gives a guarantee that there always exists

a matrix pencil for two approximate eigenpairs of a double-semisimple eigenvalue.

Theorem 2.4.1. Let L ∈ L(Cn×n) be a matrix pencil of the form (2.1). Let (λ, x1) and

(λ, x2) be two approximate eigenpairs of L, where λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-

semisimple eigenvalue, and x1, x2 ∈ Cn are orthonormal vectors. Set ki := −L(λ)xi for

i = 1 : 2, and define

(2.12) δA0 =
2∑
i=1

λ0
kix

H
i + xix

T
i Px1:x2

H2
2 (λ)

and δA1 =
2∑
i=1

λ1
kix

H
i + xix

T
i Px1:x2

H2
2 (λ)

,

where H2(λ) = (|λ0|2 + |λ1|2)1/2. Then there exists a matrix pencil δL ∈ L(Cn×n) of the

form δL(α, β) = αδA0 + βδA1, such that (L(λ) + δL(λ))xi = 0 for i = 1 : 2.

Proof. The proof is computational and is easy to check. �

Now we present the main result of this section.
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Theorem 2.4.2. Let L ∈ L(Cn×n) be a homogeneous matrix pencil of the form (2.1). Let

(λ, x1) and (λ, x2) be two approximate eigenpairs of L, where λ = (λ0, λ1) ∈ C2 \ {(0, 0)}
is a double-semisimple eigenvalue, and x1, x2 ∈ Cn are orthonormal vectors. Set ki :=

−L(λ)xi for i = 1, 2. Then there exists a matrix pencil δL of the form δL(α, β) = αδA0 +

βδA1 such that (L(λ) + δL(λ))xi = 0. The perturbation matrices are given by

δA0 =
2∑
i=1

λ0kix
H
i

H2
2 (λ)

, δA1 =
2∑
i=1

λ1kix
H
i

H2
2 (λ)

.

The unstructured backward error is given by

(ηF (λ, x1, x2,L))2 =
2∑
i=1

‖ki‖22
H2

2 (λ)
.

Proof. From Theorem 2.4.1, there always exists a matrix pencil δL of the form δL(α, β) =

αδA0 + βδA1 such that L(λ)xi + δL(λ)xi = 0 for i = 1, 2. To construct δAj for j = 0, 1,

we consider

(2.13) δ̃Aj = UT δAjU =

[ 2 n−2

2 δ̂Aj δCj
T

n−2 δBj δDj

]
,

where δ̂Aj =

[
δaj,11 δaj,12

δaj,21 δaj,22

]
, δBj =

[
bj1 bj2

]
, δCj =

[
cj1 cj2

]
for j = 0, 1, and U ∈

Cn×n is a unitary matrix such that U =
[
V1 V2

]
with V1 =

[
x1 x2

]
∈ Cn×2. Since we

need to construct δL such that (L(λ) + δL(λ))xi = 0, we get ki = δL(λ)xi for i = 1 : 2.

From δ̃L(λ) = UT δL(λ)U, we have δ̃L(λ)UHxi = UT δL(λ)xi = UTki. This implies

λ0

[
δ̂A0 δCT

0

δB0 δD0

][
ei

0

]
+ λ1

[
δ̂A1 δCT

1

δB1 δD1

][
ei

0

]
=

[
V T
1 ki

V T
2 ki

]
, further simplification gives

(2.14)

[
(λ0δ̂A0 + λ1δ̂A1)ei

(λ0δB0 + λ1δB1)ei

]
=

[
V T
1 ki

V T
2 ki

]
,

where ei ∈ C2 is a vector having 1 at ith position and 0 elsewhere. From (2.14), we get

the following equations

λ0δa0,ii + λ1δa1,ii = xTi ki, i = 1, 2,(2.15)

λ0b0i + λ1b1i = V T
2 ki, i = 1, 2(2.16)
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The minimum norm solutions of (2.15) and (2.16) are given by δa0,ii = λ0
H2

2 (λ)
xTi ki, δa1,ii =

λ1
H2

2 (λ)
xTi ki and b0i = λ0

H2
2 (λ)

V T
2 ki, b1i = λ1

H2
2 (λ)

V T
2 ki. Further from (2.14), we get the following

two equations:

λ0δa0,21 + λ1δa1,21 = xT2 k1,(2.17)

λ0δa0,12 + λ1δa1,12 = xT1 k2.(2.18)

The minimum norm solutions of (2.17) and (2.18) are given by δa0,21 = λ0
H2

2 (λ)
xT2 k1, δa1,21 =

λ1
H2

2 (λ)
xT2 k1; δa0,12 = λ0

H2
2 (λ)

xT1 k2, δa1,12 = λ1
H2

2 (λ)
xT1 k2.

Similar to the T -symmetric/T -skew-symmetric case, substituting back all these ob-

tained entries in (2.13) along with δD1 = δD2 = 0, and δC1 = δC2 = 0, we get the desired

perturbation matrices with the minimum Frobenius norms. Similar to Theorem 2.3.3, we

can obtain the backward error for the unstructured case, which is given by

ηF (λ, x1, x2,L) =

√√√√ 2∑
i=1

‖ki‖22
H2

2 (λ)
.

After establishing the unstructured backward error formula for two approximate eigen-

pairs, we now establish a relationship between unstructured and T -symmetric/T -skew-

symmetric backward errors.

Corollary 2.4.3. Let L ∈ L(Cn×n) be a T -symmetric/ T -skew-symmetric matrix pencil of

the form (2.1). Let (λ, x1) and (λ, x2) be two approximate eigenpairs of L, where x1, x2 ∈
Cn are orthonormal vectors, and λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple

eigenvalue. Then the following holds:

(ηSF (λ, x1, x2,L)) ≤
√

2 (ηF (λ, x1, x2,L)).

Proof. From Theorem 2.3.3, we get (ηSF (λ, x1, x2,L))2 ≤
∑2

i=1
2‖ki‖22
H2

2 (λ)
. Also using Theorem

2.4.2, we have (ηF (λ, x1, x2,L))2 =
2∑
i=1

‖ki‖22
H2

2 (λ)
. Hence we get

(ηSF (λ, x1, x2,L)) ≤
√

2 (ηF (λ, x1, x2,L)).�

Now we present a relationship between the backward error of a single eigenpair and the

backward error of two approximate eigenpairs of a double-semisimple eigenvalue.

Corollary 2.4.4. Let (µ, x1) and (µ, x2) be two approximate eigenpairs such that µ ∈ C
is a double-semisimple eigenvalue of a non-homogeneous matrix pencil L of the form
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L(γ) = A0 + γA1. Set ki := −L(µ)xi, where xi ∈ Cn for i = 1, 2. Then the following

holds:

ηF (µ, x1, x2,L) =
√
η2F (µ, x1,L) + η2F (µ, x2,L).

Proof. By substituting λ0 = 1, and λ1 = µ in Theorem 2.4.2, we get ηF (µ, x1, x2,L) =√∑2
i=1

‖ki‖22
(1+|µ|2) . On the other hand by [1], we have ηF (µ, xi,L) = ‖ki‖

(1+|µ|2)1/2 for i = 1, 2.

On combining these two results, we get ηF (µ, x1, x2,L) =
√
η2F (µ, x1,L) + η2F (µ, x2,L). �

Remark 2.4.5. For T -symmetric/ T -skew-symmetric matrix pencils, a relation between

the unstructured backward error of a single approximate eigenpair and the structured back-

ward error of two approximate eigenpairs of a double-semisimple eigenvalue can be estab-

lished by using Corollary 2.4.4 and Corollary 2.4.3.

Remark 2.4.6. From now onwards, we will not invoke the existence theorem separately

as we did for T -symmetric/T -skew-symmetric and unstructured cases by Theorem 2.3.1

and Theorem 2.4.1, respectively, because the construction of δA0 and δA1 in each case

itself gives a guarantee of the existence of the required structured matrix pencil.

2.5. Backward error analysis for Hermitian/skew-Hermitian ma-

trix pencils

This section deals with the backward error analysis of Hermitian and skew-Hermitian

matrix pencils. First, we state and prove the main result of this section. Later, we

establish a relationship between the backward error of a single approximate eigenpair

and the backward error of two approximate eigenpairs of a double-semisimple eigenvalue.

Before moving to the main result of this section, we now present an important lemma as

follows.

Lemma 2.5.1. Let L be a Hermitian/skew-Hermitian matrix pencil of the form (2.1). Let

λ = (λ0, λ1) ∈ C2\{(0, 0)} be a double-semisimple eigenvalue of L satisfying =(λ0λ1) 6= 0,

i.e., L(λ0, λ1)yi = 0 for i = 1, 2 where y1, y2 ∈ Cn are the eigenvectors corresponding to

λ. Then yH1 Ajy1 = 0, yH2 Ajy2 = 0 for j = 0, 1.

Proof. Given that λ is a double-semisimple eigenvalue of L, i.e., (λ0A0 +λ1A1)yi = 0 for

i = 1, 2. This gives yHi (λ0A0 + λ1A1)yi = 0. Using the fact that Aj = εAHj for j = 0, 1,
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we get yHi (λ0A0 + λ1A1)yi = 0 and yHi (λ0A0 + λ1A1)yi = 0. Solving these two equations

along with =(λ0λ1) 6= 0, we get the desired result. �

Throughout this section, ε = 1 represents the Hermitian case and ε = −1 represents the

skew-Hermitian case.

Remark 2.5.2. For ε = −1 we have
√
ε =
√
−1 = i, an imaginary number.

Remark 2.5.3. Let L ∈ L(Cn×n) be a Hermitian/ skew-Hermitian homogeneous matrix

pencil of the form (2.1). Suppose (λ, x1) and (λ, x2) are two approximate eigenpairs of L

with λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue such that =(λ0λ1) =

0, and x1, x2 ∈ Cn are orthonormal vectors. Set ki := −L(λ)xi for i = 1 : 2. Then

λjεxH2 k1 = λjx
H
1 k2 for j = 0 : 1, and |εxH2 k1|2 = |xH1 k2|2.

Now, we state and prove the main result of this section.

Theorem 2.5.4. Let L ∈ L(Cn×n) be a Hermitian/ skew-Hermitian homogeneous matrix

pencil of the form (2.1). Let (λ, x1) and (λ, x2) be two approximate eigenpairs of L,

where λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue, and x1, x2 ∈ Cn are

orthonormal vectors. Set ki := −L(λ)xi for i = 1 : 2. Then there exists a Hermitian/

skew-Hermitian matrix pencil δL of the form δL(α, β) = αδA0 + βδA1 such that (L(λ) +

δL(λ))xi = 0. The perturbation matrices, for =(λ0λ1) = 0, are given by

δA0 =
2∑
i=1

λ0kix
H
i + ελ0xik

H
i Px1:x2

H2
2 (λ)

and δA1 =
2∑
i=1

λ1kix
H
i + ελ1xik

H
i Px1:x2

H2
2 (λ)

,

and the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − |xHi ki|2

H2
2 (λ)

)− 2
|xH2 k1|2

H2
2 (λ)

.

The perturbation matrices, for =(λ0λ1) 6= 0, are given by

δA0 =
2∑
i=1

(−xixHi A0xix
H
i + λ0

Px1:x2kix
H
i

H2
2 (λ)

+ ελ0
xik

H
i Px1:x2
H2

2 (λ)
)

+
x2(λ1x

H
2 k1 − ελ1xH1 k2)xH1
λ0λ1 − λ0λ1

+
x1(ελ1xH2 k1 − λ1xH1 k2)xH2

λ0λ1 − λ0λ1
and

δA1 =
2∑
i=1

(−xixHi A1xix
H
i + λ1

Px1:x2kix
H
i

H2
2 (λ)

+ ελ1
xik

H
i Px1:x2
H2

2 (λ)
)

+
x2(ελ0xH1 k2 − λ0xH2 k1)xH1

λ0λ1 − λ0λ1
+
x1(λ0x

H
1 k2 − ελ0xH2 k1)xH2
λ0λ1 − λ0λ1

.
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In this case, the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

1∑
j=0

(|xHi Ajxi|2 + 2
‖ki‖22 − |xHi ki|2

H2
2 (λ)

)− ε<((λ
2

0 + λ
2

1)(x
H
1 k2)(x

H
2 k1))

|=(λ0λ1)|2

+
|xH2 k1|2 + |xH1 k2|2

2|=(λ0λ1)|2H2
2 (λ)

(H4
2 (λ)− 4|=(λ0λ1)|2).

Proof. For constructing δAj for j = 0, 1 such that δAj = εδAHj , we consider

(2.19) δ̃Aj = UHδAjU =

[ 2 n−2

2 δ̂Aj εδBj
H

n−2 δBj δDj

]
,

where δ̂Aj =

[√
εδaj,11 δaj,12

εδaj,12
√
εδaj,22

]
with δaj,tt ∈ R for t = 1 : 2, δBj =

[
bj1 bj2

]
,

δDj = εδDj
H for j = 0, 1, and U ∈ Cn×n is a unitary matrix such that U =

[
V1 V2

]
with

V1 =
[
x1 x2

]
∈ Cn×2. Since we need to construct δL such that (L(λ) + δL(λ))xi = 0,

we get ki = δL(λ)xi for i = 1 : 2. From δ̃L(λ) = UHδL(λ)U we have δ̃L(λ)UHxi =

UHδL(λ)xi = UHki. This implies

λ0

[
δ̂A0 εδBH

0

δB0 δD1

][
ei

0

]
+λ1

[
δ̂A1 εδBH

1

δB1 δD1

][
ei

0

]
=

[
V H
1 ki

V H
2 ki

]
. Further simplification gives

(2.20)

[
(λ0δ̂A0 + λ1δ̂A1)ei

(λ0δB0 + λ1δB1)ei

]
=

[
V H
1 ki

V H
2 ki

]
,

where ei ∈ C2 is a vector having 1 at ith position and 0 elsewhere. From (2.20), we get

the following four equations and one system of equation:

√
ελ0δa0,ii +

√
ελ1δa1,ii = xHi ki, i = 1, 2,(2.21)

λ0b0i + λ1b1i = V H
2 ki, i = 1, 2,(2.22) [

λ0 λ1

λ0 λ1

][
δa0,12

δa1,12

]
=

[
εxH2 k1

xH1 k2

]
.(2.23)

The minimum norm solution of (2.22) is given by b0i = λ0
H2

2 (λ)
V H
2 ki and b1i = λ1

H2
2 (λ)

V H
2 ki.

Case-1: If =(λ0λ1) = 0, then the minimum norm solution of (2.21) is given by δa0,ii =
√
ελ0

H2
2 (λ)

xHi ki, δa1,ii =
√
ελ1

H2
2 (λ)

xHi ki. Since Aj = εAHj for j = 0, 1, and =(λ0λ1) = 0, we get

system (2.23) is consistent by using Remark 2.5.3. The minimum norm solution of (2.23)
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is given by δa0,12 = ελ0
H2

2 (λ)
xH2 k1 and δa1,12 = ελ1

H2
2 (λ)

xH2 k1. Substituting back all these obtained

entries in (2.19), we get

(2.24) δAj = U


λj

H2
2 (λ)

xH1 k1 ε
λj

H2
2 (λ)

xH2 k1 ε
λj

H2
2 (λ)

(V H
2 k1)

H

λj
H2

2 (λ)
xH2 k1

λj
H2

2 (λ)
xH2 k2 ε

λj
H2

2 (λ)
(V H

2 k2)
H

λj
H2

2 (λ)
V H
2 k1

λj
H2

2 (λ)
V H
2 k2 Dj

UH .

Further, simplifying (2.24) and setting δDj = 0 along with Remark 2.5.3, we get the

desired perturbation matrices δA0, δA1 whose Frobenius norms are minimum.

Next, we need to show (L(λ) + δL(λ))xi = 0 for i = 1, 2. Consider (L(λ) + δL(λ))xi =

L(λ)xi + δL(λ)xi = −ki + λ0δA0xi + λ1δA1xi = −ki + ki = 0. Since the Frobenius

norms of δA0 and δA1 are minimum, hence (ηSF (λ, x1, x2,L))2 = ‖δA0‖2F + ‖δA1‖2F , where

‖δA0‖2F + ‖δA1‖2F =
∑1

j=0 ‖δ̂Aj‖2F + 2‖δBj‖2F =
∑2

i=1
|xHi ki|2
H2

2 (λ)
+ 2

|xH2 k1|2
H2

2 (λ)
+ 2

‖V H2 ki‖2
H2

2 (λ)
). Since

‖V H
2 ki‖22 = ‖ki‖22 − |xH1 ki|2 − |xH2 ki|2, and using Remark 2.5.3, we get

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − |xTi ki|2

H2
2 (λ)

)− 2
|xH2 k1|2

H2
2 (λ)

.

Case-2: If =(λ0λ1) 6= 0, then using Lemma 2.5.1, we get δa0,ii = −
√
εxHi A0xi, δa1,ii =

−
√
εxHi A1xi. When =(λ0λ1) 6= 0, i.e., λ0λ1 − λ0λ1 6= 0, then the unique solution of

system (2.23) is given by δa0,12 =
ελ1xH2 k1−λ1xH1 k2

λ0λ1−λ0λ1
and δa1,12 =

−ελ0xH2 k1+λ0xH1 k2
λ0λ1−λ0λ1

, which is

the minimum norm solution. Similar to Case-1, we get the desired perturbed matrices

by substituting back the obtained entries in (2.19). In this case (ηSF (λ, x1, x2,L))2 =

‖δA0‖2F + ‖δA1‖2F , where

‖δA0‖2F + ‖δA1‖2F =
1∑
j=0

2∑
i=1

|xHi Ajxi|2 +
2∑
i=1

2‖ki‖2 − 2|xHi ki|2

H2
2 (λ)

+ 2
|ελ1xH2 k1 − λ1xH1 k2|2 + |λ0xH1 k2 − ελ0xH2 k1|2

|λ0λ1 − λ0λ1|2
− 2
|xH1 r2|2 + |xH2 r1|2

H2
2 (λ)

.

Since

|ελ1xH2 k1 − λ1xH1 k2|2 + |λ0xH1 k2 − ελ0xH2 k1|2

|λ0λ1 − λ0λ1|2
= H2

2 (λ)
|xH2 k1|2 + |xH1 k2|2

4|=(λ0λ1)|2

− ε
<((λ

2

0 + λ
2

1)(x
H
1 k2)(x

H
2 k1))

2|=(λ0λ1)|2
,
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we get

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

1∑
j=0

(
|xHi Ajxi|2 + 2

‖ki‖22 − |xHi ki|2

H2
2 (λ)

)
− ε<((λ

2

0 + λ
2

1)(x
H
1 k2)(x

H
2 k1))

|=(λ0λ1)|2

+
|xH2 k1|2 + |xH1 k2|2

2|=(λ0λ1)|2H2
2 (λ)

(
H4

2 (λ)− 4|=(λ0λ1)|2
)
.

Corollary 2.5.5. Let L be a non-homogeneous Hermitian/skew-Hermitian matrix pencil

of the form (2.1). Let (µ, x1) and (µ, x2) be two approximate eigenpairs where µ ∈ R
is a double-semisimple eigenvalue and x1, x2 ∈ Cn are orthonormal vectors. Set ki :=

−L(µ)xi. Then the following inequality holds:

(ηSF (µ, x1, x2,L)) ≤
√
ηSF (µ, x1,L)2 + ηSF (µ, x2,L)2.

Proof. Substituting λ0 = 1, λ1 = µ in Theorem 2.5.4 and using [1, Theorem 3.6], we get

the desired backward error relation. �

Remark 2.5.6. Let (µ, x1) and (µ, x2) be two approximate eigenpairs of a non-homogeneous

Hermitian/skew-Hermitian matrix pencil L where µ ∈ C is a double-semisimple eigen-

value, and x1, x2 ∈ Cn are orthonormal eigenvectors. Then similar to Corollary 2.3.7,

substituting λ0 = 1, λ1 = µ in Theorem 2.5.4, and using Theorem 3.6 of [1], we get

ηSF (µ, x1, x2,L) =
√

(ηSF (µ, x1,L))2 + (ηSF (µ, x2,L))2 =
√

2
√

(ηF (µ, x1,L))2 + (ηF (µ, x2,L))2

when µ2 = −1. Further, using Corollary 2.4.4 in the above relation, we get ηSF (µ, x1, x2,L) =
√

2(ηF (µ, x1, x2,L)) when µ2 = −1 and for µ2 = −1, we get H4
2 (λ)− 4|=(λ0λ1)|2 = 0.

Similar to Hermitian/skew-Hermitian matrix pencils next, we present the backward

error analysis for H-even/H-odd matrix pencils.

2.6. Backward error analysis for H-even/H-odd matrix pencils

In this section, we will discuss the backward error analysis for H-even and H-odd

matrix pencils. We start this section with the following important lemma.

Throughout this section, ε = 1 represents the H-even case and ε = −1 represents the

H-odd case.

Lemma 2.6.1. Let L be a H-even/H-odd matrix pencil of the form (2.1). Suppose λ =

(λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue of L satisfying <(λ0λ1) 6= 0,
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i.e., L(λ0, λ1)yi = 0, for i = 1, 2 where y1, y2 ∈ Cn are the eigenvectors corresponding to

λ. Then yH1 Ajy1 = 0, yH2 Ajy2 = 0 for j = 0, 1.

Proof. Proof follows similar to Lemma 2.5.1 by using the fact that A0 = εAH0 , A1 =

−εAH1 .�

Remark 2.6.2. Let L ∈ L(Cn×n) be a H-even/ H-odd homogeneous matrix pencil of

the form (2.1). Suppose (λ, x1) and (λ, x2) are two approximate eigenpairs of L, where

λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue such that <(λ0λ1) = 0, and

x1, x2 ∈ Cn are orthonormal vectors. Let ki := −L(λ)xi for i = 1 : 2. Then λ0εxH2 k1 =

λ0x
H
1 k2, λ1εx

H
2 k1 = −λ1xH1 k2, and |εxH2 k1|2 = |xH1 k2|2.

Now we state and prove the main result of this section.

Theorem 2.6.3. Let L ∈ L(Cn×n) be a H-even/H-odd matrix pencil of the form (2.1). Let

(λ, x1) and (λ, x2) be two approximate eigenpairs of L, where x1, x2 ∈ Cn are orthonormal

vectors and λ = (λ0, λ1) ∈ C2 \ {(0, 0)} is a double-semisimple eigenvalue. Set ki =

−L(λ)xi for i = 1 : 2. Then there exists a H-even/H-odd matrix pencil δL of the form

δL(α, β) = αδA0 + βδA1 such that (L(λ) + δL(λ))xi = 0. The perturbation matrices, for

<(λ0λ1) = 0, are given by

δA0 =
2∑
i=1

λ0kix
H
i + ελ0xik

H
i Px1:x2

H2
2 (λ)

and δA1 =
2∑
i=1

λ1kix
H
i − ελ1xikHi Px1:x2

H2
2 (λ)

.

In this case, the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22 − |xTi ki|2

H2
2 (λ)

)− 2
|xH1 k2|2

H2
2 (λ)

.

The perturbation matrices, for <(λ0λ1) 6= 0, are given by

δA0 =
2∑
i=1

(−xixHi A0xix
H
i + λ0

Px1:x2kix
H
i

H2
2 (λ)

+ ελ0
xik

H
i Px1:x2
H2

2 (λ)
)

+
x2(λ1x

H
2 k1 + ελ1xH1 k2)x

H
1

λ0λ1 + λ0λ1
+
x1(ελ1xH2 k1 + λ1x

H
1 k2)x

H
2

λ0λ1 + λ0λ1
, and

δA1 =
2∑
i=1

(−xixHi A1xix
H
i + λ1

Px1:x2kix
H
i

H2
2 (λ)

− ελ1
xik

H
i Px1:x2
H2

2 (λ)
)

+
x2(λ0x

H
2 k1 − ελ0xH1 k2)xH1
λ0λ1 + λ0λ1

+
x1(λ0x

H
1 k2 − ελ0xH2 k1)xH2
λ0λ1 + λ0λ1

.
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In this case, the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

1∑
j=0

(|xHi Ajxi|2 +
2‖ki‖22 − 2|xHi ki|2

H2
2 (λ)

) + ε
<((λ

2

1 − λ
2

0)(x
H
1 k2)(x

H
2 k1))

|<(λ0λ1)|2

+
|xH2 k1|2 + |xH1 k2|2

2|<(λ0λ1)|2H2
2 (λ)

(
H4

2 (λ)− 4|<(λ0λ1)|2
)
.

Proof. To construct δAj for j = 0, 1 such that δA0 = εδAH0 and δA1 = −εδAH1 , we

consider

δ̃A0 = UHδA0U =

[ 2 n−2

2 δ̂A0 εδB0
H

n−2 δB0 δD0

]
,(2.25)

δ̃A1 = UHδA1U =

[ 2 n−2

2 δ̂A1 −εδB1
H

n−2 δB1 δD1

]
,(2.26)

where δ̂A0 =

[√
εδa0,11 δa0,12

εδa0,12
√
εδa0,22

]
, δ̂A1 =

[√
−εδa1,11 δa1,12

−εδa1,12
√
−εδa1,22

]
, δD0 = εδD0

H , δD1 =

−εδD1
H , δBj =

[
bj1 bj2

]
for j = 0, 1, and U ∈ Cn×n is a unitary matrix such that

U =
[
V1 V2

]
with V1 =

[
x1 x2

]
∈ Cn×2. Similar to Theorem 2.5.4, we get the following

equations:

√
ελ0δa0,ii +

√
−ελ1δa1,ii = xHi ki, i = 1, 2,(2.27)

λ0b0i + λ1b1i = V H
2 ki, i = 1, 2,(2.28) [

λ0 −λ1
λ0 λ1

][
δa0,12

δa1,12

]
=

[
εxH2 k1

xH1 k2

]
.(2.29)

The minimum norm solution of (2.28) is given by b0i = λ0
H2

2 (λ)
V H
2 ki, b1i = λ1

H2
2 (λ)

V H
2 ki. Next,

we have the following two cases.

Case-1: If <(λ0λ1) = 0, then the minimum norm solution of (2.27) is given by δa0,ii =
√
ελ0

H2
2 (λ)

xHi ki, δa1,ii =
√
−ελ1

H2
2 (λ)

xHi ki. Since A0 = εAH0 , A0 = −εAH0 and <(λ0λ1) = 0, we get

system (2.29) is consistent by using Remark 2.6.2. The minimum norm solution of (2.29)

is given by δa0,12 = ελ0
H2

2 (λ)
xH2 k1 and δa1,12 = −ελ1

H2
2 (λ)

xH2 k1. Substituting these obtained values

in (2.25) and (2.26), we get the desired perturbed matrices and backward error.
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Case-2: If <(λ0λ1) 6= 0, then using Lemma 2.6.1, we get δa0,ii = −
√
εxHi A0xi, and

δa1,ii = −
√
−εxHi A1xi. Since <(λ0λ1) 6= 0, i.e., λ0λ1 + λ0λ1 6= 0, the unique solution of

system (2.29) is given by δa0,12 =
ελ1xH2 k1 + λ1x

H
1 k2

λ0λ1 + λ0λ1
and δa1,12 =

−ελ0xH2 k1 + λ0x
H
1 k2

λ0λ1 + λ0λ1
,

which is the minimum norm solution. Using these obtained values, we can get the desired

δA0, δA1 and backward error in this case. �

Remark 2.6.4. Suppose (µ, x1) and (µ, x2) are two approximate eigenpairs of a non-

homogeneous H-even/H-odd matrix pencil L such that µ ∈ C is a double-semisimple

eigenvalue and x1, x2 ∈ Cn are orthonormal vectors. Then similar to Corollary 2.3.7,

substituting λ0 = 1, λ1 = µ in Theorem 2.6.3, and using [1, Theorem 3.7], we get

(ηSF (µ, x1, x2,L))2 = (ηSF (µ, x1,L))2 + (ηSF (µ, x2,L))2 = 2((ηF (µ, x1,L))2 + (ηF (µ, x2,L))2)

for µ2 = 1. Further, using Corollary 2.4.4 in this obtained relation, we get ηSF (µ, x1, x2,L) =
√

2(ηF (µ, x1, x2,L)) when µ2 = 1. Note that for µ2 = 1, we have H4
2 (λ)−4|<(λ0λ1)|2 = 0.

Next section deals with the backward error analysis of T -even and T -odd matrix

pencils.

2.7. Backward error analysis for T -even/T -odd matrix pencils

In this section, we state and prove the structured backward error theorem for T -even/T -

odd matrix pencils. The derivation of the theorem is similar to the previous section. Hence

we discuss only those steps which are unique for this section. We start this section with

two important lemmas as follows:

Lemma 2.7.1. Suppose λ = (λ0, λ1) ∈ C2 such that λ0 6= 0, λ1 6= 0, and ε = 1,−1. Then

the following equality holds:

1

G2
ε(λ)

− 1

H2(λ)
=
ε(|λ1|2 − |λ0|2)
G2
ε(λ)H2(λ)

,

where Gε(λ) =
√
|λ0|2(1+ε)+|λ1|2(1−ε)

2
and H2(λ) = (|λ0|2 + |λ1|2)1/2.

Proof. The proof follows by using the definitions of Gε(λ) and H2(λ). �

Throughout this section, ε = 1 and ε = −1 represent the T -even and T -odd cases,

respectively.
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Lemma 2.7.2. Let L ∈ L(Cn×n) be a T -even/ T -odd homogeneous matrix pencil of the

form (2.1). Suppose (λ, x1) and (λ, x2) are two approximate eigenpairs of L, where λ =

(λ0, λ1) ∈ C2 \{(0, 0)} is a double-semisimple eigenvalue and x1, x2 ∈ Cn are orthonormal

vectors. Set ki = −L(λ)xi for i = 1 : 2. Then the following equality holds for t = 1, 2 :

(
2∑
i=1

2∑
j=1,j 6=i

xjx
T
j kix

H
i )xt =

2∑
j=1,j 6=t

xjx
T
j kt.

Proof. The proof is computational and obtained by using the fact that x1 and x2 are

orthonormal vectors.�

Remark 2.7.3. For λ0 = 0, we have xT2 k1 = −εxT1 k2, and for λ1 = 0 we have xT2 k1 =

εxT1 k2.

Remark 2.7.4. We have (1 + ε)2/4 = (1 + ε)/2 for ε = 1,−1.

Now we present the main theorem of this section.

Theorem 2.7.5. Let L ∈ L(Cn×n) be a T -even/ T -odd matrix pencil of the form (2.1).

Let (λ, x1) and (λ, x2) be two approximate eigenpairs of L, where x1, x2 ∈ Cn are or-

thonormal vectors, and λ = (λ0, λ1) ∈ C2 \{(0, 0)} is a double-semisimple eigenvalue. Set

ki := −L(λ)xi for i = 1, 2. Then there exists a T -even/ T -odd matrix pencil δL of the

form δL(α, β) = αδA0 + βδA1 such that (L(λ) + δL(λ))xi = 0. Then we have

Case-1: If λ0 6= 0 and λ1 6= 0, then the perturbation matrices are given by

δA0 =
2∑
i=1

(λ0
(1 + ε)

2

xix
T
i kix

H
i

G2
ε(λ)

+ λ0
P x1:x2kix

H
i + εxik

T
i Px1:x2

H2
2 (λ)

) +

2∑
i=1

2∑
j=1,j 6=i

xjx
T
j kix

H
i + εxjx

T
i kjx

H
i

2λ0
,

δA1 =
2∑
i=1

(λ1
(1− ε)

2

xix
T
i kix

H
i

G2
ε(λ)

+ λ1
P x1:x2kix

H
i − εxikTi Px1:x2
H2

2 (λ)
) +

2∑
i=1

2∑
j=1,j 6=i

xjx
T
j kix

H
i − εxjxTi kjxHi

2λ1
,
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where Gε(λ) =

√
|λ0|2(1 + ε) + |λ1|2(1− ε)

2
. In this case, the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

(
2‖ki‖22
H2

2 (λ)
+
ε(|λ1|2 − |λ0|2)|xTi ki|2

G2
ε(λ)H2

2 (λ)
) +
|xT2 k1|2 + |xT1 k2|2

2H2
2 (λ)

(
|λ0|
|λ1|
− |λ1|
|λ0|

)2

− (
ε

|λ1|2
− ε

|λ0|2
)<((xT1 k2)(x

T
2 k1)).

Case-2: If λ0 = 0 or λ1 = 0, then we have the following two cases:

(i) If λ0 = 0 and λ1 6= 0, the perturbation matrices are given by δA0 = 0 and

δA1 =
2∑
i=1

(−((1−ε)/2)xix
T
i A1xix

H
i −P x1:x2A1xix

H
i + xix

T
i A1Px1:x2)+

xT2 k1
λ1

(x2x
H
1 −εx1xH2 ).

In this case the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

2‖A1xi‖22 −
(1− ε)

2
|xTi A0xi|2 − 2|xT1A1x2|2.

(ii) If λ0 6= 0, and λ1 = 0, the perturbation matrices are given by δA1 = 0 and

δA0 =
2∑
i=1

(−((1+ε)/2)xix
T
i A0xix

H
i −P x1:x2A0xix

H
i − xixTi A0Px1:x2)+

xT2 k1
λ0

(x2x
H
1 +εx1x

H
2 ).

In this case, the backward error is given by

(ηSF (λ, x1, x2,L))2 =
2∑
i=1

2‖A0xi‖22 − ((1 + ε)/2)|xTi A0xi|2 − 2|xT1A0x2|2.

Proof. For constructing δAj for j = 0, 1 such that δA0 = εδAT0 , δA1 = −εδAT1 , we

consider

δ̃A0 = UT δA0U =

[ 2 n−2

2 δ̂A0 εδB0
T

n−2 δB0 δD0

]
,(2.30)

δ̃A1 = UT δA1U =

[ 2 n−2

2 δ̂A1 −εδB1
T

n−2 δB1 δD1

]
,(2.31)

where δ̂A0 =

[
(1+ε)

2
δa0,11 εδa0,12

δa0,12
(1+ε)

2
δa0,22

]
, δ̂A1 =

[
(1−ε)

2
δa1,11 −εδa1,12

δa1,12
(1−ε)

2
δa1,22

]
, δD0 = εδD0

T ,

δD1 = −εδD1
T , δBj =

[
bj1 bj2

]
for j = 0, 1, and U ∈ Cn×n is a unitary matrix such that
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U =
[
V1 V2

]
with V1 =

[
x1 x2

]
∈ Cn×2. Similar to Theorem 2.5.4, we get the following

equations

((1 + ε)/2)λ0δa0,ii + ((1− ε)/2)λ1δa1,ii = xTi ki, i = 1, 2(2.32)

λ0b0i + λ1b1i = V T
2 ki, i = 1, 2(2.33) [

λ0 −λ1
λ0 λ1

][
δa0,12

δa1,12

]
=

[
xT2 k1

εxT1 k2

]
.(2.34)

The minimum norm solution of (2.33) is given by b0i = λ0
H2

2 (λ)
V T
2 ki and b1i = λ1

H2
2 (λ)

V T
2 ki.

Case-1: When λ0 6= 0 and λ1 6= 0, then the minimum norm solution of (2.32) is given

by δa0,ii = ((1 + ε)/2) λ0
G2
ε (λ)

xTi ki and δa1,ii = ((1 − ε)/2) λ1
G2
ε (λ)

xTi ki. In this case δa0,12 =
xT2 k1+εx

T
1 k2

2λ0
, δa1,12 =

xT2 k1−εxT1 k2
2λ1

.

Case-2: When λ0 = 0 but λ1 6= 0, we get system (2.34) is consistent by using Remark

2.7.3. The minimum norm solution of (2.34) is given by δa0,12 = 0 and δa1,12 =
xT2 k1
λ1

. In

this case δa0,ii = 0 and δa1,ii = − (1−ε)
2
xTi A1xi. When λ0 6= 0 but λ1 = 0, we get system

(2.34) is consistent by using Remark 2.7.3. The minimum norm solution of (2.34) is given

by δa0,12 =
xT2 k1
λ0

, δa1,12 = 0. In this case δa0,ii = − (1+ε)
2
xTi A0xi and δa1,ii = 0.

Similar to earlier sections, we can get the backward error expression and perturbation

matrices for Case-1 and Case-2 each case. �

Remark 2.7.6. Let (µ, x1) and (µ, x2) be two approximate eigenpairs of a non-homogeneous

T -even/T -odd matrix pencil L, where µ ∈ C is a double-semisimple eigenvalue and

x1, x2 ∈ Cn are orthonormal vectors. Then similar to Corollary 2.3.7, substituting λ0 =

1, λ1 = µ in Theorem 2.7.5, and using [1, Theorem 3.4], we get (ηSF (µ, x1, x2,L))2 =

((ηSF (µ, x1,L))2 + (ηSF (µ, x2,L))2) = 2((ηF (µ, x1,L))2 + (ηF (µ, x2,L))2) when |µ| = 1. Fur-

ther, using Corollary 2.4.4, we get (ηSF (µ, x1, x2,L)) =
√

2(ηF (µ, x1, x2,L)) when |µ| = 1.

Finally, we summarize the relation between unstructured and structured backward errors

of a single approximate eigenpair and two approximate eigenpairs. Let (µ, x1) and (µ, x2)

be two approximate eigenpairs such that µ ∈ C is a double-semisimple eigenvalue of a

non-homogeneous matrix pencil L. Then by Table 2.2, we present relationships between

the structured backward error of two approximate eigenpairs of a double-semisimple eigen-

value (ηSF (µ, x1, x2,L)), the unstructured backward error of two approximate eigenpairs

of a double-semisimple eigenvalue (ηF (µ, x1, x2,L)), and the structured backward error of

a single approximate eigenpair (ηSF (µ, xi,L)) for i = 1, 2.
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2.8. Numerical example

In this section, we illustrate our developed theory with a numerical example using

Matlab 7.11.0. Let L be a T -skew-symmetric non-homogeneous (α = 1) matrix pencil of

the form (2.1). Let A0, A1 be defined by

A0 =


0 −0.2600 + 0.6487i −0.1135 + 0.3416i −0.3040− 0.6366i

0.2600− 0.6487i 0 −0.0914− 0.5687i −0.7628 + 0.4553i

0.1135− 0.3416i 0.0914 + 0.5687i 0 0.3138− 0.3496i

0.3040 + 0.6366i 0.7628− 0.4553i −0.3138 + 0.3496i 0

 ,

A1 =


0 −0.0996− 0.8100i 0.6837 + 0.2671i 0.0716 + 0.0580i

0.0996 + 0.8100i 0 0.2214− 0.5972i −0.2433− 0.0032i

−0.6837− 0.2671i −0.2214 + 0.5972i 0 0.2821 + 0.2661i

−0.0716− 0.0580i 0.2433 + 0.0032i −0.2821− 0.2661i 0

 .

These are random matrices such that A0 = −AT0 and A1 = −AT1 . Clearly L is a regular

matrix pencil. The approximate eigenpairs of L are obtained by using Matlab formula

[V,D] = eig(A0, A1). Let µ = −D(2, 2) = −D(3, 3) be an approximate multiple eigenvalue

of L, and its corresponding eigenvectors are V (:, 2) and V (:, 3). Orthonormal eigenvectors

x1, x2 corresponding to µ, are obtained by x1 := V (:, 2)/‖V (:, 2)‖ and x2 := (V (:, 3)− γ ∗
V (:, 2))/‖V (:, 3) − γ ∗ V (:, 2)‖, where γ = V (:,2)HV (:,3)

V (:,2)HV (:,2)
. Using Theorem 2.3.3 for ε = −1,

we get the following perturbation matrices

δA0 =


0 −0.0170− 0.4873i 0.3412− 0.1463i 0.1048 + 0.2769i

0.0170 + 0.4873i 0 −0.0294− 0.0085i 0.2473− 0.0822i

−0.3412 + 0.1463i 0.0294 + 0.0085i 0 −0.0096 + 0.1557i

−0.1048− 0.2769i −0.2473 + 0.0822i 0.0096− 0.1557i 0

 ,

δA1 =


0 −0.0891 + 0.7143i −0.5315 + 0.1335i −0.0880− 0.4281i

0.0891− 0.7143i −0 0.0409 + 0.0193i −0.3797 + 0.0621i

0.5315− 0.1335i −0.0409− 0.0193i 0 0.0503− 0.2247i

0.0880 + 0.4281i 0.3797− 0.0621i −0.0503 + 0.2247i 0

 .

ηSF (µ, x1, x2,L) = 1.8809. Clearly, L(µ)xi + δL(µ)xi = 0 for i = 1, 2.
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Remark 2.8.1. When we encounter with two approximate eigenpairs (λ, x1) and (λ, x2),

where λ is a double-semisimple eigenvalue, the existing backward error theory of a sin-

gle eigenpair fails to provide the minimum norm δL ∈ L(Cn×n) which satisfies (L(λ) +

δL(λ))xi = 0 for i = 1, 2. On the other hand, by using our theory, one can easily construct

the required perturbed matrix pencil, and backward error corresponding to two approximate

eigenpairs of a double-semisimple eigenvalue. �
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CHAPTER 3

STRUCTURED PERTURBATION ANALYSIS OF

SPECIFIED EIGENPAIRS FOR MATRIX PENCILS WITH

SPARSITY

Abstract: This chapter is devoted for the backward error analysis of one or more approxi-

mate eigenpairs of structured matrix pencils. We worked with different structured matrix

pencils which includes structures such as T -symmetric, T -skew-symmetric, Hermitian,

skew-Hermitian, T -even, T -odd, H-even, H-odd, T -palindromic, T -anti-palindromic, H-

palindromic, and H-anti-palindromic. Further, our backward error results are developed

in such a way that one can solve the different kind of inverse eigenvalue problems. This

shows that the backward error of one or more eigenpairs and inverse eigenvalue problems

are interconnected.

3.1. Introduction

Backward error and perturbation analysis of a single eigenpair are well developed

in case of structured and unstructured generalized eigenvalue problems (see, [1, 8, 9]).

Since many applications require an only specific set of eigenpairs, for example, consider

a problem of vibration in engineering applications which leads to an n-by-n general-

ized eigenvalue problem (GEP), required smallest m ∈ N (m ≤ n) eigenpairs (see, [65]).

Hence it is necessary to compute one or more specified eigenpairs. For computing these

eigenpairs, several numerical methods are available in the literature, for more details see,

[46, 54, 64, 66, 69, 83] and references therein. Development of the backward error

analysis for more than one approximate eigenpairs will provide a better understanding of

the quality of the computed eigenpairs and stability of the numerical methods. Literature

is very much restricted when it comes to the backward error and perturbation theory of



more than one specified eigenpairs. Though in the last chapter we have taken a step to-

wards the backward error analysis of two approximate eigenpairs provided the eigenvalue

is double-semisimple, but the question that what will be the backward error in general,

is still open for discussion. In this chapter, we discuss the backward error analysis of

eigenpairs in more general way.

We have discussed in the last chapter that Tisseur [71] has obtained the backward

error formulas and perturbation matrices of more than one specified eigenpairs for dif-

ferent structured matrices by generalizing the existing definition of backward error of a

single approximate eigenpair. But in the case of a matrix pencil, the existing results of

perturbation theory on a single approximate eigenpair are not sufficient to answer the

following questions:

1. For a given matrix pencil and its given one or more eigenpairs, what is the nearest

matrix pencil for which the given approximate eigenpairs simultaneously become

the exact eigenpairs?

2. What is the value of backward error when one or more approximate eigenpairs of a

given matrix pencil become exact eigenpairs of an appropriately perturbed matrix

pencil ?

Inverse eigenvalue problem (IEP) deals with the construction of the perturbed ma-

trices from the given spectral data which consists one or more eigenpairs. Development

of the backward error analysis of GEP for more than one eigenpairs play an impor-

tant role to provide the solution of a different kind of inverse eigenvalue problems (see,

[19]). For example, consider the Problem 5.4 of [21, Chapter 5], which requires the con-

struction of a quadratic matrix polynomial with prescribed eigenpairs. By linearization,

quadratic eigenvalue problems (QEP) can be transformed into large GEP which has the

same eigenstructure. Hence the Problem 5.4 is equivalent to solve the real symmetric

GEP for more than one eigenpairs. For more information on the conversion of QEP to

GEP, see [37, 70]. Another inverse eigenvalue problem which we discuss in this chap-

ter is [89, Problem 1.1]. This problem requires to construct a symmetric matrix pencil

from the given specified eigenpairs under the submatrix constraint. We explain both the

IEPs by examples in Section 3.8. Further, the matrices in eigenvalue problems reflect the

properties of underlying physical models; their structured backward error has a special

attraction. If the coefficient matrices of GEP are structured, arbitrary perturbation to
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GEP will not respect the structure and lead to insignificant results. Hence necessary care

should be adopted while analyzing the structured perturbation, so the property of physi-

cal model will not be destroyed during backward error analysis of different structures such

as symmetric, skew-symmetric, T -even/T -odd, Hermitian/skew-Hermitian, palindromic

(see, [1, 10, 17, 52, 51]).

Several eigenvalue problems arise with matrices having a large number of zeroes, this

is called the zero structured or sparsity structure (see, [59, 87]). For this kind of matrices,

it is necessary to work with those perturbed matrices which respect the sparsity structure.

Hence for maintaining sparsity, we need to construct sparse perturbation matrices.

The main purpose of this chapter is to present a detailed structured backward error

analysis of s-specified eigenpairs (s ≥ 1) of structured matrix pencils which also pre-

serve the sparsity. For the matrix case [71] provides the backward error formula and

perturbation matrices for different structures without sparsity. In [87] the authors have

adopted the methodology from [71, Section 3] for analyzing the structured backward er-

ror formula of one approximate eigenpair for symmetric, skew-symmetric, Hermitian, and

skew-Hermitian polynomial eigenvalue problems. However, the results in [71, 87] are

unable to answers the above raised questions. Hence for given s-approximate eigenpairs

((λi0, λi1), xi) of an n-by-n matrix pencil, where (λi0, λi1) ∈ C2 \ {(0, 0)} and 0 6= xi ∈ Cn

for i = 1 : s, we extend the methodology of [35, Section 4] and [71, 87], so that these s-

approximate eigenpairs become the exact eigenpairs of an appropriately perturbed matrix

pencil. We discuss the perturbation analysis with respect to Frobenius norm.

3.2. Structured matrix pencils and preliminaries

Let us recall the definition of a matrix pencil. A matrix pencil L is a pair of two

matrices defined as follows:

(3.1) L(α, β) := αA0 + βA1, A0, A1 ∈ Cn×n, and (α, β) ∈ C2.

Now, we define different structured matrix pencils of the form (3.1) by Table 3.2 based

on the properties of matrices A0, A1 ∈ Cn×n.
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S Matrix structure

T -symmetric A0 = AT0 , A1 = AT1

T -skew-symmetric A0 = −AT0 , A1 = −AT1
Hermitian A0 = AH0 , A1 = AH1

skew-Hermitian A0 = −AH0 , A1 = −AH1
T -even A0 = AT0 , A1 = −AT1
T -odd A0 = −AT0 , A1 = AT1

H-even A0 = AH0 , A1 = −AH1
H-odd A0 = −AH0 , A1 = AH1

S Matrix structure

T -palindromic A0 = AT1

T -anti-palindromic A0 = −AT1
H-palindromic A0 = AH1

H-anti-palindromic A0 = −AH1

Table 3.1. Types of structured matrix pencils

Throughout this chapter, w := (w0, w1)
T ∈ R2 be a nonnegative vector such that w0, w1

are nonnegative real numbers. Define w−1 := (w−10 , w−11 )T and w−1i = 0 for wi = 0. Next,

for a given nonnegative weight vector w = (w0, w1)
T , we define the pencil norm as follows

(3.2) |||L|||w,2 := ‖(w0‖A0‖F , w1‖A1‖F )‖2 = (w2
0‖A0‖2F + w2

1‖A1‖2F )1/2.

Further, we generalize the definition of backward error from one approximate eigenpair

to s-approximate eigenpairs for unstructured and structured matrix pencils. Further

results are developed for describing the relation between structured and unstructured

backward errors.

Definition 3.2.1. Consider λ1:s := {λ1, λ2, . . . , λs} and x1:s := {x1, x2, . . . , xs}, where

λi ∈ C2\{(0, 0)} and 0 6= xi ∈ Cn, for i = 1 : s. Let (λi, xi) be the s-approximate eigenpairs

of the matrix pencil L ∈ L(Cn×n) of the form (3.1), for i = 1 : s. Then unstructured and

structured backward errors of s-approximate eigenpairs (λi, xi) for matrix pencil L are

defined by

ηw,F (λ1:s, x1:s,L) := inf{|||δL|||w,2, (L(λi) + δL(λi))xi = 0; for 1 ≤ i ≤ s}, and

ηSw,F (λ1:s, x1:s,L) := inf{|||δL|||w,2, δL ∈ S, (L(λi) + δL(λi))xi = 0; for 1 ≤ i ≤ s},

respectively, where δL ∈ L(Cn×n) is of the form (3.1), |||δL|||w,2 is given by (3.2), and

S := { T -symmetric, T -skew-symmetric, T -even, T -odd, Hermitian, skew-Hermitian,

H-even, H-odd, T -palindromic, T -anti-palindromic, H-palindromic and

H-anti-palindromic }.
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Remark 3.2.2. Substituting s = 1 in Definition 3.2.1 corresponds to the unstructured

and the structured backward errors for a single approximate eigenpair (see, [1]).

Remark 3.2.3. For obtaining the backward error and the perturbation matrices of differ-

ent structured matrix pencils, we take s ≤ n.

Remark 3.2.4. The following relations are the immediate consequences of the definitions

of backward error:

ηw,F (λ1:s, x1:s,L) ≤ ηSw,F (λ1:s, x1:s,L),max
i=1:s

ηw,F (λi, xi,L) ≤ ηw,F (λ1:s, x1:s,L), and

max
i=1:s

ηSw,F (λi, xi,L) ≤ ηSw,F (λ1:s, x1:s,L).

3.2.1. Construction

For the establishment of the backward error analysis of specified eigenpairs, we need

the following constructions.

1. Let yp ∈ Cn. Then N ε(yp) ∈ Cn×(n2+εn)/2 is defined by

(3.3) N ε(yp) :=
[
N ε

1(yp) . . . N ε
n−(1−ε)/2(yp)

]
, for p = 1 : s.

For ε = 1, define N1
1 (yp) ∈ Cn×n, N1

2 (yp) ∈ Cn×(n−1), andN1
n(yp) ∈ Cn as follows:

N1
1 (yp) :=



y1p y2p y3p . . . ynp

0 y1p 0 . . . 0

0 0 y1p . . . 0
...

...
...

. . .
...

0 0 0 . . . y1p


, N1

2 (yp) :=



0 0 . . . . . . 0

y2p y3p y4p . . . ynp

0 y2p 0 . . . 0

0 0 y2p . . . 0
...

...
...

. . .
...

0 0 0 . . . y2p


, andN1

n(yp) :=


0

0
...

ynp

 .

Similarly for ε = −1, defineN−11 (yp) ∈ Cn×(n−1), N−12 (yp) ∈ Cn×(n−2) andN−1n−1(yp) ∈
Cn as follows:

N−11 (yp) :=



y2p y3p . . . . . . ynp

−y1p 0 . . . . . . 0

0 −y1p . . . . . . 0
... 0 −y1p . . .

...
...

...
...

. . . 0

0 0 0 . . . −y1p


, N−12 (yp) :=



0 0 . . . 0

y3p y4p . . . ynp

−y2p 0 . . . 0

0 −y2p . . . 0
...

...
. . . 0

0 0 . . . −y2p


,
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and

N−1n−1(yp) :=
[
0 0 . . . ynp −yn−1p

]T
.

Remark 3.2.5. Superscript “−1” in N−1(yp) is only for notational point of view.

It should not mismatch with the inverse of N(yp).

2. Matrices C := (cij) and D := (dij) are defined in the following manner:

(3.4) C =

{
1√
2

when i 6= j,

1 when i = j,
D =

{ √
2 when i 6= j,

1 when i = j.

3. Let Aj = (aj,tk) ∈ Cn×n, δAj = (δaj,tk) ∈ Cn×n, and wj be nonnegative real number

for j = 0, 1. Then for ε = ±1, we define ∆ε
j = wjvec(δAj ◦ sgnAj ◦D, ε) as follows:

∆1
j =



wj δaj,11 sgn aj,11√
2wj δaj,12 sgn aj,12

...
√

2wjδaj,1n sgn aj,1n

wj δaj,22 sgn aj,22√
2wjδaj,23 sgn aj,23

...
√

2wjδaj,2nsgn aj,2n
...

wj δaj,nnsgn aj,nn



and ∆−1j =



√
2wjδaj,12 sgn aj,12

...
√

2wjδaj,1n sgn aj,1n√
2wjδaj,23 sgn aj,23

...
√

2wjδaj,2n sgn aj,2n
...

√
2wjδaj,(n−1)n sgn aj,(n−1)n


.

4. For ε = ±1, define vec(sgnAj ◦ C, ε) ∈ C(n2+εn)/2 as follows:

vec(sgnAj ◦ C, 1) = [sgn aj,11, . . . ,

√
2

2
sgn aj,1n, . . . , sgn aj,(n−1)(n−1),

√
2

2
sgn aj,(n−1)n, sgn aj,nn]T ,

vec(sgnAj ◦ C,−1) =

√
2

2
[sgn aj,12, . . . , sgn aj,1n, . . . , sgn aj,(n−2)(n−1), sgn aj,(n−2)n, sgn aj,(n−1)n]T .

We use the above terminologies in the subsequent sections for the development of pertur-

bation theory of different structured matrix pencils.
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3.3. Perturbation on T -symmetric and T -skew-symmetric matrix

pencils with s-specified eigenpair(s)

This section deals with the perturbation theory and the backward error analysis of

matrix pencils in which both the matrices are T -symmetric/T -skew-symmetric. Fur-

ther, backward error results are obtained for a single approximate eigenpair and two-

approximate eigenpairs. Before stating the theorem, let 0 6= xp ∈ Cn and 0 6= λp =

(λp0, λp1) ∈ C2 \ {(0, 0)} for p = 1 : s. Then we define

(3.5) N ε =


N ε

10 N ε
11

N ε
20 N ε

21

...
...

N ε
s0 N ε

s1

 ∈ Csn×(n2+εn),

with N ε
pj = w−1j λpjN

ε(xp)diag(vec(sgnAj ◦ C, ε)), where N ε(xp) is defined by (3.3).

Now, we introduce the following two important lemmas, which are useful for deriving

the main result of this section.

Lemma 3.3.1. Let δA = (δ aij) ∈ Cn×n be a symmetric matrix, x = [x1, x2, . . . , xn]T ∈
Cn, and b = [b1, b2, . . . , bn]T ∈ Cn. Then δAx = b is equivalent to N1(x)vec(δA) = b, where

vec(δA) := [δa11, . . . , δa1n, δa22, . . . , δa2n, . . . , δa(n−1)(n−1), δa(n−1)n, δann]T , and N1(x) is

defined by (3.3).

Proof. Expanding δAx = b, we get the following n equations:

δa11x
1 + δa12x

2 + · · ·+ δa1(n−1)x
(n−1) + δa1nx

n = b1,

δa12x
1 + δa22x

2 + · · ·+ δa2(n−1)x
(n−1) + δa2nx

n = b2,

. . . . . . . . . . . .

. . . . . . . . . . . .

δa1nx
1 + δa2nx

2 + · · ·+ δa(n−1)nx
(n−1) + δannx

n = bn.

Further rearranging these equations by writing δA in vector form, we get N1(x)vec(δA) =

b, which is required. �
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Remark 3.3.2. Similar to the symmetric case, we can obtain the result for skew-symmetric

matrices. For skew-symmetric matrix δA, N−1(x) is defined by (3.3), and vec(δA) :=

[δa12, . . . , δa1n, δa23, . . . , δa2n, . . . , δa(n−2)(n−1), δa(n−2)n, δa(n−1)n]T .

Lemma 3.3.3. Let A, δA ∈ Cn×n be symmetric matrices and x, b ∈ Cn. Then (δA ◦
sgnA ◦ C ◦ D)x = b is equivalent to N1(x)diag(vec(sgnA ◦ C, 1))φ = b, where N1(x) is

defined by (3.3), φ = vec(δA ◦ sgnA ◦D) and C,D are defined in Subsection 3.2.1.

Proof. Since δA ◦ sgnA = (δaij sgn aij), on considering (δA ◦ sgnA ◦ C ◦D)x = b, we get

the following n equations similar to Lemma 3.3.1

δa11sgn a11x
1 + (
√

2δa12)(
sgn a12√

2
)x2 + · · ·+ (

√
2δa1n)(

sgn a1n√
2

)xn = b1,

(
√

2δa12)(
sgn a12√

2
)x1 + δa22 sgn a22x

2 + · · ·+ (
√

2δa2n)(
sgn a2n√

2
)xn = b2,

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

(
√

2δa1n)(
sgn a1n√

2
)x1 + (

√
2δa2n)(

sgn a2n√
2

)x2 + · · ·+ δannsgn annx
n = bn.

Further rearrangement gives N1(x)diag(vec(sgnA ◦ C, 1))φ = b, which is required. �

Remark 3.3.4. For more clarity, we present the proof of Lemma 3.3.3 for n = 3.

Consider (δA ◦ sgnA ◦ C ◦D)x = b, we get

δa11 δa12 δa13

δa12 δa22 δa23

δa13 δa23 δa33

 ◦


sgn a11 sgn a12 sgn a13

sgn a12 sgn a22 sgn a23

sgn a13 sgn a23 sgn a33

 ◦


1 1√
2

1√
2

1√
2

1 1√
2

1√
2

1√
2

1

 ◦


1
√

2
√

2
√

2 1
√

2
√

2
√

2 1




x1

x2

x3

 =


b1

b2

b3

 .
Expanding the above expression, we get the following three equations:

δa11 sgn a11x
1 + (
√

2 δa12)(
sgn a12√

2
)x2 + (

√
2 δa13)(

sgn a13√
2

)x3 = b1,

(
√

2 δa12)(
sgn a12√

2
)x1 + δa22 sgn a22 x

2 + (
√

2 δa23)(
sgn a23√

2
)x3 = b2,

(
√

2 δa13)(
sgn a13√

2
)x1 + (

√
2 δa23)(

sgn a23√
2

)x2 + δa33 sgn a33x
3 = b3.
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By rearranging the above equations, we get

(3.6)


x1 x2 x3 0 0 0

0 x1 0 x2 x3 0

0 0 x1 0 x2 x3

Y



δa11sgn a11√
2 δa12sgn a12√
2 δa13sgn a13

δa22sgn a22√
2 δa23sgn a23

δa33sgn a33


=


b1

b2

b3

 ,

where

Y =



sgn a11 0 0 0 0 0

0
sgn a12√

2
0 0 0 0

0 0
sgn a13√

2
0 0 0

0 0 0 sgn a22 0 0

0 0 0 0
sgn a23√

2
0

0 0 0 0 0 sgn a33


.

System (3.6) is the same as N1(x)diag(vec(sgnA ◦ C, 1))φ = b.

Remark 3.3.5. For the skew-symmetric case diag(vec(sgnA ◦ C, 1)), and N1(x) have to

be replaced by diag(vec(sgnA ◦ C,−1)) and N−1(x), respectively.

Now we state and prove the main result of this section in the light of the above

lemmas. Throughout this section, ε = 1 represents the T -symmetric case, and ε = −1

represents the T -skew-symmetric case.

Theorem 3.3.6. Let L ∈ L(Cn×n) be a T -symmetric/T -skew symmetric homogeneous

matrix pencil of the form (3.1). Let (λp, xp) be the s (s ≤ n) approximate eigenpairs

of L with λp = (λp0, λp1) ∈ C2 \ {(0, 0)}, and 0 6= xp ∈ Cn for p = 1 : s. Set r :=[
rT1 rT2 . . . rTs

]T
, where rp := −L(λp)xp for p = 1 : s. If N ε (defined in Equation 3.5)

has full row rank, then the backward error is given by

ηSw,F (λ1:s, x1:s,L) = ‖N εH(N εN εH)−1r‖F .

A minimizing T -symmetric/skew-symmetric matrix pencil δL ∈ L(Cn×n), such that (L(λp)+

δL(λp))xp = 0, is of the form δL(α, β) := αδA0 +βδA1, where δAj = (δaj,tk), for j = 0, 1,
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are given by

δaj,tk =

{ ∑s
p=1

1
2
w−2j λpj(sgn aj,tk)(x

k
pe
T
t+(p−1)n + εxtpe

T
k+(p−1)n)(N εN εH)−1r, for t 6= k,∑s

p=1
1+ε
2
w−2j λpj(sgn aj,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r, for t = k.

Here ek+(p−1)n, et+(p−1)n ∈ Csn.

Proof. For the given s-approximate eigenpairs (λp, xp) of matrix pencil L, we need to

construct δL ∈ L(Cn×n) which preserves sparsity such that (L(λp) + δL(λp))xp = 0. By

assumption L(λp)xp + rp = 0, for p = 1 : s. Then rp = δL(λp)xp =
∑1

j=0 λpjδAjxp =

(λp0 δA0 + λp1δA1)xp = (λp0δA0 ◦ sgnA0 + λp1δA1 ◦ sgnA1)xp, where δAj are replaced

by (δAj ◦ sgnAj) to maintain the sparsity in the perturbed matrices. Now, we have

rp =
∑1

j=0 λpj(δAj ◦ sgnAj)xp =
∑1

j=0 λpj(δAj ◦ sgnAj ◦ D ◦ C)xp. Further, we get

rp =
∑1

j=0wjw
−1
j λpj(δAj ◦ sgnAj ◦ D ◦ C)xp. Finally rearranging rp by using Lemma

3.3.3, we get rp =
∑1

j=0w
−1
j λpjN

ε(xp)diag(vec(sgnAj ◦ C, ε))∆ε
j =

∑1
j=0N

ε
pj∆

ε
j, where

∆ε
j = wjvec(δAj ◦ sgnAj ◦ D, ε) is a column vector defined in Section 3.2.1, and N ε

pj =

w−1j λpjN
ε(xp)diag(vec(sgnAj◦C, ε)).HereN ε(xp) ∈ Cn×(n2+εn)/2, diag(vec(sgnAj◦C, ε)) ∈

C(n2+εn)/2×(n2+εn)/2, and ∆ε
j ∈ C(n2+εn)/2.

Using rp =
∑1

j=0N
ε
pj∆

ε
j, N

ε
p =

[
N ε
p0 N ε

p1

]
and ∆ε =

[
∆ε

0
T ∆ε

1
T
]T
, we get rp =

N ε
p∆

ε. For p = 1 : s, we get the following system of equations:

r1 = N ε
1∆ε =

[
N ε

10 N ε
11

] [∆ε
0

∆ε
1

]
, r2 = N ε

2∆ε =
[
N ε

20 N ε
21

] [∆ε
0

∆ε
1

]
, . . . , and rs =

N ε
s∆

ε =
[
N ε
s0 N ε

s1

] [∆ε
0

∆ε
1

]
. On writing these s equations in the combined form, we get

(3.7)


r1

r2
...

rs

 =


N ε

10 N ε
11

N ε
20 N ε

21

...
...

N ε
s0 N ε

s1


[

∆ε
0

∆ε
1

]
.

By Equation 3.7, we have r = N ε∆ε, and under the assumption that N ε is a full row

rank matrix, the minimum norm solution of r = N ε∆ε is given by ∆ε = N εH(N εN εH)−1r.

Expanding the first N εH in the minimum norm solution, we get the desired entrywise

perturbations of matrices δAj, and the backward error in Frobenius norm case is given by

ηSw,F (λ1:s, x1:s,L) = |||δL|||w,F , where

|||δL|||2w,F = w2
0‖δA0‖2F + w2

1‖δA1‖2F = ‖∆ε‖2w,F = ‖N εH(N εN εH)−1r‖2F .
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In particular, the backward error, when N ε has full row rank, is given by

ηSw,F (λ1:s, x1:s,L) = ‖∆ε‖F = ‖N εH(N εN εH)−1r‖F .

Now we need to show that (L(λp) + δL(λp))xp = 0 for p = 1 : s, for this consider
(L(λ1) + δL(λ1))x1

(L(λ2) + δL(λ2))x2
...

(L(λs) + δL(λs))xs

 =


−r1 + δL(λ1)x1

−r2 + δL(λ2)x2
...

−rs + δL(λs)xs

 =


−r1
−r2

...

−rs

 +


N ε

1

N ε
2

...

N ε
s

∆ε =


−r1
−r2

...

−rs

 +


r1

r2
...

rs

 = 0,

where δL(λp))xp = N ε
p∆

ε, for p = 1 : s,N ε =
[
N ε

1
T N ε

2
T . . . N ε

s
T
]T
, and ∆ε =

N εH(N εN εH)−1r.�

Remark 3.3.7. When N ε is not a full row rank matrix but Equation 3.7 is consistent,

then using Theorem 1.2.6 and singular value decomposition, we get N ε = U εΣεV εH and

the minimum norm solution ∆ε = V εΣε+U εHr. The backward error is given by

ηSw,F (λ1:s, x1:s,L) = ‖V εΣε+U εHr‖F .

Here U ε, V ε are unitary matrices and Σε contains the singular values of N ε. In this case,

we can not get the general formula for the perturbed matrix entries because singular value

decomposition of N ε is not known explicitly.

Remark 3.3.8. If Equation 3.7 is inconsistent, i.e. rank(N ε) 6= rank([N ε, r]), then a

minimal perturbation matrix pencil does not exist. In this case the backward error is given

by ηSw,F (λ1:s, x1:s,L) =∞.

Now we present the backward error results for two approximate eigenpairs and a

single approximate eigenpair by the following corollaries. The obtained result for a single

approximate eigenpair will be the same as the existing result of [87, Theorem 2].

Corollary 3.3.9. Let L ∈ L(Cn×n) be a T -symmetric/T -skew-symmetric homogeneous

matrix pencil of the form (3.1). Suppose (λ1, x1), (λ2, x2) are the approximate eigenpairs

of L with 0 6= xp ∈ Cn and λp = (λp0, λp1) ∈ C2 \ {(0, 0)} for p = 1, 2. Set r =
[
rT1 rT2

]T
,

where rp := −L(λp)xp for p = 1, 2. If N ε (defined as below) has full row rank, then the

backward error is given by

ηSw,F (λ1:2, x1:2,L) = ‖N εH(N εN εH)−1r‖F .
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A minimizing T -symmetric/skew-symmetric δL ∈ L(Cn×n), such that (L(λp)+δL(λp))xp =

0, is of the form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk) for j = 0, 1, are given by

δaj,tk :=


1
2
w−2j (sgn aj,tk)[λ1j(x

k
1e
T
t + εxt1e

T
k ) + λ2j(x

k
2e
T
t+n+

εxt2e
T
k+n)](N εN εH)−1r , for t 6= k,

1+ε
2
w−2j (sgn aj,tk)[λ1jx

k
1e
T
t + λ2jx

k
2e
T
t+n](N εN εH)−1r, for t = k,

where N ε =

[
N ε

10 N ε
11

N ε
20 N ε

21

]
∈ C2n×(n2+εn) is defined in Theorem 3.3.6, and et, ek, ek+n, et+n ∈

C2n.

Proof. Substituting s = 2 in Theorem 3.3.6, we get the desired result for two specified

eigenpairs.�

After obtaining the backward error result for 2-specified eigenpairs, now we establish the

result for a single specified eigenpair which coincides with the existing result.

Corollary 3.3.10. Let L ∈ L(Cn×n) be a T -symmetric/T -skew-symmetric homogeneous

matrix pencil of the form (3.1). Let (λ1, x1) be an approximate eigenpair of L with 0 6=
x1 ∈ Cn and λ1 = (λ10, λ11) ∈ C2 \ {(0, 0)}. Set r1 := −L(λ1)x1. If N ε (defined as below)

has full row rank, then the backward error is given by

ηSw,F (λ1, x1,L) = ‖N εH(N εN εH)−1r‖F .

A minimizing T -symmetric/skew-symmetric δL ∈ L(Cn×n), such that (L(λ1)+δL(λ1))x1 =

0, is of the form δL(α, β) := αδA0 +βδA1, where δAj = (δaj,tk), for j = 0, 1, are given by

δaj,tk :=

{
1
2
w−2j λ1j(x

k
1e
T
t + εxt1e

T
k )(N εN εH)−1r (sgn aj,tk), for t 6= k,

1+ε
2
w−2j λ1j(sgn aj,tk)x

k
1e
T
t (N εN εH)−1r, for t = k,

here N ε =
[
N ε

10 N ε
11

]
∈ Cn×(n2+εn) is defined in Theorem 3.3.6 and et, ek ∈ Cn.

Proof. Substituting s = 1 in Theorem 3.3.6, we get the desired result for homogeneous

matrix pencil case of [87, Theorem 2]. �

Remark 3.3.11. To obtain zeroes at the desired places in the perturbed matrices δAj, j =

0 : 1, one can replace sgnAj by sgnLj in Theorem 3.3.6. Here Lj = (lj,tk) ∈ Rn×n and

lj,tk = 0 if we require δaj,tk = 0, else lj,tk = 1.
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3.4. Perturbation for Hermitian and skew-Hermitian matrix pen-

cils with s-specified eigenpair(s)

In this section, we discuss the perturbation matrices, and the backward error formula

for one or more approximate eigenpairs for Hermitian and skew-Hermitian matrix pen-

cils. Before we state and prove the main results of this section, let 0 6= xp ∈ Cn, λp =

(λp0, λp1) ∈ C2 \ {(0, 0)} and et+n+2n(p−1), et+2n(p−1), ek+n+2n(p−1), ek+2n(p−1) ∈ C2sn. Con-

sider cpj,tk := (et+2n(p−1) + iet+n+2n(p−1))
T (gkpj − ihkpj) + (ek+2n(p−1)− iek+n+2n(p−1))

T (εgtpj +

iεhtpj), gpj := <(λpjxp), hpj := =(λpjxp), g
t
pj := <(λpjx

t
p), h

t
pj := =(λpjx

t
p) for p = 1 : s and

t, k = 1 : n. Define

(3.8) N ε :=


N ε

10 N ε
11

N ε
20 N ε

21

...
...

N ε
s0 N ε

s1

∈ C2sn×2n2

where N ε
pj := w−1j

[
N ε(gpj) −N−ε(hpj)
N ε(hpj) N−ε(gpj)

]
diag

([
vec(sgnAj ◦ C, ε)

vec(sgnAj ◦ C,−ε)

])
, for j = 0, 1, are

constructed by (3.3). Throughout this section, ε = 1 represents the Hermitian case, and

ε = −1 represents the skew-Hermitian case.

Theorem 3.4.1. Let L ∈ L(Cn×n) be a Hermitian/skew-Hermitian homogeneous ma-

trix pencil of the form (3.1). Let (λp, xp) be the s (s ≤ n) approximate eigenpairs of

L with 0 6= xp ∈ Cn and λp = (λp0, λp1) ∈ C2 \ {(0, 0)} for p = 1 : s. Set r :=[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
, where rp := −L(λp)xp, for p = 1 : s. If N ε

(defined in Equation 3.8) has full row rank, then the backward error is given by

ηSw,F (λ1:s, x1:s,L) = ‖N εT (N εN εT )−1r‖F .

A minimizing Hermitian/skew-Hermitian matrix pencil δL ∈ L(Cn×n), such that (L(λp)+

δL(λp))xp = 0, is of the form δL(α, β) := αδA0 +βδA1, where δAj = (δaj,tk), for j = 0, 1,

are given by

δaj,tk =


(sgn aj,tt)

∑s
p=1

√
εw−2j

(
gtpje

T
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) + εhtpj

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn aj,tk)
∑s

p=1
1
2
w−2j cpj,tk(N

εN εT )−1r, for t 6= k.

Here ei ∈ C2sn for any i ∈ N.
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Proof. For the given s-approximate eigenpairs (λp, xp) of matrix pencil L, we need to

construct minimal norm sparse δL ∈ L(Cn×n) such that (L(λp) + δL(λp))xp = 0. By

assumption L(λp)xp + rp = 0 for p = 1 : s. Then rp = δL(λp)xp =
∑1

j=0 λpjδAjxp =∑1
j=0(<(δAj)+i=(δAj))(<(λpjxp)+i=(λpjxp)) =

∑1
j=0<(δAj) <(λpjxp)−=(δAj)=(λpjxp)

+ i(=(δAj)<(λpjxp) + <(δAj)=(λpjxp)) =
∑1

j=0[<(δAj)<(λpjxp) − =(δAj)=(λpjxp) +

i(=(δAj)<(δAj) + <(δAj)=(λpjxp))] ◦ sgnAj ◦D ◦ C = <(rp) + i=(rp), where

<(rp) =
1∑
j=0

[<(δAj)gpj −=(δAj)hpj] ◦ (sgnAj) ◦D ◦ C,(3.9)

=(rp) =
2∑
j=0

[<(δAj)hpj + =(δAj)gpj] ◦ (sgnAj) ◦D ◦ C,(3.10)

for p = 1 : s. By applying Proposition 1.2.21 and Proposition 1.2.22 for Hermitian (skew-

Hermitian) case, we get that <(δAj), =(δAj) are real symmetric (skew-symmetric) and

real skew-symmetric (symmetric) matrices, respectively. Now separating the unknown

and known variables in (3.9) and (3.10) by using Lemma 3.3.3, and Remark 3.3.5, we get

the following system for p = 1 : s[
<(rp)

=(rp)

]
=

1∑
j=0

w−1j

[
N ε(gpj) −N−ε(hpj)
N ε(hpj) N−ε(gpj)

]
diag

([
vec(sgnAj ◦ C, ε)

vec(sgnAj ◦ C,−ε)

])
∆ε
j,

where ∆ε
j = wj

[
vec(<(δAj) ◦ sgnAj ◦D, ε)

vec(=(δAj) ◦ sgnAj ◦D,−ε)

]
for j = 0, 1. Writing s equations in the

combined form, we get

(3.11)



<(r1)

=(r1)
...

<(rs)

=(rs)


=


N ε

10 N ε
11

N ε
20 N ε

21

...
...

N ε
s0 N ε

s1


[

∆ε
0

∆ε
1

]
.

If N ε has full row rank, then solving the above system in the least square sense, we get

∆ε = N εT (N εN εT )−1
[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
.

The backward error in Frobenius norm case is given by ηSw,F (λ1:s, x1:s,L) = |||δL|||w,F , where

|||δL|||w,F =

√√√√ 1∑
i=0

w2
i ‖δAi‖2F = ‖N εT (N εN εT )−1r‖F .
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After obtaining the result for the general case, now we state the following corollary for a

single approximate eigenpair, which is immediate from Theorem 3.4.1 for s = 1.

Corollary 3.4.2. Let L ∈ L(Cn×n) be a Hermitian/skew-Hermitian homogeneous matrix

pencil of the form (3.1). Let (λ1, x1) be an approximate eigenpair of L with 0 6= x1 ∈ Cn

and λ1 = (λ10, λ11)) ∈ C2 \ {(0, 0)}. Let r1 := −L(λ1)x1. If N ε (defined as below) has full

row rank, then the backward error is given by

ηSw,F (λ1, x1,L) = ‖N εT (N εN εT )−1r‖F .

A minimizing Hermitian/skew-Hermitian δL ∈ L(Cn×n), such that (L(λ1) + δL(λ1))x1 =

0, is of the form δL(α, β) := αδA0 +βδA1, where δAj = (δaj,tk), for j = 0, 1, are given by

δaj,tk =

 w−2j (sgn aj,tt)
(
gt1je

T
t+ 1−ε

2
n

+ ht1je
T
t+ 1−ε

2
n

)
(N εN εT )−1r, for t = k,

1
2
w−2j (sgn aj,tk)c1j,tk(N

εN εT )−1r, for t 6= k,

here c1j,tk = (et + iet+n)T (gk1j − ihk1j) + (ek− iek+n)T (εgt1j + iεht1j), and N ε =
[
N ε

10 N ε
11

]
∈

C2n×2n2
with N ε

10, N
ε
11 are defined in Theorem 3.4.1.

3.5. Backward error for T -even and T -odd matrix pencils with

s-specified eigenpair(s)

In this section, we discuss the backward error analysis of matrix pencils of the alter-

native structures, i.e., A0, A1 ∈ Cn×n are symmetric and skew-symmetric, respectively

for T -even case and vice-versa for T -odd case. Before moving to the main result of this

section, we define the matrix N ε as follows:

N ε :=


N ε

10 N−ε11

N ε
20 N−ε21

...
...

N ε
s0 N−εs1

 ∈ Csn×2n2
such that N ε

p0 = w−10 λp0N
ε(xp)diag(vec(sgnA0 ◦ C, ε))

and N−εp1 := w−11 λp1N
ε(xp)diag(vec(sgnA1 ◦ C,−ε)) are defined in Equation 3.3. Now we

state and prove the theorem for T -even/T -odd case.

Throughout this section, ε = 1 and ε = −1 exhibit the T -even and T -odd cases,

respectively.
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Theorem 3.5.1. Let L ∈ L(Cn×n) be a T -even/T -odd homogeneous matrix pencil of

the form (3.1). Suppose (λp, xp) are the s (s ≤ n) approximate eigenpairs of L with

0 6= xp ∈ Cn, and λp = (λp0, λp1) ∈ C2 \ {(0, 0)}. Set r :=
[
rT1 rT2 . . . rTs

]T
, where

rp := −L(λp)xp, for p = 1 : s. If N ε (defined as above) has full row rank, then the backward

error is given by

ηSw,F (λ1:s, x1:s,L) = ‖N εH(N εN εH)−1r‖F .

A minimizing T -even/T -odd δL ∈ L(Cn×n), such that (L(λp) + δL(λp))xp = 0, is of the

form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk), for j = 0, 1, are given by

δa0,tk =

{ ∑s
p=1

1
2
w−20 λp0(sgn a0,tk)(x

k
pe
T
t+(p−1)n + εxtpe

T
k+(p−1)n)(N εN εH)−1r, for t 6= k,∑s

p=1
1+ε
2
w−20 λp0(sgn a0,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r, for t = k,

δa1,tk =

{ ∑s
p=1

1
2
w−21 λp1(sgn a1,tk)(x

k
pe
T
t+(p−1)n − εxtpeTk+(p−1)n)(N εN εH)−1r, for t 6= k,∑s

p=1
1−ε
2
w−21 λp1(sgn a1,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r, for t = k.

Here et+(p−1)n, ek+(p−1)n ∈ Csn.

Proof. For the given s-approximate eigenpairs (λp, xp) of the T -even (T-odd) matrix pencil

L, we need to construct minimal norm δL such that (L(λp)+δL(λp))xp = 0. By assumption

L(λp)xp + rp = 0, for p = 1 : s. For sparsity, we replace δAj by (δAj ◦ sgnAj), then

rp = δL(λp)xp =
∑1

j=0 λpjδAjxp =
∑1

j=0 λpj(δ Aj ◦ sgnAj)xp =
∑1

j=0 λpj(δAj ◦ sgnAj ◦
D ◦ C)xp. Let ∆ε

0 = w0vec(δA0 ◦ sgnAj ◦ D, ε), and ∆−ε1 = w1vec(δA1 ◦ sgnAj ◦ D,−ε).
Then similar to previous theorem, we get

rp = w−10 λp0N
ε(xp)diag(vec(sgnAj ◦ C, ε))∆ε

0 + w−11 λp1N
−ε(xp)diag(vec(sgnAj ◦ C,−ε))∆−ε1

rp = N ε
p0∆

ε
0 +N−εp1 ∆−ε1 = N ε

p∆
ε.

Combining the above s equations for p = 1 : s, we get r = N ε∆ε. Perturbation matrices

and backward error for the T -even/T -odd case are obtained similar to Theorem 3.3.6. �

Remark 3.5.2. For the T -odd case (ε = −1), N−1p0 is constructed according to the skew-

symmetric case, and N1
p1 is constructed according to the symmetric case.

Remark 3.5.3. The difference between T -symmetric, T -skew-symmetric, Hermitian, skew-

Hermitian, T -even/T -odd, and H-even/T -odd cases is the construction of matrix N ε

which is of different sizes for each structured matrix pencil.
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3.6. Perturbation analysis for H-even and H-odd matrix pencils

with s-specified eigenpair(s)

Similar to the above section, this section deals with the backward error analysis of

one or more approximate eigenpairs for H-even and H-odd matrix pencils. For stating

the main theorem of this section, let 0 6= xp ∈ Cn, λp = (λp0, λp1) ∈ C2 \ {(0, 0)}, and

ek+2n(p−1), et+2n(p−1), ek+n+2n(p−1), et+n+2n(p−1) ∈ C2sn, for p = 1 : s, and t, k = 1 : n. Next,

consider the following notations as follows:

cp0,tk := (et+2n(p−1) + iet+n+2n(p−1))
T (gkp0 − ihkp0) + (ek+2n(p−1) − iek+n+2n(p−1))

T (εgtp0 + iεhtp0),

cp1,tk := (et+2n(p−1) + iet+n+2n(p−1))
T (gkp1 − ihkp1)+ (ek+2n(p−1) − iek+n+2n(p−1))

T (−εgtp1 − iεhtp1),

and gpj := <(λpjxp), hpj = =(λpjxp), and gtpj := <(λpjx
t
p), h

t
pj := =(λpjx

t
p). Further, we

define

(3.12) N ε :=


N ε

10 N−ε11

N ε
20 N−ε21

...
...

N ε
s0 N−εs1

∈ C2sn×2n2

,

where N ε
pj = w−1j

[
N ε(gpj) −N−ε(hpj)
N ε(hpj) N−ε(gpj)

]
diag

([
vec(sgnAj ◦ C, ε)

vec(sgnAj ◦ C,−ε)

])
for j = 0, 1, are

defined by Equation 3.3. Now we state the following theorem for H-even/T -odd case.

Throughout this section, ε = 1 and ε = −1 exhibit the H-even and H-odd cases, respec-

tively.

Theorem 3.6.1. Let L ∈ L(Cn×n) be a H-even/H-odd homogeneous matrix pencil of the

form (3.1). Suppose (λp, xp) are s (s ≤ n) approximate eigenpairs of L with 0 6= xp ∈ Cn,

and λp = (λp0, λp1) ∈ C2 \ {(0, 0)}. Set r :=
[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
,

rp := −L(λp)xp, for p = 1 : s. If N ε (defined in Equation 3.12) has full row rank, then

the backward error is given by

ηSw,F (λ1:s, x1:s,L) = ‖N εT (N εN εT )−1r‖F .
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A minimizing H-even/H-odd δL ∈ L(Cn×n), such that (L(λp) + δL(λp))xp = 0, is of the

form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk), for j = 0, 1, are given by

δa0,tk =


(sgn a0,tt)

∑s
p=1

√
εw−20

(
gtp0e

T
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) + εhtp0

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn a0,tk)
∑s

p=1
1
2
w−20 cp0,tk(N

εN εT )−1r, for t 6= k,

δa1,tk =


(sgn a1,tt)

∑s
p=1

√
−εw−21

(
gtp1e

T
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) − εh

t
p1

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn a1,tk)
∑s

p=1
1
2
w−21 cp1,tk(N

εN εT )−1r, for t 6= k.

Here ei ∈ C2sn for any i ∈ N.

Proof. The proof follows immediately from Theorem 3.4.1 and Theorem 3.5.1. �

After obtaining the results for T -symmetric/skew-symmetric, Hermitian/skew-Hermitian,

T -even/odd, and H-even/odd matrix pencils, we present the backward error analysis of

T -palindromic/T -anti-palindromic, and H-palindromic/H-anti-palindromic matrix pen-

cils in the following section.

3.7. Perturbation analysis for palindromic matrix pencils

To understand the backward error analysis and the perturbation theory of palindromic

matrix pencils, we define matrices M ε(λp, yp), which are obtained by the given approx-

imate eigenpairs (λp, yp), where λp = (λp0, λp1) ∈ C2 \ {(0, 0)}, and 0 6= yp ∈ Cn for

p = 1 : s. For construction of M ε(λp, yp), we need to understand the construction of

matrices M ε(yp) for ε = 1,−1, where M1(yp) ∈ Cn×n2
and M−1(yp) ∈ Cn×n2

. Superscript

′−1′ in M−1(yp) is only for notational point of view. It should not mismatch with the

inverse of M(yp).

1. For deriving the backward error formula of specified eigenpairs, we define the ma-

trices M1(yp),M
−1(yp) and M ε(λp, yp) for p = 1 : s as follows:

M1(yp) =
[
M1

1 (yp) . . . M1
n(yp)

]
andM−1(yp) =

[
M−1

1 (yp) . . . M−1
n (yp)

]
,

M ε(λp, yp) =
[
λp0M

1
1 (yp) + ελp1M

−1
1 (yp) . . . λp0M

1
n(yp) + ελp1M

−1
n (yp)

]
.

For ε = 1, define M1
1 (yp) ∈ Cn×n,M1

2 (yp) ∈ Cn×n, andM1
n(yp) ∈ Cn×n as follows:

64



M1
1 (yp) =



y1p y2p y3p . . . ynp

0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0


,M1

2 (yp) =



0 0 0 . . . 0

y1p y2p y3p . . . ynp

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0


,

M1
n(yp) =



0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0

y1p y2p y3p . . . ynp


.

Similarly, for ε = −1 define M−1
i (yp) ∈ Cn×n as follows:

M−1
i (yp) = diag([yip, . . . , y

i
p]
T ), i = 1, . . . , n.

2. Suppose A0 = (a0,tk), δA0 = (δa0,tk) ∈ Cn×n. Define ∆0 :=


∆01

∆02

...

∆0n

 , where

∆0i =


w0 δa0,i1sgn a0,i1

...

w0 δa0,insgn a0,1n

 , and w0 is a nonnegative real number.

3. Define vec(sgnA0) = [sgn a0,11, . . . , sgn a0,1n, . . . , sgn a0,n1, . . . , sgn a0,nn]T forA0 = (a0,ij) ∈
Cn×n. Here vec(sgnA0) ∈ Cn2

. Let M ε
p = w−10 M ε(λp, yp)diag(vec(sgnA0)). Define

(3.13) M ε :=
[
M ε

1
T M ε

2
T . . . M ε

s
T
]T
,whereM ε ∈ Csn×n

2
.

We use the above constructions in the next subsections for obtaining the backward

error and perturbed matrices of palindromic matrix pencils.

3.7.1. Perturbation analysis for T -palindromic/T -anti-palindromic matrix pen-

cils

This section deals with the perturbation theory and the backward error analysis of s-

specified eigenpairs of T -palindromic and T -anti-palindromic matrix pencils. Throughout
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this section, ε = 1 represents the T -palindromic case, and ε = −1 represents the T -anti-

palindromic case.

Theorem 3.7.1. Let L ∈ L(Cn×n) be a T -palindromic/T -anti-palindromic homogeneous

matrix pencil of the form (3.1). Let (λp, xp) be the s (s ≤ n) approximate eigenpairs of L

with 0 6= xp ∈ Cn, and λp = (λp0, λp1) ∈ C2 \ {(0, 0)}. Set r :=
[
rT1 rT2 . . . rTs

]T
, where

rp := −L(λp)xp for p = 1 : s. If M ε (defined in Equation 3.13) has full row rank, then the

backward error is given by

ηSw,F (λ1:s, x1:s,L) =
√

2‖M εH(M εM εH)−1r‖F .

A minimizing T -palindromic/T -anti-palindromic matrix pencil δL ∈ L(Cn×n), such that

(L(λp) + δL(λp))xp = 0, is of the form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk),

for j = 0, 1, are given by

δaj,tk =

{ ∑s
p=1w

−2
0 (sgn aj,tk)(λpjx

k
pe
T
t+(p−1)n + ελp(1−j)x

t
pe
T
k+(p−1)n)(M εM εH)−1r, for t 6= k,∑s

p=1w
−2
0 (sgn aj,tk)(λpjx

t
p + ελp(1−j)x

t
p)e

T
t+(p−1)n(M εM εH)−1r, for t = k.

Here et+(p−1)n, ek+(p−1)n ∈ Csn. If M ε has not full row rank but rank(M ε) = rank([M ε, r]),

then the backward error is given by

ηSw,F (λ1:s, x1:s,L) =
√

2‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε contains singular values of M ε.

Proof. For the given s-approximate eigenpairs (λp, xp), p = 1 : s, of L, we need to con-

struct δL such that (L(λp) + δL(λp))xp = 0. By assumption L(λp)xp + rp = 0 for

p = 1 : s. Then rp = δL(λp)xp =
∑1

j=0 λpjδAjxp = (w0w
−1
0 λp0δA0+w0w

−1
0 λ1δA1)xp. Since

δA1 = εδAT0 , we get rp = (w0w
−1
0 λp0δA0 ◦ sgnA0 + εw0w

−1
0 λp1δA

T
0 ◦ sgnAT0 )xp. Let ∆0 =

w0vec(δA0◦ sgnA0). Then rp = [w−10 λp0M
1(xp)+εw−10 λp1M

−1(xp)] diag(vec(sgnA0))∆0 =

w−10 M ε(λp, xp) diag(vec(sgnA0))∆0 = M ε
p∆0, where

M ε
p = [w−10 λp0M

1(xp) + εw−10 λp1M
−1(xp)]diag(vec(sgnA0)).

On writing rp = M ε
p∆0 for p = 1 : s, in the combined form, we get

(3.14)
[
rT1 rT2 . . . rTs

]T
=
[
M ε

1
T M ε

2
T . . . M ε

s
T
]T

∆0.

If M ε has full row rank, then in the least square sense, we get the minimal solution

∆0 = M εH(M εM εH)−1r. If M ε has not full row rank and Equation 3.14 is consistent, then

∆0 = V εDε+U εHr. Here U ε, V ε are unitary matrices of appropriate sizes and Dε+ contains

the singular values of M ε. Now using equation ∆0 = M εH(M εM εH)−1r and expanding
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the first M εH , we get the desired entrywise perturbations. Backward error in Frobenius

norm case is given by ηSw,F (λ1:s, x1:s,L) = |||δL|||w,F , where |||δL|||2w,F =
∑1

i=0w
2
0‖δAi‖2F =

2w2
0‖δA0‖2. Then |||δL|||2w,F = 2‖∆0‖2F = 2‖M εH(M εM εH)−1r‖2F . For full row rank M ε,

the backward error is given by

ηSw,F (λ1:s, x1:s,L) =
√

2‖M εH(M εM εH)−1r‖F .

When M ε has not full row rank but Equation 3.14 is consistent, then the backward error

is given by ηSw,2(λ1:s, x1:s,L) =
√

2‖V εDε+U εHr‖. Similar to Theorem 3.3.6, we can easily

see that (L(λp) + δL(λp))xp = 0 for p = 1 : s. �

Remark 3.7.2. If M ε is not a full row rank matrix but Equation 3.14 is consistent, then

explicit formula for the perturbed matrix pencil is not possible, though we can construct

the perturbed matrices using singular value decomposition.

Remark 3.7.3. If Equation 3.14 is inconsistent i.e. rank(M ε) 6= rank([M ε, r]). Then

a minimal perturbation matrix pencil does not exist, and the backward error is given by

ηSw,F (λ1:s, x1:s,L) =∞.

For simplicity, we state the following corollary for two approximate eigenpairs, which

is immediate from Theorem 3.7.1 for s = 2.

Corollary 3.7.4. Let L ∈ L(Cn×n) be a T -palindromic/T -anti-palindromic homogeneous

matrix pencil of the form (3.1). Suppose (λ1, x1), (λ2, x2) are two approximate eigenpairs

of L with 0 6= xp ∈ Cn, and λp = (λp0, λp1) ∈ C2\{(0, 0)}, for p = 1, 2. Set rp := −L(λp)xp.

If M ε (defined as below) has full row rank, then the backward error is given by

ηSw,F (λ1:2, x1:2,L) =
√

2‖M εH(M εM εH)−1r‖F .

A minimizing T -palindromic/T -anti-palindromic δL ∈ L(Cn×n), such that (L(λp)+δL(λp))xp =

0, is of the form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk) for j = 0, 1, are given by

δaj,tk =


w−20 (sgn aj,tk)[(λ1jx

k
1e
T
t + ελ1(1−j)x

t
1e
T
k ) + (λ2jx

k
2e
T
t+n+

ελ2(1−j)x
t
2e
T
k+n)](M εM εH)−1r, for t 6= k,

w−20 (sgn aj,tk)[(λ1jx
t
1 + ελ1(1−j)x

t
1)e

T
t + (λ20x

t
2+

ελ21x
t
2)e

T
t+n](M εM εH)−1r, for t = k.

Here M ε =

[
M ε

1

M ε
2

]
∈ C2n×n2

such that M ε
p = w−10 M ε(λp, xp)diag(vec(sgnA0)) for p = 1, 2.
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Similar to the T -palindromic/T -anti-palindromic case, next we obtain the result for

H-palindromic/H-anti-palindromic matrix pencils. �

3.7.2. Perturbation analysis for H-palindromic/H-anti-palindromic matrix pen-

cils

Before we prove the main result of this section, let xp ∈ Cn, λp = (λp0, λp1) ∈ C2 \
{(0, 0)}. Define gpj := <(λpjxp), hpj := =(λpjxp), g

t
pj := <(λpjx

t
p), h

t
pj := =(λpjx

t
p), for

j = 0, 1, p = 1 : s, and t, k = 1 : n. Define

M ε(gp) =
[
M1

1 (gp0) + εM−1
1 (gp1) . . . M1

n(gp0) + εM−1
n (gp1)

]
,

M ε(hp) =
[
M1

1 (hp0) + εM−1
1 (hp1) . . . M1

n(hp0) + εM−1
n (hp1)

]
,

and

M ε
p = w−10

[
M ε(gp) −M−ε(hp)

M ε(hp) M−ε(gp)

]
diag

([
vec(sgnA0)

vec(sgnA0)

])
.

Then M ε :=
[
M ε

1
T M ε

2
T . . . M ε

s
T
]T
∈ C2sn×2n2

. Now we are ready to provide the

following theorem for H-palindromic and H-anti-palindromic matrix pencils. Throughout

this section, ε = 1 represents the H-palindromic case, and ε = −1 represents the H-anti-

palindromic case.

Theorem 3.7.5. Let L ∈ L(Cn×n) be a H-palindromic/H-anti-palindromic homogeneous

matrix pencil of the form (3.1). Let (λp, xp) be the s (s ≤ n) approximate eigenpairs

of L with 0 6= xp ∈ Cn, and λp = (λp0, λp1) ∈ C2 \ {(0, 0)} for p = 1 : s. Set r :=[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
, where rp := −L(λp)xp for p = 1 : s. If M ε

(defined as above) has full row rank, then the backward error is given by

ηSw,F (λ1:s, x1:s,L) =
√

2‖M εT (M εM εT )−1r‖F .

A minimizing H-palindromic/H-anti-palindromic δL ∈ L(Cn×n), such that (L(λp) +

δL(λp))xp = 0, is of the form δL(α, β) := αδA0 + βδA1, where δAj = (δaj,tk) for j = 0, 1,

are given by

δaj,tk =



∑s
p=1w

−2
0 (sgn aj,tk)[g

k
pje

T
t+2(p−1)n + εgtp(1−j)e

T
k+2(p−1)n + hkpje

T
t+(2p−1)n

+εhtp(1−j)e
T
k+(2p−1)n + i(−hkpjeTt+2(p−1)n + εhtp(1−j)e

T
k+2(p−1)n)+

i(gkpje
T
t+(2p−1)n − εgtp(1−j)eTk+(2p−1)n)](M εM εT )−1r, if t 6= k,∑s

p=1w
−2
0 (sgn aj,tk)[(g

t
pj + εgtp(1−j))e

T
t+2(p−1)n + (htpj + εhtp(1−j))e

T
t+(2p−1)n

+i(−htpj + εhtp(1−j))e
T
t+2(p−1)n + i(gtpj − εgtp(1−j))eTt+(2p−1)n](M εM εT )−1r, if t = k.
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Here ei ∈ C2sn for any i ∈ N. If M ε is not a full row rank matrix but rank(M ε) =

rank([M ε, r]), then the backward error is given by

ηSw,F (λ1:s, x1:s,L) =
√

2|||V εDε+U εHr|||F ,

where U ε, V ε are unitary matrices and Dε contains the singular values of M ε.

Proof. For the given s-approximate eigenpairs (λp, xp) of L, we need to construct δL such

that (L(λp) + δL(λp))xp = 0. Since δA1 = εδAH0 , similar to the previous theorem, we get

rp = δL(λp)xp = (λp0δA0 +λ1δA1)xp = (λp0δA0 +λp1δA
H
0 )xp = [λp0(<(δA0) + i=(δA0)) +

ελp1(<(δA0) + i=(δA0))
H ]xp = [(<(δA0) + i=(δA0))(<(λp0xp) + i=(λp0xp)) + ε(<(δA0)

T −
i=(δA0)

T )(<(λp1xp) + i=(λp1xp))] = [(<(δA0) + i=(δA0)) ◦ sgnA0(<(λp0xp) + i=(λp0xp)) +

ε(<(δA0)
T − i=(δA0)

T ) ◦ (sgnA0)
T (<(λp1xp) + i=(λp1xp))] = <(δA0) ◦ sgnA0<(λp0xp) +

i<(δA0)◦sgnA0=(λp0xp)+i=(δA0)◦sgnA0<(λp0xp)−=(δA0)◦sgnA0=(λp0xp)+ε<(δA0)
T ◦

(sgnA0)
T<(λp1xp) + iε<(δA0)

T ◦ (sgnA0)
T=(λp1xp) − iε=(δA0)

T ◦ (sgnA0)
T<(λp1xp) +

ε=(δA0)
T ◦ (sgnA0)

T=(λp1xp) = <(rp) + i=(rp), where

<(rp) = <(δA0) ◦ (sgnA0)gp0 + ε<(δA0)
T ◦ (sgnA0)

Tgp1 −=(δA0) ◦ (sgnA0)hp0 +

ε=(δA0)
T ◦ (sgnA0)

Thp1,

=(rp) = <(δA0) ◦ (sgnA0)hp0 + ε<(δA0)
T ◦ (sgnA0)

Thp1 + =(δA0) ◦ (sgnA0)gp0 −

ε=(δA0)
T ◦ (sgnA0)

Tgp1,

for p = 1 : s. Let ∆<0 = w0(<(δA0)◦sgnA0), and ∆=0 = w0vec(=(δA0)◦sgnA0). Separating

the unknown and known variables similar to the previous theorem, we get the following

system for p = 1 : s

(3.15) <(rp) = w−10 M ε(gp)diag(vec(sgnA0))∆
<
0 − w−10 M−ε(hp)diag(vec(sgnA0))∆

=
0 .

Similarly, we get the following system for p = 1 : s

(3.16) =(rp) = w−10 M ε(hp)diag(vec(sgnA0))∆
<
0 + w−10 M−ε(gp)diag(vec(sgnA0))∆

=
0 .

By combining Equation 3.15 and Equation 3.16, we get

(3.17)

[
<(rp)

=(rp)

]
= M ε

p

[
∆<0

∆=0

]
.
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Further combining Equation 3.17, for p = 1 : s, we get

(3.18)



<(r1)

=(r1)
...

<(rs)

=(rs)


=


M ε

1

...

M ε
s


[

∆<0

∆=0

]
.

If M ε has full row rank, then in the least square sense, we get the minimal norm so-

lution ∆ = M εT (M εM εT )−1r, where ∆ =

[
∆<0

∆=0

]
. Then the backward error in Frobe-

nius norm case is given by ηSw,F (λ1:s, x1:s,L) = |||δL|||w,F , where |||δL|||2w,F = 2w2
0‖δA0‖2 =

2w2
0(‖<(δA0)‖2 + ‖=(δA0)‖2) = 2‖∆<0 ‖2F + 2‖∆=0 ‖2F = 2‖M εT (M εM εT )−1r‖2F .�

Now we illustrate our theory by some examples and discuss its importance in solving

the inverse eigenvalue problem.

3.8. Numerical examples and discussion on inverse eigenvalue

problem

For illustration of the theory, we present an example for the T -palindromic generalized

eigenvalue problem.

Example 3.8.1. Let L ∈ L(C3×3) be a T -palindromic matrix pencil of the form (3.1)

with the following information:

A0 =


986.5689 1 1 + i

7.2 3− i 0

0 8− i 10.236

 , A1 =


986.5689 7.2 0

1 3− i 8− i

1 + i 0 10.236

 .
Let (λ1, x1) and (λ2, x2) be two approximate eigenpairs of L, where λ1 = (12.001 +

3i,−19.66), λ2 = (13.96, 2 − 3i), x1 = [1.01125 + 0.023i, 3.3, 7 − i]T , x2 = [11.12, 5 +

3i, 2.089]T , and (w0, w1)
T = (1, 1). By the given information, we get that M ε has full row

rank. Then applying Theorem 3.7.1, the perturbed matrices are given by
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δA0 = 102 ×


−8.8567− 0.0013i −1.7026 + 1.5291i 0.4736− 0.4314i

−0.7530 + 0.2216i 0.4126− 1.5527i 0

0 0.1164 + 0.1446i −0.2834 + 0.2025i

 ,

δA1 = 102 ×


−8.8567− 0.0013i −0.7530 + 0.2216i 0

−1.7026 + 1.5291i 0.4126− 1.5527i 0.1164 + 0.1446i

0.4736− 0.4314i 0 −0.2834 + 0.2025i

 ,
and the backward error is given by ηSw,F (λ1:2, x1:2,L) = 935.1024. Clearly, we have δA0 =

δAT1 .

Next, we discuss the connection between inverse eigenvalue problems and backward

error theory. First, we discuss the real symmetric inverse eigenvalue problem.

Let Q(λ) = λ2I + λC +K be a quadratic matrix polynomial. The inverse eigenvalue

problem is to find matrices C,K such that the given approximate s-eigenpairs (Λ, X)

satisfy the following equation

(3.19) XΛ2 + CXΛ +KX = 0,

where Λ ∈ Rs×s has specified eigenvalues λi ∈ R on its diagonal and X ∈ Rn×s has the

corresponding eigenvectors xi ∈ Rn as its column. We need to construct C,K ∈ Rn×n

with C = CT and K = KT so that (3.19) is satisfied. Solving (3.19) is the same as solving

λ2i Ixi + λiCxi + Kxi = 0 for i = 1 : s. Further using technique of [70], we can convert

the above QEP into GEP of the form

(3.20) (G0 + λiG1)yi = 0,

where G0 =

[
C K

K 0

]
, G1 =

[
In 0

0 −K

]
, yi =

[
λixi

xi

]
for i = 1 : s. Solution of the Problem

3.20 will provide the solution for the Problem 3.19. Problem 3.20 is the generalized T -

symmetric non-homogeneous eigenvalue problem which can be solved by Theorem 3.3.6.

We will illustrate it by an example for s = 2.

Example 3.8.2. Let (λ1, x1) and (λ2, x2) be two specified eigenpairs, where λ1 = 112.001,

λ2 = −13.02, x1 = [0.01125, 3.3]T , and x2 = [1.12, 2.25]T . We construct C = (cij), K =

(kij) ∈ C2×2 such that Equation 3.19 satisfies. Additionally, we construct C in such a way

that c22 = 0, so that the desired sparsity also maintain. By the above discussion, we know
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that solving Problem 3.19 is the same as solving Problem 3.20. Suppose C = P0 + δP0,

K = P1 + δP1, and I2 =

[
1 0

0 1

]
. Choose P0 and P1 as follows:

P0 =

[
31.02 7.2

7.2 0

]
, P1 =

[
12.4500 2.0000

2.0000 0.0033

]
.

For j = 0, 1, we find δPj using Theorem 3.3.6, where δP0 =

[
δp0,11 δp0,12

δp0,12 0

]
, and δP1 =[

δp1,11 δp1,12

δp1,12 δp1,22

]
.

Remark 3.8.3. Since we can choose different P0, P1 so matrices C and K are not unique.

We also maintain the sparsity of matrix C by choosing δp0,22 = 0.

By applying Theorem 3.3.6 along with Remark 3.3.11, we get

G0 = 104 ×


0.3853 −0.0211 0.0076 2.2104

−0.0211 0 2.2104 −1.2539

0.0076 2.2104 0 0

2.2104 −1.2539 0 0

 ,

G1 = 104 ×


0.0001 0 0 0

0 0.0001 0 0

0 0 −0.0076 −2.2104

0 0 −2.2104 1.2539

 .

Clearly G0 = GT
0 , G1 = GT

1 and (G0+λiG1)yi = 0 for i = 1, 2. Hence our theorem pro-

vides the solution for the real symmetric inverse eigenvalue problem, which also preserves

the sparsity.

Remark 3.8.4. Note that Remark 3.3.11 guarantees that there will be no perturbation in

G1 corresponding to the block matrix I2.

Next, we discuss an another inverse eigenvalue problem [89, Problem 1.1], which

require to construct the symmetric matrices K,M ∈ Rn×n from the given set of eigenpairs

(µi, xi), and from symmetric matrices K0,M0 ∈ Rd×d such that Kxi−µiMxi = 0, i = 1 : s,

K0 = K([1, d]),M0 = M([1, d]), where K([1, d]) and M([1, d]) are the d × d leading
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principal submatrices of K and M, respectively. Here µi ∈ R, xi ∈ Rn, and 1 ≤ d, s ≤
n, s+ d ≤ n.

To solve this problem, we set K = Q0 + δQ0 and M = Q1 + δQ1, where Q0, Q1

are known matrices such that Q0 =

[ d n−d

d K0 0

n−d 0 0

]
, Q1 =

[ d n−d

d M0 0

n−d 0 0

]
, and

δQ0, δQ1 are matrices to be determine. Next, in Remark 3.3.11, we choose Lj = (lj,tk) ∈
Rn×n in such a way that lj,tk = 0 for 1 ≤ t, k ≤ r, else lj,tk = 1 for j = 0 : 1. Now

to determine matrices δQ0, δQ1, we apply Theorem 3.3.6 with λi = (1,−µi) along with

Remark 3.3.11. We illustrate the above discussion by the following example for n = 5, d =

2, and s = 3.

Example 3.8.5. Let (µ1, x1), (µ2, x2), and (µ3, x3) be three specified eigenpairs, where

µ1 = −25, µ2 = 47, µ3 = 33.45, x1 = [0.4538, 0.4324, 0.8253, 0.0835, 0.1332]T , x2 =

[0.1734, 0.3909, 0.8314, 0.8034, 0.0605]T , and x3 = [0.3993, 0.5269, 0.4168, 0.6569, 0.6280]T .

Let K0 =

[
1.2952 1.3883

1.3883 0.4725

]
and M0 =

[
0.2384 1.4845

1.4845 1.2946

]
.

Now, as per the above discussion on applying the Theorem 3.3.6 along with Remark

3.3.11, we get

δQ0 =



0 0 −0.4031 −0.0917 −0.3548

0 0 −0.4173 0.0179 −0.2725

−0.4031 −0.4173 0.1402 −0.0470 −0.4389

−0.0917 0.0179 −0.0470 0.3998 0.1176

−0.3548 −0.2725 −0.4389 0.1176 −0.2185


,

δQ1 =



0 0 −0.8050 0.1414 −0.9728

0 0 −1.2962 0.5205 −1.6919

−0.8050 −1.2962 0.9672 −0.2943 1.2353

0.1414 0.5205 −0.2943 0.0565 −0.3767

−0.9728 −1.6919 1.2353 −0.3767 1.5871


.
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In particular, we get

K = Q0 + δQ0 =



1.2952 1.3883 −0.4031 −0.0917 −0.3548

1.3883 0.4725 −0.4173 0.0179 −0.2725

−0.4031 −0.4173 0.1402 −0.0470 −0.4389

−0.0917 0.0179 −0.0470 0.3998 0.1176

−0.3548 −0.2725 −0.4389 0.1176 −0.2185


,

M = Q1 + δQ1 =



0.2384 1.4845 −0.8050 0.1414 −0.9728

1.4845 1.2946 −1.2962 0.5205 −1.6919

−0.8050 −1.2962 0.9672 −0.2943 1.2353

0.1414 0.5205 −0.2943 0.0565 −0.3767

−0.9728 −1.6919 1.2353 −0.3767 1.5871


.

Clearly, Kxi − µiMxi = 0 for i = 1 : 3. Also K = KT such that K0 = K([1, d]), and

M = MT such that M0 = M([1, d]).

Remark 3.8.6. Similar to above inverse eigenvalue problems, one can also solve the

symmetric generalized inverse eigenvalue problem of [84] which asks to construct the real

symmetric matrices A0, A1 ∈ Cn×n with the (2d+1) diagonal from a given set of eigenpairs

(µi, xi) for i = 1 : s. Here µi ∈ R, xi ∈ Rn, and s ≤ n, d < n.

To solve the above inverse eigenvalue problem, one can set Ai = Di + δDi, where Di

is the known symmetric matrix with (2d+1) diagonal and δDi is the unknown matrix for

i = 1 : 2. Then applying the Theorem 3.3.6, we get the desired A0 and A1. Note that the

sparsity property of Di helps us to obtain A0, A1 ∈ Cn×n with the (2d+1) diagonal.

For further understanding of the developed backward error theory, we present an

example of the T - symmetric generalized eigenvalue problem.

Example 3.8.7. Let L ∈ L(C3×3) be a T -symmetric matrix pencil of the form (3.1) with

the following information:

A0 =


0 1 −1

1 3− i i

−1 i 1

 , A1 =


−i 0 −1.15

0 3 + i i− 0.5

−1.15 i− 0.5 −1.5

 ,
let (λ1, x1) and (λ2, x2) be two approximate eigenpairs of L, where λ1 = (112.001 +

3i,−119.0066), λ2 = (13.96,−3i); x1 = [0.01125+0.023i, 3.3, 8−i]T , x2 = [1.12, 3i, 2.089]T ,
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and (w0, w1)
T = (1, 1). By the given information, we get that N ε is a full row rank matrix.

Then applying Theorem 3.3.6, the perturbed matrices are given by

δA0 =


0 −1.0155− 0.6838i 0.2128− 0.1161i

−1.0155− 0.6838i −2.6100 + 1.4382i 0.0461− 1.2377i

0.2128− 0.1161i 0.0461− 1.2377i −0.6819 + 0.0436i

 ,

δA1 =


0.1182 + 0.0364i 0 0.4428− 0.3899i

0 −1.0740− 1.2902i −0.1225− 1.0136i

0.4428− 0.3899i −0.1225− 1.0136i 2.0809− 0.0015i

 ,
and the backward error is given by ηSw,F (λ1:2, x1:2,L) = 5.0473.

Remark 3.8.8. From [87, Theorem 3], we get ηSw,F (λ1, x1,L) = 2.0576, and ηSw,F (λ2, x2,L) =

4.0332. Results provided in [87] are not sufficient for obtaining the combined backward error and

perturbed structured matrix pencil, which we can get by our results.

Finally, we present an example for the T -symmetric case when N1 is not a full row

rank matrix.

Example 3.8.9. Let L ∈ L(C3×3) be a T -symmetric matrix pencil such that A0 and A1

are defined in Example 3.8.7. Let (λ1, x1) and (λ2, x2) be two approximate eigenpairs of L,

where λ1 = (1.23 + 2i, 1.001212), λ2 = (1.23 + 2i, 1.001212), x1 = [0.0057, 0.8899, 0.999]T ,

and x2 = [1.25, 2.121, 0.2223]T . By the given information, we get that rank(N1) = 5,

which is not a full row rank. Hence by using Remark 3.3.7, we get

δA0 =


0 −0.7315 + 0.1957i 0.8631− 0.4995i

−0.7315 + 0.1957i −3.5604 + 1.4716i −0.0827− 1.0940i

0.8631− 0.4995i −0.0827− 1.0940i −0.6774− 0.5447i

 ,

δA1 =


0.0941− 0.1964i 0 0.3742 + 0.2019i

0 −1.3298− 0.9645i 0.3789− 0.2744i

0.3742 + 0.2019i 0.3789− 0.2744i 0.0465− 0.3677i

 .
Clearly, we get that δA0 = δAT0 , and δA1 = δAT1 , which also preserve sparsity. In

this case ηSw,F (λ1:2, x1:2,L) = 4.9823. On the other hand, ηSw,F (λ1, x1,L) = 3.5515, and

ηSw,F (λ2, x2,L) = 4.7769.�
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CHAPTER 4

BACKWARD ERROR ANALYSIS OF SPECIFIED

EIGENPAIRS FOR HANKEL AND SYMMETRIC-TOEPLITZ

STRUCTURES

Abstract: In the continuation of the backward error analysis of specified eigenpairs, in

this chapter, we discuss the backward error analysis for Hankel and symmetric-Toeplitz

matrix pencils for one or more specified eigenpairs and its use in solving the inverse

eigenvalue problems.

4.1. Introduction

Hankel and symmetric-Toeplitz matrix pencils arises in many application, see [13, 14,

25, 28]. In particular, a Hankel matrix pencil arises in the shape reconstruction of

the polygon from its moments [30] and a symmetric-Toeplitz matrix pencil appears in

the estimation of sinusoidal signals in noise [74]. The coefficient matrices of Hankel and

symmetric-Toeplitz pencils belong to the class of complex-symmetric matrices. Hankel and

symmetric-Toeplitz matrices have additional properties that complex-symmetric matrices

do not have in general. For a Hankel matrix, each ascending skew-diagonal from left to

right is constant, while for a symmetric-Toeplitz matrix, each diagonal is constant. Zhang

et al. [87] have provided the backward error formula of a single approximate eigenpair for

the complex-symmetric matrix pencils, which also preserves sparsity. As per the knowledge

of the authors, the backward error analysis of Hankel and symmetric-Toeplitz matrix

pencils is not discussed in the literature. Since Hankel and symmetric-Toeplitz matrix

pencils are special kinds of a complex-symmetric matrix pencil; hence one can apply the

backward error results of complex-symmetric matrix pencils on Hankel and symmetric-

Toeplitz matrix pencils. But this provides very unreliable backward error results, because



the existing backward error results of complex-symmetric matrix pencils do not consider

all the properties of these two structures (Hankel and symmetric-Toeplitz) during the

backward error analysis. Hence to obtain the accurate backward error results, we need

to take care of the structures while doing the backward error analysis because negligence

in the structures of these structured matrix pencils’ coefficient matrices provides false

information about the computed solution, which leads to insignificant results.

Inverse eigenvalue problems deal with the construction of perturbed matrices from a

given set of spectral data, which consist of one or more eigenpairs. Backward error analysis

of Hankel and symmetric-Toeplitz matrix pencils plays an important role in providing the

solution of different inverse eigenvalue problems. For example, consider Problem 5.2 of

[21, Chapter 5], which requires the construction of a symmetric-Toeplitz matrix from given

specified eigenpairs. In the same manner one can solve Problem 5.1 of [21, Chapter-5],

which requires the construction of a Hankel matrix from a given set of eigenpairs (see, for

example, [19, 61, 79, 82] for more information on inverse eigenvalue problems). Though

in [20] Moody and Melissa have solved Problem 5.2 of [21, Chapter 5] for two specified

eigenpairs in a very descriptive manner, in this chapter, we are interested in solving this

problem for two or more specified eigenpairs. Moving further, we find that different

authors have constructed the matrix pencil from a given set of eigenpairs, which is known

as the generalized inverse eigenvalue problem. For example, in [86] the authors have

solved the generalized inverse eigenvalue problems for Hermitian and J-Hamiltonian/skew-

Hamiltonian matrices, where J ∈ Rn×n such that J2 = −In (see, [33, 34, 78, 84] for

more information on generalized inverse eigenvalue problems). In this chapter, we are also

interested in solving the generalized inverse eigenvalue problems for symmetric-Toeplitz

and Hankel matrices.

Hence for obtaining the accurate backward error results and solving the above inverse

eigenvalue problems, we need to develop the backward error theory for one or more spec-

ified eigenpairs. In particular, for a given set of s (s ≤ n) approximate eigenpairs (λp, xp)

of an n-by-n matrix pencil, where λp := (λp0, λp1) ∈ C2 \ {(0, 0)} and 0 6= xp ∈ Cn for

p = 1 : s, we find the smallest structured perturbed matrix pencil with respect to the

Frobenius norm so that given specified eigenpairs become exact eigenpairs of an appro-

priately perturbed problem.
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4.2. Matrix pencils and preliminaries

Throughout this chapter, L be a matrix pencil of the form (2.1) defined in the earlier

chapters. Next, we define the Hankel and symmetric-Toeplitz matrix pencils.

Definition 4.2.1. A matrix pencil L of the form (2.1) is said to be Hankel if both the

matrices associated with it are Hankel.

Definition 4.2.2. A matrix pencil L of the form (2.1) is said to be symmetric-Toeplitz

matrix pencil if both the matrices associated with it are symmetric-Toeplitz.

Definition 4.2.3. A vector v ∈ Cn is called symmetric if Jev = v and skew-symmetric

if Jev = −v, where Je is the exchange matrix, i.e., ones on the anti-diagonal and zero

elsewhere.

Throughout this chapter, w := (w0, w1)
T ∈ R2 be a nonnegative vector such that

w0, w1 are nonnegative real numbers. Define w−1 := (w−10 , w−11 )T and w−1i = 0 for wi =

0. Next, we recall the definitions of unstructured and structured backward errors of s-

approximate eigenpairs for matrix pencils.

Definition 4.2.4. Consider λ1:s := {λ1, λ2, . . . , λs} and x1:s := {x1, x2, . . . , xs}, where

λi ∈ C2 \ {(0, 0)}, and 0 6= xi ∈ Cn for i = 1 : s. Let (λi, xi) be s-approximate eigenpairs

of a matrix pencil L of the form (2.1). Then unstructured and structured backward errors

of s-approximate eigenpairs (λi, xi), i = 1 : s, are defined by

ηw,F (λ1:s, x1:s,L) := inf{|||δL|||w,2, (L(λi) + δL(λi))xi = 0; for 1 : s},

and

ηSw,F (λ1:s, x1:s,L) := inf{|||δL|||w,2, δL ∈ S, (L(λi) + δL(λi))xi = 0; for 1 : s},

respectively, where δL ∈ L(Cn×n) is of the form (2.1), and |||δL|||w,2 is given by (3.2). Here

S denotes the set of structures, and we consider S := { Hankel, symmetric-Toeplitz }.

Remark 4.2.5. For s = 1 in the above definitions correspond to unstructured and struc-

tured backward errors for a single eigenpair (see, [1] for more on backward error of a

single eigenpair).

Before moving towards the main results of this chapter first, we establish some im-

portant results related to Hankel and symmetric-Toeplitz matrices.
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Lemma 4.2.6. Let δA ∈ Cn×n be a Hankel matrix generated by [δa11, . . . , δa1n, δa2n, . . . , δann]T .

Let x = [x1, x2, . . . , xn]T ∈ Cn and b = [b1, b2, . . . , bn]T ∈ Cn. Then δAx = b is equivalent to

X(x,Hank)vec(δA,Hank) = b, where X(x,Hank) ∈ Cn×2n−1 is given by

X(x,Hank) =



x1 x2 . . . . . . xn 0 . . . . . . 0

0 x1 x2 . . .
... xn 0 . . .

...
...

. . . . . . . . .
...

...
. . . . . .

...
... . . .

. . . . . . . . .
... . . .

. . . 0

0 . . . . . . 0 x1 x2 . . . . . . xn


.

Proof. Consider δAx = b, we get



δa11 δa12 . . . δa1(n−1) δa1n

δa12 δa13 . . . δa1n δa2n
...

...

δa1(n−2) δa(n−2)n

δa1(n−1) . . . . . . δa(n−2)n δa(n−1)n

δa1n . . . δa(n−2)n δa(n−1)n δann




x1

x2

...

xn

 =


b1

b2

...

bn

 .

By expanding the above system, we get the following n equations:

δa11x
1 + δa12x

2 + . . .+ δa1(n−1)x
(n−1) + δa1nx

n = b1,

δa12x
1 + δa13x

2 + . . .+ δa1nx
(n−1) + δa2nx

n = b2,

. . . . . . . . . . . .

. . . . . . . . . . . .

δa1nx
1 + δa2nx

2 + . . .+ δa(n−1)nx
(n−1) + δannx

n = bn.

Further rearranging these equations by writing δA in vector form, we getX(x,Hank)vec(δA,Hank) =

b, which is required. �

Lemma 4.2.7. Let δA be a symmetric-Toeplitz matrix generated by [δa1, δa2, . . . , δan]T .

Let x and b be defined as in Lemma 4.2.6. Then δAx = b is equivalent to the following

system

X(x,symToep)vec(δA, symToep) = b,
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where X(x,symToep) ∈ Cn×n is given by

X(x,symToep) =



x1 0 0 . . . . . . 0

x2 x1 0 . . . . . . 0
... x2 x1 . . . . . . 0
... 0 x2

. . . . . . 0
... 0

...
. . . . . . 0

xn xn−1 xn−2 . . . x2 x1


+



0 x2 x3 . . . . . . xn

0 x3 x4 . . . xn 0
...

...
... . . . . . .

...
...

... xn . . . . . .
...

... xn 0 . . . . . .
...

0 0 0 . . . . . . 0


.

Proof. The proof is similar to Lemma 4.2.6. �

After establishing the preliminary results next, we present the main results of the

chapter in the following sections. Next, we discuss the backward error analysis for Hankel

matrix pencils.

4.3. Backward error analysis of Hankel matrix pencils

In this section, we derive the backward error formula of specified eigenpairs for a Han-

kel matrix pencil. For this derivation, we need the following matrix M whose construction

is given as follows: Let w = (w0, w1)
T be a nonnegative weight vector. Define

M :=


M10 M11

M20 M21

...
...

Ms0 Ms1

 ∈ Csn×4n−2,

where Mpj = w−1j λpjM(j, xp,Hank) ∈ Cn×2n−1 for p = 1 : s, j = 0, 1. Construction of

M(j, xp,Hank) will be done in the following manner using the approximate eigenpairs

(λp, xp) of Hankel matrix pencil L ∈ L(Cn×n) of the form (2.1), where (λp0, λp1) = λp ∈
C2 \ {(0, 0)}, 0 6= xp ∈ Cn. M(j, xp,Hank) ∈ Cn×2n−1 is given by

(4.1) M(j, xp,Hank) = X(xp,Hank)diag (vec(sgnAj ◦ CH ,Hank)) ,
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where X(xp,Hank) is given by Lemma 4.2.6,

vec(sgnAj ◦ CH ,Hank) =



1√
1
sgn aj,11

1√
2
sgn aj,12

...
1√
n−1sgn aj,1(n−1)

1√
n
sgn aj,1n

1√
n−1sgn aj,2n

...
1√
2
sgn aj,(n−1)n
1√
1
sgn aj,nn



, and

CH , DH are Hankel matrices of size n, generated by the vectors [ 1√
1
, 1√

2
, . . . , 1√

n
, 1√

n−1 , . . . ,
1√
2
, 1√

1
]T ,

[
√

1,
√

2, . . . ,
√
n,
√
n− 1, . . . ,

√
2,
√

1]T , respectively. Before moving towards the derivation of

the main result of this section, we introduce the following lemma.

Lemma 4.3.1. Let A, δA ∈ Cn×n be Hankel matrices generated by [a11, . . . , a1n, a2n, . . . , ann]T

and [δa11, . . . , δa1n, δa2n, . . . , δann]T , respectively. Let x = [x1, x2, . . . , xn]T ∈ Cn and

b = [b1, b2, . . . , bn]T ∈ Cn. Then we get that (δA ◦ sgnA ◦ CH ◦DH)x = b is equivalent to

X(x,Hank)diag(vec(sgnA ◦ CH ,Hank))φH = b, where X(x,Hank) is defined by Lemma 4.2.6,

φH = vec(δA◦sgnA◦DH ,Hank), and CH , DH are defined in the beginning of this Section.

Proof. We have δA ◦ sgnA = (δaijsgn aij). On considering (δA ◦ sgnA ◦ CH ◦DH)x = b,

we get the following n equations similar to Lemma 4.2.6

δa11sgn a11x
1 + (
√

2δa12)(
sgn a12√

2
)x2 + . . .+ (

√
nδa1n)( sgn a1n√

n
)xn = b1,

(
√

2δa12)(
sgn a12√

2
)x1 + (

√
3δa13)(

sgn a13√
3

)x2 + . . .+ (
√
n− 1δa2n)( sgn a2n√

n−1 )xn = b2,

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

(
√
nδa1n)( sgn a1n√

n
)x1 + (

√
n− 1δa2n)( sgn a2n√

n−1 )x2 + . . .+ δannsgn annx
n = bn.

Further rearrangement gives X(x,Hank)diag(vec(sgnA ◦ CH ,Hank))φH = b, which is re-

quired. �

Next, we derive the main result of this section.

Theorem 4.3.2. Let L ∈ L(Cn×n) be a homogeneous Hankel matrix pencil of the form

(2.1). Let (λp, xp) be s (s ≤ n) approximate eigenpairs of L, where λp = (λp0, λp1) ∈
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C2 \ {(0, 0)}, and 0 6= xp ∈ Cn. for p = 1 : s. Set r := [rT1 , r
T
2 , . . . , r

T
s ]T , where rp =

−L(λp)xp for p = 1 : s. If M (defined in the beginning of this section) is a full row rank

matrix, then there exists a Hankel matrix pencil δL ∈ L(Cn×n) of the form δL(α, β) :=

αδA0 + βδA1 such that (L(λp) + δL(λp))xp = 0 for p = 1 : s, where generator vectors

[δaj,11, . . . , δaj,1n, δaj,2n, . . . , δaj,nn]T of δAj, for j = 0, 1, are given by

δaj,tq =
w−2j

|t− q|+ 1
(sgn aj,tq)

s∑
p=1

|t−q|+1∑
i=1

λpjx
q−(i−1)
p eTi+t−1+(p−1)n(MMH)−1r,

where ei+t−1+(p−1)n ∈ Csn and 1 ≤ t, q ≤ n. Further, the backward error is given as follows:

ηSw,F (λ1:s, x1:s,L) = ‖MH(MMH)−1r‖F .

If M is not a full row rank matrix but rank(M) = rank([M, r]), then δAj and backward

error can be obtained by using singular value decomposition of M. In this case the backward

error is given by ηSw,F (λ1:s, x1:s,L) = ‖V Σ+UHr‖F , where U, V are unitary matrices of

appropriate sizes and Σ is a matrix containing the singular values of M.

Proof. Corresponding to a Hankel matrix pencil L(α, β) := αA0 + βA1, where Aj for

j = 0, 1 are generated by [aj,11, aj,12, . . . , aj,1n, aj,2n, . . . , aj,nn]T , and for given approximate

eigenpairs (λp, xp), we need to construct a Hankel matrix pencil δL such that (L(λp) +

δL(λp))xp = 0 which preserves the sparsity. By using Proposition 1.2.23 for constructing

Hankel δAj, we consider the following generating vectors of length (2n− 1):

[δaj,11, δaj,12, . . . , δaj,1n, δaj,2n, . . . , δaj,nn]T , for j = 0, 1.

We have rp = −L(λp)xp for p = 1 : s. Then rp = δL(λp)xp =
∑1

j=0 λpjδAjxp. For main-

taining sparsity, we replace δAj by (δAj ◦ sgnAj). Hence rp =
∑1

j=0 λpj(δAj ◦ sgnAj)xp =∑1
j=0 λpj(δAj ◦ sgnAj ◦DH ◦ CH)xp. We get

(4.2) rp =
1∑
j=0

w−1j wjλpj(δAj ◦ sgnAj ◦DH ◦ CH)xp.

On rearranging (4.2) by using Lemma 4.3.1, we get the following system

(4.3) rp =
1∑
j=0

w−1j λpjX(xp,Hank)diag (vec(sgnAj ◦ CH ,Hank)) ∆j, where
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(4.4) ∆j = wjvec(δAj◦sgnAj◦DH ,Hank) =



√
1wjδaj,11sgn aj,11√
2wjδaj,12sgn aj,12

...
√
n− 1wjδaj,1(n−1)sgn aj,1(n−1)
√
nwjδaj,1nsgn aj,1n

√
n− 1wjδaj,2nsgn aj,2n

...
√

2wjδaj,(n−1)nsgn aj,(n−1)n√
1wjδaj,nnsgn aj,nn



, j = 0, 1.

Using Equation 4.1 and Equation 4.3, we get

(4.5) rp =
1∑
j=0

w−1j λpjM(j, xp,Hank)∆j =
1∑
j=0

Mpj∆j = Mp∆,

where Mp =
[
Mp0 Mp1

]
, and ∆ =

[
∆T

0 ∆T
1

]T
. Using rp = Mp∆ for p = 1 : s, we

get the following system of equations: r1 = M1∆ =
[
M10 M11

] [∆0

∆1

]
, r2 = M2∆ =

[
M20 M21

] [∆0

∆1

]
, . . . , rs = Ms∆ =

[
Ms0 Ms1

] [∆0

∆1

]
. Writing these s equations in the

combined form, we get

(4.6)


r1

r2
...

rs

 =


M10 M11

M20 M21

...
...

Ms0 Ms1


[

∆0

∆1

]
.

By Equation 4.6, we get r = M∆, under the assumption that M is a full row rank matrix,

the minimum norm solution of r = M∆ is given by

(4.7) ∆ = MH(MMH)−1r.

Now expanding the first MH in (4.7) and using (4.4), we get the desired entries of per-

turbed matrices. The backward error is given by ηSw,F (λ1:s, x1:s,L) = |||δL|||w,F , where

|||δL|||w,F =
√
w2

0‖δA0‖2F + w2
1‖δA1‖2F .

Since ∆ is a minimum norm solution, we get |||δL|||w,F = ‖∆‖F = ‖MH(MMH)−1r‖F is

also minimum. Hence ηSw,F (λ1:s, x1:s,L) = ‖∆‖F = ‖MH(MMH)−1r‖F . Now we need to
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show that (L(λp) + δL(λp))xp = 0 for p = 1 : s. For this consider
(L(λ1) + δL(λ1))x1

(L(λ2) + δL(λ2))x2
...

(L(λs) + δL(λs))xs

 =


−r1 + δL(λ1)x1

−r2 + δL(λ2)x2
...

−rs + δL(λs)xs

 =


−r1
−r2

...

−rs

+


M1

M2

...

Ms

∆ =


−r1
−r2

...

−rs

+


r1

r2
...

rs

 =


0

0
...

0

 ,

where we use δL(λp))xp = Mp∆ for p = 1 : s, Mp =
[
M1

T M2
T . . . Ms

T
]T
, and

∆ = MH(MMH)−1r.�

Remark 4.3.3. When M is not a full row rank matrix but (4.6) is consistent, then using

singular value decomposition, we get M = UΣV H . Since system (4.6) is consistent, we get

at least one solution of the system (4.6), and using Theorem 1.2.6, the minimum norm

solution of r = M∆ is given by ∆ = V Σ+UHr, and ηSw,F (λ1:s, x1:s,L) = ‖M+r‖F , where

M+ = V Σ+UH . Clearly by using ∆ = V Σ+UHr, we can construct the desired δA0 and

δA1. Here U, V are unitary matrices of appropriate sizes and Σ is a matrix containing the

singular values of M. We can not get the perturbed matrix entries in explicit form because

singular value decomposition of M is not known explicitly.

After obtaining the backward error result for Hankel matrix pencils, in the next sec-

tion, we discuss the backward error analysis for symmetric-Toeplitz matrix pencils.

4.4. Backward error analysis of specified eigenpairs for symmetric-

Toeplitz matrix pencils

This section deals with the backward error analysis of symmetric-Toeplitz matrix pen-

cils. Similar to the previous section, we construct the matrix M for the symmetric-

Toeplitz case in the following manner: Let M :=


M10 M11

M20 M21

...
...

Ms0 Ms1

 ∈ Csn×2n, where Mpj =

w−1j λpjM(j, xp, symToep) ∈ Cn×n, for p = 1 : s, j = 0, 1. Construction ofM(j, xp, symToep)

can be done in the following manner using the approximate eigenpair (λp, xp) of a symmetric-

Toeplitz L ∈ L(Cn×n) of the form (2.1) with nonnegative weight vector w = (w0, w1)
T ,
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where (λp0, λp1) = λp ∈ C2 \ {(0, 0)}, 0 6= xp ∈ Cn. M(j, xp, symToep) ∈ Cn×n is given by

(4.8) M(j, xp, symToep) = X(xp,symToep)diag(vec(sgnAj ◦ Cst, symToep)),

where X(xp,symToep) is given by Lemma 4.2.7 and

diag (vec(sgnAj ◦ Cst, symToep)) = diag

(
[

1√
n

sgn aj,1,
1√

2
√
n− 1

sgnaj,2, . . . ,
1√
2
√

1
sgn aj,n]

)
,

with Cst, Dst are symmetric-Toeplitz matrices of size n, generated by vectors

[
1√
n
,

1√
2
√
n− 1

, . . . ,
1√
2
√

2
,

1√
2
√

1
]T and [

√
n,
√

2
√
n− 1, . . . ,

√
2
√

2,
√

2
√

1]T ,

respectively.

Lemma 4.4.1. Let A and δA ∈ Cn×n be symmetric-Toeplitz matrices generated by

[a1, a2, . . . , an]T , and [δa1, δa2, . . . , δan]T , respectively. Let x = [x1, x2, . . . , xn]T ∈ Cn

and b = [b1, b2, . . . , bn]T ∈ Cn. Then (δA ◦ sgnA ◦ Cst ◦ Dst)x = b is equivalent to

X(x,symToep)diag(vec(sgnA◦Cst, symToep))φst = b, where X(x,symToep) is defined by Lemma

4.2.7, φst = vec(δA ◦ sgnA ◦ Dst, symToep) and Cst, Dst are defined in the beginning of

this Section.

Proof. The proof is similar to Lemma 4.3.1. �

Now using the above construction and Lemma 4.4.1, we derive the following main

theorem of this section.

Theorem 4.4.2. Let L ∈ L(Cn×n) be a symmetric-Toeplitz matrix pencil of the form

(2.1). Suppose (λp, xp) are s (s ≤ n) approximate eigenpairs of L for p = 1 : s, where

λp = (λp0, λp1) ∈ C2 \ {(0, 0)}, and 0 6= xp ∈ Cn. Set r := [rT1 , r
T
2 , . . . , r

T
s ]T , where

rp = −L(λp)xp for p = 1 : s. If M (defined in the beginning of this section) is a full

row rank matrix, then there exists a symmetric-Toeplitz matrix pencil δL of the form

δL(α, β) := αδA0 + βδA1 such that (L(λp) + δL(λp))xp = 0 for p = 1 : s, where generator

vectors [δaj,1, δaj,2, . . . , δaj,n]T of δAj, for j=0,1, are given by

δaj,q =


w−2
j

n
(sgn aj,q)

∑s
p=1

∑n−q+1
i=1 λpjx

i
pe
T
i+q−1+(p−1)n(MMH)−1r, for q = 1,

w−2
j

2(n−q+1)
(sgn aj,q)

∑s
p=1

∑n−q+1
i=1 [λpjx

i
pe
T
i+q−1+(p−1)n+

xq+i−1p eTi+(p−1)n](MMH)−1r, for q = 2 : n,

where ei+q−1+(p−1)n ∈ Csn, ei+(p−1)n ∈ Csn. Further, the backward error is given by

ηSw,F (λ1:s, x1:s,L) = ‖MH(MMH)−1r‖F .
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When M is not a full row rank matrix but rank(M) = rank([M, r]), then δAj and

backward error are obtained by using the singular value decomposition of M. In this case

the backward error is given by ηSw,F (λ1:s, x1:s,L) = ‖V Σ+UHr‖F , where U, V are unitary

matrices of appropriate sizes and Σ is a matrix containing the singular values of M.

Proof. Construction of the backward error formula and perturbed matrices for a symmetric-

Toeplitz matrix pencil can be done similar to Theorem 4.3.2. Let sparse symmetric-Toeplitz

Aj be generated by vectors [aj,1, aj,2, . . . , aj,n]T for j = 0, 1. Using Proposition 1.2.24, for

constructing sparse symmetric-Toeplitz δAj, we take the following generator vectors of

length n:

[δaj,1, δaj,2, . . . , δaj,n]T , for j = 0, 1.

Following the steps of Theorem 4.3.2, we get

(4.9) rp =
1∑
j=0

w−1j wjλpj(δAj ◦ sgnAj ◦Dst ◦ Cst)xp,

rearranging (4.9) by using Lemma 4.4.1, we get

(4.10) rp =
1∑
j=0

w−1j λpjX(xp,symToep)diag (vec(sgnAj ◦ Cst, symToep)) ∆j, where

(4.11)

∆j := wjvec(δAj ◦ sgnAj ◦Dst, symToep) =



√
nwjδaj,1sgn aj,1√

2
√
n− 1wjδaj,2sgn aj,2

...
√

2
√

2wj aj,(n−1)sgn aj,(n−1)√
2
√

1wjδ aj,nsgn aj,n


, j = 0, 1.

Similar to Theorem 4.3.2, using Equation 4.8 and Equation 4.10, we get r = M∆ whose

minimum norm solution, when M has full row rank, is given by

(4.12) ∆ = MH(MMH)−1r,

where ∆ =
[
∆T

0 ∆T
1

]T
. By (4.11) and (4.12), we get the desired perturbation entries

and backward error similar to the previous theorem. �

Remark 4.4.3. Similar to Remark 4.3.3, when M is not a full row rank matrix, but

r = M∆ is consistent, then using singular value decomposition, we get M = UΣV H .

Using Theorem 1.2.6, the minimum norm solution of r = M∆ is given by ∆ = V Σ+UHr,
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and ηSw,F (λ1:s, x1:s,L) = ‖V Σ+UHr‖F . Here U, V are unitary matrices of appropriate sizes,

and Σ is a matrix containing the singular values of M.

4.5. Discussion on inverse eigenvalue problems

In this section, we establish the results for two inverse eigenvalue problems. First, we

obtain the result for the symmetric-Toeplitz inverse eigenvalue problem, which comes as a

corollary of Theorem 4.4.2. By this corollary, we can solve the symmetric-Toeplitz inverse

eigenvalue problem.

Corollary 4.5.1. Let A ∈ Cn×n be a symmetric-Toeplitz matrix generated by [a1, a2, . . . , an]T .

Suppose (µp, vp) are s (s ≤ n) approximate eigenpairs of A for p = 1 : s, where µp ∈ C,
and 0 6= vp ∈ Cn. Set r := [rT1 , r

T
2 , . . . , r

T
s ]T , where rp = −(A − µpIn)vp for p = 1 : s. If

M (defined in the beginning of section 4.4) is a full row rank matrix, then there exists a

symmetric-Toeplitz δA such that (A + δA − µpIn)vp = 0 for p = 1 : s, where generator

vector [δa1, δa2, . . . , δan]T of δA, is given by

δaq =


1
n
(sgn aq)

∑s
p=1

∑n−q+1
i=1 vipe

T
i+q−1+(p−1)n(MMH)−1r, for q = 1,

1
2(n−q+1)

(sgn aq)
∑s

p=1

∑n−q+1
i=1 [vipe

T
i+q−1+(p−1)n+

vq+i−1p eTi+(p−1)n](MMH)−1r, for q = 2 : n.

Further, the backward error is given by ηSw,F (µ1:s, v1:s,L) = ‖MH(MMH)−1r‖F .

When M is not a full row rank matrix but rank(M) = rank([M, r]), then δA and

backward error are obtained by the singular value decomposition of M. In this case the

backward error is given by ηSw,F (µ1:s, v1:s,L) = ‖V Σ+UHr‖F , where U, V are unitary ma-

trices of appropriate sizes and Σ has the singular values of M.

Proof. Substituting A0 = A,A1 = In, w = (1, 0)T , and λp0 = 1, λp1 = −µp, xp = vp for

p = 1 : s in Theorem 4.4.2, we get the desired result. �

Remark 4.5.2. We observe that for establishing the above corollary, we use the fact

that identity matrix In, is one type of symmetric-Toeplitz matrix. On the other hand,

In is not a Hankel matrix. Hence result for the Hankel inverse eigenvalue problem is

not a straight forward consequence of Theorem 4.3.2. For the Hankel case, we state the

following theorem whose proof follows similar to the proof of Theorem 4.3.2.
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Before stating the theorem, we define M :=


M10

M20

...

Ms0

 ∈ Csn×2n−1, where Mp0 =

µpM(0, vp,Hank) ∈ Cn×2n−1 for p = 1 : s. Construction of Mp0 can be obtained by

(4.1) using the approximate eigenpairs (µp, vp) of a given Hankel matrix A.

Theorem 4.5.3. Let A ∈ Cn×n be a Hankel matrix generated by [a11, . . . , a1n, a2n, . . . , ann]T .

Let (µp, vp) be s (s ≤ n) approximate eigenpairs of A for p = 1 : s, where µp ∈ C, and

0 6= vp ∈ Cn. Set r := [rT1 , r
T
2 , . . . , r

T
s ]T , where rp = −(A − µpIn)vp for p = 1 : s. If

M (defined as above) is a full row rank matrix, then there exists a Hankel δA such that

(A+δA−µpIn)vp = 0 for p = 1 : s, where generator vector [δa11, . . . , δa1n, δa2n, . . . , δann]T

of δA is given by

δatq =
1

|t− q|+ 1
(sgn atq)

s∑
p=1

|t−q|+1∑
i=1

xq−(i−1)p eTi+t−1+(p−1)n(MMH)−1r,

where ei+t−1+(p−1)n ∈ Csn, and 1 ≤ t, q ≤ n. Further, the backward error is given by

ηSw,F (µ1:s, v1:s,L) = ‖MH(MMH)−1r‖F .

When M is not a full row rank matrix but rank(M) = rank([M, r]), then δA and

backward error are obtained by the singular value decomposition of M. In this case back-

ward error is given by ηSw,F (µ1:s, v1:s,L) = ‖V Σ+UHr‖F , where U, V are unitary matrices

of appropriate sizes and Σ is a matrix having the singular values of M.

Proof. Following the steps of Theorem 4.3.2 along with w = (1, 0)T , λp0 = 1, λp1 = −µp,
and xp = vp for p = 1 : s, we get the desired result. �

4.6. Numerical examples and solution of inverse eigenvalue prob-

lems

In this section, we illustrate our developed results and their necessity with numerical

examples using MATLAB software. In the first three examples, we obtain the backward

error of a single approximate eigenpair and corresponding perturbed matrix pencil for

Hankel and symmetric-Toeplitz structures. For convenience, we take weight vector w =

(1, 1)T for first three examples.
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Example 4.6.1. Let L ∈ L(C3×3) be a Hankel matrix pencil of the form (2.1), where

Hankel matrices A0, A1 are given by

A0 =


1.02 0 5.3

0 5.3 i

5.3 i 1 + i

 , A1 =


−12.78 6.38i 0

6.38i 0 59 + 4i

0 59 + 4i 79− 8i

 .
Let (λ1, x1) be an approximate eigenpair of L, where λ1 = (7124.001+3i,−197.0066+369i)

and x1 = [1 + i, 3 + i, 8− 33i]T . Then using the results of [87], we get

δA0 =


0.2196 + 0.3727i 0 −5.2945− 0.0335i

0 −0.8354− 0.3170i 1.8233− 4.3400i

−5.2945− 0.0335i 1.8233− 4.3400i 0.7269− 5.2990i

 ,

δA1 =


0.0132− 0.0217i 0.0306− 0.0053i 0

0.0306− 0.0053i 0 −0.2752 + 0.0255i

0 −0.2752 + 0.0255i −0.2946 + 0.1088i

 .
ηSw,F (λ1, x1,L) = 11.4120. On the other hand, using Theorem 4.3.2 for s = 1, we get

δA0 =


0.3277 + 0.5268i 0 −5.2866− 0.0341i

0 −5.2866− 0.0341i 1.8149− 3.9261i

−5.2866− 0.0341i 1.8149− 3.9261i 0.7654− 5.2953i

 ,

δA1 =


0.0182− 0.0315i 0.0397− 0.0132i 0

0.0397− 0.0132i 0 −0.2536 + 0.0145i

0 −0.2536 + 0.0145i −0.2955 + 0.1067i

 .
ηSw,F (λ1, x1,L) = 12.2681. Using the results of [87], perturbed matrices can only preserve

the complex-symmetric structure, but by our results, perturbed matrices can preserve the

Hankel structure.

Example 4.6.2. Let L ∈ L(C3×3) be a symmetric-Toeplitz matrix pencil of the form

(2.1), where symmetric-Toeplitz A0, A1 are given by

A0 =


0 1.3 −1 + i

1.3 0 1.3

−1 + i 1.3 0

 , A1 =


22 + 3i 0 −1− 2i

0 22 + 3i 0

−1− 2i 0 22 + 3i

 .
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Let (λ1, x1) be an approximate eigenpair of L, where λ1 = (112.23 + 288i, 1845.001212)

and x1 = [11.25− 0.7i, 2.121 + 3i, 0.2223]T . Then using the results of [87], we get

δA0 =


0 −4.9231 + 0.6987i 0.3448− 0.0096i

−4.9231 + 0.6987i 0 −0.0528− 0.0975i

0.3448− 0.0096i −0.0528− 0.0975i 0

 ,

δA1 =


−22.0811− 2.8157i 0 0.8010 + 1.8970i

0 −20.1161− 3.0188i −0

0.8010 + 1.8970i 0 0.0448 + 0.0727i

 .
ηSw,F (λ1, x1,L) = 31.1042. Using Theorem 4.4.2 for s = 1, we get

δA0 =


0 −1.3− 0i 0.3901− 0.0608i

−1.3− 0i 0 −1.3− 0i

0.3901− 0.0608i −1.3− 0i 0

 ,

δA1 =


−22− 3i 0 1.1837 + 2.0381i

0 −22− 3i −0

1.1837 + 2.0381i 0 −22− 3i

 .
ηSw,F (λ1, x1,L) = 38.6934. We can also see that (L(λ1) + δL(λ1))x1 = 0.

Remark 4.6.3. Though the backward error obtained by our method is higher than the

backward error of [87] but it is the actual backward error when we consider additional

properties during backward error analysis of Hankel and symmetric-Toeplitz matrix pen-

cils. Matrices δA0 and δA1 obtained by our method respect the required structures which

are not possible by [87]. Hence the development of our results is very much essential to

understand the real structured backward error analysis.

Finally, for a Hankel matrix pencil, when M is not a full row rank matrix, but system

(4.6) is consistent, we illustrate this situation by an example. In this case, using Remark

4.3.3, we get the required backward error and perturbed matrix pencil which preserve the

sparsity.

Example 4.6.4. Let L ∈ L(C3×3) be a Hankel matrix pencil of the form (2.1), where

Hankel matrices A0 and A1 are given by

A0 =


0 0 11.0000

0 11.0000 0 + 1.0000i

11.0000 0 + 1.0000i 0

 , A1 =


0 0 0

0 0 59.0000 + 4.0000i

0 59.0000 + 4.0000i 79.0000− 8.0000i

 .
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Let (λ1, x1) be an approximate eigenpair of L, where λ1 = (7124.001+3i,−197.0066+369i),

x1 = [1, 1.2 + i, 0]T . Clearly, M is not a full row rank matrix as rank(M) = 2 < 3. Then

using the results of [87], we get

δA0 =


0 0 −1.4061− 0.8403i

0 −11.0000− 0.0000i −2.5277 + 0.3977i

−1.4061− 0.8403i −2.5277 + 0.3977i 0

 ,

δA1 =


0 0 0

0 0 0.0904 + 0.1200i

0 0.0904 + 0.1200i 0

 .
ηSw,F (λ1, x1,L) = 11.8113. On the other hand, our results provide the following perturbed

matrices

δA0 =


0 0 −11.0000− 0.0000i

0 −11.0000− 0.0000i 1.8312− 3.9326i

−11.0000− 0.0000i 1.8312− 3.9326i 0

 ,

δA1 =


0 0 0

0 0 −0.2543 + 0.0138i

0 −0.2543 + 0.0138i 0

 .
The backward error is given by ηSw,F (λ1, x1,L) = 20.0192. Clearly, our method preserves

the Hankel structure.

Our target is to solve [21, Problem 5.2], which asks to construct a symmetric-Toeplitz

matrix T ∈ Cn×n from a given set of real orthonormal eigenvectors {v1, v2, . . . , vs}, where

each vi is symmetric or skew-symmetric, and a set of real numbers {µ1, µ2, . . . , µs}. Before

discussing that how we apply Corollary 4.5.1 to get the desired symmetric-Toeplitz matrix

T, we define the matrix of ones,

(4.13) Hn =



1 1 . . . . . . 1

1 1 . . . . . . 1
...

...
. . .

...
...

...
. . .

...

1 1 . . . . . . 1


.

To apply the Corollary 4.5.1, we need matrix A. Since Hn is a symmetric-Toeplitz matrix,

we set A = Hn be an arbitrary symmetric-Toeplitz matrix in Corollary 4.5.1. Then
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T = A+ δA is the desired symmetric-Toeplitz matrix. Now, we illustrate this problem for

n = 3 and two specified eigenpairs (s = 2).

Example 4.6.5. Let (µ1, v1) and (µ2, v2) be two specified eigenpairs, where µ1 = −20, µ2 =

89.23 and v1 = [ 1√
3
, 1√

3
, 1√

3
]T , v2 = [− 1√

2
, 0, 1√

2
]T . Construct symmetric-Toeplitz T ∈ C3×3

such that Tvi = µivi for i = 1, 2. By setting A = H3, and substituting the values of

µ1, µ2, v1, v2 in Corollary 4.5.1, we get δA as follows:

δA =


51.8200 −37.4100 −37.4100

−37.4100 51.8200 −37.4100

−37.4100 −37.4100 51.8200

 . Then

T = A + δA =


52.8200 −36.4100 −36.4100

−36.4100 52.8200 −36.4100

−36.4100 −36.4100 52.8200

 , is the desired symmetric-Toeplitz

matrix.

Also Tv1 = µ1v1 =


−11.5470

−11.5470

−11.5470

 , and Tv2 = µ2v2 =


−63.0951

0

63.0951

 .
Remark 4.6.6. One can set arbitrary symmetric-Toeplitz A instead of Hn to get the

required symmetric-Toeplitz matrix T.

Next target is to solve [21, Problem 5.1], which asks to construct a Hankel matrix

G ∈ Cn×n from a set of real orthonormal eigenvectors {v1, v2, . . . , vs}, and a set of real

numbers {µ1, µ2, . . . , µs}. Since Hn is also a Hankel matrix, hence similar to symmetric-

Toeplitz case, we set A = Hn in Theorem 4.5.3 to obtain the desired G = A + δA. Now,

we illustrate this problem for n = 3 and two specified eigenpairs (s = 2).

Example 4.6.7. Let (µ1, v1) and (µ2, v2) be two specified eigenpairs, where µ1 = 10.3, µ2 =

−53.27 and v1 = [ 1√
2
, 0, 1√

2
]T , v2 = [−2

3
, 1
3
, 2
3
, ]T . Construct Hankel G ∈ C3×3 such that

Gvi = µivi for i = 1, 2. By setting A = H3, and substituting the values of µ1, µ2, v1, v2 in

Theorem 4.5.3, we get δA as follows:

δA =


−17.4818 19.0129 25.7818

19.0129 25.7818 −21.0129

25.7818 −21.0129 −17.4818

 .
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Then

G = A+ δA =


−16.4818 20.0129 26.7818

20.0129 26.7818 −20.0129

26.7818 −20.0129 −16.4818

 , is the desired Hankel matrix.

Also Gv1 = µ1v1 =


7.2832

0

7.2832

 , and Gv2 = µ2v2 =


35.5133

−17.7567

−35.5133

 . Similar to the matrix

inverse eigenvalue problem, one can solve the generalized inverse eigenvalue problem. We

illustrate the generalized inverse eigenvalue problem for symmetric-Toeplitz structure by

the following example.

Example 4.6.8. Let (λ1, x1) and (λ2, x2) be two specified eigenpairs, where λ1 = (1,−25+

i), λ2 = (1 + i, 9.89) and x1 = [ 1√
2
, 0, 1√

2
]T , x2 = [0, 1, 0]T . Construct symmetric-Toeplitz

matrices T0, T1 ∈ C3×3 such that λi0T0xi + λi1T1xi = 0 for i = 1, 2. For constructing T0

and T1, set A0 = A1 = H3, in Theorem 4.4.2. Then using the given eigenpairs, δA0 and

δA1 are given by

δA0 =


−0.0498 + 0.0339i −1.0000− 0.0000i 0.0329− 0.0055i

−1.0000− 0.0000i −0.0498 + 0.0339i −1.0000− 0.0000i

0.0329− 0.0055i −1.0000− 0.0000i −0.0498 + 0.0339i

 ,

δA1 =


−1.0926− 0.0995i −1.0000− 0.0000i −0.8282 + 0.1038i

−1.0000− 0.0000i −1.0926− 0.0995i −1.0000− 0.0000i

−0.8282 + 0.1038i −1.0000− 0.0000i −1.0926− 0.0995i

 .
Finally,

T0 =


0.9502 + 0.0339i 0.0000− 0.0000i 1.0329− 0.0055i

0.0000− 0.0000i 0.9502 + 0.0339i 0.0000− 0.0000i

1.0329− 0.0055i 0.0000− 0.0000i 0.9502 + 0.0339i

 ,

T1 =


−0.0926− 0.0995i −0.0000− 0.0000i 0.1718 + 0.1038i

−0.0000− 0.0000i −0.0926− 0.0995i −0.0000− 0.0000i

0.1718 + 0.1038i −0.0000− 0.0000i −0.0926− 0.0995i

 .
Clearly, λi0T0xi + λi1T1xi = 0 for i = 1, 2.

Remark 4.6.9. Since A0 and A1 are arbitrarily chosen symmetric-Toeplitz matrices,

hence obtained symmetric-Toeplitz matrix pencil is not unique.
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Remark 4.6.10. Similar to the generalized inverse eigenvalue problem of symmetric-

Toeplitz matrices, we can solve the generalized inverse eigenvalue problem for Hankel

matrices by using Theorem 4.3.2. �
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CHAPTER 5

PERTURBATION ANALYSIS OF SPECIFIED EIGENPAIRS

FOR STRUCTURED MATRIX POLYNOMIALS

Abstract: This chapter discusses the backward error analysis of specified eigenpairs

for structured and unstructured matrix polynomials. We generalize the methodology of

Chapter 3 to obtain the backward error results for matrix polynomials. In particular, for

palindromic matrix polynomials, our results generalized the results of [47]. Further, the

backward error results developed in this chapter allow us to solve the different kinds of

quadratic and polynomial inverse eigenvalue problems without linearization.

5.1. Introduction

The term matrix polynomial is a well-known in numerical linear algebra which refers

to the expression P(λ) =
∑l

j=0 λ
jAj, where Aj, j = 0 : l, are n×n matrices, λ is a complex

scalar, and non-negative integer l is known as the degree of the matrix polynomial (see,

[23, 51, 72] for more on matrix polynomials). Matrix polynomials with special structures

occur in numerous applications in mechanics, control theory, linear systems theory and

computer-aided graphic design, see [8, 9]. In particular, palindromic matrix polynomials

arise in the mathematical modelling and numerical simulation of surface acoustic wave

filters and vibration analysis of railway tracks excited by high-speed trains, see [17, 51].

For obtaining the eigenvalues and eigenvectors of matrix polynomials, the most widely

used approach is to linearize the given matrix polynomial into a bigger size matrix pencil

(see, [37] for more on linearization). In practice, the eigenpairs of the linearized matrix

pencil are approximate due to the rounding errors, and truncation errors of the iterative

methods. Hence the obtained eigenvalues and eigenvectors may contain a huge amount

of error which can leads to insignificant results. Since the backward error analysis tells

us that how much accurate these obtained eigenpairs for a matrix polynomial, the role of



backward error analysis of these obtained eigenpairs with respect to matrix polynomials

become very much crucial to understand the reliability of these obtained eigenpairs.

Though in Chapter 3, we have discussed the detailed backward error analysis of one

or more eigenpairs for matrix pencils but results for matrix pencils are not enough to

cover the backward error analysis of one or more specified eigenpairs for structured and

unstructured matrix polynomials. In [87] the authors have obtained the structured back-

ward error formulas of one eigenpair for T -symmetric, T -skew-symmetric, Hermitian, and

skew-Hermitian matrix polynomials which also preserve sparsity. In [2, 8, 9] the authors

have obtained the backward error of a single eigenpair for different structured matrix

polynomials but the literature of backward error analysis of more than one eigenpairs is

still open for development. Hence in this chapter, we are concerned to obtain the back-

ward error formulas of the given specified eigenpairs and corresponding perturbed matrix

polynomials for different structured as well as unstructured matrix polynomials which

also preserve sparsity. These results will give a more realistic picture of the backward

error analysis of eigenpairs.

Next, a given n× n matrix polynomial P(λ) of degree l can have up to ln eigenpairs.

Hence during the backward error analysis of each structured matrix polynomial, we need

to find the cap on the maximum number of approximate eigenpairs. This challenge has

not arisen during the backward error analysis of a single eigenpair. In particular, if P(λ)

is a matrix polynomial of degree l, and ((ci, di), xi), i = 1 : s (s ≤ nl), are given s approx-

imate eigenpairs, where (ci, di) ∈ C2 \ {(0, 0)} and 0 6= xi ∈ Cn, we provide the upper

bound on s for each structure. We have adopted and extended the vectorization method-

ology of Chapter 3 to obtain the desired backward error and corresponding perturbed

matrix polynomial. We develop a general framework such that our perturbed matri-

ces preserved sparsity in addition to the structure. The structures we consider include

T -symmetric, T -skew-symmetric, Hermitian, skew-Hermitian, H-even, H-odd, T -even,

T -odd, T -palindromic, T -anti-palindromic, H-palindromic, and H-anti-palindromic ma-

trix polynomials. In particular, if we consider the palindromic structure, the authors in

[47] have obtained the backward error of one specified eigenpair of palindromic matrix

polynomials provided the corresponding minimization problem is solvable. We generalize

the work of [47] from backward error of one specified eigenpair to backward error of one

or more eigenpairs and discuss the comparisons in detail.
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Next, we discuss in detail that how one can apply the backward error results of one

or more eigenpairs to solve the quadratic inverse eigenvalue problems. In particular, we

have discussed and solved the symmetric quadratic inverse eigenvalue problem [21, Prob-

lem 5.4]. We will also discuss and solve the T -palindromic quadratic inverse eigenvalue

problem [88]. We illustrate both the quadratic inverse eigenvalue problems with suitable

examples. One can also solve the other palindromic quadratic inverse eigenvalue problems

of [88]. In the similar manner, one can also solve the other structured inverse eigenvalue

problems for the above mentioned structures.

5.2. Matrix polynomials and definitions

Let us recall the definition of a matrix polynomial. Let Pl(Cn×n) be the space of

matrix polynomials up to degree l and a matrix polynomial P ∈ Pl(Cn×n) be of the

following form:

(5.1) P(α, β) := αlA0 + αl−1βA1 + · · ·+ βlAl, Ai ∈ Cn×n for i = 0, . . . , l.

P(α, β) defined in (5.1) is called the matrix polynomial in (α, β) ∈ C2. We denote (5.1)

by P. Finding (c, d) ∈ C2 \ {(0, 0)}, 0 6= x ∈ Cn such that P(c, d)x = 0 is called the

polynomial eigenvalue problem. ((c, d), x) is called the eigenpair of matrix polynomial P.

Definition 5.2.1. A matrix polynomial P(α, β) =
∑l

i=0 α
l−iβiAi is said to be regular

if and only if det(P(c, d)) 6= 0 for some (c, d) ∈ C2 \ {(0, 0)}, otherwise it is called the

singular matrix polynomial.

Spectrum of matrix polynomial P ∈ Pl(Cn×n) is defined as follows:

Λ(P) := {(λ, µ) ∈ C2 \ {(0, 0)} : det(P(λ, µ)) = 0}.

Throughout this chapter, w := (w0, . . . , wl)
T ∈ Rl+1 be a nonnegative vector such that

each wi is a nonnegative real number. Define w−1 := (w−10 , . . . , w−1l )T and w−1i = 0 for

wi = 0. For a given nonnegative weight vector w := (w0, . . . , wl)
T ∈ Rl+1, define the

matrix polynomial norm as follows:

(5.2) |||P|||w,2 := ‖(w0‖A0‖, . . . , wl‖Al‖)‖2 = (
l∑

i=0

w2
i ‖Ai‖2)1/2,

where ‖.‖ is the Frobenius norm.
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Next, based on the different properties of the coefficient matrices Aj, j = 0 : l, of

matrix polynomial P of the form (5.1), we define different kind of structured matrix

polynomials by Table 5.1.

Now, we generalize the definition of backward error from one eigenpair to s eigenpairs

for unstructured and structured matrix polynomials.

Definition 5.2.2. Consider λ1:s = {λ1, λ2, . . . , λs} and x1:s = {x1, x2, . . . , xs}, where

(ci, di) = λi ∈ C2 \ {(0, 0)} and 0 6= xi ∈ Cn. Let (λi, xi), i = 1 : s, are approximate

eigenpairs of matrix polynomial P of the form (5.1). Then we define unstructured and

structured backward errors for s approximate eigenpairs (λi, xi) by

ηw,F (λ1:s, x1:s,P) := inf{|||δP|||w,2, (P(λi) + δP(λi))xi = 0; for 1 ≤ i ≤ s}, and

ηSw,F (λ1:s, x1:s,P) := inf{|||δP|||w,2, δP ∈ S, (P(λi) + δP(λi))xi = 0; for 1 ≤ i ≤ s},

respectively, where δP is of the form (5.1), |||δP|||w,2 is given by (5.2), and

S={T -symmetric, T -skew- symmetric, Hermitian, skew Hermitian, T -even, T -odd,

H-even, H-odd, T -palindromic, T -anti-palindromic, H-palindromic H-anti-palindromic}.

S Matrix structure

T -symmetric Aj = ATj

T -skew-symmetric Aj = −ATj
Hermitian Aj = AHj

skew-Hermitian Aj = −AHj
T -even Aj = ATj for j even, Aj = −ATj for j odd

T -odd Aj = −ATj for j even, Aj = ATj for j odd

H-even Aj = AHj for j even, Aj = −AHj for j odd

H-odd Aj = −AHj for j even, Aj = AHj for j odd

S Matrix structure

T -palindromic Aj = ATl−j

T -anti-palindromic Aj = −ATl−j
H-palindromic Aj = AHl−j

H-anti-palindromic Aj = −AHl−j
Table 5.1. An overview for structured matrix polynomials
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Remark 5.2.3. For s = 1 in the above definitions correspond to unstructured and struc-

tured backward error for a single eigenpair (see, [8]).

Remark 5.2.4. Let P ∈ Pl(Cn×n) be a matrix polynomial of the form (5.1). Then similar

to a matrix pencil, the following relations are also hold for a matrix polynomial and are

immediate consequences of the definitions of backward error:

ηw,F (λ1:s, x1:s,P) ≤ ηSw,F (λ1:s, x1:s,P), max
p=1:s

ηw,F (λp, xp,P) ≤ ηw,F (λ1:s, x1:s,P), and

max
p=1:s

ηSw,F (λp, xp,P) ≤ ηSw,F (λ1:s, x1:s,P).

Now, we discuss the backward error analysis for T -symmetric and T -skew-symmetric

matrix polynomials.

5.3. Perturbation of T -symmetric/T -skew-symmetric matrix poly-

nomials

This section deals with the backward error analysis of T -symmetric and T -skew-

symmetric matrix polynomials. Before stating the theorem, let 0 6= xp ∈ Cn and 0 6=
λp = (cp, dp) ∈ C2 \ {(0, 0)} for p = 1 : s, and w = (w0, . . . , wl)

T be a non-negative vector.

We define

N ε =


N ε

10 . . . N ε
1l

N ε
20 . . . N ε

2l
... . . .

...

N ε
s0 . . . N ε

sl

 ∈ Csn× (l + 1)(n2 + εn)/2,

where N ε
pj = w−1j cl−jp djpN

ε(xp)diag(vec(sgnAj ◦ C, ε)), j = 0 : l, p = 1 : s, are constructed

by (3.3). Now, we state and prove the main result of this section. Throughout this section,

ε = 1 represents the T -symmetric case and ε = −1 represents the T -skew-symmetric case.

The upper bound on the number of approximate eigenpairs “s” for T -symmetric and T -

skew-symmetric matrix polynomials is capped by Table 5.2. Now, we state and prove the

main result of this section.

Theorem 5.3.1. Let P ∈ Pl(Cn×n) be a T -symmetric/T -skew-symmetric matrix poly-

nomial of the form (5.1). Let ((cp, dp), xp) be s approximate eigenpairs of P, where

0 6= xp ∈ Cn and 0 6= λp = (cp, dp) for p = 1 : s. Set r :=
[
rT1 rT2 . . . rTs

]T
where
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rp := −P(cp, dp)xp for p = 1 : s. If N ε (defined as above) is a full row rank matrix, then

there exists a minimizing T -symmetric/T -skew symmetric δP ∈ Pl(Cn×n) of the form

δP(α, β) :=
∑l

i=0 α
l−iβiδAi, where δAj = (δaj,tk) for j = 0, 1, . . . , l are given by

δaj,tk =

{ ∑s
p=1

1
2
w−2j cl−jp djp(sgn aj,tk)(x

k
pe
T
t+(p−1)n + εxtpe

T
k+(p−1)n)(N εN εH)−1r for t 6= k∑s

p=1
1+ε
2
w−2j cl−jp djp(sgn aj,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r for t = k.

Then (P(cp, dp) + δP(cp, dp))xp = 0 and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖N εH(N εN εH)−1r‖F .

If N ε is not full a rank matrix but rank(N ε) = rank([N ε, r]), then the perturbed matrices

are obtained by singular value decomposition of N ε and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of N ε.

Proof. The proof for T -symmetric/T -skew-symmetric matrix polynomials follows simi-

lar to the proof of T -symmetric/T -skew-symmetric matrix pencils. But for the sake of

completeness, we recall the proof so one can easily understand the changes for the poly-

nomial version. Corresponding to a given T -symmetric/T -skew symmetric P ∈ Pl(Cn×n),

the given approximate eigenvalues are (cp, dp) and corresponding eigenvectors are xp for

p = 1 : s. We need to construct structured δP ∈ Pl(Cn×n) which has sparsity such

that (P(λp) + δP(λp))xp = 0. By assumption P(λp)xp + rp = 0 for p = 1 : s. Then

rp = δP(λp)xp =
∑l

j=0 c
l−j
p djpδAjxp. For maintaining sparsity replace δAj by (δAj◦sgnAj)

which gives rp =
∑l

j=0 c
l−j
p djp(δAj ◦ sgnAj)xp. Finally, we get

rp =
l∑

j=0

cl−jp djp(δAj ◦ sgnAj ◦D ◦ C)xp,

where C,D are defined by (3.4).

Structure upper bound on number of eigenpairs “s”

T -symmetric s ≤ (l + 1)(n+1
2

)

T -skew-symmetric s ≤ (l + 1)(n−1
2

)

Table 5.2. Upper bound on eigenpairs for T -symmetric and T -skew-

symmetric matrix polynomials
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Let ∆ε
j = wjvec(δAj ◦ sgnAj ◦D). Then using Lemma 3.3.3, we get

rp =

l∑
j=0

w−1j cl−jp djpN
ε(xp)diag([vec(sgn(Aj) ◦ C, ε)])∆ε

j =
l∑

j=0

N ε
pj∆

ε
j = N ε

p∆
ε,(5.3)

where N ε
p =

[
N ε
p0 . . . N ε

pl

]
, ∆ε =

[
∆ε

0
T . . . ∆ε

l
T
]T

for p = 1 : s. From (5.3) we have

rp = N ε
p∆

ε for p = 1 : s. Further, writing these s equations in the combined form we get

the following system

(5.4) r = N ε∆ε,

(5.5)


r1

r2
...

rs

 =


N ε

10 . . . N ε
1l

N ε
20 . . . N ε

2l
... . . .

...

N ε
s0 . . . N ε

sl




∆ε

0

∆ε
1

...

∆ε
l

 .

If in (5.4) N ε is a full row rank matrix, then the minimum norm solution of the system

(5.5) is given by

(5.6) ∆ε = N εH(N εN εH)−1r,

and expanding the first N εH in (5.6), we get the desired entries of perturbed matri-

ces δAj for j = 0 : l. In this case the backward error in Frobenius norm is given by

ηSw,F (λ1:s, x1:s,P) = |||δP|||w,F , where

|||δP|||2w,F =
l∑

i=0

w2
i ‖δAi‖2F = ‖∆ε‖2w,F = ‖N εH(N εN εH)−1r‖2F .

We get the backward error when N ε is a full rank matrix as follows:

ηSw,F (λ1:s, x1:s,P) = ‖∆ε‖F = ‖N εH(N εN εH)−1r‖F .

Now, we need to show that (P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s, for this consider
(P(c1, d1) + δP(c1, d1))x1

(P(c2, d2) + δP(c2, d2))x2
...

(P(cs, ds) + δP(cs, ds))xs

 =


−r1 + δP(c1, d1)x1

−r2 + δP(c2, d2)x2
...

−rs + δP(cs, ds)xs

 =


−r1
−r2

...

−rs

+


N ε

1

N ε
2

...

N ε
s

∆ε =


−r1
−r2

...

−rs

+


r1

r2
...

rs

 = 0,

where we use δP(λp))xp = N ε
p∆

ε, for p = 1 : s,N ε =
[
N ε

1
T N ε

2
T . . . N ε

s
T
]T
, and

∆ε = N εH(N εN εH)−1r. �
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If N ε is not a full row rank matrix but system (5.5) is consistent, then using Theorem 1.1,

we get N ε = U εΣεV εH , and using Theorem 1.2.6, we get ∆ε = V εΣε+U εHr, and

ηSw,F (λ1:s, x1:s,P) = ‖V εΣε+U εHr‖F .

Here U ε, V ε are unitary matrices and Σε has the singular values of N ε. In this case,

we can not get the perturbed matrix entries in explicit form because the singular value

decomposition of N ε is not known explicitly in terms of the given information.

Remark 5.3.2. When rank(N ε) 6= rank([N ε, r]), then ηSw,F (λ1:s, x1:s,P) =∞.

Remark 5.3.3. If one is interested in obtaining the backward error formula without spar-

sity, then by following the above procedure with sgnAj = sgnHn for j = 0 : l, where Hn

is the matrix of all ones, we get the backward error result without sparsity. Hence this

method is valuable for obtaining the backward error with sparsity as well as for backward

error without sparsity.

Remark 5.3.4. By substituting s = 1 in Theorem 5.3.1, we get the result of backward

error of a single approximate eigenpair for T -symmetric/T -skew-symmetric matrix poly-

nomials [87, Theorem 2].�

5.4. Backward error of Hermitian/skew-Hermitian matrix poly-

nomials

In this section, we discuss the backward error analysis for Hermitian and skew-Hermitian

matrix polynomials. Throughout this section, ε = 1 represents the Hermitian case and ε =

−1 represents the skew-Hermitian case. The upper bound on the number of approximate

eigenpairs s for Hermitian and skew-Hermitian matrix polynomials is capped by Table

5.3. Next, we discuss the main theorem of this section as follows.

Structure upper bound on number of eigenpairs “s”

Hermitian s ≤ ( l+1
2

)n

skew-Hermitian s ≤ ( l+1
2

)n

Table 5.3. Upper bound on eigenpairs for Hermitian and skew-Hermitian

matrix polynomials
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Theorem 5.4.1. Let P ∈ Pl(Cn×n) be a Hermitian/skew-Hermitian homogeneous matrix

polynomial of the form (5.1). Let ((cp, dp), xp) be s approximate eigenpairs of P, where

0 6= xp ∈ Cn and 0 6= λp = (cp, dp). Set r :=
[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
,

where rp := −P(cp, dp)xp for p = 1 : s. If N ε (defined as below) is a full row rank matrix,

then there exists a minimizing Hermitian/skew-Hermitian δP ∈ Pl(Cn×n) of the form

δP(α, β) :=
∑l

j=0 α
l−jβjδAj, where δAj for j = 0 : l are given by

δaj,tk =



(sgn aj,tt)
s∑

p=1

√
εw−2j

(
gtpje

T

t+
(1−ε)

2
n(2p−1)+ (1+ε)

2
2n(p−1)

+ εhtpj

eT
t+

(1+ε)
2

n(2p−1)+ (1−ε)
2

2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn aj,tk)
s∑

p=1

1
2
w−2j fpj,tk(N

εN εT )−1r, for t 6= k,

with fpj,tk = (et+2n(p−1) + iet+n+2n(p−1))
T (gkpj − ihkpj) + (ek+2n(p−1) − iek+n+2n(p−1))

T (εgtpj + iεhtpj),

gpj = <(cl−jp djpxp), hpj = =(cl−jp djpxp), g
t
pj = <(cl−jp djpxtp), h

t
pj = =(cl−jp djpxtp) for p = 1 : s,

j = 0 : l, and t, k = 1 : n. Then (P(cp, dp) + δP(cp, dp))xp = 0 and the backward error is given

by

ηSw,F (λ1:s, x1:s,P) = ‖N εT (N εN εT )−1r‖F , where

N ε =


N ε

10 . . . N ε
1l

N ε
20 . . . N ε

2l
... . . .

...

N ε
s0 . . . N ε

sl

 ∈ C2sn×(l+1)n2
and

N ε
pj = w−1j

[
N ε(gpj) −N−ε(hpj)
N ε(hpj) N−ε(gpj)

]
diag

([
vec(sgnAj ◦ C, ε)

vec(sgnAj ◦ C,−ε)

])
for j = 0 : l are constructed by Equation 3.3. If N ε is not full rank matrix but rank(N ε) =

rank([N ε, r]), then the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of N ε. Here

ε = 1 stands for Hermitian case and ε = −1 stands for skew-Hermitian case.

Proof. Proof can be obtained by taking the summation from 0 to l instead of 0 to 1, and

to replace λpj with cl−jp djp in Theorem 3.4.1. Hence, we are omitting the proof.

Remark 5.4.2. By substituting s = 1 in Theorem 5.4.1, we get the backward error

result of a single approximate eigenpair for homogeneous matrix polynomial case of [87,

Theorem 3].�
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Structure upper bound on number of eigenpairs “s”

T -even s ≤ ( l
2
)n+ (n+1

2
), when l is even

T -odd s ≤ ( l
2
)n+ (n−1

2
), when l is even

T -even s ≤ ( l+1
2

)n, when l is odd

T -odd s ≤ ( l+1
2

)n, when l is odd

Table 5.4. Upper bound on eigenpairs for T -even and T -odd matrix poly-

nomials

5.5. Backward error analysis for T -even/T -odd matrix polynomi-

als

In this section, we discuss the backward error analysis of matrix polynomials whose coeffi-

cient matrices are alternatively symmetric and skew-symmetric. Throughout this section,

ε = 1 represents the T -even case and ε = −1 represents the T -odd case. The upper bound

on the number of eigenpairs s for T -even and T -odd matrix polynomials is capped by

Table 5.4. Now, we state the main theorem of this section.

Theorem 5.5.1. Let P ∈ Pl(Cn×n) be a T -even/T -odd homogeneous matrix polynomial

of the form (5.1). Set ((cp, dp), xp) be s approximate eigenpairs of P with 0 6= xp ∈ Cn and

let 0 6= λp = (cp, dp). Set r :=
[
rT1 rT2 . . . rTs

]T
where rp := −P(λp)xp for p = 1 : s. If

N ε (defined as below) is has full row rank, then there exists a minimizing T -even/T -odd

δP ∈ Pl(Cn×n) of the form δP(c, s) :=
∑l

i=0 c
l−isiδAi, where δAj = (δaj,tk), j = 0 : l, for

even j are given by

δaj,tk =

{ ∑s
p=1

1
2
w−2j cl−jp djp(sgn aj,tk)(x

k
pe
T
t+(p−1)n + εxtpe

T
k+(p−1)n)(N εN εH)−1r for t 6= k∑s

p=1
1+ε
2
w−2j cl−jp djp(sgn aj,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r for t = k,

and δAj = (δaj,tk) for odd j are given as follows

δaj,tk =

{ ∑s
p=1

1
2
w−2j cl−jp djp(sgn aj,tk)(x

k
pe
T
t+(p−1)n − εxtpeTk+(p−1)n)(N εN εH)−1r for t 6= k∑s

p=1
1−ε
2
w−2j cl−jp djp(sgn aj,tk)x

k
pe
T
t+(p−1)n(N εN εH)−1r for t = k.

Then (P(cp, dp) + δP(cp, dp))xp = 0 and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖N εH(N εN εH)−1r‖F , where
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N ε =


N ε

10 N−ε11 . . . N
(−1)lε
1l

N ε
20 N−ε21 . . . N

(−1)lε
2l

...
... . . .

...

N ε
s0 N−εs1 . . . N

(−1)lε
sl

 such that N ε
pj = w−1j cl−jp djpN

ε(xp)diag(vec(sgnAj ◦C, ε)),

and N−εpj = w−1j cl−jp djpN
ε(xp)diag(vec(sgnAj ◦C,−ε)) for j = 0 : l are defined in Equation

3.3. Here size of N ε is sn× ( l
2
n2 + n2+εn

2
) when l is an even integer, and sn× ( l+1

2
)n2

for odd l.

Proof. Corresponding to T -even/T -odd matrix polynomial P, given approximate eigen-

pairs are (λp, xp) for p = 1 : s. We need to construct minimal norm δP such that (P(λp)+

δP(λp))xp = 0. Since P(λp)xp + rp = 0. Then rp = δP(λp)xp =
∑l

j=0 c
l−j
p djpδAjxp =∑l

j=0 c
l−j
p djp(δAj ◦ sgnAj)xp =

∑l
j=0 c

l−j
p djp(δAj ◦ sgnAj ◦D ◦C)xp. Let ∆ε

j = wjvec(δAj ◦
sgnAj◦D, ε) and ∆−εj = wjvec(δAj◦sgnAj◦D,−ε). Then rp =

∑l
j=0,j=evenw

−1
j cl−jp djpN

ε(xp)

diag([vec(sgnAj ◦ C, ε)])∆ε
j +

∑l
j=0,j=oddw

−1
j cl−jp djpN

−ε(xp)diag([vec(sgnAj ◦ C, ε)])∆−εj .
Further, we get

rp =
l∑

j=0,j=even

N ε
pj∆

ε
j +

l∑
j=0,j=odd

N−εpj ∆−εj = N ε
p∆

ε for p = 1 : s,

where N ε
p =

[
N ε
p0 N−εp1 . . . N

ε(−1)l
pl

]
, ∆ε =

[
∆ε

0
T ∆−ε1

T
. . . ∆

ε(−1)l
l

T
]T
. Combining

the s equations, we get

r = N ε∆ε, where

r =


r1

r2
...

rs

 , N ε =


N ε

10 N−ε11 . . . N
(−1)lε
1l

N ε
20 N−ε21 . . . N

(−1)lε
2l

...
... . . .

...

N ε
s0 N−εs1 . . . N

(−1)lε
sl

 .
Perturbation matrices and backward error formula can be obtained in the same manner

as we get in Theorem 5.3.1. �

5.6. Backward error analysis for H-even/H-odd matrix polyno-

mials

In this section, we discuss the backward error for H-even/H-odd matrix polynomials.

For this first we define the basic terminology. Let xp ∈ Cn, (cp, dp) ∈ C2 \ {(0, 0)} for
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p = 1 : s, and et+2n(p−1), ek+2n(p−1), ek+n+2n(p−1), et+n+2n(p−1) ∈ C2sn for t, k = 1 : n.

Deine fpj,tk := (et+2n(p−1) + iet+n+2n(p−1))
T (gkpj− ihkpj) + (ek+2n(p−1)− iek+n+2n(p−1))

T (εgtpj +

iεhtpj) when j is even and zpj,tk := (et+2n(p−1) + iet+n+2n(p−1))
T (gkpj − ihkpj) + (ek+2n(p−1) −

iek+n+2n(p−1))
T (−εgtpj − iεhtpj) when j is odd, where gpj := <(cl−jp djpxp), hpj = =(cl−jp djpxp),

gtpj = <(cl−jp djpx
t
p), h

t
pj = =(cl−jp djpx

t
p) for p = 1 : s, j = 0 : l, and t, k = 1 : n. Next, define

N ε =


N ε

10 N−ε11 . . . N
(−1)lε
1l

N ε
20 N−ε21 . . . N

(−1)lε
2l

...
... . . .

...

N ε
s0 N−εs1 . . . N

(−1)lε
sl

 ∈ C2sn×(l+1)n2

,

where

N ε
pj = w−1j

[
N ε(gpj) −N−ε(hpj)
N ε(hpj) N−ε(gpj)

]
diag

([
vec(sgnAj ◦ C, ε)

vec(sgnAj ◦ C,−ε)

])
, for j = 0 : l

are defined by Equation 3.3.

Throughout this section, ε = 1 represents the H-even case and ε = −1 represents the

H-odd case. The upper bound on the number of approximate eigenpairs s for H-even

and H-odd matrix polynomials are capped by Table 5.5.

Structure upper bound on number of eigenpairs “s”

H-even s ≤ ( l+1
2

)n for all l

H-odd s ≤ ( l+1
2

)n for all l

Table 5.5. Upper bound on eigenpairs for H-even and H-odd matrix poly-

nomials

Now, we state the main theorem of this section.

Theorem 5.6.1. Let P ∈ Pl(Cn×n) be H-even/H-odd homogeneous matrix polynomial

of the form (5.1). Let ((cp, dp), xp) be s approximate eigenpairs of P with 0 6= xp ∈ Cn

and 0 6= λp = (cp, sp) for p = 1 : s. Set r :=
[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
,

where rp := −P(λp)xp for p = 1 : s. If N ε (defined as above) is a full row rank matrix,

then there exists a minimizing H-even/H-odd matrix polynomial δP ∈ Pl(Cn×n) of the
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form δP(α, β) :=
∑l

j=0 α
l−jβjδAj, where δAj = (δaj,tk), j = 0 : l, are given by

δaj,tk =



(sgn aj,tt)
s∑

p=1

√
εw−2j

(
gtpje

T
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) + εhtpj

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(N εN εT )−1r for t = k

(sgn aj,tk)
s∑

p=1

1
2
w−2j fpj,tk(N

εN εT )−1r for t 6= k,

for even j, and δAj = (δaj, tk), j = 0 : l, are given by

δaj,tk =



(sgn aj,tt)
s∑

p=1

√
−εw−2j

(
gtpje

T
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) − εh

t
pj

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(N εN εT )−1r for t = k

(sgn aj,tk)
s∑

p=1

1
2
w−2j zpj,tk(N

εN εT )−1r for t 6= k,

for odd j. Here ei ∈ C2sn for every i ∈ N. Then (P(cp, dp) + δP(cp, dp))xp = 0 and the

backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖N εT (N εN εT )−1r‖F .

Proof. Proof is computational and follows similar to Theorem 5.4.1 and Theorem 5.5.1.

5.7. Backward error for T -palindromic/ T -anti-palindromic ma-

trix polynomials

To understand the backward error analysis and perturbation theory of palindromic matrix

polynomials, we need to understand the construction of matrix M ε((cp, dp), j, yp), which

is obtained by ((cp, dp), yp) ∈ C2 \ {(0, 0)}×Cn. For construction of M ε((cp, dp), j, yp), we

need to understand the construction of matrices M ε(yp) for ε = 1,−1, where M1(yp) ∈
Cn×n2

and M−1(yp) ∈ Cn×n2
.

Remark 5.7.1. Superscript “−1” in M−1(yp) is only for notational point of view. It

should not be mismatched with the inverse of M(yp).
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Throughout this section w := (w0, w1, . . . , wl)
T ∈ Rl+1 be a nonzero and nonnegative

vector such that wj = wl−j for j = 0 : l. For deriving the backward error formulas

of specified eigenpairs, we need the construction of the matrices M1(yp),M
−1(yp) and

M ε((cp, dp), j, yp). We define

M1(yp) =
[
M1

1 (yp) . . . M1
n(yp)

]
, M−1(yp) =

[
M−1

1 (yp) . . . M−1
n (yp)

]
, and

M ε((cp, dp), j, yp) =
[
cl−jp djpM

1
1 (yp) + εcjpd

l−j
p M−1

1 (yp) . . . . . . cl−jp djpM
1
n(yp) + εcjpd

l−j
p M−1

n (yp)
]
,

for p = 1 : s, where

M1
1 (yp) =



y1p y2p y3p . . . ynp

0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0


,M1

2 (yp) =



0 0 0 . . . 0

y1p y2p y3p . . . ynp

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0


, and

M1
n(yp) =



0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0

y1p y2p y3p . . . ynp


, and

M−1
z (yp) = diag([yzp, . . . , y

z
p]
T ) ∈ Cn×n, z = 1, . . . , n.

SupposeAj = (aj,tk), δAj = (δaj,tk) ∈ Cn×n.Define ∆j :=


∆j1

∆j2

...

∆jn

 , where ∆ji =


wjδaj,i1sgn aj,i1

...

wjδaj,insgn aj,1n


and wj is a nonnegative real number for j = 0 : l. Before stating the theorem define

M ε =


M ε

10 M ε
11 . . . M ε

1l̃

M ε
20 M ε

21 . . . M ε
2l̃

...
...

M ε
s0 M ε

s1 . . . M ε
sl̃

 , Gε =


M ε

10 M ε
11 . . . M ε

1l̃
N ε

1 l
2

M ε
20 M ε

21 . . . M ε
2l̃

N ε
2 l
2

...
...

...

M ε
s0 M ε

s1 . . . M ε
sl̃

N ε
s l
2

 , where

l̃ =

{
l−1
2
, when l is odd

l
2
− 1, when l is even

110



M ε
pj = (w−1j cl−jp djpM

1(yp) + εw−1j cjpd
l−j
p M−1(yp))diag(vec(sgnAj)) is defined as above and

N ε
p l
2

= w−1l
2

c
l
2
p d

l
2
pN

ε(yp) diag(vec(sgnA l
2
◦ C, ε))

is defined in Section 3.3. M ε is of size “sn× (l̃+ 1)n2” and Gε is of size “sn× ((l̃+ 1)n2 +

(n2 + εn)/2)”.

Throughout this section, ε = 1 represents the T -palindromic case and ε = −1 repre-

sents the T -anti-palindromic case.

Remark 5.7.2. For a palindromic matrix polynomial, backward error of an approximate

eigenpair (µ, x), where µ ∈ C, x ∈ Cn, is defined by Li et al. [47] in the following manner:

min{

√√√√bl/2c∑
i=0

w2
i ‖δAi‖2F : (P(µ) + δP(µ))x = 0}.

From now onwards, for palindromic structures we calculate the backward error of one

or more specified eigenpairs with respect to the above definition, i.e., if ((ci, di), xi) for

i = 1 : s are s approximate eigenpairs of a palindromic matrix polynomial P, then

ηSw,F (λ1:s, x1:s,P) = min{

√√√√bl/2c∑
i=0

w2
i ‖δAi‖2F : (P(ci, di) + δP(ci, di))xi = 0 for i = 1 : s}.

By using the above definition, we can easily compare ours and backward errors of Li et

al. [47] . Since we are also providing the perturbed matrices together with the backward

error formula, so one can also calculate the backward error according to definition 5.2.2.

The upper bound on the number of eigenpairs s for T -palindromic and T -anti-palindromic

matrix polynomials are capped by Table 5.6

Structure upper bound on number of eigenpairs “s”

T -palindromic s ≤ ( l
2
)n+ n+1

2
, when l is even

T -palindromic s < ( l+1
2

)n, when l is odd

T -anti-palindromic s ≤ ( l
2
)n+ n−1

2
, when l is even

T -anti-palindromic s < ( l+1
2

)n, when l is odd

Table 5.6. Upper bound on eigenpairs for T -palindromic and T -anti-

palindromic polynomials
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Now, we state and prove the theorem for T -palindromic and T -anti-palindromic matrix

polynomials.

Theorem 5.7.3. Let P ∈ Pl(Cn×n) be a T -palindromic/T -anti-palindromic homogeneous

matrix polynomial of the form (5.1). Let ((cp, dp), xp), p = 1 : s be s approximate eigen-

pairs of P, where 0 6= xp ∈ Cn and 0 6= λp = (cp, dp). Set r :=
[
rT1 rT2 . . . rTs

]T
, where

rp := −P(λp)xp for p = 1 : s. Then

Case-1: If l is odd, and M ε (defined as above) is a full row rank matrix, then there exists

a minimizing T -palindromic/T -anti-palindromic δP ∈ Pl(Cn×n) of the form δP(α, β) :=∑l
j=0 α

l−jβiδAj, where δAj = (δaj,tk) for j = 0 : 1 are given by

δaj,tk =


∑s

p=1 sgn(aj,tk)(w
−2
j cl−jp djpxkpe

T
t+(p−1)n+

εw−2l−jc
j
pd
l−j
p xtpe

T
k+(p−1)n)(M εM εH)−1r, for t 6= k,∑s

p=1 sgn(aj,tk)(w
−2
j cl−jp djpxtp + εw−2l−jc

j
pd
l−j
p xtp)e

T
t+(p−1)n(M εM εH)−1r, for t = k.

Here et+(p−1)n ∈ Csn, ek+(p−1)n ∈ Csn. Then (P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s,

and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖M εH(M εM εH)−1r‖F .

If M ε is not a full rank matrix but rank(M ε) = rank([M ε, r]), then the backward error is

given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of M ε.

Case-2: If l is even, and Gε (defined as above) is a full row rank matrices, then there exists

a minimizing T -palindromic/T -anti-palindromic δP ∈ Pl(Cn×n) of the form δP(α, β) :=∑l
j=0 α

l−jβiδAj, where δAj = (δaj,tk) for j = 0 : l, j 6= l
2

are given by

δaj,tk =


∑s

p=1 sgn(aj,tk)(w
−2
j cl−jp djpxkpe

T
t+(p−1)n+

εw−2l−jc
j
pd
l−j
p xtpe

T
k+(p−1)n)(GεGεH)−1r, for t 6= k,∑s

p=1 sgn(aj,tk)(w
−2
j cl−jp djpxtp + εw−2l−jc

j
pd
l−j
p xtp)e

T
t+(p−1)n(GεGεH)−1r, for t = k,

and δA l
2

= (δa l
2
,tk) is given by

δa l
2
,tk =


∑s

p=1
1
2
w−2l

2

c
l
2
p d

l
2
p (sgn a l

2
,tk)(x

k
pe
T
t+(p−1)n + εxtpe

T
k+(p−1)n)(GεGεH)−1r for t 6= k∑s

p=1
1+ε
2
w−2l

2

c
l
2
p d

j
p(sgn a l

2
,tk)x

k
pe
T
t+(p−1)n(GεGεH)−1r for t = k.
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Here et+(p−1)n ∈ Csn, ek+(p−1)n ∈ Csn. Then (P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s,

and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖GεH(GεGεH)−1r‖F .

Proof. Case-1: When P ∈ Pl(Cn×n) is a T -palindromic/T -anti-palindromic matrix poly-

nomial of the form (5.1) and l is an odd natural number.

Corresponding to a given T -palindromic/anti-palindromic P, its given approximate

eigenpairs are ((cp, dp), xp) for p = 1 : s. We need to construct structured δP such that

(P(cp, dp) + δP(cp, dp))xp = 0, which also preserve sparsity. By assumption P(cp, dp)xp +

rp = 0 for p = 1 : s. Then rp = δP(cp, dp)xp =
∑l

j=0 c
l−j
p djpδAjxp =

∑l̃
j=0(wjw

−1
j cl−jp djpδAj+

wl−jw
−1
l−jc

j
pd
l−j
p δAl−j)xp. Since δAl−j = εδATj , and wj = wl−j, we get rp =

∑l̃
j=0(wjw

−1
j cl−jp djp

δAj + εwjw
−1
j cjpd

l−j
p δATj )xp. Further, for maintaining the sparsity, we get

rp =
l̃∑

j=0

(wjw
−1
j cl−jp djpδAj ◦ sgnAj + εwjw

−1
j cjpd

l−j
p δATj ◦ sgnATj )xp.

Let ∆j = wjvec(δAj ◦ sgnAj). Then rp =
∑l̃

j=0(w
−1
j cl−jp djpM

1(xp) + εw−1j cjpd
l−j
p M−1(xp))

diag(vec(sgnAj))∆j =
∑l̃

j=0w
−1
j M ε((cp, dp), j, xp)diag(vec(sgnAj))∆j =

∑l̃
j=0M

ε
pj∆j =

M ε
p∆, where

M ε
p =

[
M ε

p0 M ε
p1 . . . M ε

p l−1
2

]
, ∆ =

[
∆T

0 ∆T
1 . . . ∆T

l̃

]T
, and

M ε
pj = (w−1j cl−jp djpM

1(xp) + εw−1j cjpd
l−j
p M−1(xp))diag(vec(sgnAj)).

Finally, we get rp = M ε
p∆ for p = 1 : s. Writing s equations in combined form we get

(5.7) r =


r1

r2
...

rs

 =


M ε

10 M ε
11 . . . M ε

1l̃

M ε
20 M ε

21 . . . M ε
2l̃

...
...

M ε
s0 M ε

s1 . . . M ε
sl̃




∆0

∆1

...

∆ l−1
2

 =


M ε

1

M ε
2

...

M ε
s

∆ = M ε∆.

If M ε is a full row rank matrix, then from (5.7), minimal norm solution of r = M ε∆

is given by ∆ = M εH(M εM εH)−1r. Now using equation ∆ = M εH(M εM εH)−1r and

expanding the first M εH , we get the desired entry-wise perturbations. If M ε has not full

rank but system M ε∆ = r is consistent, then ∆ = V εDε+U εHr. Here U ε, V ε are unitary

matrices of appropriate sizes and Dε+ is pseudoinverse of Dε. Backward error in Frobenius

norm case is given by ηSw,F (λ1:s, x1:s,P) = |||δP|||w,F , where |||δP|||2w,F =
∑bl/2c

i=0 w2
i ‖δAi‖2F .
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But
∑bl/2c

i=0 w2
i ‖δAi‖2F = ‖∆‖2F = ‖M εH(M εM εH)−1r‖2F . Hence backward error when M ε

is full rank is given by

ηSw,F (λ1:s, x1:s,P) = ‖M εH(M εM εH)−1r‖F .

When M ε is not a full rank matrix but system is consistent, then the backward error is

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖.

Case-2: When P ∈ Pl(Cn×n) is a T -palindromic/T -anti-palindromic matrix polyno-

mial of the form (5.1) such that l is even natural number. To construct δP such that

(P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s, by following the process of case-1, we get rp =

δP(cp, dp)xp =
∑l

j=0 c
l−j
p djpδAjxp =

∑l̃
j=0(wjw

−1
j cl−jp djpδAj + wl−jw

−1
l−jc

j
pd
l−j
p δAl−j)xp +

w l
2
w−1l

2

c
l
2
p d

l
2
p δA l

2
xp. Since δAl−j = εδATj , and wj = wl−j, we get rp =

∑l̃
j=0(wjw

−1
j cl−jp djpδAj◦

sgnAj + εwjw
−1
j cjpd

l−j
p δATj ◦ sgnATj )xp +w l

2
w−1l

2

c
l
2
p d

l
2
p (δA l

2
◦ sgnA l

2
◦C ◦D)xp where C,D

are defined by 3.4.

Let ∆j = wjvec(δAj◦sgnAj), and let ∆ε
l
2

= w l
2
vec(δA l

2
◦sgnA l

2
◦D, ε) is defined at Sec-

tion 3.2.1. Then rp =
∑l̃

j=0(w
−1
j cl−jp djpM

1(xp)+εw
−1
j cjpd

l−j
p M−1(xp))diag(vec(sgnAj))∆j+

(w−1l
2

c
l
2
p d

l
2
pN ε(xp) diag(vec(sgnA l

2
◦C, ε))∆ε

l
2

, where N ε(xp) is defined at Subsection 3.2.1.

Further simplification gives

rp =
∑l̃

j=0w
−1
j M ε((cp, dp), j, xp)diag(vec(sgnAj))∆j + N ε

p l
2

∆ε
l
2

, where M ε((cp, dp), j, xp)

is defined at the beginning of this section and N ε
p l
2

= w−1l
2

c
l
2
p d

l
2
pN ε(xp)diag(vec(sgnA l

2
◦

C, ε)). Similar to Case-1, we get rp =
∑l̃

j=0M
ε
pj∆j + N ε

p l
2

∆ε
l
2

= Gε
p∆

ε, where Gε
p =[

M ε
p0 M ε

p1 . . . M ε
pl̃

N ε
p l
2

]
,∆ =

[
∆T

0 ∆T
1 . . . ∆T

l̃
∆T

l
2

]T
. Finally, we get rp = Gε

p∆

for p = 1 : s. Writing s equations in the combined form, we get

(5.8) r =


r1

r2
...

rs

 =


M ε

10 M ε
11 . . . M ε

1l̃
N ε

1 l
2

M ε
20 M ε

21 . . . M ε
2l̃

N ε
2 l
2

...
...

...
...

M ε
s0 M ε

s1 . . . M ε
sl̃

N ε
s l
2





∆0

∆1

...

∆l̃

∆ε
l
2


=


Gε

1

Gε
2

...

Gε
s

∆ε = Gε∆ε.

Similar to the previous case, using system r = Gε∆ε, we can obtain the desired entry wise

perturbation and backward error formula.

Remark 5.7.4. For Case-1, when l is an odd natural number, we get the even number of

coefficient matrices δAj in the perturbed matrix polynomial δP, which can be paired with
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the property δAj = εδAl−j for j = 0 : l, and we get the backward error results in this

case. But when l is an even natural number, then all the coefficient matrices can be paired

similar to Case-1 except δA l
2

which satisfied δA l
2

= εδATl
2

. Now to tackle this coefficient

matrix δA l
2
, and to obtain the backward error formula, we use the construction of Section

3.2.1 as described in Case-2.

Remark 5.7.5. If rank(M ε) 6= rank([M ε, r]), then the backward error ηSw,F (λ1:s, x1:s,P) =

∞.

Remark 5.7.6. If rank(Gε) 6= rank([Gε, r]), then the backward error ηSw,F (λ1:s, x1:s,P) =

∞.

5.8. Backward error analysis for H-palindromic/H-anti-palindromic

matrix polynomials

In this section, we state the theorem and related important terminologies for constructing

the backward error formulas for H-palindromic/H-anti-palindromic matrix polynomials.

Before stating the theorem, let xp ∈ Cn, λp = (cp, dp) ∈ C2 \{(0, 0)} and ei ∈ C2sn for any

i ∈ N and s ≤ n. Define gpj := <(cl−jp djpxp), hpj := =(cl−jp djpxp), g
t
pj = <(cl−jp djpx

t
p), h

t
pj =

=(cl−jp djpx
t
p) for p = 1 : s, j = 0 : l, and t = 1 : n. Define

M ε(gpj) =
[
M1

1 (gpj) + εM−1
1 (gp(l−j)) . . . M1

n(gpj) + εM−1
n (gp(l−j))

]
,

M ε(hpj) =
[
M1

1 (hpj) + εM−1
1 (hp(l−j)) . . . M1

n(hpj) + εM−1
n (hp(l−j))

]
,

M ε =


M ε

10 M ε
11 . . . M ε

1l̃

M ε
20 M ε

21 . . . M ε
2l̃

...
...

M ε
s0 M ε

s1 . . . M ε
sl̃

 , Gε =


M ε

10 M ε
11 . . . M ε

1l̃
N ε

1 l
2

M ε
20 M ε

21 . . . M ε
2l̃

N ε
2 l
2

...
...

...

M ε
s0 M ε

s1 . . . M ε
sl̃

N ε
s l
2

 , where

l̃ =

{
l−1
2 , when l is odd

l
2 − 1, when l is even

}
,M ε

pj = w−1j

[
M ε(gpj) −M−ε(hpj)
M ε(hpj) M−ε(gpj)

]
diag

([
vec(sgnAj)

vec(sgnAj)

])
,

and N ε
p l
2

= w−1l
2

N ε(gp l
2
) −N−ε(hp l

2
)

N ε(hp l
2
) N−ε(gp l

2
)

 diag

 vec(sgn (A l
2
) ◦ C, ε)

vec(sgn (A l
2
) ◦ C,−ε)

 is defined in

Section 3.4. Further M ε is of size “2sn×2(l̃+1)n2” and Gε is of size “2sn×(2(l̃+1)n2+n2)”
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for H-palindromic/anti-palindromic cases. Throughout this section, ε = 1 represents the

H-even case and ε = −1 represents the H-palindromic case. The upper bound on the

number of eigenpairs s forH-anti-palindromic andH-anti-palindromic matrix polynomials

are capped by Table 5.7.

Structure upper bound on number of eigenpairs “s”

H-palindromic s ≤ ( l
2
)n+ n

2
, when l is even

H-palindromic s ≤ ( l+1
2

)n, when l is odd

H-anti-palindromic s ≤ ( l
2
)n+ n

2
, when l is even

H-anti-palindromic s ≤ ( l+1
2

)n, when l is odd

Table 5.7. Upper bound on eigenpairs for H-palindromic and T -anti-

palindromic matrix polynomials

Next, we prove the main result of this section by the following theorem.

Theorem 5.8.1. Let P ∈ Pl(Cn×n) be a H-palindromic/H-anti-palindromic matrix poly-

nomial of the form (5.1). Let ((cp, dp), xp) be s-approximate eigenpairs of P, where 0 6=
xp ∈ Cn and 0 6= λp = (cp, dp) for p = 1 : s. Set r :=

[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
,

where rp := −P(λp)xp for p = 1 : s. Then

Case-1 : If l is odd, and M ε (defined as above) is a full row rank matrices, then there exists

a minimizing H-palindromic/H-anti-palindromic δP ∈ Pl(Cn×n) of the form δP(α, β) :=∑l
j=0 α

l−jβiδAj, where δAj = (δaj,tk) for j = 0 : l, j 6= l
2

are given by

δaj,tk =



∑s
p=1(sgn aj,tk)[w

−2
j gkpje

T
t+2(p−1)n + εw−2l−jg

t
p(l−j)e

T
k+2(p−1)n+

w−2j hkpje
T
t+(2p−1)n + εw−2l−jh

t
p(l−j)e

T
k+(2p−1)n + i(−w−2j hkpje

T
t+2(p−1)n+

εw−2l−jh
t
p(l−j)e

T
k+2(p−1)n)+

i(w−2j gkpje
T
t+(2p−1)n − εw

−2
l−jg

t
p(l−j)e

T
k+(2p−1)n)](M εM εT )−1r, for t 6= k,∑s

p=1(sgn aj,tk)[(w
−2
j gtpj + εw−2l−jg

t
p(l−j))e

T
t+2(p−1)n + (w−2j htpj+

εw−2l−jh
t
p(l−j))e

T
t+(2p−1)n + i(−w−2j htpj + εw−2l−jh

t
p(l−j))e

T
t+2(p−1)n+

i(w−2j gtpj − εw−2l−jgtp(l−j))eTt+(2p−1)n](M εM εT )−1r, for t = k.

Here et+(p−1)n ∈ C2sn, ek+(p−1)n ∈ Csn. Then (P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s,

and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖M εT (M εM εT )−1r‖F .
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If M ε is not full rank matrix but rank(M ε) = rank([M ε, r]), then the backward error is

given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of M ε.

Case-2 : If l is even, and Gε (defined as above) is a full row rank matrices, then there exists

a minimizing H-palindromic/H-anti-palindromic δP ∈ Pl(Cn×n) of the form δP(α, β) :=∑l
j=0 α

l−jβiδAj, where δAj = (δaj,tk) for j = 0 : l, j 6= l
2

are given by

δaj,tk =



∑s
p=1(sgn aj,tk)[w

−2
j gkpje

T
t+2(p−1)n + εw−2l−jg

t
p(l−j)e

T
k+2(p−1)n+

w−2j hkpje
T
t+(2p−1)n + εw−2l−jh

t
p(l−j)e

T
k+(2p−1)n+

i(−w−2j hkpje
T
t+2(p−1)n + εw−2l−jh

t
p(l−j)e

T
k+2(p−1)n)+

i(w−2j gkpje
T
t+(2p−1)n − εw

−2
l−jg

t
p(l−j)e

T
k+(2p−1)n)](GεGεT )−1r, for t 6= k,∑s

p=1(sgn aj,tk)[(w
−2
j gtpj + εw−2l−jg

t
p(l−j))e

T
t+2(p−1)n+

(w−2j htpj + εw−2l−jh
t
p(l−j))e

T
t+(2p−1)n+

i(−w−2j htpj + εw−2l−jh
t
p(l−j))e

T
t+2(p−1)n+

i(w−2j gtpj − εw−2l−jgtp(l−j))eTt+(2p−1)n](GεGεT )−1r, for t = k,

and δA l
2

= (δa l
2
,tk) is given by

δa l
2
,tk =



(sgn a l
2
,tt)

s∑
p=1

√
εw−2l

2

(
gt
p l
2

eT
t+ 1−ε

2
n(2p−1)+ 1+ε

2
2n(p−1) + εht

p l
2

eT
t+ 1+ε

2
n(2p−1)+ 1−ε

2
2n(p−1)

)
(GεGεT )−1r, for t = k,

(sgn a l
2
,tk)

s∑
p=1

1
2
w−2j cpj,tk(G

εGεT )−1r, for t 6= k.

Here

cp l
2
,tk = (et+2n(p−1) + iet+n+2n(p−1))

T (gk
p l
2

− ihk
p l
2

) + (ek+2n(p−1) − iek+n+2n(p−1))
T (εgt

p l
2

+ iεht
p l
2

),

for p = 1 : s, and t, k = 1 : n. Then (P(cp, dp) + δP(cp, dp))xp = 0 for p = 1 : s, and the

backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖GεT (GεGεT )−1r‖F .

If Gε is a not full rank matrix but rank(Gε) = rank([Gε, r]), then the backward error is

given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of Gε.

For H-palindromic case we take ε = 1 and for H-anti palindromic case ε = −1.
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Proof. Proof is computational and follows from Theorem 5.7.3, and Theorem 3.7.5.

Next, we obtain the backward error formula of one or more approximate eigenpairs

for unstructured matrix polynomials.

5.9. Backward error analysis for unstructured matrix polynomi-

als

In this section, we are interested in finding the backward error of approximate eigen-

pairs for unstructured matrix polynomials. To obtain the unstructured backward error,

we ignore any kind of structure while doing the analysis. Before going to the main re-

sult of this section, we construct matrices K by using the given approximate eigenpairs

((cp, dp), xp) ∈ C2 \ {(0, 0)} × Cn, p = 1 : s, of a matrix polynomial P of the form (5.1).

Let

K =


K10 . . . K1l

K20 . . . K2l

... . . .
...

Ks0 . . . Ksl

 ∈ Csn×(l+1)n2
, where Kpj = w−1j cl−jp djpK(xp)diag(vec(sgnAj)),

with

K(xp) =



x1p . . . xnp . . . . . . . . . . . . 0 . . . 0

0 . . . 0 x1p . . . xnp . . . 0 . . . 0
...

...
... 0 . . . 0 . . .

...
...

...
...

...
...

... . . .
... . . .

...
...

...

0 . . . 0 0 . . . 0 . . . x1p . . . xnp


for p = 1 : s and j = 0 : l.

Now, we state the main theorem of this section as follows:

Theorem 5.9.1. Let P ∈ Pl(Cn×n) be a homogeneous matrix polynomial of the form

(5.1). Let ((cp, dp), xp) be s (s ≤ nl) approximate eigenpairs of P with 0 6= xp ∈ Cn and

0 6= λp = (cp, dp). Set r :=
[
rT1 rT2 . . . rTs

]T
where rp := −P(λp)xp for p = 1 : s. If K

(defined as above) is a full row rank matrix, then there exists a minimizing δP ∈ Pl(Cn×n)
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of the form δP(α, β) :=
∑l

j=0 α
l−jβjδAj, where δAj = (δaj,tk) for j = 0 : l are given by

δaj,tk =
s∑

p=1

w−2j cl−jp djp(sgn aj,tk)(x
k
pe
T
t+(p−1)n)(KKH)−1r,

and et+(p−1)n ∈ Rsn. The backward error is given by

(ηSw,F (λ1:s, x1:s,P))2 = ‖KT (KKT )−1r‖F .

If K is not a full rank matrix but rank(K) = rank([K, r]), then the backward error is

given by

(ηSw,F (λ1:s, x1:s,P))2 = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of K.

Proof. Corresponding to a given matrix polynomial P, its given approximate eigenpairs

are (λp, xp), p = 1 : s. We need to construct unstructured δP which has sparsity such that

(P(λp) + δP(λp))xp = 0 for p = 1 : s. By assumption P(λp)xp + rp = 0 for p = 1 : s. Then

rp = δP(λp)xp =
∑l

j=0 c
l−j
p djpδAixp, for maintaining sparsity replace δAj by (δAj◦sgnAj),

hence, we get

rp =
l∑

j=0

cl−jdj(δAj ◦ sgnAj)xp.

Let ∆j = wjvec(δVj ◦ sgnAj) for j = 0 : l. Then similar to Theorem 5.3.1, we get

rp =
l∑

j=0

w−1j cl−jdjpK(xp)diag([vec(sgn(Aj))])∆
ε
j =

l∑
j=0

Kpj∆j = Kp∆,(5.9)

where Kp =
[
Kp0 . . . Kpl

]
, ∆ =

[
∆0

T . . . ∆l
T
]T

for p = 1 : s. Rest of the proof

follows similar to Theorem 5.3.1.

Further, in this chapter, we are also interested in solving the real symmetric qua-

dratic inverse eigenvalue problem. This problem asks to construct a matrix polynomial

with real symmetric coefficient matrices from a given set of approximate eigenpairs. These

eigenpairs can be real as well as complex. These matrix polynomials are known as real

symmetric matrix polynomials. Hence for solving this problem next, we discuss the back-

ward error analysis for real symmetric/skew-symmetric matrix polynomial.
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5.10. Backward error of real symmetric/skew-symmetric matrix

polynomials

In this section, we are interested in the backward error analysis of approximate eigen-

pairs for real symmetric/skew-symmetric matrix polynomials. Let P ∈ Pl(Cn×n) be a

real symmetric/skew-symmetric matrix polynomial, i.e., Aj ∈ Rn×n for j = 0 : l. Let

((cp, dp), xp), p = 1 : s be s approximate eigenpairs of P, where (cp, dp) ∈ C2 \ {(0, 0)},
and xp ∈ Cn. Using approximate eigenpairs, we define the matrix N ε as follows:

N ε =


N ε

10 . . . N ε
1l

N ε
20 . . . N ε

2l
... . . .

...

N ε
s0 . . . N ε

sl

 ∈ C2sn×(l+1)(n2+εn)/2,

where

N ε
pj = w−1j

[
N ε(gpj)

N ε(hpj)

]
diag

([
vec(sgnAj ◦ C, ε)

])
, for j = 0 : l.

Throughout this section, ε = 1 represents a real symmetric matrix polynomial and ε = −1

represents a real skew-symmetric matrix polynomial. The upper bound on the number of

eigenpairs s is s ≤ (l+1)
2

(n+ ε).

Now, we state the main theorem of this section. Since the proof of the theorem is

similar to Theorem 5.4.1, we recall only the main steps of the proof.

Theorem 5.10.1. Let P ∈ Pl(Cn×n) be a real symmetric/skew-symmetric matrix polyno-

mial of the form (5.1). Let ((cp, dp), xp) be s approximate eigenpairs of P, where 0 6= xp ∈
Cn and 0 6= λp = (cp, dp) for p = 1 : s. Set r :=

[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
,

where rp = −P(cp, dp)xp for p = 1 : s. If N ε (defined as above) is a full row rank matrix,

then there exists a minimizing real symmetric/skew-symmetric δP ∈ Pl(Cn×n) of the form

δP(α, β) =
∑l

j=0 α
l−jβjδAj, where δAj = (δaj,tk) for j = 0 : l are given by

δaj,tk =



(sgn aj,tt)
s∑

p=1

(1+ε)
2
w−2j

(
gtpje

T

t+
(1−ε)

2
n(2p−1)+ (1+ε)

2
2n(p−1)

+ εhtpj

eT
t+

(1+ε)
2

n(2p−1)+ (1−ε)
2

2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn aj,tk)
s∑

p=1

1
2
w−2j fpj,tk(N

εN εT )−1r, for t 6= k,

120



and

fpj,tk = gkpje
T
t+2n(p−1) + hkpje

T
t+n+2n(p−1) + εgtpje

T
k+2n(p−1) + εhtpje

T
k+n+2n(p−1), gpj = <(cl−jp djpxp),

hpj = =(cl−jp djpxp), g
t
pj = <(cl−jp djpx

t
p), h

t
pj = =(cl−jp djpx

t
p) for p = 1 : s, j = 0 : l, and

t, k = 1 : n. Then (P(cp, dp) + δP(cp, dp))xp = 0, and the backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖N εT (N εN εT )−1r‖F .

If N ε is not a full rank matrix but rank(N ε) = rank([N ε, r]), then the backward error is

given by

ηSw,F (λ1:s, x1:s,P) = ‖V εDε+U εHr‖F ,

where U ε, V ε are unitary matrices and Dε is a diagonal matrix with singular values of N ε.

Proof. Corresponding to a real symmetric/skew-symmetric P ∈ Pl(Cn×n), its given ap-

proximate eigenvalues are λp and corresponding eigenvector are xp for p = 1 : s. We

have to construct structured minimal norm sparse δP ∈ Pl(Cn×n) such that (P(λp) +

δP(λp))xp = 0. By assumption P(λp)xp + rp = 0, for p = 1 : s. Then rp = δP(λp)xp =∑l
j=0 c

l−j
p djpδAjxp =

∑l
j=0 δAj(<(cl−jp djpxp) + i=(cl−jp djpxp)). For maintaining sparsity, we

replace δAj by (δAj ◦ sgnAj), we get rp =
∑l

j=0 δAj ◦ sgnAj(<(cl−jp djpxp)) + iδAj ◦
sgnAj(=(cl−jp djpxp)). Finally we get

rp =
[∑l

j=0 δAj ◦ sgnAj(<(cl−jp djpxp)) + iδAj ◦ sgnAj(=(cl−jp djpxp))
]
◦D◦C = <(rp)+

i=(rp), where

<(rp) =
l∑

j=0

[δAj ◦ sgnAjgpj] ◦D ◦ C

=(rp) =
l∑

j=0

[δAj ◦ sgnAjhpj] ◦D ◦ C

for p = 1 : s. Now separating the unknown and known variables, we get the following

system for p = 1 : s[
<(rp)

=(rp)

]
=

l∑
j=0

w−1j

[
N ε(gpj)

N ε(hpj)

]
diag

([
vec(sgnAj ◦ C, ε)

])
∆ε
j =

l∑
j=0

N ε
pj∆

ε
j,(5.10)

where

∆ε
j = wjvec(δAj ◦ sgnAj ◦D, ε), for j = 0, 1, . . . , l.

Rest of the proof will follow similar to the proof of Theorem 5.4.1.
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After obtaining the result for the general case, we discuss the backward error result

for quadratic matrix polynomial by the following corollary.

Corollary 5.10.2. Let Q(β) = A0+βA1+β
2A2, be a non-homogeneous real Hermitian/skew-

Hermitian quadratic matrix polynomial such that Aj ∈ Rn×n for j = 0 : 2. Let (µp, xp)

be s approximate eigenpairs of Q(β), where µp ∈ C, xp ∈ Cn \ {0} for p = 1 : s. Set

r :=
[
<(r1)

T =(r1)
T . . . <(rs)

T =(rs)
T
]T
, where rp := −Q(µp)xp for p = 1 : s. If

N ε is a full row rank matrix, then there exists δQ(β) = δA0 + βδA1 + β2δA2 such that

(Q(µp) + δQ(µp))xp = 0, where δAj = (δaj,tk), j = 0 : 2 are given by

δaj,tk =



(sgn aj,tt)
s∑

p=1

(1+ε)
2
w−2j

(
gtpje

T

t+
(1−ε)

2
n(2p−1)+ (1+ε)

2
2n(p−1)

+ εhtpj

eT
t+

(1+ε)
2

n(2p−1)+ (1−ε)
2

2n(p−1)

)
(N εN εT )−1r, for t = k,

(sgn aj,tk)
s∑

p=1

1
2
w−2j dpj,tk(N

εN εT )−1r, for t 6= k,

where dpj,tk = gkpje
T
t+2n(p−1) + hkpje

T
t+n+2n(p−1) + εgtpje

T
k+2n(p−1) + εhtpje

T
k+n+2n(p−1), gpj = <(µjpxp),

hpj = =(µjpxp), g
t
pj = <(µjpx

t
p), h

t
pj = =(µjpx

t
p) for p = 1 : s, j = 0 : 2, and t, k = 1 : n.

The backward error is given by

ηSw,F (λ1:s, x1:s,P) = ‖N εT (N εN εT )−1r‖F .

If N ε is not full rank matrix but rank(N ε) = rank([N ε, r]), then δAj are constructed using

singular values decomposition of N ε.

Proof. Substituting l = 2, cp = 1, dp = µp in Theorem 5.10.1, we get the desired result.

Remark 5.10.3. We know that for a real symmetric matrix polynomial if (λ, x) is an

eigenpair, where λ ∈ C2 \ {(0, 0)}, x ∈ Cn, then (λ, x) is also an eigenpair. Rest of

the eigenpairs are real. Using this information, and size of the matrix N ε, we get that

s ≤ (l+1)
2

(n+ ε).

5.11. Numerical examples and discussion of quadratic inverse

eigenvalue problems

In this section, we illustrate our theory with suitable examples and graphs. We start our

discussion with the solution of quadratic inverse eigenvalue problems. In particular, [21,

122



Problem 5.4] ask to construct C,K ∈ Rn×n from the given specified eigenpairs (Λ, X)

such that

(5.11) XΛ2 + CXΛ +KX = 0,

where Λ ∈ Cs×s has specified eigenvalues µi ∈ C on its diagonal and X ∈ Cn×s has

corresponding eigenvector xi ∈ Cn as its column. We need to construct C,K ∈ Rn×n with

C = CT and K = KT , so that Equation 5.11 is satisfied.

Quadratic inverse eigenvalue Problem 5.11 is equivalent to solving µ2
i Ixi + µiCxi +

Kxi = 0 for i = 1 : s. Since we need to construct C,K ∈ Rn×n, we set C = A1 +δA1, K =

A0 + δA0, where A0, A1 are fixed but arbitrarily chosen real symmetric matrices. Then

applying Corollary 5.10.2 with weight vector w = (1, 1, 0), we get δA0, δA1 and hence

desired C,K which satisfied µ2
i Ixi + µiCxi + Kxi = 0 for i = 1 : s. We will illustrate it

by an example for s = 3.

Example 5.11.1. Let (µi, xi) for i = 1 : 3 be specified eigenpairs where µ1 = µ2 =

−0.2168−4.3159i, µ3 = −0.3064, x1 = x2 = [−0.4132+5.2801i,−4.3518+3.2758i,−0.1336−
4.0588i,−5.1414+4.4003i, 8.6146−4.0112i]T , and x3 = [−9.6715,−9.1357,−4.4715,−6.9659,

− 4.4708]T . Choose

A0 =



0.2028 0.107 0.5112 0.55515 0.3508

0.107 0.7468 0.64565 0.4757 0.58775

0.5112 0.64565 0.5252 0.44195 0.5505

0.55515 0.4757 0.44195 0.3795 0.5682

0.3508 0.58775 0.5505 0.5682 0.1897


,

A1 =



0.9501 0.4966 0.6111 0.44585 0.4746

0.4966 0.4565 0.4052 0.87845 0.3988

0.6111 0.4052 0.9218 0.82755 0.49475

0.44585 0.87845 0.82755 0.4103 0.45175

0.4746 0.3988 0.49475 0.45175 0.1389


.

Then applying Corollary 5.10.2, we get

C =



−1.6514 −0.7099 −0.1769 0.0671 −2.6998

−0.7099 0.3340 1.2028 0.7282 −0.3518

−0.1769 1.2028 3.6546 0.7699 1.5992

0.0671 0.7282 0.7699 0.3928 −0.1274

−2.6998 −0.3518 1.5992 −0.1274 −1.8210


,
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K =



0.7075 −0.8079 −1.9246 0.2321 −0.9079

−0.8079 1.8371 −0.2280 2.2767 −5.1703

−1.9246 −0.2280 5.0627 −1.9317 5.0950

0.2321 2.2767 −1.9317 3.5307 −7.9849

−0.9079 −5.1703 5.0950 −7.9849 17.6420


,

which satisfy µ2
i Ixi + µiCxi +Kxi = 0 for i = 1 : 3. Clearly C = CT , K = KT .

Remark 5.11.2. Since we can choose different A0, A1 so C,K are not unique.

Next, we discuss the quadratic inverse eigenvalue problem of the following form:

(5.12) MXΛ2 + CXΛ +KX = 0,

where we need to construct matrices M,C,K ∈ Cn×n such that M = MH , C = CH and

K = KH . Quadratic inverse eigenvalue problem 5.12 is equivalent to solving µ2
iMxi +

µiCxi +Kxi = 0 for i = 1 : s.

In this quadratic inverse eigenvalue problem matrices are not restricted to real entries,

it means for the given approximate eigenpairs we can construct the matrices M,C and K

from the complex field. We set K = A0 + δA0, C = A1 + δA1, and M = A2 + δA2 where

A0, A1 and A2 are fixed but arbitrarily chosen Hermitian matrices. Similar to previous

inverse eigenvalue problem, here for finding δA0, δA1 and δA2, we use Theorem 5.4.1 with

l = 2. We will illustrate this inverse eigenvalue problem by the following example for

s = 3.

Example 5.11.3. Let (µi, xi) for i = 1 : 3 are specified eigenpairs defined in the previous

example. Choose

A0 =



0.3244 + 0.0000i 1.3963 + 0.3470i 0.7618− 0.2637i 1.3544 + 0.5932i 0.2723− 0.7241i

1.3963− 0.3470i 0.5259 + 0.0000i 0.7379 + 0.6874i 1.2276 + 0.3583i 1.7100 + 0.0944i

0.7618 + 0.2637i 0.7379− 0.6874i 0.4580 + 0.0000i 1.9095− 0.1989i 0.1570− 0.0216i

1.3544− 0.5932i 1.2276− 0.3583i 1.9095 + 0.1989i 0.1564 + 0.0000i 1.2176− 0.2179i

0.2723 + 0.7241i 1.7100− 0.0944i 0.1570 + 0.0216i 1.2176 + 0.2179i 1.6346 + 0.0000i


,

A1 =



1.6294 + 0.0000i 1.0033− 0.0371i 0.2846 + 0.4312i 1.0553− 0.2167i 1.2881 + 0.3186i

1.0033 + 0.0371i 0.5570 + 0.0000i 1.5175 + 0.4179i 1.3793 + 0.3354i 1.0006 + 0.3485i

0.2846− 0.4312i 1.5175− 0.4179i 1.9143 + 0.0000i 1.4011− 0.1847i 1.6494 + 0.6119i

1.0553 + 0.2167i 1.3793− 0.3354i 1.4011 + 0.1847i 1.5844 + 0.0000i 1.8935 + 0.5225i

1.2881− 0.3186i 1.0006− 0.3485i 1.6494− 0.6119i 1.8935− 0.5225i 1.3575 + 0.0000i


,
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A2 =



0.5521 + 0.0000i 1.1781 + 0.1551i 1.4064 + 0.0348i 1.1219− 0.5402i 0.9597− 0.3434i

1.1781− 0.1551i 1.9195 + 0.0000i 0.5955 + 0.1719i 1.1325− 0.4958i 0.4781− 0.3484i

1.4064− 0.0348i 0.5955− 0.1719i 1.0119 + 0.0000i 0.8377 + 0.1504i 1.7052− 0.0984i

1.1219 + 0.5402i 1.1325 + 0.4958i 0.8377− 0.1504i 0.2986 + 0.0000i 0.5010− 0.9221i

0.9597 + 0.3434i 0.4781 + 0.3484i 1.7052 + 0.0984i 0.5010 + 0.9221i 1.8585 + 0.0000i


.

Then by above discussion, we get

M =



0.0178 + 0.0000i 0.3304− 0.1560i 0.3074 + 0.1910i 0.6939 + 0.0991i 0.8037− 0.0687i

0.3304 + 0.1560i 0.5566 + 0.0000i 0.5918 + 0.4660i 1.2508 + 0.3542i 1.1863 + 0.2165i

0.3074− 0.1910i 0.5918− 0.4660i 1.0174 + 0.0000i 1.2786− 0.0331i 1.1548− 0.3680i

0.6939− 0.0991i 1.2508− 0.3542i 1.2786 + 0.0331i 0.2492 + 0.0000i 0.9270− 0.2494i

0.8037 + 0.0687i 1.1863− 0.2165i 1.1548 + 0.3680i 0.9270 + 0.2494i 1.5546 + 0.0000i


,

C =



1.5608 + 0.0000i 1.3287 + 0.0333i 0.5771 + 0.3665i 1.1114− 0.2769i 1.5979 + 0.0747i

1.3287− 0.0333i 1.2126 + 0.0000i 1.7469 + 0.2964i 1.7729 + 0.2093i 1.0639 + 0.2205i

0.5771− 0.3665i 1.7469− 0.2964i 2.1851 + 0.0000i 1.6049− 0.0627i 1.6561 + 0.3479i

1.1114 + 0.2769i 1.7729− 0.2093i 1.6049 + 0.0627i 1.6961 + 0.0000i 2.1438 + 0.4383i

1.5979− 0.0747i 1.0639− 0.2205i 1.6561− 0.3479i 2.1438− 0.4383i 1.1219 + 0.0000i


,

K =



−0.0361 + 0.000i 0.3696 + 0.0763i 0.6438 + 0.0605i 0.7567− 0.2953i 0.2906 + 0.2714i

0.3696− 0.0763i 0.8224 + 0.0000i −0.2709 + 0.2805i 0.5394− 0.2127i −0.2257 + 0.3047i

0.6438− 0.0605i −0.2709− 0.2805i 0.3838 + 0.0000i 0.3221 + 0.2041i 1.1276 + 0.2017i

0.7567 + 0.2953i 0.5394 + 0.2127i 0.3221− 0.2041i 0.0304 + 0.0000i 0.0718− 0.5548i

0.2906− 0.2714i −0.2257− 0.3047i 1.1276− 0.2017i 0.0718 + 0.5548i 1.4121 + 0.0000i


,

which satisfy µ2
iMxi+µiCxi+Kxi = 0 for i = 1 : 3. Clearly M = MH , C = CH , K = KH .

Next, we discuss the quadratic T -palindromic inverse eigenvalue problem. For the

given specified eigenpairs (µi, xi), i = 1 : s, the quadratic T -palindromic inverse eigenvalue

problem is to construct the matrices D0, D1, and D2 such that D0 = DT
2 , D1 = DT

1 and

(D0 + µiD1 + µ2
iD2)xi = 0, where µi ∈ C, xi ∈ Cn and s ≤ 2n.

We use Theorem 5.7.3 for solving the quadratic T -Palindromic inverse eigenvalue

problem. For getting the solution let Di = Ai + δAi for i = 0 : 2, where Ai, i = 0 : 2 are

the known matrices, and δAi are the unknown matrices to be obtained using Theorem

5.7.3. Set Ai = H3, where Hn is defined by (4.13).

To illustrate the problem let us consider the eigenpairs information from [88, Example

4.3] which asks to construct a T -palindromic quadratic matrix polynomials of size 3 × 3
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from the given set of eigenpairs (µi, xi), i = 1 : 5. By Table 5.6, we know that the maximum

value of s for quadratic T -palindromic matrix polynomial (l = 2) can be (3n + 1)/2,

which can be maximum 5 for n = 3. Let the eigenpairs are given as follows: µ1 = i, µ2 =

1/i, µ3 = 1+i, µ4 = 1/(1+i), µ5 = 2i, and x1 = [1, 0, 0]T , x2 = [0, 1, 0]T , x3 = [0, 0, 1]T , x4 =

[1, 1, 1]T , x5 = [−1, 0, 1]T .

By applying Theorem 5.7.3 for l = 2 on the given eigenpairs (µi, xi), i = 1 : 5, we get

δA0 =


−1.0046− 0.0180i −1.0061 + 0.1054i −1.0180 + 0.0046i

−1.0475− 0.0960i −1.1861 + 0.3393i −1.1147− 0.0597i

−1.0113− 0.0067i −0.9725 + 0.0872i −1.0067 + 0.0113i

 ,

δA1 =


−1.0000 + 0.0000i −0.7986− 0.0414i −0.9887 + 0.0067i

−0.7986− 0.0414i −1.0000 + 0.0000i −0.8531− 0.1422i

−0.9887 + 0.0067i −0.8531− 0.1422i −0.9843− 0.0136i

 ,

δA2 =


−1.0046− 0.0180i −1.0475− 0.0960i −1.0113− 0.0067i

−1.0061 + 0.1054i −1.1861 + 0.3393i −0.9725 + 0.0872i

−1.0180 + 0.0046i −1.1147− 0.0597i −1.0067 + 0.0113i

 .
Finally, we get the required D0, D1, and D2 as follows:

D0 = A0 + δA0 =


−0.0046− 0.0180i −0.0061 + 0.1054i −0.0180 + 0.0046i

−0.0475− 0.0960i −0.1861 + 0.3393i −0.1147− 0.0597i

−0.0113− 0.0067i 0.0275 + 0.0872i −0.0067 + 0.0113i

 ,

D1 = A1 + δA1 =


−0.0000 + 0.0000i 0.2014− 0.0414i 0.0113 + 0.0067i

0.2014− 0.0414i 0.0000 + 0.0000i 0.1469− 0.1422i

0.0113 + 0.0067i 0.1469− 0.1422i 0.0157− 0.0136i

 ,

D2 = A2 + δA2 =


−0.0046− 0.0180i −0.0475− 0.0960i −0.0113− 0.0067i

−0.0061 + 0.1054i −0.1861 + 0.3393i 0.0275 + 0.0872i

−0.0180 + 0.0046i −0.1147− 0.0597i −0.0067 + 0.0113i

 .
Clearly, one can see that (D0 + µiD1 + µ2

iD2)xi = 0 for i = 1 : 5. Also, D0 = DT
2 , and

D1 = DT
1 .

Remark 5.11.4. Similar to the above quadratic inverse eigenvalue problems, one can

also solve the different kind of palindromic inverse eigenvalue problems of [88] by using

our developed backward error theory.
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Remark 5.11.5. Theory of [88] works under the assumption that the approximate eigen-

values should be nonzero and distinct (Condition A2 of [88]). On the other hand by using

our theory one can also solve the palindromic quadratic inverse eigenvalue problems for

repeated as well as for zero eigenvalues.

Moving further, we find that Li et al. [47] have developed the backward error formulas

of a single approximate eigenpair for different kind of palindromic matrix polynomials. On

the other hand, we have developed backward error of one or more approximate eigenpairs

for the palindromic matrix polynomials. Hence at this point, we want to numerically

compare the backward error results of a single approximate eignepair of [47] with our

results. For this comparison, we have performed several numerical runs for arbitrary

specified eigenpair (λ, x) for H-palindromic quadratic matrix polynomial, where λ ∈ C,
and x ∈ Cn. We found that for a single specified eigenpair, backward error obtained

by our method (without sparsity) is equal to the backward error obtained by Li et al.

when |λ| = 1. For |λ| 6= 1, we have obtained the Figure 5.1 which shows the comparison

between structured backward error obtained by our method (with and without sparsity)

and backward error bounds obtained by Li et al. [47].
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Our structured backward error without sparsity
Li's backward error bound
Our structured backward error with sparsity

Figure 5.1. Backward errors comparison of a single eigenpair for H-

palindromic matrix polynomial

From Figure 5.1, one can easily see that whenever we consider both sparsity and H-

palindromic structure for obtaining the backward error of a single approximate eigenpair,

the backward error bounds obtained by Li et al. [47] give quite large values, which seem
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unreasonable. For example, suppose we consider indexes 6, 9 and 10 of Figure 5.1 and

compare the different backward error values. We can see that the backward error bound

of Li et al. gives a higher value even when we consider both sparsity and H-palindromic

structure together for calculating the backward error. This comparison shows that though

the authors of [47] provide the upper bound for the backward error of a single eigenpair

but this upper bound is quite far from the exact backward error value.

Next, Figure 5.2 provides the comparison between the structured and unstructured

sparse as well as non-sparse backward errors for two specified eigenpairs with respect to

the definition 5.2.2 (See Remark 5.3.3 for obtaining the backward error without sparsity).

By Figure 5.2, we can easily understand that unstructured backward error is always the

lower bound for all the backward errors and structured backward error with sparsity is

always an upper bound when we consider the backward error for more than one eigen-

pairs. Theoretically it is easy to verify. Interestingly by the figure, we observe that the

graph of structured backward error (H-palindromic) and the graph of unstructured back-

ward error with sparsity cut each other. This shows that the “sparsity structure” and

“H-palindromic structure” are theoretically incomparable. To obtain this graph, we per-

form several numerical experiments with H-palindromic matrix polynomial and run the

numerical experiment with arbitrary set of two specified eigenpairs.
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Figure 5.2. Backward error comparison of two eigenpairs for H-

palindromic quadratic polynomial

Remark 5.11.6. Similar to Figure 5.2 for H-palindromic structure, one can also obtain

the similar figures for other structures. �
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CHAPTER 6

BACKWARD ERROR ANALYSIS OF SPECIFIED

EIGENPAIRS FOR TWO-PARAMETER EIGENVALUE

PROBLEMS

Abstract: In the continuation of the detailed study of backward error analysis of spec-

ified eigenpairs, this chapter is dedicated for the structured and unstructured backward

error analysis of two approximate eigenpairs of a double semisimple eigenvalue for two-

parameter eigenvalues problems. We work with different structures such as complex sym-

metric, complex skew-symmetric, Hermitian, skew-Hermitian, T -even alternating, T -odd

alternating, H-even alternating, and H-odd alternating two-parameter matrix systems

with respect to Frobenius norm. Further, we illustrate the developed theory with the help

of numerical experiments.

6.1. Introduction

Backward error analysis is one of the most important topics in numerical linear algebra.

The term backward error analysis is discussed by different authors in different aspects

and is continuously developing. If we briefly recall the development, we can find that the

backward error analysis of approximate solutions for linear systems is already discussed by

different authors and is well developed (see, for example, [35, 36, 63] and the references

therein). For the matrix case, Dief [24] has discussed the backward error analysis for a

single approximate eigenpair, and this work is further extended for structured matrices

by Tisseur [71] for one or more eigenpairs. Backward error analysis of a single and

more approximate eigenpairs for matrix pencils is well developed but it is limited to a

single approximate eigenpair for matrix polynomials (see, for example, [1, 7, 8, 9, 10]).

More specifically in [6] the authors have discussed the backward error analysis of two



approximate eigenpairs of a double-semisimple eigenvalue for structured and unstructured

matrix pencils. Next, in [42] Hochstenbach and Plestenjak have found the backward error

of an approximate eigenpair for unstructured multiparameter eigenvalue problems. In the

same paper, they have also obtained the backward error of an approximate eigenpair for

Hermite multiparameter eigenvalue problems provided the given approximate eigenvalue

is real. In [50], the author has extended the work of [42] and obtained the backward error

of an approximate eigenpair for a Hermite multiparameter eigenvalue problem provided

the approximate eigenvalue is complex.

A given multiparameter eigenvalue problem (MEP) can have more than one eigen-

pairs in general. Hence the backward error analysis of approximate eigenpairs can not

be limited to a single eigenpair. Next step in the backward error analysis for MPE is

to investigate the backward error formula of two approximate eigenpairs. Situations for

two eigenpairs are not as similar as for the case of a single eigenpair. For the given

two approximate eigenpairs, one can face different situations. For example, the given

approximate eigenvalue can be semisimple. The given approximate eigenvalue can be

defective, i.e., both the eigenvalues are same and eigenvectors are linearly dependent. It

may also possible that both the eigenvalues are distinct, but eigenvectors are linearly in-

dependent. Further, these obtained eigenpairs are approximate, not exact. This happens

due to roundoff errors. Backward error is an essential tool to understand the quality

of computed approximate solutions. A two-parameter eigenvalue problem is the most

widely discussed form of the MEP (see, for example, [11, 12, 15, 22, 29, 55] for more on

two-parameter eigenvalue problems). Two-parameter eigenvalue problems arise in many

applications, particularly in mathematical physics when the method of separation of vari-

ables is used to solve boundary value problems (see, [39, 73] and the references therein).

In this chapter, we are interested in the backward error analysis for a two-parameter

eigenvalue problem.

From the above discussion, we know that the backward error analysis of a single

approximate eigenpair is well discussed for two-parameter eigenvalue problems, but the

backward error analysis of two approximate eigenpairs is unanswered even for a semisimple

eigenvalue (see, [27, 42] for more on backward error analysis of a single eigenpair). Hence a

natural question arises that what will be the backward error of two approximate eigenpairs

of a given two-parameter eigenvalue problem when the given approximate eigenvalue is

semisimple with multiplicity two? We answer the above question with respect to the
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Frobenius norm for unstructured and structured two-parameter eigenvalue problems. We

work with complex symmetric, complex skew-symmetric, Hermitian, and skew-Hermitian

two-parameter eigenvalue problems (see, [27, 42] for more details on structured two-

parameter eigenvalue problems).

6.2. Two-parameter matrix system and its classification

Let us start this section by recalling the definition of a two-parameter matrix system.

Let K be the space of two-parameter matrix systems. A two parameter matrix system is

defined in the following manner:

(6.1) W (α) := (W1(α),W2(α)), where Wi(α) := α0Vi0 + α1Vi1 + α2Vi2, i = 1 : 2,

where Vij ∈ Cni×ni for i = 1 : 2, j = 0 : 2, and α = (α0, α1, α2) ∈ C3. We denote the

system (6.1) by W := (W1,W2) ∈ Cn1×n1 ×Cn2×n2 . Finding (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)},
and non zero vectors xi ∈ Cni such that Wi(λ)xi = 0 for i = 1 : 2 is called a two

parameter eigenvalue problem (TEP). Further, (λ0, λ1, λ2) = λ ∈ C3 \ {(0, 0, 0)} is called

an eigenvalue of (6.1), and the pair (x1, x2) is called an eigenvector of W corresponding

to λ.

Remark 6.2.1. If λ is an eigenvalue then aλ is also an eigenvalue of for each nonzero

a ∈ C. Hence, we consider the normalized eigenvalue λ ∈ C3 \ {(0, 0, 0)} for our analysis,

i.e., |λ0|2 + |λ1|2 + |λ2|2 = 1.

Remark 6.2.2. Let (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)} be an eigenvalue of W. Then λ0 = 0

corresponds to an infinite eigenvalue and λ0 6= 0 corresponds to a finite eigenvalue.

Remark 6.2.3. By fixing α0 = 1 in (6.1), we can get the non-homogeneous form of a

two-parameter matrix system. In that case by fixing λ0 = 1 in a homogeneous eigenvalue

(λ0, λ1, λ2), we can easily get the corresponding non-homogeneous eigenvalue (1, λ1, λ2).

In the non-homogeneous case for simplicity we denote an eigenvalue by (λ1, λ2) instead of

(1, λ1, λ2).

Definition 6.2.4. Let W be a two-parameter matrix system of the form (6.1). Then the

set of eigenvalues of W is defined as

Λ(W ) = {λ ∈ C3 \ {(0, 0, 0)} : det(Wi(λ)) = 0 for i = 1, 2}.
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At this point, we present an example.

Example 6.2.5. Let W be a two-parameter matrix system of the form (6.1), where

Wi(α) := α0Vi0 + α1Vi1 + α2Vi2, i = 1 : 2, such that

V10 =

[
5 0

0 2

]
, V11 =

[
7 0

0 9

]
, V12 =

[
2 0

0 3

]
;V20 =

[
2 0

0 1

]
, V21 =

[
1 0

0 7

]
, V22 =[

8 0

0 2

]
. Then

Λ(W ) = {( 6√
53
,− 4√

53
,− 1√

53
), (

69√
5117

,− 10√
5117

,− 16√
5117

), (
3√
35
,

1√
35
,− 5√

35
),

(0,
2√
53
,− 7√

53
)}.

In this chapter, we are interested in the backward error analysis of two approximate

eigenpairs, especially when the approximate eigenvalue is semisimple. At this point we

need to understand the definitions of geometric and algebraic multiplicities of an eigen-

value λ = (λ0, λ1, λ2) of a two-parameter matrix system W.

Definition 6.2.6. [42] The geometric multiplicity (G.M.) of an eigenvalue λ = (λ0, λ1, λ2)

of a two-parameter W is defined in the following manner:

G.M. = dim(ker(W1(λ)))× dim(ker(W2(λ))).

Definition 6.2.7. [60] The algebraic multiplicity (A.M.) of λ = (λ0, λ1, λ2) is equal to

the intersection multiplicity of two curves w1 = 0 and w2 = 0 at λ. Here wi = det(Wi(α))

for i = 1, 2.

Definition 6.2.8. An eigenvalue λ = (λ0, λ1, λ2) of W is semisimple if its algebraic and

geometric multiplicity coincide.

Definition 6.2.9. An eigenvalue λ = (λ0, λ1, λ2) is said to be a double-semisimple eigen-

value if it is semisimple and its geometric multiplicity is two.

Next, we present an example from [73] to understand the above definitions.

Example 6.2.10. Let W be a two parameter matrix system of the form (6.1) such that
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V10 =


4 0 0

0 0 0

0 0 0

 , V11 =


1 0 0

0 6 0

0 0 1

 , V12 =


0 1 0

1 0 1

0 1 0

 ;

V20 =

[
20 0

0 0

]
, V21 =

[
0
√

3
√

3 0

]
, V22 =

[
7 0

0 1

]
.

Here w1 = (4α0 + 2α1)α
2
2 − 6(4α0 + α1)α

2
2 and w2 = 3α2

1 − 20α0α2 − 7α2
1. We have

(1, 0, 0) as one of the eigenvalues of W. Eigenvalue (1, 0, 0) has multiplicity two. We get

dim(ker(W1(1, 0, 0))) = 2 and dim(ker(W2(1, 0, 0))) = 1. Hence G.M. and A.M. of (1, 0, 0)

is equal to two and (1, 0, 0) is a double-semisimple eigenvalue of W.

Remark 6.2.11. If (λ0, λ1, λ2) is a double-semisimple eigenvalue of a two-parameter

matrix system W, then either dim(ker(W1(λ0, λ1, λ2)) = 2 and dim(ker(W2(λ0, λ1, λ2)) = 1

or dim(ker(W2(λ0, λ1, λ2)) = 2 and dim(ker(W1(λ0, λ1, λ2)) = 1. Without loss of generality

we assume that dim(ker(W1(λ0, λ1, λ2)) = 2 and dim(ker(W2(λ0, λ1, λ2)) = 1 for the

backward error analysis.

Next, we classify the two-parameter matrix systems based on the normal rank which

is defined as follows: Let W be a two-parameter matrix system of the form (6.1). Then

we define the normal rank of Wi for i = 1 : 2 by

Nrank (Wi) = max
λ∈C3\{(0,0,0)}

rank(Wi(λ)).

Based on the normal rank, let us consider the following examples:

Example 6.2.12. Let W be a two-parameter matrix system of the form (6.1), where

W1(α) =

[
1 + α1 + α2 0

0 7 + α1 + α2

]
,W2(α) =

[
3 + α1 + α2 0

0 4 + α1 + α2

]
.

Then Nrank (W1) = 2 and Nrank (W2) = 2. One can see easily that the above two-

parameter matrix system has no eigenvalue.

Example 6.2.13. Let W be a two-parameter matrix system of the form (6.1), where

W1(α) =

[
α0 + α1 + α2 0

0 0

]
,W2(α) =

[
α1 − α2 0

0 0

]
.
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Then Nrank (W1) = 1 and Nrank (W1) = 1. On the other hand, one can check easily

that the spectrum of W is C3 \ {(0, 0, 0)}.

Example 6.2.14. Let W be a two-parameter matrix system of the form (6.1), where

W1(α) =

[
α0 + α1 + α2 0

0 α0 + α1 + α2

]
,W2(α) =

[
α1 + α2 0

0 α0 + α2

]
.

Then Nrank (W1) = 2 and Nrank (W2) = 2. Also we have Λ(W ) = {(0, 1√
2
, −1√

2
), ( 1√

2
, 0, −1√

2
)}.

Example 6.2.15. Let W be a two-parameter matrix system of the form (6.1), where

W1(α) =

[
α0 + α1 + α2 0

0 α1 − α2

]
,W2(α) =

[
α1 − 2α2 0

0 0

]
.

Then Nrank (W1) = 2 and Nrank (W2) = 1. But the spectrum of W is nonempty.

As we can see from the above examples that not every two-parameter matrix system

needs to have the eigenvalues. In general, a given two-parameter matrix system need not

have a common root, which leads to an interesting observation that unlike to a matrix,

matrix pencil, and matrix polynomial where we always get a solution (solution means an

eigenvalue), a two-parameter matrix system may not have an eigenvalue at all. Based on

this observation, we can categorize two-parameter matrix systems in the following two

categories: regular and irregular. Further, each class can be divided into two categories,

namely weakly and strongly.

A two-parameter matrix system W of the form (6.1) is said to be regular if Nrank (W1) =

n1 and Nrank (W2) = n2 (see, [55]). Otherwise, we called a two-parameter is irregular.

We further classify the two-parameter matrix systems in the following categories:

(1) A two-parameter matrix system W is said to be weakly regular if Nrank (W1) =

n1, Nrank (W2) = n2, and the spectrum of W is empty.

(2) A two-parameter matrix system W is said to be strongly regular if Nrank (W1) =

n1, Nrank (W2) = n2, and has a nonempty spectrum.

(3) A two-parameter matrix system W is said to be weakly irregular if either

Nrank (W1) < n1 or Nrank (W2) < n2 and its spectrum Λ(W ) = C3 \ {(0, 0, 0)}.
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(4) A two-parameter matrix system W is said to be strongly irregular if either

Nrank (W1) < n1 or Nrank (W2) < n2 and its nonempty spectrum is a proper

subset of C3 \ {(0, 0, 0)}.

Next, we discuss an important lemma as follows.

Lemma 6.2.16. Suppose λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)} is a double-semisimple eigen-

value of a two-parameter matrix system W. Then there exists orthonormal vectors x1, x2 ∈
Cn1 such that (W1(λ))xi = 0 for i = 1 : 2 and y1 ∈ Cn2 such that (W2(λ))y1 = 0.

Proof. Let λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)} be a double-semisimple eigenvalue of W. It

implies that its algebraic multiplicity and geometric multiplicity are equal to two. Then

Without loss of generality we say that dim(ker(W1(λ))) = 2 and dim(ker(W2(λ))) = 1.

Now dim(ker(W1(λ))) = 2 implies that there exists two linearly independent eigenvectors

z1, z2 ∈ Cn1 such that (W1(λ))zi = 0 for i = 1 : 2, and there exists y1 ∈ Cn2 such that

(W2(λ))y1 = 0.

By Gram-Schmidt process, we can set x1 = z1 and x2 = z2−γz1, where γ =
zH1 z2
zH1 z1
∈ C.

We can easily see that (W1(λ))xi = 0 for i = 1 : 2, and x1, x2 are orthogonal, in particular

orthonormal. �

Next, based on the properties of matrices Vij, i = 1 : 2, j = 0 : 2 of a two-parameter

matrix system W of the form (6.1), we present Table 6.1 to classify the two-parameter

matrix systems.

S Matrix structure

Complex symmetric Vij = V T
ij for i = 1 : 2, j = 0 : 2

Complex skew-symmetric Vij = −V T
ij for i = 1 : 2, j = 0 : 2

Hermitian Vij = V H
ij for i = 1 : 2, j = 0 : 2

Skew-Hermitian Vij = −V H
ij for i = 1 : 2, j = 0 : 2

T -even alternating Vij = V T
ij for i = 1 : 2, j = 0, 2 and Vi1 = −V T

i1 for i = 1 : 2.

T -odd alternating Vij = −V T
ij for i = 1 : 2, j = 0, 2 and Vi1 = V T

i1 for i = 1 : 2.

H-even alternating Vij = V H
ij for i = 1 : 2, j = 0, 2 and Vi1 = −V H

i1 for i = 1 : 2.

H-odd alternating Vij = −V H
ij for i = 1 : 2, j = 0, 2 and Vi1 = V H

i1 for i = 1 : 2.

Table 6.1. An overview for structured two parameter matrix systems
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Throughout this chapter w =

[
wT1

wT2

]
∈ R2×3 be a nonnegative matrix, where wi =

[wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)} and wij, i = 1 : l, j = 0 : l are nonnegative real num-

bers. For a nonnegative matrix w we define the component-wise inverse via w−1 =[
w−110 w−111 w−112

w−120 w−121 w−122

]
, where we use the convention that w−1ij = 0 if wij = 0. For a non-

negative vector v =
[
vi

]
∈ Rn and x =

[
xj

]
∈ Cn we define the weighted 2-norm/seminorm

by ‖x‖v,2 = (
∑n

i=0 v
2
i |xi|2)1/2. If v is strictly positive, i.e., each component of v is positive,

then this is a norm, and if it has at least one zero component then it is a seminorm.

Next, we define the unstructured and structured backward errors for two approximate

eigenpairs. Let (λ, x1⊗y1) and (λ, x2⊗y1) be two approximate eigenpairs of W, where λ ∈
C3 \ {(0, 0, 0)} is a semisimple eigenvalue, x1, x2 ∈ Cn1 and y1 ∈ Cn2 . Then unstructured

and structured backward errors are given by

ηw,F (λ, x1:2, y1,W ) = inf{||||(δW1, δW2)||||w,2 : (W1(λ) + δW1(λ))xi = 0, i = 1 : 2;

(W2(λ) + δW2(λ))y1 = 0},

ηSw,F (λ, x1:2, y1,W ) = inf{||||(δW1, δW2)||||w,2 : δW ∈ S, (W1(λ) + δW1(λ))xi = 0, i = 1 : 2;

(W2(λ) + δW2(λ))y1 = 0},

respectively, where δWi, i = 1 : 2, are of the form (6.1) such that δWi(α) :=
∑2

j=0 αjδVij,

w ∈ R2×3 is a nonnegative matrix, ||||(δW1, δW2)||||2w,2 = |||δW1|||2w1,2
+ |||δW2|||2w2,2

with

|||δWi|||2wi,2 =
∑2

j=0w
2
ij‖δVij‖2 for i = 1 : 2, and

S := {complex symmetric, complex skew-symmetric, Hermitian, skew-Hermitian,

T -even alternating, T-odd alternating, H-even alternating, H-odd alternating}.

Remark 6.2.17. One can see Chapter-2 and Chapter-6 of [27] to obtain structured and

unstructured backward error formulas of a single approximate eigenpair.

To derive the backward error formulas, we will recall the concept of derivative of the

map from [9]. Let z, v ∈ C3. The partial gardient ∇i‖z‖v,2 of the map C3 → R, z → ‖z‖v,2
which is just the derivative of the map C → R, zi → ‖[z0, z1, z2]T‖v,2 with the variable

z0, zi−1, zi+1, . . . , z2 are fixed as constants.

Let λ = [λ0, λ1, λ2]
T ∈ C3 \ {(0, 0, 0)} and wp = [wp0, wp1, wp2]

T ∈ R3 \ {(0, 0, 0)} for

p = 1 : 2 are nonnegative vectors. Define H2
w−1
p ,2

(λ) = w−2p0 |λ0|2 + w−2p1 |λ1|2 + w−2p2 |λ2|2.
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Now introducing

zApi =
∇piHw−1

p ,2

Hw−1
p ,2(λ)

, i = 0 : 2,

where the partial gradient is evaluated at [λ0, λ1, λ2]
T and is given by ∇piHw−1

p ,2 =
w−2
pi λi

H
w−1
p ,2

(λ)
.

Lemma 6.2.18. [9] Let λ = [λ0, λ1, λ2]
T ∈ C3 \ {(0, 0, 0)}, wp = [wp0, wp1, wp2]

T ∈ R3 \
{(0, 0, 0)}, p = 1 : 2, be nonnegative vectors and ∇piHw−1

p ,2 =
w−2
pi λi

H
w−1
p ,2

(λ)
, p = 1 : 2, i = 0 : 2.

Then
2∑
i=0

w2
pi|∇piHw−1

p ,2|
2 = 1.

Proof. Proof of the above equality is given in the following manner:

2∑
i=0

w2
pi|∇piHw−1

p ,2|
2 =

2∑
i=0

w2
pi

w−4pi |λi|2

H2
w−1
p ,2

(λ)
=

2∑
i=0

w−2pi |λi|2

H2
w−1
p ,2

(λ)
= 1.

Next, for ε = ±1, we define G
ε

2

w−1
p ,2

(λ) = (1+ε)
2
w−2p0 |λ0|2 + (1−ε)

2
w−2p1 |λ1|2 + (1+ε)

2
w−2p2 |λ2|2.

Lemma 6.2.19. [9] Let λ = [λ0, λ1, λ2]
T ∈ C3 \ {(0, 0, 0)}, wp = [wp0, wp1, wp2]

T ∈
R3 \ {(0, 0, 0)}, p = 1 : 2, be nonnegative vectors and ∇piG

ε w−1
p ,2

= (1+ε)
2

w−2
pi λi

G
ε w−1

p ,2
(λ)
, p = 1 :

2, i = 0, 2, and ∇piGε,w−1
p ,2 = (1−ε)

2

w−2
pi λi

G
ε w−1

p ,2
(λ)
, p = 1 : 2. Then

2∑
i=0

w2
pi|∇piG

ε w−1
p ,2
|2 = 1.

Proof. For ε = ±1, we have (1+ε)2

4
= (1+ε)

2
, and (1−ε)2

4
= (1−ε)

2
. Proof of the above equality

is given in the following manner:

2∑
i=0

w2
pi|∇piG

ε w−1
p ,2
|2 =

(1 + ε)

2
w2
p0

w−4p0 |λ0|2

G
ε

2

w−1
p ,2

(λ)
+

(1− ε)
2

w2
p1

w−4p1 |λ1|2

G
ε

2

w−1
p ,2

(λ)
+

(1 + ε)

2
w2
p2

w−4p2 |λ2|2

G
ε

2

w−1
p ,2

(λ)
.

Then
2∑
i=0

w2
pi|∇piG

ε w−1
p ,2
|2 =

(1 + ε)

2

w−2p0 |λ0|2

G
ε

2

w−1
p ,2

(λ)
+

(1− ε)
2

w−2p1 |λ1|2

G
ε

2

w−1
p ,2

(λ)
+

(1 + ε)

2

w−2p2 |λ2|2

G
ε

2

w−1
p ,2

(λ)
= 1.

Now, in the light of Lemma 6.2.16, we derive the backward error formulas for unstruc-

tured and structured two-parameter matrix systems. Note that throughout this chapter,

a two-parameter matrix system can be either regular or irregular.
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6.3. Backward error analysis for unstructured two-parameter eigen-

value problems

In this section, we derive the backward error formula for two approximate eigenpairs

of a double-semisimple eigenvalue for an unstructured two-parameter matrix system.

Theorem 6.3.1. Let W be a two-parameter matrix system of the form (6.1). Let (λ, x1⊗
y1) and (λ, x2 ⊗ y1) be two approximate eigenpairs of W, where λ = (λ0, λ1, λ2) ∈ C3 \
{(0, 0, 0)} is a double-semisimple eigenvalue, x1, x2 ∈ Cn1 are orthonormal vectors, and

y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1.

Then the unstructured backward error of approximate eigenpairs is given by

(ηw,F (λ, x1:2, y1,W ))2 =
2∑
t=1

‖rt1‖22
H2
w−1

1 ,2
(λ)

+
‖r12‖22

H2
w−1

2 ,2
(λ)

,

where H2
w−1
i ,2

(λ) = w−2i0 |λ0|2 + w−2i1 |λ1|2 + w−2i2 |λ2|2, i = 1 : 2, and w =

[
wT1

wT2

]
∈ R2×3 be a

nonnegative matrix with wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)}.

Proof. For constructing the unstructured backward error formula, we need the minimum

Frobenius norm values of δVij, i = 1 : 2, j = 0 : 2. For this purpose, we consider

(6.2) δ̃V1j = UT
1 δV1jU1 =

[ 2 n−2

2 δ̂V1j δC1j
T

n−2 δB1j δD1j

]
,

where δ̂V1j =

[
δv1j,11 δv1j,12

δv1j,21 δv1j,22

]
, δB1j =

[
b1j,1 b1j,2

]
, δC1j =

[
c1j,1 c1j,2

]
, for j = 0 : 2,

and U1 ∈ Cn1×n1 is a unitary matrix such that U1 =
[
U11 U21

]
with U11 =

[
x1 x2

]
∈ Cn1×2, and

(6.3) δ̃V2j = UT
2 δV2jU2 =

[ 2 n−2

2 δv2j,11 c2j,1
T

n−2 b2j,1 δD2j

]
,

where U2 =
[
U12 U22

]
with U12 =

[
y1

]
∈ Cn2×1. It is given that rt1 := −W1(λ)xt for

t = 1 : 2 and r12 := −W2(λ)y1. Then using the unstructured backward error definition,
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we get rt1 := δW1(λ)xt for t = 1 : 2 and r12 := δW2(λ)y1. From (6.2) we have δ̃Wi(λ) =

Ui
T δWi(λ)Ui. Further, we get δ̃W1(λ)U1

Hxt = U1
T δW1(λ)xt = U1

T rt1 for t = 1 : 2. This

implies

2∑
j=0

w1jw
−1
1j λj

[
δ̂V1j δCT

1j

δB1j δD1j

][
et

0

]
=

[
UT
11rt1

UT
21rt1

]
, further simplification gives

(6.4)

[
(w10w

−1
10 λ0δ̂V10 + w11w

−1
1j λ1δ̂V11 + w12w

−1
12 λ2δ̂V12)et

(w10w
−1
10 λ0δB10 + w11w

−1
11 λ1δB11 + w12w

−1
12 λ2δB12)et

]
=

[
UT
11rt1

UT
21rt1

]
.

Also, from (6.3) we have δ̃W2(λ)U2
Hy1 = U2

T δW2(λ)y1 = U2
T r12. This implies

2∑
j=0

w2jw
−1
2j λj

[
δv2j,11 cT2j,1

b2j,1 δD2j

][
1

0

]
=

[
UT
12r12

UT
22r12

]
, further simplification gives

(6.5)

[
(w20w

−1
20 λ0δv20,11 + w21w

−1
21 λ1δv21,11 + w22w

−1
12 λ2δv22,11)

(w20w
−1
20 λ0b20,1 + w21w

−1
21 λ1b21,1 + w22w

−1
22 λ2b22,1)

]
=

[
UT
12r12

UT
22r12

]
,

where et ∈ C2 is a vector having 1 at tth position and 0 elsewhere. From (6.4), we get the

following equations

(6.6) w10w
−1
10 λ0δv10,tt + w11w

−1
11 λ1δv11,tt + w12w

−1
12 λ2δv12,tt = xTt rt1, t = 1, 2,

(6.7) w10w
−1
10 λ0b10,t + w11w

−1
11 λ1b11,t + w12w

−1
12 λ2b12,t = UT

21rt1, t = 1, 2.

From (6.5), we get the following equations

(6.8) w20w
−1
20 λ0δv20,11 + w21w

−1
21 λ1δv21,11 + w22w

−1
22 λ2δv22,11 = yT1 r12,

(6.9) w20w
−1
20 λ0b20,1 + w21w

−1
21 λ1b21,1 + w22w

−1
22 λ2b22,1 = UT

22r12.

The minimum norm solutions of (6.6) and (6.7) are given by

δv10,tt = zA10x
T
t rt1, δv11,tt = zA11x

T
t rt1, δv12,tt = zA12x

T
t rt1;

b10,t = zA10U
T
21rt1, b11,t = zA11U

T
21rt1, b12,t = zA12U

T
21rt1.

The minimum norm solutions of (6.8) and (6.9) are given by

δv20,11 = zA20y
T
1 r12, δv21,11 = zA21y

T
1 r12, δv22,11 = zA22y

T
1 r12;

b20,1 = zA20U
T
12r12, b21,1 = zA21U

T
12r12, b22,1 = zA22U

T
12r12.
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Further from (6.4), we get the following two equations

(6.10) w10w
−1
10 δv10,21 + w11w

−1
11 λ1δv11,21 + w12w

−1
12 λ2δv12,21 = xT2 r11,

(6.11) w10w
−1
10 δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = xT1 r21.

The minimum norm solutions of (6.10) and (6.11) are given by

δv10,21 = zA10x
T
2 r11, δv11,21 = zA11x

T
2 r11, δv12,21 = zA12x

T
2 r11;

δv10,12 = zA10x
T
1 r21, δv11,12 = zA11x

T
1 r21, δv12,12 = zA12x

T
1 r21.

The backward error is given by (ηF (λ, x1:2, y1,W ))2 =
∑2

i=1

∑2
j=0w

2
ij‖δVij‖2, where w2

1j‖δV1j‖2 =

w2
1j‖δ̂V1j‖2 + w2

1j‖δB1j‖2 + w2
1j‖δC1j‖2 + w2

1j‖δD1j‖2, and w2
2j‖δV2j‖2 = w2

2j|δv2j,11|2 +

w2
2j‖c2j,1‖2 + w2

2j‖b2j,1‖2 + w2
2j‖δD2j‖2.

We have
∑2

j=0w
2
1j‖δV1j‖2 =

∑2
j=0

∑2
t=1w

2
1j|δv1j,tt|2 + w2

1j|δv1j,12|2 + w2
1j|δv1j,21|2 +

w2
1j‖b1j,t‖2 + w2

1j‖c1j,t‖2 + ‖δD1j‖2 =
∑2

j=0

∑2
t=1w

2
1j|zA1j

|2|xTt rt1|2 + |zA1j
|2||xT1 r21|2 +

|zA1j
|2||xT2 r11|2 + |zA1j

|2|‖UT
21rt1‖2 + w2

1j‖c1j,t‖2 + ‖δD1j‖2. Since using Lemma 6.2.18, we

get

2∑
j=0

2∑
t=1

w2
1j|zA1j

|2|xTt rt1|2 =
2∑
t=1

2∑
j=0

w2
1j

|∇1iHw−1
p ,2|2|xTt rt1|2

H2
w−1

1 ,2
(λ)

=
2∑
t=1

|xTt rt1|2

H2
w−1

1 ,2
(λ)

,

2∑
j=0

2∑
t=1

w2
1j|zA1j

|2|xT1 r21|2 =
2∑
t=1

2∑
j=0

w2
1j

|∇1iHw−1
1 ,2|2|xT1 r21|2

H2
w−1

1 ,2
(λ)

=
2∑
t=1

|xTt rt1|2

H2
w−1

1 ,2
(λ)

,

2∑
j=0

2∑
t=1

w2
1j|zA1j

|2|xT2 r11|2 =
2∑
t=1

2∑
j=0

w2
1j

|∇1iHw−1
1 ,2|2|xT2 r11|2

H2
w−2

1 ,2
(λ)

=
2∑
t=1

|xTt rt1|2

H2
w−2

1 ,2
(λ)

,

2∑
j=0

2∑
t=1

w2
1j|zA1j

|2‖UT
21rt1‖2 =

2∑
t=1

2∑
j=0

w2
1j

|∇1iHw−1
1 ,2|2‖UT

21rt1‖2

H2
w−1

1 ,2
(λ)

=
2∑
t=1

|xTt rt1|2

H2
w−1

1 ,2
(λ)

.

Finally, we get
∑2

j=0w
2
1j‖δV1j‖2 =

∑2
t=1

|xTt rt1|2
H2

w−1
1 ,2

(λ)
+

|xT1 r21|2
H2

w−1
1 ,2

(λ)
+

|xT2 r11|2
H2

w−1
1 ,2

(λ)
+
‖UT21rt1‖2
H2

w−1
1 ,2

(λ)
+∑2

j=0w
2
1j‖c1j,t‖2 +

∑2
j=0w

2
1j‖δD1j‖2, where ‖UT

21rt1‖2 = ‖rt1‖2 − |xT1 rt1|2 − |xT2 rt1|2. Since

we need minimum norm solution hence setting c1j,t = 0 and δD1j = 0, we get

(6.12)
2∑
j=0

w2
1j‖δV1j‖2 =

‖r11‖2 + ‖r21‖2

H2
w−1

1 ,2
(λ)

.
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In the same manner by using Lemma 6.2.18, we have
∑2

j=0w
2
2j‖δV2j‖2 =

∑2
j=0w

2
2j|δv2j,11|2

+w2
2j‖b2j,1‖2+w2

2j‖c2j,1‖2+w2
2j‖δD2j‖2 =

|yT1 r12|2
H2

w−1
2 ,2

(λ)
+ ‖U12r12‖2

H2

w−1
2 ,2

(λ)
, where ‖U12r12‖2 = ‖r12‖2−

|yT1 r12|2. Similar to (6.12), we get

(6.13)
2∑
j=0

w2
2j‖δV2j‖2 =

‖r12‖2

H2
w−1

2 ,2
(λ)

.

Using (6.12) and (6.13), we get

(6.14) (ηw,F (λ, x1:2, y1,W ))2 =
‖r11‖2 + ‖r21‖2

H2
w−1

1 ,2
(λ)

+
‖r12‖2

H2
w−1

2 ,2
(λ)

.�

Remark 6.3.2. Substituting back all the obtained entries in (6.2) and (6.3), we get the

desired perturbed matrices.

Next, we state the backward error result for complex symmetric and complex skew-

symmetric two-parameter matrix systems.

6.4. Backward error analysis for complex symmetric/complex

skew-symmetric two-parameter eigenvalue problems

In this section first we discuss the backward error analysis for complex symmetric and

complex skew-symmetric two-parameter matrix systems. Next, we establish a relationship

between unstructured and structured backward errors. Throughout this section, ε = 1

represents a complex symmetric two-parameter matrix system and ε = −1 represents a

complex skew-symmetric two-parameter matrix system.

Theorem 6.4.1. Let W be a complex symmetric/ complex skew-symmetric two-parameter

matrix system of the form (6.1). Let (λ, x1 ⊗ y1) and (λ, x2 ⊗ y1) be two approximate

eigenpairs of W, where λ = (λ0, λ1, λ2) ∈ C3\{(0, 0, 0)} is a double-semisimple eigenvalue,

x1, x2 ∈ Cn1 are orthonormal vectors, and y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 :=

−W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1. Then the backward error of approximate

eigenpairs is given by

(ηSw,F (λ, x1:2, y1,W ))2 =
∑2

t=1(
2‖rt1‖22−(1+ε)/2|xTt rt1|2

H2

w−1
1 ,2

(λ)
) + (

2‖r12‖22−(1+ε)/2|yT1 r12|2
H2

w−1
2 ,2

(λ)
)−

2
|xT2 r11|2
H2

w−1
1 ,2

(λ)
,

141



where H2
w−1
i ,2

(λ) = w−2i0 |λ0|2 + w−2i1 |λ1|2 + w−2i2 |λ2|2, i = 1 : 2, and w =

[
wT1

wT2

]
∈ R2×3 be a

nonnegative matrix with wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)}.

Proof. For constructing the structured backward error formula, we need the minimum

Frobenius norm values of δVij such that δVij = εδV T
ij , i = 1 : 2, j = 0 : 2. For this purpose,

we consider

(6.15) δ̃V1j = UT
1 δV1jU1 =

[ 2 n−2

2 δ̂V1j εδB1j
T

n−2 δB1j δD1j

]
,

where δV1j = εδV T
1j , j = 0 : 2, δ̂V1j =

[
(1+ε)

2
δv1j,11 εδv1j,12

δv1j,12
(1+ε)

2
δv1j,22

]
, δB1j =

[
b1j,1 b1j,2

]
,

δC1j =
[
c1j,1 c1j,2

]
, δD1j = εδD1j

T for j = 0 : 2, and U1 ∈ Cn1×n1 is a unitary matrix

such that U1 =
[
U11 U21

]
with U11 =

[
x1 x2

]
∈ Cn1×2. Further

(6.16) δ̃V2j = UT
2 δV2jU2 =

[ 2 n−2

2
(1+ε)

2
δv2j,11 εb2j,1

T

n−2 b2j,1 δD2j

]
,

where δD2j = εδD2j
T for j = 0 : 2, and U2 =

[
U12 U22

]
with U12 =

[
y1

]
∈ Cn2×1.

It is given that rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1. Then using the

structured backward error definition, we get rt1 := δW1(λ)xt for t = 1 : 2 and r12 :=

δW2(λ)y1. From (6.15) we have δ̃Wi(λ) = Ui
T δWi(λ)Ui. Further, we get δ̃W1(λ)U1

Hxt =

U1
T δW1(λ)xt = U1

T rt1 for t = 1 : 2. This implies

2∑
j=0

w1jw
−1
1j λj

[
δ̂V1j εδBT

1j

δB1j δD1j

][
et

0

]
=

[
UT
11rt1

UT
21rt1

]
, further simplification gives

(6.17)

[
(w10w

−1
10 λ0δ̂V10 + w11w

−1
11 λ1δ̂V11 + w12w

−1
12 λ2δ̂V12)et

(w10w
−1
10 λ0δB10 + w11w

−1
11 λ1δB11 + w12w

−1
12 λ2δB12)et

]
=

[
UT
11rt1

UT
21rt1

]
.

Also, from (6.16) we have δ̃W2(λ)U2
Hy1 = U2

T δW2(λ)y1 = U2
T r12. This implies
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2∑
j=1

w2jw
−1
2j λj

[
(1+ε)

2
δv2j,11 εbT2j,1

b2j,1 δD2j

][
1

0

]
=

[
UT
12r12

UT
22r12

]
, further simplification gives

(6.18)

[
(1+ε)

2
(w20w

−1
20 λ0δv20,11 + w21w

−1
21 λ1δv21,11 + w22w

−1
22 λ2δv22,11)

(w20w
−1
20 λ0δb20,1 + w21w

−1
21 λ1δb21,1 + w22w

−1
22 λ2δb22,1)

]
=

[
UT
12r12

UT
22r12

]
,

where et ∈ C2 is a vector having 1 at tth position and 0 elsewhere. From (6.17), we get

the following equations for t = 1, 2

(6.19)
(1 + ε)

2
w10w

−1
10 λ0δv10,tt+

(1 + ε)

2
w11w

−1
11 λ1δv11,tt+

(1 + ε)

2
w12w

−1
12 λ2δv12,tt = xTt rt1,

(6.20) w10w
−1
10 λ0b10,t + w11w

−1
11 λ1b11,t + w12w

−1
12 λ2b12,t = UT

21rt1.

From (6.18), we get the following equations

(6.21)
(1 + ε)

2
w20w

−1
20 λ0δv20,11 +

(1 + ε)

2
w21w

−1
21 λ1δv21,11 +

(1 + ε)

2
w22w

−1
22 λ2δv22,11 = yT1 r12,

(6.22) w20w
−1
20 λ0b20,1 + w21w

−1
21 λ1b21,1 + w22w

−1
22 λ2b22,1 = UT

22r12.

The minimum norm solutions of (6.19) and (6.20) are given by

δv10,tt =
(1 + ε)

2
zA10x

T
t rt1, δv11,tt =

(1 + ε)

2
zA11x

T
t rt1, δv12,tt =

(1 + ε)

2
zA12x

T
t rt1

b10,t = zA10U
T
21rt1, b11,t = zA11U

T
21rt1, b12,t = zA12U

T
21rt1.

The minimum norm solutions of (6.21) and (6.22) are given by

δv20,11 =
(1 + ε)

2
zA10y

T
1 r12, δv21,11 =

(1 + ε)

2
zA11y

T
1 r12, δv22,11 =

(1 + ε)

2
zA12y

T
1 r12;

b20,1 = w−220 zA20U
T
12r12, b12,1 = w−221 zA21U

T
12r12, b22,1 = w−222 zA22U

T
12r12.

Further from (6.17), we get the following two equations

(6.23) w10w
−1
10 λ0δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = xT2 r11,

(6.24) w10w
−1
10 λ0δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = εxT1 r21.

Equation 6.23 and Equation 6.24 are equal. The minimum norm solutions of (6.23) is

given by

δv10,21 = εzA10x
T
1 r21, δv11,21 = εzA11x

T
1 r21, δv12,21 = εzA12x

T
1 r21.
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The backward error is given by (ηF (λ, x1:2, y1,W ))2 =
∑2

i=1

∑2
j=0w

2
ij‖δVij‖2, where w2

1j‖δV1j‖2

= w2
1j‖δ̂V1j‖2 + 2w2

1j‖δB1j‖2 +w2
1j‖δD1j‖2, and w2

2j‖δV2j‖2 = w2
2j|δv2j,11|2 +w2

2j‖c2j,1‖2 +

w2
2j‖b2j,1‖2 + w2

2j‖δD2j‖2.

Similar to Theorem 6.3.1 by using Lemma 6.2.18, we have
∑2

j=0w
2
1j‖δV1j‖2 =∑2

j=0

∑2
t=1((1 + ε)/2)w2

1j|δv1j,tt|2 + 2w2
1j|δv1j,12|2 + 2w2

1j‖b1j,t‖2 +w2
1j‖δD1j‖2 =

∑2
t=1((1 +

ε)/2)
|xTt rt1|2
H2

w−1
1 ,2

(λ)
+ 2

|xT1 r21|2
H2

w−1
1 ,2

(λ)
+ 2

‖UT21rt1‖2
H2

w−1
1 ,2

(λ)
+
∑2

j=0w
2
1j‖δD1j‖2, where ‖UT

21rt1‖2 = ‖rt1‖2 −

|xT1 rt1|2− |xT2 rt1|2. Since we need the minimum norm solution hence setting δD1j = 0, we

get

(6.25)
2∑
j=0

w2
1j‖δV1j‖2 =

2∑
t=1

(
2‖rt1‖22 − ((1 + ε)/2)|xTt rt1|2

H2
w−1

1 ,2
(λ)

)− 2
|xT2 r11|2

H2
w−1

1 ,2
(λ)

.

In the same manner, we have
∑2

j=0w
2
2j‖δV2j‖2 =

∑2
j=0w

2
2j|δv2j,11|2 + 2w2

2j‖b2j,1‖2 +

w2
2j‖δD2j‖2 =

|yT1 r12|2
H2

w−1
2 ,2

(λ)
+2 ‖U12r12‖2

H2

w−1
2 ,2

(λ)
, where ‖U12r12‖2 = ‖r12‖2−|yT1 r12|2. Similar to (6.25),

we get

(6.26)
2∑
j=0

w2
2j‖δV2j‖2 =

2‖r12‖22 − ((1 + ε)/2)|yT1 r12|2

H2
w−1

2 ,2
(λ)

.

Using (6.25) and (6.26), we get

(ηSw,F (λ, x1:2, y1,W ))2 =
∑2

t=1(
2‖rt1‖22−((1+ε)/2)|xTt rt1|2

H2

w−1
1 ,2

(λ)
) + (

2‖r12‖22−((1+ε)/2)|yT1 r12|2
H2

w−1
2 ,2

(λ)
)−

2
|xT2 r11|2
H2

w−1
1 ,2

(λ)
.

Now we present the relation between complex symmetric/complex skew-symmetric

and unstructured backward errors.

Lemma 6.4.2. Let W be a complex symmetric/ complex skew-symmetric two-parameter

matrix system of the form (6.1). Let (λ, x1 ⊗ y1) and (λ, x2 ⊗ y1) be two approximate

eigenpairs of W, where λ = (λ0, λ1, λ2) ∈ C3\{(0, 0, 0)} is a double-semisimple eigenvalue,

x1, x2 ∈ Cn1 are orthonormal vectors, and y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 :=

−W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1. Then

(ηSF (λ, x1:2, y1,W )) ≤
√

2(ηF (λ, x1:2, y1,W )).
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Proof. From Theorem 6.4.1, we have

(ηSF (λ, x1:2, y1,W ))2 =
∑2

t=1(
2‖rt1‖22−((1+ε)/2)|xTt rt1|2

H2

w−1
1 ,2

(λ)
) +

2‖r12‖22−((1+ε)/2)|yT1 r12|2
H2

w−1
2 ,2

(λ)
−

2
|xT2 r11|2
H2

w−1
1 ,2

(λ)
.

Since
|xTt rt1|2

H2
w−1

1 ,2
(λ)
≥ 0,

|yT1 r12|2

H2
w−1

2 ,2
(λ)
≥ 0, and

|xT2 r11|2

H2
w−1

1 ,2
(λ)
≥ 0, we get

(ηSF (λ, x1:2, y1,W ))2 ≤
2∑
t=1

2‖rt1‖22
H2
w−1

1 ,2
(λ)

+
2‖r12‖22
H2
w−1

2 ,2
(λ)

.

Now, using the backward error expression of Theorem 6.3.1 and above inequality, we get

the desired result.

Next, we present the backward error analysis for Hermitian/skew-Hermitian two-

parameter matrix systems.

6.5. Backward error for Hermitian/skew-Hermitian two-parameter

eigenvalue problems

This section deals with the backward error analysis of Hermitian and skew-Hermitian

two-parameter matrix systems. For this backward error analysis first we define the fol-

lowing terminologies.

LetW be a Hermitian/skew-Hermitian two-parameter matrix system of the form (6.1).

Let λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)}, and x1, x2 ∈ Cn1 be orthonormal vectors, and y1 ∈
Cn2 such that yH1 y1 = 1. Introduce rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1, and

and w =

[
wT1

wT2

]
∈ R2×3 be a nonnegative matrix with wi = [wi0, wi1, wi2]

T ∈ R3\{(0, 0, 0)}.

Furthermore, define

G :=

[
<(
√
ελ0)

w10

<(
√
ελ1)

w11

<(
√
ελ2)

w12

=(
√
ελ0)

w10

=(
√
ελ1)

w11

=(
√
ελ2)

w12

]
, H :=

[
<(
√
ελ0)

w20

<(
√
ελ1)

w21

<(
√
ελ2)

w22

=(
√
ελ0)

w20

=(
√
ελ1)

w21

=(
√
ελ2)

w22

]
, K :=

[
λ0
w10

λ1
w11

λ2
w12

λ0
w10

λ1
w11

λ2
w12

]
.

For t = 1 : 2 set

gt := G+

[
<(xHt rt1)

=(xHt rt1)

]
;h = H+

[
<(yH1 r12)

=(yH1 r12)

]
; k := K+

[
εxH2 r11

xH1 r21

]
,
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where gt := [gt0, gt1, gt2]
T ;h = [h0, h1, h2]

T ; k := [k0, k1, k2]
T . Now, we derive the main re-

sult of this section. Throughout this section, ε = 1 represents a Hermitian two-parameter

matrix system and ε = −1 represents a skew-Hermitian two-parameter matrix system.

Theorem 6.5.1. Let W be a Hermitian/skew-Hermitian matrix two-parameter matrix

system of the form (6.1). Let (λ, x1⊗y1) and (λ, x2⊗y1) be two approximate eigenpairs of

W, where λ = (λ0, λ1, λ2) ∈ C3 \{(0, 0, 0)} is a double-semisimple eigenvalue, x1, x2 ∈ Cn1

are orthonormal vectors, and y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 := −W1(λ)xt for

t = 1 : 2 and r12 := −W2(λ)y1. Then we have

Case-1: When (λ0, λ1, λ2) ∈ R3, then the backward error of approximate eigenpairs is

given by

(ηSw,F (λ, x1:2, y1,W ))2 =

∑2
t=1 2‖rt1‖2 −

∑2
t=1 |xHt rt1|2

H2
w−1

1 ,2
(λ)

− 2
|xH1 r21|2

H2
w−1

1 ,2
(λ)

+
2‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

.

Case-2: When (λ0, λ1, λ2) ∈ C3 \ R3, then the backward error of approximate eigenpairs

is given by

(ηSw,F (λ, x1:2, y1,W ))2 =
2∑
j=0

2∑
t=1

| gtj
w1j

|2 +
2∑
j=0

| hj
w2j

|2 + 2
2∑
j=0

| kj
w1j

|2 +

2(

∑2
t=1 ‖rt1‖2 −

∑2
t=1

∑2
i=1 |xHi rt1|2

H2
w−1

1 ,2
(λ)

) + 2(
‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

),

where H2
w−1
i ,2

(λ) = w−2i0 |λ0|2 + w−2i1 |λ1|2 + w−2i2 |λ2|2, i = 1 : 2, and w =

[
wT1

wT2

]
∈ R2×3 be a

nonnegative matrix with wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)}.

Proof. For constructing the structured backward error formula, we need the minimum

Frobenius norm values of δVij such that δVij = εδV H
ij , i = 1 : 2, j = 0 : 2. For this purpose,

we consider

(6.27) δ̃V1j = UH
1 δV1jU1 =

[ 2 n−2

2 δ̂V1j εδB1j
H

n−2 δB1j δD1j

]
,

where δ̂V1j =

[√
εδv1j,11 δv1j,12

εδv1j,12
√
εδv1j,22

]
with δv1j,tt ∈ R, δB1j = [b1j,1 b1j,2], δC1j = [c1j,1 c1j,2],

δD1j = εδD1j
H for j = 0 : 2, and U1 ∈ Cn1×n1 is a unitary matrix such that U1 = [U11 U21]
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with U11 = [x1, x2] ∈ Cn1×2.

(6.28) δ̃V2j = UH
2 δV2jU2 =

[ 2 n−2

2
√
εδv2j,11 εb2j,1

H

n−2 b2j,1 δD2j

]
,

where δv2j,11 ∈ R, δD2j = εδD2j
H for j = 0 : 2, and U2 = [U12 U22] with U12 = y1 ∈

Cn2×1. It is given that rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1. Then

using the structured backward error definition, we get rt1 := δW1(λ)xt for t = 1 : 2

and r12 := δW2(λ)y1. From (6.27), we have δ̃Wi(λ) = Ui
HδWi(λ)Ui. Further, we get

δ̃W1(λ)U1
Hxt = U1

HδW1(λ)xt = U1
Hrt1 for t = 1 : 2. This implies

2∑
j=0

w1jw
−1
1j λj

[
δ̂V1j εδBH

1j

δB1j δD1j

][
et

0

]
=

[
UH
11rt1

UT
21rt1

]
, further simplification gives

(6.29)

[
(w10w

−1
10 λ0δ̂V10 + w11w

−1
11 λ1δ̂V11 + w12w

−1
12 λ2δ̂V12)et

(w10w
−1
10 λ0δB10 + w11w

−1
11 λ1δB11 + w12w

−1
12 λ2δB12)et

]
=

[
UH
11rt1

UH
21rt1

]
,

Also, from (6.28) we have δ̃W2(λ)UH
2 y1 = U2

HδW2(λ)y1 = U2
Hr12. This implies

2∑
j=0

w2jw
−1
2j λj

[
δv2j,11 bH2j,1

b2j,1 δD2j

][
1

0

]
=

[
UH
12r12

UH
22r12

]
, further simplification gives

(6.30)

[√
ε(w20w

−1
20 λ0δv20,11 + w21w

−1
21 λ1δv21,11 + w21w

−1
21 λ2δv22,11)

(w20w
−1
20 λ0δb20,1 + w21w

−1
21 λ1δb21,1 + w22w

−1
22 λ2δb22,1)

]
=

[
UH
12r12

UH
22r12

]
,

where et ∈ C2 is a vector having 1 at tth position and 0 elsewhere. From (6.29), we get

the following equations

(6.31)
√
εw10w

−1
10 λ0δv10,tt +

√
εw11w

−1
11 λ1δv11,tt +

√
εw12w

−1
12 λ2δv12,tt = xHt rt1, t = 1, 2,

(6.32) w10w
−1
10 λ0b10,t + w11w

−1
11 λ1b11,t + w12w

−1
12 λ2b12,t = UH

21rt1, t = 1, 2.

From (6.30), we get the following equations

(6.33)
√
εw20w

−1
20 λ0δv20,11 +

√
εw21w

−1
21 λ1δv21,11 +

√
εw22w

−1
22 λ2δv22,11 = yH1 r12,

(6.34) w20w
−1
20 λ0b20,1 + w21w

−1
21 λ1b21,1 + w22w

−1
22 λ2b22,1 = UH

22r12.
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When (λ0, λ1, λ2) ∈ R3, then the minimum norm solution of (6.31) is given by

δv10,tt = zA10

√
εxHt rt1, δv11,tt = zA11

√
εxHt rt1, δv12,tt = zA12

√
εxHt rt1.

On the other hand when (λ0, λ1, λ2) ∈ C3 \R3, we can rewrite (6.31) in the following form

2∑
j=0

w1jw
−1
1j <(

√
ελj) δv1j,tt = <(xHt rt1)

2∑
j=0

w1jw
−1
1j =(

√
ελj) δv1j,tt = =(xHt rt1)

The minimum norm solution of the above two equations in the combined form is given by

(6.35)


w10δv10,tt

w11δv11,tt

w12δv12,tt

 =

[
<(
√
ελ0)

w10

<(
√
ελ1)

w11

<(
√
ελ2)

w12

=(
√
ελ0)

w10

=(
√
ελ1)

w11

=(
√
ελ2)

w12

]+ [
<(xHt rt1)

=(xHt rt1)

]
= [gt0, gt1, gt2]

T = g.

The minimum norm solution of (6.32) is given by

b10,t = zA10U
H
21rt1, b11,t = zA11U

H
21rt1, b12,t = zA12U

H
21rt1.

When (λ0, λ1, λ2) ∈ R3, then the minimum norm solution of (6.33) is given by

δv20,11 = zA20

√
εyH1 r12, δv21,11 = zA21

√
εyH1 r12, δv22,11 = zA22

√
εyH1 r12.

When (λ1, λ1, λ2) ∈ C3 \R3, separating (6.33) in real and imaginary parts, we get the

following two equation

(6.36)
2∑
j=0

√
ε w2jw

−1
2j <(λj) δv2j,11 = <(yH1 r12)

(6.37)
2∑
j=0

w2jw
−1
2j

√
ε=(λj) δv2j,tt = =(yH1 r12)

The minimum norm solutions of (6.36) and (6.37) in the combined form is given by

(6.38)


w20δv20,11

w21δv21,11

w22δv22,11

 =

[
<(
√
ελ0)

w20

<(
√
ελ1)

w21

<(
√
ελ2)

w22

=(
√
ελ0)

w20

=(
√
ελ1)

w21

=(
√
ελ2)

w22

]+ [
<(yH1 r12)

=(yH1 r12)

]
= [h0, h1, h2]

T = h.

The minimum norm solution of (6.34) is given by

b20,1 = zA20U
H
12r12, b21,1 = zA21U

H
12r12, b22,1 = zA22U

H
12r12.
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Further from (6.29), we get the following two equations

(6.39) w10w
−1
10 λ0δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = εxH2 r11,

(6.40) w10w
−1
10 λ0δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = xH1 r21.

When (λ0, λ1, λ2) ∈ R3, we know that εxH2 r11 = xH1 r21. Hence (6.39) and (6.40)

are the same and the minimum norm solution (6.40) is given by

δv10,12 = zA10

√
εxH1 r21, δv11,12 = zA11

√
εxH1 r21, δv12,12 = zA12

√
εxH1 r21.

On the other hand if (λ0, λ1, λ2) ∈ C3 \ R3, from (6.39) and (6.40), we get the minimum

norm solution as follows:

(6.41)


w10δv10,12

w11δv11,12

w12δv12,12

 =

[
λ0
w10

λ1
w11

λ2
w12

λ0
w10

λ1
w11

λ2
w12

]+ [
εxH2 r11

xH1 r21

]
= [k0, k1, k2]

T =: k.

The backward error is given by (ηF (λ, x1:2, y1,W ))2 =
∑2

i=1

∑2
j=0w

2
ij‖δVij‖2, where

w2
1j‖δV1j‖2 = w2

1j‖δ̂V1j‖2 + 2w2
1j‖δB1j‖2 + w2

1j‖δD1j‖2, and w2
2j‖δV2j‖2 = w2

2j|δv2j,11|2 +

w2
2j‖c2j,1‖2 + w2

2j‖b2j,1‖2 + w2
2j‖δD2j‖2. When (λ0, λ1, λ2) ∈ R3, similar to Theorem 6.3.1

by using Lemma 6.2.18, we get
∑2

j=0w
2
1j‖δV1j‖2 =

∑2
j=0

∑2
t=1w

2
1j|δv1j,tt|2+2w2

1j|δv1j,12|2+
2w2

1j‖b1j,t‖2+w2
1j‖δD1j‖2 =

∑2
t=1

|xHt rt1|2
H2

w−1
1 ,2

(λ)
+2
∑2

j=0
|xH1 r21|2
H2

w−1
1 ,2

(λ)
+2

‖UH21rt1‖2
H2

w−1
1 ,2

(λ)
+
∑2

j=0w
2
1j‖δD1j‖2,

where ‖UH
21rt1‖2 = ‖rt1‖2−|xH1 rt1|2−|xH2 rt1|2. Since we need the minimum norm solution

hence setting δD1j = 0, we get

(6.42)
2∑
j=0

w2
1j‖δV1j‖2 =

∑2
t=1 2‖rt1‖2 −

∑2
t=1 |xHt rt1|2

H2
w−1

1 ,2
(λ)

− 2
|xH1 r21|2

H2
w−1

1 ,2
(λ)

.

When (λ0, λ1, λ2) ∈ C3\R3, we get
∑2

j=0w
2
1j‖δV1j‖2 =

∑2
j=0

∑2
t=1w

2
1j|δv1j,tt|2+2w2

1j|δv1j,12|2

+2w2
1j‖b1j,t‖2 +w2

1j‖δD1j‖2 =
∑2

j=0

∑2
t=1 |

gtj
w1j
|2 +2| kj

w1j
|2 +2

‖UH21rt1‖2
H2

w−1
1 ,2

(λ)
+w2

1j‖δD1j‖2, where

‖UH
21rt1‖2 = ‖rt1‖2− |xH1 rt1|2− |xH2 rt1|2. Since we need the minimum norm solution hence

setting δD1j = 0, we get

(6.43)
2∑
j=0

w2
1j‖δV1j‖2 =

2∑
j=0

2∑
t=1

| gtj
w1j

|2 + 2
2∑
j=0

| kj
w1j

|2 + 2(

∑2
t=1 ‖rt1‖2 −

∑2
t=1

∑2
i=1 |xHi rt1|2

H2
w−1

1 ,2
(λ)

).

In the same manner, when (λ0, λ1, λ2) ∈ R3, we have
∑2

j=0w
2
2j‖δV2j‖2 =

∑2
j=0w

2
2j|δv2j,11|2+

2w2
2j‖b2j,1‖2 + w2

2j‖δD2j‖2 =
|yT1 r12|2
H2

w−1
2 ,2

(λ)
+ 2 ‖U12r12‖2

H2

w−1
2 ,2

(λ)
+ w2

2j‖δD2j‖2, where ‖U12r12‖2 =
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‖r12‖2 − |yH1 r12|2. Similar to (6.42), we get

(6.44)
2∑
j=0

w2
2j‖δV2j‖2 = (

2‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

).

On the other hand, when (λ0, λ1, λ2) ∈ C3\R3, we have
∑2

j=0w
2
2j‖δV2j‖2 =

∑2
j=0w

2
2j|δv2j,11|2

+ 2w2
2j‖b2j,1‖2 + w2

2j‖δD2j‖2 =
∑2

j=0 |
hj
w2j
|2 + 2 ‖U12r12‖2

H2

w−1
2 ,2

(λ)
+ w2

2j‖δD2j‖2, where ‖U12r12‖2 =

‖r12‖2 − |yH1 r12|2. Similar to (6.43), we get

(6.45)
2∑
j=0

w2
2j‖δV2j‖2 =

2∑
j=0

| hj
w2j

|2 + 2(
‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

).

For (λ0, λ1, λ2) ∈ R3 by using (6.42) and (6.44), we get

(6.46)

(ηSF (λ, x1:2, y1,W ))2 =

∑2
t=1 2‖rt1‖2 −

∑2
t=1 |xHt rt1|2

H2
w−1

1 ,2
(λ)

− 2
|xH1 r21|2

H2
w−1

1 ,2
(λ)

+
2‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

.

Similarly for (λ0, λ1, λ2) ∈ C3 \R3 by using (6.43) and (6.45), we get the desired backward

error. �

6.6. Backward error for T -even/T -odd alternating two-parameter

eigenvalue problem

In this section we discuss the backward error analysis for T -even alternating and T -

odd alternating two-parameter matrix systems. For this backward error analysis first we

define the following terminologies.

Let W be a T -even/T -odd alternating two-parameter matrix system of the form (6.1).

Let λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)}, x1, x2 ∈ Cn1 are orthonormal vectors, and y1 ∈ Cn2

such that yH1 y1 = 1. Introduce rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1, and

w =

[
wT1

wT2

]
∈ R2×3 be a nonnegative matrix with wi = [wi0, wi1, wi2]

T ∈ R3 \ {(0, 0, 0)}.

Furthermore, define

A :=

[
λ0
w10

λ1
w11

λ2
w12

λ0
w10

− λ1
w11

λ2
w12

]
,

and set

a :=

[
λ0
w10

λ1
w11

λ2
w12

λ0
w10

− λ1
w11

λ2
w12

]+ [
xT2 r11

εxT1 r21

]
,
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where a := [a0, a1, a2]
T .

Throughout this section, ε = 1 represents a T -even alternating two-parameter matrix

system and ε = −1 represents a T -odd alternating two-parameter matrix system.

Theorem 6.6.1. Let W be a T -even/T -odd alternating two-parameter matrix system of

the form (6.1). Let (λ, x1 ⊗ y1) and (λ, x2 ⊗ y1) be two approximate eigenpairs of W,

where λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)} is a double-semisimple eigenvalue, x1, x2 ∈ Cn1

are orthonormal vectors, and y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 := −W1(λ)xt for

t = 1 : 2 and r12 := −W2(λ)y1. Then the backward error of approximate eigenpairs is

given by

(ηSw,F (λ, x1:2, y1,W ))2 =
2∑
t=1

 1

G
ε

2

w−1
1 ,2

(λ)
− 2

H2
w−1

1 ,2
(λ)

)|xTt rt1|2 − 2
|xT2 r11|2 + |xT1 r21|2

H2
w−1

1 ,2
(λ)

+

2∑
t=1

(
2‖rt1‖22
H2
w−1

1 ,2
(λ)

) + 2
2∑
j=0

| aj
w1j
|2 +

2‖r12‖22
H2
w−1

2 ,2
(λ)

+ (
1

G
ε

2

w−1
2 ,2

(λ)
− 2

H2
w−1

2 ,2
(λ)

)|yT1 r12|2,

where H2
w−1
i ,2

(λ) = w−2i0 |λ0|2 + w−2i1 |λ1|2 + w−2i2 |λ2|2, and G
ε

2

w−1
i ,2

(λ) = (1+ε)
2
w−2i0 |λ0|2 +

(1−ε)
2
w−2i1 |λ1|2 + (1+ε)

2
w−2i2 |λ2|2 for i = 1 : 2, and and w =

[
wT1

wT2

]
∈ R2×3 be a nonnegative

matrix with wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)}.

Proof. For constructing the structured backward error formula, we need the minimum

Frobenius norm values of δVij such that δVij = εδV T
ij , i = 1 : 2, j = 0, 2. For this purpose,

we consider

(6.47) δ̃V1j = UT
1 δV1jU1 =

[ 2 n−2

2 δ̂V1j εδB1j
T

n−2 δB1j δD1j

]
,

where δ̂V1j =

[
(1+ε)

2
δv1j,11 εδv1j,12

δv1j,12
(1+ε)

2
δv1j,22

]
, δB1j =

[
b1j,1 b1j,2

]
, δC1j =

[
c1j,1 c1j,2

]
, δD1j

= εδD1j
T for j = 0, 2, and U1 ∈ Cn1×n1 is a unitary matrix such that U1 =

[
U11 U21

]
with U11 =

[
x1 x2

]
∈ Cn1×2. Next, we consider

(6.48) δ̃V2j = UT
2 δV2jU2 =

[ 2 n−2

2
(1+ε)

2
δv2j,11 εb2j,1

T

n−2 b2j,1 δD2j

]
,
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where δD2j = εδD2j
T for j = 0, 2, and U2 =

[
U12 U22

]
with U12 =

[
y1

]
∈ Cn2×1.

Further to get δV11 = −εδV T
11, we consider

(6.49) δ̃V11 = UT
1 δV11U1 =

[ 2 n−2

2 δ̂V11 εδB11
T

n−2 δB1j δD11

]
,

where δV11 = −εδV T
11, i = 1 : 2, δ̂V11 =

[
(1−ε)

2
δv11,11 −εδv11,12

δv11,12
(1+ε)

2
δv11,22

]
, δB11 =

[
b11,1 b11,2

]
,

δC11 =
[
c11,1 c11,2

]
, δD11 = −εδD11

T . Next, we consider

(6.50) δ̃V21 = UT
2 δV21U2 =

[ 2 n−2

2
(1−ε)

2
δv21,11 −εb21,1T

n−2 b21,1 δD21

]
,

where δD21 = −εδD21
T , and U2 =

[
U12 U22

]
with U12 =

[
y1

]
∈ Cn2×1.

It is given that rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1. Then using the

structured backward error definition, we get rt1 := δW1(λ)xt for t = 1 : 2 and r12 :=

δW2(λ)y1. From (6.49) we have δ̃Wi(λ) = Ui
T δWi(λ)Ui. Further, we get δ̃W1(λ)U1

Hxt =

U1
T δW1(λ)xt = U1

T rt1 for t = 1 : 2. This implies(
w10w

−1
10 λ0

[
δ̂V10 εδBT

10

δB10 δD10

]
+ w11w

−1
11 λ1

[
δ̂V11 −εδBT

11

δB11 δD1j

])[
et

0

]
+(

w12w
−1
12 λ2

[
δ̂V12 εδBT

12

δB12 δD12

])[
et

0

]
=

[
UT
11rt1

UT
21rt1

]
,

further simplification gives

(6.51)

[
(w10w

−1
10 λ0δ̂V10 + w11w

−1
11 λ1δ̂V11 + w12w

−1
12 λ2δ̂V12)et

(w10w
−1
10 λ0δB10 + w11w

−1
11 λ1δB11 + w12w

−1
12 λ2δB12)et

]
=

[
UT
11rt1

UT
21rt1

]
.

Also, from (6.48) and (6.50) we have δ̃W2(λ)U2
Hy1 = U2

T δW2(λ)y1 = U2
T r12. This implies(

w20w
−1
20 λ0

[
(1+ε)

2
δv20,11 εbT20,1

b20,1 δD20

]
+ w21w

−1
21 λ1

[
(1−ε)

2
δv21,11 −εbT21,1
b21,1 δD21

])[
1

0

]
+(

w22w
−1
22 λ2

[
(1+ε)

2
δv22,11 εbT22,1

b22,1 δD22

])[
1

0

]
=

[
UT
12r12

UT
22r12

]
.
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Further simplification gives

(6.52)[
(1+ε)

2
w20w

−1
20 λ0δv20,11 + (1−ε)

2
w21w

−1
21 λ1δv21,11 + (1+ε)

2
w22w

−1
22 λ2δv22,11

(w20w
−1
20 λ0δb20,1 + w21w

−1
21 λ1δb21,1 + w22w

−1
22 λ2δb22,1)

]
=

[
UT
12r12

UT
22r12

]
,

where et ∈ C2 is a vector having 1 at tth position and 0 elsewhere. From (6.51), we get

the following equations for t = 1 : 2

(6.53)
(1 + ε)

2
w10w

−1
10 λ0δv10,tt+

(1− ε)
2

w11w
−1
11 λ1δv11,tt+

(1 + ε)

2
w12w

−1
12 λ2δv12,tt = xTt rt1,

(6.54) w10w
−1
10 λ0b10,t + w11w

−1
11 λ1b11,t + w12w

−1
12 λ2b12,t = UT

21rt1.

From (6.52), we get the following equations

(6.55)
(1 + ε)

2
w20w

−1
20 λ0δv20,11 +

(1− ε)
2

w21w
−1
21 λ1δv21,11 +

(1 + ε)

2
w22w

−1
22 λ2δv22,11 = yT1 r12,

(6.56) w20w
−1
20 λ0b20,1 + w21w

−1
21 λ1b21,1 + w22w

−1
22 λ2b22,1 = UT

22r12.

The minimum norm solutions of (6.53) and (6.54) are given by

δv10,tt =
(1 + ε)

2
zA10x

T
t rt1, δv11,tt =

(1− ε)
2

zA11x
T
t rt1, δv12,tt =

(1 + ε)

2
zA12x

T
t rt1

b10,t = zA10U
T
21rt1, b11,t = zA11U

T
21rt1, b12,t = zA12U

T
21rt1.

The minimum norm solutions of (6.55) and (6.56) are given by

δv20,11 = ((1+ε)/2)zA10y
T
1 r12, δv21,11 = ((1−ε)/2)zA11y

T
1 r12, δv22,11 = ((1+ε)/2)zA12y

T
1 r12;

b20,1 = w−220 zA20U
T
12r12, b12,1 = w−221 zA21U

T
12r12, b22,1 = w−222 zA22U

T
12r12.

Further from (6.51), we get the following two equations

(6.57) w10w
−1
10 λ0δv10,12 + w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = xT2 r11,

(6.58) w10w
−1
10 λ0δv10,12 − w11w

−1
11 λ1δv11,12 + w12w

−1
12 λ2δv12,12 = εxT1 r21.

From (6.57) and (6.58) the minimum norm solution is given by

(6.59)


w10δv10,12

w11δv11,12

w12δv12,12

 =

[
λ0
w10

λ1
w11

λ2
w12

λ0
w10

− λ1
w11

λ2
w12

]+ [
xT2 r11

εxT1 r21

]
= a.

Backward error is given by (ηF (λ, x1:2, y1,W ))2 =
∑2

i=1

∑2
j=0w

2
ij‖δVij‖2, where w2

1j‖δV1j‖2

= w2
1j‖δ̂V1j‖2 + 2w2

1j‖δB1j‖2 +w2
1j‖δD1j‖2, and w2

2j‖δV2j‖2 = w2
2j|δv2j,11|2 +w2

2j‖c2j,1‖2 +

w2
2j‖b2j,1‖2 + w2

2j‖δD2j‖2.
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Similar to Theorem 6.3.1 by using Lemma 6.2.19, we have
∑2

j=0w
2
1j‖δV1j‖2 =∑2

j=0

∑2
t=1

(1+ε)
2
w2

1j|δv1j,tt|2 + 2w2
1j|δv1j,12|2 + 2w2

1j‖b1j,t‖2 +w2
1j‖δD1j‖2 =

∑2
t=1

|xTt rt1|2
G
ε

2

w−1
1 ,2

(λ)
+

2
‖UT21rt1‖2
H2

w−1
1 ,2

(λ)
+2
∑2

j=0 |
aj
w1j
|2+
∑2

j=0w
2
1j‖δD1j‖2, where ‖UT

21rt1‖2 = ‖rt1‖2−|xT1 rt1|2−|xT2 rt1|2.

Since we need the minimum norm solution hence setting δD1j = 0, we get

2∑
j=0

w2
1j‖δV1j‖2 =

2∑
t=1

(
2‖rt1‖22
H2
w−1

1 ,2
(λ)

+ (
1

G
ε

2

w−1
1 ,2

(λ)
− 2

H2
w−1

1 ,2
(λ)

)|xTt rt1|2 −

2
|xT2 r11|2 + |xT1 r21|2

H2
w−1

1 ,2
(λ)

) + 2
2∑
j=0

| aj
w1j

|2.(6.60)

In the same manner, we have
∑2

j=0w
2
2j‖δV2j‖2 =

∑2
j=0w

2
2j|δv2j,11|2 + 2w2

2j‖b2j,1‖2 +

w2
2j‖δD2j‖2 =

|yT1 r12|2
G
ε

2

w−1
2 ,2

(λ)
+2 ‖U12r12‖2

H2

w−1
2 ,2

(λ)
, where ‖U12r12‖2 = ‖r12‖2−|yT1 r12|2. Similar to (6.60),

we get

(6.61)
2∑
j=0

w2
2j‖δV2j‖2 =

2‖r12‖22
H2
w−1

2 ,2
(λ)

+ (
1

G
ε

2

w−1
2 ,2

(λ)
− 2

H2
w−1

2 ,2
(λ)

)|yT1 r12|2.

Using (6.60) and (6.61), we get

(ηSw,F (λ, x1:2, y1,W ))2 =
2∑
t=1

 1

G
ε

2

w−1
1 ,2

(λ)
− 2

H2
w−1

1 ,2
(λ)

)|xTt rt1|2 − 2
|xT2 r11|2 + |xT1 r21|2

H2
w−1

1 ,2
(λ)

+

2∑
t=1

(
2‖rt1‖22
H2
w−1

1 ,2
(λ)

) + 2
2∑
j=0

| aj
w1j
|2 +

2‖r12‖22
H2
w−1

2 ,2
(λ)

+ (
1

G
ε

2

w−1
2 ,2

(λ)
− 2

H2
w−1

2 ,2
(λ)

)|yT1 r12|2.�

6.7. Backward error for H-even/H-odd alternating two-parameter

eigenvalue problems

This section deals with the backward error analysis of H-even alternating and H-odd

alternating two-parameter matrix systems. For this backward error analysis first we

define the following terminologies.

Let W be a H-even/H-odd alternating two-parameter matrix system of the form (6.1).

Let λ = (λ0, λ1, λ2) ∈ C3 \ {(0, 0, 0)}, and x1, x2 ∈ Cn1 be orthonormal vectors, and y1 ∈
Cn2 such that yH1 y1 = 1. Introduce rt1 := −W1(λ)xt for t = 1 : 2 and r12 := −W2(λ)y1, and
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and w =

[
wT1

wT2

]
∈ R2×3 be a nonnegative matrix with wi = [wi0, wi1, wi2]

T ∈ R3\{(0, 0, 0)}.

Furthermore, define

L :=

[
<(
√
ελ0)

w10

<(
√
−ελ1)
w11

<(
√
ελ2)

w12

=(
√
ελ0)

w10

=(
√
−ελ1)
w11

=(
√
ελ2)

w12

]
, Q :=

[
<(
√
ελ0)

w20

<(
√
−ελ1)
w21

<(
√
ελ2)

w22

=(
√
ελ0)

w20

=(
√
−ελ1)
w21

=(
√
ελ2)

w22

]
,

Z :=

[
λ0
w10

− λ1
w11

λ2
w12

λ0
w10

λ1
w11

λ2
w12

]
.

For t = 1 : 2 set

lt := L+

[
<(xHt rt1)

=(xHt rt1)

]
; q = Q+

[
<(yH1 r12)

=(yH1 r12)

]
; z := Z+

[
εxH2 r11

xH1 r21

]
,

where lt := [lt0, lt1, lt2]
T ; q := [q0, q1, q2]

T ; z := [z0, z1, z2]
T . Now, we derive the main result

of this section. Throughout this section, ε = 1 represents a H-even alternating two-

parameter matrix system and ε = −1 represents a H-odd alternating two-parameter

matrix system.

Theorem 6.7.1. Let W be a H-even/H-odd alternating matrix two-parameter matrix

system of the form (6.1). Let (λ, x1⊗y1) and (λ, x2⊗y1) be two approximate eigenpairs of

W, where λ = (λ0, λ1, λ2) ∈ C3 \{(0, 0, 0)} is a double-semisimple eigenvalue, x1, x2 ∈ Cn1

are orthonormal vectors, and y1 ∈ Cn2 such that yH1 y1 = 1. Set rt1 := −W1(λ)xt for

t = 1 : 2 and r12 := −W2(λ)y1. Then we have

Case-1: When λ0 ∈
√
εR, λ1 ∈

√
−εR, λ2 ∈

√
εR, then the backward error of approxi-

mate eigenpairs is given by

(ηSw,F (λ, x1:2, y1,W ))2 =

∑2
t=1[2‖rt1‖2 − |xHt rt1|2]

H2
w−1

1 ,2
(λ)

− 2
|xH1 r21|2]
H2
w−1

1 ,2
(λ)

+
2‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

.

Case-2: Otherwise, the backward error of approximate eigenpairs is given by

(ηSw,F (λ, x1:2, y1,W ))2 =
2∑
j=0

2∑
t=1

| ltj
w1j

|2 +
2∑
j=0

| qj
w2j

|2 + 2
2∑
j=0

| zj
w1j

|2 +

2(

∑2
t=1 ‖rt1‖2 −

∑2
t=1

∑2
i=1 |xHi rt1|2

H2
w−1

1 ,2
(λ)

) + 2(
‖r12‖2 − |yH1 r12|2

H2
w−1

2 ,2
(λ)

),

where H2
w−1
i ,2

(λ) = w−2i0 |λ0|2 + w−2i1 |λ1|2 + w−2i2 |λ2|2, i = 1 : 2, and w =

[
wT1

wT2

]
∈ R2×3 be a

nonnegative matrix with wi = [wi0, wi1, wi2]
T ∈ R3 \ {(0, 0, 0)}.
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Proof. Proof is similar to Theorem 6.5.1. We present only the main steps of the proof.

For constructing the structured backward error formula, we need the minimum Frobenius

norm values of δVij such that δVij = εδV H
ij , i = 1 : 2, j = 0 : 2. For this purpose, we

consider

(6.62) δ̃V1j = UH
1 δV1jU1 =

[ 2 n−2

2 δ̂V1j εδB1j
H

n−2 δB1j δD1j

]
,

where δ̂V1j =

[√
εδv1j,11 δv1j,12

εδv1j,12
√
εδv1j,22

]
with δv1j,tt ∈ R, δB1j = [b1j,1 b1j,2], δC1j = [c1j,1 c1j,2],

δD1j = εδD1j
H for j = 0, 2, and U1 ∈ Cn1×n1 is a unitary matrix such that U1 =[

U11 U21

]
with U11 =

[
x1 x2

]
∈ Cn1×2. Next, we consider

(6.63) δ̃V2j = UH
2 δV2jU2 =

[ 2 n−2

2
√
εδv2j,11 εb2j,1

H

n−2 b2j,1 δD2j

]
,

where δD2j = εδD2j
H for j = 0, 2, and U2 =

[
U12 U22

]
with U12 =

[
y1

]
∈ Cn2×1. Further

to get δV11 = −εδV H
11 , we consider

(6.64) δ̃V11 = UH
1 δV11U1 =

[ 2 n−2

2 δ̂V11 −εδB11
H

n−2 δB1j δD11

]
,

where δ̂V11 =

[√
−εδv11,11 δv11,12

−εδv11,12
√
εδv11,22

]
, δB11 =

[
b11,1 b11,2

]
, δC11 =

[
c11,1 c11,2

]
, δD11 =

−εδD11
H . for j = 0 : 2, and U1 ∈ Cn1×n1 is a unitary matrix such that U1 = [U11 U21]

with U11 = [x1, x2] ∈ Cn1×2. Also, to get δV21 = −εδV H
21 , we consider

(6.65) δ̃V21 = UH
2 δV21U2 =

[ 2 n−2

2
√
−εδv21,11 −εb21,1H

n−2 b21,1 δD21

]
,

where δv2j,11 ∈ R, δD21 = εδD21
H , and U2 = [U12 U22] with U12 = y1 ∈ Cn2×1. From now

onwards, rest of the proof is similar to Theorem 6.5.1.
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6.8. Numerical experiments

In this section, we discuss the behaviour of structured and unstructured backward er-

rors of a single and two approximate eigenpairs of a double semisimple eigenvalue through

numerical experiments. For example, by using Matlab software, we have generated sev-

eral random Hermitian and complex symmetric two-parameter matrix systems of the form

(6.1). For these structured two-parameter matrix systems, we present two tables. In these

tables, we have compared the structured (complex symmetric or Hermitian) and unstruc-

tured backward errors of a single approximate eigenpair, and structured and unstructured

backward errors of two approximate eigenpairs of a double-semisimple eigenvalue. From

Table 6.2 and Table 6.3, we have found that there is a large difference between the back-

ward error of a single eigenpair and the backward error of two approximate eigenpairs of a

double-semisimple eigenvalue. These tables show that the existing study of the backward

error analysis of a single eigenpair [27] is not sufficient for getting the true backward error

results. The development of our results is quite important for getting a real picture of the

backward error analysis.
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Remark 6.8.1. For rest of the structures discussed in this chapter, one can easily obtain

the similar tables to show the importance of backward error analysis.

Remark 6.8.2. We have borrowed the backward error formulas for a single approximate

eigenpair from [27].

In [50] authors have plotted the graph which represents the ratio between structured

(Hermitian) and unstructured backward error of a single eigenpair for two-parameter

eigenvalue problem. They found that the majority of ratio lies in interval [1, 4]. In the

similar manner, next we present two graphs which represents the ratio between structured

(Hermitian or complex symmetric) and unstructured backward errors of two specified

eigenpairs of a double semisimple eigenvalue. To obtain these graphs, we have generated

several random Hermitian and complex symmetric two-parameter matrix systems of the

form (6.1) by using Matlab software. From the several numerical experiments, we have

found that the majority of the ratios usually distributed in [1, 2]. From the several numer-

ical experiments, we have taken 100 random numerical values to plot the graphs: Figure

6.1 and Figure 6.2.

0 10 20 30 40 50 60 70 80 90 100

Sl. no. of experiment

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Figure 6.1. Ratio of complex symmetric backward error and unstructured

backward error.

Remark 6.8.3. Similar to Figure 6.1 and Figure 6.2, one can also plot the graphs for

the rest of the structures to obtain the respective intervals.
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0 10 20 30 40 50 60 70 80 90 100

Sl. no. of experiment

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6.2. Ratio of Hermitian backward error and unstructured back-

ward error.

Remark 6.8.4. From Table 6.2 and Table 6.3 one can get the following relations between

the structured and unstructured backward errors of a single approximate eigenpair and

two approximate eigenpairs of a double-semisimple eigenvalue whose proofs are immediate

from the respective definitions:

ηF (λ, x1, y1,W ), ηF (λ, x2, y1,W ) ≤ ηF (λ, x1:2, y1,W ),

ηSF (λ, x1, y1,W ), ηSF (λ, x2, y1,W ) ≤ ηSF (λ, x1:2, y1,W ),

ηF (λ, x1:2, y1,W ) ≤ ηSF (λ, x1:2, y1,W ).�
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CHAPTER 7

CONCLUSION AND SCOPE FOR FUTURE WORK

This thesis is revolving around the backward error analysis of one or more specified

eigenpairs of structured and unstructured matrix pencils, matrix polynomials, and two-

parameter matrix systems. A general framework on backward error analysis is established

for specified eigenpairs in such a way that the different kinds of inverse eigenvalue problems

can be solved using our developed results. In particular, in Chapter 2, we have studied

the structured and unstructured backward error analysis of two specified eigenpairs of a

double-semisimple eigenvalue for matrix pencils. We have also obtained the relationships

between the unstructured backward error of a single eigenpair, structured backward error

of two eigenpairs of a double-semisimple eigenvalue, and structured backward error of a

single approximate eigenpair.

In Chapter 3, we have obtained the backward error formulas of one or more specified

eigenpairs for structured matrix pencils. We have also obtained the minimal Frobenius

norm perturbed matrix pencils, which also preserve the sparsity. Further, we have used

our backward error results in such a way that the different kinds of inverse eigenvalue

problems are also solvable. In Chapter 4, we have established the backward error results

for Hankel and symmetric-Toeplitz matrix pencils. We have further used these back-

ward error results to solve the matrix inverse eigenvalue problems and generalized inverse

eigenvalue problems of both the structures.

Next, in Chapter 5, we have extended the backward error results from matrix pencils to

matrix polynomials. For each structured matrix polynomial, we have provided the upper

bound on the maximum number of approximate eigenpairs whose backward error analysis

can be done simultaneously. We have also obtained the unstructured backward error of

one or more specified eigenpairs. Further, we have used the developed backward error

results in solving the different kinds of quadratic inverse eigenvalue problems. Finally, in

chapter 6, we have classified the two-parameter matrix systems on the basis of normal



rank definition. We have further found the backward error formulas of two approximate

eigenpairs for structured and unstructured two-parameter matrix systems.

Though we have discussed a detailed backward error analysis for one or more specified

eigenpairs, there are many questions that are still open and need to be answered to further

develop the literature of backward error analysis of more than one approximate eigenpairs.

Some of the unanswered questions are summarized by the following points:

• What is the the backward error of two approximate eigenpairs of a double-semisimple

eigenvalue for ∗-palindromic and ∗-anti-palindromic matrix pencils ? Here ∗ ∈
{T,H}.
• Can we develop the backward error analysis for two approximate eigenpairs of a

double-semisimple eigenvalue for matrix polynomials ?

• What is the backward error for three or more eigenpairs for two -parameter matrix

systems and for multi-parameter matrix systems ?

• Can we develop the backward error analysis for multi-parameter matrix systems in

such a way that inverse eigenvalue problems for multi-parameter matrix systems

are also solvable from those results ?
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