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ABSTRACT

Simulation of large dynamical systems can be unmanageable due to high demands

on computational resources. These large systems can be reduced into a smaller di-

mension by using Model Order Reduction (MOR) techniques. The reduced system

has approximately the same characteristics as the original system but it requires sig-

nificantly less computational effort in simulation. MOR can be done in many ways

such as balanced truncation, Hankel approximations, and Krylov projection. Among

these, the projection methods are quite popular, and hence, we focus on them.

We work with a wide array of MOR algorithms for reducing an extensive range of

linear dynamical systems. That is, parametric/non-parametric as well as first-order

and second-order.

In these MOR algorithms, sequences of very large and sparse linear systems arise

during the model reduction process. Solving such linear systems is the main computa-

tional bottleneck in efficient scaling of these MOR algorithms for reducing extremely

large dynamical systems. Preconditioned iterative methods are often used for solving

such linear systems.

These iterative methods introduce errors because they solve the linear systems

up to a certain tolerance. Hence, our first focus is to analyze the stability of MOR

algorithms when using inexact linear solves. Further, in these MOR algorithms, the

change from one linear system to the next is usually very small, and hence, the applied

preconditioner could be reused, which is our second focus. Here, by using our tech-

niques we demonstrate that a 1.2 million problem can be reduced in 3 days instead of

earlier 8 days.
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Chapter 1

Introduction

Dynamical systems arise in many areas of science and engineering. There are

three factor that define a dynamical system; (i) linearity; (ii) parametrization; and

(iii) order. Linear dynamical systems usually approximate the real-life phenomenas

well, and hence, have been extensively studied. Thus, we focus on linear dynamical

systems.

Whether a dynamical systems in parametrized or not; and the order of derivatives

in the system are the other two characteristics defining a dynamical system. In this

dissertation, we look at all such systems.

A parameterized second-order dynamical system is usually of the form [1]1

M(p1, p2, . . . , pw)ẍ(t) +D(p1, p2, . . . , pw)ẋ(t) +K(p1, p2, . . . , pw)x(t) = Bu(t),

y(t) = Cx(t),
(1.1)

where M(·), D(·), K(·) ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n and (p1, p2, . . . , pw) are the

parameters that are linearly embedded in the dynamical system matrices. Also,

x(t) : R → Rn is the vector of all states, u(t) : R → Rm and y(t) : R → Rq are the

inputs and the outputs of the system, respectively. If M(·) = 0, then above equation

can be written in the form of the parametric first-order dynamical system as

D(p1, p2, . . . , pw)ẋ(t) +K(p1, p2, . . . , pw)x(t) = Bu(t),

y(t) = Cx(t).
(1.2)

1As earlier, focus is only on linear dynamical systems.
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Table 1.1: Linear MOR Algorithms based upon Projection.

S. No. Category First-order Second-order

1

Non-Parametric

Cell 1 Cell 2

IRKA [4],

(Sy)2IRKA [5],

MIRIAm [6]

SOR-IRKA [7],

SO-IRKA [8],

SOSPDR [9],

AIRGA [10]

2

Parametric

Cell 3 Cell 4

IPMOR [11],

RPMOR [12],

PBTMR [13]

S-RPMOR [1],

IDPA [14],

S-PBTMR [13]

If in (1.1) and (1.2) the system matrices are independent of the parameters, then

they represent a non-parametric second-order and first-order dynamical system, re-

spectively.

Simulation of large dynamical systems can be unmanageable due to high demands

on computational resources. These large systems can be reduced into a smaller dimen-

sion by using Model Order Reduction (MOR) techniques [2, 3, 4, 5]. The reduced sys-

tem has approximately the same characteristics as the original system but it requires

significantly less computational effort in simulation. MOR can be done in many ways

such as balanced truncation, Hankel approximations, and Krylov projection. Among

these, the projection methods are quite popular, and hence, we focus on them.Table

1.1 summarizes most of the commonly used such algorithms.

In the mentioned MOR algorithms in Table 1.1, sequences of very large and sparse

linear systems arise during the model reduction process. Solving such linear systems

is the main computational bottleneck in efficient scaling of these MOR algorithms for

reducing extremely large dynamical systems, which we discuss next.

2



1.1 Iterative Methods and Preconditioners

Direct methods, which are based upon different matrix factorizations, are com-

monly used for solving linear systems of equations [15]. Standard direct methods

scale badly in-terms of the number of operations and the memory used (with respect

to the increase in the size of the linear systems; as here). They typically perform

dense linear algebra operations, and hence, are not an efficient choice when the linear

system matrices are sparse (as here as well).

An alternative to this is to use sparse direct methods. These methods solve this

scaling problem to a great extent such that linear systems of fairly large size could be

efficiently solved2. However, sparse direct methods also become prohibitively expensive

for extremely large sizes (hundreds of millions of equations to billions of equations).

In such cases, using iterative methods are usually the only viable option, which

scale well both in time and memory. Although iterative methods are not as robust or

reliable as direct methods, they are still preferred when scaling is a bigger issue. This

is the case with MOR algorithms, and hence, we use them here.

Krylov subspace based methods are very popular class of iterative methods [18],

which we focus on. If Ax = b is the linear system to be solved, with A ∈ Rn×n, b ∈ Rn,

x0 the initial solution and r0 (where r0 = b − Ax0) the initial residual, then these

methods find the solution in Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}, where

Kk(·, ·) represents the Krylov subspace.

Often iterative methods are slow or fail to converge, and hence, preconditioning

is used to accelerate them. We expect that the preconditioned iterative solves would

find a solution in less amount of time as compared to the unpreconditioned ones. For

most of the input dynamical systems, the Krylov subspace methods fail to converge.

Hence, we use a preconditioner. The goal is to find a preconditioner that is cheap to

compute as well as apply.

If P is a non-singular matrix that approximates the inverse of A, then the precon-

2Often, they work well for linear systems arising from certain problem classes [15, 16, 17], for

example, discretization of PDEs in two dimensions.
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ditioned system becomes APx̃ = b with x = Px̃. This is termed as right precondition-

ing. Similarly, left preconditioning can also be performed, where the preconditioner

is present on the left side of the matrix [15]3. If the linear system coefficient matrices

are SPD, then both the types of preconditioning give the same results [15].

For our MOR algorithms under-consideration, the linear system coefficient matrices

do not have any special structure. Hence, both these types of preconditioning work

differently. In our experiments, we mostly use right preconditioning because it is fairly

common [19, 20]. However, to demonstrate that our techniques are independent of the

type of preconditioning, for some models, we experiment with left preconditioning in

the side as well.

Preconditioned iterative methods are not exact because they solve linear systems

upto a certain tolerance. This raises the question that if preconditioned iterative meth-

ods are used inside the MOR algorithms, then are these algorithms stable with respect

to the error introduced by these methods. Hence, our first focus is to investigate the

stability of MOR algorithms (with respect to use of iterative methods). This is briefly

elaborated upon in Section 1.2.

Further, in these MOR algorithms, the change from one linear system to the next

is usually very small, and hence, the applied preconditioner could be reused, which is

our second focus. This aspect is expanded in Section 1.3.

1.2 Stability Analysis of MOR Algorithms

As mentioned earlier, we investigate the stability of MOR algorithms with respect

to use of preconditioned iterative methods. This kind of analysis was first proposed in

[21], where a popular MOR algorithm for linear non-parametric first-order dynamical

systems was analyzed (corresponding to Cell 1 of Table 1.1). An extended stability

analyses for commonly used MOR algorithms for bilinear dynamical systems (non-

parametric and parametric; first-order) have recently been done in [22] and [23].

3If the preconditioner is present on both the sides of the coefficient matrix, then it is called split/

center preconditioning.
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In this dissertation, we focus on stability analyses of MOR algorithms belonging

to other Cells of Table 1.1 (i.e. 2, 3, and 4). That is, as earlier with focus on linear

systems, we perform stability analyses of MOR algorithms for non-parametric second-

order, parametric first-order, and parametric second-order dynamical systems.

Besides comprehensively analyzing a wide range of MOR algorithms, this disserta-

tion has another very unique contribution that has not yet been looked at by any other

past work. For example, in [21] the authors mention that their stability analysis for

non-parametric first-order dynamical systems can be easily carried to non-parametric

second-order systems. Besides the fact that the authors do not perform this analysis

in-details, they also do not focus on how to satisfy the arising stability conditions.

In all our analyses, we show that satisfying the stability conditions requires chang-

ing the underlying linear solvers, and that too in an efficient way so as to not incur

any extra cost.

In the current context, it is important to highlight the difference between our track

of stability analyses and the one done in [24] as well. The authors in [24] first showed

that the SOAR algorithm is unstable with respect to the machine precision errors

(and not inexact solves of iterative methods, which is our focus). Then, they pro-

posed a Two-level orthogonal Arnoldi (TOAR) algorithm that cures this instability of

SOAR (we propose recycling variants of the underlying iterative methods for achieving

stability).

1.3 Reuse of Preconditioners in MOR Algorithms

As earlier, in most of the MOR algorithms, the change from one linear system to

the next is small. Using this fact, we propose a preconditioner reuse technique.

[25] and [26] first applied this technique in the quantum Monte Carlo context,

where it is referred to as recycling preconditioners. For the case when the linear sys-

tem coefficient matrices are perturbed by a varying constant times the identity matrix,

efficient preconditioners have also been developed. These preconditioners are indepen-

dent of the underlying application and are referred to as preconditioner updates (see

5



[27] for Symmetric Positive Definite (SPD) coefficient matrices and [28] for general

coefficient matrices).

This approach has been used in the optimization context in [29], where it is again

termed as preconditioner updates. In the MOR context, [7] and [30] have used this

technique for IRKA, which is used for MOR of non-parametric first-order dynamical

systems (belonging to Cell 1 of Table 1.1).

As for stability, here too, we apply the precondition reuse technique to MOR al-

gorithms belonging to other Cells of Table 1.1(i.e. 2, 3, and 4). That is, as earlier

with focus of linear dynamical systems by reusing preconditioners, we accelerate con-

vergence of MOR algorithms for non-parametric second-order, parametric first-order,

and parametric second-order dynamical systems.

Besides comprehensively applying this technique to a wide array of MOR algo-

rithms, we demonstrate the usefulness of using it in a real-life industrial setting, which

has not been done in any of the previous works. We demonstrate that by reusing pre-

conditioners, a 1.2 million problem can be reduced in 3 days instead of 8 days earlier.

Next, we provide an outline of the Chapters in this dissertation.

1.4 Organization of the Dissertation

The dissertation consists of five more Chapters. The stability analyses of MOR

algorithms for non-parametric second-order dynamical systems and parametric first

plus second-order dynamical systems are discussed in Chapter 2 and Chapter 3, re-

spectively. Chapter 4 and Chapter 5 apply the theory of reusing preconditioners to the

algorithms from Chapter 2 and Chapter 3, respectively. We provide our conclusions

and future work in Chapter 6.
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Chapter 2

Stability Analysis of

Non-parametric MOR

As discussed in the Introduction, here we focus on MOR of non-parametric second-

order dynamical systems. Adaptive Iterative Rational Global Arnoldi (AIRGA) [10],

is a popular MOR algorithm belonging to this category. This algorithm uses Ritz-

Galerkin projection and is used for reducing such dynamical systems with proportional

damping. These systems have the form

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t),

y(t) = Cx(t) = C Tx(t),
(2.1)

where M, D, K ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×q, and D = αM + βK. Here, α, β are

some scalar values. Let V ∈ Rn×r and its columns span an r-dimensional subspace

(r � n). In principle, the Ritz-Galerkin projection method involves the steps below.

• Approximating the reduced state vector x̂(t) using V as x(t) ≈ V x̂(t) leads to

MV ¨̂x(t) +DV ˙̂x(t) +KV x̂(t)−Bu(t) = r(t),

ŷ(t) = C TV x̂(t),

where r(t) is the residual after projection.
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• Enforcing the residual r(t) to be orthogonal to V or V T r(t) = 0 leads to the

reduced system given as follows:

V T
(
MV ¨̂x(t) +DV ˙̂x(t) +KV x̂(t)−Bu(t)

)
= 0,

ŷ(t) = C TV x̂(t).
(2.2)

or

M̂ ¨̂x(t) + D̂ ˙̂x(t) + K̂x̂(t)− B̂u(t) = 0,

ŷ(t) = Ĉ T x̂(t),
(2.3)

where

M̂ = V TMV, D̂ = V TDV, K̂ = V TKV, B̂ = V TB, and Ĉ T = C TV. (2.4)

To compute this projection matrix V , AIRGA matches the moments of the original

system transfer function and the reduced system transfer function.

The transfer function of (2.1) is given by

H(s) = C T
(
s2M + sD +K

)−1
B = C TX(s),

where X(s) = (s2M + sD +K)
−1
B. The power series expansion of X (s) around an

expansion point s0 ∈ R is given by (see, e.g., [31])

X(s) =
∞∑

j=0

X(j)(s0) (s− s0)j , (2.5)

where,

X(0) (s0) =
(
s2

0M + s0D +K
)−1

B,

X(1) (s0) =
(
s2

0M + s0D +K
)−1

(− (2s0M +D))X(0) (s0) , and

X(j) (s0) =
(
s2

0M + s0D +K
)−1 [− (2s0M +D)X(j−1) (s0)−MX(j−2)(s0)

]
,

(2.6)

for j = 2, 3, . . .. Here, X(j) (s0) is called the jth-order system moment at s0.

Similarly, the transfer function of the reduced system (2.3) is given by

Ĥ(s) = Ĉ T X̂(s),
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where X̂(s) =
(
s2M̂ + sD̂ + K̂

)−1

B̂. The power series expansion of X̂ (s) around an

expansion point s0 ∈ R is given by

X̂(s) =
∞∑

j=0

X̂(j)(s0) (s− s0)j . (2.7)

The jth-order system moment X̂(j)(s0) is defined analogously to X(j)(s0) in (2.6).

The goal of moment-matching approach is to find a reduced system such that the

first few moments of (2.5) and (2.7) are matched, that is, X(j)(s0) = X̂(j)(s0) for

j = 0, 1, 2, . . . , t for some t. This can be achieved by the observation below. With

P1 =−
(
s2

0M + s0D +K
)−1

(2s0M +D) ,

P2 =−
(
s2

0M + s0D +K
)−1

M,

Q =
(
s2

0M + s0D +K
)−1

B,

we have from (2.6)

X(0) (s0) = Q,

X(1) (s0) = P1X
(0) (s0) , and

X(j) (s0) = P1X
(j−1) (s0) + P2X

(j−2) (s0)

for j ≥ 2. As already observed in [9], these moments are just the blocks of the second-

order Krylov subspace

Gj (P1, P2, Q) = span{Q, S1 (P1, P2)Q, S2 (P1, P2)Q, . . . , Sj (P1, P2)Q},

where Sj (P1, P2) = P1Sj−1 (P1, P2)+P2Sj−2 (P1, P2) for j > 2,with S1 (P1, P2) =

P1 and S2 (P1, P2) = P 2
1 + P2.

For the special case of proportionally damped second-order linear systems, it has

been observed in [32] that with A = (s2
0M + s0D +K)

Gj (P1, P2, Q) = Gj
(
−A −1 (2s0M +D) , −A −1M, A −1B

)
,

= Gj
(
−A −1 ((2s0 + α)M + βK) , −A −1M, A −1B

)
,

= Kj
(
−A −1M, A −1B

)
= Kj (P2, Q) ,

9



where Kj (P2, Q) is the standard block Krylov subspace

Kj (P2, Q) = span{Q, P2Q, P
2
2Q, . . . , P

j−1
2 Q}.

The reduced order system (2.3), which matches the first dr/memoments of the original

system (2.1) can be obtained by projecting (2.1) with Π = V V T with an orthonormal

matrix V ∈ Rn×r whose columns span Kj(P2, Q).

Standard efficient methods to compute the desired orthogonal basis of Kj (P2, Q)

are, e.g., the block or the global Arnoldi algorithm [18, 33, 34]. The AIRGA algorithm

generates V by a global Arnoldi method. Its relevant parts are given in Algorithm 1.

Unlike as discussed above, the AIRGA algorithm uses not just one expansion point,

but a set of ` expansion points. This ensures a better reduced system in the entire

frequency domain of interest. The method is adaptive, i.e. it automatically chooses

the number of moments to be matched at each expansion point si. This is controlled

by the inner while loop starting at line 9. The variable j stores the total number of

moments matched. The upper bound on max value of j or J is drmax/me, where rmax

is the maximum dimension to which we want to reduce the state variable (input from

the user), and m is the dimension of the input. For a thorough discussion on how to

determine convergence, to choose the expansion points in the inner loop as well as a

new set of expansion points in the outer loop, see [10].

Next, we discuss the stability analysis of using inexact linear solves in AIRGA.

2.1 Backward Stability Analysis

Let V be calculated exactly, and f be the functional representation of the exact

MOR algorithm (that uses V during reduction process). Similarly, let Ṽ be calculated

inexactly (i.e., by a Krylov subspace solver), and f̃ be the functional representation

of the inexact MOR algorithm (that uses Ṽ during reduction process). Then, from

the backward stability definition, a MOR algorithm is backward stable with respect
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to inexact linear solves if [35]

f̃(x) = f(x̃) for some x̃ with (2.8)

‖x− x̃‖H2 or H∞

‖x‖H2 or H∞

= O(‖Z‖), (2.9)

where x̃ is the perturbed full model corresponding to the error in the linear solves for

Ṽ in the inexact MOR algorithm. This perturbation is denoted by Z. Further, H2

and H∞ denote the standard functional norms.

Here, the function f maps H(s) to Ĥ(s) or f(H(s)) = Ĥ(s). This is represented

by AIRGA when a direct solver for solving the linear systems at lines 5 and 14 is

employed (see Algorithm 1). This is called the exact AIRGA algorithm.

The function f̃ maps the transfer function H(s) of the original system to the

transfer function of the reduced system employing an iterative solver in order to solve

the linear systems at lines 5 and 14 in AIRGA (instead of a direct solver; again see

Algorithm 1). This is denoted by f̃(H(s)) =
˜̂
H(s) and is called the inexact AIRGA

algorithm.

For our discussion, we are only interested in one outer iteration step. The matrix

V = [V1, V2, . . . , VJ ] is generated and the reduced system is computed with V as in

(2.4) (lines 26-28). This immediately gives f(H(s)) and f̃(H(s)) when using of direct

solver and iterative solver, respectively. Further, we need to assume that the choice of

the expansion points is the same no matter whether iterative solves or a direct solve

is used.

Next, we analyze (2.8) and (2.9) separately in the below two subsections.

2.1.1 First Condition of Stability

Consider the linear systems for X(0)(si) ∈ Rn×m at line 5

(
s2
iM + siD +K

)
X(0) (si) = B,

where si ∈ S = {s1, s2, . . . , s`}. We denote the inexactly computed solution for

X(0)(si) by X̃(0)(si). Let the associated residual be η0i ∈ Rn×m for i = 1, . . . , `.
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Algorithm 1 Adaptive Iterative Rational Global Arnoldi Algorithm [10]

1: Input: {M,D,K,B,C ; error tolerances (ε1, ε2); rmax; initial set of expansion points

S = {s1, . . . , s`}}
2: while the H2 error between two consecutive reduced systems is greater than ε1 do

3: for each si ∈ S do

4: X(−1)(si) = 0, h
(−1)
π = 0

5: X(0)(si) =
(
s2iM + siD +K

)−1
B, h

(0)
π = 1

6: Also, get a good basis (vectors orthogonal to machine precision and normalized to length 1)

of X(0)(si) via a QR decomposition

7: end for

8: j = 1

9: while the H2 error between two intermediate reduced systems is greater than ε2 AND j <

drmax/me do

10: Choose an expansion point σj ∈ S; σj = argmaxsi‖h
(j−1)
π C TX(j−1)(si)‖f

11: Vj = X(j−1)(σj)/‖X(j−1)(σj)‖f
12: for i = 1, . . . , ` do

13: if (si == σj) then

14: X(j)(si) = −
(
s2iM + siD +K

)−1
MVj , h

(j)
π = h

(j−1)
π ‖X(j−1)(si)‖f

15: else

16: X(j)(si) = X(j−1)(si), h
(j)
π = h

(j−1)
π

17: end if

18: for t = 1, 2, . . . , j do

19: γt,j(si) = trace(V Ht ·X(j)(si)) X
(j)(si) = X(j)(si)− γt,j(si)Vt

20: end for

21: end for

22: j = j+1

23: Compute temporary reduced system matrices using the intermediate V and (2.4)

24: end while

25: Set J = j and pick σJ ∈ S
26: VJ = X(J−1)(σJ)/||X(J−1)(σJ)||f and V = [V1, V2, . . . , VJ ]

27: Also, get a good basis of V via a QR decomposition

28: Compute the reduced order system matrices M̂ , D̂ and K̂ with V as in (2.4)

29: Choose new set of expansion points S = {s1, . . . , s`} using eigenvalues of the reduced system

30: end while

31: Compute the reduced order system matrices B̂, and Ĉ with V as in (2.4)
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Then, the above equation is equivalent to

(
s2
iM + siD +K

)
X̃(0) (si) = B + η0i. (2.10)

All X̃(0)(si) are used at line 10 for picking the best expansion point for this first step,

which is denoted by σ1 with η(0) has the corresponding residual. Next, in Algorithm 1

at line 11, at the first iteration of the while loop (i.e. j=1), Ṽ1 is computed as (as

above, here ˜ is added because of the inexactness)

Ṽ1 = X̃(0) (σ1) /‖X̃(0) (σ1) ‖f , (2.11)

Further, at line 14 in Algorithm 1 the inexact solve gives

(
σ2

1M + σ1D +K
)
X̃(1) (σ1) = −MṼ1 + η1. (2.12)

X̃(1)(si) will be equal to X̃(0)(si), ∀si ∈ S = {s1, s2, . . . , s`}\{σ1}. As above, all

X̃(1)(si) are used at line 10 for picking the best expansion point at this second step,

which is denoted by σ2 with η(1) as the corresponding residual. Next, in Algorithm 1

at line 11 after one iteration of the while loop (i.e. j=2), Ṽ2 is computed as

Ṽ2 = X̃(1) (σ2) /‖X̃(1) (σ2) ‖f . (2.13)

Further, at line 14 the inexact solve yields for j = 2, . . . , J − 1

(
σ2
jM + σjD +K

)
X̃(j) (σj) = −MṼj + ηj. (2.14)

X̃(j)(si) will be equal to X̃(j−1)(si), ∀si ∈ S = {s1, s2, . . . , s`}\{σj}. As done for first

and second step, all X̃(j−1)(si) are used at line 10 for picking the best expansion point

at the jth step, which is denoted by σj with η(J−1) as the corresponding residual. Thus,

in Algorithm 1 at line 11 for j = 3, . . . , J−1 and at line 26 for j = J , Ṽj is computed

as

Ṽj = X̃(j−1) (σj) /‖X̃(j−1) (σj) ‖f , (2.15)

Finally, Ṽ =
[
Ṽ1, Ṽ2, . . . , ṼJ

]
is set up and used to generate the reduced system

(obtained by the inexact AIRGA algorithm),

˜̂
M = Ṽ TMṼ ,

˜̂
D = Ṽ TDṼ ,

˜̂
K = Ṽ TKṼ ,

˜̂
B = Ṽ TB, and

˜̂
C T = C T Ṽ .

(2.16)
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This reduced order system is equivalent to f̃ (H(s)).

Now we have to find a perturbed original system H̃ (s), such that the exact AIRGA

on it or f(H̃(s)), will give the reduced system as obtained
(
by applying inexact AIRGA

on the original full system or f̃ (H(s))
)
. That is, find H̃(s) such that f̃ (H(s)) =

f(H̃(s)). This will satisfy the first stability condition (2.8).

Among the many systems H̃ (s) one can consider here, we concentrate on those

that have a constant perturbation Z ∈ Rn×n in K only. That is,

K̃ = K + Z, M̃ = M, D̃ = D, B̃ = B, and C̃ = C .

Although in (2.10), only one linear system’s data is used in deciding Ṽ1, which is

X̃(0)(σ1). However, as mentioned earlier, all these linear solves X̃(0)(si) are used in

picking σ1. Then, for H̃ we have that instead of (2.10), X̃(0)(si) is the exact solution

of

(
s2
iM + siD + (K + Z)

)
X̃(0) (si) = B, (2.17)

for i = 1, 2, . . . , `. Similarly, it follows that the linear systems (2.12) and (2.14) are

solved exactly as

(
σ2
jM + σjD + (K + Z)

)
X̃(j) (σj) = −MṼj, (2.18)

for j = 1, . . . , J − 1, where σj is the expansion point picked at the jth step.

The final matrix Ṽ =
[
Ṽ1, Ṽ2, . . . , ṼJ

]
is exactly the same as before since

(a) X̃(0) (σ1) in (2.17) is the same as that of (2.10) as well as X̃(j) (σj) in (2.18) is

the same as that in (2.12), (2.14), and

(b) Ṽj for j = 1, . . . , J are still given by (2.11), (2.13) and (2.15).

Thus, the reduced order system
(
obtained by the exact AIRGA algorithm applied
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to the perturbed system H̃
)

is given by

ˆ̃M = Ṽ TM̃Ṽ = Ṽ TMṼ =
˜̂
M,

ˆ̃D = Ṽ T D̃Ṽ = Ṽ TDṼ =
˜̂
D,

ˆ̃K = Ṽ T K̃Ṽ = Ṽ T (K + Z) Ṽ =
˜̂
K + Ṽ TZṼ ,

ˆ̃B = Ṽ T B̃ = Ṽ TB =
˜̂
B, and

ˆ̃
C T = C̃ T Ṽ = C T Ṽ =

˜̂
C T .

(2.19)

This reduced order system is equivalent to f
(
H̃(s)

)
. Obviously, this is already al-

most the same as f̃ (H(s))
(

recall that our goal is to find H̃ (s) such that f̃ (H(s)) =

f
(
H̃(s)

))
. Thus, we need to find Z such that ˆ̃K =

˜̂
K or Ṽ TZṼ = 0.

If we look at the inexact solves in (2.10), (2.12) and (2.14), and the corresponding

perturbed solves in (2.17) and (2.18), we find that both are equivalent and a total of

` + J − 1 linear systems are solved. Since the dimension of Ṽ is only J , we further

work with only those linear systems that form our Ṽ and ignore the remaining systems.

Putting all these linear systems together we get

Z X = η, (2.20)

where X is formed by stacking the relevant block columns of X(j)(σj) or X =[
X̃(0) (σ1) , X̃(1) (σ2) , . . . , X̃(J−1) (σJ)

]
; similarly, after stacking the relevant block

columns of ηj together we get η =
[
−η(0), . . . ,−η(J−1)

]
.

In the above equation, we can replace X in-terms of Ṽ by using (2.11), (2.13), and

(2.15). That is, (2.20) can be rewritten as

ZṼ D−1
X = η or ZṼ = ηDX , (2.21)

where DX =




1

‖X̃(0)(σ1)‖
f

0 0 · · · 0

0 1

‖X̃(1)(σ2)‖
f

0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

‖X̃(J−1)(σJ )‖
f




.
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Multiplying Ṽ T from the left side of (2.21), we get

Ṽ TZṼ = Ṽ TηDX . (2.22)

Assume that we are using a Ritz-Galerkin based iterative solver. Here, the solution

space of the linear systems is orthogonal to the corresponding residuals, i.e. Ṽ1 ⊥
η(0), Ṽ2 ⊥ η(1), . . . , and ṼJ ⊥ η(J−1) [36]. Hence,

Ṽ Tη = −




Ṽ T
1

Ṽ T
2

...

Ṽ T
J−1

Ṽ T
J




[
η(0) η(1) . . . η(J−1)

]
,

= −




0 Ṽ T
1 η(1) . . . Ṽ T

1 η(J−2) Ṽ T
1 η(J−1)

Ṽ T
2 η(0) 0 . . . Ṽ T

2 η(J−2) Ṽ T
2 η(J−1)

...
...

...
...

...

Ṽ T
J−1η(0) Ṽ T

J−1η(1) . . . 0 Ṽ T
J−1η(J−1)

Ṽ T
J η(0) Ṽ T

J η(1) . . . Ṽ T
J η(J−2) 0




.

(2.23)

Our goal here is to make the right hand side of the above equation equal to zero.

The upper triangular part of the above matrix is zero if we have the following orthog-

onalities:

[
Ṽ1

]
⊥ η(1),

[
Ṽ1 Ṽ2

]
⊥ η(2),

...
[
Ṽ1 Ṽ2 Ṽ3 . . . ṼJ−2

]
⊥ η(J−2),

[
Ṽ1 Ṽ2 Ṽ3 . . . ṼJ−2 ṼJ−1

]
⊥ η(J−1).

(2.24)

Similarly, for the lower triangular part of the above matrix to be zero we need the
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following orthogonalities:

Ṽ2 ⊥
[
η(0)

]
,

Ṽ3 ⊥
[
η(0) η(1)

]
,

...

ṼJ−1 ⊥
[
η(0) η(1) . . . η(J−3)

]
,

ṼJ ⊥
[
η(0) η(1) . . . η(J−3) η(J−2)

]
.

(2.25)

At the first glance, there seem to be two problems in achieving the above discussed

orthogonalities in an iterative solver. One is the amount of code changes to be done.

The other is the extra cost associated at every iterative step of the solver, which may

undermine the benefit of using an iterative solver itself. In Section 2.2.2, we show that

both these issues can be easily resolved by using a recycling variant of the underlying

iterative solver (briefly summarized below).

While solving a sequence of linear systems, if the consecutive systems do not change

much, then some information can be reused from solving one linear system to solving

the next. In the context of Krylov based iterative linear solvers, this information is in

the form of the generated Krylov subspace. The process of reusing Krylov subspaces

from one linear system to the next is termed as “recycling” [37, 38, 39, 40].

A subset of Ṽ ’s and η’s of (2.24) and (2.25) can be used to span a recycle space,

leading to almost no code changes in the recycling variant of the underlying iterative

solver. In some cases, this choice of the recycle space can actually accelerate the

convergence of the next linear system in the sequence. In case when this recycle space

deteriorates the convergence of the next linear system, this behaviour is bounded. In

the numerical experiments section (Section 2.4), we support both these conjectures

(acceleration and deterioration of the convergence of iterative linear solvers) with

multiple examples.

Therefore, after applying (2.23), (2.24) and (2.25) to (2.22), we get Ṽ TZṼ = 0.

Thus, ˆ̃K =
˜̂
K or

f̃ (H (s)) = f
(
H̃ (s)

)
=

˜̂
H (s) ,
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where H (s) = C T (s2M + sD +K)
−1
B,

H̃ (s) = C T (s2M + sD + (K + Z))
−1
B, and

˜̂
H (s) = Ĉ T

(
s2 ˜̂
M + s

˜̂
D +

˜̂
K
)−1 ˜̂

B = Ĉ T
(
s2 ˆ̃M + s ˆ̃D + ˆ̃K

)−1 ˆ̃B. Thus, we satisfy the

first condition of stability.

2.1.2 Second Condition for Stability

According to the second condition of stability, given in (2.9), the difference between

the unperturbed (original) full system and the perturbed full system should be of the

order of the perturbation [35]. These errors are measured in the commonly used norms

as below.

H2 − norm ‖H −G‖H2 =
1

2π

∫ ∞

−∞
‖H(ıω)−G(ıω)‖fdω,

H∞ − norm ‖H −G‖H∞ = max
ω∈R
‖H(ıω)−G(ıω)‖2,

where the transfer functions H and G belong to systems with the same input and

output dimension. Theorem 4.3 from [21] helps in giving the desired result.

Theorem 2.1 If ‖Z‖2 <
1

‖A(s)−1‖H∞
then

‖H(s)− H̃(s)‖H2 ≤
‖A(s)−1B‖H∞‖C TA(s)−1‖H2

1− ‖A(s)−1‖H∞‖Z‖2

‖Z‖2, (2.26)

where A(s) = (s2M + sD +K).

Proof: see Appendix A.

If ‖Z‖2 < 1 and ‖A(s)−1‖H∞ < 1, then we have ‖A(s)−1‖H∞‖Z‖2 < 1, and hence,

1

1− ‖A(s)−1‖H∞‖Z‖2

<
1

1− ‖A(s)−1‖H∞
. (2.27)

Substituting (2.27) in (2.26) we get

‖H(s)− H̃(s)‖H2

‖H(s)‖H2

≤ ‖A(s)−1B‖H∞‖C TA(s)−1‖H2

‖H(s)‖H2

· 1

1− ‖A(s)−1‖H∞
· ‖Z‖2

= O(‖Z‖2).

(2.28)

This satisfies the second condition of stability.

The next theorem summarizes our complete stability analysis
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Theorem 2.2 If the linear systems arising in the AIRGA algorithm are solved by

(a) Ritz-Galerkin based solver (i.e. the residual is orthogonal to the generated

Krylov subspace),

(b) the extra orthogonalities given by (2.24) and (2.25) are satisfied by such a

solver,

(c) A (s) as defined in Theorem 2.1 is invertible and ‖A(s)−1‖H∞ < 1,

(d) Z is given by (2.20) exists and ‖Z‖2 < 1,

then the AIRGA algorithm is backward stable with respect to the inexact linear

solves.

If we look at Algorithm 1, besides the linear solves at lines 5 and 14, we are also

concerned about the construction of V from X (since V gives us our reduced system).

There are three places in code where X is modified further to obtain V rather than just

normalizing X to V (on lines 11 and 26). First is at line 6, where a QR decomposition

of X is done. Second, an Arnoldi iteration on X is done at lines 18–20. Finally, the

QR decomposition of V is done at line 27. All these code changes are nothing but an

attempt to get a good basis (vectors orthogonal to machine precision and normalized

to length 1) of X and V, which have negligible effect on our analysis. Hence, for ease

of exposition, we ignore them.

Next, we discuss how to satisfy the backward stability conditions given by Theorem

2.2

2.2 Satisfying Backward Stability Conditions

In this section, we analyze the hypothesis of Theorem 2.2 as so to achieve a back-

ward stable AIRGA, we mostly focus on conditions (a) and (b) and not (c) and (d).

Condition (c) cannot be worked upon much because it is dependent on the expansion

points and the input dynamical system. Condition (d) does not create much chal-

lenges because, as discussed in the next section, perturbation is directly proportional

to the residuals, which can be iteratively controlled.
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From condition (a) of Theorem 2.2 we know that we need to use a Ritz-Galerkin

based method for solving the underlying linear systems in AIRGA. The Conjugate

Gradient (CG) method is one of the most popular solver of such a type. The CG

method is mainly used for solving Symmetric Positive Definite (SPD) linear systems.

For solving non-symmetric linear systems, Full Orthogonalization Method (FOM) [33,

41] is the one that is based upon the Ritz-Galerkin theory.

In this work, we focus on the CG method, and hence, in the results section, we

take models that lead to SPD linear systems in the AIRGA algorithm. FOM method

can be similarly used.

Next, we first discuss how to change the theory of the CG method such that

condition (b) of Theorem 2.2 or the extra orthogonalities, (2.24)-(2.25), are satisfied

(in Section 2.2.1). Further, we describe how the recommended changes can be easily

implemented (in Section 2.2.2).

2.2.1 Achieving Extra Orthogonalities

The CG method consists of two components. One is the Lanczos algorithm that

gives a good basis of the generated Krylov subspace. Such a basis has vectors or-

thogonal to machine precision and normalized to length 1. The other is the Ritz-

Galerkin projection to obtain solution estimates from this subspace. The orthogo-

nalities in (2.25) can be achieved by modifying the Lanczos algorithm (discussed in

Section 2.2.1.1), and those in (2.24) can be achieved by changing the Ritz-Galerkin

projection (discussed in Section 2.2.1.2).

2.2.1.1 Adapting the Lanczos Process

Assume we are trying to solve the linear system of the form

Ax = b, (2.29)

where A ∈ Cn×n and b ∈ Cn. Let x0 be the initial solution vector with r0 = b − Ax0

as the corresponding residual. The Lanczos algorithm computes a good basis of the
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generated Krylov subspace involving A and r0 as [18]

wk+1 ∈ Kk (A, r0) ≡ span{r0, Ar0, A
2r0, · · · , Ak−1r0}

s.t. wk+1 ⊥
[
w1 w2 · · · wk

]
,

(2.30)

where wk+1 is the Lanczos vector at the (k + 1)th iterative step and w1 = r0/‖r0‖1.

Now, assume we are carrying some residual vector r̃ from another linear system, which

we need to make orthogonal to the final solution of (2.29). Then, the Lanczos algorithm

above would consist of the following procedure:

wk+1 ∈ Kk (A, r0)

s.t. wk+1 ⊥
[
w1 w2 · · ·wk r̃︸︷︷︸

]
.

Recall from the previous sections that in AIRGA, the first set of linear systems

to be solved iteratively are given by (2.10). As mentioned in the paragraph between

(2.10)–(2.11), the expansion point chosen is σ1, and hence, in the linear system playing

a role in our stability analysis is

(
σ2

1M + σ1D +K
)
X̃(0) (σ1) = B + η(0). (2.31)

Next, we need to iteratively solve (2.12), i.e.

(
σ2

1M + σ1D +K
)
X̃(1) (σ1) = −MṼ1 + η1. (2.32)

Here, we need a good basis (vectors orthogonal to machine precision and normal-

ized to length 1) of the Krylov subspace involving the coefficient matrix K1 =

(σ2
1M + σ1D +K) and (η1)0, which is the initial residual of (2.32). Hence, the Lanczos

algorithm here would consist of the following procedure:

(w1)k+1 ∈ Kk (K1, (η1)0)

s.t. (w1)k+1 ⊥ [(w1)1 (w1)2 · · · (w1)k] ,
(2.33)

1Here, the first equation of (2.30) is implemented using

wk+1 = Awk − c1w1 − c2w2 − . . .− ck−1wk−1 − ckwk.

Finally, the second equation of (2.30) gives us c1, c2, . . . , ck. For a complete derivation of this, see

chapter 5 of [36].
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where (w1)k+1 is the Lanczos vector at the (k + 1)th iterative step and (w1)1 =

(η1)0 /‖ (η1)0 ‖. At this stage it is not clear if the solution of (2.32), i.e. X̃(1)(σ1),

would be used to form Ṽ2 or not (see the discussion between (2.12)–(2.13); equiva-

lently lines 10–11 of Algorithm 1). However, to avoid repeating solving (2.32) in case

its solution is used to form Ṽ2, we adapt the Lanczos procedure given by (2.33) as

(w1)k+1 ∈ Kk (K1, (η1)0)

s.t. (w1)k+1 ⊥
[
(w1)1 (w1)2 · · · (w1)k η(0)︸︷︷︸

]
,

(2.34)

where η(0) is the final residual obtained after solving (2.31) iteratively.

Next, the expansion point σ2 is chosen (as above, see paragraph between (2.12)–

(2.13) or lines 10–11 of Algorithm 1). If σ2 turns to be equal to σ1 (i.e. σ2 = σ1),

then Ṽ2 = X̃(1)(σ1)/‖X̃(1)(σ1)‖f , and we would be satisfied the first orthogonality of

(2.25), i.e. Ṽ2 ⊥ [η(0)].

If σ2 turns to be not equal to σ1 (say σ2 = si 6= σ1), then Ṽ2 =

X̃(1)(si)/‖X̃(1)(si)‖f = X̃(0)(si)/‖X̃(0)(si)‖f with X̃(0)(si) given by (2.10) or

(
s2
iM + siD +K

)
X̃(0) (si) = B + η0i, (2.35)

which we would have already solved once. Hence, to satisfy the first orthogonality of

(2.25) or Ṽ2 ⊥ [η(0)], we would need to resolve (2.10) or (2.35) by adapting its Lanczos

process as given in (2.34). That is, carry extra η(0) in its Krylov subspace.

Next, we need to iteratively solve (2.14) for j = 2, i.e.

(
σ2

2M + σ2D +K
)
X̃(2) (σ2) = −MṼ2 + η2. (2.36)

Here, we need a good basis (vectors orthogonal to machine precision and normal-

ized to length 1) of the Krylov subspace involving the coefficient matrix K2 =

(σ2
2M + σ2D +K) and (η2)0, which is the initial residual of (2.36). Hence, the Lanczos

algorithm here would consist of the following procedure:

(w2)k+1 ∈ Kk (K2, (η2)0)

s.t. (w2)k+1 ⊥ [(w2)1 (w2)2 · · · (w2)k] ,
(2.37)
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where (w2)k+1 is the Lanczos vector at the (k + 1)th iterative step and (w2)1 =

(η2)0 /‖ (η2)0 ‖.
As earlier, at this stage it is not clear if the solution of (2.36), i.e. X̃(2)(σ2), would

be used to form Ṽ3 or not (see the discussion between (2.14)–(2.15); equivalently lines

10–11 of Algorithm 1). However to avoid repeating solving (2.36) in case its solution

is used to form Ṽ3, we adapt the Lanczos procedure given by (2.37) as

(w2)k+1 ∈ Kk (K2, (η2)0)

s.t. (w2)k+1 ⊥
[
(w2)1 (w2)2 · · · (w2)k η(0) η(1)︸ ︷︷ ︸

]
,

(2.38)

where η(1) is the final residual obtained after solving (2.32) iteratively.

Next, the expansion point σ3 is chosen (as above, see paragraph between (2.14)–

(2.15) or equivalently lines 10–11 of Algorithm 1). If σ3 turns to be equal to σ2 (i.e.

σ3 = σ2), then Ṽ3 = X̃(2)(σ2)/‖X̃(2)(σ2)‖f , and we would have satisfied the second set

of orthogonalities of (2.25), i.e. Ṽ3 = [η(0) η(1)].

If σ3 turns to be not equal to σ2 (i.e. σ3 6= σ2), then it may be equal to

σ1 or some other si. In case σ3 = σ1 6= σ2, than Ṽ3 = X̃(2)(σ1)/‖X̃(2)(σ1)‖f =

X̃(1)(σ1)/‖X̃(1)(σ1)‖f with X̃(1)(σ1) given by (2.12) or (2.32), which we would have

already solved once. Hence, to satisfy the second set of orthogonalities of (2.25) or

Ṽ3 ⊥ [η(0) η(1)], we would need to resolve (2.12) or (2.32) by adapting its Lanczos

process as given in (2.38). That is, carry extra η(0) and η(1) in its Krylov subspace.

In case σ3 = si with si 6= σ1, and si 6= σ2, then Ṽ3 = X̃(2)(si)/‖X̃(2)(si)‖f =

X̃(1)(si)/‖X̃(1)(si)‖f = X̃(0)(si)/‖X̃(0)(si)‖f with X̃(0)(si) again given by (2.10) or

(
s2
iM + siD +K

)
X̃(0) (si) = B + η0i, (2.39)

which we would have already solved once. Hence, to satisfy the second set of orthog-

onalities of (2.25) or Ṽ3 ⊥ [η(0) η(1)], we would need to resolve (2.10) or (2.39) by

adapting its Lanczos process as given in (2.38). That is, carry extra η(0) and η(1) in

its Krylov subspace.

We need to repeat a similar procedure for (2.14) for all j = 3, . . . , J − 1.
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2.2.1.2 Adapting the Ritz-Galerkin Projection

Recall that if we were trying to solve the linear system given in (2.29) by the CG

method, then (2.30) gives a good basis (vectors orthogonal to machine precision and

normalized to length 1) of the generated Krylov subspace. The solution update at the

kth iterative step is given as [18]

xk = x0 + ζk, (2.40)

where ζk = Wkyk and Wk = [w1 w2 . . . wk] with the columns of this matrix given by

(2.30). In the CG method, this yk is defined by a Ritz-Galerkin projection

rk ⊥ Wk, (2.41)

where rk = b − A(x0 + ζk) = b − A(x0 + Wkyk) = r0 − AWkyk. Now, assume we are

carrying some solution vector x̃ from another linear system, which we need to make

orthogonal to the final residual of (2.29). Then, the Ritz-Galerkin projection as above

would consists of the following procedure:

rk ⊥
[
Wk x̃︸︷︷︸

]
. (2.42)

Let us now look at the second linear system to solve in the AIRGA algorithm, i.e.

(2.32). For this, a good basis of the generated Krylov subspace is given by (2.33). To

find the solution vector here, the Ritz-Galerkin projection is defined as

(η1)k ⊥ (W1)k , (2.43)

where (η1)k is the residual of (2.32) at the kth iterative step and (W1)k =
[

(w1)1 (w1)2 · · · (w1)k
]

with the columns of this matrix given by (2.33). Note that,

as earlier, η1 is the final residual of (2.32) (at convergence of CG).

As earlier, at this stage it is not clear if the residual of (2.32), i.e. η1 would be

the residual we care, about, i.e. η(1). These two residuals map to the fact whether

X̃(1)(σ1) would be used to form Ṽ2 or not (again see the discussion between (2.12)–

(2.13); equivalently lines 10–11 of Algorithm 1). However, to avoid repeating solving
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(2.32) in case its solution is used to form Ṽ2, we adapt the projection given by (2.43)

as

(η1)k ⊥
[
(W1)k Ṽ1︸︷︷︸

]
, (2.44)

where Ṽ1 is given by (2.11).

Next, the expansion point σ2 is chosen (as above, see paragraph between (2.12)–

(2.13); equivalently lines 10–11 of Algorithm 1). If σ2 turns to be equal to σ1 (i.e. σ2 =

σ1), then Ṽ2 = X̃(1)(σ1)/‖X̃(1)(σ1)‖f , and we would be satisfied the first orthogonality

of (2.24), i.e. Ṽ1 ⊥ [η(1)].

If σ2 turns to be not equal to σ1 (say σ2 = si 6= σ1), then Ṽ2 =

X̃(1)(si)/‖X̃(1)(si)‖f = X̃(0)(si)/‖X̃(0)(si)‖f with X̃(0)(si) given by (2.10) or

(
s2
iM + siD +K

)
X̃(0) (si) = B + η0i, (2.45)

which we would have already solved. Hence, to satisfy the first orthogonality of (2.24)

or Ṽ1 ⊥ [η(1)], we would need to resolve (2.45) by adapting its projection as given in

(2.44). That is, carrying extra Ṽ1 in its Krylov subspace.

Similarly, all the other orthogonalities of (2.24) can be achieved. As mentioned

earlier, the use of recycling variant of CG helps us avoid the cumbersome code changes,

and this discussed next.

2.2.2 Implementation

Developing the CG algorithm that is based upon the adapted Lanczos process

and the adapted Ritz-Galerkin projection is doable. However, developing its efficient

implementation involving standard two/ three term recurrences is non-trivial. Also,

as the sequence number of the linear system increase (i.e. j gets larger), the number

of orthogonalizations to be done also increase linearly.

As briefly discussed in Section 2.1.1, using a recycling CG (RCG) [42, 43] helps

alleviate both these problems. Hence, in this subsection we first discuss the idea behind

RCG. Second we describe how to use RCG so as to easily achieve the earlier described
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extra orthogonalities. We do this with no code changes to the existing algorithm.

Here, we also discuss the extra computational cost of such an implementation.

Assume that we want to solve the linear system in (2.29). Also assume that the

recycle space is in the form of span {U}, where columns of U ∈ Rn×k are linearly inde-

pendent. If x−1 is the initial guess for (2.29) and r−1 = b−Ax−1 is the corresponding

residual, then the projected initial guess x0 is defined as [42, 43]

x0 = x−1 + U
(
UTAU

)−1
UT r−1,

with the corresponding residual r0 = b− Ax0.

At the kth iterative step, the Lanczos process involves [44]

wk+1 ∈ Kk(A,U, r0) ≡ span{U, r0, Ar0, A
2r0, · · · , Ak−1r0}

s.t. wk+1 ⊥ [U w1 w2 · · ·wk] ,

where wk+1, as earlier, is the (k + 1)th Lanczos vector and w1 = r0/‖r0‖. The Ritz-

Galerkin projection here is as follows:

rk ⊥ Kk (A,U, r0) .

The final solution update and the residual recurrences take the following form:

xk+1 = xk + αkpk,

rk+1 = rk + αkApk,

where

pk = βk−1pk−1 +
(
I − U(UTAU)−1(AU)T

)
rk,

αk =
(
rTk rk

)
/
(
pTkApk

)
,

βk−1 =
(
rTk rk

)
/
(
rTk−1rk−1

)
.

Next, we discuss how to use the above machinery for our requirements. Consider

solving the linear system given by (2.32), originally (2.12). For adapting the Lanczos

process in Section 2.2.1.1, while solving this linear system, we need to achieve the extra

orthogonality in (2.34). Similarly, for adapting the Ritz-Galerkin projection in Section
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2.2.1.2, while solving this linear system, we need to achieve the extra orthogonality in

(2.44). Both these orthogonalities can be achieved if we take

U =
[
η(0) Ṽ1

]
(2.46)

in RCG.

By defining U as above, η(0) and Ṽ1 are added in the Krylov search space, which is

not needed in the adapted Lanczos process. Also, we are doing extra work here since

η(0) orthogonality is needed only for Lanczos (not for Ritz-Galerkin), and Ṽ1 is needed

for Ritz-Galerkin (not for Lanczos).

These facts are true but besides the benefit of ease of implementation, this choice

of space often leads to acceleration of the system. We support this with experiments

in the next section. A theoretical study of this choice of space is the part of future

work.

Also, to satisfy all the other orthogonalities of the previous subsection, equivalent

of U (as in (2.46)) can be defined. Since we are usually more concerned about the

accuracy of the obtained reduced dynamical systems, we investigate this apects next.

2.3 Accuracy of the Reduced Systems

Using Theorem 15.1 of [35] we know that if the AIRGA algorithm is backward

stable, then the relative accuracy of the reduced system obtained by using the inexact

AIRGA algorithm, as compared to using the exact AIRGA algorithm, is given as

follows:

‖Ĥ(s)− ˜̂
H(s)‖H2

‖Ĥ(s)‖H2

= O(κ (H(s)) · ‖Z‖2) , (2.47)

where κ (H(s)) is the condition number of H(s) (discussed below), and Z is the per-

turbation in H(s). As earlier, Ĥ(s) is the reduced system obtained by using the

exact AIRGA algorithm and
˜̂
H(s) is the reduced system obtained by using the in-

exact AIRGA algorithm. We are looking at reduced systems obtained at line 28 of

Algorithm 1. That is, after each step of the outer while loop (line 2). Thus, accuracy
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of the reduced system is dependent on the conditioning of the problem as well as the

perturbation. Next, we look at both these quantities separately.

2.3.1 Conditioning Expression

Here, we first introduce condition number concept as well-understood and widely

used for matrix operations. Then, we discuss the use of condition number with respect

to the operations on transfer functions of dynamical systems. Finally, we expand upon

condition number in our context.

Condition number for matrix operations

The relative condition number κ = κ(x) for a problem given as a function f : X→
Y, where both X and Y are normed vector spaces and x ∈ X, is defined by [35]

κ = lim
δ→0

sup
‖δx‖≤δ

( ‖δf‖
‖f(x)‖

/ ‖δx‖
‖x‖

)
,

or again assuming δx and δf are infinitesimal,

κ = sup
δx

( ‖δf‖
‖f(x)‖

/ ‖δx‖
‖x‖

)
.

For example, the condition number of matrix-vector multiplication between A ∈ Cm×n

and x ∈ Cn is given as

κ ≤ ‖A‖‖A−1‖.

Condition number for transfer function operations

If we perturb the input dynamical system matrices B and C by δB and δC ,

respectively, then the perturbed dynamical systems are defined as follows [21]:

HδB(s) = C TA(s)−1(B + δB) and HδC (s) = (C + δC )TA(s)−1B,
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where A(s) = (s2M + sD +K). In this context, the condition numbers of the transfer

function response at s = σ given by

κB(H(σ)) =
‖C TA(σ)−1‖‖B‖
‖H(σ)‖ and

κC (H(σ)) =
‖C T‖‖A(σ)−1B‖
‖H(σ)‖

measure the relative sensitivity of the dynamical system with respect to the pertur-

bations in B and C , respectively.

Condition number in our context

We want to compute conditioning of our system with respect to performing the

inexact linear solves on lines 5 and 14 of Algorithm 1. Since for backward stabil-

ity we equate the reduced system obtained by performing the inexact AIRGA al-

gorithm on the unperturbed (original) full system (H(s)) and performing the ex-

act AIRGA algorithm on the perturbed full system
(
H̃(s)

)
, these inexact linear

solves are captured by H̃(s). Thus, the conditioning of the input dynamical sys-

tem with respect to computing the H2-norm of the error system H(s) − H̃(s) will

give us a good approximation to the conditioning of the input dynamical system

that we want to access
(

with respect to computing the H2 − norm of Ĥ(s)− ˜̂
H(s)

)
.

Similar behaviour has been observed for linear first-order dynamical systems

(see Theorem 3.1 and 3.3 in [21]) and bilinear first-order dynamical systems [22].

Recall, the condition number by definition means the relative change in the output(
for us this is ‖H(s)− H̃(s)‖H2/‖H(s)‖H2

)
with respect to the relative change in the

input (for us this is ‖Z‖2/‖K‖2 since we are perturbing the K matrix) [22]. Hence,

from (2.28) we have

‖H(s)− H̃(s)‖H2

‖H(s)‖H2

≤ ‖A(s)−1B‖H∞‖C TA(s)−1‖H2

‖H(s)‖H2

· ‖K‖2

1− ‖A(s)−1‖H∞
· ‖Z‖2

‖K‖2

, (2.48)

where it is assumed that ‖Z‖2 < 1 and ‖A(s)−1‖H∞ < 1. Hence, the above inequality

is equivalent to

‖H(s)− H̃(s)‖H2

‖H(s)‖H2

≤ κ (H(s)) · ‖Z‖2

‖K‖2

, (2.49)
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where,

κ (H(s)) =
‖A(s)−1B‖H∞‖C TA(s)−1‖H2

‖H(s)‖H2

· ‖K‖2

1− ‖A(s)−1‖H∞
. (2.50)

In the numerical experiments section (Section 2.4), for the first example taken,

we show that this condition number is fairly small, whereas, for the second one it is

large. In other words, the first problem is well conditioned and the second problem is

ill-conditioned with respect to the H2-norm of the error system H(s) − H̃(s)2. Note

that ‖Z‖2 < 1 and ‖A(s)−1‖H∞ < 1, as assumed here, come from the assumptions for

backward stability of the AIRGA algorithm (see Theorem 2.2), and hence, we do not

need any extra assumptions.

2.3.2 Computation of Perturbation

Recall (2.20), which has the form

ZX = η. (2.51)

Here, Z ∈ Rn×n,X ∈ Rn×mJ , and η ∈ Rn×mJ . Also note that we are solving for Z. As

discussed in Introduction, the upper bound for J is drmax/me, and hence, mJ ≤ rmax.

Using the fact that rmax � n, we have mJ < n. Hence, we have an underdetermined

system of equations, which will have more than one solution. For such a system,

Singular Value Decomposition (SVD) helps provide one solution [45]. This SVD for

X is given as follows:

X = UΣVT ,

where U ∈ Rn×n,V ∈ RmJ×mJ are unitary matrices (i.e. UUT = I and VVT = I) and

Σ ∈ Rn×mJ is a diagonal matrix comprising of singular values of X. Let rn = rank(X),

then Σ = diag (ς1, . . . , ςrn , 0, . . . , 0). Partitioning U as [U1 U2] and V as [V1 V2], where

U1, V1 have rn columns; U2, V2 have the remaining columns of U , V , respectively; and

2This ill-conditioning of the second problem does not effect our main conjecture. We discuss this

aspect in-detail later.
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rn ≤ mJ , we get

X =
[
U1 U2

]

Σrn 0

0 0



[
V1 V2

]T
, (2.52)

where Σrn = diag (ς1, . . . ςrn). By using (2.52) and definition of Moore-Penrose Pseu-

doinverse ([46]; page 423) we have

X† =
[
V1 V2

]

Σ−1

rn 0

0 0




U

T
1

UT
2


 .

Substituting the above expression in (2.51), we have3

Z = ηV1Σ−1
rn U

T
1 . (2.53)

Next, we relate the perturbation Z and the cumulative residual η.

‖Z‖2 ≤ ‖Z‖f ≤ ‖η · V1Σ−1
rn U

T
1 ‖f ≤ ‖η‖f‖V1Σ−1

rn U
T
1 ‖f , (2.54)

≤
(
‖ − η(0)‖f + · · ·+ ‖ − η(J−1)‖f

) (
‖V1Σ−1

rn U
T
1 ‖f
)
.

In the above equation, −η(0), . . . ,−η(J−1) represent the residuals obtained while solv-

ing the linear systems arising in the model reduction process. These residuals will

reduce if we solve such linear systems more accurately. The second term ‖V1Σ−1
rn U

T
1 ‖f

is usually more dependent on the selection of the expansion points (si), and less on

the accuracy to which we solve the linear systems [21]. We support this argument

with numerical experiments.

To summarize from (2.47) we know, ‖Ĥ(s)− ˜̂
H(s)‖H2 is proportional to κ (H(s))

and ‖Z‖2. The problem is usually well conditioned and ‖Z‖2 is directly proportional to

the cumulative residual norm ‖η‖f (as in (2.54)). Thus, assuming backward stability

conditions hold (as discussed in the previous section), as we iteratively solve the linear

systems arising in the AIRGA algorithm more accurately (i.e. reduce the stopping

tolerance of the linear solver), we should get a more accurate reduced system. This

is very useful in deciding when to stop the linear solver. If we need a very accurate

reduced system, then we need to iterate more in the linear solver, else we can stop

earlier.
3If the system ZX = η is in-consistent, then this is the least squares solution.
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2.4 Numerical Experiments

As motivated in Section 2.2, for stability we focus on the CG method for solving

the linear systems arising in the AIRGA algorithm. Also, as discussed earlier, CG is

optimal for SPD linear systems. Thus, we need to ensure that the coefficient matrices

of all the linear systems to be solved are SPD.

The coefficient matrices are of the form s2
iM + siD + K. To achieve that these

matrices are SPD at start we do as below.

(a) We take input models that have M, D and K matrices as SPD. We use the one

dimensional beam model (size 10, 000) [32] and the Gyroscope model (size 17, 361)

[47] that have such matrices and are commonly used (discussed in the next two sub-

sections). These models are of the form [32, 47]

Mẍ(t) +Dẋ(t) +Kx(t) = Fu(t),

y(t) = Cpx(t),
(2.55)

where M, D, K ∈ Rn×n are the mass, the damping and the stiffness matrices, re-

spectively, F ∈ Rn×1 and Cp ∈ R1×n. These models are Single Input Single Output

(SISO), and have proportional damping, i.e. D = αM + βK, where the damping

coefficients α and β belong to (0, 1).

(b) We take the input expansion points (si) to be real and positive.

Next, we discuss how to ensure that the linear system matrices are SPD after the

first AIRGA iteration (i.e. after start). After the first AIRGA iteration, the expansion

points are chosen from the eigenvalues of the quadratic eigenvalue problems of the form

λ2M̂ + λD̂+ K̂. For both our models, these eigenvalues turn out to be complex (case

3.8 of Table 1.1 in [48]). Thus, we get complex expansion points. Execution of the

AIRGA algorithm as well as the accuracy of the reduced system does not get affected

if one uses real expansion points or complex expansion points. Since real expansion

points here are positive too (again because of case 3.8 of Table 1.1 in [48]), using them

ensures that our coefficient matrices, s2
iM + siD + K, are SPD at all the AIRGA

iterations. Hence, we use real expansion points.

In Algorithm 1, at line 2, the overall iteration (while-loop) terminates when the
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change in the reduced system (computed as the H2-error between the reduced systems

of two consecutive AIRGA iterations) is less than a certain tolerance. We take this

tolerance to be 10−04 based on values in [10]. There is one more stopping criteria in

this algorithm at line 9. This checks the H2-error between two temporary reduced

systems. We take this tolerance to be 10−06 based upon values in [10].

As also motivated in Section 2.2, to ensure that the extra orthogonalities for a

stable AIRGA algorithm are satisfied, we use RCG instead of CG. As earlier, we refer

to this as the inexact AIRGA algorithm. Preconditioning has to be employed when

iterative methods fail or have a very slow convergence. Here, for the first model, we

observe that the unpreconditioned RCG method has slow convergence whereas in the

second model it fails to converge. Thus, we use a preconditioner. Since Sparse Approx-

imate Inverse (SPAI) [19] and Incomplete Cholesky Factorization (ICHOL) [49, 18]

are the most general types of preconditioners, we can use any of these preconditioners

with RCG. Here, we use the standard SPAI (with stopping tolerance of 10−04) for the

first model and the standard ICHOL (with drop tolerance of 10−04) for the second

model. For comparison, we solve all linear systems by a direct method as well. As

earlier, we refer to this as the exact AIRGA algorithm. For certain types of analyses,

we compare CG and RCG behaviours too.

We implement our codes in MATLAB (2016b), and test on a machine with the

following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200

MHz., 8 CPU and 64 GB RAM.

2.4.1 One Dimensional Beam Model

As discussed earlier, we do experiments on a system of size 10, 000. Damping

coefficients α and β both are taken as 0.05 [32] we take three expansion points as

s1 = 0.3142, s2 = 0.6283 and s3 = 0.9425 (based upon experience). The maximum

dimension to which we want to reduce the system (rmax) is taken as 3 based upon

experience. Thus, in the AIRGA algorithm, we have to solve linear systems of size

10, 000 × 10, 000. While using RCG for solving these linear systems, we use two

different stopping tolerances 10−02 and 10−08. Ideally, as discussed earlier, we should
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obtain a more accurate reduced system for the smaller stopping tolerance.

First, let us look at the assumptions for backward stability of the AIRGA algorithm

(see Theorem 2.2). While referring to this theorem, we have already satisfied the

conditions (a) and (b) by using CG and RCG, respectively. At all AIRGA iterations,

σ1 picked is s1, σ2 picked is s2, and σ3 picked is s3. Thus, at all AIRGA iterations,

we solve the linear systems in the following order to match our theory proposed in

subsections 2.2.1.1 and 2.2.1.2:

• (2.10) (including (2.31))– Three systems corresponding to three expansion points

• (2.12) (or (2.32))– One system

• (2.10) (or (2.35))– One system resolve

• (2.14) (or (2.36))– One system

• (2.10) (or (2.39))– One system resolve

Hence, at all AIRGA iterations instead of solving five linear systems, we solve

seven linear systems. This is acceptable because this gives us a stable MOR algorithm.

Sometimes, use of recycle space accelarates the convergence of all linear systems in-

turn offsetting this extra cost. We demonstrate this behaviour in the next example.

Next, we analyze the assumptions (c) and (d) of Theorem 2.2. For all expansion

points, A(s) is invertible and ‖A(s)−1‖H∞ is less than one. E.g., for the initial set of

expansion points, ‖A(s)−1‖H∞ is 2.68 × 10−02. Finally, ‖Z‖2, at the end of the first

AIRGA iteration, for the RCG stopping tolerance of 10−02 and 10−08 is 0.28 and 0.06,

respectively, both of which are also less than one 4.These values are less than one

at the end of all the other AIRGA iterations as well. The condition number for our

problem, as defined in (2.50), is 8.63 × 10−02. This shows that the one dimensional

beam model is well-conditioned. As earlier, we still use the SPAI preconditioner for

better accelaration.

The accuracy results are given in Fig. 2.1. We use the following settings: ex-

pansion points si = 2πf , where frequency f vector consists of equally spaced twenty

4Our X while solving (2.20) using (2.53) is full rank i.e. 8 here.
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Figure 2.1: Accuracy of the reduced system plotted at each AIRGA iteration for two

different stopping tolerances in RCG; one dimensional beam model.

points between 25 and 250. In Fig. 2.1, we have the accuracy of the reduced system(
‖Ĥ(s)− ˜̂

H(s)‖H2

)
on the y-axis and the AIRGA iterations on the x-axis. Here, the

dotted line corresponds to the RCG stopping tolerance of 10−02 while the solid line

corresponds to the RCG stopping tolerance of 10−08. From Fig. 2.1, it is evident that

we get a more accurate reduced system as we solve the linear systems more accurately

(dotted line is above the solid one at all the AIRGA iterations).

In Table 2.1, we give the accuracy results corresponding to each AIRGA iterations.

The AIRGA algorithm gets more consistent as it converges to ideal expansion points.

Hence, the accuracy of the reduced system for the RCG stopping tolerance of 10−08 is

visibly better than the accuracy of the reduced system for the RCG stopping tolerance

of 10−02.

2.4.2 Gyroscope Model

As mentioned earlier, we do another experiment on a system of size 17, 361. Damp-

ing coefficients α and β are taken as 0.2 and 1.34×10−04, respectively [47]. Here, again,

we take three expansion points as s1 = 6.2832, s2 = 317.3009 and s3 = 628.3185. The

dimension to which we want to reduce the system (rmax) is taken as 12 based upon
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Table 2.1: Accuracy of the reduced system at each AIRGA iteration for the two

different stopping tolerances in RCG; one dimensional beam model.

AIRGA

Iteration

||Ĥ − ˜̂
H||H2

RCG stopping tolerance of 10−02 RCG stopping tolerance of 10−08

1 8.34× 10−05 2.99× 10−06

2 6.98× 10−05 2.69× 10−06

3 1.37× 10−05 2.45× 10−06

4 1.03× 10−05 2.25× 10−06

similar values in [47]. Here, in the AIRGA algorithm we have to solve the linear sys-

tems of size 17, 361× 17, 361. Again, we use RCG for solving these linear systems. To

demonstrate our main result, we ideally want the stopping tolerances to be six orders

of magnitude different from each other. E.g., 10−02 and 10−08 in the previous problem.

Here, we are unable to solve the linear systems for tolerances less than 10−10. As for

the higher tolerance, if we go beyond 10−08, then the AIRGA algorithm’s convergence

varies (differing iteration counts for convergence). Thus, we cannot compare results

of the two cases. Hence, we use stopping tolerances of 10−08 and 10−10. As discussed

earlier, we should obtain a more accurate reduced system for the smaller stopping

tolerance.

Similar to the previous experiment, here also we look at the remaining assumptions

for backward stability of the AIRGA algorithm (see Theorem 2.2). While referring to

this theorem, we have already satisfied the conditions (a) and (b) by using CG and

RCG, respectively. When applying theorem of Section 2.1 here (to satisfy (b)), for

simplicity, we do not perform the required resolves. The results below demonstrates

that this approximation does not have any effect on our intended behaviour. We still

get a more accurate reduced system as we solve the linear systems more accurately.

Here, we also show that use of recycle space accelerate the convergence of the linear

systems.

Next, again, we analyze the assumptions (c) and (d) of Theorem 2.2. For all

expansion points, A(s) is invertible and ‖A(s)−1‖H∞ is less than one. E.g., for the
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initial set of expansion points, ‖A(s)−1‖H∞ is 6.46× 10−01. Finally, ‖Z‖2, at the end

of the first AIRGA iteration, for the RCG stopping tolerance of 10−08 and 10−10 is

8.6×10−01 and 3.3×10−01, respectively, both of which are also less than one 5. These

values are less than one at the end of all the other AIRGA iterations as well.

The condition number for this problem, as defined in (2.50), is 5.15 × 1009. This

shows that the Gyroscope model is ill-conditioned. As earlier, we use the basic ICHOL

preconditioner, which helps to reduce the amount of ill-conditioning but does not

completely eliminated it. If needed, we can use a more advanced preconditioner.

Accuracy of the reduced system is proportional to the condition number κ (H(s))

and the perturbation ‖Z‖ (see (2.47)). Since, the condition number here still remain

high, we get a less accurate reduced system. However, this is still a good problem

for us since we want to demonstrate that the reduction in perturbation (linked to

linear solver stopping tolerance) improves accuracy. High condition number spoils

the accuracy equally for both the RCG stopping tolerances (10−08 and 10−10). The

accuracy results are given in Table 2.2. It is again evident that we get a more accurate

reduced system as we solve the linear systems more accurately.

For this model, we observe that the number of iterations required for convergence

of RCG is less than that of CG, both of which are given in Table 2.3. We see a savings

of about 10% in the average linear solver iterations. The corresponding computation

times are given in Table 2.4. The savings in iterations translate to about 5% savings

in time.

Here, we do some other analysis corresponding to (2.54), i.e. relation between

the perturbation and the stopping tolerance. From Table 2.5, we demonstrate that

‖V1Σ−1
rn U

T
1 ‖f is less sensitive to the accuracy to which we solve the linear systems

(as we reduce the stopping tolerance of RCG from 10−08 to 10−10, ‖V1Σ−1
rn U

T
1 ‖f stays

almost the same).

5Our X while solving (2.20) using (2.53) is rank deficient (10 instead of 12) but that does not

affect our computations.
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Table 2.2: Accuracy of the reduced system at each AIRGA iteration for the two

different stopping tolerances in RCG; Gyroscope Model.

AIRGA

Iteration

||Ĥ − ˜̂
H||H2

RCG stopping tolerance 10−08 RCG stopping tolerance 10−10

1 1.55× 10−03 8.66× 10−04

2 3.63× 10−05 3.14× 10−05

Table 2.3: Convergence analysis of CG and RCG at two different stopping tolerances;

Gyroscope Model.

AIRGA

Iteration

Stopping tolerance 10−08 Stopping tolerance 10−10

Avg. CG Itr. Avg. RCG Itr. Avg. CG Itr. Avg. RCG Itr.

1 216 207 244 224

2 202 180 228 206

Total 418 387 472 430

Table 2.4: Computation time of CG and RCG at two different stopping tolerances;

Gyroscope Model.

AIRGA
Stopping tolerance 10−08 Stopping tolerance 10−10

Iteration
CG time

(secs.)

RCG time

(secs.)

CG time

(secs.)

RCG time

(secs.)

1 2.35 2.20 2.49 2.41

2 2.04 1.95 2.33 2.23

Total 4.39 4.15 4.82 4.64

Table 2.5: The perturbation expression quantities for RCG at two different stopping

tolerances; Gyroscope Model.

AIRGA

Iteration

RCG Stopping tolerance 10−08 RCG Stopping tolerance 10−10

‖η‖f ‖V1Σ−1rn UT1 ‖f ‖η‖f ‖V1Σ−1rn UT1 ‖f
1 2.5× 10−09 1.34× 1009 2.9× 10−10 1.33× 1009

2 2.6× 10−09 1.98× 1011 2.6× 10−10 1.98× 1011
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Chapter 3

Stability Analysis of Parametric

MOR

Robust Parametric Model Order Reduction [1] is a Ritz-Galerkin projection based

algorithm for MOR of parametric first-order and second-order dynamical systems (see

Cell 3 and Cell 4 of Table 1.1). Recall (1.1), which can be rewritten for the first-order

systems as

D(p1, p2, . . . , pw)ẋ(t) +K(p1, p2, . . . , pw)x(t) = Bu(t),

y(t) = Cx(t).
(3.1)

Let V ∈ Rn×r be a projection matrix determined by RPMOR. Using x(t) ≈ V x̂(t) in

(3.1), we obtain the following system:

D(p1, p2, . . . , pw)V ˙̂x(t) +K(p1, p2, . . . , pw)V x̂(t)−Bu(t) = r(t),

ŷ(t) = CV x̂(t),

where r(t) is the residual after projection. Applying the Galerkin approach by multi-

plying V T in the first equation above we get

V T
(
D(p1, p2, . . . , pw)V ˙̂x(t) +K(p1, p2, . . . , pw)V x̂(t)−Bu(t)

)
= 0,

ŷ(t) = CV x̂(t)

or
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D̂(p1, p2, . . . , pw) ˙̂x(t) + K̂(p1, p2, . . . , pw)x̂(t)− B̂u(t) = 0,

ŷ(t) = Ĉx̂(t),
(3.2)

where D̂(·), K̂(·) ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rq×r, r � n, and ŷ(t) is a good approxi-

mation to y(t) for a broad range of inputs [21].

The projection matrix V can be determined by many ways. One common way is

by moment matching [50, 51, 52], which is discussed next. The parametric system

(3.1) can also be stated in the frequency domain (e.g. after Laplace transformation)

as [53]

(sD(p1, p2, . . . , pw) +K(p1, p2, . . . , pw))x = Bu(s),

y = Cx,
(3.3)

where s is the frequency and is considered as a new parameter. The above equation

can be rewritten as

A (s, p1, p2, . . . , pw)x = Bu(s),

y = Cx,
(3.4)

where A (s, p1, p2, . . . , pw) ∈ Rn×n is the new parametrized matrix. The above equa-

tion is a frequency domain representation of not just first-order dynamical systems

but systems of arbitrary differentiation order. As above, for first-order systems

A(s, p1, p2, . . . , pw) = sD(p1, p2, . . . , pw) +K(p1, p2, . . . , pw). For second-order systems

A(s, p1, p2, . . . , pw) = s2M(p1, p2, . . . , pw) + sD(p1, p2, . . . , pw) + K(p1, p2, . . . , pw) and

so on.

Next, the system in (3.4) is transformed to an affine form as below, which is

assumed to exist by the RPMOR algorithm.

(A0 + s̀1A1 + . . .+ s̀wAw + s̀w+1Aw+1)x = Bu(s),

y = Cx,
(3.5)

where A0,A1, . . . ,Aw+1 ∈ Rn×n and are referred to as dynamical system sub-matrices

for rest of this work. The new parameters s̀j (for j = 1, . . . , w+ 1) are some functions

(polynomial, rational, etc.) of the earlier parameters (s, p1, p2, . . . , pw).
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Next, the state x in (3.5) is computed at the initial set of expansion points

(s̀1
1, . . . , s̀

1
w, s̀

1
w+1) as1

x = [I − (σ1M1 + . . .+ σwMw + σw+1Mw+1)]−1 (A(1))−1Bu(s), (3.6)

where σj = s̀j − s̀1
j ,Mj = − (A(1))−1 Aj for j = 1, 2, . . . , w + 1, and

A(1) = A0 + s̀1
1A1 + s̀1

2A2 + . . .+ s̀1
w+1Aw+1. (3.7)

A linear system with this matrix is to be efficiently solved and is the focus of our work.

Applying Taylor series expansion on (3.6) we get

x =
∞∑

h=0

[σ1M1 + . . .+ σwMw + σw+1Mw+1]h B̃u(s),

=
∞∑

h=0

x(h)(σ1, . . . , σw, σw+1)u(s),

(3.8)

where

B̃ = (A(1))−1B,

x(0)(σ1, . . . , σw, σw+1) = B̃,

x(1)(σ1, . . . , σw, σw+1) = [σ1M1 + . . .+ σwMw + σw+1Mw+1] x(0)(σ1, . . . , σw, σw+1),

...

x(h)(σ1, . . . , σw, σw+1) = [σ1M1 + . . .+ σwMw + σw+1Mw+1] x(h−1)(σ1, . . . , σw, σw+1).

Here, x(h)(σ1, . . . , σw, σw+1) is called the hth-order system moment at (σ1, . . . , σw, σw+1).

Similarly for the reduced system (3.2), the state variable can be written as

x̂ =
∞∑

h=0

x̂(h)(σ1, . . . , σw, σw+1)u(s). (3.9)

In the reduced system, the hth-order system moment x̂(h)(σ1, . . . , σw, σw+1) is de-

fined similar to x(h)(σ1, . . . , σw, σw+1). The goal of moment matching approach is

to find a reduced system such that the first few moments of (3.8) and (3.9) are

matched. This provides the projection matrix V . The columns of V are given

1From here onwards, we represent a set of parameters as a set of expansion points.
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by span
{
x(0)(σ1, . . . , σw, σw+1), x(1)(σ1, . . . , σw, σw+1), . . . , x(h)(σ1, . . . , σw, σw+1)

}
,

where h ∈N (the set of natural numbers).

After obtaining the first few columns of V corresponding to this initial set of

expansion points, the above process is repeated with a new set of expansion points
(
s̀2

1, . . . , s̀
2
w, s̀

2
w+1

)
. Thus, corresponding to (3.7), we obtain a new matrix

A(2) = A0 + s̀2
1A1 + s̀2

2A2 + . . .+ s̀2
w+1Aw+1, (3.10)

and again, a linear system with this matrix is to be efficiently solved. A similar

process is performed for the subsequent sets of expansion points (s̀i1, . . . , s̀
i
w, s̀

i
w+1

)
for

i = 3, 4, . . . , z, and corresponding to (3.7) and (3.10), we obtain a set of matrices

A(i) = A0 + s̀i1A1 + s̀i2A2 + . . .+ s̀iw+1Aw+1. (3.11)

Corresponding to each of these matrices, we need to solve a linear system efficiently.

When matching first three moments these linear systems have the following form:

Zeroth-Order Moment Matching

A(i)x(i)(1) = B,

First-Order Moment Matching

A(i)
[
x(i)(2) · · · x(i)((w + 1) + 1)

]
=
[
A1x

(i)(1) · · · Aw+1x
(i)(1)

]
,

Second-Order Moment Matching

A(i)
[
x(i) ((w + 1) + 2) · · · x(i) (2(w + 1) + 1)

]
= A1

[
x(i)(2) · · · x(i)((w + 1) + 1)

]
,

...

A(i)
[
x(i) ((w + 1)(w + 1) + 2) · · · x(i) ((w + 2)(w + 1) + 1)

]
= Aw+1

[
x(i) (2) · · · x(i) ((w + 1) + 1)

]
.

(3.12)

where B is given in (3.1); A1,A2, . . . ,Aw+1 are the dynamical system sub-matrices

given in (3.5); and A(1), A(2), . . . , A(i) for i = 1, . . . , z are given by (3.7), (3.10) &

(3.11). Note that matching higher moments, would result in more number of linear

systems to be solved for each set of expansion points (i.e. for every i), where the

matrix A(i) remains the same (since i is the same) and the right-hand sides change

(corresponding to the increase in h). We list RPMOR in Algorithm 2.

The algorithm iterates with the first index value of i
(
i = 1 or the initial set of

expansion points
(
s̀1

1, . . . , s̀
1
w, s̀

1
w+1

)
; see (3.7)

)
, and then it restarts for the remain-

ing index values of i
(
i = 2, 3, . . . , z or the subsequent sets of expansion points
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Algorithm 2 RPMOR [51]

Input: A(i) = A0 + s̀i1A1 + s̀i2A2 + . . . + s̀iw+1Aw+1; set of expansion points
(
s̀i1, . . . , s̀

i
w, s̀

i
w+1

)
, for i = 1, 2, . . . , z; B, C, h, and ε.

1: Initialize a1 = 0, a2 = 0, sum = 0

2: Compute x(i)(1) = A(i)−1B

3: Compute the first column in V : v1 = x(i)(1)/‖x(i)(1)‖
4: sum = 1

5: for i = 1, 2, . . . , h do

6: a2 = sum

7: for j = 1, 2, . . . , w do

8: if a1 = a2 then

9: stop

10: else

11: for j= a1 + 1, . . . , a2 do

12: col = sum+ 1

13: x(i)(col) = A(i)−1Ajx(i)(j)

14: for k = 1, 2, . . . , col − 1 do

15: h = vTk x
(i)(col)

16: x(i)(col) = x(i)(col)− hvk

17: end for

18: if ‖x(i)(col)‖ > ε then

19: vcol = x(i)(col)/‖x(i)(col)‖2
20: sum = col

21: end if

22: end for

23: end if

24: end for

25: a1 = a2

26: end for

27: Orthogonalize the columns in V by modified Gram-Schmidt (MGS) w.r.t. ε
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(
s̀i1, . . . , s̀

i
w, s̀

i
w+1

)
; see (3.10) & (3.11)

)
. Hence, in the next two sections, we perform

stability analysis of the RPMOR with one index value of i.

3.1 Satisfying First Condition of Backward Stabil-

ity

Consider the first linear system of (3.12)(which is at line 2 of Algorithm 2)

A(i)x(1)(1) = B.

We denote the inexactly computed solution as x̃(1)(1). Also, let the associated residual

be η1. Then, the above equation is equivalent to

A(i)x̃(1)(1) = B + η1. (3.13)

Further, solving the second linear system from (3.12)
(
which is at line 13 of Algorithm

2
)

inexactly yields

A(i)x̃(1)(2) = A1x̃
(1)(1) + η2. (3.14)

Thus, solving the last linear system from (3.12)
(
which is at line 13 of Algorithm 2

)

inexactly gives

A(i)x̃(1) ((w + 2)(w + 1) + 1) = A(w+1)x̃
(1) ((w + 1) + 1) + η((w+2)(w+1)+1), (3.15)

where, as earlier, w denotes the number of parameters.

The projection matrix Ṽ is obtained by stacking all the normalized x̃(1)(j), with

j = 1, 2, . . . , ((w+2)(w+1)+1), as columns vectors. We obtain the reduced system

as

˜̂
D(·) = Ṽ TD(·)Ṽ ,
˜̂
K(·) = Ṽ TK(·)Ṽ ,

˜̂
B(·) = Ṽ TB,

˜̂
C(·) = CṼ .
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Next, the exact solutions of (3.12) (which is at lines 2 and 13 of Algorithm 2) on

a perturbed model are given as follows:

(A(i) + Z) x̃(1)(1) = B, (3.16)

(A(i) + Z)x̃(1)(2) = A1x̃
(1)(1), (3.17)

(A(i) + Z)x̃(1) ((w + 2)(w + 1) + 1) = A(w+1)x̃
(1) ((w + 1) + 1) , (3.18)

where Z is the constant perturbation matrix. If we map this perturbation to the

original dynamical system matrices, we find that Z most easily combines with A0 in

(3.5) leading to addition of Z with K(·) in (3.3) and (3.1). Thus, we have the following

perturbed matrices: D̃(·) = D(·), K̃(·) = K(·) + Z, B̃ = B(·) and C̃(·) = C(·).
The projection matrix Ṽ is obtained in a manner similar to above. The reduced

system is now given by

ˆ̃D(·) = Ṽ T D̃(·)Ṽ = Ṽ TD(·)Ṽ =
˜̂
D(·),

ˆ̃K(·) = Ṽ T K̃(·)Ṽ = Ṽ T (K(·) + Z) Ṽ =
˜̂
K(·) + Ṽ TZṼ ,

ˆ̃B(·) = Ṽ TB,

ˆ̃C(·) = CṼ .

(3.19)

From line 12 of Algorithm 2, we know ((w+ 2)(w+ 1) + 1) can be denoted as col.

Further, comparing (3.13)–(3.15) with (3.16)–(3.18) we get

Z X = η, (3.20)

where X =
[
x̃(1)(1), x̃(1)(2), . . . , x̃(1)(col)

]
and η = [−η1, −η2, . . . , −ηcol].

In the above equation, we replace X in-terms of Ṽ (recall Ṽ = XDX). That is,

ZṼ D−1
X = η or ZṼ = ηDX , (3.21)

where DX =




1

‖x̃(1)(1)‖
f

0 0 · · · 0

0 1

‖x̃(1)(2)‖
f

0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

‖x̃(1)(col)‖
f




.

45



Multiplying Ṽ T from the left side of (3.21), we get

Ṽ TZṼ = Ṽ TηDX . (3.22)

Theorem 3.1 Let the inexact linear solves in RPMOR algorithm ((3.13)–(3.15)) be

solved while satisfying

Ṽ Tη = −




Ṽ T
1

Ṽ T
2

...

Ṽ T
col




[
η1 η2 . . . ηcol

]
= 0. (3.23)

Then, the reduced system obtained by using inexact solves in the original system

is same as the reduced system obtained by using exact solves in a perturbed system or

the reduced system matrices on the both sides of the equality in (3.19) are the same.

Hence, RPMOR satisfies the first condition of backward stability with respect to these

inexact linear solves, i.e. (2.8).

From the above theorem, we infer that the underlying iterative solver should firstly

be based upon a Ritz-Galerkin framework to achieve Ṽ1 ⊥ η1, Ṽ2 ⊥ η2, . . . , and Ṽcol ⊥
ηcol [36]. Since Conjugate Gradient (i.e. CG) is one such algorithm [35], we propose

its use in RPMOR. Secondly, this particular solver should also satisfy the remaining

orthogonalities of (3.23). These orthogonalities can be easily satisfied by using a

recycling variant of the underlying iterative solver, and hence, we propose the use of

Recycling Conjugate Gradient (i.e. RCG [42]). This aspect has been already discussed

in-detail in Chapter 2 for the non-parametric case, and the similar technique easily

carries over to this parametric case.

46



3.2 Satisfying Second Condition of Backward Sta-

bility

For satisfying the second condition of stability in RPMOR, we use Theorem 4.3

from [21]. This translates to the result below.

Lemma 3.1 If ‖Z‖2 <
1

‖A(i)−1‖
H∞

then

∥∥∥H
(
s̀i1, . . . , s̀

i
w+1

)
− H̃

(
s̀i1, . . . , s̀

i
w+1

)∥∥∥
H2

≤
∥∥A(i)−1B

∥∥
H∞

∥∥CA(i)−1
∥∥
H2

1−
∥∥A(i)−1

∥∥
H∞
‖Z‖2

‖Z‖2 ,

(3.24)

where A(i) = A0 + s̀i1A1 + . . .+ s̀iw+1Aw+1,

H (·) = CA(i)−1B,

and H̃ (·) = C (A(i) + Z)−1B.

Proof: see in Appendix A.

Theorem 3.2 If ‖Z‖2 < 1 and ‖A(i)−1‖H∞ < 1, then

‖H(·)− H̃(·)‖H2 = O(‖Z‖2). (3.25)

Hence, RPMOR satisfies the second condition of backward stability with respect to the

inexact linear solves, i.e. (2.9).

Next, we support our stability analysis theory with experiments.

3.3 Numerical Experiments

We perform preliminary experiment on the FOM model [54]. This model consists

of a parametric linear dynamical system of size n = 1006, as

(
sD − A (p)

)
x = Bu (s) ,

y = Cx,
(3.26)
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where D = In×n, A (p) = diag
(
A1 (p) , A2, A3,A4

)
, and

BT = C =

[
10 . . . 10︸ ︷︷ ︸

6

1 . . . 1︸ ︷︷ ︸
1000

]
with

A1 (p) =


1 p

p 1


 , A2 =


 1 200

200 1


 , A3 =


 1 400

400 1


 , and

A4 = diag (1, . . . , 1000) .

We use RPMOR settings as below. In the above equation, there is frequency

variable s and parameters p (or pj with j = 1, . . . , w, and w = 2; pj ∈ [99.99, 100]),

all of which together form a set of expansion points.

The number of moments matched are three (i.e. up to h = 2), and we use four sets

of expansion points (i = 1, 2, . . . , z with z = 4) as follows based upon values in [51]:

[0.1π, p1], [0.2π, p2], [0.3π, p1], and [0.45π, p2]. Since we have four sets of expansion

points, RPMOR takes four iterative steps. For the settings above, the size of the

reduced system r comes out to be 8.

This leads to solving linear systems of size 1006 × 1006. As earlier, here also, for

solving the linear systems while computing V by a direct method (exact RPMOR),

we use a backslash in Matlab. As discussed in Section 3.1, for stability we use RCG

with two stopping tolerance 10−06 and 10−10.

Preconditioning has to be employed when iterative methods fail or have a very

slow convergence. Here, for the given model, we observe that the unpreconditioned

RCG method has fails to converge. Thus, we use the standard Sparse Approximate

Inverse (SPAI) [19] preconditioner (with stopping tolerance of 10−04).

We implement our codes in MATLAB (2016b), and test on a machine with the

following configuration: Intel Xeon(R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200

MHz., 8 CPU and 64 GB RAM.

Ideally, as discussed earlier, we should obtain a more accurate reduced system for

smaller stopping tolerance. We use the following settings in (3.26): expansion points

si = 2π
√
−1f , where frequency f vector consists of equally spaced twenty points

between 25 and 250; parameters pj consist of equally spaced twenty points between

100 and 200. The accuracy result is given in Figure 3.1. Here, we have accuracy of the
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Figure 3.1: Accuracy of the reduced system plotted with respect to expansion points and

parameters for the two different stopping tolerances in RCG; FOM model.

reduced system

(∥∥∥Ĥ (s, p)− ˜̂H (s, p)
∥∥∥
H2

)
on the z-axis, expansion points (i.e. si)

on x-axis, and parameters (i.e. pj) on the y-axis. From Figure 3.1, it is evident that

we get a more accurate reduced system as we solve the linear systems more accurately

(the blue surface is below to the red surface).
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Chapter 4

Reusing Preconditioners for

Non-parametric MOR

As mentioned in the Introduction, the focus of this Chapter (i.e. 4) and the next

Chapter (i.e. 5) is on reusing preconditioners in the sequence of linear systems arising

in different MOR algorithms (from Table 1.1). As earlier, here, we focus on the non-

parametric case (Cells 1 and 2 of Table 1.1) and in the next Chapter we focus on the

parametric case (Cells 3 and 4 of Table 1.1).

As also discussed before, application of preconditioner reuse to IRKA [4](the most

popular MOR algorithm for non-parametric first-order dynamical systems; belonging

to Cell 1) has been already extensively studied [7, 30]. Hence, in this Chapter we focus

on AIRGA (the common MOR algorithm for non-parametric second-order dynamical

systems). Although the focus here is on one algorithm, our proposed preconditioner

reuse theory is developed to work for all algorithms (non-parametric and paramet-

ric; first-order and second-order). Next, we revisit theory of preconditioning, and

specifically the Sparse Approximate Inverse (SPAI) preconditioners, which we use.

4.1 General Preconditioning and SPAI

Preconditioning is of two kinds (implicit and explicit), and we focus on the lat-

ter [55]. In case of implicit preconditioners, application of preconditioning requires
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solving linear systems. For example, in factorization based preconditioning A ≈ LU ,

where L and U are sparse triangular matrices approximating exact L and U factors.

Here, application of the preconditioner requires only forward and backward solves.

This is usually referred to as incomplete LU factorization (ILU) based preconditioner.

Variations of ILU that exploit certain matrix constructs can also be developed. For

example, ILU based upon Schur’s complement [56]. Further, ILQ, SSOR and ADI are

other kinds of preconditioning that fall under the implicit category [55].

Although implicit preconditioners have been used extensively for a very long time,

they have their own drawbacks. For example, ILU based preconditioners do not be

scale well when the system size becomes very large (computation time becomes pro-

hibitively expensive). This is because, forward and backward solves in such precondi-

tioners are inherently sequential and cannot be easily parallelized. Besides this, the

breakdown in the factorization process because of the zero pivoting carries over from

the full factorization case to this incomplete factorization case.

Explicit preconditioning is one where directly the inverse of the coefficient matrix

is approximated or P ≈ A−1. Hence, applying the preconditioner just involves per-

forming matrix-vector products [20]. Sparse approximate inverse (SPAI) are the most

commonly used explicit preconditioners, which we use and are discussed in-detail later

in this section.

Variations of approximate inverse preconditioners also exist. One example, as we

have seen in the case of implicit preconditioning, is the Schur’s complement based

approximate inverse preconditioner [20]. Another example is where the approximate

inverse preconditioner is constructed by using a high-order convergent scheme that

relies on matrix-matrix multiplications [57, 58].

Hybrid of implicit and explicit preconditioning is also common. Here, combinations

of factorizations and approximate inverses are used to compute a preconditioner. An

example of this is given in [59], where for a SPD matrix, Cholesky factorization is

first performed. This in-turn is used to obtain a more efficient approximate inverse

preconditioner. Another example is where the approximate inverse of the coefficient

matrix is used to compute an approximation to matrix’s Schur’s complement. This is
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then used to build an ILU preconditioner [56].

Now, we give the details of SPAI. For constructing a preconditioner P correspond-

ing to a coefficient matrix A, we focus on methods for finding approximate inverse of A

by minimizing the Frobenius norm of the residual matrix I −AP . This minimization

problem can be rewritten as [19]

min
P
‖I − AP‖2

f . (4.1)

Here, the columns of residual matrix I − AP can be computed independently, which

is an important property that can be exploited. Hence, the solution of (4.1) can be

separated into n independent least square problems as

min
P

n∑

i=1

‖(I − AP )ei‖2
2, or

min
pi
‖ei − Api‖2

2, for i = 1, 2, . . . , n,

(4.2)

where ei and pi are the i-th column of I and P , respectively. The above minimization

problem can be implemented in parallel and one can efficiently obtain the explicit

approximate inverse P of A.

Usually A is sparse. In this case, we can solve a more efficient version of the

optimization problem given in (4.2). Here, first, a good sparsity pattern of P is

assumed (usually the Identity matrix). As the solutions of the least squares problems

are iteratively computed, this sparsity pattern is updated. One common updating

strategy adaptively exploits the number of non-zeros arising in the resulting residuals

(ri = ei − Api), which requires solving 1D minimization problems [20]. A more

sophisticated updating strategy uses a multivariate minimization [60]. Second, now

since both A and P are sparse, we solve much smaller least squares problems, and

all matrix-vector products are done in a sparse-mode (operations involving a sparse-

matrix and a sparse-vector).

As earlier, in most of the listed MOR algorithms (Table 1.1), the change from one

linear system to the next is usually very small, and hence, the applied preconditioner

could be reused. Next, we propose our theory of reusing preconditioners in the MOR

context.
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4.2 General Theory of Reusing of Preconditioners

In general, the linear systems of equations generated in MOR algorithms have the

following form:

A1X1 = B1,

A2X2 = B2,

...

A`X` = B`,

(4.3)

where Ai ∈ Rn×n, Xi ∈ Rn×m, and Bi ∈ Rn×m; for i = 1, 2, . . . , `.

Let P1 be a good preconditioner for A1 that is computed by the theory discussed

in the above section ((4.1)–(4.2)) or

min
P1

‖I − A1P1‖2
f .

Now, we need to find a good preconditioner P2 corresponding to A2. Using the stan-

dard SPAI theory, this means solving

min
P2

‖I − A2P2‖2
f . (4.4)

If we are able to enforce A1P1 = A2P2, then P2 will be an equally good preconditioner

for A2 as much as P1 is a good preconditioner for A1 (since the Spectrum of A2P2

would be same as that of A1P1, on which convergence of any Krylov subspace method

depends). Since P2 is unknown here, we have a degree of freedom in choosing how

to form it. Without loss of generality, we assume that P2 = Q2P1, where Q2 is an

unknown matrix. Here, we need to enforce A1P1 = A2Q2P1. Thus, instead of solving

the minimization problem (4.4), we can solve

min
Q2

‖A1 − A2Q2‖2
f . (4.5)

Note that P2 here is never explicitly formed by multiplying two matrices Q2 and P1.

Rather, always a matrix-vector product is done to apply the preconditioner.

Let ζ be the vector during the Krylov subspace method iteration that has to be

multiplied with the preconditioned matrix A2P2. Then, we do as follows:

ζ̃ = A2 (Q2 (P1ζ)) . (4.6)
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Table 4.1: Reusing preconditioner approaches.

First approach Second approach

• A1P1 = A2P2

• If P2 = Q2P1, Same as the first approach

then A1P1 = A2Q2P1

• min
Q2

‖A1 −A2Q2‖2f
• A1P1 = A3P3 • A2P2 = A3P3

• If P3 = Q3P1, • If P3 = Q3P2,

then A1P1 = A3Q3P1 then A2P2 = A3Q3P2

• min
Q3

‖A1 −A3Q3‖2f • min
Q3

‖A2 −A3Q3‖2f
...

...

• A1P1 = AiPi • Ai−1Pi−1 = AiPi

• If Pi = QiP1, • If Pi = QiPi−1,

then A1P1 = AiQiP1 then Ai−1Pi−1 = AiQiPi−1

• min
Qi

‖A1 −AiQi‖2f • min
Qi

‖Ai−1 −AiQi‖2f

If A1 is close to A2 in some matrix norm as compared to closeness between I and A2,

then (4.5) would be an easier minimization problem to solve than (4.4).

Next, we apply a similar argument for finding a good preconditioner P3 corre-

sponding to A3. We can obtain P3 by enforcing either A1P1 = A3P3 or A2P2 = A3P3.

For these two cases, P3 would be as effective preconditioner for A3 as P1 is for A1 or

P2 is for A2, respectively. Here too, we have a degree of freedom in computing P3. If

we have P3 = Q3P1 or P3 = Q3P2 for these two cases, respectively1, then we need to

solve either of the following minimization problems:

min
Q3

‖A1 − A3Q3‖2
f or min

Q3

‖A2 − A3Q3‖2
f . (4.7)

Similarly, for all the remaining linear system matrices in the sequence, A4, A5, . . . , Ai,

we have two choices as (4.7) in obtaining the corresponding good preconditioners,

P4, P5, . . . , Pi. All this is summarized in Table 4.1.

We propose with evidence the following two results:

1As mentioned after (4.5), we do not explicitly form the preconditioner by multiplying two ma-

trices. Rather, the preconditioner is applied via a matrix-vector product.
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(a) In the non-parametric case, the second approach is more suited. This is be-

cause in this case the minimization problem of the second approach is much easier to

solve as compared to the first approach (attributed to rapidly changing expansion/

interpolation points, and in-turn, rapidly changing matrices). The computation of Pi

from Pi−1 in this case (rather than P1 as above) does have the drawback of accumu-

lated approximation errors, however, solving the minimization problem efficiently is a

bigger bottleneck for scaling to large problems.

(b) In the parametric case, the first approach is more beneficial. This is because,

in this case although the two approaches have a similarly hard minimization problem

(attributed to slowly varying parameters, and in-turn, slowly changing matrices), the

computation of Pi from P1 in the first approach leads to a preconditioner with less

approximation errors, and hence, a one which is more accurate.

Since the focus here is on the non-parametric case (Cell 2 of Table 1.1), we use

the second approach, and this is further discussed in the next Section. Details of

parametric case (Cell 3 and Cell 4 of Table 1.1) are given in Chapter 5 using the first

approach.

4.3 Application of Reusing Preconditioner

If we closely observe Algorithm 1 (AIRGA), which belongs to Cell 2 of Table 1.1,

linear systems are solved at lines 5 and 14. To solve these system, we can chose any

solver from a large pool of available Krylov subspace methods. For example, GMRES

[61], BI-CGSTAB [62], IDR(s)[63], etc. Since GMRES is the most popular one among

these, we use it inside AIRGA in our result section.

If we relook at linear systems at lines 5 and 14 in Algorithm 1, we realize that they

have more characteristics. These linear systems can be very easily transformed into

general shifted linear systems of the form ςD+K (see Section 3 of [64]). Therefore, this

property can be exploited in solving these sets of linear systems simultaneously [65, 66],

which is part of our future work2.

2If the linear system coefficient matrices have special properties, then more efficiency can be
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Delving further into the complexity of such linear systems, we observe that the

matrices change with the index of outer while loop (line 2) as well as with the index

of the for loop corresponding to the expansion points (line 3). Hence, we denote such

matrices not only with a subscript as in previous subsection but also with a superscript.

That is, A
(z)
i =

(
s

(z)
i

)2

M + s
(z)
i D+K, where z = 1, . . . , z (until covergence) and i =

1, . . . , `. As the matrix A
(z)
i changes with respect to two different indices, we can reuse

preconditioners in many ways. However, here we use the second approach as discussed

in the previous subsection. This approach adapted for AIRGA is diagrammatically

represented in Figure 4.1.

�
(1)

1
�

(1)

2
�

(1)

ℓ

�
(2)

2 �
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ℓ

�
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�
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(�)

ℓ
�

(�)

1

Horizontal

Vertical

Figure 4.1: Reusing preconditioners in AIRGA.

Computation of preconditioners is done only at line 5 because at line 14, matri-

ces do not change, only the right-hand sides do. Hence, we only focus on reusing

preconditioners for line 5.

Next, we show how the new preconditioners are computed for both, the horizontal

direction and the vertical direction. While looking at the horizontal route, let,

incorporated. For example, if the coefficient matrices (ςD+K) have D, K as real and ς as complex,

then we can reduce the number of linear systems that are required to be solved. For more details,

see Section 1 of [67].
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(
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(
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Figure 4.2: Expressing one linear system matrix in terms of the other.

A
(z)
i−1 =

(
s

(z)
i−1

)2

M + s
(z)
i−1D +K and

A
(z)
i =

(
s

(z)
i

)2

M+s
(z)
i D+K be the two coefficient matrices for different expansion

points s
(z)
i−1 and s

(z)
i , respectively, with i = 2, . . . , `. Using the above theory, we

enforce A
(z)
i−1P

(z)
i−1 = A

(z)
i P

(z)
i in Figure 4.2. Thus, we eventually enforce A

(z)
i−1P

(z)
i−1 =

A
(z)
i Q

(z)
i P

(z)
i−1 and solve the minimization problem

min
Q

(z)
i

‖A(z)
i−1 − A(z)

i Q
(z)
i ‖2

f .

This gives us the new preconditioner P
(z)
i = Q

(z)
i P

(z)
i−1. This minimization is again

performed for n independent least square problems as in (4.2). Similar steps are

followed for reusing preconditioners along the rest of the horizontal directions, i.e. for

all z = 1, . . . , z.

Now, applying this technique for the vertical direction, we have for z = 2, . . . , z

A
(z−1)
1 P

(z−1)
1 = A

(z)
1 P

(z)
1 .

Following the steps as for the horizontal direction, here, we solve the minimization

problem

min
Q

(z)
1

‖A(z−1)
1 − A(z)

1 Q
(z)
1 ‖2

f .

This gives us the new preconditioner P
(z)
1 = Q

(z)
1 P

(z−1)
1 . Again, this is solved as n

independent least square problems as in (4.2).
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AIRGA with an efficient implementation of the above discussed theory of reusing

preconditioners is given in Algorithm 3. If we closely look at line 5 of Algorithm 1, the

solution vector is denoted by X(0)(si), where the superscript “0” refers to the index of

the inner while loop (line 9). We do not bother about this index because, as earlier,

matrix does not change inside this inner loop. Rather, we need to capture the change

because of the outer while loop indexed with z. Hence, we denote the solution vector

as X(z)(si) in Algorithm 3 (lines 8, 11, 19 & 22). It is important to emphasize again

that preconditioners are never computed explicitly. Rather, they are obtained using

matrix-vector products (see line numbers 11, 19 & 22 of Algorithm 3).

Since shift-invariant preconditioners have been proposed for the general shifted

linear systems [65, 68], our this reuse SPAI technique can be coupled with these

preconditioners for further efficiency. We plan to look at this aspect as part of our

future work. Next, we support our theory with multiple numerical experiments.

4.4 Numerical Experiments

For supporting our proposed preconditioned iterative solver theory using AIRGA

[10], we perform experiments on two models. The first is a macroscopic equations of

motion model (i.e. academic disk brake M0) [69], and is discussed in Section 4.4.1.

The second is also a similar model, however, this is a real-life industrial problem (i.e.

industrial disk brake M1) [69]. The experiments on this model are discussed in Section

4.4.2. These models are described by the following set of equations [69]:

MΩẍ(t) =−DΩẋ(t)−KΩx(t) + Fu(t),

y(t) = CTx(t),
(4.8)

where MΩ = M, KΩ = KE +KR + Ω2KG, DΩ = αMΩ + βKΩ (case of proportionally

damped system; as needed for AIRGA) with commonly used parameter values as

Ω = 2π, α = 5× 10−02, and β = 5× 10−06. Further, F ∈ Rn and CT ∈ Rn are taken

as [1 0 · · · 0]T , which is the most frequently used choice. We take four expansion

points linearly spaced between 1 and 500 based upon experience.
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Algorithm 3 : AIRGA with reuse of SPAI preconditioner

1: z = 1

2: while the H2 error between two consecutive reduced systems is greater than the ε1 do

3: if z == 1 then

4: for i = 1, . . . , ` do

5: A
(1)
i =

((
s

(1)
i

)2

M +
(
s

(1)
i

)
D +K

)

6: if i == 1 then

7: Compute initial P
(1)
1 by solving min

P
(1)
1

‖I − A(1)
1 P

(1)
1 ‖2

f

8: Solve A
(1)
1 P

(1)
1 X(1)(s1) = F

9: else

10: Compute Q
(1)
i by solving min

Q
(1)
i

‖A(1)
i−1 − A(1)

i Q
(1)
i ‖2

f

11: Solve A
(1)
i [Q

(1)
i · · · Q(1)

2 P
(1)
1 ]X(1)(si) = F

12: end if

13: end for

14: else

15: for i = 1, . . . , ` do

16: A
(z)
i =

((
s

(z)
i

)2

M +
(
s

(z)
i

)
D +K

)

17: if i == 1 then

18: Compute Q
(z)
1 by solving min

Q
(z)
1

‖A(z−1)
1 − A(z)

1 Q
(z)
1 ‖2

f

19: Solve A
(z)
1

[
Q

(z)
1 . . . Q

(2)
1 P

(1)
1

]
X(z)(s1) = F

20: else

21: Compute Q
(z)
i by solving min

Q
(z)
i

‖A(z)
i−1 − A(z)

i Q
(z)
i ‖2

f

22: Solve A
(z)
i

[
Q

(z)
i · · · Q(z)

2︸ ︷︷ ︸ Q
(z)
1 . . . Q

(2)
1︸ ︷︷ ︸ P

(1)
1

]
X(z)(si) = F

23: end if

24: end for

25: end if

26: “All the given set of expansion points (i.e. s1, s2, . . . , s`) are updated”

27: z = z + 1

28: end while
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Although our purpose is to just reuse SPAI in AIRGA (Algorithm 3), we also

execute original SPAI in AIRGA (Algorithm 1) for comparison. In Algorithms 1 and

3, at line 2 the overall iteration (while-loop) terminates when the change in the

reduced model (computed as H2-error between the reduced models at two consecutive

AIRGA iterations) is less than a certain tolerance. We take this tolerance as 10−04

based upon the values in [10]. There is one more stopping criteria in Algorithms 1

at line 9 (also in Algorithm 3 but not listed here). This checks the H2-error between

two temporary reduced models. We take this tolerance as 10−06, again based upon

the values in [10]. Since this is an adaptive algorithm, the optimal size of the reduced

model is determined by the algorithm itself, and is denoted by r.

The linear systems that arise here have non-symmetric matrices. There are many

iterative methods available for solving such linear systems. We use the Generalized

Minimal Residual (GMRES) method [61] because it is very popular. The stopping

tolerance in GMRES is taken as 10−06, which is a common standard. As mentioned in

Introduction, for both the given models, we observe that unpreconditioned GMRES

fails to converge. Hence, we use the SPAI preconditioner as described above (without

and with reuse).

As mentioned earlier, without loss of generality, we perform right preconditioning.

To demonstrate the effectiveness of our theory for all types of preconditioning, for the

academic disk model, we give data corresponding to left preconditioning as well.

We use Modified Sparse Approximate Inverse (MSPAI 1.0) proposed in [20] as our

preconditioner. This is because MSPAI uses a linear algebra library for solving sparse

least square problems that arise here. We use standard initial settings of MSPAI
(
i.e. tolerance (ep) of 10−04 and cache size (cs) of 80

)
.

We perform our numerical experiments on a machine with the following configu-

ration: Intel Xeon (R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200 MHz., 8 CPU

and 64 GB RAM. All the codes are written in MATLAB (2016b) (including AIRGA,

GMRES) except SPAI and reusable SPAI. MATLAB is used because of ease of rapid

prototyping. Computing SPAI and reusable SPAI in MATLAB is expensive, therefore,

we use C++ version of these (SPAI is from MSPAI and reusable SPAI is written by
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us). MSPAI further uses BLAS, LAPACK and ATLAS libraries.

It is important to emphasize that we do not integrate our MATLAB code base with

the C++ based preconditioner. This is because integrating the two is complicated and

is not needed here as well.

We compute SPAI and reusable SPAI in-parallel, separately, and save them on the

hard-disk in the standard .mtx files [20]. When we run our MATLAB code base, then

these files are read from the hard-disk into the main memory and converted into .mat

files for further processing.

4.4.1 Academic Disk Brake Model

This model is of size 4, 669. Based upon experience, the maximum reduced system

size (rmax) is taken as 20. As mentioned earlier, however, due to the adaptive nature

of AIRGA, we obtain a reduced system of size r = 13. For this model, AIRGA takes

two outer iterations (line 2 of Algorithms 1 and 3) to converge (i.e. z = 2).

Reusing the SPAI preconditioner is beneficial when the values of ‖I −A(z)
i ‖f/‖I‖f

is large, and the values of ‖A(z)
i−1−A(z)

i ‖f/‖A(z)
i−1‖f and ‖A(z−1)

1 −A(z)
1 ‖f/‖A(z−1)

1 ‖f are

small, which is true in this case (see Table 4.2). In this table, columns 1 and 2 list

the AIRGA iterations and the four expansion points, respectively. The above three

quantities are listed in columns 3, 4 and 5, respectively. For the first AIRGA iteration

and the first expansion point, SPAI preconditioner cannot be reused because there

is no earlier preconditioner (mentioned as NA in table). From the second expansion

point (and the first AIRGA iteration), we perform horizontal reuse of preconditioner

(see Figure 4.1). This is the same for the second AIRGA iteration as well. Vertical

reuse of preconditioner is done only for the first expansion point (and the second

AIRGA iteration; again see Figure 4.1).

In Table 4.3, we compare the SPAI and the reusable SPAI timings. As for Table

4.2, here columns 1 and 2 list the AIRGA iterations and the four expansion points,

respectively. SPAI and reusable SPAI computation times are given in columns 3 and

4, respectively. At the first AIRGA iteration and the first expansion point, both SPAI

and reusable SPAI take the same computation time. This is because, as above, reusing
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Table 4.2: SPAI and reusable SPAI analysis for the academic disk brake model.

AIRGA Itr.† Exp. Pts.‡

SPAI Case Reusable SPAI Case

1

Standard

‖I −A(z)
i ‖f

‖I‖f

Horizontal

‖A(z)
i−1 −A

(z)
i ‖f

‖A(z)
i−1‖f

Vertical

‖A(z−1)
1 −A(z)

1 ‖f
‖A(z−1)

1 ‖f
1 3.77× 1006 NA NA

2 4.36× 1006 0.1569

3 4.95× 1006 0.3139 NA

4 5.54× 1006 0.4708

2

1 7.63× 1006 NA 0.9996

2 4.06× 1006 0.0180

3 1.62× 1006 20.3431 NA

4 3.82× 1006 0.4985

† AIRGA Iterations.

‡ Expansion Points.

of SPAI preconditioner is not applicable here. From the second expansion point of

the first AIRGA iteration, we see substantial savings because of the reuse of the SPAI

preconditioner (approximately 68%).

Before presenting GMRES data, we would like to discuss improvements in the

condition numbers of the coefficient matrices because of the preconditioning. This

data is given in Table 4.4. As evident, preconditioning does substantially improve the

quality of the coefficient matrices.

Table 4.5 provides the iteration count and the computation time of GMRES. Here,

we only provide GMRES execution details since the computation time of precondi-

tioner has been discussed above. In this table, column 1 lists the AIRGA iterations.

The number of linear solves and average GMRES iterations per linear solve are given

in columns 2 and 3, respectively. Finally, columns 4 and 5 list the computation times

of GMRES when using SPAI and reusable SPAI, respectively. We notice from this

table that solving linear systems by GMRES with SPAI takes less computation time

as compared to solving them by GMRES with reusable SPAI. This is because when

we reuse the SPAI preconditioner in GMRES, additional matrix-vector products are
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Table 4.3: SPAI and reusable SPAI computation time for the academic disk brake

model.

AIRGA

Iterations (z)

Expansion

Points (si)

SPAI

(Seconds)

Reusable SPAI

(Seconds)

1

1 174 174

2 164 10

3 165 16

4 165 20

2

1 165 64

2 165 10

3 165 108

4 158 20

Total 8 1321 422

Table 4.4: Condition numbers of the coefficient matrices before and after application

of SPAI¶ for the academic disk brake model.

AIRGA

Iterations (z)

Expansion

Points (si)

Before

Preconditioner

After

Preconditioner

1 6.4× 1006 3.3× 1003

2 4.6× 1006 2.9× 1003

1 3 2.7× 1006 2.2× 1003

4 1.8× 1006 1.6× 1003

1 2.0× 1006 1.3× 1003

2 3.6× 1006 2.6× 1003

2 3 5.8× 1006 5.1× 1003

4 7.0× 1006 3.2× 1003

¶ SPAI and Reusable SPAI improve the condition number al-

most equally.
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Table 4.5: GMRES computation time for the academic disk brake model.

AIRGA

Iterations (z)

No. of

Linear

Solves

GMRES Iterations

per Linear Solve

GMRES Time when

Using SPAI

(Seconds)

GMRES Time when

Using Reusable SPAI

(Seconds)

1 10 271 7.98 8.62

2 13 270 8.12 8.93

Total 23
10× 271 + 13× 270

= 6220

10× 7.98 + 13× 8.12

= 185

10× 8.62 + 13× 8.93

= 202

Table 4.6: GMRES with SPAI and reusable SPAI computation time for the academic

disk brake model.

AIRGA

Iterations (z)

GMRES Plus

SPAI Time

(Seconds)

GMRES Plus

Reusable SPAI Time

(Seconds)

1 748 306

2 759 318

Total 1507 624

performed, however, this extra cost is almost negligible when compared to the savings

in the preconditioner computation time for the latter case (as evident in Table 4.2

above; also see total GMRES and preconditioner time below).

As earlier, the data in Table 4.5 is corresponding to right preconditioning. In

the case of left preconditioning we see only a modest change in the metrics under-

consideration. That is, the total GMRES iterations, the total GMRES plus SPAI time,

and the total GMRES plus reusable SPAI time are 6364, 190, and 204, respectively.

Table 4.6 gives the computation time of GMRES plus SPAI (column 2) and GM-

RES plus reusable SPAI (column 3) at each AIRGA iteration (column 1). As evident

from this table, reusing the SPAI preconditioner leads to about 60% savings in total

time required for solving all the linear systems.
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4.4.2 Industrial Disk Brake Model

This model is of size 1.2 million. Based upon experience, the maximum reduced

system size (rmax) is taken as 100. As mentioned earlier, however, due to the adaptive

nature of AIRGA, we obtain a reduced system of size r = 52. For this model, AIRGA

takes four outer iterations (line 2 of Algorithms 1 and 3) to converge (i.e. z = 4).

Again, reusing the SPAI preconditioner is beneficial when the value of ‖I −
A

(z)
i ‖f/‖I‖f is large, and the value of ‖A(z)

i−1 − A
(z)
i ‖f/‖A(z)

i−1‖f and ‖A(z−1)
1 −

A
(z)
1 ‖f/‖A(z−1)

1 ‖f are small, which is true in this case (see Table 4.7). The struc-

ture of this table is same as Table 4.2. As earlier, for the first AIRGA iteration and

the first expansion point, SPAI preconditioner cannot be reused because there is no

earlier preconditioner (mentioned as NA in table). From the second expansion point

(and the first AIRGA iteration), we perform horizontal reuse of preconditioner (see

Figure 4.1). This is the same for the second, the third and the fourth AIRGA itera-

tions as well. Vertical reuse of preconditioner is done only for the first expansion point

(and the second, the third, and the fourth AIRGA iterations; again see Figure 4.1).

In Table 4.8, we compare the SPAI and the reusable SPAI timings. The structure

of this table is same as that of Table 4.3. As before, at the first AIRGA iteration and

the first expansion point, both SPAI and reusable SPAI take the same computation

time. This is because, as above, reusing of SPAI preconditioner is not applicable here.

From the second expansion point of the first AIRGA iteration, we see substantial

savings because of the reuse of the SPAI preconditioner (from 160 hours to 26 hrs 30

minutes; approximately 83%).

As in the case of the academic disk model, here too before presenting GMRES

data, we would like to discuss improvements in the condition numbers of the coefficient

matrix because of the preconditioning. This data is given in Table 4.9. As evident,

preconditioning does substantially improve the quality of the coefficient matrices.

Table 4.10 provides the iteration count and the computation time of GMRES.

Here, again we have only provided GMRES execution details since the computation

time of the preconditioner has already been discussed above. The structure of this
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Table 4.7: SPAI and reusable SPAI analysis for the industrial disk brake model.

AIRGA

Iterations (z)

Expansion

Points (si)

SPAI Case Reusable SPAI Case

1

Standard

‖I −A(z)
i ‖f

‖I‖f

Horizontal

‖A(z)
i−1 −A

(z)
i ‖f

‖A(z)
i−1‖f

Vertical

‖A(z−1)
1 −A(z)

1 ‖f
‖A(z−1)

1 ‖f
1 6.54× 1008 NA NA

2 6.54× 1008 3.74× 10−05

3 6.54× 1008 7.49× 10−05 NA

4 6.54× 1008 1.12× 10−04

2

1 1.31× 1009 NA 1.006

2 6.65× 1008 0.49

3 6.53× 1008 0.50 NA

4 6.56× 1008 0.49

3

1 1.30× 1009 NA 1.009

2 7.01× 1008 0.4658

3 6.53× 1008 0.5499 NA

4 6.63× 1008 0.4940

4

1 1.31× 1009 NA 1.0015

2 6.86× 1008 0.4641

3 6.53× 1008 0.5002 NA

4 6.56× 1008 0.4933
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Table 4.8: SPAI and reusable SPAI computation time for the industrial disk brake

model.

AIRGA

Iterations (z)

Expansion

Points (si)
SPAI§ Reusing SPAI§

1

1 10 hrs 10 hrs

2 10 hrs 1 hr

3 10 hrs 1 hr

4 10 hrs 1 hr

2

1 10 hrs 1 hr 30 mins

2 10 hrs 1 hr

3 10 hrs 1 hr

4 10 hrs 1 hr

3

1 10 hrs 1 hr 30 mins

2 10 hrs 1 hour

3 10 hrs 1 hour

4 10 hrs 1 hour

4

1 10 hrs 1 hr 30 mins

2 10 hrs 1 hr

3 10 hrs 1 hr

4 10 hrs 1 hr

Total 16 160 hrs 26 hrs 30 mins

§ All times given here differ in seconds (not evident

because of the rounding to the nearest minute).
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Table 4.9: Condition numbers of the coefficient matrices before and after application

of SPAI for the industrial disk brake model.

AIRGA

Iterations (z)

Expansion

Points (si)

Before

Preconditioner

After

Preconditioner

1 1.4× 1016 1.4× 1009

2 1.5× 1016 1.6× 1009

1 3 1.6× 1016 2.5× 1009

4 1.8× 1016 2.8× 1009

1 9.6× 1016 8.1× 1009

2 3.4× 1016 2.4× 1009

2 3 5.8× 1016 9.3× 1009

4 2.2× 1016 3.4× 1009

1 7.5× 1016 1.9× 1009

2 2.5× 1016 2.5× 1009

3 3 5.0× 1016 6.1× 1009

4 6.9× 1016 4.7× 1009

1 8.9× 1016 3.5× 1009

2 9.5× 1016 8.3× 1009

4 3 5.4× 1016 5.8× 1009

4 1.3× 1016 5.4× 1009
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Table 4.10: GMRES computation time for the industrial disk brake model.

AIRGA

Iterations (z)

No. of

Linear

Solves

GMRES

Iterations per

Linear Solve

GMRES Time

when Using

SPAI

(Minutes)

GMRES Time

when Using

Reusable SPAI

(Minutes)

1 64 421 08 10

2 64 426 09 11

3 64 429 10 12

4 52 432 10 12

Total 244

64× (421 + 426 + 429)

+ 52× 432

= 104,128

64× (08 + 09 + 10)

+ 52× 10

= 2248

64× (10 + 11 + 12)

+ 52× 12

= 2736

table is same as that of Table 4.5. As earlier, we notice from this table that solving

linear systems by GMRES with SPAI takes less computation time as compared to

solving them by GMRES with reusable SPAI. This is again because of additional

matrix-vector products in the reusable SPAI case. Here also, this extra cost is almost

negligible when compared to the savings in the preconditioner computation time (as

evident in Table 4.8; also see the total GMRES and preconditioner time below).

Table 4.11 gives the computation time of GMRES plus SPAI (column 2) and

GMRES plus reusable SPAI (column 3) at each AIRGA iteration (column 1). As

before, it is evident from this table, reusing the SPAI preconditioner leads to about

64% savings in total time (from 197 hours 28 minutes to 72 hours 06 minutes).

To demonstrate the quality of the reduced system, we plot the relative H2 error be-

tween the transfer function of the original system and the reduced system with respect

to the different expansion points (in Figure 4.3). The reduced system considered here

is obtained by using GMRES with reusable SPAI. These expansion points, denoted by

S, are computed as 2πf , where the frequency variable f is linearly spaced between 1

and 500. As evident from this figure, the obtained reduced system is good (the error is

very small). Further, we also observe from this figure that the reduced model is most

accurate in 7–10 range of the expansion points. This is because the final expansion
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Table 4.11: GMRES with SPAI and reusable SPAI computation time for the industrial

disk brake model.

AIRGA

Iterations (z)

GMRES plus

SPAI Time

GMRES plus

Reusable SPAI Time

1 48 hrs 32 mins 23 hrs 40 mins

2 49 hrs 36 mins 16 hrs 14 mins

3 50 hrs 40 mins 17 hrs 18 mins

4 48 hrs 40 mins 14 hrs 54 mins

Total 197 hrs 28 mins 72 hrs 06 mins

points, upon the convergence of AIRGA, lie in this range.

1 2 3 4 5 6 7 8 9 10
10

−6

10
−4

10
−2

10
0

Expansion Points (S)

R
el

at
iv

e 
E

rr
o

r 
(I

n
 lo

g
 s

ca
le

)

 

 

Figure 4.3: Relative error between the original and reduced system for the industrial

disk brake model.

71





Chapter 5

Reuse of Preconditioners for

Parametric MOR

Here, our preconditioner reuse focus is on MOR algorithms belonging to Cell 3 and

4 of Table 1.1. That is, those used for reducing parametric first-order and second-order

dynamical systems, respectively. As done for stability analysis of parametric MOR

algorithms in Chapter 3, here we pick RPMOR that works for both first-order and

second-order systems. It is important to point out that our preconditioner reuse theory

below does not bind to any order, with experiments done for both the parametric first-

order and second-order dynamical systems.

5.1 Linear systems Arising in RPMOR

Recall from (3.12) that in RPMOR linear systems, when matching first three mo-

ments, have the following form:
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Zeroth-Order Moment Matching (h = 0)

A(i)x(i)(1) = B,

First-Order Moment Matching (h = 1)

A(i)
[
x(i)(2) · · · x(i)((w + 1) + 1)

]
=
[
A1x

(i)(1) · · · Aw+1x
(i)(1)

]
,

Second-Order Moment Matching (h = 2)

A(i)
[
x(i) ((w + 1) + 2) · · · x(i) (2(w + 1) + 1)

]
= A1

[
x(i)(2) · · · x(i)((w + 1) + 1)

]
,

...

A(i)
[
x(i) ((w + 1)(w + 1) + 2) · · · x(i) ((w + 2)(w + 1) + 1)

]
= Aw+1

[
x(i) (2) · · · x(i) ((w + 1) + 1)

]
.

(5.1)

Note that matching higher moments, would result in more number of linear systems

to be solved for each set of expansion points (i.e., for every i), where the matrix A(i)

remains the same (since i is the same) and the right-hand sides change (corresponding

to the increase in h). The preconditioned iterative solver theory derived below is more

dependent on the changing matrices and less on the changing right-hand sides. Also

in practice, usually up to second-order moments are matched [70, 51]. Hence, for ease

of explanation, we do not discuss matching higher order moments.

In (5.1), for a particular i after the first equation (see line 2 of Algorithm 2),

the right-hand side vectors of all subsequent sets of equations are available together

(groups of equations corresponding to h = 1 and h = 2; see lines 5 and 13 of Algorithm

2). Hence, one can easily solve these linear systems simultaneously. For this, we can

use a block version of the relevant iterative method [71, 72, 73].

This concept was introduced for the first time with Conjugate Gradient (CG)

method [71]. A similar study with GMRES was proposed in [72]. Here, we give a brief

overview of block iterative methods. There are three classes of block Krylov subspace

methods; 1) classical block methods, 2) global block methods and, 3) loop-interchange

block methods [74]. We use a classical block method because of its ease in usage. Let

a linear system of equations with multiple right-hand sides be given as

AX= B,

where A∈ Rn×n, B ∈ Rn×m, m � n. Given X0 and R0 (i.e. R0 = B− AX0) as the
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initial solution and the initial residual, respectively, these methods build the block

Krylov subspace K (A, R0) = span {R0,AR0,A
2R0, . . . ,A

−1R0}, and find solution in

it [71, 72]. Next, we apply our preconditioner reuse theory from Chapter 4 to RPMOR.

5.2 Theory of Reusing Preconditioners Applied to

RPMOR

In general, the sequence of linear systems generated by the first equation of (5.1)

(see line 2 of Algorithm 2) has the following form1:

A(1)X(1) = B(1),

A(2)X(2) = B(2),

...

A(i)X(i) = B(i),

(5.2)

where A(1), . . . ,A(i) ∈ Rn×n originally come form (3.7), (3.10) and (3.11);

B(1), . . . ,B(i) ∈ Rn×m all of which in this case are B from (1.1) and (3.1); and

X(1) = x(1)(1), X(2) = x(2)(1), and X(i) = x(i)(1) here.

This sequence of linear systems is exactly same as (4.3) except a slightly different

notation, which we have avoided making uniform. This is because the structure of the

underlying matrices in the non-parametric case (Chapter 4) and the parametric case

(Chapter 5) are different. As mentioned in Chapter 4, first approach of Table 4.1 is

more suitable here in the parametric case, which we rationalize elaborately below.

Here, A(1) is almost as close to A(i) as much as A(i − 1) is close to A(i). For

example, when applying RPMOR on commonly used models, we observe that ‖A(1)−
A(3)‖ is almost of the same order of magnitude as ‖A(2)−A(3)‖ (in a relative sense).

1We look at the first equation because the matrix change happens here only, which is the case that

requires computation of a new preconditioner. In the other equations of (5.1), the matrix remains

the same and only the right-hand side changes. Thus, the preconditioner corresponding to the first

equation is ideal.
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2. The reason for this is, the relative change in the sets of parameters s̀i1, s̀
i
2, . . . , s̀

i
w+1

as the model reduction algorithm progresses (i = 1, . . . , `) is often many orders of

magnitude smaller when compared with the magnitude of elements in the unchanging

dynamical system sub-matrices (A0,A1, . . . ,Aw+1). Thus, the minimization problem

of the first approach is almost of the same hardness as the minimization problem of

the second approach.

The first approach has an added benefit that Pi here is more accurate since it is

formed from P1 (Pi = QiP1), which is very accurate. On the contrary, in the second

approach Pi = QiPi−1, Pi−1 = Qi−1Pi−2, . . . , P2 = Q2P1. Thus, approximation errors

from P2 to P3 to Pi−1 make Pi in the second approach less accurate as compared to

the Pi in the first approach. Thus, for our implementation we use the first approach.

To summarize, when using basic SPAI for all i = 2, 3, . . . , `, we need to solve

min
Pi

‖I − A(i)Pi‖2
f , which we first transform to min

Pi

‖A(1)P1 − A(i)Pi‖2
f , and sub-

sequently to min
Qi

‖A(1) − A(i)Qi‖2
f . This last formulation, as mentioned earlier, is

usually much easier to solve. Next, we discuss the application of the first approach,

as discussed above, to RPMOR.

From (5.1), recall (3.7) and (3.11), we know A(1) = A0 + s̀1
1A1 + s̀1

2A2 + . . . +

s̀1
w+1Aw+1 and A(i) = A0 + s̀i1A1 + s̀i2A2 + . . .+ s̀iw+1Aw+1 are two coefficient matrices

for different expansion points
(
s̀1

1, . . . , s̀
1
w+1

)
and

(
s̀i1, . . . , s̀

i
w+1

)
, respectively. Using

the above theory, we express A(i) in terms of A(1) as follows:

A(i) = A(1)

(
I +

(
s̀i1 − s̀1

1

)
(A(1))−1 A1 + · · ·+

(
s̀iw+1 − s̀1

w+1

)
(A(1))−1 Aw+1

)
,

Now we enforce A(1)P1 = A(i)Pi or

A(1)P1 = A(1)

(
I +

(
s̀i1 − s̀1

1

)
(A(1))−1 A1 + · · ·+

(
s̀iw+1 − s̀1

w+1

)
(A(1))−1 Aw+1

)
·

(
I +

(
s̀i1 − s̀1

1

)
(A(1))−1 A1 + · · ·+

(
s̀iw+1 − s̀1

w+1

)
(A(1))−1 Aw+1

)−1

P1,

= A(i)Pi,

2Average values of ‖A(1) − A(3)‖/‖A(1)‖ for RPMOR applied to Micro-Gyroscope Model and

Electro-Chemistry Model are 2.11 × 10−09 and 1.77 × 10−05, respectively. Also, average values of

‖A(2)−A(3)‖/‖A(2)‖ for the two respective models are 1.07× 10−09 and 7.66× 10−06, respectively.
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where

Pi =

(
I +

(
s̀i1 − s̀1

1

)
(A(1))−1 A1 + · · ·+

(
s̀iw+1 − s̀1

w+1

)
(A(1))−1 Aw+1

)−1

P1.

Let

Qi =

(
I +

(
s̀i1 − s̀1

1

)
(A(1))−1 A1 + · · ·+

(
s̀iw+1 − s̀1

w+1

)
(A(1))−1 Aw+1

)−1

,

then the above implies A(1)P1 = A(i)QiP1. Further, instead of solving this last

equation leading to Pi = QiP1, we solve a simpler problem

min
Qi

||A(1)−A(i)Qi||2f = min
(qi)

(ı)

n∑

ı=1

∣∣∣
∣∣∣(a1)(ı) −A(i) (qi)

(ı)
∣∣∣
∣∣∣
2

2
,

where (a1)(ı) and (qi)
(ı) denote the ıth columns of A(1) and Qi, respectively.

Next, we demonstrate the effectiveness of our technique using multiple numerical

examples.

5.3 Numerical Results

We demonstrate our proposed preconditioned iterative solver theory using RPMOR

[51] on two models. The first is a Electro-Chemistry Model from [51], and is discussed

in Section 5.3.1. This represents a parametric first-order dynamical system, the one

for which we have discussed RPMOR. The second is a Micro-Gyroscope Model from

[70], and is discussed in Section 5.3.2. This belongs to the class of parametric second-

order dynamical system, which although not our focus here, but can be reduced by

RPMOR as well.

The linear systems that arise here have non-symmetric matrices. As earlier, we use

iterative methods instead of direct methods. Of the many available iterative methods

for solving non-symmetric linear systems, we use Generalized Conjugate Residual Or-

thogonal (GCRO) [75]. In fact, we use block GCRO [76, 42] because of the reasons

discussed before (availability of the multiple right-hand sides together). We also com-

pare usage of GCRO and block GCRO. The stopping tolerance is taken as 10−10 for

all cases.
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Since unpreconditioned Krylov methods often fail, we do not discuss them here3.

We use a Modified Sparse Approximate Inverse (MSPAI 1.0) proposed in [20] as our

SPAI preconditioner. We use standard initial settings of MSPAI as follows: tolerance

(ep) of 0.0001 and cache size (cs) of 80.

We perform our numerical experiments on a machine with the following configu-

ration: Intel Xeon (R) CPU E5-1620 V3 @ 3.50 GHz., frequency 1200 MHz., 8 CPU

and 64 GB RAM. All the codes are written in MATLAB (2016b) (including RPMOR,

GCRO) except SPAI and reusable SPAI. MATLAB is used because of ease of rapid

prototyping. Computing SPAI and reusable SPAI in MATLAB is expensive, therefore,

we use C++ version of these (SPAI is from MSPAI and reusable SPAI is written by

us). MSPAI further uses BLAS, LAPACK and ATLAS libraries.

As discussed in Chapter 4, we do not integrate our MATLAB code base with the

C++ based preconditioner. This is because integrating the two is complicated and is

not needed here as well.

We compute SPAI and reusable SPAI in-parallel, separately, and save them on the

hard-disk in the standard .mtx files [20]. When we run our MATLAB code base, then

these files are read from the hard-disk into the main memory and converted into .mat

files for further processing.

5.3.1 The Electro-Chemistry Model

This model is a parametric Single Input Multiple Output (SIMO) first-order linear

dynamical system, and is given as

(sE +G+ p1D1 + p2D2)x = Bu(s),

y = Cx,

where E,G,D1, D2 ∈ Rn×n, B ∈ Rn×m and C ∈ Rq×n with n = 16, 912, m = 1 and

q = 5.

We use RPMOR settings as below. In the above equation, there is frequency

variable s and two parameters p1, p2 (or pj with j = 1, . . . , w, and w = 2), all of which

3All our linear system matrices are ill-conditioned as well; condition number of the order 1012.
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together form a set of expansion points.

The number of moments matched are three (i.e. up to h = 2), and we use four sets

of expansion points (i = 1, 2, . . . , z with z = 4) as follows based upon values in [51]:

[0.1π, 5.946× 10−10, 1.68× 1009],

[0.2π, 8.41× 10−04, 1.18× 1003],

[0.3π, 1.18× 1003, 8.41× 10−04], and

[0.45π, 1.68×1009, 5.94×10−10]. Since we have four sets of expansion points, RPMOR

takes four iterative steps. For the settings above, the size of the reduced system r

comes out to be 46.

The arising linear systems have structure as below. Since w is two, we obtain that

at each RPMOR step (or set of expansion points), following sets of linear systems

should be solved: 1, 3 and 9, corresponding to the number of right-hand sides avail-

able together while matching the zeroth order, first-order, and second-order moments,

respectively. However, after solving the linear systems while matching the first-order

moment, the solution vector corresponding to the third (and last) right-hand side

comes to be nearly zero. Thus, this solution vector is not used as a right-hand side

in solving the linear systems while matching the second-order moment. Eventually,

for the second-order moment, instead of 9 linear systems, 6 are solved. This brings

the total number of linear systems solved at each RPMOR step to be 1 + 3 + 6 = 10.

Since, n = 16, 912, the linear systems here are of size 16, 912× 16, 912.

Based upon the above data, block GCRO is called ten times at each RPMOR

step4. It is executed once initially for solving linear system with 1 right-hand side,

one more time for solving linear systems with 3 right-hand sides together, and last

time for solving linear systems with 6 right-hand sides together. Hence, block GCRO

is called three times at each RPMOR step.

In Table 5.1, we compare SPAI and SPAI update. Both preconditioners are com-

puted once at each RPMOR step and applied to all linear systems at that RPMOR

step (ten linear systems here each). This is because the linear system matrices do not

4We motivate use of block GCRO more by comparing it with GCRO for the next example (5.3.2).

Here, we also do SPAI update analysis.
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Table 5.1: Computation Time of SPAI and SPAI Update for Electro-Chemistry Model.

RPMOR

Steps

Computation Time

(seconds)

SPAI SPAI Update

1 90.10 90.10

2 90.19 1.83

3 90.25 1.83

4 90.29 1.84

Total Time 360.83 93.61

change at a RPMOR step (only right-hand sides do). In the first column, we give

the step number of the RPMOR algorithm that corresponds to the four expansion

points. The computation times of SPAI and SPAI update are given in columns 2 and

3, respectively, corresponding to each RPMOR step. At the first RPMOR step, both

preconditioners take the same amount of computation time because, as earlier, SPAI

update is not applicable at this step. From the second step onwards, we see substantial

savings with SPAI update as compared to SPAI (approximately 74%).

Table 5.2 gives the computation time of block GCRO with SPAI and block GCRO

with SPAI update. In the first column, we give the step number of the RPMOR

algorithm. The relevant computation times are given in columns 2 and 3, respectively.

As above, at the first RPMOR step, the computation time for both the cases is almost

the same. From the second step onwards, we see substantial savings in the computation

time by using block GCRO with SPAI update over block GCRO with SPAI. From the

last row of this table, it is clear that preconditioner update saves approximately 55%

computation time (as compared to non-update).
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Table 5.2: Computation Time of Block GCRO with SPAI and SPAI Update for

Electro-Chemistry Model.

RPMOR

Steps

Computation Time

(seconds)

Block GCRO

plus SPAI

Block GCRO

plus SPAI Update

1 127.29 126.38

2 123.37 33.86

3 121.87 30.37

4 117.85 27.52

Total Time 490.38 219.04

5.3.2 The Micro-Gyroscope Model

This model is a parametric Single Input Single Output (SISO) second-order linear

dynamical system of size 17, 931, and is given as

(s2M(d) + sD(θ, α, β, d) +K(d))x = Bu(s),

y = Cx,
(5.3)

where M(d), D(θ, α, β, d), K(d) ∈ Rn×n, B ∈ Rn×m and C ∈ Rq×n with n =

17, 931,m = 1 and q = 1. Further, M(d) = M1 + dM2, D(θ, α, β, d) = θ(D1 +

dD2) + αM(d) + βK(d), and K(d) = K1 + (1/d)K2 + dK3. In the above equation,

there are eleven variables and all must be considered as individual parameters.

Next, we discuss the settings for RPMOR. The above parameters form the ith set

of expansion points as follows: s̀i1 = s2, s̀i2 = s2d, s̀i3 = sθ, s̀i4 = sθd, s̀i5 = sα, s̀i6 =

sαd, s̀i7 = sβ, s̀i8 = sβ/d, s̀i9 = sβd, s̀i10 = 1/d and s̀i11 = d. Usually α and β are

taken as zero [70], and hence we are left with six parameters; s̀i1, s̀
i
2, s̀

i
3, s̀

i
4, s̀

i
10 and s̀i11.

Considering si1 as the frequency variable, we have five actual parameters (in the earlier

notation pj with j = 1, . . . , w and w = 5).

The number of moments matched are three (i.e. up to h = 2), and we use four sets

of expansion points (i = 1, 2, . . . , z with z = 4) as follows based upon values in [70]:
[
−4π2 × 0.065,−4π2 × 0.065, 5π

√
−1× 10−7, 5π

√
−1× 10−7, 1, 1

]
,
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[
−4π2 × 0.065,−8π2 × 0.065, 5π

√
−1× 10−7, 10π

√
−1× 10−7, 0.5, 2

]
,

[
−4π2 × 0.0225,−8π2 × 0.0225, 3π

√
−1× 10−7, 6π

√
−1× 10−7, 0.5, 2

]
, and

[
−4π2 × 0.0225,−4π2 × 0.0337, 3π

√
−1× 10−7, 4.5π

√
−1× 10−7, 0.66, 1.5

]
.

Since here we have four sets of expansion points, RPMOR takes four iterative steps. As

mentioned earlier, RPMOR automatically determines the size of the reduced system

(r). For the settings above, r comes out to be 304.

Further, we discuss the arising sequence of linear systems. Since w is five corre-

sponding to five parameters, we obtain that at each RPMOR step (or a set of expansion

points), following number of linear systems are solved: 1, 6 and 36, corresponding to

the number of right-hand sides available together while matching the zeroth order,

first-order and second-order moments, respectively. This results in the total linear

systems to be solved at each RPMOR step to be 1 + 6 + 36 = 43. Since n = 17, 931,

the linear systems that arise here are of size 17, 931× 17, 931.

First, we compare GCRO and block GCRO method (in-terms of number of matrix-

vector products and computation time). As mentioned earlier, both GCRO and block

GCRO are solved using the SPAI preconditioner, and none of them converged with-

out preconditioning. Usually, preconditioning is discussed before the linear solver.

However, here, we first narrow down on our choice of linear solver (in this case block

GCRO), and then discuss our more important contribution of the comparison between

the SPAI preconditioner and the SPAI update preconditioner.

5.3.2.1 GCRO Vs Block GCRO

Table 5.3 provides a detailed comparison between GCRO and block GCRO. In this

table, column 1 lists the RPMOR steps. GCRO is executed 43 times at each RPMOR

step because of 43 linear systems. Block GCRO is executed once initially for solving

linear system with 1 right-hand side, one more time for solving linear systems with 6

right-hand sides together, and last time for solving linear systems with 36 right-hand

sides together. Hence, block GCRO is called three times at each RPMOR step. Both

these data are given in columns 2 and 5 of this table, respectively. Number of matrix

vector products for both the solvers (GCRO and block GCRO) are given in columns
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3 and 6, respectively. Computation times corresponding to these solvers are given

in columns 4 and 7, respectively (rounded to the nearest second). For GCRO, we

give averaged values because we can extract the required information also from the

average. From the last row of Table 5.3 it is clear that block GCRO saves nearly 89%

in the number of matrix vector products and about 95% in the computation time as

compared to GCRO. Thus, for rest of our experiments we use block GCRO only.

We now analyze Table 5.3 further. The first observation here is, the number of

matrix-vector products needed for solving linear systems with 6 and 36 right-hand

sides by block GCRO (see column 6) are much smaller than solving 6 and 36 linear

systems with 1 right-hand side by GCRO (see column 3; also same as using block

GCRO), respectively. This could be because of “deflation” as defined in [77], where-in

rapid convergence happens in a block Krylov method. An example of deflation is when

the initial residual columns are equal to a linear combination of a set of eigenvectors

of the linear system matrix. For us too, there is direct relation between the initial

residual (formed from block right-hand sides) and the linear system matrix.

From (5.1), we know that 6 and 36 right-hand sides arise while matching the

first-order and second-order moments, respectively. These right-hand sides are formed

using dynamical system sub-matrices (A1, . . . ,Aw+1) and the solution of the previous

linear systems
(
x(i)(1) and x(i)(2), · · · , x(i) ((w + 1) + 1)

)
, where the former are used

to build the linear system matrix (recall (3.7), (3.10) and (3.11)).

The second observation from Table 5.3 is that, the computation time per iteration

for solving linear systems with 1, 6, and 36 right-hand sides are all very close (data of

column 7 divided by respective data of column 6). This is contrary to the fact that in

the first case, a sparse matrix-vector product (spMV) is used, time of which is usually

much less than the time for a sparse matrix-matrix product (spMM), as used in the last

two cases. The reason for this is, our linear system matrices are very sparse (average

number of non-zeros of 300 per row in a matrix of size 17, 931 × 17, 931). Thus, the

average computation time of spMM is almost the same as the average computation
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Table 5.3: GCRO and Block GCRO Iteration Count and Computation Time for Micro-

Gyroscope Model. Here, NMVs implies Number of Matrix- Vector Products, and RHSs

implies Right-Hand Sides.

RPMOR

Steps

GCRO Block GCRO

No. of

Linear

Solves

Average

Iteration Count

per

Linear Solve

Average

Computation

Time per

Linear Solve

(seconds)

No. of

Block

Linear

Solves

Iteration Count

for Solving

(1, 6, 36) RHSs

Computation

Time

for Solving

(1, 6, 36) RHSs

(seconds)

1 43 1472 92 03 (1474, 308, 77) (92, 34, 25)

2 43 1473 92 03 (1905, 394, 97) (149, 51, 36)

3 43 1442 88 03 (1991, 400, 97) (165, 54, 35)

4 43 1472 92 03 (1753, 350, 86) (129, 42, 30)

Total 43× 4 = 172

43× Sum of Col.

= 43× 5, 859

= 251, 937

(also NMVs)

43× Sum of Col.

= 43× 364

= 15, 652

= 261 (mins)

03× 4 = 12

Sum of Sub Col.’s

= (7123, 1452, 357)

NMVs = 1× 7123+

6× 1452 + 36× 357

= 28, 687

Sum of Col.

= 842

= 14 (mins)

time of spMV5.

5.3.2.2 Analyzing SPAI Update

Here, we analyze why SPAI update would be beneficial. Recall, the first linear

system matrix, A(1) defined in (3.7), is given as

A(1) = K1 + s̀1
1M1 + s̀1

2M2 + s̀1
3D1 + s̀1

4D2 + s̀1
10K2 + s̀1

11K3,

and other matrices, A(i) for i = 2, . . . , 4 defined in (3.10) and (3.11), are given as

A(i) = K1 + s̀i1M1 + s̀i2M2 + s̀i3D1 + s̀i4D2 + s̀i10K2 + s̀i11K3.

Based upon the theory of preconditioner updates, SPAI update is useful when

‖I − A(i)‖f/‖I‖f is large and ‖A(1) − A(i)‖f/‖A(1)‖f is small, which is true in

this case (see columns 2 and 3 of Table 5.4, respectively). Since the change in matrix

for different RPMOR steps is not evident from this table, we plot the five smallest

50.016142 seconds for spMM with 6 right-hand sides and 0.012798 seconds for spMV.
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Table 5.4: SPAI and SPAI Update Analysis for Micro-Gyroscope Model.

RPMOR

Steps (i)

‖I −A(i)‖f
‖I‖f

‖A(1)−A(i)‖f
‖A(1)‖f

1 1.02 0

2 1.02 2.83× 10−05

3 1.02 2.83× 10−05

4 1.02 1.77× 10−05
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Figure 5.1: Changes in Linear systems for Micro-Gyroscope Model.

eigenvalues of A(i), i = 1, 2, 3, 4 in Figure 5.1. It is clear from this figure that matri-

ces A(2),A(3), and A(4) are all very close to A(1) (eigenvalues of all around zero) as

compared to their closeness to the identity matrix (whose eigenvalues are one).

5.3.2.3 Benefit from SPAI Update

As mentioned while discussing cheap preconditioner updates, SPAI and SPAI up-

date are computed only when the matrix changes, which happens once at every RP-

MOR step. Since the number of iterative steps taken by RPMOR are four, these

preconditioners are computed four times. Also, at each RPMOR step, the respective

preconditioner is applied to the 43 linear systems (with differing right-hand sides).

In Table 5.5, we compare SPAI and SPAI update6. In the first column, we give

6The underlying linear solver, GCRO or block GCRO, does not affect this.
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the step number of RPMOR algorithm that corresponds to the four expansion points.

The computation times of SPAI and SPAI update are given in columns 2 and 3,

respectively, corresponding to each RPMOR step. At the first RPMOR step, both

preconditioners take the same amount of computation time. This is because SPAI

update is not applicable at this step. From second RPMOR step onwards, we see

substantial savings with SPAI update as compared to SPAI (approximately 70%).

Table 5.6 gives the computation time of block GCRO with SPAI and block GCRO

with SPAI update. In the first column we give the step number of the RPMOR

algorithm. The relevant computation times are given in columns 2 and 3, respectively.

As above, at the first RPMOR step, the computation time for both cases is almost

the same. From the second step onwards, we see substantial savings in computation

time by using block GCRO with SPAI update over block GCRO with SPAI. From the

last row of this table, it is clear that preconditioner update saves approximately 62%

computation time (as compared to non-update).

As cross-checking mechanism, we can see that adding block GCRO time from Table

5.3 (14 mins from column 7) and SPAI time from Table 5.5 (105 mins from column

2), gives us the total block GCRO plus SPAI time as in Table 5.6 (119 mins from

column 2). However, adding block GCRO time from Table 5.3 (14 mins from column

7) and SPAI update time from Table 5.5 (33 mins from column 3), does not exactly

give us the total block GCRO plus SPAI update time as in Table 5.6 (45.22 mins from

column 3). The reason for this (45.22 mins instead of 47 mins) is that block GCRO

in Table 5.3 has been executed with SPAI instead of SPAI update, and block GCRO

with SPAI update has a slightly faster convergence than block GCRO with SPAI.

To demonstrate the quality/ accuracy of reduced system, we plot the relative error

between the transfer function of the original system and the reduced system7. We use

the reduced system as obtained by using block GCRO and SPAI update (corresponding

to the third column of Table 5.6). The error computation as done in [70], forms the

basis of our setup here (see Section 5.4 in [70]). We use the following settings in

7This is more general than computing the the error between the original system output and the

reduced system output since for the latter, input range is also required.
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Table 5.5: Computation Time of SPAI and SPAI update for Micro-Gyroscope Model.

RPMOR

Steps

Computation Time

(minutes)

SPAI SPAI Update

1 27 27

2 26 2

3 26 2

4 26 2

Total Time 105 33

(5.3): s = 2π
√

(−1)f , where frequency f vector consists of equally spaced twenty

points between 0.025 and 0.25 MHz; d vector consist of equally spaced twenty points

between 1 and 2; and θ = 10−06. This result is given in Figure 5.2, with f on the

x-axis, parameter d on the y-axis, and error on the z-axis (in log scale). As evident

from this figure, the obtained reduced system is good (error is very small).

If we compare the preconditioned iterative method timings for Electro-Chemistry

Model and Micro-Gyroscope Model (Table 5.1–5.5 and Table 5.2–5.6), we realize that

the former is substantially faster than the latter although both are of almost the same

size. The reason behind this is as follows: the linear system matrices in the former

are much more sparse than those in the latter (number of non-zeros per row 7 versus

300).
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Table 5.6: Computation Time of Block GCRO with SPAI and SPAI Update for Micro-

Gyroscope Model.

RPMOR

Steps

Computation Time

(minutes)

Block GCRO

plus SPAI

Block GCRO

plus SPAI Update

1 29.51 29.73

2 29.92 4.98

3 30.23 5.53

4 29.34 4.98

Total Time 119 45.22
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Figure 5.2: Relative Error between the Original and the Reduced System for Micro-

Gyroscope Model.
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Chapter 6

Conclusions and Future Work

We discuss application of preconditioned iterative methods for solving the large

linear systems in MOR algorithms for linear non-parametric/ parametric and first-

order/ second-order dynamical systems. These methods find solutions only up to

a certain tolerance. Hence, in the first-half of the dissertation we show that under

some mild assumptions, these algorithms are backward stable with respect to these

inexact linear solves. We also analyze the accuracy of the resulting reduced system,

and support all our results with multiple numerical experiments. In the second-half

of the dissertation, we present the technique of reusing preconditioners in the linear

solves, and again support our theory with multiple numerical experiments.

6.1 Stability Analysis

Chapter 2 focuses on stability analysis of MOR algorithms for non-parametric

dynamical systems. Since such an analysis for a popular MOR algorithm for non-

parametric first-order dynamical systems (i.e. IRKA) has been done [21], this chapter

specifically focuses on a common MOR algorithm for non-parametric second-order

dynamical systems (i.e. AIRGA).

Often the matrices of the dynamical systems (i.e. M,D,K etc.) are dependent on

multiple parameters (e.g., material property etc.). Algorithms have been proposed for

model reduction of such parametric first-order and second-order dynamical systems
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as well. Chapter 3 looks at stability analysis of such MOR algorithms. For MOR of

parametric first-order dynamical systems, RPMOR algorithm is studied.

Initially, in both Chapters 2 and 3, first and second conditions for stability are

analyzed, and then the stability results are supported by numerical experiments. Next,

we look at future work in the stability context.

The first assumption for stability enforces the use of a Ritz-Galerkin based linear

solver, where the residual of a linear system is made orthogonal to the corresponding

Krylov subspace. The second assumption for stability requires satisfying few other

orthogonalities. Since the CG method is the most popular linear solver based upon

the Ritz-Galerkin theory and is ideal for SPD linear systems, we focus on SPD systems

only. We use Recycling CG (RCG) to achieve the extra orthogonalities. The future

work here involves modifying other methods based upon the Ritz-Galerkin theory

(to achieve extra orthogonalities), which can be used to solve general non-symmetric

indefinite linear systems. For example, the Full Orthogonalization Method (FOM).

The third set of assumptions for stability are that A(s), which is a function of the

frequency (s), and dynamical system matrices, is invertible and its norm is bounded by

one. These assumptions are easily satisfied for all our models, but they may not always

hold. One future direction here involves better characterizing these assumptions in-

terms of the underlying dynamical system. Another direction is transforming the

conditions on A(s) in-terms of M,D, and K since A(s) = s2M + sD +K.

The fourth and final set of assumptions for stability involve being able to compute

perturbation Z from the given expression and bounding its 2-norm by one. As earlier,

although for all our models these assumptions are easily satisfied, they may not always

hold. Z is dependent on the linear solver stopping tolerances. Hence, we need to study

range of these tolerances when the 2-norm of this perturbation could be bounded by

one.

The stability conditions that we have proposed have been sufficiency conditions for

the most general input dynamical system matrices. One future direction in this context

is to find sufficiency conditions for special matrices (e.g., where the input dynamical

system matrices are symmetric, positive definite, diagonally dominant, etc.). Another
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direction here is to workout the necessary conditions for stability for both the general

case and the special cases since such conditions often help to understand the problem

better.

The condition number of the dynamical system, which we use is an approximation

to the ideal condition number. That is, condition number of the dynamical system

with respect to computing the H2-norm of the error between the inexactly computed

reduced system and the exactly computed reduced system. This is also part of the

future work.

6.2 Preconditioner Reuse

Chapter 4, which like Chapter 2, focuses on MOR algorithms for non-parametric

dynamical systems, however, the focus here is on the preconditioners as compared to

stability earlier.

We show use of the SPAI preconditioner because it is inherently parallel, and

especially useful in solving linear systems with exponentially increasing sizes, which

arise here. The linear system matrices here change slightly during the model order

reduction process. Using this, we propose a technique to cheaply update the SPAI

preconditioner.

Since preconditioner reuse in a MOR algorithm for non-parametric first-order dy-

namical systems (i.e. IRKA) has done in [7, 30], this chapter specifically focused on

reusing preconditioners in a MOR algorithm for non-parametric second-order dynam-

ical systems (i.e. AIRGA).

This chapter begins by proposing a general theory for reusing preconditioners in

MOR algorithms (irrespective of parametrization and order of the dynamical systems).

It then makes the following contributions:

Multiple ways of reusing preconditioners within the algorithm, efficient implemen-

tation to ensure that the savings because of reusing preconditioners are not negated by

bad coding, and experimentation on a massively large industrial problem. Numerical

experiments show the effectiveness of our approach, where for a problem of size 1.2
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million, we save upto 64% in the computation time. In absolute terms, this gives a

saving of 5 days.

Chapter 5, which like Chapter 3, focuses on MOR algorithms for parametric dy-

namical systems (both first-order and second-order) while looking at the precondi-

tioner aspect. Again, in the first-order context, RPMOR algorithm is looked at. The

novelty here is that our update exploits the slowly changing behaviour of the model

parameters, which was not done earlier. For a model problem, while using GCRO as

the underlying iterative solver, we show that using a block GCRO saves about 95% of

computation time over its non-block version. In absolute terms, this gives a saving of

4 hours. Further, for two model problems, we show that by using block GCRO with

SPAI update (instead of block GCRO with SPAI) around 60% of the time is saved.

In absolute terms, for first problem, this gives a saving of 1 hour 14 minutes. And, for

the second problem, this gives a saving of 4 minutes.

In future, we will investigate more sophisticated preconditioning strategies that

will further exploit the properties of the underlying MOR algorithms as well as the

resulting linear systems. Specifically, we will explore five directions as below.

(a) Besides the currently used basic SPAI preconditioner, we will investigate the

use of high-order convergent approximate inverse preconditioners [57, 78] as well as

hybrid versions, which use a combination of factorization and approximate inverse

techniques [59, 56].

(b) For MOR algorithms where general shifted linear systems arise, we will inves-

tigate the use of our reusable SPAI preconditioner along with shift-invariant precon-

ditioners that have been developed specifically for such shifted linear systems [65, 68].

(c) We will investigate exploiting the block structure of the linear system coefficient

matrices in some MOR algorithms such that the SPAI and its reuse can be done more

efficiently [79].

(d) Since randomized preconditioners have shown promising results in recent years,

we will explore their use in the context of linear systems in MOR algorithms.

(e) Finally, we would also investigate combining machine learning techniques (e.g.,

spiking neural networks) to optimize the parameters inside the preconditioners
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6.3 General Future Directions

In-general, we also plan to perform inexact linear solves in MOR algorithms1 based

upon other techniques (besides projection, which we focus on). Balanced truncation is

an alternative to the projection based methods for performing model reduction. Here,

large scale Lyapunov equations have to be solved. Alternating Directions Implicit

(ADI) based algorithms are widely used for solving such equations. ADI algorithms

also require solving sequences of large sparse linear systems.

Another example is a MOR algorithm that is data-driven, which is very common

these days, i.e. Data-Driven Parametrized Model Reduction algorithm in the Loewner

Framework (PMOR-L) [54]. We have yet to perform the stability analysis for this

algorithm but we have worked out the reuse of preconditioners for it in Appendix B.

Finally, in future, we intend to look at performing iterative solves in MOR al-

gorithms for non-linear dynamical systems, with all permutations and combinations

related to parametrization (non-parametric/ parametric) and order of the dynamical

system (first-order/ second-order/ higher-orders).

Bilinear dynamical systems are a bridge between linear and highly nonlinear dy-

namical systems. Since stability analyses of such types of systems (with respect to

inexact linear solves) have been extensively worked out (see [80, 22, 23]), we apply

preconditioner reuse theory to two algorithms of this category in Appendices C and

D.

1linear; non-parametric/ parametric; first-order/ second-order.

93





Bibliography

[1] L. Feng, P. Benner, and J. G. Korvink. Subspace recycling accelerates the para-

metric macro-modeling of MEMS. International Journal for Numerical Methods

in Engineering, 94(1):84–110, 2013.

[2] E. J. Grimme. Krylov projection methods for model reduction. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, Urbana, IL, USA, 1997.

[3] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM Ad-

vances in Design and Control, Philadelphia, PA, USA, 2005.

[4] S. Gugercin, A. C. Antoulas, and C. Beattie. H2 model reduction for large-scale

linear dynamical systems. SIAM Journal on Matrix Analysis and Applications,

30(2):609–638, 2008.

[5] T. Breiten. Interpolation methods for model reduction of large-scale dynamical

systems. PhD thesis, Otto Von Guericke University of Magdeburg, Magdeburg,

Germany, 2013.
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Appendix A

Satisfying Second Condition of

Backward Stability

For satisfying the second condition of backward stability (given in (2.9)) in the

listed MOR algorithms (in Table 1.1, mainly for AIRGA[10] and RPMOR[51]), we

use Theorem 4.3 from [21]. This translates to the following result.

Theorem A.1 If ‖Z‖2 <
1

‖A (arg)−1‖H∞
then

‖H(arg)− H̃(arg)‖H2 ≤
‖A (arg)−1B‖H∞‖C TA (arg)−1‖H2

1− ‖A (arg)−1‖H∞‖Z‖2

‖Z‖2, (A.1)

where A (arg) = A(s) = (s2M + sD +K) (in case of non-parametric; AIRGA);

A (arg) = A(i) = A0 + s̀i1A1 + . . .+ s̀iw+1Aw+1(in case of parametric; RPMOR);

H(arg) = C TA (arg)−1B and H̃(arg) = C T
(
A (arg) + Z

)−1
B.

Now,

H (arg)− H̃ (arg) = C TA (arg)−1B − C T
(
A (arg) + Z

)−1
B,

= C T
(
A (arg)−1B −

(
A (arg) + Z

)−1
B
)
,

= C T
(
A (arg)−1B −

(
I + A (arg)−1Z

)−1
A (arg)−1B

)
,

= C T
(
I −

(
I + A (arg)−1Z

)−1
)
A (arg)−1B,

= C TA (arg)−1Z
(
I + A (arg)−1Z

)−1
A (arg)−1B,

(A.2)
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where I ∈ Rn×n is an identity matrix.

Thus,

H (arg)− H̃ (arg) = C TA (arg)−1M (arg)A (arg)−1B, (A.3)

where M (arg) = Z
(
I + A (arg)−1Z

)−1
. Taking H2−norm on both sides of (A.3) and

squaring we get

∥∥∥H (arg)− H̃ (arg)
∥∥∥

2

H2

=
1

2π

∫ ∞

−∞

∥∥C TA (iω)−1M (iω)A (iω)−1B
∥∥2

f
dω.

From the compatible norm property (i.e., ‖AB‖f ≤ ‖A‖f ‖B‖2) we get

∥∥∥H (arg)− H̃ (arg)
∥∥∥

2

H2

≤ 1

2π

∫ ∞

−∞

∥∥C TA (iω)−1
∥∥2

f
‖M (iω)‖2

2

∥∥A (iω)−1B
∥∥2

2
dω.

(A.4)

According to the mean value theorem for integrals, if f(x) and g(x) are continuous

functions and g(x) is not changing sign for any x, then

∫∞
−∞ f(x)g(x)dx ≤ max

c∈R
g(c)

∫∞
−∞ f(x)dx.

Using this property in (A.4) we get

∥∥∥H (arg)− H̃ (arg)
∥∥∥

2

H2

≤ max
ω∈R
‖M (iω)‖2

2 ·max
ω∈R
‖A (iω)−1B‖2

2

1

2π

∫ ∞

−∞

∥∥C TA (iω)−1
∥∥2

f
dω

or∥∥∥H (arg)− H̃ (arg)
∥∥∥

2

H2

≤ ‖M (iω)‖2
H∞
‖A (iω)−1B‖2

H∞

∥∥C TA (iω)−1
∥∥2

H2
.

(A.5)

Here, second and last terms in the right hand side are independent of perturbation Z.

Let’s take a look at the term ‖M (arg)‖2
H∞

. M (arg) can be rewritten as

M (arg) =
(
I −M (arg)A (arg)−1

)
Z.

Hence,

‖M (arg)‖H∞ = max
ω∈R
‖M (iω)‖ ≤ max

ω∈R

∥∥I −M (iω) A (iω)−1
∥∥ ‖Z‖2

≤
(

1 + ‖M (arg)‖H∞
∥∥A (arg)−1

∥∥
H∞

)
‖Z‖2 .
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Thus,

‖M (arg)‖H∞ ≤
‖Z‖2(

1− ‖A (arg)−1‖H∞ ‖Z‖2

) . (A.6)

Substituting (A.6) in (A.5), we get

‖H(arg)− H̃(arg)‖H2 ≤
‖A (arg)−1B‖H∞‖C TA (arg)−1‖H2

1− ‖A (arg)−1‖H∞‖Z‖2

‖Z‖2, (A.7)

If ‖Z‖2 < 1 and ‖A (arg)−1‖H∞ < 1, then

∥∥∥H (arg)− H̃ (arg)
∥∥∥
H2

=©
(
‖Z‖2

)
.

Hence, AIRGA and RPMOR satisfies the second condition of backward stability

with respect to the inexact linear solves, i.e. (2.9).
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Appendix B

Reusing Preconditioners for

PMOR-L

PMOR-L [54] is a Loewner framework based model order reduction algorithm

for all orders of linear parametric dynamical systems. One important step here is

computing a matrix called the Loewner matrix, which further requires computation of

the transfer function of the dynamical system. This function for (1.2), with B = B(pj)

and C = C(pj) is given by

H(sk, pj) = C(pj)
TA(sk, pj)

−1B(pj) for k = 1, . . . , v, and j = 1, . . . , w, (B.1)

where

A(sk, pj) = (skD(pj) +K(pj)) , (B.2)

with A(·), D(·), K(·) ∈ Rn×n and C(·), B(·) ∈ Rn×1. The variables sk and pj are

the frequency variables and the parameters, respectively. To compute the transfer

function H(sk, pj), one needs to solve sequences of linear systems as
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



A(s1, p1)x(11) = B(p1),

A(s2, p1)x(21) = B(p1),

...
...

A(sk, p1)x(k1) = B(p1),

· · ·





A(s1, pj)x(1j) = B(pj),

A(s2, pj)x(2j) = B(pj),

...
...

A(sk, pj)x(kj) = B(pj).

(B.3)

Next, we look at cheap updates for the above sequence of linear systems. Here,

we can express the relation between the matrices of the sequence of linear systems

by the following two ways: First, by capturing the changes in frequency variables

(sk), and second, by capturing the changes in parameters (pj). In general, savings

in computation time are less in the first case since frequency variables change more

rapidly than parameters. The reason for this is, the frequency range is often not

known to the modeler, while the range of parameters is more easily quantifiable from

the application.

We now discuss the first way. Since frequency variables change rapidly, the con-

secutive matrices here are more closer to each other than the non-consecutive ones.

In other words, this is equivalent to the preconditioner updates for non-parametric

model order reduction. Hence, the second approach from Table 4.1 is preferred. Let

A(sk−1, p1) and A(sk, p1) be two coefficient matrices for parameter p1 and different

values of frequency variables sk−1 and sk, respectively. Expressing A(sk, p1) in-terms

of A(sk−1, p1) we get

A(sk, p1) = A(sk−1, p1)
[
I + (sk − sk−1)A(sk−1, p1)−1D(p1)

]
. (B.4)

Let P(k−1)1 be a good initial SPAI preconditioner for A(sk−1, p1). We want to com-

pute a good SPAI preconditioner Pk1 corresponding to A(sk, p1). We can do this by

enforcing A(sk−1, p1)P(k−1)1 = A(sk, p1)Pk1. Rewriting this equation by using (B.4)
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we get

A(sk−1, p1)P(k−1)1 = A(sk−1, p1)
[
I + (sk − sk−1)A(sk−1, p1)−1D(p1)

]

[
I + (sk − sk−1)A(sk−1, p1)−1D(p1)

]−1
P(k−1)1,

= A(sk, p1)Pk1,

where Pk1 = [I + (sk − sk−1)A(sk−1, p1)−1D(p1)]
−1
P(k−1)1. Let Qk1 =

[I + (sk − sk−1)A(sk−1, p1)−1D(p1)]
−1

, then the above implies A(sk−1, p1)P(k−1)1 =

A(sk, p1)Qk1P(k−1)1. Thus, instead of computing a preconditioner by minimizing

‖I − A(sk, p1)Pk1‖2
f with respect to Pk1, we solve a simpler problem given below

min
Qk1

‖A(sk−1, p1)− A(sk, p1)Qk1‖2
f

with Pk1 = Qk1P(k−1)1. Similarly, for any parameter pj (for j = 2, . . . , w), we solve for

Qkj from

min
Qkj

‖A(sk−1, pj)− A(sk, pj)Qkj‖2
f ,

leading to Pkj = QkjP(k−1)j.

Next, we discuss the second case. The preconditioner update technique, as ex-

plained in the dissertation for RPMOR is directly applicable here (because of slowly

changing parameters). Hence, the first approach from Table 4.1 is preferred. Here,

unless we know how the matrices D and K from (3.1) depend on pj, we are unable to

express A(sk, pj) in-terms of A(sk, p1). However, this can be easily worked out once

the input model is known. Therefore, we give this derivation for a commonly used

example from [54] (the paper that proposed PMOR-L). The linear system matrices

that arise here have the following form:

D(pj) = I, K(pj) = diag (K1(pj), K2, K3, K4) for j = 1, . . . w,

where K1(pj) =


−1 pj

−pj −1


, K2 =


 −1 200

−200 −1


, K3 =


 −1 400

−400 −1


, and K4 =
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diag (1, 2, . . . 1000). Thus, from (B.2) we have

A(sk, pj) = skI +




K1(pj)

K2

K3

K4



.

Expressing A(sk, pj) in-terms of A(sk, p1) we get

A(sk, pj) = A(sk, p1) +




K1(pj)−K1(p1)

0
. . .

0




= A(sk, p1) + diag ((K1(pj)−K1(p1)), 0, . . . , 0) .

= A(sk, p1)
[
I + A(sk, p1)−1diag ((K1(pj)−K1(p1)), 0, . . . , 0)

]
. (B.5)

As earlier, we want to enforce A(sk, p1)Pk1 = A(sk, pj)Pkj, where Pk1, Pkj

are good SPAI preconditioners corresponding to the two respective matrices

and Pk1 is already computed. However, by using (B.5), we define Qkj =

[I + A(sk, p1)−1diag ((K1(pj)−K1(p1)), 0, . . . , 0)]
−1

, and enforce A(sk, p1)Pk1 =

A(sk, pj)QkjPk1. Thus, instead of minimizing ‖I − A(sk, pj)Pkj‖2
f with respect to

Pkj, we solve a simpler problem

min
Qkj

‖A(sk, p1)− A(sk, pj)Qkj‖2
f

to get Pkj = QkjPk1.
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Appendix C

Reusing Preconditioners for

BIRKA

Bilinear Iterative Rational Krylov Algorithm (BIRKA) [81] is a Petrov-Galerkin

projection based algorithm for MOR of the bilinear non-parametric first-order dy-

namical systems, which for the Multiple Input Multiple Output (MIMO) case are

represented as

ẋ(t) = Kx(t) +
m∑

j=1

Njx(t)uj(t) +Bu(t),

y(t) = CTx(t),

(C.1)

where K, Nj ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×q, and u = [u1, u2, . . . , um] ∈ Rm. Let

columns of V,W ∈ Rn×r span two r-dimension subspaces (where, as earlier, r � n ).

In principle, the Petrov-Galerkin projection method involves the steps below.

• Approximating the reduced state vector x̂(t) using V as x(t) ≈ V x̂(t) leads to

V ˙̂x(t)−KV x̂(t)−
m∑

j=1

NjV x̂(t)uj(t)−Bu(t) = r(t),

ŷ(t) = CTV x̂(t),

where r(t) is the residual after projection.

• Enforcing the residual r(t) to be orthogonal to W or W T r(t) = 0 leads to the

112



reduced system given by

˙̂x(t)− K̂x̂(t)−
m∑

j=1

N̂jx̂(t)uj(t)− B̂u(t) = 0,

ŷ(t) = ĈT x̂(t),

where K̂ = (W TV )−1W TKV, N̂j = (W TV )−1W TNjV, B̂ = (W TV )−1W TB, ĈT =

CTV , and (W TV )−1 is assumed to be invertible. Here, V and W are computed by

using interpolation, where the original system transfer function and its derivative are

respectively matched with the reduced system transfer function and its derivative at

a set of points. We briefly summarize BIRKA in Algorithm 4, where again, only parts

related to solving linear systems are listed.

Algorithm 4 : BIRKA [81]

Input K, N1, . . . , Nm, B, C; error tolerance (ε3); and initial guess of the reduced

system Ǩ, Ň1, . . . , Ňm, F̌ , Č

Output K̂, N̂1, . . . , N̂m, B̂, and Ĉ

1: z = 1

2: while relative change in eigenvalues of Ǩ is greater than equal to the ε3 do

3: RΛR−1 = Ǩ, ˇ̌B = B̌TR−T , ˇ̌C = ČR, ˇ̌Nj = RT ŇjR
−T

for j= 1, . . . , m

4: vec (V ) =

(
−Λ⊗ In − Ir ⊗K −

m∑
j=1

ˇ̌NT
j ⊗Nj

)−1 (
ˇ̌BT ⊗B

)
vec(Im)

5: vec (W ) =

(
−Λ⊗ In − Ir ⊗KT −

m∑
j=1

ˇ̌Nj⊗NT
j

)−1 (
ˇ̌CT ⊗ CT

)
vec(Iq)

6: V = orth (V ) , W = orth (W )

7: Ǩ = (WTV )−1WTKV , Ňj =
(
WTV

)−1
WTNjV, B̌ =

(
WTV

)−1
WTB,

Č = CV

8: z = z + 1

9: end while

10: K̂ = Ǩ, N̂j = Ňj, B̂ = B̌, and Ĉ = Č
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In the Algorithm 4, we solve linear systems of equations at lines 4 and 5. We first

apply our proposed theory of reusing preconditioners to line 4, which is given as

vec (V ) =

(
−Λ⊗ In − Ir ⊗K −

m∑

j=1

ˇ̌NT
j ⊗Nj

)−1 (
ˇ̌BT ⊗B

)
vec(Im).

Here, Λ is a diagonal matrix comprising of interpolation points, which is updated at

the start of the while loop at line 2. For ease of explanation, we take j = 1 here.

Similar steps can be executed for j = 2, . . . , m. Let Az−1 = −Λz−1 ⊗ In − Ir ⊗K −(
ˇ̌NT

1

)
z−1
⊗N1 and Az = −Λz ⊗ In − Ir ⊗K −

(
ˇ̌NT

1

)
z
⊗N1 be the coefficient matri-

ces corresponding to Λz−1 and Λz, respectively (for z = 1, . . . , z (until covergence)).

Expressing Az in terms of Az−1, we get

Az = Az−1

(
Inr + A−1

z−1(−Λz ⊗ In) + A−1
z−1(Λz−1 ⊗ In)+

A−1
z−1

(
−
(

ˇ̌NT
1

)
z
⊗N1

)
+ A−1

z−1

((
ˇ̌NT

1

)
z−1
⊗N1

))
,

where Inr ∈ Rn·r×n·r is the Identity matrix. If we define

Qz =

(
Inr + A−1

z−1(−Λz ⊗ In) + A−1
z−1(Λz−1 ⊗ In)+

A−1
z−1

(
−
(

ˇ̌NT
1

)
z
⊗N1

)
+ A−1

z−1

((
ˇ̌NT

1

)
z−1
⊗N1

))−1

, then above is equivalent to

Az = Az−1Q
−1
z . (C.2)

Now, we enforce

Az−1Pz−1 = AzPz. (C.3)

Using (C.2), instead we enforce

Az−1Pz−1 = Az−1Q
−1
z Pz.

If we take Pz = QzPz−1, then we eventually enforce

Az−1Pz−1 = Az−1Q
−1
z QzPz−1,

which is true.
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Thus, instead of solving for Pz by enforcing (C.3), which is harder to solve, we

obtain the preconditioner at the zth iteration (Pz = QzPz−1) by enforcing

Az−1Pz−1 = AzQzPz−1,

which is more easily solvable. The remaining derivation here is same as earlier. We

reuse preconditioners at line 5 similarly.
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Appendix D

Reusing Preconditioners for

QB-IHOMM

Quadratic Bilinear-Implicit Higher Order Moment Matching (QB-IHOMM) [82] is

a Petrov-Galerkin projection based algorithm for MOR of the quadratic-bilinear non-

parametric first-order dynamical systems, which for the SISO case are represented

as1

Dẋ(t) = Kx(t) +Nx(t)u(t) +H (x(t)⊗ x(t)) +Bu(t),

y(t) = CTx(t),
(D.1)

where D, K, N ∈ Rn×n, H ∈ Rn×n2
, B ∈ Rn×1, C ∈ Rn×1. Let columns of

V, W ∈ Rn×r span two r-dimension subspaces (where as earlier, r � n ). In principle,

the Petrov-Galerkin projection method involves the steps below.

• As before, approximating the reduced state vector x̂(t) using V as x(t) ≈ V x̂(t)

leads to

DV ˙̂x(t)−KV x̂(t)−NV x̂(t)u(t)−H (V x̂(t)⊗ V x̂(t))−Bu(t) = r(t),

y(t) = CTV x̂(t),

where r(t) is the residual after projection.

1 A variant of BIRKA for MOR of the quadratic-bilinear first-order dynamical systems also exists.

Preconditioned iterative solves and reusing preconditioners can be applied here as done for BIRKA.

Hence, we focus on QB-IHOMM that has been developed for the SISO case only.
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• Enforcing the residual r(t) to be orthogonal to W or W T r(t) = 0 leads to the

reduced system given by

D̂ ˙̂x(t)− K̂x̂(t)− N̂ x̂(t)u(t)− Ĥ (x̂(t)⊗ x̂(t))− B̂u(t) = 0,

y(t) = ĈT x̂(t),

where D̂ = W TDV, K̂ = W TKV, N̂ = W TNV, Ĥ = W TH(V ⊗ V ), B̂ =

W TB, ĈT = CTV. Here, V and W are computed by matching the moments of the

original system transfer function and the reduced system transfer function. We briefly

summarize QB-IHOMM in Algorithm 5, where as earlier, only parts related to solving

linear systems are listed. Here, as in [82], the computation is done with the first two

regular transfer function terms.

In the Algorithm 5, we solve linear systems of equations at line 4 and 10. Again,

we first apply our proposed theory of reusing preconditioners to line 4, which is given

as

Xj(σi) = [(σiD −K)−1D]j(σiD −K)−1B,

for j = 1, . . . , P +Q and i = 1, . . . , `.

Let Ai−1 = σi−1D−K and Ai = σiD−K be the two coefficient matrices for different

interpolation points σi−1 and σi, respectively (for i = 1, . . . , `). Expressing Ai in

terms of Ai−1, we get

Ai = Ai−1(I + (σi − σi−1)A−1
i−1D).

If we define Qi = (I + (σi − σi−1)A−1
i−1D)−1, then above is equivalent to

Ai = Ai−1Q
−1
i .

As earlier, instead of obtaining Pi by enforcing

Ai−1Pi−1 = AiPi,

which is harder to solve, we obtain the preconditioner at the ith iteration (Pi = QiPi−1)

by enforcing

Ai−1Pi−1 = AiQiPi−1,
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Algorithm 5 : QB-IHOMM [82]

Input: D, K, N, H, B, C; interpolation points σi ∈ C for i = 1, . . . , `; higher

orders moments numbers P,Q ∈ N

Output: D̂, K̂, N̂ , Ĥ, B̂, Ĉ

1: V = [ ] , W = [ ]

2: for j = 0, . . . , P +Q do

3: for i = 1, . . . , ` do

4: Xj(σi) = [(σiD −K)−1D]j(σiD −K)−1B

5: V = [V Xj(σi)]

6: end for

7: end for

8: for j = 0, . . . , Q do

9: for i = 1, . . . , ` do

10: Xj(2σi)
T = [(2σiD −K)−TDT ]j(2σiD −K)−TCT

11: W =
[
W Xj(2σi)

T
]

12: end for

13: end for

14: U = orth([V W ])

15: Construct the reduced system as

D̂ = UTDU, K̂ = UTKU, N̂ = UTNU, Ĥ = UTH(U ⊗ U), B̂ = UTB, ĈT =

CTU.

which is more easily solvable. Again, here also, the remaining derivation is same as

earlier. We reuse preconditioners at line 10 similarly.
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